83-#708 - 11901

ASSESSMENT REPORT -

ON A

PRELIMINARY GEOLOGICAL AND GEOCHEMICAL SURVEY

PATSY I MINERAL CLAIM (12 UNITS)

RECORD NO. 1167 (9)

WHISTLE (STIRLING) GREEK AREA

HEDLEY MINING CAMP

SIMILKAMEEN MINING DIVISION

SIMILKAMEEN DIVISION OF

YALE LAND DISTRICT

HEDLEY, BRITISH COLUMBIA

N. Lat. 49°21'

GEOLOGICAL BRANCH 92-H-8E ASSESSMENT REPORT

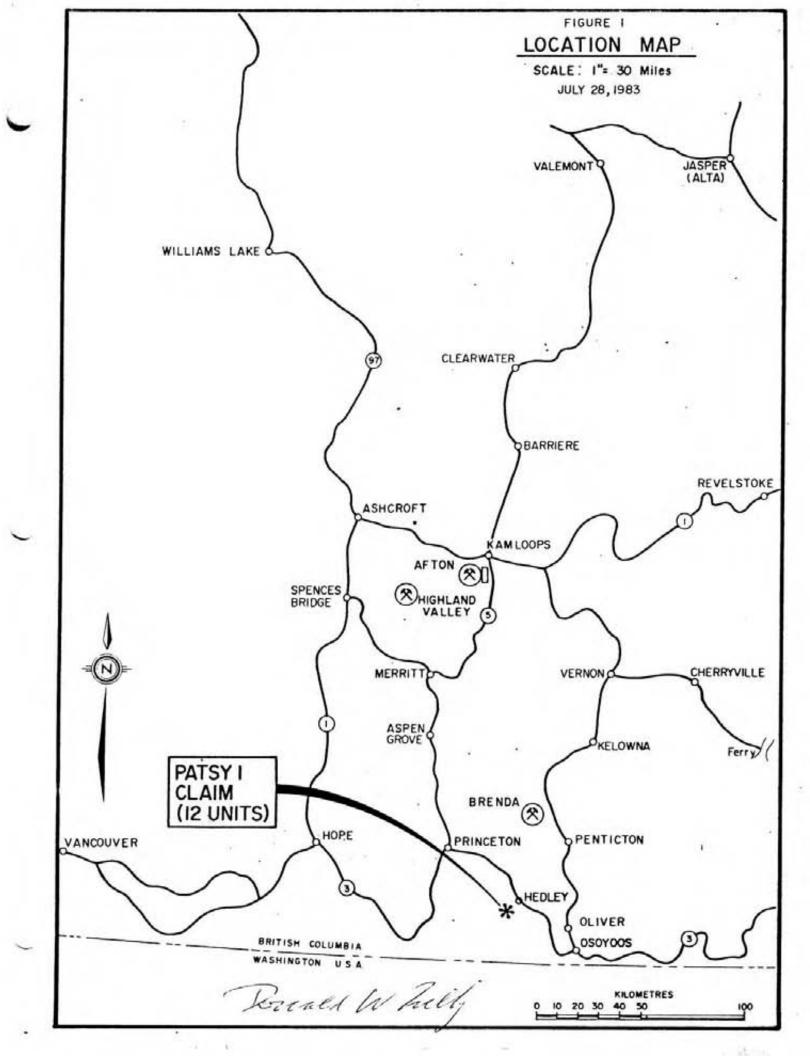
11,901

VANDOREX ENERGY CORPORATION Suite 800 777 Hornby Street Vancouver, British Columbia V6Z 1S6

by

DONALD W. TULLY, P. ENG.

July 28, 1983


West Vancouver, B.C.

## TABLE OF CONTENTS

|                   | <u> </u>                                                     | age      |    |
|-------------------|--------------------------------------------------------------|----------|----|
| INTRODUC          | TION                                                         | 1 .      |    |
|                   | AND CONCLUSIONS                                              | 1        |    |
| PROPERTY<br>ENVIR | - LOCATION, ACCESS, PHYSIOGRAPHY AND ONMENTAL CONSIDERATIONS | 2        |    |
| CLAIMS            |                                                              | 3        |    |
| HISTORY           | - PREVIOUS DEVELOPMENT                                       | 4        |    |
| REFERENC          | ES                                                           | 5        |    |
| GENERAL           | GEOLOGY                                                      | 6        |    |
| RESULTS<br>AND G  | OF THE PRELIMINARY GEOLOGICAL EOCHEMICAL SURVEY              | 7        | ,  |
| RECOMMEN          | DATIONS                                                      | 9        |    |
| TIME-COS          | DISTRIBUTION                                                 | 10       |    |
| CERTIFIC          | ATE                                                          | 11       |    |
|                   | MAPS                                                         |          |    |
| Figure 1          | - Location Map(Fron                                          | tispiece | )  |
|                   | - Topographic Plan (After 92-H)(Follow                       |          |    |
| Figure 3          | - Topographic Plan<br>(After 92H/8 - Scale 1:50,000)(Follow  | s page 2 | 2) |
| Figure 4          | - Claim Plan<br>(After M92H/8E)(Follow                       | s page 3 | )  |
| •                 | - Regional Geology<br>(After GSC Map 888A)(Follow            |          |    |
|                   | - Geology Map(I                                              |          |    |
| Figure 7          | - Soil Geochemistry Survey (As, Au)(I                        | n Pocket | .) |

## APPENDIX

Acme Analytical Laboratories File #83-0865 (Pages 1 - 14) Report on the Preliminary Geological Mapping of the PATSY I Claim by P.B. Grunenberg, B.Sc. and dated June 30, 1983



### INTRODUCTION

This report was prepared pursuant to a request from the Directors of Vandorex Energy Corporation, Suite 800 - 777 Hornby Street, Vancouver, British Columbia V6Z 1S6.

The purpose of this report is to summarize the results of the geological and geochemical work done by Strato Geological Engineering on the PATSY I Mineral Claim during June 1983 and evaluate the mine-making potential of the property.

This report is based upon a knowledge of the Hedley Mining Camp and a field examination of the claim area in November 1980.

A further work program is recommended.

## SUMMARY AND CONCLUSIONS

The PATSY I mineral claim consists of twelve units covering an area of some 300 hectares.

The claim is situated on the south side of the Similkameen River at Whistle (Stirling) Creek some seven kilometres southwest of Hedley, British Columbia.

The property is located on a northeast-facing slope on the south side of the Similkameen River and is accessible by motor vehicle.

The ground now held by the PATSY I mineral claim appears to have been a part of the property of the former Hedley Sterling Gold Mines, Ltd. This company developed several gold showings with underground workings a short



distance to the north of the PATSY I claim area in the period 1927 - 1934.

