ASSESSMENT WORK

AUGUST 18-24, 1983

SOIL GEOCHEMICAL SURVEY REPORT

FOR

INTERNATIONAL CHEROKEE DEVELOPMENTS LTD.

ON THE

S CLAIM (12 UNITS)
SLOCAN MINING DIVISION, BRITISH COLUMBIA

AT

LATITUDE: 49°44'N

LONGITUDE: 117°26'W

CLAIM MAP M82F/14W

20 January 1984

BY

E. AMENDOLAGINE, P.Eng.

GEECOLLOOGS ICCAN'L BERRANNICHH ASSESSESSESSESMEENNIT PREEPHORTT

11,809

TABLE OF CONTENTS

	PAGE
INTRODUCTION	. 1
SUMMARY	. 2
PROPERTY	. 3
LOCATION	. 3
ACCESS	3
SURVEY PERFORMED	4
SOIL GEOCHEMISTRY	5
STATISTICAL ANALYSIS	6
CONCLUSIONS AND RECOMMENDATIONS	8
COST BREAKDOWN	9
MAPS	
Claim Map Followi	
Countour Maps Au, Ag, As, Cu, Mo, Pb, Zn	ng 7

APPENDIX I

ACME LABORATORY ASSAY CERTIFICATE SEVEN PLOTTED ASSAY PLANS

INTRODUCTION

The purpose of this report is to examine the "S" claim (12 units) by geochemical means to explore the gold-silver and other mineral potential of the claim. The claim lies in an area of old crown grants and claims that have been held for long periods of time.

There are crown grants that have yielded varying degrees of silver, lead, zinc and gold to the east, west, north and south of the "S" claim.

The old Republic No. 2 claim lies some 2 units to the west of the "S" claim and has a record of shipping some 13,299 oz. of Ag and 107 ozs. of Au. Ref. B.C.Minister of Mines Annual Reports of 1896, 1898, 1904, 1935, 1951 and 1952.

With the mineralizaton in close proximity to the west of the property it was decided to geochemically test the property to examine any mineralization that may be striking through the property area.

The following report covers a joint venture survey conducted on the two adjoining claims, the "R" to the north and the "S" to the south. The expenses have been proportioned to the properties.

The claims have a common boundary with the L.C.P. at the west end of the common boundary.

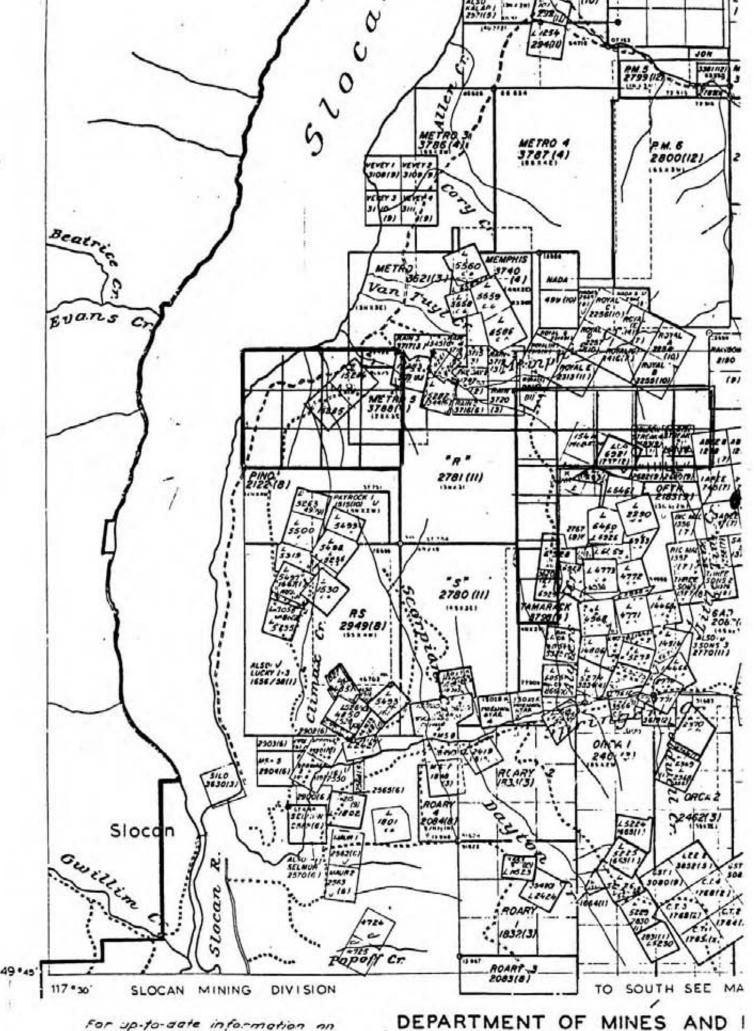
SUMMARY

A soil geochemistry survey was carried out during the period August 18-24, 1983 on the "S" claim in the Slocan Mining Division of British Columbia. The purpose of the survey was to test and examine the claim area for economical mineral deposits and was conducted with control lines consisting of a north-south baseline on the west boundary of the claims, with east lines measured eastward from the baseline. The lines are spaced 250 meters apart with stations and samples at 100 meter spacing on all the lines. There were 120 soil samples taken on the "S" claim and assayed for Au, Ag, As, Cu, Mo, Pb and Zn.

The soil geochemical survey statistical analysis indicates some weak anomalous conditions on the property. The major portion of the weak anomaly is concentrated in the southwestern portion of the claim with a general northeast strike.

