1983 GEOCHEMICAL FEPORT
M M 100 CLAIM GROUP
SKEENA MINING DIVISION
NTS $104 \mathrm{~A} / 4 \mathrm{~W}$
Lat. 5901 N
Long. 12955 W

Owner:	Kingdom Resources Ltd.
Operator:	Kingdom Fesources Ltd.
Consultant:	C C. R. Harris, P.Eng.
	15s+

C. R. Harris, P.Eng.

November 15, 1983
INTRODUCTION 1
LOCATION \& ACCESS 1
PHYSICAL FEATURES 1
PROPERTY 2
HISTORY 2
ECONOMIC ASSESSMENT 3
GEOLOGICAL SETTIING 3
SAMPLING \& ASSAY PROCEDURES 4
SUMMARY OF WORK 5
DISCUSSION 5
COST STATEMENT 6
CERTIFICATE 8
Appendix I 1981/83 Assay Comparision II 1983 Assays
Figures 1 Claim Location follow 1
2 Sample Lines, Victoria Ck. Cu. in pocket
3 " " " " Pb "
4 " " " Zn "
5 " " Ag. "
6 Sample Lines, Mayflower Ck. Cu. "
7 " " " " Pb . "
8 " " " " Zn. "
9 " " " " Af. "

INTPODUCTION

During the period August 6 to September 9, 1983, Kingdom Resources carried out geochemical and geological investigations along with considerable trenching on their M.M. 100 Claim near Stewart, B. C. Five men were employed under the direct supervision of the writer.

The soil sampling was performed to confirm and more closely define several anomolous zones discovered in 1981. This report describes only the soil geochemical program.

The Stewart area experienced record rainfall during the program making helicopter scheduling impossible and seriously impeding the progress of work as well as adding considerably to the costs.

LOCATION \& ACCESS

The M.M. 100 group of claims is located about nine kilometers north of Stewart, B. C., between Glacier and Bitter Creeks to the east of Bear River as shown on Figure 1.

Access to the central and eastern portions of the group is by helicopter only although suitable landing areas are not plentiful. The lower western portion can be reached from the Stewart highway but only one trail exists at present.

PHYSICAL FEATUFES

The MM 100 claim group lies on the hillside east of Bear River and ranges in elevation from 200° near the highway to 3000^{\prime} along the eastern boundary. East of Victoria Creek, several small lakes and open swampy areas occur but in general the claims are heavily timbered with

FIGURE 1.

first growth trees to 4^{\prime} diameter and a thick tangle of underbrush.

Water is generally available from lakes, creeks and swamps but could be a problem during dry years. Outcrops are scarce except in and along creeks and steeper slopes. The creeks are deeply incised with numerous waterfalls and dangerous sections.

PROPERTY

The M.M. 100 Claim Group consists of the following located claims:

M.M. 100	Rec.\# 1594	M.M. \#1 Fr.	Rec.\# 3314		
Buck 709	"	3138	\#2	"	3311
Buck 710	"	3170	\#3	"	3312
Lake 16	"	3139	\#4 Fr.	"	3315
Lake 17	"	3140	\#5	"	3313
			\#6 Fr.	"	3316

The group totals 35 units and 6 claims or fractions.

The property is presently owned by Kingdom Resources Ltd., and is currently in good standing.

HISTORY

Several old prospects exist on the claim group dating from as early as 1908. Considerable work was done along Victoria Creek in 1911 but for the most part serious exploration and development did not take place until the 1920s when the Tyee, Mayflower, Victoria, Silver Ledge and Emperor were worked. However, because of the heavy overburden and lack of outcrop, work was confined to water courses where outcropping quartz veins could be easily developed.

No previous work is known to have been done to the east of Victoria Creek which is the main subject area of this report.

ECONOMIC ASSESSMENT

The M.M. 100 Glaim Group is of economic interest for the known occurrences of gold and silver bearing sulphide mineralization in veins of the old Tyee, Mayflower, Victoria, Silver Ledge and Emperor prospects as well as the possibilities of additional hidden veins indicated by soil sampling.

