84-#125 - 12080

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL ASSESSMENT REPORT

NOBLE 1 - 6 CLAIMS

KAMLOOPS MINING DIVISION

82M/12W

Latitude 51° 38'

Longitude 119° 48'

Owned and Operated by: Placer Development Limited

GEOLOGICAL BRANCH ASSESSMENT REPORT February 1984 122,080

R.H. Pinsent

TABLE OF CONTENTS

.

.

1.0	Summar	у		•••••		• • • •	• • • •		• • • • • •	• - •	1
2.0		ocation	n and A	ccess	• • • •	• • • • •	• • • •	• • • • • •	• • • • • • • • • • • • • •	•••	2 2 2
3.0	Region	al Geol	logical	. Setti	ng .		• • • •			•••	4
4.0	4.2 M 4 4 4.3 M 4 4	ntroduc ount Mc .2.1 (.2.2 h .2.3 S .2.4 (cCorvie .3.1 (.3.2 h	ction Clenna Geology Mineral Soil Ge Ground E Lake Geology Mineral	an Area izatic cochemi Geophy Area izatic	on					 	5 6 8 14 15 16 17 17
	4.4 P 4 4	eavine .4.1 (.4.2 M	Creek Geology Mineral	Area izatio	• • • • • •	· • • • • •	••••	 	· · · · · · · · ·	•••	18 19 19 19 20
5.0	Discus	sion .			• • • •	••••	••••		• • • • • •	•••	21
6.0	Conclu	sions	• • • • • •			••••	••••			•••	22
7.0	Statem	ent of	Expend	litures	•••		• • • •		• • • • • • •	• • •	23
8.0	Statem	ent of	Qualif	icatio	ons .						24

LIST OF TABLES AND ILLUSTRATIONS

Table	I	"Massive Sulphide" Chip Sample Analyses
Figure	1	Claim Location Map: Regional Scale
Figure	2	Claim Location Map: 1:50,000 Scale
Figure	3	Regional Geological Map: 1:250,000 Scale
Figure	4	Geological Map Mount McClennan Area: 1:5,000 Scale
Figure	5	Geological Sketch of the Sunrise Showing
Figure	6	Geological Sketch of the Snow Showing
Figure	7	Noble Claim Soil Geochemistry (Cu): 1:5,000 Scale
Figure	8	Noble Claim Soil Geochemistry (Zn): 1:5,000 Scale
Figure	9	Noble Claim Soil Geochemistry (Pb): 1:5,000 Scale
Figure	10	Noble Claim Soil Geochemistry (Ag): 1:5,000 Scale
Figure	11	Noble Claim Geophysical Survey: Magnetometer and
		In Phase Data: 1:5,000 Scale
Figure	12	Noble Claim Geophysical Survey: VLF In Phase and
		Quadrature Data: 1:5,000 Scale
Figure	13	Noble Claim Geophysical Survey: VLF Fraser Filter
		and In Phase Data: 1:5,000 Scale
Figure	14	Noble Claim Geophysical Survey: VLF Data with
		Interpretation: 1:5,000 Scale
Figure	15	Location Map: McCorvie Grid: 1:20,000 Scale
Figure	16	McCorvie Grid Soil Geochemistry (Cu): 1:5,000 Scale
Figure	17	McCorvie Grid Soil Geochemistry (Zn): 1:5,000 Scale
Figure	18	McCorvie Grid Soil Geochemistry (Pb): 1:5,000 Scale
Figure	19	McCorvie Grid Soil Geochemistry (Ag): 1:5,000 Scale
Figure	20	McCorvie Grid Soil Geochemistry (Hg): 1:5,000 Scale
Figure	21	McCorvie Grid Geophysical Survey: VLF In Phase and
		Quadrature Data: 1:5,000 Scale
Figure	22	McCorvie Grid Geophysical Survey: VLF Fraser
-		Filter and In Phase Data: 1:5,000 Scale
Figure	23	McCorvie Grid Geophysical Survey: VLF Data with
_		Interpretation: 1:5,000 Scale

(ii)

APPENDICES

Appendix	Ι	Soil	Geochemical	Data:	Noble Gri	Ĺd
Appendix	II	Soil	Geochemical	Data:	McCorvie	Grid
Appendix	III	Soil	Geochemical	Data:	McCorvie	Road Section
Appendix	IV	Bulk	Sediment Geo	chemica	al Data:	Peavine Creek

1.0 Summary

The Noble Claims on Mount McClennan, near Clearwater, were staked to cover three small exhalative Pb, Zn, Ag mineral prospects which are located in deformed strata belonging to the Eaglebay Formation. The claims also cover two vein Pb, Ag prospects, a Au occurrence and a Au, As stream sediment anomaly.