It is recommended that a more detailed geochemical survey be completed on the property in conjunction with geology, VLF and magnetometer survey to search for the cause of the continuity and lineation of the anomalous area.

PROPERTY


The property consists of the "S" claim (12 units) as shown on Claim Map M82F/14W.

LOCATION

The claim is located 4 km northwest of Slocan, British Columbia, some two km east of Slocan Lake.

ACCESS

Access is some 6 km by road from the town of Slocan, east up Springer Creek and north up Scorpion Creek. The road passes on the west boudnary of the claim.

For up-to-date information an claims in any area you should

MICTORIA

SURVEY PERFORMED

Line grid and soil geochemistry surveys were conducted on the. property during the period August 18 to 24, 1983. This survey was conducted by Manny Consultants Ltd. with the assistance of:

Sab Amendolagine
Jamie Amendolagine
Pino Causicto

The line grid was established on the property and tied into the LCP in the northwest corner of the claim. The grid consisted of compass and chain and flagging lines.

The main baseline is the west boundary of the claim. The east lines are run off the baseline, and are spaced 250 meters apart.

The soil geochemistry survey used the line grid for control, and samples were taken at 100 meter spacings along the lines. The area is steep in places and difficult to traverse.

SOIL GEOCHEMISTRY SURVEY

Soil sampling was performed on an established grid at 100 meter intervals. The samples were taken with a mattock in the "B" horizon where possible. They were placed in bags and marked for grid location.

The samples for Au, As, Ag, Cu, Mo, Pb and Zn were assayed by Acme Analytical Laboratories in Vancouver, B.C., and the assay certificates follow after the statistical analyses. The assays are plotted on the plans and enclosed in this report.

The following is the laboratory methodology:

ACME ANALYTICAL LABORATORIES LTD
Asseying & Trace Analysis
852 E. Hastings B., Vincouver, B.C. VEA 186
Telephone : 253-3168

GEOCHEMICAL LABORATORY METHODOLOGY - 1982

Sample Preparation

- 1. Soil samples are dried at 60°C and sieved to -80 mesh.
- 2. Rock samples are pulverized to -100 mesh.

Geochemical Analysis (AA and ICP)

0.5 gram samples are digested in hot dilute aqua regia in a boiling water bath and diluted to 10 ml with demineralized water. Extracted metals are determined by :

A. Atomic Absorption (AA)

Ag*, Bi*, Cd*, Co, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Sb*, Tl, V, Zn (* demotes with background correction.)

B. Inductively Coupled Argon Plasma (ICP)

Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cu, Cr, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Geochemical Analysis for Au

10.0 gram samples that have been ignited overnite at 600°C are digested with hot dilute aqua regia, and the clear solution obtained is extracted with Methyl Isobutyl Ketone.

Au is determined in the MIBK extract by Atomic Absorption using background correction (Detection Limit = 5 ppb direct AA and 1 ppb grahite AA.)

Geochemical Analysis for Au. Pd. Pt. Rh

10.0 - 30.0 gram samples are subjected to Fire Assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and Au, Pb, Pt and Rh are determined in the solution by Atomic Absorption.