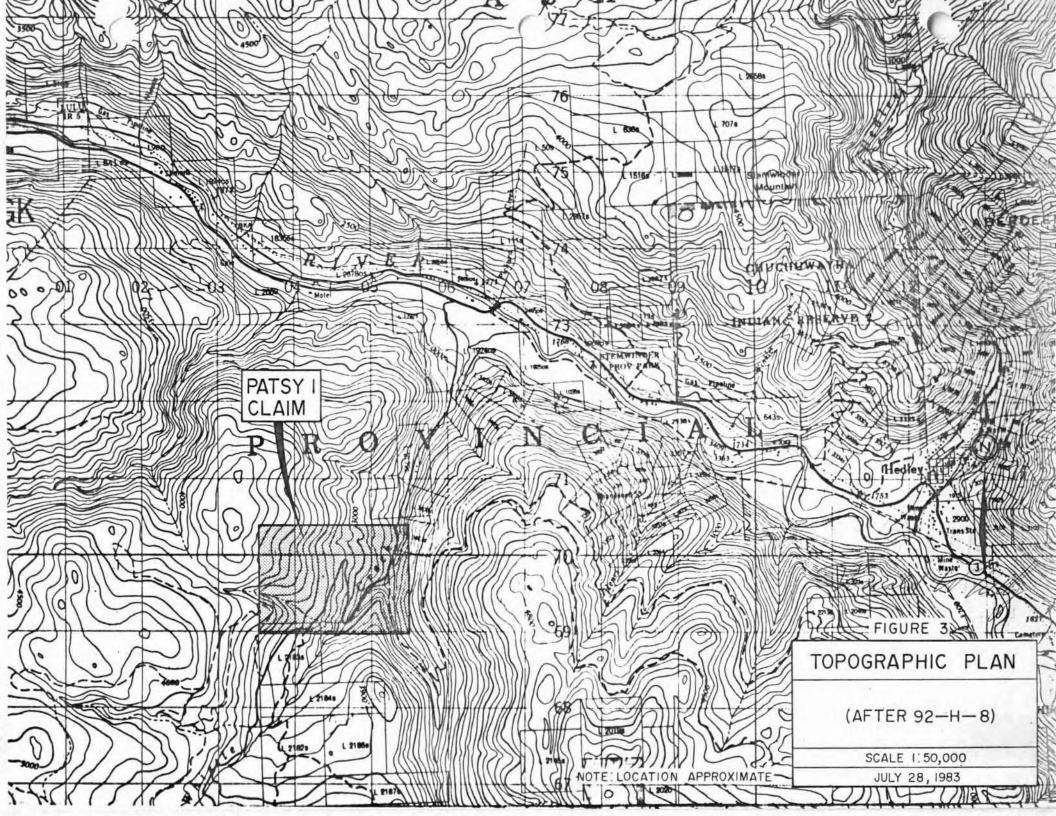
The results of the geochemical soil survey which covered approximately 65% of the north, central and west sectors of the PATSY I claim area were encouraging.

The analyses of 508 geochemical soil samples for gold and arsenic showed fourteen anomalous location points and zones of gold over the area surveyed.

Three rock chip samples were taken.

It is concluded the property is located in a favourable geological environment for gold deposition and warrants a continuation of the current program of mineral exploration.

A two-stage exploration program of further work is proposed at an estimated total cost of \$76,900.


## PROPERTY - LOCATION, ACCESS, PHYSIOGRAPHY

The property comprises one mineral claim containing twelve claim units located about seven kilometres southwest of the Town of Hedley, British Columbia.

The ground is situated on the south side of the Similkameen River. It is accessible using a 4 WD vehicle along a gravel road leading from Whistle Creek in the northeast sector of the claim area. This access road leaves Highway 3 at a point about 7 km west of Hedley and follows former logging roads over much of the property.

Sand, gravel and loam cover much of the ground which occupies a steep northeast-facing slope.

DON TULLY ENGINEERING LTD.
SUITE 1205, 355-13TH STREET
WEST VANCOUVER, BRITISH COLUMBIA
V7T 2N8



The drainage pattern trends in a general northeast direction.

Fir, pine and spruce cover some 80% of the claim area.

Elevations vary from about 2,700 feet at the northeast sector of the claim area to over 4,200 feet in the southeast sector.

#### CLAIMS

The PATSY I mineral claim comprises twelve units. The claim is located in the Similkameen Mining Division, just west of the boundary between the Similkameen and Osoyoos Mining Divisions.

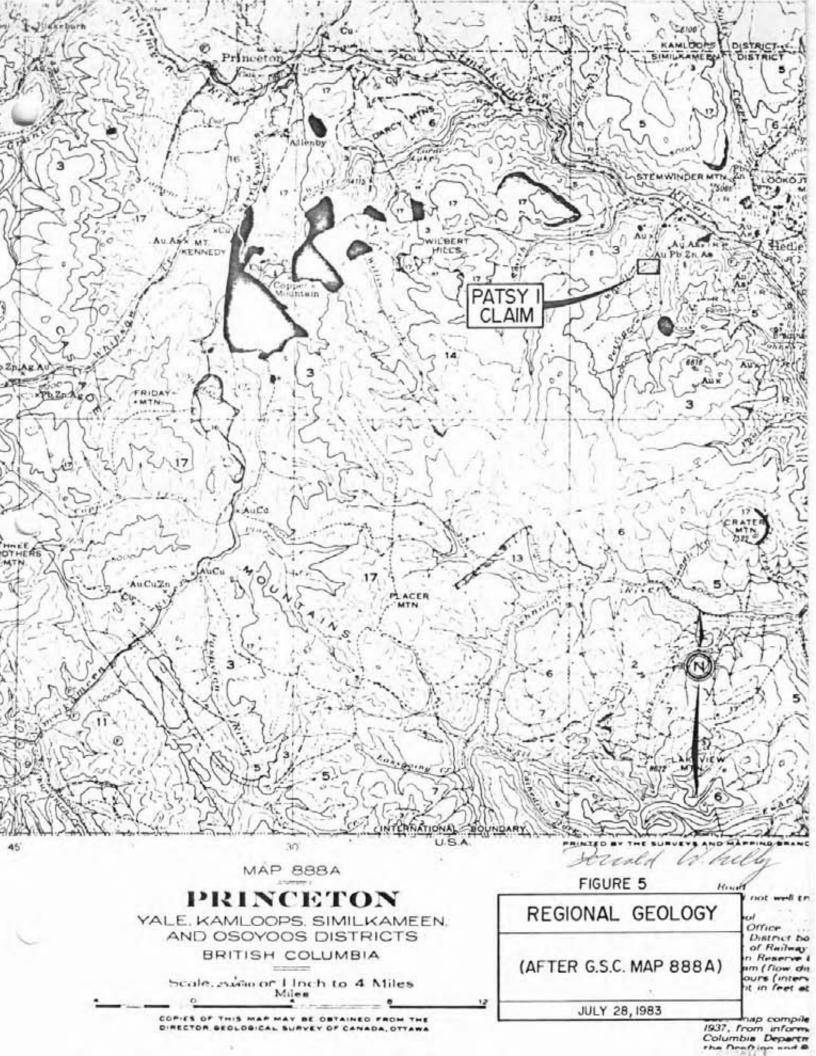
Information on file with the office of the Gold Commissioner in Princeton on July 28, 1983 was as follows:

| Claim Name | Record<br>Number | Units    | Expiry Date    | Recorded Holder       |
|------------|------------------|----------|----------------|-----------------------|
| PATSY I    | 1167(9)          | 3x4 = 12 | Sept. 18, 1983 | Vandorex Energy Corp. |

The claim is shown on British Columbia Ministry of Energy, Mines and Petroleum Resources Mineral Titles Map M92-H-8E as indicated on Figure 4.

A survey of the claim boundary is recommended to establish the perimeter of the property relative to adjoining claim groups and establish the ownership of any anomalous zones.

## HISTORY - PREVIOUS DEVELOPMENT


Gold exploration has been of continuing interest in the Hedley Mining Camp since the discovery of the Nickel Plate Mine in 1897.

The ground now occupied by the PATSY I mineral claim on Whistle Creek has been examined by prospectors and mining companies as evidenced by the test-pits and trenchings on the claim area. Some of this land may have been held by Hedley Sterling Gold Mines, Ltd., and Canada Lode Gold Mines, Ltd. in the period between 1927 and 1934.

The writer is not aware of any economic mineralization on the PATSY I claim area.

Two potential gold-producers are currently exploring in Hedley Mining Camp Area.

