CONTENTED CLAIM REPORT #1 REPORT ON GEOLOGY AND GEOCHEMISTRY FOR ASSESSMENT PURPOSES

CONTENTED CLAIM GROUP

ALBERNI MINING DIVISION

RECORD NUMBERS 1465, 1466

N.T.S. MAPSHEET 92F/2W

L.C.P. CO-ORDINATES: 54 39800 m North Latitude 3 61300 m East Longitude

Author:

Craig Stewart

Owner:

Mattagami Lake Exploration Ltd.

Operator:

Noranda Exploration Company, Limited

(No Personal Liability)

Date:

October, 1983

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

And the second of the second o

I.		ABSTRACT
1		INTRODUCTION
	1.1	INTRODUCTION
	1.2	LOCATION AND ACCESS
	1.3	CLAIM DESCRIPTION
	1.4	PHYSIOGRAPHY
2.		GEOLOGY .
	2.1	REGIONAL GEOLOGY
	2.2	GEOLOGY OF THE CONTENTED CLAIM GROUP
	2.3	MINERALIZATION
	2.4	GEOLOGICAL SUMMARY
з.		GEOCHEMISTRY
	3.1	ANALYTICAL TECHNIQUES
	3.2	FIELD PROGRAMME AND RESULTS
4.		CONCLUSION
II.		CERTIFICATE OF QUALIFICATIONS

LIST OF FIGURES

FIGURE 1	Contented Claim Location Map	
FIGURE 2	Location and Access Map	
FIGURE 3	Sample Locations, Anomalies, Topography	(Pouch)
FIGURE 4	Zone 1 Geological Cross Section	(Pouch)

LIST OF TABLES

TABLE 1	Zone 1 Assay Data
TABLE 2	Analytical Techniques
TABLE 3	Geochemical Anomalies Zone 3

LIST OF APPENDICES

APPENDIX 1 Geochemical Results

APPENDIX 2 Assessment Costs

I ABSTRACT

Geological and geochemical sampling during 1982 defined two zones of mineralization which were staked as the CONTENTED CLAIM GROUP. Zone 1 is comprised of several linear shear zones containing Po-Pyr-Cpy mineralization with associated Ag values in basalt. Zone 2 is a 10cm wide Po-Pyr-Cpy "view" that appears to follow a basalt:basalt lapilli-tuff contact. Soil geochemistry was poor over Zone 1 indicating its aporadic nature whereas several strong copper anomalies, (up to 960 ppm), were defined in Zone 2. Detailed geological mapping and soil sampling, reconnaissance geology and a possible detailed I.P. survey wil be utilized to follow up these zones.

The second secon

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

The CONTENTED claim mineral group is comprised of the CONTENTED 1 and CONTENTED 2 claims totalling 35 units, (875 hectares). Staked during the 1982 field meason, the claims cover Cu-Ag mineralization within sheared Karmutsen Basalts overlying granodiorites of the Island Intrusives. Field work to date has consisted of detailed geological mapping and soil sampling adjacent to zones of mineralization.

中でいたかの様と本でははは、一日の日本のは、

1.2 LOCATION AND ACCESS

Situated approximately 22km from Port Alberni on a bearing of 200 degrees, the CONTENTED claims are readily accessable via the MacMillan Bloedel Limited Sproat Lake Division logging road system. With an approximate road distance of 32km, access to the claim is excellent (Figures 1 & 2). To reach the claims follow Cous Creek Main to its junction with Canal Main, the latter taken to a point just beyond MacTush Creek and MacTush Creek Main Road. Off of Cous Creek Main, auxillary road systems 400 and 2500 will provide ready access to 60% of the claims, (Figure 2). The majority of the field work was carried out along roads 2500 and 2510.

1.3 CLAIM DESCRIPTION

The following claims comprise the CONTENTED Mineral Claim Group:

1) CONTENTED 1

ı

Record Number: 1465

Units: 3N X 5E (Total 15)

LCP Co-ordinates: 54/39800M North Latitude

3/61300m East Longitude

Expiry Date: July 29, 1983

2) CONTENTED 2

Record Number: 1466

Unita: 4S X 5E (Total 20)

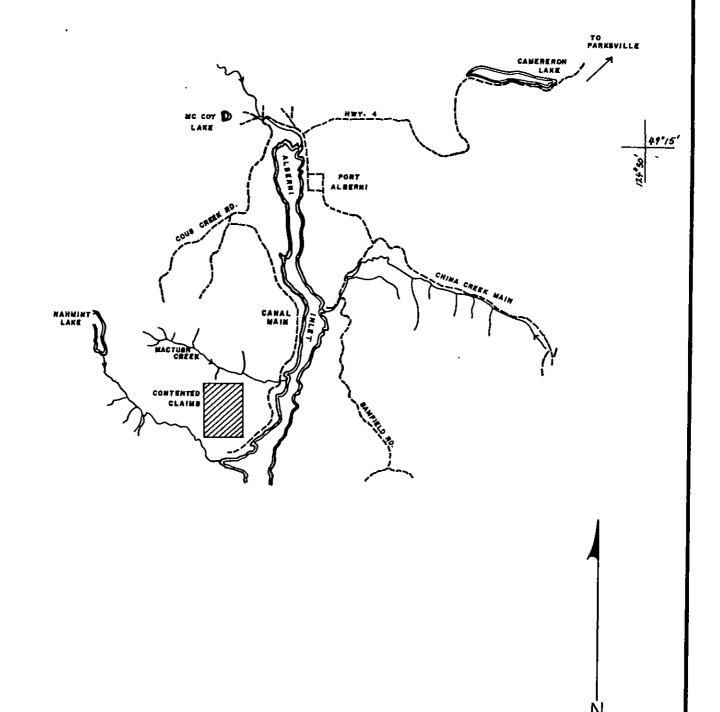
LCP Co-ordinates: 54/39800m North Latitude

36/30m East Longitude

Expiry Date: July 29, 1983

1.2 PHYSIOGRAPHY

Area covered by the claim group is typically mountainous with elevations ranging from 150m to 1020m. As illustrated in Figure 3 (pouch) the claim group is bisected by a northeast-southwest trending stream valley, the back of which essentially forms the western claim boundary. Typically V-shaped with steep walls, the valley appears to be of fluvial rather than glacial origin. Mountain ridges rise from the valley to the north and south with maximum elevations attained of 1020m and 1004m respectively. Slopes vary from 20 degrees to vertical with the steepest areas along the CONTENTED i north and west claim boundaries. Numerous impassable cliffs are located throughout the claim group however, the


glaims for the most part are readily accessable.

Drainage of the claim group is dominated by the southwest flowing creek responsible for forming the principle valley of the claim group. Numerous tributaries drain the valley sides but these are of a seasonal nature. The northern 30% of CONTENTED 1 drains to MacTush Creek, while the southern 30% of CONTENTED 2 drains to Nahmint River and Nahmint Bay; with all waters ultimately entering Alberni Inlet. With the exception of the main drainage channel, most streams are seasonal and have a very steep flow gradient; the combined effect being very poor sediment deposition. As a result silt and heavy mineral concentrate sampling are only marginally effective.