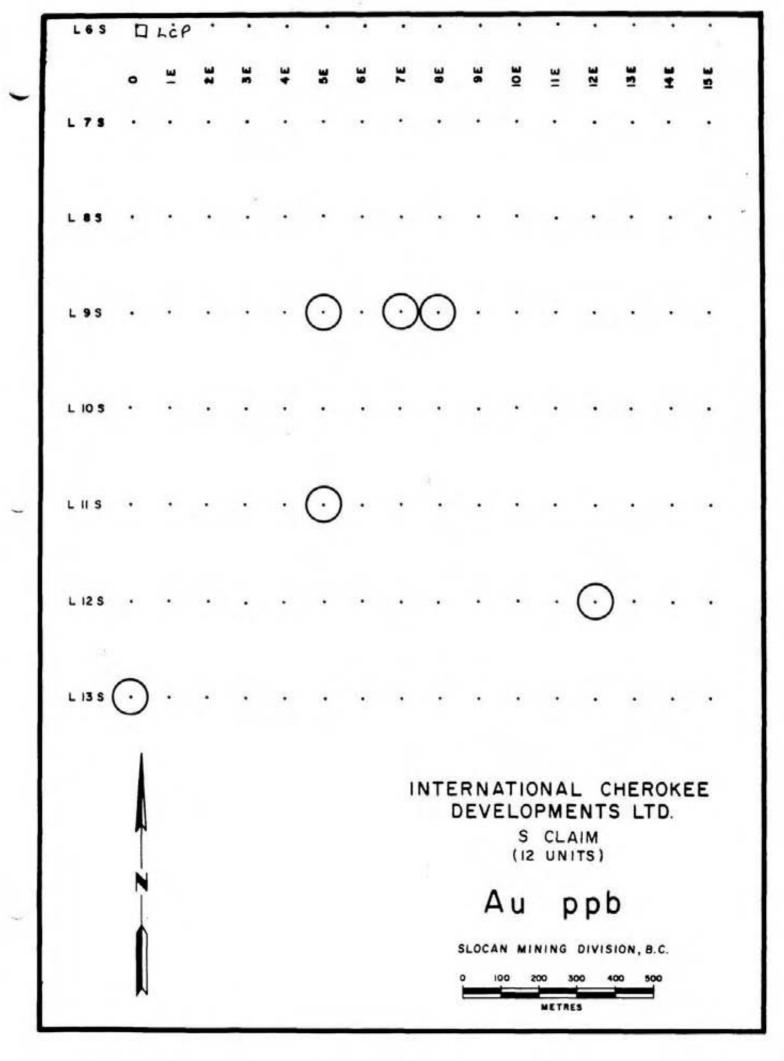
Geochemical Analysis for As

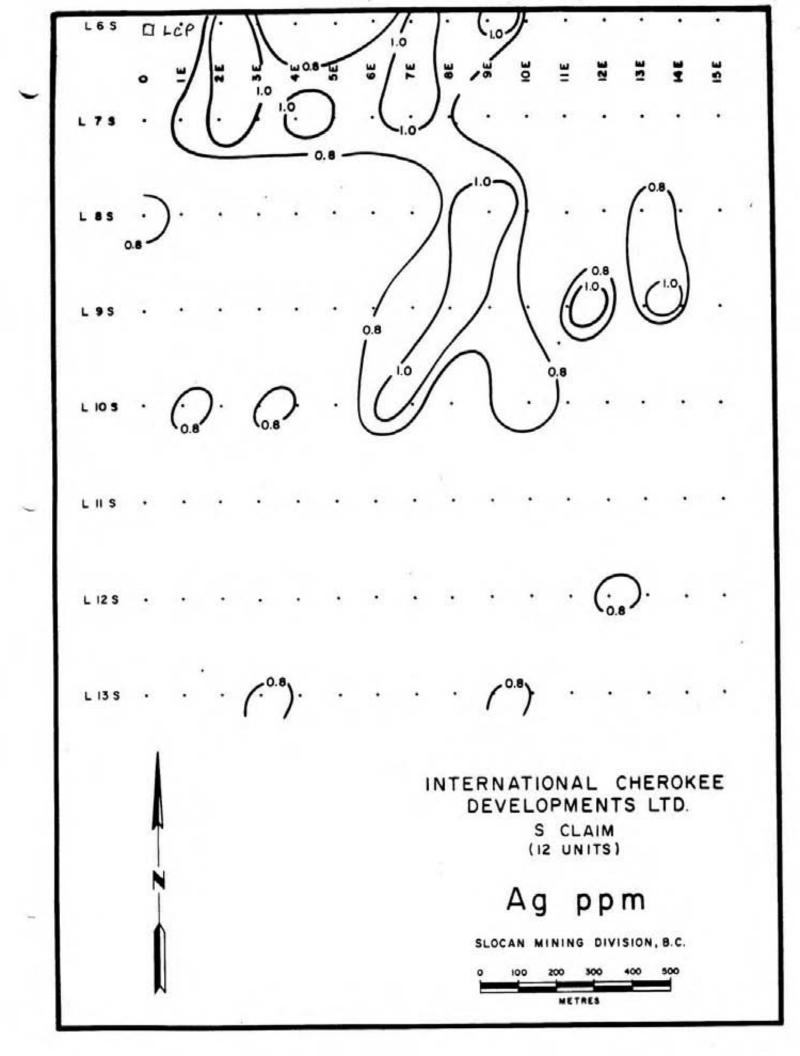
0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml. As is determined in the solution by Graphite Furnace Atomic Absorption (AA) or by Inductively Coupled Argon Plasma (ICP).