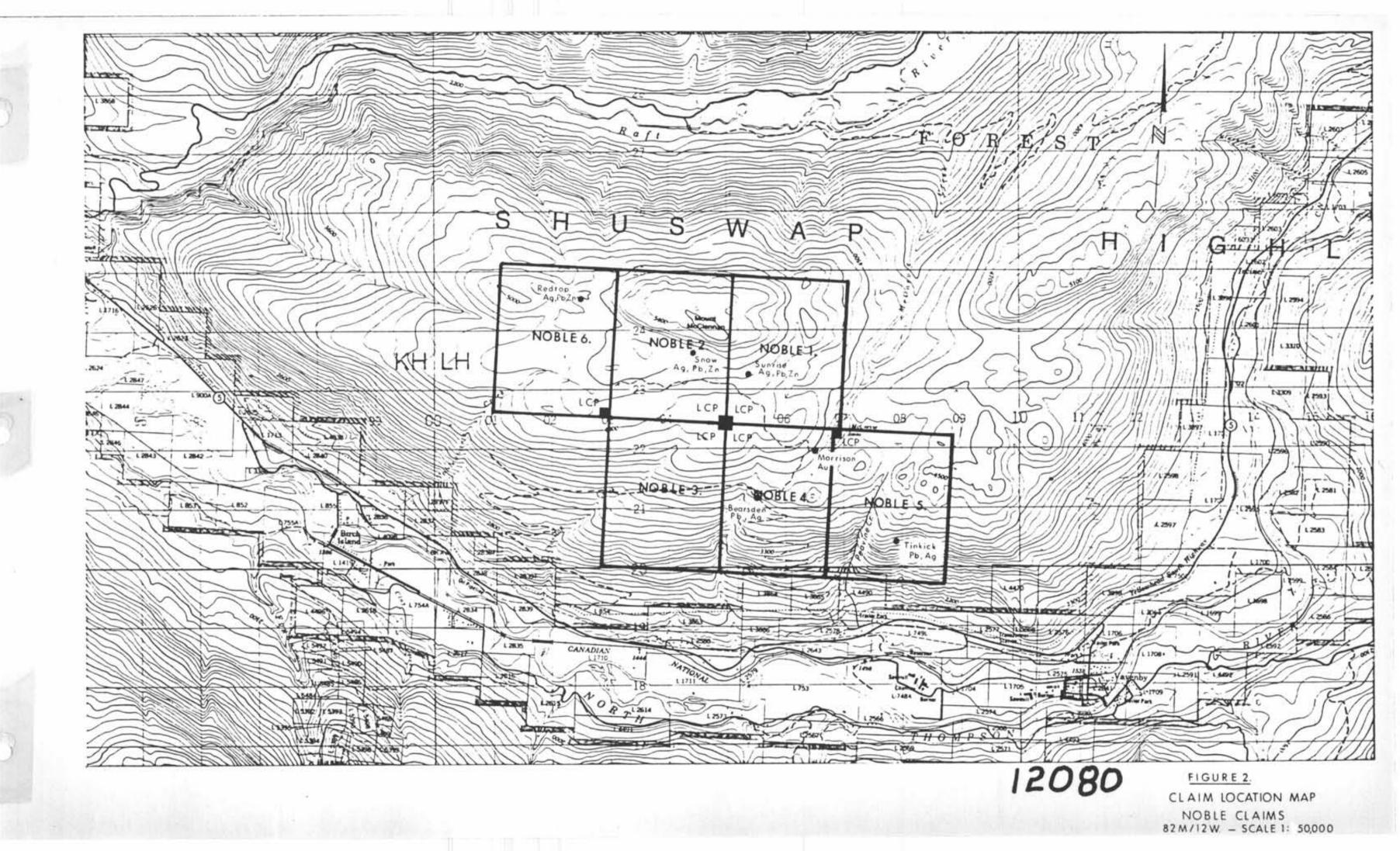
The exhalative mineralization had been explored previously and the programme conducted by Placer Development Ltd. was designed both to assess the nature of the mineralization and the quality of the existing data. Company personnel examined the mineralization, conducted a limited geochemical survey and ran geophysical surveys over the main area of interest. The results confirm the presence of several small layers of exhalative Pb, Zn, Ag mineralization within a thick (300 m) and extensive package of pyritic quartz sericite schist. The package appears to be warped into an east-west oriented antiform which displays a shallow plunge to the east.