The property is favorably located being close to Stewart, at a reasonable elevation and not subject to avalanche or ice movement. Both the known veins, partly developed by old adits, as well as the several geochemically inferred veins are worthy of further exploration and possible development.

GEOLOGICAL SETTING

The M.M. 100 claims extend over three major rock units mapped by Grove as the Hyder quartz-monzonite stock along the western edge, then Hazelton fragmental volcanics followed by Bowser sediments over the eastern portion. Grove (1971) provides a detailed description of the rock units and regional geology,

The major feature on the claims is the northern extension of the so-called Portland Canal Shear Zone along which one producing mine and numerous prospects were located south of the claims. The Victoria and Silver Ledge prospects appear to be on the west or hanging wall of this zone while the main sample area of this report appears to cover the central and eastern portions of the Shear Zone. The known veins are complex quartz-carbonate-breccias usually associated with dykes. The veins strike north-south and dip west at 50-60 degrees.

The Tyee showing is a highly pyritized shear with some silicification in the Hyder Intrusive. The Mayflower Creek prospects occur along a silicified shear in Hazelton volcanics striking easterly from the Intrusive contact. Sulphide bearing quartz veins and shears branch from or intersect the main shear in the creek.

SAMPLING \& ASSAY PROCEDURES

All samples were taken from the B horizon using either hand auger or test pits. Depth of sampling ranged from about 1 foot to as much as four feet in mossy ground. Samples were taken by Mr. Eric Becker, an experienced sampler. Samples were analyzed by Min-En Laboratories of North Vancouver by screening through 80 mesh followed by total acid digestion and atomic absorbtion analysis. Results are shown on Appendix II.

Prior to plotting the assays it was decided to compare a number of 1981 assays done by Can-Test with assays of the same sample rejects as done by Min-En in 1983. A total of 28 pulps were sent for check assay. The original and check results are shown on Appendix I.

It was immediately apparent that while the copper values were comparable, the lead, zinc and silver results were quite different. However, statistical tests showed that the differences were proportional to the assay values therefore the 1983 lead, zinc and silver assays were multiplied by factors of $0.652,1.747$ and 0.359 respectively. The new distributions obtained were then tested for equality of variance and means using standard F and Student t statistical tests for each metal. The unadjusted copper and the adjusted zinc distributions were found to have no significant differences in variance or mean at the 95 confidence level. The lead and silver distributions were found to have a lesser but still acceptable confidence level for the equality of variance but a 95% level for the means. The unadjusted copper and the adjusted lead, zinc and silver assays were then accepted for analysis with the 1981 data.

Figures $2,3.4 \& 5$ combine the 1981 and 1983 sample data for the Victoria Creek area and figures $6,7,8 \& 9$ the data for the Mayflower Creek sampling.

SUMMARY OF WORK

Following the establisment of a base camp on august 6 a total of 5.5 km of new lines were laid out from the 1981 base-line east of Victoria Creek. Sample stations were established every 50 metres. In addition to the new $15,35,55,7 S \& 8$ lines, some of the old lines were extended. A total of 110 samples were taken east of Victoria Creek.

On the completion of the above the camp was moved to the Bear River flats and additional sampling done in the Mayflower Creek area. At this location 1.3 km of new lines were cut and 28 soil samples taken.

DISCUSSION

For the Victoria Creek section the copper and zinc assay contouring show practically identical patterns with several northeast trending anomolous highs. The lead contouring, probably due to the very narrow range of values, does not develop the same strong pattern for the northeastern portion of the sample area but does tend to confirm the copper and zinc anomolies for the western and southern parts. The silver data, because of the generally low values and range, could not be sensibly contoured but many of the higher values obtained coincide with the copper and zinc highs.

The contour intervals were chosen after calculating the means of the assay distributions with the lowest contour plotted being very nearly the mean and therefore considered the lowest significant value. Twice these values are considered highly significant.

For the Mayflower Creek area contouring was not attempted as still more data is required. However, copper, zinc and lead show distinct similarities and NNW trending veins may be indicated which confirms observations made while trenching and mapping along Mayflower Creek.