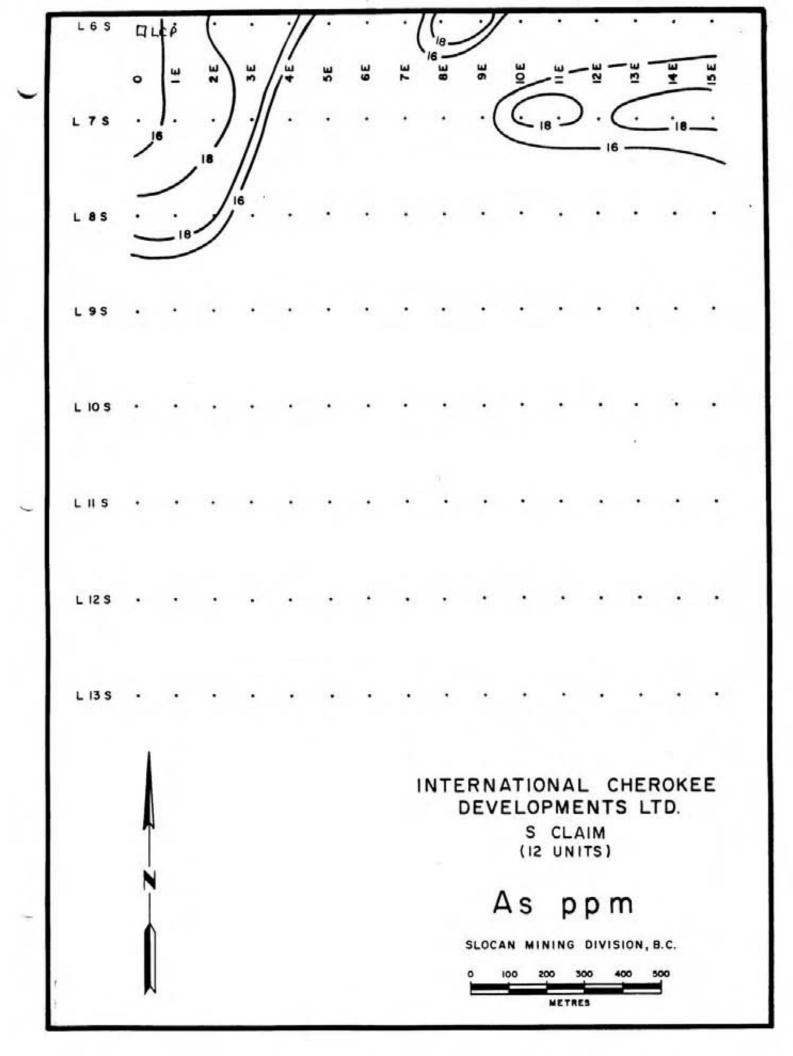
STATISTICAL ANALYSIS

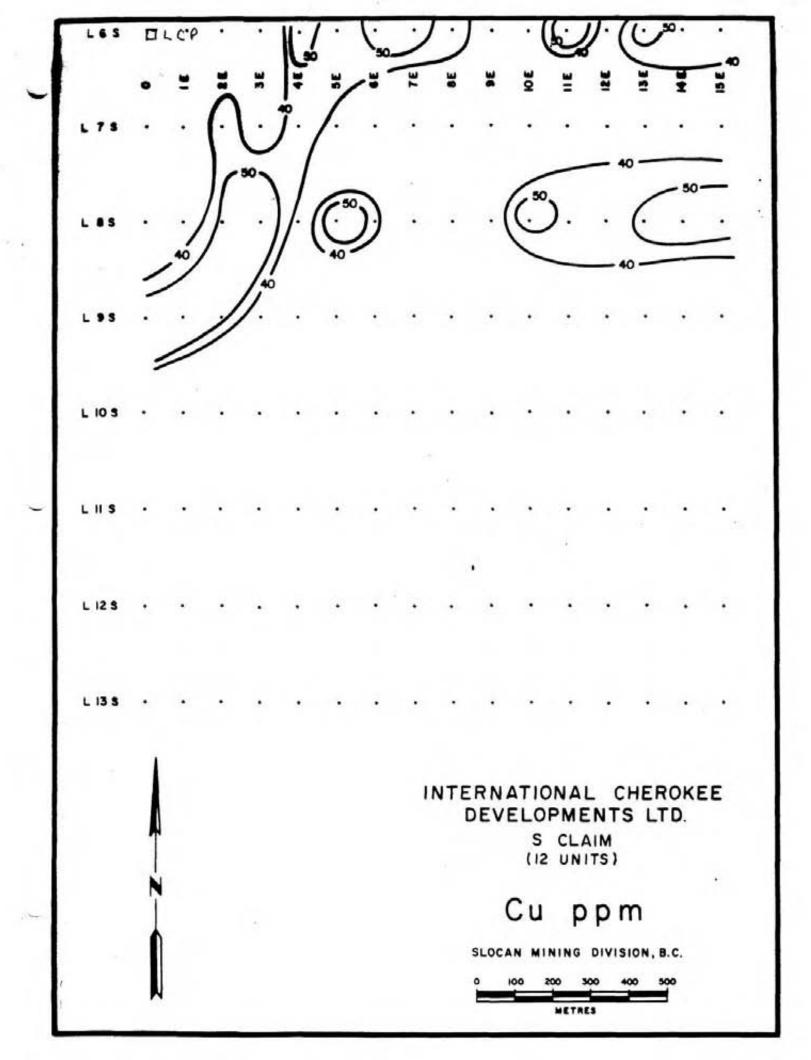
The statistical analysis encompasses 222 soil sample assay. results from the joint venture survey of the "R" claim and "S" claim.

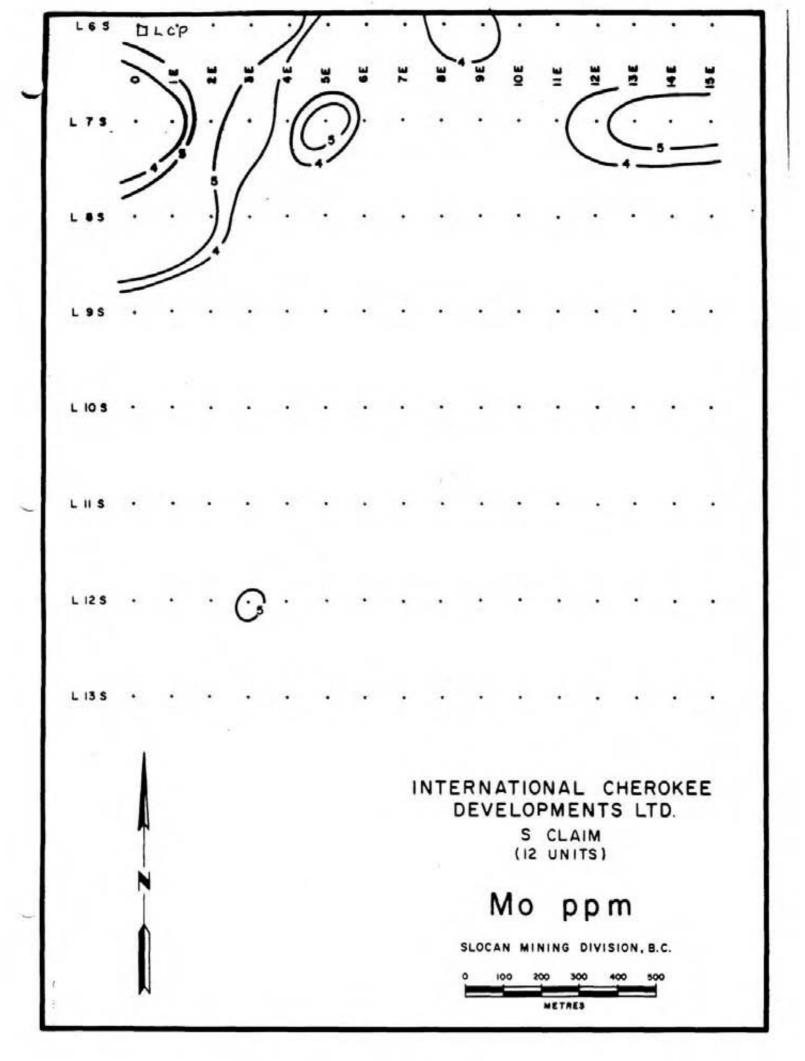
The surveys were conducted simultaneously. The larger number of samples of the immemdiate area enhanced the statistical analysis interpretation.