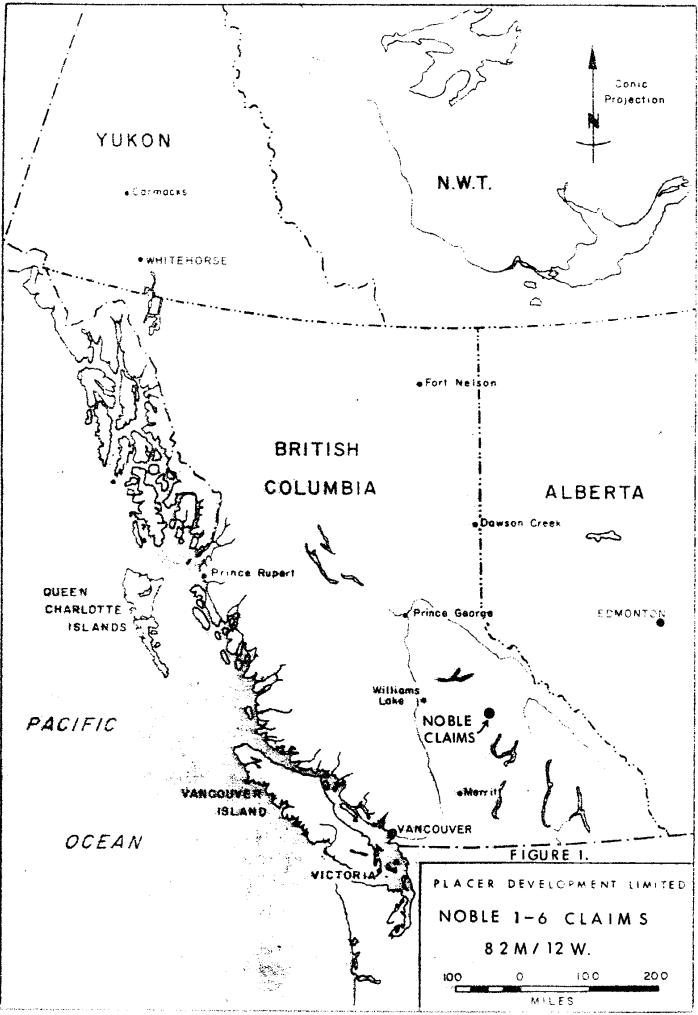
A small geochemical and geophysical programme was conducted over the inferred location of an old Au showing. The workings were not located. The grid was constructed over a till-choked topographic depression which reflects a major fault system running down the axis of the McCorvie Lake System. The fault was located but no mineralization was detected.

Bulk sediment samples were used to bracket the source of a heavy mineral Cu, Pb, Zn, Cd, Ag, Au and As anomaly previously located in Peavine Creek. The source is inferred to be located at approximately the 3800' (1158 m) contour. The metal source appears to be roughly coincident with an occurrence of boulders of quartz-carbonate altered meta-basalt.

-1-

2.0 Introduction


2.1 Location and Access


The Noble Claims (1-6) consist of 120 contiguous units located on the south facing flank of Mount McClennan (latitude 51° 38', Longitude 119° 48') in N.T.S. area 82M/12W. The claims are located to the north of the North Thompson River, midway between the communities of Birch Island and Vavenby (Figures 1 & 2). The claims are readily accessible by means of forestry roads which switchback their way up the lower slopes of Mount McClennan from the main highway in the valley of the North Thompson River.

2.2 Property History and Ownership

The Noble Claims were staked to cover (1) three Pb, Zn, Ag mineral prospects (Redtop, Snow, Sunrise) located on an upland plateau immediately below the summit of Mount McClennan; (2) two Pb, Ag showings (Bearsden and Tinkirk) on the steep south facing slope of the mountain and (3) a Au occurrence (Morrison) thought to be located in the vicinity of McCorvie Lake (Figure 2).