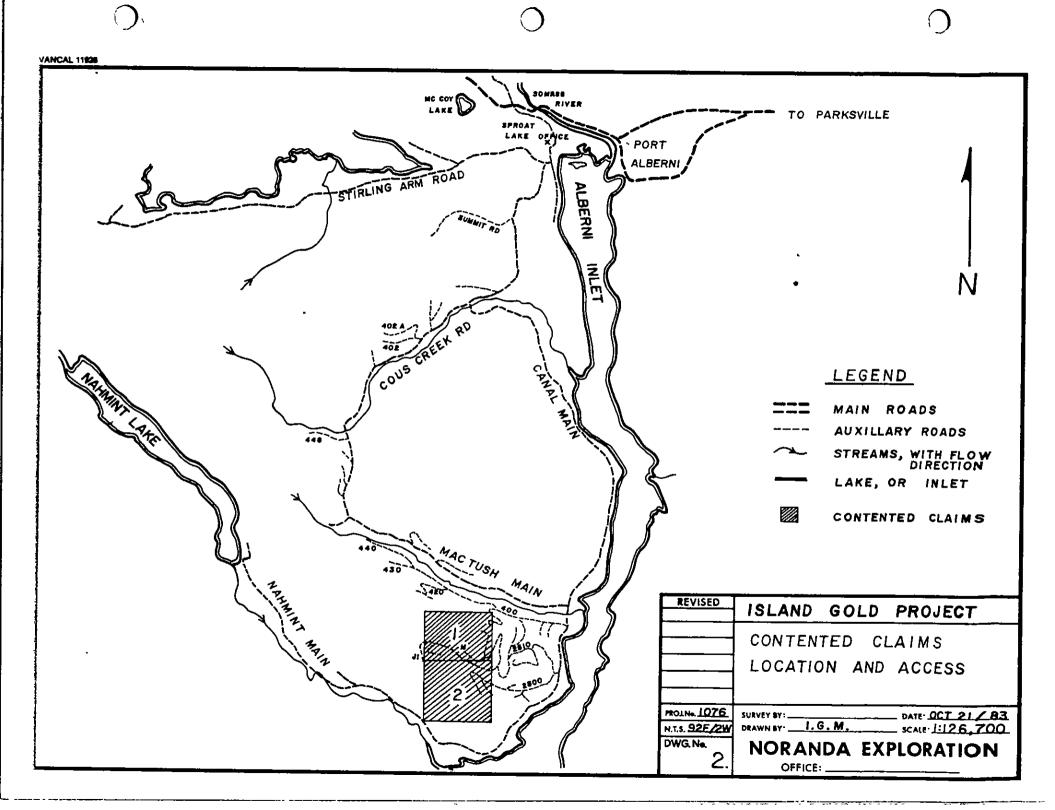
March Charles and March March Control of the Contro

Soils are variably represented with best development along the valley bottom and flat ridge tops. Talus fines often dominate the valley sides as opposed to true soils resulting in 'C' horizon soils being predominant. The Ao horizon is characteristically thin while 'B' development varies widely. The majority of soil samples collected are 'B-C' composites.

Logging operations have removed 35-40% of the original climax rain forest, primarily within the main creek valley but also along the northern, eastern and southern claim boundaries. Regrowth is not substantial and with the exception of the valley bottom does not inhibit traversing. Unlogged areas are superb to work in due to the wide spacing of trees and lack of undergrowth.

LEGEND

TOADS


STREAMS, WITH FLOW DIRECTION

LAKE, OR INLET

CONTENTED CLAIMS

REVISED	ISLAND GOLD PROJECT
	CONTENTED CLAIMS LOCATION MAP
MOIN. 1076	SURVEY BY: DATE OCT 24/83
NTS. 92F/2W	DRAWN BY: 1. G. M. SCALE: 1: 250,000
DWG, No.	NORANDA EXPLORATION OFFICE:

/ANCAL 11827

CHAPTER 21 GEOLOGY

2.1 REGIONAL GEOLOGY

Geologically, the CONTENTED claim group has been regionally mapped by J.E. Muller as Triassic Karmutsen volcanics and volcaniclastics overlying Jurassic Island Intrusives of biotite-hornblende granodiorite to quartz diorite composition. The Karmutsen Volcanics are mapped overall to include massive tholeitic basalt, flow breccia, minor andesite bedded tuff, volcanic breccia and minor intravolcanic limestone.

一角のからからずるのかなるなかないないできますことが、こう

With the exception of a fault zone along the Nahmint River to the south of CONTENTED 2, structure is not regionally significant.

2.2 GEOLOGY OF THE CONTENTED CLAIM GROUP

To date only a small portion of the CONTENTED claim group has been mapped in detail. The predominant lithology thus far encountered is a dark grey green basalt which has been variously altered. Minor amounts of rhyolite porphyry, granodiorite and basalt lapilli-tuff were also observed. A detailed description of the rock types is provided below.

<u>BASALT</u>: Dark grey green, weathers medium grey green and rust brown. Very fine to find grained with few minerals discernable. Epidote occurs as fracture fillings and crystal aggregates throughout. Outcrops exhibit blocky to tabular fracture patterns. The basalt unit is resistant and well-defined however, variations exist as a result of mechanical and chemical alteration.

- a) Recrystallized Calcareous Basalt: Dark grey green, weathers light tan grey brown. Abundant calcite in matrix. Unit very well lithified. Evidence of recrystallization include presence of well defined fine-grained subhedral biotite, hornblende and plagioclase crystals in addition to distinct flow bands and separation of mafic/felaic components.
- b) Sheared-Altered Basalt: Dark grey green, weathers light to medium grey, brown, rust and pale. Highly fractured, crumbly. More intensely sheared areas are typically dark brown, recessive crumbly, intensely fractured with well developed slickenside and very lustrous sheared surfaces. Majority of minerals are unrecognizable. Calcite occurrence varies from zone to zone with up to 10% in some.

Mineralization is generally sasociated with the shears and consists of pyrite, pyrrhotite and chalcopyrite as fine grained disseminations, fracture fillings, veinlets and pods of massive sulphides

c) <u>Calcareous Basalt</u>: Dark grey, weathers rusty brown. Fine grained, massive, resistant but variably sheared. Calcite to approximately 15% as very fine grained matrix material, fracture fillings and veinlets. Pyrite and chalcopyrite to 5% combined usually associated with the calcite.

RHYOLITE PORPHYRY: One exposure 20m long intruding the basalt. Light

greenish grey, weathers white and tan. Very resistant and highly siliceous with sharp conchoidal fracture patterns. Nafics 15-20% of rock composed of biotite (5%) as very fine grained, anhedral crystal aggregates and hornblende (10-15%) as prismatic, euhedral phenocrysts to 4mm in length, (average 1-2mm). Approximately 50% of unit composed of sub/to anhedral plagioclase and K-feldspar phenocrysts to 4mm. Matrix is aphanitic and highly siliceous.

Mineralization is lacking and alteration is restricted to a poorly defined, 30cm wide contact metamorphic aureole along the basalt/porphyry boundary.

<u>GRANODIORITE</u>: Only a cursory examination was performed along the western margin of the claim group. Most noteable feature is the intense shearing and fracturing. This unit is to be studied in detail as part of the proposed follow-up programme.

からないというないのではないないないという

BASALTIC LAPILLI-TUFF?: Thought to form the footwall of Zone 2. Medium to dark grey-green, weathers darker green. Soft, fragmental with a calcareous matrix. Calcite and epidote occur as fracture filling. Chalcopyrite to 1% as disseminations and fine grained crystal aggregates.

Geological mapping on the CONTENTED claims was restricted to a 220m interval along road cut 2510 where mineralization was first encountered. As illustrated in Figure 4 (pouch), the zone is dominated by variously altered basalt with a small (20m wide) outcrop of rhyolite porphyry intruding it.