No history of a property in the Hedley Camp Area is complete without an account of the development of the Nickel Plate Mine. Following the discovery of gold by prospectors in 1897 the property was bonded the next year by M.K. Rogers. The Marcus Daly interests of Butte, Montana then purchased the property in 1899 and production commenced in 1904 under the name of the Daly Reduction Company. The Hedley Gold Mining Company acquired control in 1911 and continued operations until 1930 when exhaustion of the known ore reserves forced the mine to close. The J.W. Mercer Exploration Company revalued the mine in 1932 and production resumed in 1934 under the name of the Kelowna Exploration Company Limited of New York. time the property was known as the Oregon Prospect. Between 1934 and 1949 the Hedley Mascot Gold Mines Limited produced gold almost continuously from the area of the Mascot Fraction under an agreement.



In 1951, the Kelowna Exploration Company changed its name to Kelowna Mines Hedley Limited. During the two periods between 1904-1930 and 1934-1955, the Nickel Plate Mine produced approximately 3,800,000 tons of gold ore having a gross value of about \$48 million at prevailing metal prices.

Strato Geological Engineering Ltd. carried out a preliminary geological and geochemical soil survey over the PATSY I claim area in the period June 4-16, 1983.

#### REFERENCES

The following publications contain information pertinent to the area of the PATSY I Mineral Claim:

Reports of the Minister of Mines, B.C., for the years -

1927 - p. 240;

1928 - p. 257;

1932 - p. 138;

1933 - p. 173;

1934 - p. D12, G47

B.C. Mineral Claim Map M92-H-8E

NTS Topographic Map 92-H-8 (1-50,000)

Geological Survey of Canada Memoir 2, 1910

Geological Survey of Canada Summary Report, 1929, Part A

Geological Survey of Canada Memoir 243, 1960 and accompanying Map 888A

Structural Geology of Canadian Ore Deposits CIMM, Volume 2, 1957

Report on the PATSY I mineral claim (12 units) for Vandorex Energy Corporation by Donald W. Tully, P.Eng., and dated August 6, 1982

## GENERAL GEOLOGY

Two lithological units underlie the claim area, namely, the Upper Triassic Nicola volcanics and the basement Coast Intrusions of mainly acidic intrusives. The general geology is shown on Geological Survey of Canada Map 888A (Figure 5).

P.B. Grunenberg, B.Sc., mapped selected areas of the PATSY I claim area as shown on Figure 6. His report is appended to this report.

A tentative general geologic timetable of the area is as follows:

| Formation                                             | Description/Event                                                                                  | Age                      |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Sand, gravel and                                      | Unconsolidated Quaternary                                                                          |                          |  |  |  |
| fluviatile sedi-<br>ments                             | (Erosional unconformity)                                                                           |                          |  |  |  |
| Mineralization,<br>quartz veining<br>and metamorphism | Gold, silver and sul- Tertiary (?) phides of several elem- ents including copper, iron and arsenic |                          |  |  |  |
|                                                       | (Folding, faulting and re<br>lated tectonic activity)                                              |                          |  |  |  |
| Coast Intrusions                                      | Various phases of acid<br>intrusive mainly grano-<br>diorite with basic<br>phases of gabbro        | Jurassic or<br>later (?) |  |  |  |
|                                                       | (Folding, faulting and<br>related tectonic acti-<br>vity)                                          |                          |  |  |  |
| Nicola Group vol-<br>canics and sedi-<br>ments        | Limestone, tuff, shale, fragmental rocks and lavas                                                 | Upper Tri-<br>assic (?)  |  |  |  |

The major rock unit observed on the property is a turbidite sequence of interbedded argillite and greywacke with horizons of cherty limestone which includes a slumptype breccia or olistostrome. This unit belongs to the Nicola Group. Hornblende porphyry and felsitic sills and dykes intrude the sedimentary sequence.

Structurally, the rock units appear to have been folded in a large vertically plunging anticline with stratigraphic tops to the west. Planar elements in the rocks show a west trend with a later pattern of foliation.

A study of Geological Survey of Canada aeromagnetic map 8526 shows an east-west trend in the underlying rock structures with a gradual increase in magnetic relief upslope to the south, probably conforming to the topography over the claim area. This map also indicates the PATSY I mineral claim may occur on the north perimeter of a large dome-like magnetic anomaly.

# RESULTS OF THE PRELIMINARY GEOLOGICAL AND GEOCHEMICAL SURVEY

The geological mapping was reconnaissance in nature and showed a preponderance of Nicola volcanics and sediments intruded by later Jurassic granitic rocks.

Substantial amounts of sulphide minerals, mostly pyrite, were mapped in rock exposures in both the northeast and northwest sectors of the property as shown on Figure 6. Three rock samples were taken.

The results of the geochemical soil sampling survey are shown on Figure 7. A total of 508 soil samples were taken by Strato Geological Engineering Ltd., and analyzed

for gold and arsenic. The results were as follows:

## Gold

| No. of Samples |     |    | Rang | ge of 1 | Results |         |  |
|----------------|-----|----|------|---------|---------|---------|--|
| 397            | 0   | _  | 5    | parts   | per     | billion |  |
| 85             | 6   | -  | 10   | 11      | "       | "       |  |
| 7              | 11  | -  | 15   | 11      | **      | "       |  |
| 6              | 16  | -  | 20   | 11      | 11      | 11      |  |
| 5              | 21  | -  | 25   | 11      | 11      | 11      |  |
| 2              | 26  | -  | 30   |         | **      | **      |  |
| 1              | 31  | _  | 35   | 11      | 11      | 11      |  |
| 2              | 36  | -  | 40   | 11      | 11      | 11      |  |
| 3              | 41  | -1 | 320  | 11      | 11      | 11      |  |
| 508            | 165 |    |      |         |         |         |  |

The highest value obtained in gold was 1320 parts per billion on Line 9+00S and 20+00W on the west boundary of the claim area. Values of 60 and 65 parts per billion were also obtained in the northwest and northeast sectors respectively of the property, as shown on Figure 7.

The background in gold is considered to be 5 parts per billion.

#### Arsenic

| No. of Samples | Range of Resul |   |    | ts    |     |         |
|----------------|----------------|---|----|-------|-----|---------|
| 334            | 0              | - | 5  | parts | per | million |
| 155            | 6              | - | 10 | " "   | 'n  | 11      |
| 11             | 11             | - | 15 | 11    | 11  | 11      |
| 3              | 16             | _ | 20 | **    | 11  | 11      |
| 5              | 21+            |   |    | 11    | 11  | 11      |
| 508            | (2000)         |   |    |       |     |         |

The highest value in arsenic was 49 parts per million. Arsenic and Gold do not appear to correlate consistently in the samples taken during this survey.

Background is considered to be 5 parts per million.

## RECOMMENDATIONS

A two-phase program of further mineral exploration is recommended on the PATSY I claim.

## Phase 1

- a) Survey the location of the perimeter of the PATSY I claim and establish the ownership of any indicated anomalous zones in gold in the boundary areas.
- b) Complete the geochemical soil sampling survey and the geological mapping over the total claim area.
- c) Do detailed geochemical soil surveying for gold on a 10-metre grid pattern in the area surrounding the indicated gold anomalies shown on Figure 7.
- d) Do (VLF) electromagnetic and magnetometer surveying over those areas that are deemed to be anomalous in gold to outline the configuration of any vein structures.

## Phase 2

In the event the results of Phase 1 prove rewarding and an engineering evaluation recommends further testing of the property, it is proposed to diamond drill any indicated anomalous zones deemed to have economic merit.