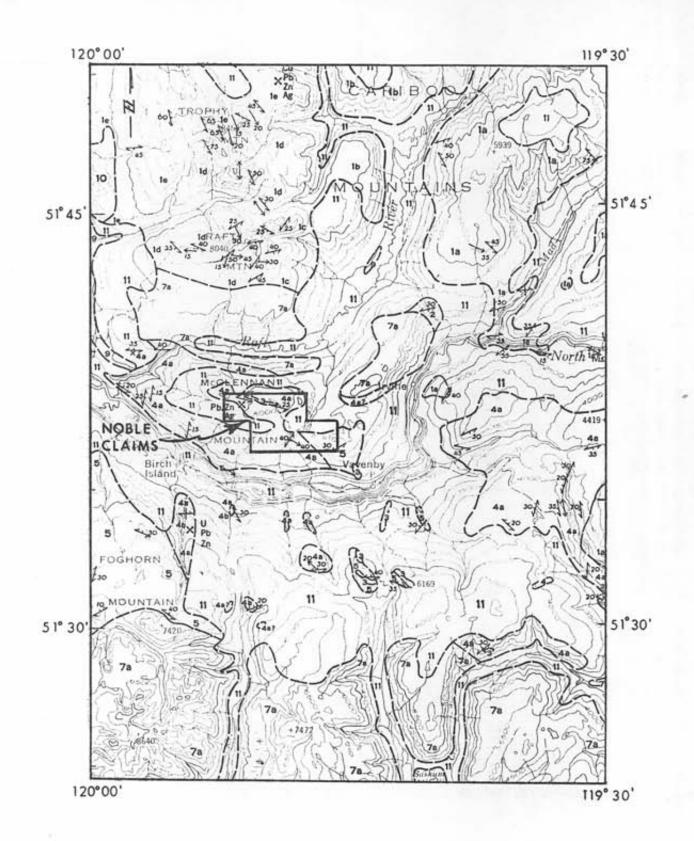
The Redtop, Snow and Sunrise properties were located and trenched in the 1920's and the first holes were drilled in the 1940's (reference assessment report 6931). The Mount McClennan property was subsequently examined by H.C.B. Leitch in 1960 (assessment reported 436) and it was acquired by Crowpat Minerals Ltd. in 1966. Crowpat drilled three holes on the property for a combined depth of 1,505' (459 m). Calbay Mining Croporation Ltd. staked the same ground in 1969 and did a considerable amount of trenching. The company also drilled five short holes for a total combined depth of 1,218' (371 m). The results of these programmes are not available.

The Nimsic Claim Group was staked on Mount McClennan by John Kerr of Kerr, Dawson and Associates Ltd. in 1975. Kerr-Dawson conducted a preliminary examination of the Snow and Sunrise (Naomi) mineral prospects and recognized the exhalative nature of the mineralization (assessment report 5813). Castlemaine Explorations Ltd. acquired the Nimsic property in 1976 and optioned it to Canadian Nickel Co. Ltd.

Canadian Nickel Co. Ltd. constructed a 98.75 line-km grid on the property in 1976 and conducted a major surface exploration programme in 1977. The company mapped the property at a scale of 1:5,000; analyzed 1600 soil samples for Cu, Zn, Pb and Ag and ran a magnetometer survey over the entire grid. In addition, they ran a more limited VLF EM survey (assessment report 6603). The option passed to Craigmont Mines Ltd. in 1978. Craigmont conducted additional geophysical surveys and put in five drill holes for a combined depth of 382.9 m (assessment report 6931).

The Nimsic and neighbouring Quartz claims were subsequently allowed to lapse and the Noble claims were staked by Placer Development Ltd. personnel in 1983. The Noble 1-5 claim group, consisting of 100 contiguous units, was staked between 22nd and 25th of March 1983 and the Noble 6 claim, consisting of an additional 20 units, was added on the 8th of June 1983. The claim blocks were recorded on 30th of March, 1983 and 27th of June, 1983 respectively.

-3-


<u>Claim Nam</u>	e <u>Units</u>	Record No.	Expiry Date
Noble 1	20	4388(3)	March 30, 1984
Noble 2	20	4389(3)	17 11 19
Noble 3	20	4390(3)	ti ti li
Noble 4	20	4391(3)	ti 19 11
Noble 5	20	4392(3)	11 17 11
Noble 6	20	4561(6)	June 27, 1984

3.0 Regional Geological Setting

Figure 3, a detail from the 1:250,000 scale geological map of the Adams Lake Area (Map 48-1963 by R.B. Campbell) shows that the Noble Claims are underlain by dark grey and brown phyllite, limestone, sericitic quartzite, minor greenstone, quartz-feldspar-chlorite gneiss and metaconglomerate (Unit 4a) which is Permian or earlier in age. The strata are currently assigned to Mississipian Eaglebay Formation (Schiarizza; B.C.M. of E.M. and P.R. Geological Fieldwork, 1981, Paper 1982-1).

The Eaglebay Formation was deformed and metamorphosed during regional uplift of the Shuswap Metamorphic Complex to the east and it was subsequently cut by two east-west oriented, post-orogenic, Cretaceous, quartz monzonite batholiths (Unit 7a; Figure 3). The Raft River Batholith truncates the succession on the north face of Mount McClennan and the Baldy Batholith cuts the formation south of the North Thompson River (Figure 3).

-4-

0_____5_ 10 Km

REGIONAL GEOLOGICAL MAP Mount McClennan Area

FIGURE 3.

detail from GSC Map 48-1963

LEGEND

.

