GEOLOGICAL, GEOCHEMICAL & GEOPHYSICAL REPORT

ON THE

OPEC 6-9 AND HY 1-2 MINERAL CLAIMS

OMINECA MINING DIVISION LATITUDE 55°40'N, LONGITUDE 124°30'W NTS 93N/9W AND 10E

OWNER - OPEC CLAIMS: GOLDEN RULE RESOURCES LTD CALGARY, ALBERTA HY 1-2 CLAIMS: ANACONDA CANADA EXPLORATION LTD VANCOUVER, BRITISH COLUMBIA

OPERATOR: ANACONDA CANADA EXPLORATION LTD

by

L. RICCIO, PhD P. Matysek, BSc A. Scott, BSc GEOLOGICAL TRONCH ASSESSMENT FFORT

12,013

TABLE OF CONTENTS

1.4

4.

...

Page No.

FIGURES, TABLES & APPENDICES	11
INTRODUCTION	1
LOCATION AND ACCESS	1
PROPERTY	1
REGIONAL GEOLOGY	4
SUMMARY OF 1983 PROGRAM	4
EAST ZONE	6
Geology	6
Soll Geochemistry - Tungsten East Zone Grid	7
Results	8
Magnetometer Survey	8
EPITHERMAL ZONE	9
Geology	9
Rock Geochemistry, Mineralization	9
Soll Geochemistry	11
Sampling Procedures	11
Results	12
VLF Survey	12
TUNGSTEN WEST ZONE	13
Introduction	13
Soll Geochemistry	13
Results	14
Magnetometer Survey	14
SUMMARY AND RECOMMENDATIONS	15
REFERENCES	17
STATEMENT OF COSTS	18
STATEMENT OF QUALIFICATIONS	22

Ċ÷.

.

LIST OF FIGURES

۱.	Location Map	2
2.	Claim Map	3
3.	Regional Geology	5
4.	Opec/Hy Claims and Grid Locations	pocket
5.	East Zone Geology	pocket
6.	Tungsten East Zone, Soil Sample Locations	pocket
7.	Tungsten East Zone, Soll Sample Results	pocket
8.	East Zone: Magnetometer Survey	pocket
9.	Epithermal Zone, Geology	pocket
10.	Epithermal Zone, Au-Sb-As Soll Geochemistry	pocket
11.	Epithermal Zone, VLF Survey	pocket
12.	Tungsten West Zone, Soll Sample Locations	pocket
13.	Tungsten West Zone, Soll Sample Results	pocket
14.	Tungsten West Zone, Magnetometer Survey	pocket

LIST OF TABLES

1. Epithermal Zone: Rock Geochemistry

10

Page No.

LIST OF APPENDICES

I. Analytical Procedures

II. Opec-Hy Claims: Soll Geochemistry

III. Opec-Hy Claims: Soll Statistics

INTRODUCTION

This report summarizes exploration activities carried out on the OPEC 6-9 and HY 1-2 claims between June 13 and September 3, 1983. The OPEC claims are under option to Anaconda from Golden Rule Resources of Calgary, Alberta. The HY 1-2 claims were staked by Anaconda in 1983, and are included within the agreement.

LOCATION AND ACCESS

The property is located approximately 240 kilometers northwest of Prince George, B.C. (Figure 1, page 2), at latitude $55^{\circ}40$ 'N and longitude $124^{\circ}30$ 'W, on the north slope of Blackjack Mountain.

Closest settlement is the town of Manson Creek which can be reached by gravel road from Fort St. James, a distance of approximately 225 km. From Manson Creek access to the claims is either by foot (1-2 hour walk from the base of Blackjack Mountain) or via helicopter. Nearest helicopter base is Mackenzie, 100 air km southeast of Manson Creek.

PROPERTY

The claims (Figure 2, page 3) are located in the Omineca Mining Division. They are recorded as follows:

Claim Name	Units	Record Number	Date of Record
Opec 6	20	2554	February 25, 1980
Opec 7	20	2556	February 25, 1980
Opec 8	20	2557	February 25, 1980
Opec 9	20	2558	February 25, 1980
Hy 1	16	5088	April 6, 1983
Hy 2	16	5089	Apr11 6, 1983

REGIONAL GEOLOGY

The claims lie within the Omineca Geoanticline of the Canadian Cordillera, (Figure 3, page 5), in Nina Creek Group rocks Interpreted to be of Pennsylvanian to Permian age, (Monger & Paterson, 1974). The Nina Creek Group is in fault contact with Takla Group alkalic volcanic rocks on the west and the Lower Cambrian-Proterozoic Wolverine Complex metamorphic rocks in the east.

The Manson Fault zone cuts and/or is the western boundary of the Nina Creek Group over at least 40 km. It is marked by ultramafic rocks and their carbonatized equivalents and by a prominent aeromagnetic high trending approximately 120⁰.

The lower member of the Pennsylvanian-Permian package is predominately chert and clastic sedimentary rock with minor limestone, while the upper member is a thick mafic volcanic pile typically massive, rarely pillowed and containing thin tuff and volcanic breccia horizons (Monger & Paterson 1974).

The Germansen-Manson River area has been an active placer camp since gold was discovered on the Germansen River in 1870. The most productive rivers have been Germansen and Manson Rivers and Slate, Lost, Blackjack and Kildare Creeks. Armstrong (1949) noted the general spatial relationship of the gold bearing creeks and the Manson Fault zone.

SUMMARY OF 1983 PROGRAM

Two chained and flagged grid (Figure 4, in pocket) totalling 33 line kilometers were established along the Germansen Batholith-metasediment contact to follow-up on regional tungsten soil anomalies (>10 ppm W)⁺ outlined in 1982 (Ass. Rep. 10746). The grids were covered with geological mapping (1:5000 scale), soil sampling (519 samples collected) at 50 and 25 m intervals, and ground magnetometer surveys.

- 4 -

While establishing the East Zone grid, an old blasted silicified and pyritized outcrop with epithermal characteristics was discovered. A few grab samples were collected and returned geochemically anomalous (hundreds of ppb Au) gold values. As a result, a program of detailed geological mapping (1:2500 scale), rock and soil sampling, and VLF-EM was initiated to evaluate its mineral potential. Nine rock and 153 soil samples were collected from the epithermal zone.

EAST ZONE

Geol ogy

Outcrops within the East Zone are confined to the southeastern portion of the grid between lines 6E and 20E (Figure 5, in pocket). This area is centered along the contact between the Cretaceous Germansen batholith and psammitic (quartz-muscovite schist, Unit 1) and semi-pelitic (quartz-biotite schist, Unit 2) Paleozoic metasediments.

Quartz biotite schists form a hornfelsic halo surrounding the batholith along the eastern margin of the map area. They are strongly foliated, finely laminated, and contain calcareous intercalations which are converted to skarn assemblages (Unit 3) near the contact with the intrusives. The skarn portion of the hornfelsic package consist of light green layers (0.5 to 5 cm thick) intercalated with finely laminated blotite, amphibole, and quartz layers. The skarny layers contain dlopside, pale garnet, epidote, and minor quartz. Minor disseminated pyrrhotite and magnetite are present in the melanocratic layers. Layering in the skarn bearing sequence dips at shallow angles to the south $(5^{\circ}-10^{\circ})$. In contrast, the schistosity in both muscovite and blotite schists is invariably steeply dipping to subvertical.

Granitic phases within the map area are invariably leucocratic, equigranular, and consist of equal proportions of quartz, kspar, subordinate plagioclase, and up to 5-10% biotite (Unit 5) or biotite-muscovite (Unit 6). Hololeucocratic, medium to fine grained, muscovite-granite (Unit 7) patches are erratically distributed through

- 6 -

the main granite mass. Quartz-feldspar-muscovite pegmatite dykes, locally with well developed graphic intergrowths, commonly transect the granite.

A hydrothermally altered silicified zone with epithermal characteristics occurs near the granite-sediment contact between lines 8E and 10E (Figure 4, pocket). This area is described in detail in a later section.

Soll Geochemistry - Tungsten East Zone Grid

Two hundred and nineteen soils were collected from the West Zone, predominantly from a residual reddish, clay rich, Bf soil horizon, taken at average depth of 20 to 40 cm. Swampy and boggy areas were not sampled. Field notes on the sample and sample site were recorded at each station. The soils were collected in numbered wet-strength Kraft sample bags and air dried prior to shipment to Bondar Clegg Labs of North Vancouver. Analyses for W were determined by DCP methods on soil lines east of 13E and by colourimetric methods to the west. Details on sample preparation and analytical techniques are given in Appendix 1. Soil sample locations are shown in Figure 5 (pocket) and analytical results listed in Appendix II. Soil sample results are presented in Figure 6 (pocket).

Raw geochemical data were assessed through a systematic application of standard procedures which consist of:

- Calculation of summary statistics (both for arithmetic and log tansformed data - Appendix III).
- (2) Determination of contour intervals from analysis of appropriate arithemtic or logarithmic histrograms (Appendix III) and probability plots.
- (3) Contouring of threshold level metal concentrations and highlighting of very anomalous samples on a geochemical map.