The 1983 Victoria Creek soil sampling confirm and better define the anomolous zones found during 1981 and show that several very worthwhile exploration targets exist to the east of Victoria Creek. Because of the lack of road access, trenching is not feasible therefore the most effective method of further prospecting is by a series of diamond drill holes across the strongest anomolies.

The Mayflower Creek section has not been completely sampled but the indicated NNW extension of the veins of \#3 adit should be tested by short hole diamond drilling.

COST STATEMENT

The work done by Kingdom Resources during 1983 on the MM 100 claim was comprised of geochemical, geological and physical work. On the following detailed cost statement the writer has apportioned the total costs to the various types of work on the basis of time spent and a personal knowlege of the various costs incurred

Jul. 30 - Sep. 9, 1983

Wages
E. Becker, Prospector 20 da @ 120
D. Boyte, Prospector 23 da ello 110
D. Harris, labor 25 da © 110
M. Harris, student 26 da © 100
E. Smith, helper 13 da © 110

Engineering \& Supervision

$\begin{array}{lllllr}\text { C. R. Harris, P. Eng. } & 27 \text { @ } 160 & 1,600 & 2,400 & 320 & 4,320 \\ \text { P. W. Green, P. Eng. } & 4 \frac{1}{2} \text { @ } 200 & & & 900 & 900\end{array}$
Transp. Nob \& De-mob

Truck Pental 30 © 30	500	400	900
Gas, oil, repairs	200	160	360
Air Fares, E. Becker, D. Harris	300	100	400
Travel, meals \& Accom.	300	200	500
Helicopter Support	4,050		4,050

Camp Costs \& Accom.

Stewart meals \& accom.	780	1,000	200	1,980
Camp food \& supplies	800	710	100	1,610
Camp expendibles, lumber, fuel etc.	1,000	850		1,850
Camp equipment rentals	500	400		900
Drill rental, powder, fuse		600		600

Assey
Geochem samples 138
Fock samples 75
Preparation of Reports
C.R.Harris, P.Eng.

$$
\$ \frac{400}{17,780} \quad \frac{300}{12,420} \quad \frac{700}{33,160}
$$

CERTIFICATE

I, Charles R. Harris, of 2709 Wembley Drive, North Vancouver, B. C., hereby certify that:

1. I am a graduate of the University of British Columbia with a degree of Bachelor of Applied Science in Mining Engineering.
2. I am a registered member, in good standing, of the Association of Professional Engineers of B.C.
3. I have been practicing my profession continuously for the past eighteen years.

GEOCHEMICAI ALYSIS DATA SHEET

MIN - Laboratories Ltd

705 WEST 15 th ST., NORTH VANCOUVER, B.C. V7M IT2
$=$ vo. 3-10 , ATE: Sept.
compah Kingdom Resources
geochemicalf talysis data sheet
MIN - EN Laboratories Ltd.
705 WEST ISTh ST., NORTH YANCOUVER, B.C. V7M 1 T2
ATTENTION.