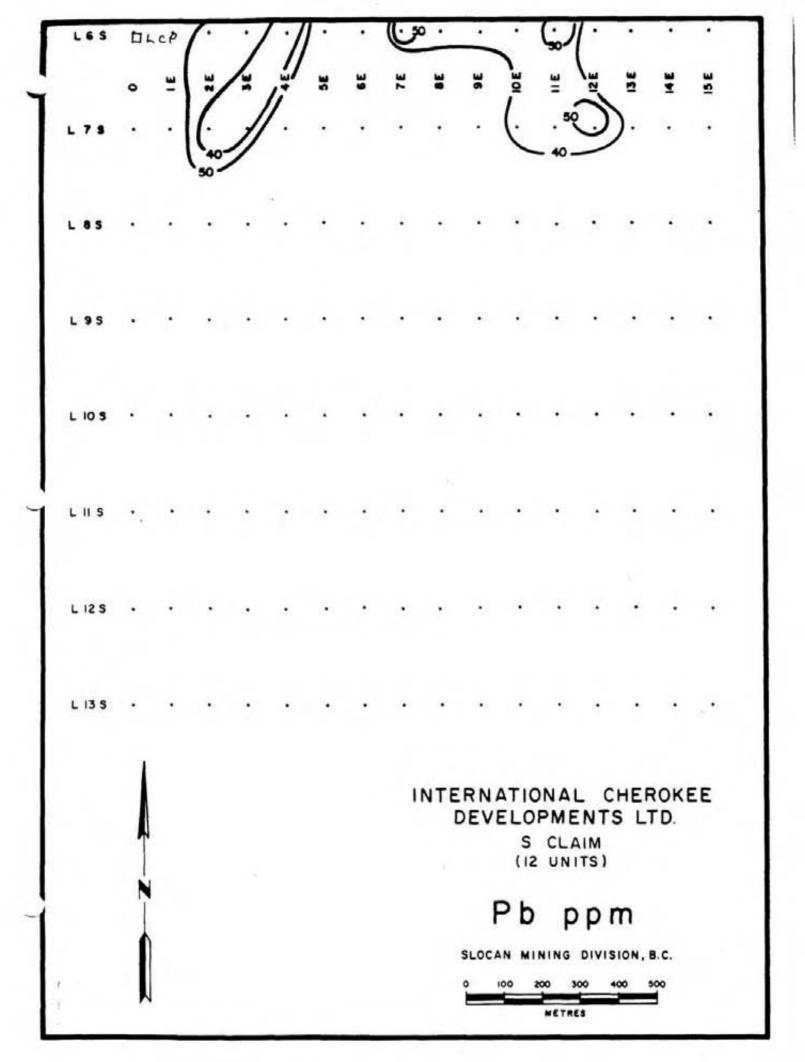

The following are the statistical analysis of the 222 samples with a breakdown sheet followed by a contoured map of the "S" claim anomalous areas.