- 7 -

Results

Tungsten

Tungsten variability obtained is relatively low for both analytical methods as evidenced by their restrictive ranges (1-16 ppm W and 2-30 ppm W) for the DCP and colorimetric techniques, respectively. Colorimetrically determined W highs of 13 and 16 ppm on L20E are probably related to weak skarn mineralization. DCP determined W highs of greater than 10 ppm W tend to cluster and coincide with patchy zones of intense to moderate silicification and quartz veining proximal to the contact between granite and quartz muscovite schist.

Tin

Tin values on the East Zone range from 1 to 11 ppm with more than 90% of the distribution being less than 5 ppm. As a consequence, the spatial distribution of high and low values is intermixed and no discernible pattern is recognized.

Magnetometer Survey

A total field magnetometer survey was completed over the East Zone grid. Readings were taken at a station interval of 25 meters on crosslines separated by 200 meters. Some fill in to a 100 meter interline spacing was performed in the eastern-most portion of the grid. A Geometrics Unimag II was used for the survey, and readings were corrected for diurnal drift by reference to base station readings with a Unimag I at half hour intervals. The base station was located at the camp.

The results of the magnetometer survey are presented in contour plan form in Figure 8 (pocket). The narrow high amplitude magnetic high located at 4+25S on line 19E is coincident with magnetite skarn at a granitic contact. The magnetic high located at 1S on line 16E is coincident with a magnetite bearing biotite schist. Other magnetic highs on the East Zone grid (such as Line 20W/station 0+50S; Line 18W/stations 1N to 2+50N; Line 14W/station 0+25N; Line 8W/stations 1N, 2+50N, and 4N; Line 4W/station 2N; Line 2W/station 1+25S; and Line 10E/stations 1+75N to 2+25N) occur in areas where no outcrop was located. Their source may be inferred as either skarn or biotite schist.

EPITHERMAL ZONE

Geol ogy

Epithermal mineralization occurs in a WNW trending, 30 m wide zone of aplite, quartz muscovite, pegmatite, and patchy silica flooding and brecciation which straddles the contact between biotite-muscovite phases of the Germansen Batholith and surrounding quartz-muscovite schists (Figure 9, pocket). A WNW trending, 6 m wide aplite sill also occurs 75 m north of the main granite contact. The contact between the epithermal zone and the metasediments is gradational and conformable. It is characterized by a decrease in silicification and corresponding increase in schistosity away from the zone. The contact between the epithermal zone and the batholith is obscured by residual overburden.

The epithermal zone is exposed over a strike length of 400 m and disappears beneath overburden in both directions. A NE trending fault, subparallel to the dominant joint direction in the granite, apparently offsets the zone between lines 9E and 10E.

Rock Geochemistry-Mineralization

Nine rock samples were collected from the epithermal zone and analyzed by fire assay and AA for Au and Ag. Six of these samples were also analyzed by DCP for a suite of trace elements. Sample locations and Au results are shown in Figure 9, (pocket). Trace element data are shown in Table 1 (p.7).

Gold values (up to 440 ppb Au) occur in intensely silicified portions of the epithermal zone containing aggregates of massive, white, beige, and grey coloured fine grained to cryptocrystalline (chalcedonic) quartz. The quartz is locally brecciated, rebrecciated, and healed with vuggy

- 9 -

TABLE I

MANSON CREEK PROJECT

Epithermal Zone Rock Geochemistry

SAMPLE NO.		Cu ppm	Pb ppm	Zn ppm	Mo ppm	Cr ppm	Mn ppm	As ppm	Fe pct	V ppm	As ppm	W ppm	Sb ppm	Sn ppm	Au ppb
19081		43	667	7	1	388	78	0.4	0.5	8	59	1	4010	70	120
19082		74	32	5	3	271	52	0.2	1.2	37	545	40	915	2	345
19083		26	15	16	1	161	53	0.2	1.3	66	338	60	528	3	45
19084		38	18	1	2	230	42	0.9	0.6	23	391	1	230	3	305
19085		19	24	23	2	127	72	0.2	2.2	61	183	40	56	1	10
19086		15	34	7	5	207	107	0.7	1.1	32	449	16	755	1	15
95807								0.8				6			140
95826								1.2							320
95827								1.7							440
95828								4.4							130
95832	-														105

quartz. Pyrite (up to 2%) and minor stibuite occur locally as disseminations or aggregates interstitial to brecciated quartz fragments.

Multielement geochemical data (Table 1) show the epithermal zone to be associated with geochemically anomalous Sb, As, Cr (127-388 ppm) concentrations, erratically high W values (up to 60 ppm) and sporadic high Pb-Sn contents (667 and 70 ppm, respectively).

Soll Geochemistry

A detailed soil sampling program was carried out in order to assess the geology and metal potential of the contact area between granite and quartz-mica schists.

153 samples were taken over the Epithermal Zone Grid which measured 600 x 300 metres. Solls were collected at 25 metre intervals on lines spaced 50 apart. Most of the samples were taken at an average depth of 20 to 40 cm from a moderately well developed residual Bf horizon employing sampling procedures previously described. The remaining samples were obtained from the C horizon. Organic rich samples were excluded.

Sampling Procedures

Analyses for Au, Ag, As, Sb, and Mn were carried out by DCP methods. Details on sample preparation and analytical techniques are given in Appendix I. Soil sample locations and Au-As-Sb geochemistry are shown in Figure 10 (pocket). Analytical results are listed in Appendix II.

Raw geochemical data were assessed through a systematic application of standard procedures previously described.

Gold

Four major areas of gold accumulation (>20 ppb) are found on the Epithermal Zone. Two of them, one located to the extreme northeast and the other in the centre of the grid (Figure 33) have their axis parallel to the zone of quartz veining and silicification and contain gold values in excess of 150 ppb and up to 535 ppb. The two peripheral zones are open at their respective grid boundaries.

Arsenic

The distribution of arsenic-rich soils is more widespread than that for gold. Three of the gold anomalies are also arsenic-rich. These zones are characterized by accumulations of arsenic from 40 to 509 ppm with an average value of >100 ppm.

Antimony

Antimony rich soils tend to reflect the contact zone between the quartz muscovite schist and intrusive rocks. Their distribution to the northwest coincides with anomalous gold and arsenic. Generally the outlined anomalous zone averages greater than 80 ppm (maximum value 408 ppm).

Silver

Silver contents are typically very low, ranging from detection limit levels of .2 ppm to a high of 2.0 ppm. Their distribution is sporadic and elevated concentrations of silver do not correlate with anomalous concentrations of other metals.

VLF Survey

A VLF survey was completed from the baseline to 3S on lines 6E to 10E, and 12E covering the Epithermal Zone. Stations were read at 25 meter intervals using Cutler, Maine (NAA) as the primary VLF field. The in phase tilt angle values are plotted as line profiles, and the horizontal component of the field strength in contour plan form, in Figure 11 (pocket).

A weak VLF conductor was defined in line 8E near station 1+25S. The conductor trends grid east west to lines 7E and 9E, and lies in an area of background magnetic field strength (see magnetic field contour plan, East Zone grid, Figure 8, in pocket).

TUNGSTEN WEST ZONE

INTRODUCTION

A program consisting of geological mapping, soil sampling, magnetometer survey, and ultra-violet prospecting was performed to assess tungsten anomalies (>20 ppm) obtained from a 1982 regional soil survey on the OPEC 6 claims. Geological reconnaissance during grid construction confirmed the lack of visible outcrop as evidenced in previous year's work. The overburden in the area is generally believed to be a relatively shallow lodgement till (3 to 10 m ?) slightly complicated by mass wasting along steep slopes. Despite the overburden coverage, detection of a mechanical dispersion pattern of W by soil sampling the appropriate soil horizon was deemed a viable exploration tool in this geochemical landscape.

Soll Geochemistry

300 soil samples were collected from the West Zone predominantly from the Bf and Bt soil horizon taken at an average depth of 20 to 40 cm, employing the same sampling techniques as previously described. Swamps and boggy areas were not sampled. 53 samples from the centre of the previously outlined reconnaissance W soil anomalies were selected and analyzed for W using both pulverized and unpulverized -80 mesh fractions. Soil sample location and analytical results are shown in Figures 12 and 13 (pocket) respectively. Geochemical data were assessed through a systematic application of standard procedures previously described. Analytical results are listed in Appendix II. Summary statistics and histograms are listed in Appendix III.

Results

The distribution of tungsten in soils exhibits a large variability with values ranging from 3 to 360 ppm W, averaging about 18 ppm. Despite the high variability, anomalous areas (>40 ppm) were easily distinguishable from background areas. A continuous zone measuring 300 by 75 metres trending northeast to southwest over 4 soil lines averaged greater than 40 ppm W and contained many values in excess of 100 ppm W (Figure 13, pocket). Locally derived skarn-float failed to fluoresce in short wave ultra-violet light. However, it appears that the UV lamp used in the field was defective. In contrast, -80 mesh fractions of soil material lamped at the lab in the fail, fluoresced brilliantly.

A comparison of pulverized and unpulverized -80 mesh sieved fractions revealed that geochemical contrast is much improved in the latter.

Magnetometer Survey

A total field magnetometer survey was completed over the West Zone grid. Stations were read at 25 meter intervals along crosslines at 100 meter Interline spacing. A geometrics Unimag II was used on the survey, and readings were corrected for diurnal drift by reference to base station readings taken at the camp with a Unimag I at half hour intervals.