Respectfully submitted,

Donald W. Tully, P. Eng.,

July 28, 1983

STRATO GEOLOGICAL ENGINEERING LTD. 103-709 DUNSMUIR STREET VANCOUVER, BRITISH COLUMBIA TELEPHONE (604) 687-4610



December 5, 1983

Geologist

VANDOREX ENERGY CORPORATION 800 - 777 Hornby Street Vancouver, B.C. V6Z 1S6

P. B. Grunenberg, B.Sc.

#### TIME-COST DISTRIBUTION

The geological mapping and soil sampling program over the PATSY 1 mineral claim was conducted by Strato Geological Engineering Ltd. during the period June 4 to June 16, 1983. Office work, consisting of a Geological Summary Report and drafting of results was completed between June 17 and June 30, 1983. A listing of personnel and distribution of costs is as follows:

#### Personnel

| J. Gibson<br>S. Gokool                                   | Field Assistant,<br>Drafting | Sampler              |
|----------------------------------------------------------|------------------------------|----------------------|
| COST DISTRIBUTION                                        |                              |                      |
| Labour - Geologist - 14 days<br>- Sampler - 13 days      | \$                           | 3,150.00<br>1,590.00 |
| Transportation, 4WD Truck<br>(June 4-17/83 plus 1620 km) |                              | 1,087.50             |
| Board and Lodging                                        |                              | 1,120.00             |
| Field Supplies, Gas, Oil, etc.                           |                              | 432.29               |
| Drafting, Reproduction, Typing, etc.                     |                              | 550.00               |
| Geological Summary Report                                |                              | 200.00               |
| Geochemical Analysis of 511 Soil Sample                  | es _                         | 4,209.90             |
| Signed: Total Strato Geological Engineering L            |                              | 12,339.69            |

## CERTIFICATE

I, DONALD WILLIAM TULLY, of the Corporation of West Vancouver, Province of British Columbia, hereby certify as follows:

- I am a Consulting Geologist with an office at Suite 1205, 555 - 13th Street, West Vancouver, B.C. V7T 2N8.
- I am a Registered Professional Engineer of the Provinces of British Columbia and Ontario.
- I graduated with a degree of Bachelor of Science, Honours Geology, from McGill University in 1943.
- 4) I have practiced my profession for thirty-eight years.
- I have no direct, indirect or contingent interest in the PATSY I mineral claim, subject of this report, nor the securities of Vandorex Energy Corporation, nor do I intend to have any interest.
- This report dated July 28, 1983, is based on personal 6) field examination I made on November 18, 1980 of the subject claim and from information gathered from available maps and reports.
- During the past five years I have examined the GOLD-MINE, GOLDHILL, HEDLEY NORTH, HEDLEY SOUTH, WINTERS GOLD, CHIEF GROUP and HEDLEY Mineral Claims that are located within ten kilometres of the PATSY I Mineral Claim.
- Written permission from the author is required to publish this report dated July 28, 1983 in any Prospectus or Statement of Material Facts.

DATED at West Vancouver, Province of British Columbia, this 2nd day of August, 1983.

DONALD W. TULLY, P. ENG.,

Donald W bully

Consulting Geologist

APPENDIX

DON TULLY ENGINEERING LTD.
SUITE 1205, 555-13TH STREET
WEST VANCOUVER, BRITISH COLUMBIA
V77 2N8

#### REPORT

on

#### PRELIMINARY GEOLOGICAL MAPPING

of the

PATSY 1 CLAIM

HEDLEY MINING CAMP

SIMILKAMEEN M. D.

M 92H/8E

49° 21' N. Lat. 120° 11' W. Long.

for

VANDOREX ENERGY CORPORATION

800 - 777 HORNBY STREET

VANCOUVER, B. C. V6Z 1S6

by

P.B. GRUNENBERG, B.Sc., GEOLOGIST

STRATO GEOLOGICAL ENGINEERING LTD.

103 - 709 DUNSMUIR STREET

VANCOUVER, B. C. V6C 1M9

June 30, 1983

Preliminary Geological Mapping of the PATSY 1 Claim

#### INTRODUCTION

Pursuant to a request by the directors of Vandorex

Energy Corporation, a preliminary geological mapping

program was conducted in conjunction with a soils

geochemical sampling program on the PATSY 1 mineral

claim. Field work was carried out by Strato Geological

Engineering Ltd. during the period June 4 to June 16,1983.

This geological account is submitted as a supplement to an Engineering Report by Don Tully Engineering Ltd.

#### PROPERTY, LOCATION, ACCESS

The PATSY 1 mineral claim comprises twelve units situated some seven kilometers southwest of the town of Hedley, B.C. The property is located on the south side of the Similkameen River and is accessible via gravel road from Whistle Creek leaving Highway 3 at a point 7 kilometers west of Hedley.

Logging roads give automobiles good access over the claim. These roads are well maintained as logging is now in progress in the area.

Elevations vary from about 825 meters near the northeast claim area to over 1280 meters in the south-east sector. Whistle Creek cuts near northeasterly through the eastern property area.

The claim, as filed with the office of the Gold Commissioner in Princeton is as follows:

Claim Name: PATSY 1

Record Number: 1167 (9)

Record Date: September 18, 1983.

Recorded Holder: Vandorex Energy Corporation

The claim is located in the Similkameen M.D. and is shown on the B.C. Ministry of Energy, Mines, and Petroleum Resources claim map M92H/8E.

#### SURVEY PROCEDURE

A survey base line was established along the eastern claim boundary with the Legal Corner Post denoted as 0+00S, 0+00W. East-west lines were run at 100 meter

intervals with 50 meter stations. Due to rugged topography in the southeast sector it was decided not to soil sample this area and a new baseline was established at 8+00W from L 3+00S to L 15+00S. Although some mapping was done, this area should be mapped geologically and selectively sampled at a later date.

Talus was discovered at shallow depths over much of the property. This made soil sampling impossible in some locations.

#### PROPERTY GEOLOGY

There is very little area of outcrop on the property (approximately 5% of total surface). The majority of outcrop exists along a sharp ridge between Whistle Creek and a tributary, in the southeastern portion of the claim. This area should be covered in more detail in the future as much of the outcrops here were not mapped.

Most of the property is covered in unconsolidated sands and gravels of relatively young age. These are quite thick in places, and cover much of the more pertinent geology.

The majority of the outcrops observed consisted of sedimentary or volcanic rocks belonging to the Nicola Group. Siltstone and sandstone with carbonaceous zones were the most common rock types. These belong to a turbidite sequence with wavey layers of bedding fluctuating from 3 cm to 1 meter in thickness. In one location a thick sandstone-greywacke layer was found overlaying a turbidite sequence, and underlaying glacial and fluvial sediments. This layer did not appear to belong to the turbidite sequence, and is likely younger (Cenozoic Era) in age. Sulphide mineralization was common in much of the sedimentary rock. This consisted mostly of fine grained disseminated pyrite, with some small areas of chalcopyrite.

Interbedded with, and intruding, the sedimentary rocks were volcanic rocks consisting mostly of a siliceous, medium grained, andesite tuff. Sulphide mineralization was more common in the volcanic rocks, which often contained abundant amounts of disseminated pyrite totalling up to 2 percent of the total rock.

Granitic rock found on the property was totally contained within areas of float rock. Some of these granitic float boulders were very large and quite angular, pertaining to a relatively close source.

Respectfully submitted, Strato Geological Engineering Ltd.

Geologist

June 30, 1983.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

DATE RECEIVED JUNE 20 1983

PAGE# 1

#### ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,M,Ba,Si,Sr,Cr AND B. Au DETECTION 3 ppm.

AU\* ANALYSIS BY AA FROM 10 GRAM SAMPLE.