$$	$\begin{aligned} & \hline \mathbf{S K}_{0}{ }^{10} \\ & \mathbf{K}_{\mathrm{m}} \\ & \quad 10 \\ & \hline \end{aligned}$	$\mathrm{cu}^{\mathrm{pomm}}{ }^{15}$	${ }^{\text {Pb }}{ }^{\text {PPm }}{ }^{20}$	$\mathrm{zn}^{\mathrm{ppm}}{ }^{25}$	Ni^{30}	$\begin{array}{cc} \mathrm{co}^{35} \\ \mathrm{ppm} \\ & 115 \end{array}$	$\mathrm{AO}_{\text {pam }}{ }^{40} 120$	$\begin{array}{ll} \mathrm{Fe}^{45} \\ \mathrm{pem} & \\ \mathrm{pem} & \\ \hline \end{array}$	$\begin{array}{ll} \hline \mathrm{Hg}_{5}^{50} \\ \mathrm{PDO} & \\ & 130 \end{array}$	$\begin{array}{ll} \hline A_{s} & 55 \\ { }_{\mathrm{DPM}} & \\ & 135 \end{array}$	$\begin{array}{ll} \hline \mathrm{Mn}^{60} \\ \mathrm{pDm} \\ & 140 \\ \hline \end{array}$		70 150	75 155	86
LLS5.0.0.	, 1	, 14,33	142	,7,3	1.1	1.1	1-1:2	1	-1.	1.1	11.1	-1.1	11	1	H
.5.15		, 3.7	, 4,0	+ 64	1	$1+1$	$1 \cdot 4$		111	1111	1111	1	+11	1.11	1
6.0		1,8	2,2	2,1			1.2								
$6,4.5$		3,1	32	4,6			1,0	,	11	-	1111	1.1	11.1	111	,
7,09		3.9	3.9	5,5			1.1								
7.05		3,9	, 3,5	15.8			, 192				1111		1.1.1	1.1	
L, 1, S, 8, , 0 E	$\mathrm{E}_{1}, 1$, 2,7	3,3	3,8	1.1	$1+1$	14	11.	-1.1	-1.	1111	1	111	1	1
$\mathrm{L}, 6, \mathrm{~S}, 2,0,0 \mathrm{~W}$		1,0,9	4.7	+3,2	1		14			-	1,1.	111	111	-1.	
- 2.2 .5	1	16.3	- 3.9	5.2		$1+1$	10	-1」	1.11	\ldots	1111	1.11	111	1.1	
, 3.3.0	1	, 1,1,7	4.0	2.3			$0 \cdot 5$				1,		1.		
1, 3.3 .5	111	1,1,1	3,1	11.5			04				111	1 11	1111		
6.541.0W	J1.	115	-1. 14	1111	1.1		$1+0 \%$	11.1	11	11	1.11	1.1.1	-1		
L 8, S.01. 5	W1 1	1139	1.32	1,49	1	111	1.10	1	111	$11+1$	1111	11	11		
1.1 .0	111	, 14.4	1 1-3,3	+153	, 11	1.1	1.111	111.	+1.1	1.1	+111	1.1	111		
-1.1.5	1-1	1.3 .1	3.1	13.4			009				1		1		
, 2.10	11	, 3	11,9	1.18	1	1	1,002	1	1.1	1.1	11.1	1	1		
,2,.5		,8,0	2,8	4,9			, 09				111				
, 3.3.0		7.7	- 6.6	6.9	1.1		110		11.1	111	1				
$1,3,3,05$	1.1	, 2,6	2.2	-12.5			$1 \cdot 3$		1.	1.1.1	1.		1		
-4.0.0		12.5	5.0	5.5			109						1.		
4, $\cdot 5$,6,3	3,9	17,0			1.6				111				
L 8, S.5.0	$W_{1} 11$	118	1.6	1.2	1	,	$0 \cdot 2$	1	+1.1	111 1	1111	-1-1	1.1		'
$L 5, S, 0,0, \mathrm{E}$	$\mathrm{E}_{1} 1$	144	+ 3,2	4.4	1.1	1-1	14		-1.1	111	1111	111	11.1		H
$1,0.15$	1.	1.2 .5	2.8	1,05			1.3			,	1.				
1,0		6.0	4.2	4,6			$1 \cdot 5$						+		N
$1,1,5$		5.4	3.3	39			15				1.1				
- 12.20	1	13.0	13.1	4.1	$\xrightarrow{1.1}$	-1.	$1+1$		-1.1	1.1	11.	-1	,		
1.2 .15	1	11.1 .1	1,124	1.22	1.11	1111	1.004	111	111	1.1	1				
$1,3.10$	11.1	14.8	- 35	I, 5.5	-1.	-11	$1+3$	-11	1.	1	111				
L, 5, S, 3, . 5	E_{1}	1,4,3	$\begin{array}{r}3,9 \\ \hline\end{array}$	1,24			1.2				1.				