The results of the magnetometer survey are presented in contour plan form in Figure 14 (pocket). The plotted values should be multiplied by 10 and have 50000 gammas added to obtain the magnetic field value of shading on the contour plan:

dark shading - greater than 58,700 gammas light shading - 58,500 to 58,700 gammas

Several discontinuous moderate to strong magnetic field highs were outlined on the West Zone grid, such as at Line 200E/station 125N, 200N, and 325N; Line 500E/station 450S; Line 600E/station 125N and 425N; Line 700E/station 325S and 325N; Line 900E/station 425S; and Line 1100E/station 325S. These anomalies are well defined and correlate quite well from line to line, although often at a lower amplitude. Similar amplitude anomalies detected on the East Zone grid were coincident with biotite schist and magnetite skarn.

SUMMARY AND RECOMMENDATIONS

Several interesting features were discovered as a result of the 1983 follow-up work carried out on the south Opec and Hy claims.

- Diopside-garnet endoskarns at the contact between Cretaceous intrusives and Paleozoic metasediments in the southeast corner of the East Zone grid.
- Magnetic highs, possibly reflecting buried skarns, in both East and West Zone grids.
- Strong W In soll geochemical anomalles (up to 360 ppm W) in the West Zone.
- 4. Anomalous gold (up to 440 ppb Au) values associated with high Sb-As-Cr-W concentrations in a quartz-flooded epithermal zone occurring within the East Zone grid along the Germansen Batholith-metasediment contact.

Although scheelite bearing outcrops were not discovered during the present survey, additional sampling and some hand trenching are recommended to further evaluate the West Zone tungsten anomalies.

A petrochemical study of skarns and granitic rocks is also warranted to a) determine if the skarn zones discovered in the East Zone could belong to potential tungsten-bearing skarns, and b) to investigate the Sn-W potential of S-type granitic phases bordering the Germansen Batholith.

- 15 -

Further soil and rock sampling followed by hand trenching is recommended to further evaluate the strike length extension of the epithermal zone.

ł.

REFERENCES

- Armstrong, J.E., 1949: Fort St. James Map Area, Cassiar and Coast Districts, British Columbia; Geological Survey of Canada, Memoir 252.
- Monger, J.W.H. and I.A. Paterson, 1974: Upper Paleozoic and Lower Mesozoic rocks of the Omineca Mountain; Geological Survey of Canada, Paper 74-1A, pp. 19-20.

B.C.D.M. Assessment Report 10746

STATEMENT OF COSTS

Food	an	nd Accomodation					
	98	man	days	6	31.5		

3,087.00

Per sonne l

P. Matysek, Geochemist June 13, 15-21, 23-28, 30; July 1-3, 6; Aug.24-26 22 days @ 104 2,288.00

T. Frake, Jr Geological Asst. June 13, 15-21, 23-28, 30; July 1-4, 13-14, 18-20 24 days @ 69.6 1,670.40

F. Thrane, Field Technician June 13, 15-21, 23-28, 30; July 1-4, 13-14, 18-20, August 25, September 3 26 days @ 78.4 2,038.40

B. Marini, Field Technician June 15-21, 23-28, 30; July 1-4 18 days @ 138 2,484.00

R. Cann, Geologist August 24-26, September 3 4 days @ 125

M. Atkinson, Geologist July 23, July 6 2 days @ 104

500.00

208.00

		9,513.80	
Benefits @ 20% of salaries and wages		1,902.76	
Kental Equipment			
Chev 5/4 Ton pick up 4 x 4	060.00		
JU days e J2/day	960.00		
2 Unimag magnetometers			
2 x 30 days @ 15/day	900.00		
Phoenix VLF2			
30 days @ 15/day	450.00		
		2,310.00	
Hellcopter			
Northern Mountain, Mackenzie			
June 15,23,28			
Jet Ranger 206, 6.6 hrs @ 450		2,970.00	
Fixed Wing			
Vancouver-Prince George-Return			
2 return trips @ 244.10		488.20	
Disposable Material & Supplies			
Sample Bags, Flagging, Hip Chains,			
Notebooks, etc.		375.50	
Freight			
Motorways		278.30	
Geochemistry			
Rocks			
15 rock samples analyzed and multielem	nent DCP		
Sample preparation: 15 samples @ 2.75	=	41.25	
		00 00	

.

- 19 -

5	rock	samples analyzed for Ag @ 1.62	=	8.10
1	rock	sample assayed for As @ 7.65	-	7.65
1	rock	sample assayed for Sn @ 3.60	=	3.60
1	rock	sample assayed for Sb @ 7.20	=	7.20
6	rock	samples analyzed by DCP @ 18.00	=	108.00

265.80

Solls

Sample preparation 343 samples @ 0.75	=	257.25
Sample pulverizing 146 samples @ 1.75	=	255.50
173 soil samples analyzed for W @ 3.82	=	660.86
170 soll samples analyzed for Au @ 6.00	÷.	1,020.00
146 soll samples analyzed by DCP @ 10.00	=	1,460.00

3,653.61

Computer Costs: transmission, printing, summary statistics, histograms

Drafting

160 hrs @ 15

Report Preparation

-,055.01

300.00

2,400.00

1,500.00

GRAND TOTAL 29,044.97

COSTS APPORTIONED TO CLAIMS

CLAIMS	UNITS	COSTS
OPEC 6-9	80	22,364.63 (77%)
HY 1-2	32	6,680,34 (23%)
		29,044.97

- 21 -

STATEMENT OF QUALIFICATIONS

L. Riccio	- BSc (1969) -	University of Turin - Geology
	- MSc (1972) -	University of Western Ontario - Geology
	- PhD (1976) -	University of Western Ontario - Geology
P. Matysek	- BSc (1980) -	University of Toronto - Geology
A. R. Scott	- BSc (1970) -	University of British Columbia - Geophysics

Respectfully Submitted

UNC

1

.

L. Riccio Project Geologist

February 1984

APPENDIX I

ANALYTICAL PROCEDURES

- 1. Gold Analysis
- 2. Multielement Analyses
- 3. DCP Multielement Analyses

.

i.

Bender-Orgg & Company Ltd. 130 Pumberion Ave. North Vancouver, B.C. Consta V7P 2R5 Phone: (60) 985-0611 Teles: 66-333667

QUALIFICATION OF ORGANIZATION

Bondar-Cless & Company Ltd., is a proven organization of professional chemists; analysts and technicians offering a wide range of analytical services to industry, universities and government departments.

The organization acts as a check laboratory to both the United Nations and the Canadian International Bevelopment asency. Many major mining, consulting and industrial firms, including Canadian government departments, are among the company's clientele.

The North Vancouver facility was established in 1966 and was expanded into new guarters in 1979.

LABORATORY FACILITIES AND EQUIPHENT

Bondar-Clesss North Vancouver laboratory comprises some 10,000 source feet of office, laboratory and sample storage space, and is well equipped with the required scientific equipment and supplies.

The sample preparation equipment includes:

1. Primary (Jaw) crusher-reduces particle size to 1/2".

2. Secondary (Cone) crusher-reduces particle size to 1/8'.

3. Jones riffle splitter.

4. Rins and puck pulverizer-reduces representative sample to 100 mesh.

With the major instruments beins:

1.	Techtron	AAS	
	with Fisher Recordall	5000	
2.	Varian	AA-1275	
	with 5150A theraal Printe	by Hewlett-Packard	
3.	I. L.	AA/Ae Spectrophoto	ometer 751
	with Digital printer		
4.	Techtron	AA4	
	with Fisher Recordall	5000	
5.	Techtron	AA6	
	with Fisher Recordall	5000	
6.	Jarrell - Ash fluorimeter		

 X-ray Fluorescence instrument (built by Bondar-Cless Instrument Division) Benker-Orgg & Company Let. 130 Pamberson Ave. North Vancouver, B.C. Canada V7P 283 Phone: 6049 955-061

		GEOCHENICAL SAMPLE FLOW	
	STEP 1 Logging in	- each sample submission is assigned a unique lot number	
	STEP 2 SORT	 according to sample type (soils,streams,rocks,etc.) and then according to alphabetic and/or numeric order. physical sample is checked off against sample submittal form which has been completed (?) by the client. 	
	STEP 3 SAMPLE PREPARATION	- all samples are processed in numeric order with adequate drying being ensured before preparation	
1	a) soils-sediments	 band dry sample in the bad with rubber mallet to break loose fines from clods/mosses/etc. rour into 80 mesh stainless steel sieve. sift out all-80; if samples are for Au, sift out -20 +80 if -80 fraction less than 20 gm. re-bad sample and refile if retention of rejects re- ouested otherwise - out does the oversize 	
	b) rock and drill core	 Put in numerical order; insert made-up pulp bass into proper rock bas Primary crush secondary crush (BOX -10 mesh) split out 200 - 400 sm with a Jones riffle splitter pulverize via an impact (rins and puck) srinder. Final product is about 50% -150 mesh and 99% -80 mesh; and is free from pulverizer contamination. 	
	c) pan concentrates	 sample is pulverized in its entirety to ensure homo- seneity please no coarse metallic nussets without prior warning 	
	d) pulps	 spot check for proper preparation; if unacceptable we re-prep 	
	e) other sample type	es are prepared according to client's request	
	WEIGHING	 using electronic balances, with a precision of +/-0.01g., we weigh 5% of the samples for duplicate analysis and 2% of our analyses are performed on accepted standards. 	,
	STEP 5 EXTRACTION HETHODS	- HNO3-HC1- a vicious attack that satisfactorily leaches Cu Pb Zn Ho Ag Hn Cd Ni Co etc.in 'all' rocks and soils/ seds. Problems would be low level values (less 40 ppm) in high iron oxide soils or in tight refractory lattices	