SAMPLE TYPE - SOIL

ASSAYER

DEAN TOYE, CERTIFIED B.C. ASSAYER

| STRATO | GE                                      | EOLOGICAL                                | FILE | # | 83-0865                  | Pat-                       |
|--------|-----------------------------------------|------------------------------------------|------|---|--------------------------|----------------------------|
| 5      | 1AE                                     | 1PLE                                     |      |   | AS<br>ppm                | Au*                        |
| (      | WC<br>WC<br>WC<br>WC                    | 3+50S<br>4S<br>5S<br>7+50S<br>8S         |      |   | 3<br>5<br>7<br>15        | 5<br>15<br>5<br>5          |
| 0      | W<br>W<br>W<br>W<br>W                   | 9+50S<br>10S<br>12S<br>13S<br>13+50S     |      |   | 10<br>12<br>7<br>16<br>7 | 58555                      |
| 9      | W W S S S S S S S S S S S S S S S S S S | 145<br>14+50S<br>15S<br>20W<br>19+50W    |      |   | 2<br>6<br>5<br>4<br>9    | 55555                      |
| Ċ      | 95                                      | 19W<br>18+50W<br>18W<br>17+50W<br>17W    |      |   | 23455                    | 5<br>10<br>5<br>5<br>5     |
| C      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 16+50W<br>16W<br>15+50W<br>15W<br>14+50W |      |   | 6<br>4<br>4<br>7<br>8    | 5<br>5<br>5<br>5<br>4<br>5 |
| C      | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | 14W<br>13+50W<br>13W<br>12+50W<br>12W    |      |   | 3<br>6<br>8<br>3<br>9    | 55555                      |
| 9 0    | S                                       | 11+50W<br>11W<br>10+50W<br>10W<br>9+50W  |      |   | 9<br>7<br>9<br>4<br>4    | 10<br>5<br>5<br>5          |
| C      | S<br>S<br>STE                           |                                          | 5    |   | 5<br>5<br>10             | 5<br>5<br>540              |

| SAMPLE                                                                 | AS<br>PPm               | Au*                             |
|------------------------------------------------------------------------|-------------------------|---------------------------------|
| OS 8W<br>OS 7+50W<br>OS 7W<br>OS 6+50W<br>OS 6W                        | 84256                   | 5<br>10<br>5<br>5               |
| OS 5+50W<br>OS 5W<br>OS 4+50W<br>OS 4W<br>OS 3+50W                     | 7<br>6<br>5<br>7        | 10<br>35 v<br>5<br>10<br>10     |
| OS 3W<br>OS 2+50W<br>OS 2W<br>OS 1+50W<br>OS 1W                        | 8<br>8<br>4<br>3<br>19  | 15<br>15<br>10<br>20            |
| OS 0+50W<br>OS 0W<br>0+50S 20W<br>0+50S 19+50W<br>0+50S 19W            | 15<br>24<br>5<br>6<br>5 | 10<br>25<br>5<br>5<br>65 √      |
| 0+50S 18+50W<br>0+50S 18W<br>0+50S 17+50W<br>0+50S 17W<br>0+50S 16+50W | 7<br>5<br>10<br>7<br>10 | 5<br>5<br>5<br>5<br>5<br>5<br>7 |
| 0+50S 16W<br>0+50S 15+50W<br>0+50S 15W<br>0+50S 14+50W<br>0+50S 14W    | ១១១១១                   | 5<br>10<br>5<br>5               |
| 0+50S 13+50W<br>0+50S 13W<br>0+50S 12+50W<br>0+50S 12W<br>0+50S 11+50W | 47695                   | 10<br>10<br>5<br>5              |
| 0+50S 11W<br>0+50S 10+50W<br>STD A-1/AU 0.5                            | 4<br>4<br>10            | 5<br>5<br>520                   |

| SAMPLE                                                            | AS<br>PPM               | Au*                             |
|-------------------------------------------------------------------|-------------------------|---------------------------------|
| 0+50S 10W<br>0+50S 9+50W<br>0+50S 9W<br>0+50S 8+50W<br>0+50S 8W   | 7<br>3<br>10<br>6<br>11 | 5<br>10<br>5<br>5               |
| 0+50S 7+50W<br>0+50S 7W<br>0+50S 6+50W<br>0+50S 6W<br>0+50S 5+50W | 2<br>5<br>8<br>4<br>5   | 5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 0+50S 5W<br>0+50S 4+50W<br>0+50S 4W<br>0+50S 3+50W<br>0+50S 3W    | 2<br>2<br>2<br>6<br>7   | 55555                           |
| 0+50S 2+50W<br>0+50S 2W<br>0+50S 1+50W<br>0+50S 1W<br>0+50S 0+50W | 4<br>6<br>8<br>22.      | 55555                           |
| 1S 20W<br>1S 19+50W<br>1S 19W<br>1S 18+50W<br>1S 18W              | 10<br>7<br>3<br>5       | 10<br>5<br>5<br>5               |
| 15 17+50W<br>15 17W<br>15 16+50W<br>15 16W<br>15 15+50W           | B<br>57<br>93           | 55555                           |
| 1S 15W<br>1S 14+50W<br>1S 14W<br>1S 13+50W<br>1S 13W              | 6<br>2<br>8<br>4<br>10  | 5<br>10<br>5<br>5               |
| 1S 12+50W<br>1S 12W<br>STD A-1/AU 0.5                             | 4<br>6<br>10            | 5<br>5<br>500                   |

| SAMPLE                                                  | AS<br>PPm             | Au*                     |
|---------------------------------------------------------|-----------------------|-------------------------|
| 1S 11+50W<br>1S 11W<br>1S 10+50W<br>1S 10W<br>1S 9+50W  | 8<br>2<br>3<br>2<br>2 | 5<br>5<br>10<br>5       |
| 15 9W<br>15 8+50W<br>15 8W<br>15 7+50W<br>15 7W         | 223333                | 5<br>10<br>10<br>10     |
| 1S 6+50W<br>1S 6W<br>1S 5+50W<br>1S 5W<br>1S 4+50W      | 22522                 | 5<br>5<br>10<br>5<br>5  |
| 1S 4W<br>1S 3+50W<br>1S 3W<br>1S 2+50W<br>1S 2W         | 25223                 | 10<br>5<br>5<br>5       |
| 18 1+50W<br>18 1W<br>28 20W<br>28 19+50W<br>25 19W      | 4<br>7<br>2<br>3<br>3 | 15<br>10<br>5<br>5      |
| 2S 18+50W<br>2S 18W<br>2S 17+50W<br>2S 17W<br>2S 16+50W | 25344                 | 5<br>20<br>5<br>10<br>5 |
| 25 16W<br>25 15+50W<br>25 15W<br>25 14+50W<br>25 14W    | 22528                 | <b>ភគភភភ</b>            |
| 2S 13+50W<br>2S 13W<br>STD A-1                          | 5<br>6<br>9           | 10<br>10<br>5           |

| SAMPLE                                                  | AS<br>PPM               | Au*<br>ppb               |
|---------------------------------------------------------|-------------------------|--------------------------|
| 2S 12+50W<br>2S 12W<br>2S 11+50W<br>2S 11W<br>2S 10+50W | 4<br>5<br>7<br>4<br>8   | 10<br>5<br>5<br>5        |
| 25 10W<br>25 9+50W<br>25 9W<br>25 8+50W<br>25 8W        | 3<br>7<br>8<br>6<br>3   | 5<br>10<br>5<br>5        |
| 25 7+50W<br>25 7W<br>25 6+50W<br>25 6W<br>25 5+50W      | 35392                   | 5<br>5<br>10<br>5<br>5   |
| 25 5W<br>25 4+50W<br>25 4W<br>25 3+50W<br>25 3W         | 32235                   | ភគភភភ                    |
| 25 2+50W<br>25 2W<br>25 1+50W<br>25 1W<br>25 0+50W      | 13<br>2<br>7<br>8<br>46 | 10<br>5<br>60<br>25      |
| 25 OW<br>35 2OW<br>35 19+5OW<br>35 19W<br>35 18+5OW     | 8<br>2<br>8<br>18<br>5  | 5<br>5<br>10<br>5<br>5   |
| 3S 18W<br>3S 17+50W<br>3S 16+50W<br>3S 16W<br>3S 15+50W | 33546                   | 10<br>5<br>40<br>5<br>10 |
| 35 15W<br>35 14+50W<br>STD A-1/AU 0.5                   | 5<br>5<br>10            | 5<br>5<br>520            |