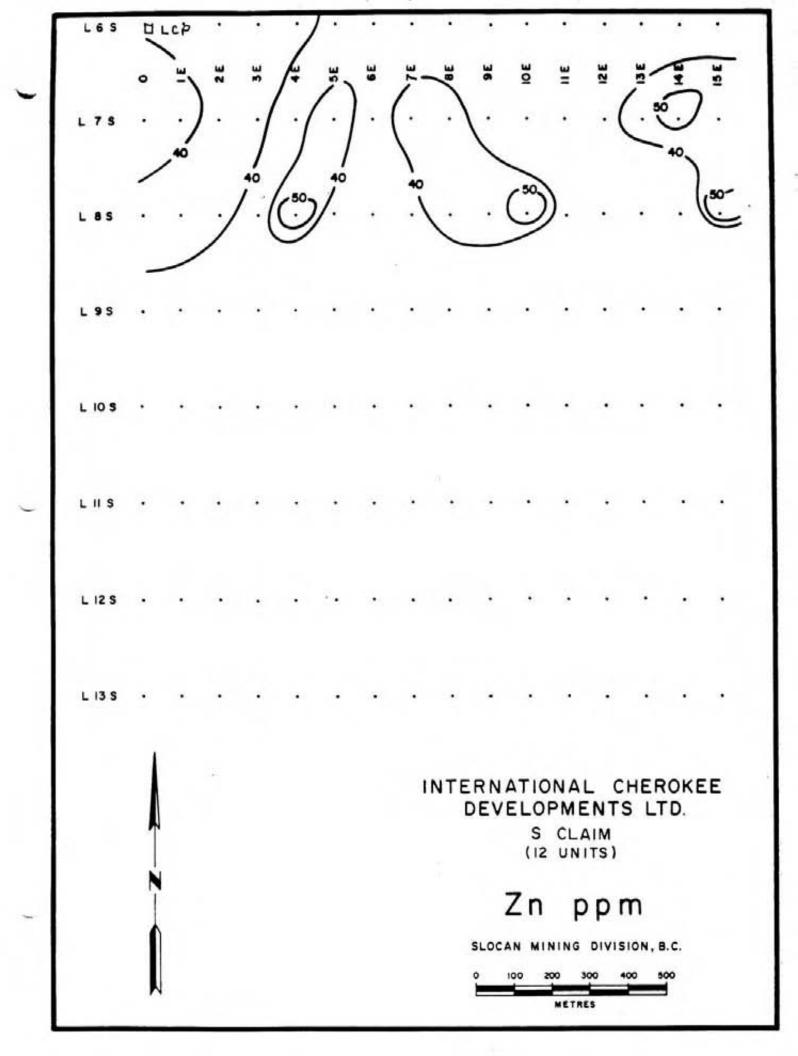

The assay results reported by Acme Labaoratory are included in Appendix I with plotted assay result plans.


RLEMENT	ASSAY RA	NO OF SAMPLES	
Gold	B.G.	5 ppb	201
	Threshold	10	9
	Anomalous	15-75	12
Arsenic	B.G. Threshold Anomalous		176 18 28
Silver	B.G.	06	162
	Threshold	0.7	24
	Anomalous	.8-2.9	18
Lead	B.G.	0-19	148
	Threshold	20-29	39
	Anomalous	30-80	35
Zinc	B.G. Threshold Anomalous		172 36 14


.


	. 7				
Copper	B.G.	0-39	182		
	Threshold	40-49	16		
	Anomalous	50-79	24		
Molybdenum	B.G.	0-3	170		
	Threshold	4	31		
	Anomalous	5-7	21		





CONCLUSIONS AND RCOMMENDATIONS

The soil geochemical survey revealed numerous weak anomalies.

The areas of more intense soil geochemical response lie mainly diagonally across the property from the southwest to the northeast corner. This area shows groups or spots of higher geochemical assays for all the elements.

The recommendations are to continue the geochemcial survey in a more detailed survey in conjunction with geology, VLF and magnetometer survey. The correlation of the survey information would determine any necessry program to follow.

The monies to complete these surveys would be some \$32,000.00.

Respectfully submitted,

100

E. Amendolagine, P.Eng.

Dated: 20 January 1984

COST BREAKDOWN

SAB AMENDOLAGINE	18-24 August 1983 6 days @ \$150/day	\$ 900.00
JAMES AMENDOLAGINE	18-14 August 1983	600.00
	6 days @ \$100/day	
PINO CAUSICTO	18-24 Aug/83 6 days @ \$150/day	900.00
	o days & \$150/day	
		\$ 2,400.00
SURVEY CREW		
Transportation, 4 x		440.00
7 days @ \$35/day + Room and Board, 28		448.80 945.00
Room and Board, 26	man days & \$45/day	243.00
Assays		1,831.50
Report, Draft, Typi	ng (2 reports)	1,750.00
	TOTAL	\$ 6,375.30

"R" CLAIM SHARE EXI	PENSES	\$ 2,732.00
"S" CLAIM SHARE EXI	PENSES	\$ 3,643.00

APPENDIX I

ACME LABORATORY ASSAY CERTIFICATE

SEVEN PLOTTED ASSAY PLANS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124 DATE RECEIVED NOV 3 1983

DATE REPORTS MAILED 1983

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HMO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER.

THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 ppm. AU= AMALYSIS BY AA FROM 10 GRAM SAMPLE.

SAMPLE TYPE - SOIL

ASSAYER ___ NEW DEAN TOYE, CERTIFIED B.C. ASSAYER

MANNY	FILE # 83-	2819	PROJ	ECT #RA	NELS	P	AGE# 1
SAMPLE	MO PPM	CU	PB ppm	ZN ppm	AG ppm	AS ppm	Au*
LO 1E LO 2E LO 3E LO 4E LO 5E	1 1 1 1 1 1	9 10 9	21 17 16 18 16	127 113 119 121 132	.1 .4 .1 .4	6 4 2 4 7	55555
LO 6E LO 7E LO 8E LO 9E LO 10E	1 1 1 1	11 7 7 8 6	18 12 11 13 10	124 85 76 132 100	.2 .4 .5 .1	36232	55555
LO 11E LO 12E LO 13E LO 14E LO 15E	1 6 7 6	6 36 38 39 37	9 26 27 23 24	97 475 471 415 457	.2 .8 .7 .8	4 14 15 10 14	5 25 5 5
L1 0E L1 1E L1 2E L1 3E L1 4E	4 5 3 4	42 51 40 54 49	19 29 30 32 30	509 433 368 437 425	.5	12 22 14 21 23	5555
L1 5E L1 6E L1 7E L1 8E L1 9E	3 4 3 3 3	43 42 25 36 29	31 29 19 19	381 359 309 566 226	.2 .7 .4	19 16 9 11	5 30 5 5 5
L1 10E L1 11E L1 12E L1 13E L1 14E	3 4 3 2	27 26 50 28 18	13 15 19 19	206 204 448 341 128	.4 .3 .5 .6	9 10 15 11	5 5 10 5
L1 15E L2 0E L2 1E L2 2E L2 3E	. 2222	18 26 27 25 25	11 17 16 16 13	132 195 201 180 179	.3 .4 .2 .4	9 10 8 7 12	5 45 10 5
L2 4E L2 5E STD A-1/AU 0.5	3 4 1	25 49 29	14 20 39	182 407 186	.3	8 17 10	5 5 510