Breeder-Chag & Company Lel. 130 Parabarton Ave. North Vancouver, B.C. Canada V/IP 283 Picone: (909) 905-0061 Talaz 04-332067

- 2 -

1	KN03	 satisfactory for almost all ore minerals of U,Bi some As minerals, and most sulphides.
1	PARTIAL EXTRACTIONS	 specific for specific type occurrences or for loosely bonded(e.s. hydromorphically deposited) ions.
1	HND3-HC104-HF	- a higher temperature, vicious attack that specifically attacks some refractory silicates and oxides. More difficult to control precision, but useful for elements like V, Be, Se and certain low level metallics in rock geochem programs.
1	IBr-Br	 a slow, but powerful oxidative attack designed for Te and Tl minerals.
	VARIOUS FUSIONS	- for difficult to handle elements in refractory lattices (e.g. W Cr Au Pt).
5	STEP 6 NALYSIS	- (see attached sheet)
2	STEP 7 Data Approval and Transfer	- (see accompanying sheet entitled Computer services)
5	STEP 8 WALITY CONTROL	 fifteen percent of our staff do nothing else but super- vise and check procedures and techniques. The resident assayer, chemist and geochemist provide the final check.

ANACONDA CANADA EXPLORATION LTD.

Please note that in 1983 your Au assays were analyzed by classic fire assay at 0.5 assay ton (14.58g) and 1 assay ton (29.166g) depending on the fusebility of the samples being analyzed. The dore bead (combined AuAg) was then dissolved and run on A.A. for Au. High Au's (over 0.20 OPT)were checked by re assay and finished by the classical method of weighing the Au bead taken from the sample.

NOTE: - Geochem Au is run on 20gms of sample.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0581 Telex: 04-352667

-----130 Persbarton Ave. North Vancouver, B.C. Danala V7P 3R5 None: (804) 985-0041 Take: 04-352667

Kinda -

	GEOCHENICAL METHODS		
ELENENT	EXTRACTION	METHOD OF ANALYSIS	
Cu, Pb,Zn, Ha, As, Cd, Ni, Co, Hn, Fe	Hot Lefort Aaua Resia	Atomic Absorption	
U .	Hot Conc HNO3	Fluorimetric	
щ.	Basic Oxidation Fusion	Colourimetric	
F	Basic Fusion	Citrate Buffer-Specific Ion	
Au, Pt, Pd	Fire Assay 1 Hot Aqua Regia	Atomic Absorption	
As	HC104-HNO3 Arsine	Colourimetric	
Ka	Aqua Besia	Closed Cell, Flameless Atomic Absorption	
Sn; Sb; Ba; Rb; Sr; Y Zr; Nb; La; Ce; Ti		Enersy dispersive XRF	
Th, Se, Ta, Ga, In		Discrete angle/cathode XRF	
Bi	Hot Cone HNO3	Atomic Absorption	
V, Be, Li	HC104-HN03-HF	Atomic Absorption	
Cr	Sodium Peroxide Fusion	Atomic Absorption	
Tl, Te	HBr-Br + Orsanic		
	Extraction	Atomic Absorption	
В	Basic Fusion	Plasma	
Re	Alkali Fusion + Organic Extraction	Atomic Absorption	
c		Leco Induction Furnace	
WHOLE ROCK ANALYSIS	1		1
S102 K20 Na20 Ca0			
Hs0 Hn0 Fe A1203	HF-HNO3	Atomic Absorption	
T102 P203	HF-HN03	Colourimetric	
S		Leco Induction Furnace	

Fraction used for analysis: Rocks -100 meshi soils/sediments -80 unless otherwise noted.

DIRECT CURRENT PLASMA EMISSION SPECTROSCOPY

汉学校与果和社会神经为并并也已经历代的主义

INSTRUMENTATION:

MAKE: SPECTRAMETRICS

MODEL: SPECTRASPAN III B

THEORY OF OPERATION:

The fluid sample is introduced as an aerosol and enters the direct current argon plasma which serves as a high temperature (5000 to 6000 degree K) excitation source. The emission lights of the atoms (or Ions) enter the optical module with echelle grating for high resolution and reach the detector module capable of simultaneous multi-element measurement.

SAMPLE DISSOLUTION:

MAJOR OXIDES WHOLE ROCK ANALYSIS:

.

Sample pulp is fused with Lithium Tetraborate and dissolved in 6 percent nitric acid.

MINOR OXIDES AND TRACE METAL ELEMENTS BY TOTAL ACID DISSOLUTION:

Sample pulp is treated with HF, HCl, HNO3 and HClO4 and heated to fuming. The nearly dry sample mixture is dissolved in dilute HCl and HNO3. APPENDIX II

OPEC-HY CLAIMS: SOIL GEOCHEMISTRY

14

.

		(Ilme:13:34:14	Date: 2: 9:1984	Page (
	A	naconda Canada Exp	loration Limited		
Property Name: Project Name:	Tungsten East Zone Manson Creek	Survey Type: B Project Code: 51	Solls Province: 992 Claims:	В.С. Орес-Ну	NTS: 93N/10 Year: 1983
Sample	W ppm				
Description	COL				
25061	3				
25062	4				
25063	3				
25064	6.				
25065	9.				
25066	4.				
25067	5.		1		
25068	4.				
25069	3.				
25070	2.				
25071	3.				
25072	2.				
25073	2.				
25074	16.				
25075	6.	+			
25076	3.				
25077	13.				
25078	2.				
25079	2.				
25080	4.				
25081	3.				
25082	3.				
25083	2.				
25257	2.				
25320	3.				
25521	2.				
25522	2.				
25525	2.				
25524	4.				
25325	5.				
25327	4.				
253.29	2.				
25320	2				
25330	14				

Property Name Project Name:	: Tungsten East Zone Manson Creek	Survey Type: Project Code:	B Solls 51992	Province: Claims:	В.С. Орес-Ну	NTS: 93N/10 Year: 1983
Sample	W ppm					
Description	COL					
25331	2.					
25332	2.					
25333	4.					
25334	6.					
25335	5.					
25336	30.					
25337	2.					
25338	8.					
25339	3.					
25340	6.					
25341	2.					
25429	4.					
25446	3.					
25489	8.					
25490	3.					
25491	6.					
25492	2.					
25493	2.					
25494	6.					
25495	4.					
25496	4.					
25497	5.					
25498	4.					
25499	2.					
25500	2.					
25501	3.					
25502	2.					
25503	2.					
25504	5.					
25505	3.					
25506 -	3.					
25507	2.					
25508	7.					

11110:12:24:14

Uate: 2: 9:1984

rage

Property Name: Project Name:	Tu Ma	ingster inson (W Cre	est Zone ek	Survey Project	Type: Code:	B 51	Solls 992	Prov Clai	Ince: ms:	B.C. Opec	6	N	NTS: 93N/ (ear: 198	9	
Sample	W	Pulv	W	Unput												
Description		ppm		ppm												
25554		4		3												
25555		75		75												
25556		15.		11												
25557		43		40												
25558		28.		30.												
25676		60.		85.												
25703		16.		19.												
25712		10.		5.												
25713		7.		4.												
25714		9.		9.												
25715		15.		21.												
25716		23.		48.												
25717		4.		4.												
25718		33.		35.												
25719		38.		30.												
25720		10.		9.												
25753		5.		3.												
25754		11.		16.												
25755		10.		4.												
25756		4.		4.												
25757		3.		3.												
25758		3.		4.												
25759		4.		4.												
25760		3.		3.												
25781		25.		19.												
25782		40.		43.												
25783		18.		11.												
25784		48.		38.												
25785	1	115.		135.												
25786		65.		85.												
25787		70.		115.												
25788		93.		190.												
25789		4.		3.												
25790	1	135.		170.												
25813		14.		38.												

ť

~							
		Ar	aconda Canada	Explora	tion Limite	d	
Property Name:	Tungster	West Zone	Survey Type:	B Soll	s Provi	nce: B.C.	NTS: 93N/
Project Name:	Manson (reek	Project Code	: 51992	Claim	is: Upec b	Tear: 198
Sample	W Pulv	W Unpul					
Description	ppm	ppm					
25814	6.	2.					
25815	75.	78.					
25816	190.	360.					
25817	14.	14.					
25818	48.	85.					
25819	35.	17.					
25820	48.	40.					
25821	15.	25.					
25845	6.	3.					
25846	10.	18.					
25847	15.	75.					
25848	5.	4.					
25849	14.	14.					
25853	55.	43.					
25854	73.	73.					
25855	12.	16.					
25856	23.	13.					
25858	6.	6.					

-

Time: 8:54:52

Date: 2: 7:1984

Page 1

Anaconda Canada Exploration Limited

1

1

-

Property Name: Project Name:	Epithermal Zone Manson Creek	Survey Type: B Solls Project Code: 51992	Province: Claims:	В.С. Орес-Ну	NTS: 93N/10 Year: 1983
Sample	Au ppb				
Description	FAA				
25188	35.				
25312	20.				
25342	10.				
25345	40.				
25344	20.				
25345	15.				
25346	570.				
25358	20.				
25359	15.				
25360	20.				
25361	5.				
25362	15.				
25363	20.				
25364	15.				
25365	45.				
25366	25.				