4

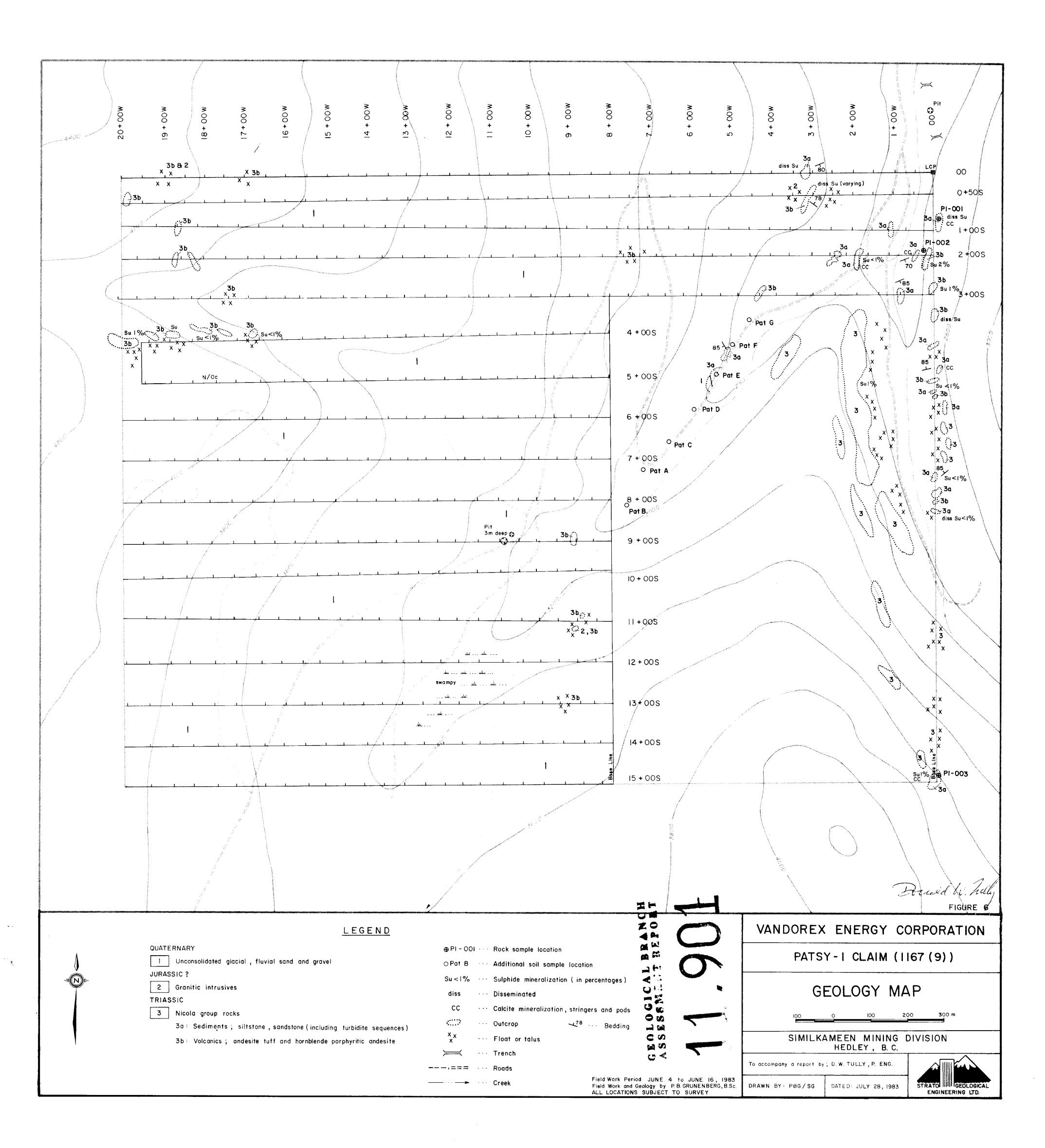
20.00

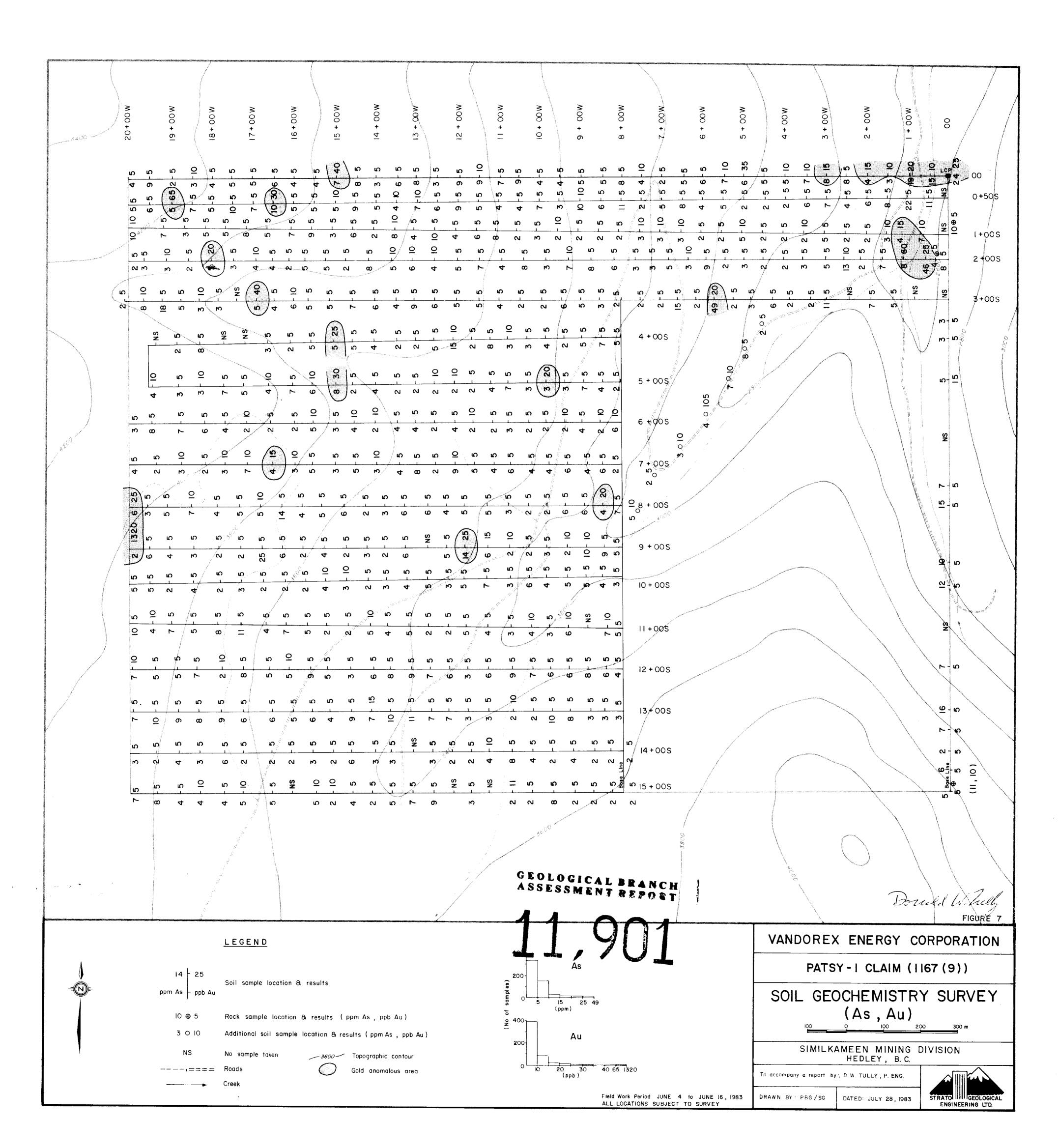
| SAMPLE                                                  | AS<br>ppm              | Au*                                  |
|---------------------------------------------------------|------------------------|--------------------------------------|
| 35 14W<br>35 13+50W<br>35 13W<br>3S 12+50W<br>35 12W    | 7<br>6<br>4<br>9<br>6  | 55555                                |
| 3S 11+50W<br>3S 11W<br>3S 10+50W<br>3S 10W<br>3S 9+50W  | 5<br>4<br>2<br>2       | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| 3S 9W<br>3S 8+50W<br>3S 8W<br>3S 7+50W<br>3S 7W         | 6<br>5<br>3<br>2<br>2  | 55555                                |
| 3S 6+50W<br>3S 6W<br>3S 5+50W<br>3S 5W<br>3S 4+50W      | 15<br>15<br>49<br>2    | 5<br>5<br>5<br>20<br>5               |
| 38 4W<br>38 3+50W<br>38 3W<br>38 2+50W<br>38 2W         | 3<br>6<br>2<br>2<br>11 | 55555                                |
| 35 1W<br>35 0+50W<br>45 19W<br>45 18+50W<br>45 17W      | 75283                  | ភគតភភ                                |
| 4S 16+50W<br>4S 16W<br>4S 15+50W<br>4S 15W<br>4S 14+50W | 25554                  | 5<br>25<br>25<br>5                   |
| 45 14W<br>45 13+50W<br>STD A-1/AU 0.5                   | 2<br>2<br>10           | 5<br>5<br>540                        |