As previously indicated in the unit descriptions, the basalt varies widely in its competency and texture as a result of mechanical and chemical alteration. Mechanical shearing and the introduction of carbonate +/- silicate +/- epidote +/- sulphides has produced several zones of varied composition intimately related to one another; competent zones adjacent to highly sheared zones, carbonate rich basalt flanked by carbonate poor basalt. This extreme variability indicates a pulsing action by the introduced fluids which probably used the shear zones as conduits. The rhyolite porphyry appears to have had little effect on the basalt.

Structure is dominated by the presence of numerous well-defined shears which vary in width from 0.1m to 3.0m. Orientation is typically 110'-120' with dips of 70-90'SE. The majority of major shears occur over a 40m interval, (Figure 4) where 12 shears were mapped. This zone represents a good exploration target for further follow-up.

2.3 MINERALIZATION

Pyrite, pyrrhotite and chalcopyrite with associated malachite comprise the mineralization found to date on the CONTENTED claims. Two areas of occurrance have thus far been observed; Zone 1 along logging road 2510 consists of sulphides within sheared basalts, and Zone 2 consisting of a 10cm wide vein of massive sulphides adjacent road 2500, (Figure 3).

Zone 1 contains very fine to coarse grained, sporadic pyrite, pyrrhotite and chalcopyrite as disseminations, fracture fillings, veinlets and massive pods within sheared basalts. Disseminated and fracture filling sulphides are found in the more competent basalts whereas veinlets and

and height of 1.0m and are 80-90% aulphides in composition. Hand apecimen samples from these pods gave values up to 1.3 opt Ag and 5.8% Cu. Table 1 illustrates some of the values obtained. Sample locations are plotted on Figure 4.

TABLE 1: ZONE 1 ASSAY DATA

Sample Number R-23381	<u>Rock Type</u> Altered Sheared Basalt	Sample Site Hand apecimen	Asasy Resulta 1.3opt Ag, 5.8% Cu
R-23382	Altered Sheared Basalt	41 01	1.16opt Ag, 5.0% Cu
R-23383	Calcareous Basalt	45 48	0.31% Cu
R-23398	Sheared Basalt	85	0.10opt Ag, 1.28x
Cu			,
R-23400	11 11	12m Chip Sample	0.02opt Ag, 0.09%
Cu			in the state of th
R-23401	11 11	17m Chip Sample	0.02opt Ag, 0.16%
Cu			

Values indicated in Table 1 aptly illustrate the sporadic nature of the mineralization in Zone 1. Whereas the sulphide pods associated with the shear zones contain high grades, the host basalt is typically barren. Sweating out of the sulphides from the country rock and subsequent deposition along the shear zones would account for the observed mineralization. This is supported by the generally high copper background in the Karmutsen basalts and the common occurrance of sulphide pods within these basalts as a unit.

Zone 2 has had very little geological work conducted on it. A flat lying, massive sulphide 'vein', this 10cm wide zone of mineralization is dominated by pyrrhotite and pyrite but yielded assay values of 0.54opt Ag and 8.4% Cu. It is difficult to ascertain if this occurrance is a true vein structure or rather an exhalative lens of sulphide. Detailed geological mapping is required to determine the significance of this feature.

2.4 GEOLOGICAL SUNHARY

Two mineralized zones have been located to date on the CONTENTED claims within Karmutsen basalts in association with underlyng Island Intrusive granodiorites. Zone 1 consists of massive sulphide pods and disseminated sulphides associated with linear shears. Mineralization is considered a result of sweating out of sulphides from the country rock. Zone 2 appears to be a flat lying vein structure of massive Po-Pyr-Cpy mineralization. An exhalative origin for Zone 2 is under consideration.

CHAPTER 3: GEOCHEMISTRY

3.1 ANALYTICAL TECHNIQUES

During 1982 a total of 1 heavy mineral concentrate, 169 soil, 41 stream sediments and 35 rock samples were collected on the CONTENTED claims. The majority of soil, silt and pan samples were analyzed by Noranda Exploration Company, Limited for Ag,Cu,Pb,Zn utilizing an HClo3 digestion-extraction technique with readings obtained on Varian Techtron AA475 Atomic Absorption machine. Gold values were obtained either by atomic absorption of FADCP. The Au digestion-extraction medium for atomic absorption is Aqua-Regia-MIBK solution. DCP analysis was performed by X-ray Assay Laboratories while rock assays were carried out by Rossbacher Laboratory Ltd. Table 2 provides a detailed breakdown of sample numbers, elements and analytical techniques. Geochemical results are tabulated in Appendix 1, sample locations are plotted on Figures 3 and 4.

TABLE 2: ANALYTICAL TECHNIQUES

Sample Type and Number	Elements	Analytical Method
39 silt, 1 pan, 169 soil	Au	FADCP
24 milt, 169 moil	Ag,Cu,Pb,Zn	Atomic Absorption
13 rock	Ag, Au, Cu, Pb, Zn	10
19 rock	Ag, Au, Cu, Pb, Zn	Assay
2 silt	Ag, Au, Cu, Mo, Pb, Zn	Atomic Absorption
3 rock	Ag,Au,Cu,Fe,Pb,Zn	11 11

3.2 FIELD PROGRAMME AND RESULTS

Mineralized Zones 1 and 2 were both sampled in detail using soil geochemistry. The results are tabulated in Appendix 1 and as indicated only anomalous copper values were defined. Sample locations and anomalous values are illustrated in Figure 3.

Zone 1 was sampled along 3 parallel soil lines 100m apart with a sample interval of 50m. A bearing of 225 degrees was used; roughly perpendicular to the shear zone orientation. As illustrated in Figure 3, geochemical values over Zone 1 are poor with sporadic Cu anomalies peaking at 220ppm, one isolated gold value of 80ppb and no anomalous Ag. Based upon the values obtained from rock assays it is evident that the shear zones are not expressed at the surface and soil geochemistry is an inappropriate sampling technique for this zone. Further work to define the extent of Zone 1 will consist of a detailed I.P. survey with a dipole spacing of 25m. A close interval is required due to the low conductance and narrow width of the individual shears.

Geochemical information from the sampling of Zone 2 was far more significant than values obtained over Zone 1. Two contour grid lines 50m apart were sampled at 50m intervals over an approximate distance of 2.5km. A total of 108 soil, 3 rock and 2 silts were collected.

As illustrated in Figure 3 numerous copper anomalies greater than 100ppm were defined and a distinct cutoff point 150m from the end of road 2500 is observed. This abrupt cutoff may reflect a change in lithology. If the high background values for copper within the Karmutsen basalts is taken into account and a soil threshold of 200ppm is used, four areas

requiring follow up can be defined along road 2500 from NW to SE; Table 3.

TABLE 3: GEOCHENICAL ANOMALIES, ZONE 2

Area Area	1	Maximum Anomalies (ppm) P-22627 - 420 Cu, P-22628 - 220 Cu	Distance Along Contour 50m
Area	2	P-22933 - 580 Cu P-22559 - 580 Cu P-22558 - 390 Cu P-22935 - 390 Cu	250m
Area	3	P-22554 - 960 Cu	Spot Anomaly
Area	4	P-22975 - 760 Cu P-22928 - 260 Cu	Spot Anomaly

As indicated above, Areas 1,3 and 4 are very localized spot anomalies whereas area 2 is a well defined anomaly extending 250m along contour and represents the most significant anomalous geochemical area. As such it will be concentrated on in subsequent follow up programs.