Property Nam Project Name	e: Epithern : Manson (nal Zone Creek	Survey Projec	Type: E t Code: 5	3 Solls 51992	Provinc Claims:	e: B.C. Opec-Hy	NTS: 93N/10 Year: 1983
Sample Description	Au ppb FAA	Mn ppm DCP	Ag ppm DCP	As ppm DCP	W ppm DCP	Sb ppm DCP	Sn ppm DCP	
18928	80.	2215.	.3	509.	10.	121.	9.	
18929	15.	376.	.6	142.	16.	38.	3.	
18930	5.	434.	.6	80.	8.	13.	1.	
18931	10.	1041.	.9	84.	4.	5.	3.	
18932	10.	743.	.7	58.	1.	11.	3.	
18933	20.	523.	.2	44.	16.	5.	4.	
18934	10.	1308.	.7	28.	2.	6.	4.	
18935	5.	617.	.3	26.	2.	2.	5.	
18936	5.	1799.	.5	42.	2.	2.	6.	
18937	5.	739.	.4	10.	2.	2.	5.	
18938	15.	301.	1.1	11.	2.	2.	5.	
18939	10.	400.	2.0	35.	2.	2.	11.	
18940	10.	359.	.4	52.	4.	8.	7.	
18941	10.	360.	.0	49.	4	2.	7	
18942	10.	635.	.8	116.	4	21.	2.	
18943	20.	660.	.7	157.	12.	18.	7.	
18944	10.	327.	1.0	17.	4	2.	4	
18945	10.	312.	.7	21.	4	6.	2	
18946	5.	151	.7	53	4	96	A.	
18947	160	349	5	43	2	14	4	
18949	10	294	3	27		2	2	
18950	5	333		04	2	63	1	
18054	20	350	1.0	85	2.	63		
18055	10	313	1.0	117		35		
18056	5	454	.0	49		10	3	
18057	5	399	• *	40.	4.	19.		
19059	15	203	.5	22.	2.	14.	4. 5	
19950	15.	155	.2	22.	0.	10.	2.	
10959	2.	207		24.			4.	
18061	5.	295.	.4	2.	4.	12.		
19062	5.	257.		43.	4.	2.	4.	
10902	2.	519.	.2	5/.	8.	2.	2.	
10902	2.	1125.	./	35.	4.	2.	5.	
18964	2.	1245.	.4	54.	1.	2.	5.	
18965	10.	126.	.2	269.	4.	2.	2.	
18366	5.	350.	.8	32.	4.	16.	1.	

Property Name Project Name:	: Eplthern Manson (nal Zone Creek	Survey Projec	Type: E t Code: 5	3 Solls 51992	Provinc Claims:	e: B.C. Opec-Hy	NTS: 93N/10 Year: 1983
Sample Description	Au ppb FAA	Mn ppm DCP	Ag ppm DCP	As ppm DCP	W ppm	Sb ppm	Sn ppm	
						001	201	
18967	25.	410.	.4	104.	4.	30.	1.	
19080	10.	170.	1.4	53.	4.	25.	2.	
25901	5.	409.	.2	41.	12.	26.	1.	
25902	5.	375.	.2	89.	12.	40.	1.	
25903	55.	781.	.6	131.	12.	79.	1.	
25904	5.	365.	.2	69.	12.	74.	4.	
25905	5.	780.	.4	62.	8.	16.	1.	
25906	15.	771.	.7	57.	8.	14.	3.	
25907	10.	658.	.3	43.	8.	21.	7.	
25908	5.	927.	.4	41.	2.	17.	3.	
25909	5.	340.	.2	17.	4.	6.	5.	
25910	5.	952.	.2	16.	12.	2.	4.	
25911	5.	351.	.3	8.	4.	2.	1.	
25912	5.	412.	.2	41.	2.	13.	3.	
25913	5.	369.	.2	15.	2.	12.	3.	
25914	5.	644.	.2	29.	2.	4.	4.	
25915	5.	316.	.2	20.	3.	5.	5.	
25916	10.	391.	.3	120.	12.	53.	4.	
25917	5.	789.	.3	126.	8.	37.	6.	
25918	15.	559.	.5	129.	8.	55.	5.	
25919	20.	1204.	.7	427.	8.	74.	5.	
25920	10.	1268.	.8	391.	4.	52.	5.	
25921	5.	497.	.2	21.	4.	5.	3.	
25922	15.	774.	.2	31.	2.	14.	5.	
25923	5.	1696.	.2	14.	4.	3.	3.	
25924	15.	1116.	.2	18.	4.	2.	3.	
25925	5.	456.	.2	9.	2.	2.	1.	
25926	10.	389.	.5	7.	2.	9.	1.	
25927	5.	497.	.4	18.	4.	3.	3.	
25928	5.	342.	.3	5.	4.	2.	1.	
25930 -	15.	558.	.2	24.	4.	9.	4.	
25931	15.	1095.	.5	279.	2.	51.	4.	
25932	5.	403.	.2	9.	1.	2.	4.	
25933	5.	362.	.4	25.	4.	21.	3.	
25934	5.	174.	.2	33.	8.	18.	5.	

1

.

Property Name: Project Name:	Epitherm Manson (nal Zone Creek	Survey Projec	Type: E t Code: 5	Solls 51992	Provinc Claims:	e: B.C. Opec-Hy	NTS: 93N/10 Year: 1983
Sample Description	Au ppb FAA	Mn ppm DCP	Ag ppm DCP	As ppm DCP	W ppm DCP	Sb ppm DCP	Sn ppm DCP	
25935	5.	1044.	.4	38.	4.	20.	3.	
25936	5.	1073.	.4	145.	12.	34.	5.	
25937	5.	293.	. 4	36.	8.	19.	2.	
25938	10.	312.	.2	62.	8.	34.	5.	
25939	10.	257.	1.0	19.	4.	10.	4.	
25940	10.	214.	.4	17.	2	10.	4	
25941	10.	1615.	.8	53.	2	24	3	
25942	5.	1266	1.2	48.	3.	18.	6.	
25943	5	972	2	9	2	2	3	
25944	10.	247.	.2	16	2	16	A.	
25945	5.	366	.2	47.	2	30	4.	
25946	5	159		28	8	21	6	
25947	10.	211		61	8	41	5	
25948	10	170	2	28	12	11	3	
25949	5	347	.2	53		10	7.	
25950	5	355	.2	70	8	21	3	
25951	5.	293		51	2	13	1	
25952	10	308	1 4	47		40		
25053	15	346	1.4	47.		63	2	
25054	5	281	2	141	2	408	2.	
25055	5	201.	.2	69	2.	400.	4.	
25056	5	294.	• 2	00.	2.	70.	2.	
25950	5.	244.	.0	95.		24.	4.	
25059	5.	292.	.2	110.	1.	20.	2.	
25950	2.	209.	.2	21.	0.	51.	4.	
20909	5.	502.	.2	52.	0.	11.	2.	
25900	2.	005.	.4	24.	4.	20.	5.	
20901	2.	270.	.2	35.	2.		2.	
20902	2.	200.	.2	42.	0.	14.		
25905	2.	205.	.2	20.	4.	.2.	2.	
20904 -	2.	351.	-2	45.	4.	14.	2.	
29905	10.	550.	.8	4/.	8.	15.	1.	
25966	10.	167.	.2	12.	4.	2.	4.	
25967	5.	83.	.2	34.	4.	16.	7.	
25968	15.	178.	.5	38.	8.	35.	6.	
25969	15.	261.	.4	65.	4.	137.	2.	

Time: 9: 0:47 Date: 2: 7:1984

7:1984 Page 4 (

Anaconda Canada Exploration Limited

1

Property Nam Project Name	e: Epithern : Manson (nal Zone Creek	Survey Projec	Type: E t Code: 5	Solls 51992	Provinc Claims:	e: B.C. Opec-Hy	NTS: 93N/10 Year: 1983
Sample Description	Au ppb FAA	Mn ppm DCP	Ag ppm DCP	As ppm DCP	W ppm DCP	Sb ppm DCP	Sn ppm DCP	
25970	10.	301.	.7	21.	2.	31.	2.	
25971	10.	311.	.6	17.	4.	15.	5.	
25972	25.	433.	.3	22.	4.	14.	4.	
25973	25.	249.	.3	50.	12.	21.	4.	
25974	5.	323.	.6	51.	8.	9.	2.	
25975	15.	198.	.6	33.	12.	5.	5.	
25976	10.	221.	.2	10.	1.	2.	5.	
25977	15.	347.	.4	9.	4.	2.	4.	
25978	15.	287.	.5	71.	4.	77.	4.	
25979	5.	310.	.3	23.	4.	10.	2.	
25980	5.	206.	.3	18.	4.	17.	3.	
25981	10.	166.	.2	28.	4.	134.	6.	
25982	65.	157.	.5	66.	4.	30.	5.	
25983	10.	223.	.3	27.	2.	32.	4.	
25984	5.	475.	.9	14.	1.	27.	5.	
25985	5.	266 .	.4	51.	4.	62.	3.	
25986	10.	232.	.3	32.	2.	24.	3.	
25987	50.	787.	.7	30.	4.	14.	2.	
25988	5.	219	.3	23.	4.	18.	3.	
25080	10	353	.2	23.	2.	5.	1.	
25000	10	418	5	31	4	2.	2.	
25001	535	142	.2	43	8.	20.	2.	
25002	10	153	2	45	16.	15.	5.	
25003	20	310		84	4	33	1.	
25004	20.	225		55	12.	7.	3.	
25005	5	377		14	2	12.	2.	
25006	5	354		10	1	2	2	
25997	5	360		16.	1.	3.	2.	
25008	5	365	.2	47	2.	3.	1.	
25999	5	288	.2	143	16.	39.	2.	
26000	15	208	.2	40	2.	7.	1.	
26001	25	300		92	16.	23.	2.	
26002	5	361		87	16	23	4.	
26002	5	478		31	2	19	1.	
26003	5.	560	.0	41		7	3	
20004	2.	209.	.2	41.		1.	2.	