		$\mathrm{Cu}^{\text {cpm }}{ }^{15}$	$\begin{array}{cc} \mathrm{Pb}^{20} \\ \mathrm{ppm} & \\ & 100 \end{array}$	$\begin{array}{ll} \hline \mathrm{zn}_{\mathrm{n}} & 25 \\ \mathrm{ppm} & \\ & 105 \end{array}$	$\begin{gathered} \hline \mathrm{Ni}^{30} \\ \mathrm{pDm} \\ \hline \end{gathered}$	$\begin{array}{cc} \mathrm{co}^{35} \\ \mathrm{PPDI} \\ & 115 \end{array}$		$\begin{gathered} 1980.5814 \\ \mathrm{Fe}^{45} \\ \mathrm{ppmn} \\ \\ \\ \hline \end{gathered}$	$\begin{array}{ll} \hline \mathrm{Hg}^{5} & 50 \\ \mathrm{ppb} & \\ & 130 \end{array}$	$\begin{array}{ll} \hline & 55 \\ \text { As } & \\ \text { ppm } & \\ & 135 \end{array}$	$\begin{array}{ll} \mathrm{Mn}^{60} \\ \mathrm{ppm} & \\ & 140 \end{array}$	$\begin{array}{ll} \hline \mathrm{Au} & 65 \\ \mathrm{pob} & \\ & 145 \\ \hline \end{array}$	70 150	75 155	$83 .$ 80
L 5 S ，4， 0	E_{1}	4，2	$\underline{2.4}$	3，8	1	，	$2 \cdot 6$	1	1	1.1	1．1．	11.1	1.1		
L3S0．0	E，	13,3	－129	14.7	1	＋1	1.1	111	1		111		1		
0.5		3，6	，5，7	．7，4			$1 \cdot 3$								
11.0	111	1 1 314	1.36	1515	1111	11	1.413	11	1.1	11.	1111	1111	1111	1111	1
1		12.1	－ 24	－ 34			$1{ }^{15}$								
12.0		4.7	5.1	19.3			168				1111	1	1	，	
1.2 .25	1.1	14,0	3，8	$1+5,0$	1.	11.1	$1 ; 8$	1	，	1.	1111	11.	111	1	
1.3 .25	1	1.4 .4	1.30	＋1613		1	1.14	1		1.	1111	1	1111	－	
1.4 .0	＋11	1.4 .9	＋ $1.3,6$	＋2，1，8	1.	－11	$1 ; 0$		，		11.		11.		
4.5		4.6	4,0	16,4			2；2						1		
，5，． 0		4.6	1.48	52			3.5				1，	，1	1		
5． 5.5		1,26	$1,3,4$	14.8	1		$1 ; 6$				1111	1．11	1	1	
L $3, \mathrm{~S}, 6,0$	$\mathrm{E}_{1}, 1$	4.4	38	1，5，8			1.6		1 111		11		11.		
L．7， 510.0	$\mathrm{W}_{1}, 1$	，1，1，7	$1,2,6$	11.5	111	11	1,0	111	1	1 1 1	1111	111	111		
1 0.0 .5		1，8，9	2.7	6，6			1.5				1，				
，，1，1．0 0	11	＋1，9，8	$1,3,5$	， 710	1		$1 \cdot 3$		1111	11.	11.1	1	111		
，1．． 5		170	3，1	34			1.7								3
2， 0		3，8	25	4,3			1.1								
1.12 .015	1	1143	$\underline{-28}$	1.120		1	，． 1%	－11	11.	1.1	1111	1.	11.1		
－1．300		－ 28	4,1	$\xrightarrow{-1.1}$			$1{ }^{\circ} \mathrm{K}$								
－1 3.15	11	1.32	－ 3,9	4.3	－1		－193		11.	1．1	1.		1		的晕
$1,4.00$	1，，	1，7，1	1.43	＋267	111		0.5		111	，	1 1 1		111		曷
$1,4.05$		－1．2	3,5	182			1.9		1	1	111		1		－
L， 715,510	W	1.1 .7	， 50	－134			$1 \cdot 3$				1，				
L，8，S 0，0，0	E_{1}	1，1，5	32	1，3，5			1.5								ω
$1+0.15$		1.5 .7	4.1	－ 8.8			1.8				1 －		1	，	
－11．0		－ 5.0	$\ldots 34$	－ 15.3			1.2				1.1		－		
1.11 .5	111	11147	1.28	＋1130	－－－1	＋1．．1．	＋1．100	－1－1．1．	－إـ1＿	－1．1	1.1 .1	111			$1-1 / 1$
$1+12.0$	－11	1.52	1 +12	152	－1．1	－1．1	＋1099		－1－1	1	－		，		
$\underline{L} 8, S, 2,5$	E_{1}	113.3	－1 3.6	－5，9			－1．6				＋111	1.			＋1．