ADDENDUM TO CHAPTER 3.1, GEOCHEMICAL PROGRAMME

PART A; SAMPLING PROCEDURES

Samples collected on the CONTENTED claim group consisted of soil, rock, stream sediment and heavy mineral concentrates in various numbers as indicated in Section 3,1. Soil samples were predominantly red-brown 'B' horizon type obtained from a depth of 10-35 cm. Where soil horizons were poorly defined A/B or B/C combinations were collected. The samples were collected in brown Kraft bags, (9 x 12, 32 lb., open end), dried, and subsequently sent to the laboratory for sifting and analysis. At each sample station an orange and blue flag was marked with the year, type of sample and sample number. Silt, pan and rock sample locations were also marked in this manner.

Silt samples consist of the sand size, and less fraction of the sediment material. They, like the soils were collected in Kraft bags.

Heavy mineral concentrates were obtained by panning a relatively constant volume of material down to the magnetite, (or comparable) fraction; the result weighing between 50 and 100 g. The original volume was predetermined using a large marked sample bag, (\sim 50 kg in weight).

Rock samples were of two types; whole and chip. Whole rock samples were approximately hand-sized and two were always collected; one for analysis and the second as an office sample for reference pending geochemical results.

Chip samples are, as implied, small pieces of rock chipped across a measured interval at an approximately equal, predetermined sample spacing. They are to be unbiased samples providing a representative geochemical values of the rock samples. An office sample for rock chips is not retained.

PART B

Figures 3A and 3B (pouch) have the geochemical values for the soil grids in plan view.

CHAPTER 4: CONCLUSION

Zone 2 is represented by several significant geochemical anomalies with values up to 760ppm Cu obtained, in the vicinity of a 10cm Po-Pyr-Cpy vein with assay values of 0.54 opt Ag and 8.1% Cu. Considered to lie along the contact between basalt lapilli-tuff, (footwall) and basalt (hanging wall), this mineralization shows potential as a massive sulphide target. This zone represents the primary target on the CONTENTED claims and will be followed up with detailed geological mapping and geochemical sampling with a subsequent I.P. survey if initial results are favorable.

Zone 1 possesses significant assay values in hand specimen (1.3 opt Ag, 5.8% Cu) however these are sporadic and limited to small massive sulphide 'pods' within shear zones. The potential of Zone 1 lies with the union of individual shears at depth to form a stronger zone with possible continuation into the underlying intrusive. An I.P. survey will be required to determine if such a zone exists.

On a general scale, mapping of the logging road system in conjunction with reconnaissance mapping and the detailed examination of the intrusive-volcanic contact is required.

CERTIFICATE OF QUALIFICATION

- I, Craig Stewart, of the City of North Vancouver, Province of British Columbia do hereby certify that:
 - 1. I am a geologist residing at #6, 1923 Purcell Way, North Vancouver.
 - 2. I am a graduate of the University of Alberta, Edmonton, with a B.Sc. (1980) in geology.
 - 3. I have been practicing my profession since May, 1980 and am at present Project Geologist with Noranda Exploration Company, Limited.
 - 4. I am a member of the Geological Association of Canada.
 - 5. I am a member of the Canadian Institute of Mining and Metallurgy.

DATED: OCTOBER 24, 1983

C. Stewart, B.Sc.

APPENDIX 1

The second secon

GEOCHEMICAL RESULTS

TA		·			CONTENTED CLAIM	GROUP GEOCHEHICAL RES	SULT ,
						<u>-</u>	
·		··					
·			···				
	· 		<u></u>		ממממ		
		·· · ··········			ממחמם שמשטט		
					0,000 0,000 0,000		-
нининининин Нининининин	0000000	RRRRRR RRRRRRRR		ининининини ининининини	0000000000 00000000000 000000000000	AAAAAAAAA	1
нинин инини инин инин	00000 00000	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	AAAAA AAAAA	- МИНИПИПИПИПИПИ МИНИИ МИНИИ	addag aaga . aagaaaaaaaaa	ААЛААААААААА ПАППАНАВИНАТИРИ ААЛАА ААЛАА	
иниии иниии иниии иниии иниии иниии	00000 00000	RRRRR	AAAAA AAAAA	инини инини инини инини	DODDO DODDO	AAAAA AAAAA	
иниин ниини ниинин —	0000000000	RRRRR RRRRR	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	иниии инини иниин инини		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA],
	.*	NANA	AAAAAAAAA	пиний нинин	מספטחסיים יייייייייייייייייייייייייייייייייי	AAAAAAAAA	
		• •					
				 _			·
····							
	,					-	
· · · · · · · · · · · · · · · · · · ·			·			·	
					····-		··································
							·
	•			1	· · · · · · · · · · · · · · · · ·		
· · - · - · - · · · · · · · ·							
				•			33
	•					15:19:54 OCTOBER 20: 1983	-
			······································	 		OCTOBER 207 1783	
							•

u ijo

	CONTENTED	CLAIM	GROUP	GEOCHERICAL	RESULT.	
--	-----------	-------	-------	-------------	---------	--

PAGE 1 OCTOBER 10, 1903

												DREW 198 1833 T. T
₩#9 E 5	TYPE	CU1A	ZNIA	PB1A	AG1A	MN1A	FE1A	AU9I	AU1E	MO1A		
222310	7777	100	86	2	.2	1400	7.6					
9222611	2222	150	80	2	.2	780	6.3					
3222812		130			12	<u>789</u>	<u>8:3</u>					
3222613	2220	58	28	2	.2	210	6.3					
S222614	2250	140	65	3	.4	310	7.2				,	
9222815		140	33		.2	3/0	6.0				_	
5222313	2252	150	53	2	.2	710	6.0					
2222517	anni	130	ಎ ೦	2	.2	870	5.1					
77725T8		140	64			740	5.3					
3222619	2222	110	52	2	_ 4	350	9.0					
5222520	2,77	96	28	2	-4	130	13.0					
3222321		120 -	54	4	.2	740	5.7					
5222622	ວລວ່ວ	28	36	2	.2	190	4.3					
222423	2722	_8	18	4	.2	270	2.3					
3222524		 50			-2	280	4.0					
3222525	2722	32	34	2	.2	210	4.7					
5272826	2000	46	34	2	.2	180	7.3					
7222527		420-		2	-4	2600	6.8					
322428	2222	220	90	4	.2	3900	6.1					
3222629	2222	64	30	2	.2	200	9.0					
3272630		180	96		-2	450	9.5					
5222631	2000	120	54	2	-4	300	7.9					
3222632	וררק	65	48	2	.2	280	6.3					
3222433			- 66		-4	420	7.3			· ·		
3222534	2022	52	34	2	.2	130	8.0					
222635		66	36	2	.2	240	7.5					
5222635 ~ ~ ~ ~		53	-34	2	2	170	7.2					
3222037	2222	110	58	2	.2	1900	4.6					
222638	2777	B4	44	2	.2	300	4.7					
222637	2222	62	3-3		.2	170	4.4					
3222640	2277	62	40	2	-2	230	5.0					
3222541		51	30	2	- 2	260	3.8					
3222642	7727	140.	48	2	-2	310	4.6					
3222643 3222644	רברי	96	40	2	.2	200	1.7					
122204 5 — ———		100	52	2	.2	510	5.7					
3222646	7777	130	66	2	2	-130	5.1					
3212647	2222	78	50	2	-2	540	4.1					
322377		$-\frac{120}{20}$	60	2	.4	840	7.0					
522529	2222	18	23	2	2				10			
1222677	2252	16 14	20 14	2	.2				10			
1222480		32-			.2				80			
1722681	กากก	34 24	28 34	2					10			
222582	2222	10	•		•5				10			
3222483		21	· 14	2_	-2				10			
1222684	2272								10			
1222-85	2222	56 40	48 36	2	.2 .2				10			
3222685				_					10			
3222683 3222687	7777	40	22		-2				10			
1202767	2000	40 52	34	2	.2				10			
223005			30	2	-2		4.5		10			
1223007	2777	96 130	40 56	2 2	-2		4.2		110			
3223007	7777	76	58	2	.2 .2				10			
223007			30	_	. 4				10			