APPENDIX III

OPEC-HY CLAIMS: SOIL STATISTICS

11110. 12.20.40 DUID. 2. 3.1304

Anaconda Canada Exploration Limited

	LOGAF	RITHMIC SUMMARY STATISTI	CS
Anaconda Canada B Soil Horizon	Exploration Limited Results	Manson Creek	East Zone
Metals	W	12 12	
No of Samples	68		
Minimum Value	2.00		
Maximum Value	30.00		
Range	28.00		
Median	3.00		
Mode	2.00		
Mean	3.55		
Log St Dev	.26		
Mean + 2SD	11.58		
Coeff Variation	. 47		
Skewness	1000.00		
Kurtosis	1.72		
2.5 Percentile	2.00	*	
5.0 Percentile	2.00		
16.5 Percentile	2.00		
50.0 Percentile	3.00		
82.2 Percentile	6.00		
90.0 Percentile	7.00		
95.0 Percentile	13.00		
97.5 Percentile	14.00		
99.0 Percentile	16.00		

Time: 13:30:42 Date: 2: 9:1984

Anaconda Canada Exploration Limited

1

LOGARITHMIC HISTOGRAM

Log Interval (STDV/4): .064 No. Samples: 68

Anaconda Canada Exploration Limited B Soll Horizon Results Manson Creek East Zone

Cell	Lower Limit	Num Samp	i.											Cell	Cum \$
1	.60	0												.0	.0
2	.70	0												.0	.0
3	.81	0												.0	.0
4	.94	0												.0	.0
5	1.09	0												.0	.0
6	1.26	0												.0	.0
7	1.46	0												.0	.0
8	1.69	0												.0	.0
9	1.97	22	****	****	*****	****	******	******	*****					32.4	32.4
10	2.28	0					+							.0	32.4
11	2.64	15	****	*****	*****	****	******							22.1	54.4
12	3.06	0												.0	54.4
13	3.55	11	****	*****	*****	****								16.2	70.6
14	4.12	0												.0	70.6
15	4.77	5	****	****										7.4	77.9
16	5.53	6	****	*****	×									8.8	86.8
17	6.41	1	*											1.5	88.2
18	7.43	2	***											2.9	91.2
19	8.62	1	*											1.5	92.6
20	9.99	0												.0	92.6
21	11.58	1	*									20		1.5	94.1
22	13.43	1	¥											1.5	95.6
23	15.57	1	*											1.5	97.1
24	18.05	0												.0	97.1
25	20.93	0												.0	97.1
N(-1927	and the second	2501	0	5	10	15	20	25	30	35	40	45	50		

W

£.

1

	LOGA	ARITHMIC SUMMARY S	TATISTICS	
Anaconda Canada B Soil Horizon R	Exploration Limited esults	Manson Creek	Eplthermal	Zone
Metals	Gol			
No of Samples	162			
Minimum Value	5.00			
Maximum Value	570.00			
Range	565.00			
Median	10.00			
Mode	5.00			
Mean	9.28			
Log St Dev	.36			
Mean + 2SD	48.19			
Coeff Variation	.37			
Skewness	1.89			
Kurtosis	6.23			
2.5 Percentile	5.00			
5.0 Percentile	5.00			
16.5 Percentile	5.00			
50.0 Percentile	10.00			
82.2 Percentile	15.00			
90.0 Percentile	20.00			
95.0 Percentile	40.00			
97.5 Percentile	65.00			
99.0 Percentile	160.00			

LOGARITHMIC HISTOGRAM

Log Interval (STDV/4): .089 No. Samples: 162

Anaconda Canada Exploration Limited Manson Creek Epithermal Zone B Soil Horizon Results

Cell	Lower LimIt	Num Sam (þ											Cell \$	Cum %
1	.79	0												.0	.0
2	.96	1												.6	.6
3	1.19	0												.0	.6
4	1.46	0									25			.0	.6
5	1.79	0												.0	.6
6	2.20	0												.0	.6
7	2.70	0												.0	.6
8	3.32	0												.0	.6
9	4.08	78	****	*****	*****	****	******	*****	******	******	*****	*****		48.1	48.8
10	5.01	0												.0	48.8
11	6.15	0												.0	48.8
12	7.56	0												.0	48.8
13	9.28	37	****	*****	*****	****	******	×						22.8	71.6
14	11.41	0												.0	71.6
15	14.01	20	****	*****	*****									12.3	84.0
16	17.22	10	****	***										6.2	90.1
17	21.15	6	****											3.7	93.8
18	25.99	0												.0	93.8
19	31.93	1												.6	94.4
20	39.22	2	*											1.2	95.7
21	48.19	2	¥											1.2	96.9
22	59.20	1												.6	97.5
23	72.74	1												.6	98.1
24	89.36	0												.0	98.1
25	109.79	- 0												.0	98.1
			0	5	10	15	20	25	30	35	40	45	50		87.282.32

Gol

(

Anaconda Canada Exploration Limited

1

1

-

		LO	GARITHMIC :	SUMMARY ST	TATISTICS		
Anaconda Canada B Soli Horizon	Exploration Results	Limited	Manson	Creek	Epltherma	Zone	
Metals	Mn	Ag	As	w	Sb	Sn	
No of Samples	146	146	146	146	146	146	
Minimum Value	83.00	.20	5.00	1.00	2.00	1.00	
Maximum Value	2215.00	2.00	509.00	16.00	408.00	11.00	
Range	2132.00	1.80	504.00	15.00	406.00	10.00	
Median	351.00	.30	38.00	4.00	14.00	3.00	
Mode	293.00	.20	47.00	4.00	2.00	3.00	
Mean	393.01	.36	38.55	4.00	12.61	2.91	
Log St Dev	.26	.25	.37	.32	.51	.26	
Mean + 2SD	1286.82	1.14	208.59	17.30	131.24	9.59	
Coetf Variation	.10	57	.23	.53	.46	.56	
Skewness	.79	.65	.00	.02	.00	12.08	
Kurtosis	1000.00	.00	1.88	.00	1000.00	143.00	
2.5 Percentile	153.00	.20	8.00	1.00	2.00	1.00	
5.0 Percentile	159.00	.20	9.00	1.00	2.00	1.00	
16.5 Percentile	244.00	.20	18.00	2.00	2.00	2.00	
50.0 Percentile	351.00	.30	38.00	4.00	14.00	3.00	
82.2 Percentile	726.00	.70	80.00	8.00	34.00	5.00	
90.0 Percentile	972.00	.80	117.00	12.00	53.00	5.00	
95.0 Percentile	1245.00	1.00	143.00	12.00	74.00	7.00	
97.5 Percentile	1308.00	1.20	269.00	16.00	96.00	7.00	
99.0 Percentile	1799.00	1.40	427.00	16.00	137.00	9.00	

(

Anaconda Canada Exploration Limited

			LOGARITHMIC HISTOGRAM		
			Log Interval (STDV/4): .064 No. Samples: 146		
A B	naconda C Soll Hor	Canada Izon	a Exploration Limited Manson Creek Epithermal Zone Results		
			Mn		
Cell	Lower Limit	Num Samj)	Cell \$	Cum %
1	66.33	0		.0	.0
2	76.93	0		.0	.0
3	89.23	0		.0	.0
4	103.49	0		.0	.0
5	120.03	0		.0	.0
6	139.21	6	****	4.1	4.1
7	161.46	6	****	4.1	8.2
8	187.26	6	****	4.1	12.3
9	217.19	8	*****	5.5	17.8
10	251.90	13	*****	8.9	26.7
11	292.15	23	*********	15.8	42.5
12	338.84	29	*************	19.9	62.3
13	395.00	10	*****	6.8	69.2
14	455.80	7	****	4.8	74.0
15	528.65	5	****	3.4	77.4
16	613.14	5	****	3.4	80.8
17	711.12	9	*****	6.2	87.0
18	824.77	2	*	1.4	88.4
19	956.59	5	****	3.4	91.8
20	1109.46	6	****	4.1	95.9
21	1286.77	1		.7	96.6
22	1492.42	2	×	1.4	97.9
23	1730.94	1		.7	98.6
24	2007.57	- 1		.7	99.3
25	2328.41	0		.0	99.3
			0 5 10 15 20 25 30 35 40 45 50 % Of Samples In Class Interval		