	PLEISTOCENE AND RECENT Glacial deposits and recent alluvium; till, gravel, sand, silt, and
ĺ	Ciay; lew if any bedrock exposures
ł	PLEISTOCENE AND/OR EARLIER
	10 Olivine basalt; cinder cones, blocky flows, breccia, and agglomerate
zoic	TERTIARY MIOCENE OR PLIOCENE
CENOZOIC	9 Flat-lying olivine basalt flows; minor breccia and gravel
ĺ	TERTIARY (?)
	8 Conglomerate
MESOZOIC	JURASSIC AND/OR CRETACEOUS AND (?) EARLIER 7a, biotite granodiorite and granite; 7b, hornblende diorite; 7c, muscovite granite; 7d, biotite-hornblende syenite, biotite granodiorite, hornblende diorite, and felsite; includes septa and inclusions of intruded rocks
	6 Serpentinite
ARLIER	PERMIAN OR EARLIER5Greenstone, greenschist, chlorite schist, phyllite, limestone, quartz-sericite schist, quartzite, volcanic agglomerate
PALAEOZOIC OR EARLIER	4a, dark grey and brown phyllite (commonly limy), limestone, sericitic quartzite; minor greenstone, quartz-feldspar-chlorite gneiss, and meta-conglomerate; 4b, trachytic tuff and breccia
ALAEO	3 Grey and buff weathering, white, grey, and buff marble and limestone; minor greenstone and phyllite
£	2 Undivided; includes rock types common to 4a and 5; minor quartz-mica schist and amphibolite
	AGE UNCERTAIN
	1 SHUSWAP METAMORPHIC COMPLEX 1a, characterized by well foliated granitic gneiss; quartz-feldspar- biotite gneiss, quartz-feldspar-hornblende gneiss, amphibolite; minor quartz-mica schist, quartzite, marble, and skarn; abundant and locally dominant pegmatite, muscovite granite, and biotite granodiorite; lb, exclusively or dominantly biotite granodiorite; lc, characterized by quartz-mica schistose gneiss (commonly garnetiferous), amphibolite, quartzite, marble, and skarn; pegmatite, muscovite granite, biotite granodiorite; minor granitic gneiss; ld, similar to unit lc with abundant and locally dominant dykes and sills of pegmatite, muscovite granite, and biotite granodiorite;
	le, undivided, may include all rock types found in units la and lc. The granitic rocks may be equivalent to those of 7
	Small rock outcrop
	Geological boundary (defined, approximate, and assumed)
	Foliation including rock cleavage, schistosity, gneissosity, and bedding (inclined, vertical, and horizontal)
	Lineation including fold axes, crenulations, mineral lineations, and bedding-cleavage intersections (plunging, horizontal)
	Fossil locality.
	Mineral prospect

4.0 Work Performed 4.1 Introduction

Placer Development Ltd. personnel conducted two exploration programmes on the Noble Claim Group (8-14th June and 10-20th September) for a total of 67 man-days of field activity.

The programme involved (1) an examination and assessment of the Pb, Zn, Ag mineralization exposed in the Redtop, Snow and Sunrise workings (2) an attempt to locate the Morrison Au occurrence and to test the Au potential of a structural break underlying the McCorvie Lake system and (3) an attempt to locate the source of a Au, As stream sediment anomaly in Peavine Creek.

The mineralization exposed on Mount McClennan was sampled and the grid utilized by Canadian Nickel Co. Ltd. was reconstructed. A total of 27 line km of ground geophysical data (VLF EM and Magnetometer) was obtained utilizing the grid and 300 soil samples were collected to check and to extend the original soil data.

A small (3.4 line km) grid was constructed perpendicular to an inferred structure which runs down the axis of McCorvie Lake (azimuth N37°E). The grid was located over the probable site of the Morrison Au showing (Figure 2). The showing was not located. A VLF EM 16 survey was conducted on the grid and 71 B horizon soil samples were collected for analysis. The Au As anomaly on Peavine Creek was bracketed by means of bulk silt sediment samples which were collected at approximately 200' (61 m) elevation intervals between the 2600, (792 m) and the 4300' (1311 m) contours.

4.2 Mount McClennan Area 4.2.1 Geology

Figure 4, adapted from the work of Craigmont Mines Ltd. (assessment report 6931), shows the distribution of outcrop and the inferred geology of the plateau portion of Mount McClennan. Natural outcrop is largely confined to the cliff section below the summit of the mountain. All the exposures on the plateau appear to have been created by past exploration activity.