ATTENTION:							Phorat led	04) 980-5814							983
6 Sample. Number	ω_{58}^{10}	Cu^{15}	$\begin{array}{ll} \hline \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	zn^{25}	Ni^{30}	$c_{0}{ }^{35}$ pprn	$\begin{gathered} \mathrm{Ag}^{40} \\ \mathrm{Ppm} \end{gathered}$	$\begin{aligned} & \mathrm{Fe}^{45} \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \mathrm{Hg} \\ & \mathrm{ppb} \end{aligned}$	$\begin{array}{ll} \hline \text { As } \\ \text { ppm } \end{array}$	Mn^{60}	Au^{65}	70	75	88
61 86	90	95	100	105	110	115	120	125	130	135	140	145	150	155	led
L8S3.0	1.1	1.67	132	16.9	111	$11-1$, , , 1-2	1111	11.1	1111	1.111	1111	1111		111.
1	11	$1,6,9$	1.29	13.	11	111	11.2	11	1.1	1111	11.1	1111	111	111	111
14.40		7.1	1.42	1.1 .9	1-1.	-1-1	,111	$11+1$	11	1.1	1.1	11	11.1	111	11
L 8 S 4.5	11	11.28	1.50	$2,9,0$	111	1.11	1,1:7	-1. 1	-1 1 1	1-1.	1111	11.1	11.1	1111	111
1.7 .7 .5 .5	O. O	87	4.9	7.7			1:4						, 1,		
11111	$5_{1} \cdot 5_{1}$	$1,7,7$	$\begin{array}{r} 29 \\ +1 \\ \hline \end{array}$	$3,4,3$	11	1.	$111: 5$	1.1.1	111	-1.1.	1.111	111	-1. 1	111	1.1
L.7. 7.5	$\mathrm{C}_{1}, 1, \mathrm{O}, \mathrm{E}$		2.8	1.5	111	111	$+3 \cdot 3$	1 1-1	-1-1	1111	11.1	1-11	1111	1111	111
L. $7 . \mathrm{S}_{1} \cdot 15$		$1,6,1$	2	7,6		11	14	1.1.	-1.1.	1-1.	111	-1-1	111	111	111
1.1 .0	111	15	129	4.3	11	111	$1,1 \cdot 3$	111	1111	111	1111	-111	111	11	11
, 1., 5	1,1	1.4	3,1	$1,7.5$	1,1	1.	1:9	, , 1,	1.1.	$1 \times$	1	1,1,	1	1×1	1
$+2.0$		$1,1,7$	$\begin{array}{r} 38 \\ \hline 12 \end{array}$, 1,0,7	1111	11.1	1.3	11.1	1.1	1.1.1.	1.11	1111	111.	1.1	1111
1.21 .5	111	1103	143	.1211	111	1.1	$1+177$	-1.1. 1	11.1	1.111	1.11	-1.11	111	11.1	111
$+-13.10$	1	11104	14.7	22.3	111	1.1.1	L 1.188	- Li	1111	1-11	1111	1111	1111		
$1,13,+5$	111	1.45	1.34	1.6 .1	1.11	1-1.1	, , 1*1	111.	1111	1111	1111	1111	1111		
1.4 .10	111	135	3.5	5.1		111	, 1. 1\%	, , ,	1,1		1.1		111		
1, 4,.5	111	$1.5,8$	1,34	1.174	1111	-11111	1,1,10	1111	111	1111	1111	1111	1111		
L.7.S.5:0	E 11	144	1.38	1.17 .7	1 1.1.	1.-1-1	1.120	1.	11	1 + ,	1111		1.1		3
HB, 2,	1.1	1.1 .6	127	122	1.1	-1-1.	$\ldots 1.049$		11	11	111	1	111		\square
H, B, $3_{1}, 1$	111	12,7	132	166	1111	111	1.124	1.1	1.1	1.	1111	1111	111		
$\mathrm{H}_{3} \mathrm{~S}$	1,1,	132	. 30	54			128				1 1.		1,		\% 第
11111	111	11.1	1.1	1.1	11.	-1-1.1	1	-121	-1.1.1	1.1. 1	1.1.1	1.1	111		8
-11.1	111	11.1	111	L. LL	111.1	-L.1	1.	1.1.1	-1.1	111.1	1-1.1	111	111		
1111	11	111	111	1111	1111	1.1-1		d-a	- - L_L	-1.1.1	$1+1$	11	111		H
11111	111	$1+1$	111	$1+1$	11.1	-1.-1.1		11.	11.	11	11.1	1.1	1111		
$1-1$		1.1.									1				
1111	111	1.1	1.1	1.11	1.1	- 1.1	1	111	-1.11	1	1111	11.1	1111	,	
1-1. 1	11.	$1-1$	1.1	111		1.1	,	1.1	1 1-1	11.1	11.1	11.	1		
$1 \begin{array}{llllll}1 & 1 & 1 & 1\end{array}$	11.1	111	111	1.11	1.1.1	1111	1.14	1.1 .1	11.1	1111	1111	11.1	4	1111	11
11.11	111	11.1	1-11	1.1 .1	1.11	1 -1.	1.1	111.	1111	1.1.1.	1111	1.1	1.	11	1.1
1	1×1	1	111	1	-1.	1,1	1,1	- 1	J Lin	+1/	1 l 1.1	1			1-1_1