MANNY	FILE # 83-	2819	PROJ	ECT #RA	NELS	P	AGE# 2	
SAMPLE	MO	Dbw Cn	PB ppm	ZN	AG ppm	AS ppm	Au*	٠
L2 6E L2 7E L2 8E L2 9E L2 10E	4 2 3 4 3	45 23 26 50 29	18 15 23 26 16	374 290 290 403 199	.35	9 7 9 12 8	55555	
L2 11E L2 12E L2 13E L2 14E L2 15E	2 2 4 4 2	22 21 62 63 21	17 14 26 34 15	265 200 465 492 188	.3 .4 .6 .3	8 23 20 6	ສສສສສສ	
L3 0E L3 1E L3 2E L3 3E L3 4E	3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27 24 17 19 27	33 18 14 11 31	224 441 303 252 233	.4 1.0 .2 1.3	8 7 9 9	5 20 5 5	
L3 5E L3 6E L3 7E L3 8E L3 9E	3 4 5 4 3	26 32 27 27 23	33 38 25 28 15	233 262 536 513 428	1.9 .6 .1 .4	8 10 15 16 8	55555	
L3 10E L3 11E L3 12E L3 13E L3 14E	2 2 3 3	23 20 25 27 11	42 34 40 47 15	267 239 452 551 107	.9 .4 1.2 1.4	10 8 15 16 3	55555	
L3 15E L4 1E L4 2E L4 3E L4 4E	1 3 3 3 3 3	8 29 29 29 29 63	13 22 17 17 39	116 235 214 208 382	.3 .5 .4 .4	13 8 13 15	ភភភភភភ	
L4 5E L4 6E L4 7E L4 8E L4 9E	33332	60 62 61 29 21	32 34 31 20 10	370 378 366 394 159	.4	17 18 17 16 6	ភភភភភ	
L4 10E L4 11E STD A-1/AU 0.5	3 3 1	32 29 30	23 22 40	420 412 184	.1	12 16 9	5 5 500	

MANNY	FILE # 83-	2819	PROJ	ECT #RA	NELS	P	AGE# 3	
SAMPLE	MO ppm	CU	PB ppm	ZN ppm	AG ppm	AS PPM	Au*	3
L4 12E L4 13E L4 14E L4 15E L5 OE	2333334	18 24 27 27 46	10 19 16 21 28	141 332 201 195 453	.4	10 14 8 10 20	55555	
L5 1E L5 2E L5 3E L5 4E L5 5E	4 2 3 4 4	29 18 32 50 46	26 11 17 30 21	394 124 459 391 330	.5 .7 .2	16 9 12 18 17	5 5 5 5 5	
L5 6E L5 7E L5 8E L5 9E L5 10E	4 4 4 3 4	56 59 44 34 38	31 22 35 30 30	407 392 673 719 654	.5	20 20 17 16 17	55555	
L5 11E L5 12E L5 13E L5 14E L5 15E	4 4 4 4	61 37 52 42 40	23 24 20 21 35	393 500 355 282 345	.8 .2 .5 .2	22 15 23 17 19	ត ភភភភ	
L6 0E L6 1E L6 2E L6 3E L6 4E	6 5 7 7 5	36 35 41 39 49	24 27 31 31 60	407 416 494 482 484	.8 .7 1.2 .7	12 16 18 19 20	ទ ១១១១១	
L6 5E L6 6E L6 7E L6 8E L6 9E	1 3 3 4	10 35 28 36 27	18 20 40 26 34	669 228 283 233 388	.6 1.1 .8 2.9	9 12 14 19 18	5 5 5 5	
L6 10E L6 11E L6 12E L6 13E L6 14E	3 3 3 3 2	18 23 16 20 21	32 45 12 11 16	265 213 152 137 112	.62.5	13 12 8 9 13	55555	
L6 15E STD A-1/AU 0.	5 1	21 29	17 39	118 183	.6	15 10	5 520	

9.1

.

.

MANNY	FILE # 83-	-2819	PROJ	ECT #RA	NELS	P	AGE# 4
SAMPLE	MO	CU	PB ppm	ZN	AG PPM	AS ppm	Au* ppb
L7 OE L7 1E L7 2E L7 3E L7 4E	3 5 4 2	31 34 50 50	13 12 88 44 18	190 197 431 401 392	.5 .8 1.0 .8 1.3	10 16 16 19	55555
L7 5E L7 6E L7 7E L7 8E L7 9E	6 1 2 2 2	73 16 10 11 10	23 9 11 20 16	481 297 402 400 395	.8 1.0 1.0 .7	20 7 7 6 7	55555
L7 10E L7 11E L7 12E L7 13E L7 14E	4 3 4 6	51 42 47 78 79	38 39 52 28 23	395 340 391 499 508	.7 .3 .7 .7	18 18 17 26 23	55555
L7 15E L8 0E L8 1E L8 2E L8 3E	6 5 6 6 2	75 68 73 74 21	23 23 24 23 13	485 441 461 464 286	.6 .8 .7 .7	21 18 21 22 6	5 10 5 5
L8 4E L8 5E L8 6E L8 7E L8 8E	1 1 2 2 2	21 16 19 15 11	14 12 10 9	560 316 285 259 444	.6 .5 .7	11 8 7 7 3	5 25 10 30 35
L8 9E L8 10E L8 11E L8 12E L8 13E	2 2 2 1 2	12 20 17 15 15	17 13 12 7 8	445 609 313 249 262	1.1 .7 .2 .6	4 11 4 2 7	55555
L8 14E L8 15E L9 0E L9 1E L9 2E	1 2 1 1	14 19 18 12 17	8 14 14 13 17	343 530 140 103 208	.1 .7 .2 .6	10 13 7 6 11	55555
L9 3E L9 4E STD A-1/AU 0.5	1 1 1	18 16 30	14 15 40	113 214 182	.7 .7 .3	589	5 5 510