..... CONTENTED CLAIM GROUP GEOCHEMICAL RESULT rage 2 DOTOROR 20, 1907 TYPE CU1A ZN1A PD1A AG1A MN1A FE1A AU9I AU1E MO1A NUMBER 33.33 -----3353 .2 .2 E223016 :ź - 7077 -23 78 -28 -223 .2 5-۵V --ΙŪ .2 .2 2222 -'nσ ಕ .25. S223175 .2 1á 0223494-:2 10225499 777. .2 -----

COTTON PAGE 1 | DOCTORER TV, 1783

NUMBER	GCI	TYPE	4U9I	AU1E	CU1A	ZN1A	PB1A	AG1A	KO1A		
222230C	00778	SILT	13	-	•			-			•
3222201		7277	23	•		- '		÷	-	•	
					-	,,,	******			7 4.	
300000		2222	12							,	
2222304		7777	5								
0222305~ ~~		دددد-	1								
8322304		2222	6								
3222307		2222	1								
8222338		. ~~.~~~	1.5.								
3222309		SILT	1								
3222310		ROCK		10							
9222311											
8222312		2525	32								
9222313		2555	9								
.8555314		— :	17	•	· · · · ·						
8222315		2222	1								
9222567	00824	SILT	4		82	52	16	. 2			
3222535		SILT	7			46		-2			
3222546		SILT		19	140	58.	2	-2			
3722570		SILT	2		100	42	2	-2			
2222571		SILI			52	40	4				
3222572		SILT	1		30	36	2	.2			
3222573		SILT	1		16	32	2	.2			
3222574		SILT	3		34	38	2	.2			
8222575		SILT	16		48	44	2	-2			
3222574		SILT	1		56	39	2	2			
9722577		SILT.	1	-	- 04	46	2				
3222578		SILT	1		46	54	2	.2			
3222579		SILT	1		88	60	2	.2			
3555540		SILT	į		35	38	2	•2			
3222591		SILT	1		58	48	2	. 2			
3333283		SILT	8		170_	96	2	2_			
7777593		SILI	1		3.5	28	2	•3			
3222584		SII.T	4		200	72	2	.2			
10000555		SILT	1		160	76	2	.2			
9222561		-SILT		•	170	76	2	2			
8222587		SILT	9		290	7á	2	.2			
8222589		SILT	1		290	88	2	2_			
3222287		" SILT	7		270	80	2	.2			
3222570		SILT	_		180	74	2	.2			
8222591		SILT	7		150	66	2	.2			
3223375				10					•		
8223376 8223377		5555 5555		10	4900	120	2	2.0			
3223378				10	160 _	90	2				
2222224		3323		10	: 7 <u>:</u> -	7§	2	2			
32233B0		7777		10	7800	140	2	3.0			
3223381				10	1100	68	2	.2	 _		
8223382		2727		320 280	2020 28000	720 716	2	38.0			
48223383		2225									
				10	3100	110	2	2			
5223354		2222		10	38 -180	26 24	2	.2	1		
3223388		2222		10 10	36 18	40	2	.2 .2	1		
3223387				10	1100	36					
		6.7		10	1100	20	2	• 2			

.

ssbacher Laboratory Ltd.

GEOCHEMICAL ANALYSTS & ASSAYERS

2225 S. SPRINGER AVE., BURNABY, B.C.

CANADA

TELEPHONE: 299-6910

AREA CODE: 604

CERTIFICATE OF ANALYSIS

TO: NORANDA EXPLORATION CO LTD.

1050 Davie St. Vancouver, B.C.

ATTN: 197 # 8-15 ISLAND GOLD C. STEWART

CERTIFICATE NO. 82163

INVOICE NO. 2134

DATE RECEIVED

DATE ANALYSED 32/03/16

SAMPLE NO.:	% 26	;; Zn	% Cu	oz/T Ag	oz/T gu	-
23339	0.03	3.32	0.34	J.34	0.001	
23390	0.02	0.32	0.06	0.02	0.001	
23391	0.02	0.32	0.01	0.02	0.001	
23392	0.02	0.02	0.03	0.02	0.003	
23393	<u> </u>	2.02	2.13	0.02	0. 01	
23394	0.02	0.02	0.02	0.02	0.701	
23395	0.02	0.02	0.71	0.02	0.001	
23396	0.02	0.02	0.32	0.02	0.331	
23397	0.02	0.02	0.05	0.02	0.001	
23393	2.02	0.02	1.23	2.13	2.211	
23399	0.02	0.04	0.33	0.33	0.001	
23400	0.02	0.32	0.09	0.02	0.005	
23401	0.02	0.02	0.16	0.02	0.001	
23402	0.02	0.02	0.01	0.02	0.001	
23403		2.32	2.22	3.02	<u> </u>	·
23404	0.02	0.04	1.53	0.20	0.004	
23405	0.02	ე. ე6	2.34	0.26	0.0)1	
2340ა	0.02	0.02	0.01	0.02	0.001	
23407	0.72	0.02	0.03	0.02	Õ.002	

Tombas Certified by

LOCATION Island Gold	PROJECT 197 #8-35 SHEET 1
(Mottagami)	SAMPLE Nos. 7.5. 18621
MATERIAL Soil	COLLECTOR C.S. DATE RECEIVED Ang 6/83
M.T.S. 92 F/2 (AII)	ANALYST R.F DATE ANALYSED Aug / 11 /82
REMARKS Cu, Zn, P	b, Ag in ppm.

				· · ·						
		(0	.21/2	me Ha	04. HNO	, -> 5 ₊	J)			
Т.Т	SAMPLE	1	2	3	4	5	6	7	8	661
No.	No.		Cu	Zn	P 6	Au	A			G.C.I. NUMBER
79	P 22906		22	24	2	10	0.2		 	
80	7		16	14	2	10	0. 2		-	
	8		18	22	4	10	0. 2	<u> </u>		
2			10	18	4	10	0.2			
3	10		38	30	2	10	0. 2			
4	(1		8	12	2	10	0.2			
5	12		20	28	2	10	0. 2	 		
6	13		28	56	2	10	0. 2			·
7	P 22914		10	28	2	10	0. 2		 -	
8	P 22916		38	30	4	10	0. 2		 	
9	17		54	42	2	10	0. 2			
90	18		24	30	2	10	0. 2			
1	19		40	20	2	10	0. 2			
2	20		58	26	2.	10	0. 2			
3	2.1		8	8	2	10	0. 2		<u> </u>	
4	22	<u> </u>	94	38	2	10	5.2			-
5	2.3		50	24	2	(5)	8.2			
6	24		58	34	2	10	0. 2			
7	25		130	36	2	10	0.2			
8	26		B	42	2	10	0. 2.	-		
9	P 22927		160	62	2	10	0.2	• • •		
100	Check NL-3		64	60	10	10	0.6			
<u></u>	1 22951		96	36	2	10	0.2			
2	2		18	32	2.	.10	ε. 2	-		
]	3		32	28	2	0	o. 2	··		
4	4		12	18	2	10	0. 2	•		
5	5		22	24	2	10	<i>5</i> . 2			<u> </u>
6	6		26	34	2	10	0. 2			1
7	7		14	22	2	10	0. 2	I	·	
LL0.9	P 22950		112	200		ंठ ।	2			