The Eaglebay succession on Mount McClennan is comprised of a mixed package of largely undifferentiated meta-sedimentary and meta-volcanic strata. It consists of siliceous quartz sericite (+ biotite and /or chlorite) schist (Unit 1), recrystallized but recognizable acid volcanic tuff (Unit 2), recrystallized mafic volcanic tuff (Unit 3), meta-andesite (Unit 4), recrystallized limestone (Unit 5) and locally graphitic meta-argillite (Unit 6). In addition, there is local development of an epidote-magnetite rich calc silicate "skarn" (Unit 7). The detail of the stratigraphy is poorly known and there appears to be considerable variation in facies.

The Redtop, Snow and Sunrise mineral showings consist of stratabound lenses of massive, semi-massive and disseminated Pb, Zn, Ag mineralization in a package of weakly to strongly pyritiferous, siliceous, recrystallized acid volcanic tuff and related sediment (Units 1 and 2). The mineralized section is estimated to be approximately 300 m thick in the Redtop trenches in the northwest and it can be traced for a distance of 3 km to the Sunrise prospect in the southeast. The mineralized part of the section appears to overlie limestone at Redtop and it includes a minor amount of intercalated limestone, meta-argillite and recrystallized mafic tuff. The package strikes northwest to southeast and it dips to the northeast under a prominent limestone bluff, located below the summit of the mountain. The mineralized unit is directly overlain by limestone in the south east but it is separated from it by a small amount of argillaceous tuff in the vicinity of the Snow prospect. At Redtop the pyritic unit is overlain by meta-argillite.

The Eaglebay strata on Mount McClennan have been metamorphosed to lower greenschist facies. The strata are intensely deformed and the rocks commonly display a pronounced foliation parallel to bedding.

The assemblage as a whole appears to have been deformed into a shallow antiform about an axis which runs east west, subparallel to the

-7-

Canadian Nickel Co. Ltd. baseline (Figure 4), and plunges at a shallow angle to the east. The southern limb of the fold is very poorly exposed.

4.2.2 Mineralization

The character of the mineralization exposed on Mount McClennan has been discussed in detail by Dr. J.F. Walker of the G.S.C. (Summary Report: 1930 A); H.C.B. Leitch, 1962 (Assessment report 436) and J.M. Dawson; 1976 (Assessment report 5813). The early reports describe the occurrence of a "replacement " sulphide desposits. Since the work of J.M. Dawson, it is generally accepted that the mineralization has an exhalative origin.

(1) Sunrise Showing

The Sunrise showing (Figure 4) was mapped and sampled by Leitch. His map of the area, reproduced in Figure 5, shows that a large number of pits and trenches had been dug on the property in the early days of exploration. According to Dawson, the workings expose "at least two massive sulphide horizons (mostly pyrrhotite, pyrite and sphalerite) varying from 1-4 feet thick (0.3-1.2m) and two (?) thinner bands less than 6 inches (0.15m) in width". The mineralized layers are nearly flat lying and Leitch suggested that they were located close to the nose of an easterly plunging anticline.

Replacement moterial - Xiline 1s. Good grade of altered alline is. - ? float with gelena, sphalerite & cpy. - ? float Lille mineralization in bottom of put. WINZE 15' deap from surface 1530 6sulphides du posed 12' de pti. Rusty weethering pyrite in bended site root pb-in + py. 44 . 1.5. 6 messive sulpaides by Dyrr, portin Cu - gg-serverte setust overligs SF4 48716 A 4'solid sulphides puris, cpy, esph SF1, SF2; 48709A SF3 Nessive sulphiers of oit contains parous, granular rock with galano. F gelena 48713A Base * 1528 5-74 PIT #4 TR. *6 Chefly py + 6 40 . 1 Mossive sulphides "I"+" sphelerite 600 700 900' 0+00 800 TR. 4 1 galene sph in partal overlain by 2% sile game of minevalightics 0+00 2335 aps., coy ADIT akene, Pry. ssemt 73527 sulphides. 0 92 -Old pots DNAFT 00+ B' to water below weler +Cabin + 20 W . 6'+ 0 FIGURE 5. GEOLOGY of the SUNRISE SHOWING over burclen Noble 1. Claim 100 (Geology after Leitch; A.R. 436) Feet