MANNY	FILE	# 83-	2819	PROJ	ECT #RA	NELS	P	AGE# 5
SAMPLE	*10	MO ppm	DDw Cn	PB ppm	ZN	AG ppm	AS ppm	Au*
L9 5E L9 6E L9 7E L9 BE L9 9E		1 1 1 1	14 18 17 13	16 12 16 22 16	173 133 222 271 129	.6 .8 .9 1.1	7 8 4 10	ភភភភភភភ
L9 10E L9 11E L9 12E L9 13E L9 14E		1 1 1 1	16 17 15 19 16	17 14 15 18 13	225 217 225 242 135	1.1 .4 1.3	7 8 8 9 6	5 5 5 10
L9 15E L10 0E L10 1E L10 2E L10 3E		1 1 1 1	17 11 20 9 20	14 14 17 8 16	172 93 274 68 222	.B .3 .9	4 5 8 7 4	55555
L10 4E L10 5E L10 6E L10 7E L10 8E		1 1 1 1	10 13 22 12 9	7 18 18 10 8	69 118 258 98 66	.2 .3 1.1 .4 .1	8 7 13 8	5 70 5 5
L10 9E L10 10E L10 11E L10 12E L10 13E		1 1 1 1	22 22 13 20 13	19 18 22 15	263 241 142 233 105	.8 .9 .4 .7	9 9 12 6 9	55555
L10 14E L10 15E L11 0E L11 1E L11 2E		1 1 1 1	21 21 13 21 13	19 15 14 14 18	238 229 160 242 124	.7 .7 .6 .4	9 10 9 2 7	ទ មមម
L11 3E L11 4E L11 5E L11 6E L11 7E		1 1 1 1	12 10 10 12 17	12 7 8 17 13	96 65 67 111 209	.3	12 7 8 12 6	10 5 5 5
L11 8E L11 9E STD A-1/AU 0.5	5	1 1 1	17 12 30	15 23 38	200 125 179	.7 .3 .3	11 10 11	5 5 520

MANNY	FILE # 83-	2819	PROJI	ECT #RAN	NELS	P/	AGE# 6
SAMPLE	MD MD	bbw CN	PB ppm	ZN ppm	AG ppm	AS ppm	Au* ppb
L11 10E L11 11E L11 12E L11 13E L11 14E	1 1 1 1	12 13 10 11 10	26 17 16 10 15	246 202 167 90 179	. 6 . 5 . 4 . 1 . 4	11 7 6 5	5 75 10 5
L11 15E L12 0E L12 1E L12 2E L12 3E	1 3 2 3 5	13 13 12 11 8	11 12 19 13	92 154 155 130 59	.1 .4 .3 .4 .3	6 2 8 2 4	5 25 10 5 5
L12 4E L12 5E L12 6E L12 7E L12 8E	2 5 2 2 4	11 7 12 12 7	11 14 17 17 15	145 64 150 153 58	. 4 . 4 . 5 . 3	11 8 9 13 6	10 5 5 5
L12 9E L12 10E L12 11E L12 12E L12 13E	2 2 1 2 1	12 12 10 12 11	17 13 15 16 15	154 119 128 160 192	. 4 . 5 . 4 . 8	7 11 9 10 9	5 20 5 5
L12 14E L12 15E L13 OE L13 1E L13 2E	1 1 1 1	11 9 12 13 9	14 11 19 23 8	98 68 179 248 68	.3 .2 .6 .6	5 6 7 10 5	<u> </u>
L13 3E L13 4E L13 5E L13 6E L13 7E	1 1 1 1	21 13 11 11 11	16 14 10 14 13	204 102 90 90 91	.83.23.2	8 7 6 8	55555
L13 8E L13 9E L13 10E L13 11E L13 12E	1 1 1 1	13 12 11 10 13	17 14 12 15 17	120 139 95 172 202	.4 .8 .3 .5	6 7 3 9	<u> </u>
L13 13E L13 14E L13 15E STD A-1/AU 0.5	1 1 1 1	12 11 19 29	19 20 19 38	115 273 223 180	.3 .5 .7 .3	6 10 9 10	5 5 490
	î						

.

1

L-6-5 Bet 12.7 .6 .6 .6 1.1 .8 2.9 .6 .2 .5 .4 .5 .6 "S CLAIM 1-7.5 .5 .8 . 10 .8 .13 8 1.0 1.0 .7 .7 .7 .3 .7 .7 .5 .6 L-89.8 7 7.3 6 6 5.5 7 10 N 7.2 6.8 .1 .1 1-95.7.2.6.7.7 6.8 9 14.8.6 14 .4 13.6.8 L-10-5 3 9 .1 .9 .2 .3 11 .4 .1 .8 .9 .4 .7 .3 .7 .7 L-11.5 .7 .6 .4 .3 .3 .1 .2 .4 .7 .3 .6 .5 .4 .1 .4 .1 L-12-5 .4 .3 .4 .3 .4 .4 .4 .5 .3 .4 .5 .4 .8 .6 .3 .2 1-13-5 .6 .6 .1 .8 .3 .2 .3 .2 .4 .8 .3 .5 .6 .3 .5 .7

-