(

			LOGARITHMIC HISTOGRAM		1.2.2.1.1.1.1.1.1
			Log Interval (STDV/4): .062 No. Samples: 146		
An B	aconda (Soll Hor	Canad 1zon	a Exploration Limited Manson Creek Epithermal Zone Results		
			Ag		
Cell	Lower Limit	Num Sam	p	Cell \$	Cum \$
1	.07	0		.0	.0
2	.08	0		.0	.0
3	.09	0		.0	.0
4	.10	0		.0	.0
5	.12	0		.0	.0
6	.13	0		.0	.0
7	.15	0		.0	.0
8	.18	51	***********************	34 0	34.0
9	.20	0		54.9	34.9
10	.24	0		.0	34.9
11	.27	22	*********	15 1	50.0
12	.32	0		12.1	50.0
13	.36	25	***********	17 1	57 1
14	.42	0			67 1
15	.48	10	*****	6.9	74.0
16	.56	8	****	5.5	74.0 70 E
17	.65	11	*****	7.5	9.5
18	.74	6	****	1.5	01.1
19	.86	3	**	2.1	03 2
20	.99	5	****	3 4	95.2
21	1.14	1		2.4	90.0
22	1.32	3	**	2.1	00.3
23	1.52	0		2.1	99.5
24	1.76	1		.0	100.0
25	2.03	0		./	100.0
0.050			0 5 10 15 20 25 30 35 40 45 50	.0	100.0
			\$ Of Samples in Class Interval		

			LOGARITHMIC HISTOGRAM		
			Log Interval (STDV/4): .092 No. Samples: 146		
A B	naconda C Soll Hor	anad Izon	a Exploration Limited Manson Creek Epithermal Zone Results		
			As		
Cell	Lower Limit	Num Sam	p	Cell %	Cum \$
1	3.06	0		.0	.7
2	3.78	0		.0	.7
3	4.67	1		.7	1.4
4	5.77	1		.7	2.1
5	7.12	1		.7	2.7
6	8.80	7	****	4.8	7.5
7	10.87	2	*	1.4	8.9
8	13.42	7	****	4.8	13.7
9	16.57	10	******	6.8	20.5
10	20.47	14	*****	9.6	30.1
11	25.28	13	*****	8.9	39.0
12	31.22	16	*******	11.0	50.0
13	38.55	20	********	13.7	63.7
14	47.61	17	******	11.6	75.3
15	58.80	9	****	6.2	81.5
16	72.61	6	***	4.1	85.6
17	89.67	4	***	2.7	88.4
18	110.74	7	****	4.8	93.2
19	136.77	5	***	3.4	96.6
20	168.90	0		.0	96.6
21	208.59	0		.0	96.6
22	257.60	2	*	1.4	97.9
23	318.13	1		.7	98.6
24	392.88	1		.7	99.3
25	485.20	1		.7	100.0
			0 5 10 15 20 25 30 35 40 45 50 % Of Samples In Class Interval		

LOGARITHMIC HISTOGRAM Log Interval (STDV/4): .079 No. Samples: 146 Anaconda Canada Exploration Limited Manson Creek Epithermal Zone B Soll Horizon Results W Cell Lower Num Cell Cum % Limit Samp \$.45 0 .0 .0 1 2 .53 0 .0 .0 .0 .0 3 .64 0 .0 .0 4 .77 0 7.5 7.5 5 .93 11 ******** 7.5 0 .0 6 1.11 7.5 7 1.33 0 .0 .0 7.5 8 0 1.60 1.92 31.5 9 35 ************************** 24.0 2.31 31.5 0 .0 10 32.9 2 1.4 11 2.78 3.33 54 37.0 69.9 12 69.9 0 .0 4.00 13 69.9 14 4.81 0 .0 5.77 .0 69.9 0 15 86.3 16 6.93 24 16.4 ****** 8.32 0 .0 86.3 17 .7 87.0 18 9.99 1 95.9 12.00 8.9 13 ********* 19 100.0 4.1 20 14.41 б **** .0 100.0 21 17.30 0 .0 100.0 22 20.78 0 23 24.95 .0 100.0 0 .0 100.0 24 29.96 -0 35.98 .0 100.0 25 0 35 50 0 5 10 15 20 25 30 40 45 \$ Of Samples in Class Interval

(

Anaconda Canada Exploration Limited

			LOGARITHMIC HISTOGRAM		
			Log Interval (STDV/4): .127 No. Samples: 146		
A B	naconda C Soll Hor	Canad Izon	a Exploration Limited Manson Creek Epithermai Zone Results		
			Sb		
Cell	Lower Limit	Num Sam	P	Cell \$	Cum \$
1	.38	0		.0	.0
2	.50	0		.0	.0
3	.67	0		.0	.0
4	.90	0		.0	.0
5	1.21	0		.0	.0
6	1.62	24	***********	16.4	16.4
7	2.17	0		.0	16.4
8	2.92	4	***	2.7	19.2
9	3.91	9	*****	6.2	25.3
10	5.24	6	***	4.1	29.5
11	7.02	6	****	4.1	33.6
12	9.41	13	******	8.9	42.5
13	12.61	18	********	12.3	54.8
14	16.90	21	*********	14.4	69.2
15	22.64	11	*****	7.5	76.7
16	30.35	13	******	8.9	85.6
17	40.67	5	****	3.4	89.0
18	54.51	6	****	4.1	93.2
19	73.06	5	***	3.4	96.6
20	97.92	1		.7	97.3
21	131.24	2	*	1.4	98.6
22	175.90	0		.0	98.6
23	235.74	0		.0	98.6
24	315.96	- 1		.7	99.3
25	423.46	0		.0	99.3
			0 5 10 15 20 25 30 35 40 45 50		
			p of bompres in ordss interval		

Date: 2: 7:1984

Anaconda Canada Exploration Limited

LOGARITHMIC HISTOGRAM

Log Interval (STDV/4): .065 No. Samples: 146

Anaconda Canada Exploration Limited Manson Creek Epithermal Zone B Soil Horizon Results

Cell	Lower Limit	Num Samj	0											Cell \$	Cum \$
1	.48	0												.0	.0
2	.56	0												.0	.0
3	.65	0												.0	.0
4	.76	0												.0	.0
5	.88	23	****	****	*****	***								15.8	15.8
6	1.02	0												.0	15.8
7	1.19	0												.0	15.8
8	1.38	0												.0	15.8
9	1.60	0												.0	15.8
10	1.86	25	****	****	*****	*****								17.1	32.9
11	2.16	0												.0	32.9
12	2.50	0												.0	32.9
13	2.91	31	****	****	*****	*****	****							21.2	54.1
14	3.37	0												.0	54.1
15	3.92	30	****	*****	*****	*****	****							20.5	74.7
16	4.55	21	****	****	*****	**								14.4	89.0
17	5,28	6	****											4.1	93.2
18	6.13	7	****	ŧ										4.8	97.9
19	7.12	0												.0	97.9
20	8.26	1												.7	98.6
21	9.59	1												.7	99.3
22	11.14	0												.0	99.3
23	12.93	0												.0	99.3
24	15.01 -	0												.0	99.3
25	17.43	0												.0	99.3
			0	5	10	15	20	25 amples	30	35	40 erval	45	50		

Sn

LOGARITHMIC SUMMARY STATISTICS											
Anaconda Canada Pulverized (W-	Exploration (1) and unp	on Limited ouiverized (Manson Creek Tungsten West Zone (W-2) -80 mesh B soil Horizon Results								
Metals	W-1	W-2									
No of Samples	53	53									
Minimum Value	3.00	2.00									
Maximum Value	190.00	360.00									
Range	187.00	358.00									
Median	15.00	18.00									
Mode	4.00	4.00									
Mean	17.91	18.20									
Log St Dev	.49	.58									
Mean + 2SD	168.70	263.79									
Coeff Variation	.39	.46									
Skewness	1000.00	.00									
Kurtosis	.00	.00									
2.5 Percentile	3.00	2.00									
5.0 Percentile	3.00	3.00									
16.5 Percentile	5.00	4.00									
50.0 Percentile	15.00	18.00									
82.2 Percentile	60.00	75.00									
90.0 Percentile	75.00	85.00									
95.0 Percentile	93.00	135.00									
97.5 Percentile	135.00	190.00									
99.0 Percentile	135.00	190.00									

Date: 2: 3:1984

Anaconda Canada Exploration Limited

LOGARITHMIC HISTOGRAM

Log Interval (STDV/4): .122 No. Samples: 53

Anaconda Canada Exploration Limited Manson Creek Tungsten West Zone Pulverized (W-1) and unpulverized (W-2) -80 mesh B soil Horizon Results

Cell	Lower Limit	Num Sam	p											Cell \$	Cum %
1	.62	0												.0	.0
2	.82	0												.0	.0
3	1.09	0												.0	.0
4	1.44	0												.0	.0
5	1.90	0												.0	.0
6	2.52	2	****	Ex .										3.8	3.8
7	3.33	5	****	*****	**									9.4	13.2
8	4.41	2	****	E .										3.8	17.0
9	5.84	4	****	****										7.5	24.5
10	7.72	5	****	*****	**									9.4	34.0
11	10.22	2	****											3.8	37.7
12	13.53	8	****	*****	*****	***								15.1	52.8
13	17.91	3	****	**										5.7	58.5
14	23.71	2	****											3.8	62.3
15	31.38	4	****	*****										7.5	69.8
16	41.53	4	****	*****										7.5	77.4
17	54.97	4	****	*****										7.5	84.9
18	72.75	4	****	*****										7.5	92.5
19	96.30	1	**											1.9	94.3
20	127.46	1	**											1.9	96.2
21	168.70	1	**											1.9	98.1
22	223.29	0												.0	98.1
23	295.54	0												.0	98.1
24	391.18 -	0												.0	98.1
25	517.76	0												.0	98.1
			0	5	10	15	20	25	30	35	40	45	50		