TABLE 1 "MASSIVE SULPHIDE" CHIP SAMPLE ANALYSES Sunrise Prospect: Noble 1 Claim

<u>Main Showing</u>	Showing (1.2 m massive pyrrhotite with traces of						
	chalcopyrite and sphalerite)						
<u>Chip Sample</u>	Cu	Zn	Рb	Ag	Au		
	(%)	(%)	(ppm)	(ppm)	(ppm)		
1) SF1	0.17	0.11	134	1.2	0.04		
2) SF2	0.16	0.12	72	1.0	0.03		
3) 48709A	0.18	0.06	260	8.0	<0.02		
East Trench	(1.0 m py	rite, pyrrh	otite, spha	alerite wi	th minor		
	chalcopyr	ite and gal	ena)				
<u>Chip Sample</u>	Cu	Zn	Рb	Ag	Au		
	(ppm)	(%)	(%)	(ppm)	(ppm)		
1) SF 3	610	3.02	0.51	73	0.59		
2) 48713A	400	0.34	0.21	42	0.26		
<u>Central Trench</u>	(2.0 m m	assive pyri	te, pyrrhol	tite, spha	lerite		
	galena a	nd minor ch	alcopyrite)			
<u>Chip Sample</u>	Cu	Zn	Pb	Ag	Au		
	(%)	(%)	(%)	(ppm)	(ppm)		
1) SF4	0.13	18.3	2.62	225	1.73		
2) 48716A	0.13	14.9	2.09	179	1.29		
<u>West Trench</u>	(Chips f	rom blocks	of massive	pyrite,			
	pyrrhoti	te and spha	lerite)				
<u>Chip Sample</u>	Cu	Zn	Pb	Ag	Au		
	(ppm)	(%)	(ppm)	(ppm)	(ppm)		
1) 73527	600	12.0	820	38	0.05		

TABLE 1 Cont'd... "MASSIVE SULPHIDE" CHIP SAMPLE ANALYSES Snow Prospect: Noble 2 Claim

<u>Old Trench Showing</u> (Chips from mineralized blocks: pyrite, pyrrhotite, sphalerite and minor chalcopyrite)

<u>Chi</u>	<u>p Sample</u>	Cu	Zn	Рb	Ag	Au
		(%)	(%)	(ppm)	(ppm)	(ppm)
1)	73502	0.17	0.39	620	50	<0.02

<u>New Trench Showing</u> (Chips from mineralized blocks: pyrite, minor pyrrhotite, sphalerite, galena and chalcopyrite)

<u>Chi</u>	<u>p Sample</u>	Cu	Zn	Pb	Ag	Au
		(%)	(%)	(%)	(ppm)	(ppm)
1)	48704A	1.18	0.80	2.10	140	0.12
2)	73501	0.76	0.78	0.08	87	<0.02

<u>Upper Snow Trench</u> (Chips taken across 2.0 m of massive to semi-massive pyrite)

<u>Chip_Sample</u>		Cu	Zn	Рb	Ag	Au
		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1)	73524	95	25	3	<0.2	<0.02

Redtop Prospect: Noble 6 Claim

<u>West Trench</u> (2.0 m semi-massive pyrite with minor sphalerite and galena in quartz-sericite schists)

<u>Chip Sample</u>	Cu	u Zn Pb		Ag Au	
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1) 73513	145	470	810	3.4	<0.02

Continous chip samples were collected across lenses of massive sulphide exposed in three of the old workings and random chips were collected from mineralized blocks adjacent to a fourth. The samples were analyzed for Cu, Zn, Pb, Ag and Au. The results are shown in Table 1. The data show that the main pyrrhotite-rich sulphide lens is weakly mineralized and that the more pyritic sulphide lenses contain variable amounts of Pb, Zn and Ag. The main, east and central showing were sampled on two occasions to test for reproducability. The data in Table 1 suggest that the mineralization is reasonably homogenous.

(2) Snow Showing

The Snow showing, which was also described by J.M. Dawson and H.C.B. Leitch, is reported to consist of four "semi-comformable" massive sulphide bands in a package of essentially flat-lying, carbonate -bearing, quartz sericite schist 40 feet (12.2m) thick. The mineralization is descibed as consisting of one band 4 feet (1.2m) thick and three others 1-2 feet (0.3-0.6m) thick.

The bands were originally exposed in a north-south oriented trench which was mapped by Leitch in 1960 (Figure 6). The walls of the trench have since collapsed and it is no longer possible to identify the mineralization in situ. Sample 73502, in Table 1, represents a