182

A Company of the contraction of

LO	CATION Islan	d Gold		_ PROJ	ECT	7	#9-15	SHEE	T2	
		(Mattagi	ami)	SAMP	LE Nos	T.s.	18628			/ . /->
MA	TERIAL Soil			_ COLL	ECTOR	C.S.	DATE F	RECEIVED_	Mug.	$\frac{6}{4}$
		•		_ ANAL	.YST	A.F.	DATE	NALYSED	Aug.	11 /82
RE	MARKS	<u> </u>	4 <u>Zn</u>	Ph, A	g in po	m.	 -	<u> </u>		-
		(0	2.4/2	A #C10.	. H~0.	→ 5	_()			
一丁		1 1	2	3	4	5	6	7	8	G.C.I.
F.T. No.	SAMPLE No.		Cu	Zn	Pb	Au	Ag			NUMBER
09	P 22959		18	34	2	10	0.2			
10	60		6	10	2_	10	0.2			
1	6 1		8	24	2	10	0.2	,	<u> </u>	<u> </u>
2	62		30	28	4	10	0. 2			
3	63		28	30	2	10	0.2		<u> </u>	<u> </u>
4	64		8	18	4	10	0. 2		ļ	ļ
5	65		10	18	2	10	0.2		ļ	
6	66		30	12	2	10	0. 2		<u> </u>	
7	67		14	16	2	10	0. 2			
8	68		34	30	2	10	0.2		<u> </u>	ļ
9	6.7		84	30	2	10	0.2		<u> </u>	ļ
20	70		170	56	2	(0	0.2			<u> </u>
21	P 22971		32	26	2	10	0.2	ļ	<u> </u>	<u> </u>
						<u> </u>			<u> </u>	<u> </u>
									<u> </u>	<u> </u>
								<u> </u>	<u> </u>	ļ
				·		<u>. </u>		<u> </u>		
			·					<u> </u>		<u> </u>
]	·	
										<u> </u>
	 		<u> </u>							
	,. <u>.</u>	 	 			†	1	1		
		 	 	 		 		†		
			 		T					
\dashv			 	 	 	 				
-			 	 	 	+	- 	 	+-	
		 	 	 	 	-	 	 	 	+
			 	 	}	+		 -	 	

LOCATION Island Gold	PROJECT 197 #8-40 SHEET 3
(Mattagami)	SAMPLE Nos. 7-3. (\$629
MATERIAL Soil / Silt	COLLECTOR C.S. DATE RECEIVED Aug /9 /82
	ANALYST K.FDATE ANALYSED Aug /13 /82
REMARKS Cu, Z.,	Ph. Ag in ppm.

			(0.29	12 N A	yera. H	~0, →s	-ne)			
T.T.		1	2	3	4	5	6	7	8	
No.		<u> </u>	Cu	Zn	Pb	Au	Ag			G.C.I. NUMBER
43	1 22943		170	56	2	10	0.2			?
4	4		150	96	2	. 10	0.2			+
5	5		160	54	2	10	0.2			
6	6		200	84	2	10	0.2			
7	7	 	130	74	2	10	0.2			
8	8		60	36	2	10	0.2			
9	9	 	140	62	2	10	0.2			
50	P 22950	<u> </u>	84	32	2	10	0.2			
ļ- <u>'</u> -	5 22589	<u> </u>	270	80	2	7	02			
2	30	 	180	74	2		0.2			
3_	91	ļ <u> </u>	150	66	2	7	0.2			
4	92	<u> </u>	2.2	76	4	<2	0.2			
5	93		26	86	6	42	0.2			
6	94		18	76	4	<2	0.2			
7	95	<u> </u>	22	78	6	<2	0.2	,		
8	96	<u> </u>	18	78	4	42	02			
9	97	<u> </u>	24	110	4	<2	02			
60	98		18	56	4	42	0.2			
<u>'</u>	99	ļ	34	74	4	<2	0.2			
2	5 2 2 6 0 0		38	74	6	<2	0.2			
3			14	56	4	42	0.2			
4	٤		24	86	6	<2	0.2			
5	3		16	80	4	<2	0.2			
6	4		14	80	4	ر 2	0.2			
7	5		26	84	8	42	0.2			
8	6		14	58	4	42	0.2	-		
9	7		3 2	190	4	42	0.2			
70	8		34	92	8		0.2			
71	5 22609		56	100	12	42	0.2			(?)

LOCATION Island Gold	PROJECT 19	7 1	#8-40 SHEE	ττ	<u>. </u>	
(Mottagami) MATERIAL Silt / Soil	SAMPLE Nos _	T.S. 18	629 _DATE RECEIVED_	Aua	/2	182
-			DATE ANALYSED	-		

(0.2g/2 ml Heloy. HNO, -> 5 ml)

			CO. 247	- 10-1	HCTO4 . F	,,,,	- ~~ -			
T.T.	SAMPLE	1	2	3	4	5	6	7	8	G.C.1.
No.	No.		Cu	Zn	Pb	Au	Ag			NUMBER
13	5 225 78		46	54	2	42	0.2			824
4	79		68	60	2	<2	0.2			
5	80		32	38	2	42	0.2			
6	81		58	48	2	42	0,2			
7	5 22582		17-	96	2	8	0.2			
8	2 2 2 2 8 4		200	72	2	42	0.2			
9	5 2 2 5 8 3		98	58	2	<2	0.2			
20	5 22585		160	76	2	<2	0.2			
	6		170	76	2	<2	0.2			
2	7		290	76	2	9	0.2			1
3	S 22588		290	88	2	<2	0.2			(824)
4	P 22772		110	36	2	< 2	0.2			?
5	3		98	50	2	<2	0.2			1
6	P 22974		58	30	2	3	0.2			
7	P 22975		760	48	2	16	0.2			
8	P 22728		260	38	2	10	0.2			
7	2.9		16	20	2	10	0.2			
30	30		98	46	3	(0	0.2	-		
1	31		170	48	2	10	0.2			
2	3 2		160	52	2	. (0	0.2			
3	73		580	58	2	10	0.2			·
4	34		280	90	2	9	0.2			
5	35		390	58	2	0	0.2			
6	36		270	62	2	0	02			
7	37		270	68	2	0	0.2			
9	38		190	66	2	.0	0.2			
9	39		170	58	2	10	0.2			
40	40		240	78	2	9	0.2			
1	41		330	66	7	•	0.2			V
42	0 77947		2.60	266.	7	10	0.2			7

LOCATION .	Island	Gold	PROJECT	97 #	8 - 40 SHEE	т
			SAMPLE Nos.	7.5. 120	624	
MATERIAL .	50:1/5:16		COLLECTOR_	C.S.	DATE RECEIVED_	Aug / 9 /82
	92 F/2 CAI		ANALYST	R.F.	DATE ANALYSED	Aug /12 /82
REMARKS_		Cu, z	7, Pb, Ag	in com		

11 .