ATtENTION：							Pionet cill								1983
		$\mathrm{cus}^{\text {pomm }}{ }^{15}$	$\begin{array}{cc} \mathrm{Pb}^{20} & \\ \mathrm{popm} & \\ & 100 \end{array}$	zn^{25}	$\begin{gathered} \mathrm{th}^{30} \\ \mathrm{pDm} \\ \\ : 10 \end{gathered}$	$\begin{gathered} c_{0}{ }^{35} \\ \mathrm{pDPO}^{5} \end{gathered}$	Ae^{40}	$\begin{array}{ll} \mathrm{Fe}^{4 \mathrm{~S}} \\ \mathrm{pPm} & \\ & 125 \end{array}$	$\begin{array}{ll} \hline \mathrm{Ho}^{\mathrm{SO}} \\ \mathrm{pDO} & \\ & 130 \end{array}$	$\begin{array}{ll} \text { Al }^{55} \\ \text { Dom } & \\ & 135 \end{array}$	$\begin{array}{ll} \mathrm{Mn}^{60} \\ \mathrm{DPm} \\ & 140 \end{array}$	$\begin{array}{ll} \hline \text { Au } & 65 \\ \text { vob } & \\ & 1.45 \end{array}$	70 150	75 155	80
T $1 . N+0$.	0,01	1，4	$\ldots 1.3$	＋1．119		$1+1$	05				1111		1.		
0.	5.	1.36	1.95	344			，24		1．11		11		1		
－1．．．．1．	2.5		1.4	8.9			D2					－1－1			
1.		－1．1．9	， 56	＋290			26				1.1				
2.			23	17.			03								
T1N＋2．	51.1	－1．1．3	＋1．5：0	． 2.204	1 L．，L	1．1．1．	10－8	1．1．1	\cdots	$1+1$	1		1		
T1S +0.	5．	＋．．．1．1	－ᄂ116	－1．148	－1．1．	1．1．1．1	－ $0 \cdot 6$	－1－1－1	＋1	1.	11し	11	1．11		
T1．Shl．	$01-1$	－1． 22	1，1	$\ldots 113$	＋1．＋1．	－1－1	$\ldots 0{ }^{-1} 3$		1．1	\ldots	1	1.	1.1		
FO	$1{ }_{L}$	－1，1，7	， 1.5	24			10.3				1.				
T． $2 \mathrm{~N}+0$ ．	0.0	－ 8.7	1，9，0	1.81 .5			$3 \cdot 7$								
Q	5.1	3.5	$\underline{+1,8,6}$	$4.3,7$	1.		$1: 6$	．．．1	1.		1．11	1．11	1.1	（ 40 mm	eshol
$\cdots 1$.	Q 0_{1}	$+5,0$	，5，3	， 3188	－		112		1.	1	1.1	1.1	1111		
－ 11		$\cdots 21$	37	$1+2,5$			1.03	－	11	1．1	＋1．1	1.	1.		
T $2 \mathrm{~N}+2$ ．	Q 1,	1.11	111	1.1 .2	1.1	$1 \ldots 1$	$\therefore 0_{0} 2$	1.1	1．1．	1	111	1.1	1		
T． $2.5+0$ ．	5.1	1.4	1.5	1，7，6			0.3								