| SAMPLE                                                  | AS<br>PPM              | Au*                      |
|---------------------------------------------------------|------------------------|--------------------------|
| 4S 13W<br>4S 12+50W<br>4S 12W<br>4S 11+50W<br>4S 11W    | 5<br>15<br>2<br>8<br>3 | 5<br>10<br>5<br>5        |
| 4S 10+50W<br>4S 10W<br>4S 9+50W<br>4S 9W<br>4S 8+50W    | 3<br>4<br>2<br>5<br>7  | 55555                    |
| 45 8W<br>5S 19+50W<br>5S 19W<br>5S 18+50W<br>5S 18W     | 5<br>4<br>3<br>3<br>7  | 5<br>10<br>5<br>10<br>5  |
| 58 17+50W<br>58 17W<br>58 16+50W<br>58 16W<br>58 15+50W | 5<br>4<br>7<br>6<br>8  | 5<br>10<br>5<br>10<br>30 |
| 5S 15W<br>5S 14+50W<br>5S 14W<br>5S 13+50W<br>5S 13W    | 2 4 2 2 2 2            | 5<br>5<br>5<br>10        |
| 5S 12+50W<br>5S 12W<br>5S 11+50W<br>5S 11W<br>5S 10+50W | 2<br>2<br>4<br>7<br>3  | 10<br>5<br>5<br>5        |
| 5S 10W<br>5S 9+50W<br>5S 9W<br>5S 8+50W<br>5S 8W        | 22473 33742            | 205555                   |
| 6S 20W<br>6S 19+50W<br>STD A-1/AU 0.5                   | 3<br>8<br>10           | 5<br>5<br>525            |

| SAMPLE                                                  | AS<br>ppm             | Au*                       |
|---------------------------------------------------------|-----------------------|---------------------------|
| 6S 19W<br>6S 18+50W<br>6S 18W<br>6S 17+50W<br>6S 17W    | 7<br>6<br>4<br>2<br>2 | 5<br>5<br>5<br>10<br>5    |
| 6S 16+50W<br>6S 16W<br>6S 15+50W<br>6S 15W<br>6S 14+50W | 2<br>5<br>3<br>4<br>2 | 5<br>10<br>5<br>10        |
| 6S 14W<br>6S 13+50W<br>6S 13W<br>6S 12+50W<br>6S 12W    | 4<br>4<br>2<br>4<br>2 | 5<br>5<br>5<br>10         |
| 6S 11+50W<br>6S 11W<br>6S 10+50W<br>6S 10W<br>6S 9+50W  | 23222                 | 5<br>5<br>5<br>10         |
| 6S 9W<br>6S 8+50W<br>6S 8W<br>7S 20W<br>7S 19+50W       | 4 2 6 4 2             | 5<br>10<br>10<br>5<br>5   |
| 75 19W<br>75 18+50W<br>75 18W<br>75 17+50W<br>75 17W    | 32<br>37<br>4         | 10<br>5<br>10<br>10<br>15 |
| 7S 16+50W<br>7S 16W<br>7S 15+50W<br>7S 15W<br>7S 14+50W | 35353                 | 10<br>5<br>5<br>5<br>10   |
| 75 14W<br>75 13+50W<br>STD A-1/AU 0.5                   | 4<br>8<br>10          | 5<br>5<br>550             |

| SAMPLE                                                  | AS                     | Au*                       |
|---------------------------------------------------------|------------------------|---------------------------|
|                                                         | ppm                    | bbp                       |
| 7S 13W<br>7S 12+50W<br>7S 12W<br>7S 11+50W<br>7S 11W    | 2<br>9<br>5<br>4<br>6  | 5<br>10<br>5<br>5<br>5    |
| 7S 10+50W<br>7S 10W<br>7S 9+50W<br>7S 9W<br>7S 8+50W    | 4<br>4<br>6<br>4<br>6  | 55555                     |
| 7S 8W<br>8S 20W<br>8S 19+50W<br>8S 19W<br>8S 18+50W     | 2<br>6<br>3<br>5<br>7  | 5<br>25 /<br>5<br>5<br>10 |
| 8S 18W<br>8S 17+50W<br>8S 17W<br>8S 16+50W<br>8S 16W    | 4<br>5<br>5<br>14<br>4 | 5<br>10<br>5<br>5         |
| 8S 15+50W<br>8S 15W<br>8S 14+50W<br>8S 14W<br>8S 13+50W | 56236                  | 55555                     |
| 8S 13W<br>8S 12+50W<br>8S 12W<br>8S 11+50W<br>8S 11W    | 645553                 | 55555                     |
| 8S 10+50W<br>8S 10W<br>8S 9+50W<br>8S 9W<br>8S 8+50W    | 22664                  | 55550<br>20               |
| 85 8W<br>STD A-1/AU 0.5                                 | 7 9                    | 5<br>520                  |