d 24

3/52

L	OCATION Isla	nd · G	old	PRO	JECT	17	#8-5	6_ she	ET	
_				SAMPLE Nos. T.5 . 18631						
М	ATERIAL Soil /	silt		COL	COLLECTOR C.S. DATE RECEIVE			RECEIVED	Aug	/12/82
	NAS. 92 F/Z,									
	EMARKS					in pem				<u>' — — — — — — — — — — — — — — — — — — —</u>
_					Fe	i. 9.				
	-		2.2 9 /2	2 nl H	(104 · HI	<i>∪0,</i> → !	- ~e)			
Ή.	SAMPLE	1 "	2	3	4	5	6	7	8	G.C.1.
10.	No.	Cu	Zn	Pb	Ag	Au	Mn		Fe	NUMBER
ح	P 22640	62	40	2	0.2	3	230		5.0	
6	1	54	30	2	0.2	24	60		3.8	
7	P 22642	140	48	2	0.2	2	310		4.6	
8	P 22644	100	52	2	0.2	42	510		\$.7	
9	P 22643	88	40	2	0.1	ر2	\$ 00		4.7	
20	Check NL-3	66	58	8	0.6	_	420		2.7	•
1	P 22645	130	66	2	0.2	4	430		5-1	
2	6	28	50	2	0.2	2	540		4,1	
3	P 22647	120	60	2	0.4	3	840		7.0	
4	5 23439	32	64	Ь	0.1	32	850		3.0	
5	5 23441	34	66	8	0.2	22	920		3.0	
6	5 23442	36	66	8	0.2	18	950		2.9	
7	P 23443	32	64	4	0.2	26	\$10		3.5	
8	4	84	64	8	4.2	1500	1300		3.5	
9	P 23445	1300	57	4	4.0	219000	620		3.9	
									<u> </u>	
										
										
_										
[

APPENDIX 2

ASSESSMENT COSTS

NORANDA EXPLORATION COMPANY, LIMITED

STATEMENT OF COST

PR TY:	OJECT - Contented Claim Group PE OF REPORT - Geology and Geochem	DATE:	October 19	983
a)	Wages:			
	No. of Days - 16 mandays Rate per Day - \$80.00 Dates From - July 10 - 26 1983 Total Wages - 16 X \$80.00		\$1,280.0	00
ь>	Food and Accommodation:			
	No. of Days - 16 Rate per Day - \$45.00 Dates From - July 10 - 26 1983 Total Cost - 16 X \$45.00		s 720.0	00
c)	Transportation:			
	No. of Days - 16 Rate per Day - \$37.31 Dates From - July 10 - 26 1983 Total cost 16 X \$37.31		\$ 597.0	00
d)	Analysis		\$2,857.0	O
e)	Cost of Preparation of Report: Author Drafting Typing		500.0 300.0 130.0	0
e)	Other: Supervision - 5 days		\$ <u>650.</u> 0	ō
Tot	al Cost		\$ <u>7,034.0</u>	<u>o</u>