₩-1

1. 27

Anaconda Canada Exploration Limited

LOGARITHMIC HISTOGRAM

Log Interval (STDV/4): .145 No. Samples: 53

Anaconda Canada Exploration Limited Manson Creek Tungsten West Zone Pulverized (W-1) and unpulverized (W-2) -80 mesh B soil Horizon Results

Cel	I Lowe Limi	r t	Num Samp	. .											Cell \$	Cun \$
1	.33		0												.0	1.9
2	.46		0												.0	1.9
3	.64		0												.0	1.9
4	.90		0												.0	1.9
5	1.26		0												.0	1.9
6	1.75		0												.0	1.9
7	2.45		6	****	*****	****									11.3	13.2
8	3.42		7	****	*****	*****									13.2	26.4
9	4.78		2	****	ŧ.										3.8	30.2
10	6.68		2	****	Ré- National										3.8	34.0
11	9.33		3	****	**										5.7	39.6
12	13.03		6	****	*****	****									11.3	50.9
13	18.20		4	****	*****	ŧ.									7.5	58.5
14	25.42		3	****	**										5.7	64.2
15	35.51		7	****	****	*****									13.2	77.4
16	49.60		0												.0	77.4
17	69.29		7	****	*****	******									13.2	90.6
18	96.79		2	****	E.										3.8	94.3
19	135.20		1	**											1.9	96.2
20	188.85		1	**											1.9	98.1
21	263.79		1	**											1.9	100.0
22	368.47		0												.0	100.0
23	514.69		0												.0	100.0
24	718.94	-	0												.0	100.0
25	1004.25		0	-	~	111102-11	10.00								.0	100.0
				0	5	10	15	20	25	30	35	40	45	50		

*, · *				•													
				u.													
- 		م - مردم الحر															
	ш	L.	1	u	ц	L	J	· ·	ц.	L	u	ш Q	ш а	ш	ш 2	ω	а С
	00+	00+)) -) } }	00	-		00+	-	2) 	4 + 0	00 + 9	4 00	8 + 00	00 + 6	50 + 0
18941	253/2	ወ ለ/. Տ,	25949	25976	25363	25996	25997	25935	25390	25915	25901	25341	25257	25429	25061	25498	B.L. 25083
29 18946	17. S. 25188	18949 18950	25950 25951	25975 25974	25977	25995 25994	25998	2593 <u>6</u> 25937	25342	259/6	25902	25339/40	25 320	25446	25062	25499	25082
130 18945	18966	18135	25952/3	25973	25978	25993	26000	25938	25 930	25918	25904	25338	25321	25400	36043	10000	
32 18943	18965	78956 18957	25954 25955	25970	25979	25990	26003	25941	25931	25921	25707		23021	\$3407	23083	23500	20031
33 18942	25365	18958	25956	25969	25359	25989	26004	25942	25344	25922	25908	25337	25322	25490	25064	25501	25080
34 18941 35 18940	25366	18959	25957 25958	25968	25980	25988 25987	26005	25944	25932	25924	25910	.25336	25323	25491	25065	25502	25079
36 18939	18963	18961	25959	25966	25981	25986	26001	25945	25933	25925	25911	25335	28124	28.400	25044	28503	25070
78438		19194	25961	25964	25182	40485 25984	26008 26009	25941	25934	25921	259/3		23 <i>324</i>	23492	25000	23303	23018
			25962	25963		25983	26010	25948	ļ	25928	25914	25334	25325	25493	25061	25504	25071
		-							ĺ	ł		25333	25326	25494	25068	25505	25076
ł									ļ	ł	ł	.25332	25327	25495	25069	25506	25075
ł	1	-		1 '	1 I				ł]						
					† †				t i	ĺ						201	1
	0 18941 28 N.S. 29 18946 30 18945 31 18944 32 18942 33 18942 34 18942 35 18942 34 18949 35 18949 36 18939 37 18938	W O + 32 28 70 28 70 28 70 29 73 74 74 74 74 74 74 74 74 74 74 74 74 74	U O 18947 253/2 N. S. 18949 28 N. S. N. S. 18949 18949 29 18946 25/88 18950 30 30 18945 18966 18155 31 18944 25364 18956 32 18942 25365 18958 34 18942 25365 18959 35 18940 25366 18960 36 18939 18963 18961 37 18938 18963 18962	W W W Q 18947 253/2 N. S. 25949 28 N. S. 18949 25950 29 18946 25188 18950 25951 30 18945 18966 18155 25952/3 31 18944 25365 18956 25954 32 18942 25365 18958 25955 33 18942 25365 18958 25955 34 18947 25365 18958 25955 34 18947 25365 18958 25955 35 18940 25365 18959 25955 36 18939 18963 18960 25959 37 18938 18963 18961 25960 25962 25962 25962 25962	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

											А	NALYZE	ED BY CP	COLORIMETRICALLY	,				
u C) 2		ω O		ω O	1	ω 00		ы 00		900 E		ш 00	ω 00	т 00	ш 00	е 00 е	ы 00	+ 00 E
+			e ₽		- + 6	-	+ 9		+ =		4		ນ +	4	4 4	+	80 E	6	50
B.L.	4,2	2,4	Τ	1.2	4,7	1,5		1,2	1,2	4,3	•	2,5	12,1	2	2	4	3	4	2 2
0+50S	16,3	4.4	[2.1	1,3	8.2	4,4	12.3	16,2	8.2]	8.6	12,1	6	3	3	4	2	13
	8,1	4,2	4,1	4.1	1,2	12,4	4,2	4,1	2,1	8,5	4,4	8,5	12,4						
+00 S	4,3	4,4	ł	4,3	2,4	4,5		16,5	16,4	4,4	1	8,5	8,3	8	2	8	3	2	3
	1,3	12,7	4,2	2,4	2,3	2,2	4,3	4,2	2,1	2,3	2,4	4,3	8,7						
11 50 \$	16,4	4,2	ł	8,5	1,4	4,2		2,1	4,3	3,6		2,5	2,3	z	2	3	6	3	4
1	2,4	4,7	1,3	4,4	1,2	8,6	4,6	4,3	8,3	2,3	1,4	4,3	4,5						
2+005	2,5	4,7		4,7	8,4	4,7		4,2	12,4	2,4		4,3	12,4	30	2	6	9	2	
21505	2.5	2.5	4,3	4,4	4.3	81	4,5	2,3	22	86	⁴ ,3	21	2.3	5		2	4	2	
	-,-	-/-		0,0	2.2	42		1,5	4,2	8,5	8,5	4,3	2,3		-7	1	7		
3+005		ł	$\frac{1}{2}$		8,1	4,5	$\left \right $	2,4	8,1	12,3		4,1	2,4	6	5	2	5	5	13
31509		ļ	ţ	1					1	ļ	1		İ	4	A	6	4	- 3	- 3
51505											ļ		ļ						
4 + 005		ł					-	+	-					2	2	4	3	3	6
41505		t		1	1		ł	ł	ł		İ	ł	1	2	1 2			2	16
		Į									I		[["			
5 + 00 5	ļ]]	ļ	I	ļ	I	ļ]]	1	I	14	2	5] 3	7	2
														1					
														1					

. -

`

-(N)

2010 C 10 10 10

. . .

E		GIC SME	ALB NTR	RAN RPD			
	Legen 15,40,7 N.S. GOLD (P ARSENIC ANTIMON	nd: = Au(ppb) No sam Pb) >50 > 20 > 200 > 200 > 100 NY (PPM) > 100 > 50),As(ppm),S ple	δb(ppm)			
0	Ę	50	100	150			
ACONDA Canada Exploration Ltd. A MANSON CREEK PROJECT EPITHERMAL ZONE As,Sb SOIL GEOCHEMISTRY							
ly by	P. M.	drawn b	V FRW	date	N ¹ 94		
			C D. 11	40	IN 04		

189

190

6 + 00 E

853

854

855

856

1 858

4 † 00 E

150 S

200 S

250 S

817

816

815

814

- 813

5 + 00 E

0 100 150 200 250 1:2500 METRES

ω

F. P. M.	E.B.W.	JAN '84
1:2,500	93N/10E	13

S. Comment

GEOLOGICAL BZANCH ASSESSMENT MPPOYT

TOTAL FIELD MAGNETOMETER SURVEY INSTRUMENT: Unimag II Proton Precession Magnetometer MAGNETIC FIELD = (plotted value X10)+50,000 gammas CONTOUR INTERVAL: 100 gammas (58400-59000)

>58700 gammas

58500 - 58700 gammas

100 200 metres

ANACONDA Canada Exploration Ltd.

MANSON CREEK PROJECT

TUNGSTEN WEST ZONE

MAGNETOMETER SURVEY

ogy by: A.S.	drawn by: D. M.C.	date: JAN, 84
1:5000	^{n.t.s.} 93N/IOE	fig /proj. no. 14