| SAMPLE                                                       | AS<br>ppm               | Au*                        |
|--------------------------------------------------------------|-------------------------|----------------------------|
| 9S 20W<br>9S 19+50W<br>9S 19W<br>9S 18+50W<br>9S 18W         | 2<br>6<br>4<br>3<br>2   | 1320 /<br>5<br>5<br>5<br>5 |
| 98 17+50W<br>98 17W<br>98 16+50W<br>98 16W<br>98 15+50W      | 25<br>25<br>6<br>2<br>4 | <b>5555</b> 5              |
| 9S 15W<br>9S 14+50W<br>9S 14W<br>9S 13+50W<br>9S 12+50W      | 2<br>3<br>2<br>6<br>5   | 55555                      |
| 9S 12W<br>9S 11+50W<br>9S 11W<br>9S 10+50W<br>9S 10W         | 14<br>6<br>2<br>2<br>3  | 25 V<br>15<br>10<br>5      |
| 95 9+50W<br>95 9W<br>95 8+50W<br>95 8W<br>105 20W            | 2<br>10<br>9<br>5<br>5  | 10<br>10<br>5<br>5         |
| 10S 19+50W<br>10S 19W<br>10S 18+50W<br>10S 18W<br>10S 17+50W | 5<br>2<br>4<br>2<br>3   | 55555                      |
| 10S 17W<br>10S 16+50W<br>10S 16W<br>10S 15+50W<br>10S 15W    | 22243                   | 5<br>5<br>10<br>10         |
| 10S 14+50W<br>10S 14W<br>STD A-1/AU 0.5                      | 2<br>3<br>9             | 5<br>5<br>540              |
|                                                              |                         |                            |


| SAMPLE                                                       | AS<br>ppm              | Au*                     |
|--------------------------------------------------------------|------------------------|-------------------------|
| 10S 13+50W<br>10S 13W<br>10S 12+50W<br>10S 12W<br>10S 11+50W | 4<br>5<br>3<br>5<br>7  | 5<br>5<br>5<br>5<br>5   |
| 10S 11W<br>10S 10+50W<br>10S 10W<br>10S 9+50W<br>10S 9W      | 3<br>6<br>4<br>5       | 55555                   |
| 10S 8+50W<br>10S 8W<br>11S 20W<br>11S 19+50W<br>11S 19W      | 4<br>3<br>10<br>4<br>7 | 5<br>10<br>5<br>10<br>5 |
| 11S 18+50W<br>11S 18W<br>11S 17+50W<br>11S 17W<br>11S 16+50W | 5<br>8<br>11<br>4<br>7 | 55555                   |
| 11S 16W<br>11S 15+50W<br>11S 15W<br>11S 14+50W<br>11S 14W    | 50254                  | 5<br>5<br>10<br>5       |
| 11S 13+50W<br>11S 13W<br>11S 12+50W<br>11S 12W<br>11S 11+50W | 52254                  | 55555                   |
| 11S 11W<br>11S 10+50W<br>11S 10W<br>11S 9+50W<br>11S 8+50W   | 3<br>4<br>3<br>6<br>7  | 5<br>10<br>5<br>10      |
| 11S 8W<br>12S 20W<br>12S 19+50W<br>STD A-1/AU 0.5            | 4<br>7<br>5<br>10      | 5<br>10<br>5<br>515     |

| SAMPLE                                                       | AS<br>ppm              | Au*                        |
|--------------------------------------------------------------|------------------------|----------------------------|
| 12S 19W<br>12S 18+50W<br>12S 18W<br>12S 17+50W<br>12S 17W    | 5<br>7<br>2<br>8<br>5  | 5<br>10<br>5<br>5          |
| 12S 16+50W<br>12S 16W<br>12S 15+50W<br>12S 15W<br>12S 14+50W | 59536                  | 10<br>5<br>5<br>5          |
| 125 14W<br>125 13+50W<br>126 13W<br>125 12+50W<br>125 12W    | 8<br>9<br>7<br>6<br>3  | 55555                      |
| 125 11+50W<br>125 11W<br>125 10+50W<br>125 10W<br>125 9+50W  | 6<br>9<br>7<br>6       | 5<br>5<br>5<br>5<br>5<br>5 |
| 12S 9W<br>12S 8+50W<br>12S 8W<br>13S 20W<br>13S 19+50W       | 8<br>6<br>4<br>7<br>10 | 55555                      |
| 13S 19W<br>13S 18+50W<br>13S 18W<br>13S 17+50W<br>13S 17W    | 9<br>8<br>9<br>6       | 55555                      |
| 13S 16+50W<br>13S 16W<br>13S 15+50W<br>13S 15W<br>13S 14+50W | 5<br>6<br>4<br>9<br>7  | 5<br>5<br>5<br>15          |
| 13S 14W<br>13S 13+50W<br>STD A-1/AU 0.5                      | 10<br>11<br>9          | 5<br>5<br>540              |

| SAMPLE                                                       | AS<br>ppm             | Au*<br>ppb        |
|--------------------------------------------------------------|-----------------------|-------------------|
| 13S 13W<br>13S 12+50W<br>13S 12W<br>13S 11+50W<br>13S 11W    | 7<br>7<br>3<br>3<br>2 | 5<br>5<br>5<br>10 |
| 13S 10+50W<br>13S 10W<br>13S 9+50W<br>13S 9W<br>13S 8+50W    | 10<br>8<br>3<br>3     | 55555             |
| 13S 8W<br>14S 2OW<br>14S 19+5OW<br>14S 19W<br>14S 18+5OW     | 3<br>2<br>4<br>3      | 55555             |
| 14S 18W<br>14S 17+50W<br>14S 17W<br>14S 16+50W<br>14S 16W    | GUEUR CHENR           | 55555             |
| 14S 15+50W<br>14S 15W<br>14S 14+50W<br>14S 14W<br>14S 13W    | 2<br>4<br>3<br>3<br>3 | <b>ភ</b> 55555    |
| 14S 12+50W<br>14S 12W<br>14S 11+50W<br>14S 11W<br>14S 10+50W | 2<br>4<br>8<br>4      | 5<br>10<br>5<br>5 |
| 14S 10W<br>14S 9+50W<br>14S 9W<br>14S 8+50W<br>14S 8W        | 2<br>4<br>2<br>2<br>2 | 55555             |
| 15S 20W<br>15S 19+50W<br>15S 19W<br>STD A-1/AU 0.5           | 7<br>8<br>4<br>9      | 5<br>5<br>490     |

| SAMPLE                                                               | AS                    | Au*                         |
|----------------------------------------------------------------------|-----------------------|-----------------------------|
|                                                                      | ppm                   | ppb                         |
| 15S 18+50W<br>15S 18W<br>15S 17+50W<br>15S 17W<br>15S 16W            | 44555                 | 10<br>5<br>10<br>5          |
| 15S 15+50W<br>15S 15W<br>15S 14+50W<br>15S 14W<br>15S 13+50W         | 2<br>4<br>2<br>5<br>7 | 10<br>5<br>5<br>5           |
| 15S 13W<br>15S 12W<br>15S 11W<br>15S 10+50W<br>15S 10W               | 9<br>3<br>2<br>2<br>8 | 5<br>15<br>15<br>5          |
| 15S 9+50W<br>15S 9W<br>15S 8+50W<br>15S 8W<br>PAT-A                  | 2 2 6 2 2             | 55555<br>5                  |
| PAT-B<br>PAT-C<br>PAT-D<br>PAT-E<br>PAT-F                            | 5<br>3<br>4<br>7<br>8 | 10<br>105<br>105<br>10<br>5 |
| PAT-G<br>PI-001 ROCK<br>PI-002 ROCK<br>PI-003 ROCK<br>STD A-1/AU 0.5 | 10<br>4<br>11<br>9    | 5<br>5<br>10<br>540         |