UNIT_COSTS

Unit Costs for - Geology

No. of Days - 10

No. of Units - 10 mandays Unit Costs - \$175.21 / manday

Total Cost 10 X \$175.21

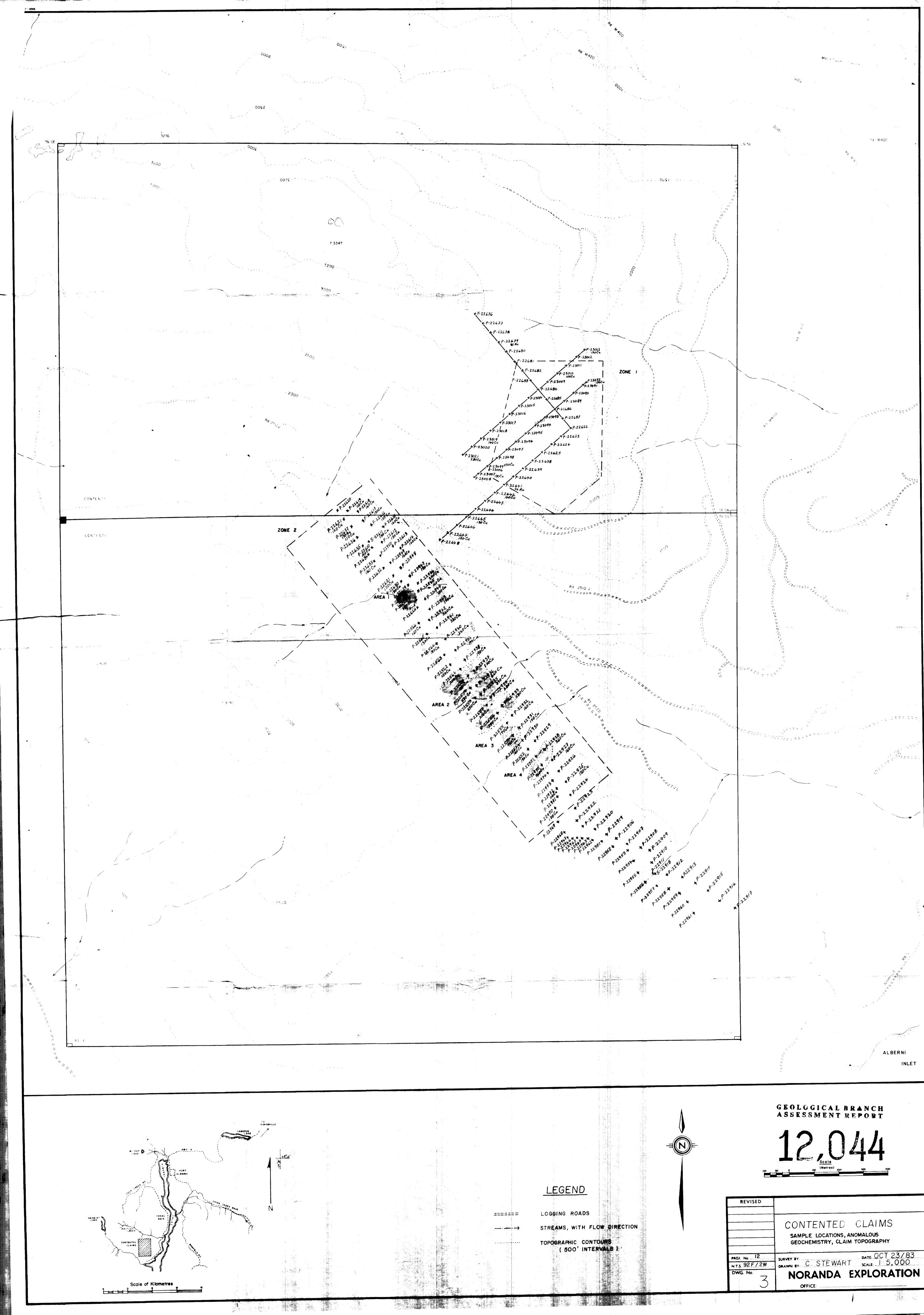
\$1,752.16

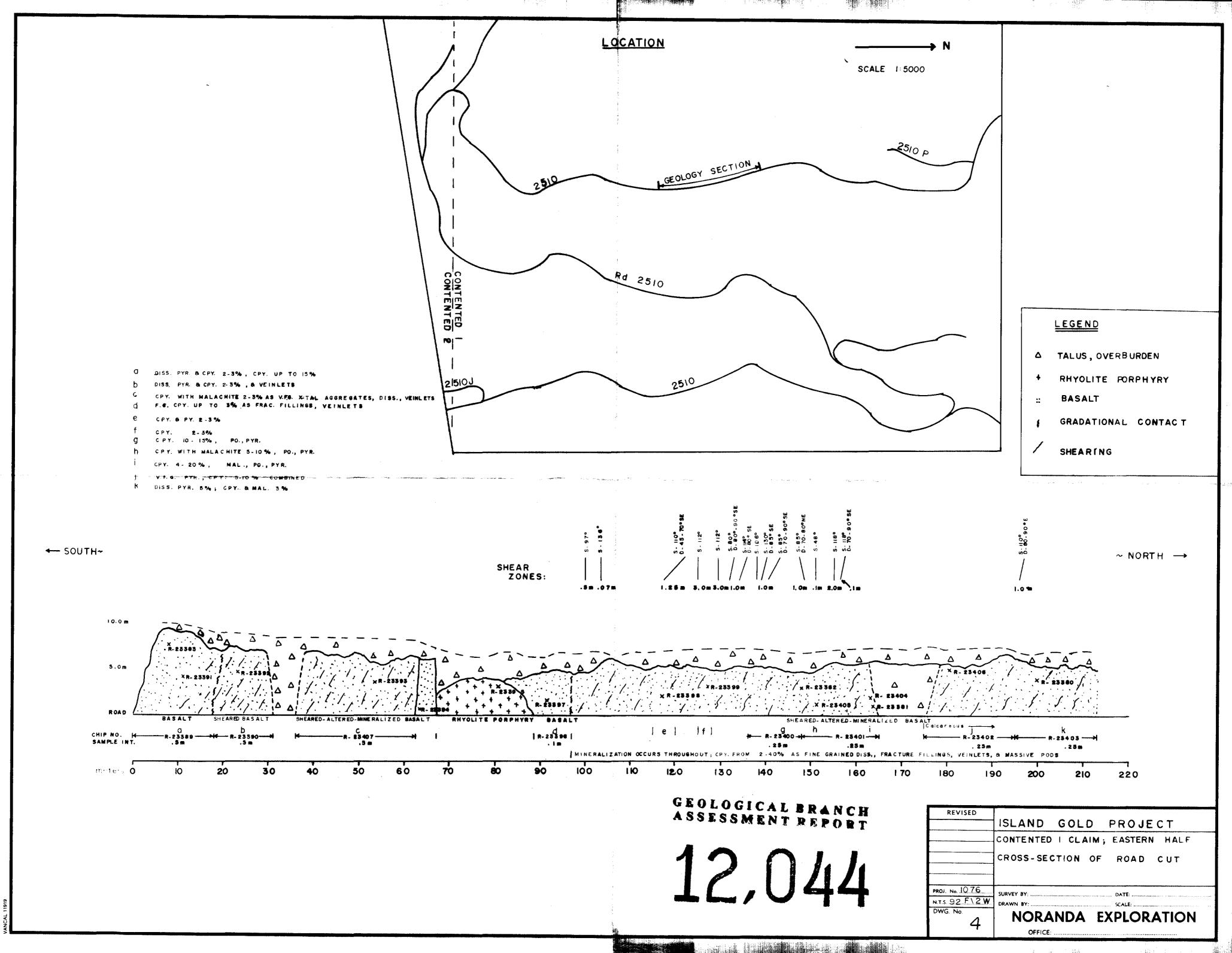
Unit costs for - Geochem

No. of Days -

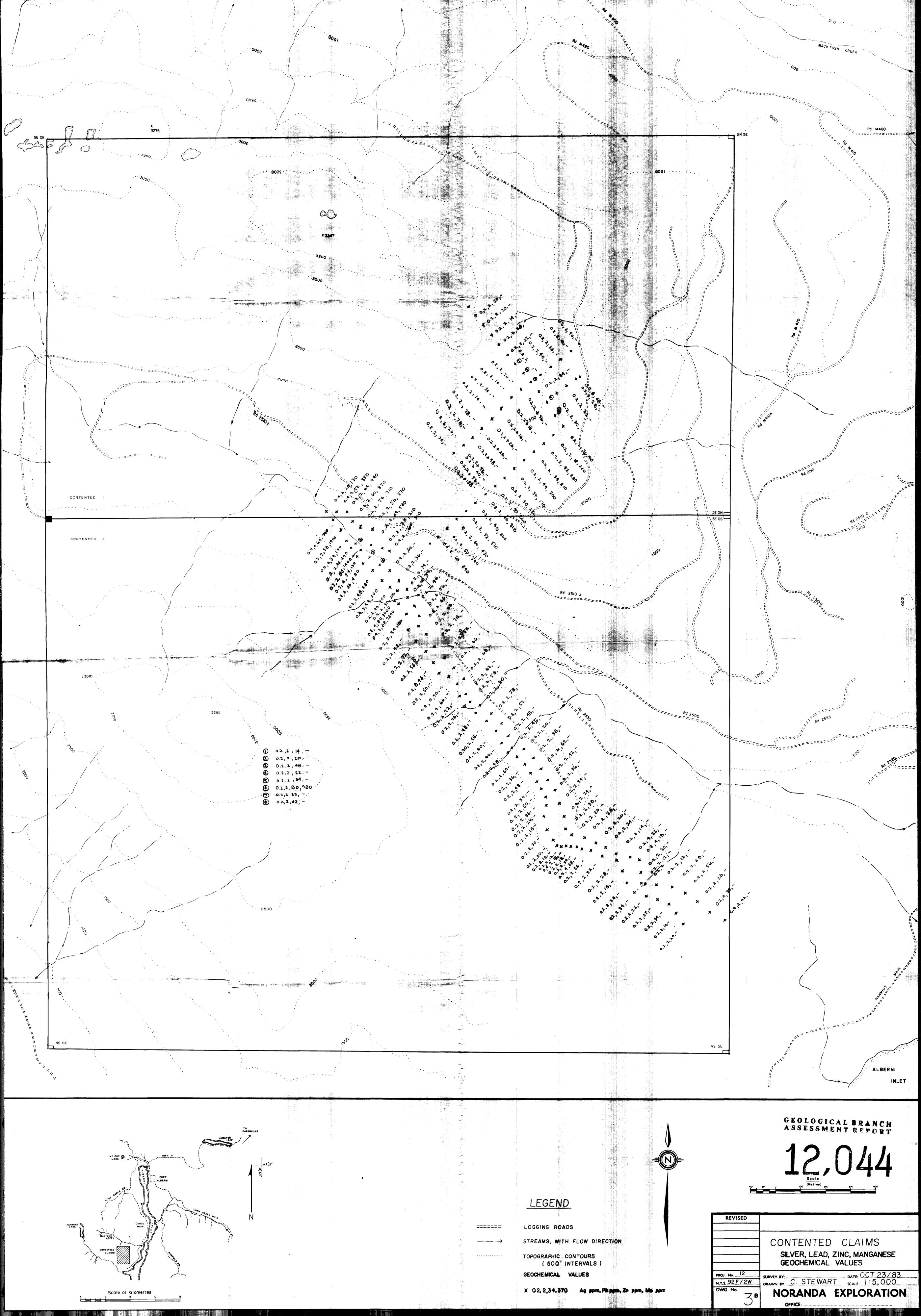
No. of Units - 439 Samples Unit costs - \$12.03 / Sample

Total Cost 439 X \$12.03 \$5,281.84


Total \$7,034.00


NORANDA EXPLORATION COMPANY, LIMITED

DETAILS OF ANALYSES COSTS


Project: Contented Claim Group

Element	No. of Determinations	Cost per Determination	<u>Total</u>
Aп	16	6.50	104.00
Au, Ag, Pb,	Zn 193	3.80	733.40
Au	193	6.50	1,254.50
Ag, Au, Cu,	Pb,Zn 13	8.30	166.00
Ag, Au, Cu,	Pb,Zn 19	30.00	570.00
Mo,Fe	2	1.20	2.40
Ag, Au, Cu,	Mo,Pb,Zn 3	8.90	26.70
Total			\$2,857.00