． 1.1	Q．	1.113	1＋3，6	1,610	1.1	－	，110	－1．11	1.11	1.	11.1	1	1.		
1.			，1，3	1.3			0.3								了
$\mathrm{T} 2 \mathrm{~S}+2$.		－1，1，5	$\bigcirc 60$	＋172			1.6								
T $3 \mathrm{~N}+$ ． 2	511	－1．22	－5，9	＋119			1.40	＋1	1.1	1－1	11－1		11		
－ 0		－1，1，3	3.8	4.4 .5			1：1			－					
$\ldots 1$.	0_{1}	，3，3	8，5	＋2，${ }^{2}$			2.1								
い1」1．	50	1.1 .15	－1，9	－．+115	－11．		1.005		－11	－1	111	1.1	11.1		
1．1．1．2．	0 －1	$\ldots 112$	12.3	－ 4.4			$1+003$	－	1－L	\pm	1．1	1.1	11		，
						－1．1．1．	$0 \div 5$	－	＋1＋1	－－L． 1 ．	－LL．	1	－Lし1		
$\text { T } 3 \mathrm{~S}+0 .$	5	$\begin{array}{r} 17 \\ 1,3,2 \\ \hline \end{array}$	64	$4,4,9$		－	2.7			－	－				
い1．1．	$01+1$	－1－19	－118	－＋ 3.2	山山1		1.3				1.1		1		
いい1．	5， 1.	1－2．1．	， 5.1	，1，3，3	－	．1	$\ldots, 142$								
T 3 S +2.	0．1．	1.1	1.13	－L18	－いー	1		－	1．1．1	11.1	1＋し				
－1レル	11	－LL－	\square	1.1 .1	1．1．	1.11	い い－\％	いいし	上号1	－1レレ	1．1．1	－			
		－1．1．		，1，		，．1．	\bullet	，，，	，，，	，．．．．	＋1．1．				

$$
\begin{aligned}
& \begin{array}{l}
\text { LEGEND } \\
121 \quad 1981 \text { Assay } \\
\frac{121}{151} \quad 1983 \text { Assay as Qssaved } \\
\frac{\text { Corrected }}{}
\end{array} \\
& \otimes \text { Claim post } \\
& \text { r- Adit } \\
& \text { - claim Boundar } \\
& \text { Contours } \\
& =\quad \begin{array}{r}
20,30,40,50 \\
75: 100 \\
\hline 0 \mathrm{pm} \\
\hline
\end{array}
\end{aligned}
$$

11,915

SCALE 1:5000

\qquad

$$
\begin{aligned}
& \text { LEGEND } \\
& \text { 1231 } 1983 \text { Assay } \frac{\text { as assaved }}{\text { corrected }} \\
& \triangle \text { Claim Pos } \\
& \text { >- Adit } \\
& \text { - claim Boundary }
\end{aligned}
$$

LEGEND

SCALE 1:5000
\qquad
$\stackrel{\otimes}{\otimes}$
-.- Claim Boundar

MM IOR CLAIM

IYEE F MAYEGOWER AREAS

GEOCHEMICAL SAMPLING
COPPER - -Ppm