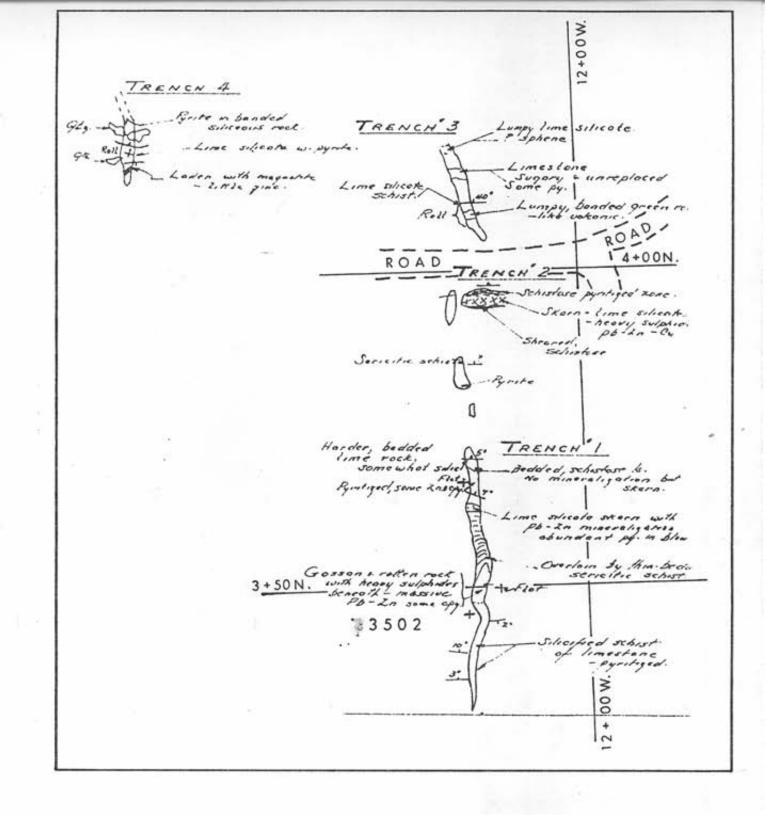


FIGURE 6.

GEOLOGY of the SNOW SHOWING

Noble 2 Claim

(Geology after Leitch; A.R. 436)

random chip sample of "massive sulphide" collected from blocks adjacent to the inferred location of the main zone of mineralization. The sulphide sample consists of coarse granular pyrite with minor sphalerite, galena and chalcopyrite. Similar material, presumeably from the same horizon, appears to be exposed in a more recent trench located 150 m to the west (Figure 4). The floor of the trench consists of angular blocks of relatively fresh, massive and semi-massive, coarse-grained, bedded, sulphide. Two random chip samples were also collected from the mineralized blocks in the floor of the trench. All three samples contain a minor amount of Cu, Zn and Pb and a significant (>50 ppm) amount of Ag (Table 1).

Figure 4 shows that acid volcanic tuffs (Unit 2) are exposed in two trenches immediately below the limestone bluffs to the north of the Snow mineral showing. The tuffs are weakly to intensely pyritic and semi-massive to massive, coarse, pyrite is exposed over a 2.0 m width close to the top of the section. A chip sample across the zone (sample 73524: Table 1) shows it to be barren.

Hunter (assessment report 6603) examined the lower Snow mineralization in detail and concluded that the sulphides occurred in units which display definate graded bedding of both guartz and pyrite. He concluded that Zn

4

-12-

rich bands graded upward into Cu rich within a given unit. In addition, he noted that chalcopyrite appears to be partially mobilized into north-south oriented tension factures.

(3) Redtop Showing

The Redtop showings, (Figure 4) are described by J.F. Walker (1930) and H.C.B. Leitch (1962). The occurrence appears to consist of several pyrite, sphalerite and galena "replacements" in silicified and altered limestone. The best showing is described by Leitch as follows:

"Number 4 workings, pit or trench, contain crystalline limestone and silicified rock in which massive sulphide mineralization occurs among thin bands of disseminated sulphides. The sulphides consist chiefly of pyrite, galena, sphalerite but chalcopyrite shows at a number of points."

The Redtop trench system has been altered and expanded since Leitch visited the property and the above occurrence has not, so far, been located. A 5' (1.5m) chip sample (B8531-B) collected by H.C.B. Leitch across the better mineralized portion of the above section was reported to run 0.005 oz/ton Au, 0.55 oz/ton Ag, 0.08% Cu, 2.75% Pb and 3.15 % Zn. The four new trenches on the Redtop prospect expose a 300 m thick section of rusty, pyritic, quartz sericite schist with local intercalations of shale and limestone. The mineralization consists mainly of disseminated pyrite but trace amounts of sphalerite and galena were also observed in calcareous schist above and below the main limestone interbed (Figure 4). Sample 73513 (Table 1) is a chip sample collected from a 2.0 m thick, highly pyritic, interbed close to the base of this limestone unit in the western-most of the Redtop trenches.

4.2.3 Soil Geochemistry

Canadian Nickel Co. Ltd. constructed a grid on the Mount McClennan property in 1976 and collected 1600, B-horizon soil samples. The samples were initially collected at 100 m intervals on north-south lines spaced 150 m apart. The sample spacing was subsequently reduced to 50 m over much of the grid and locally it was reduced to 25 m. In addition, the spacings between lines was reduced by half in a few critical areas (assessment report 6603). The -80 mesh fraction was analyzed for Cu, Zn, Ag and, in some cases, Pb.

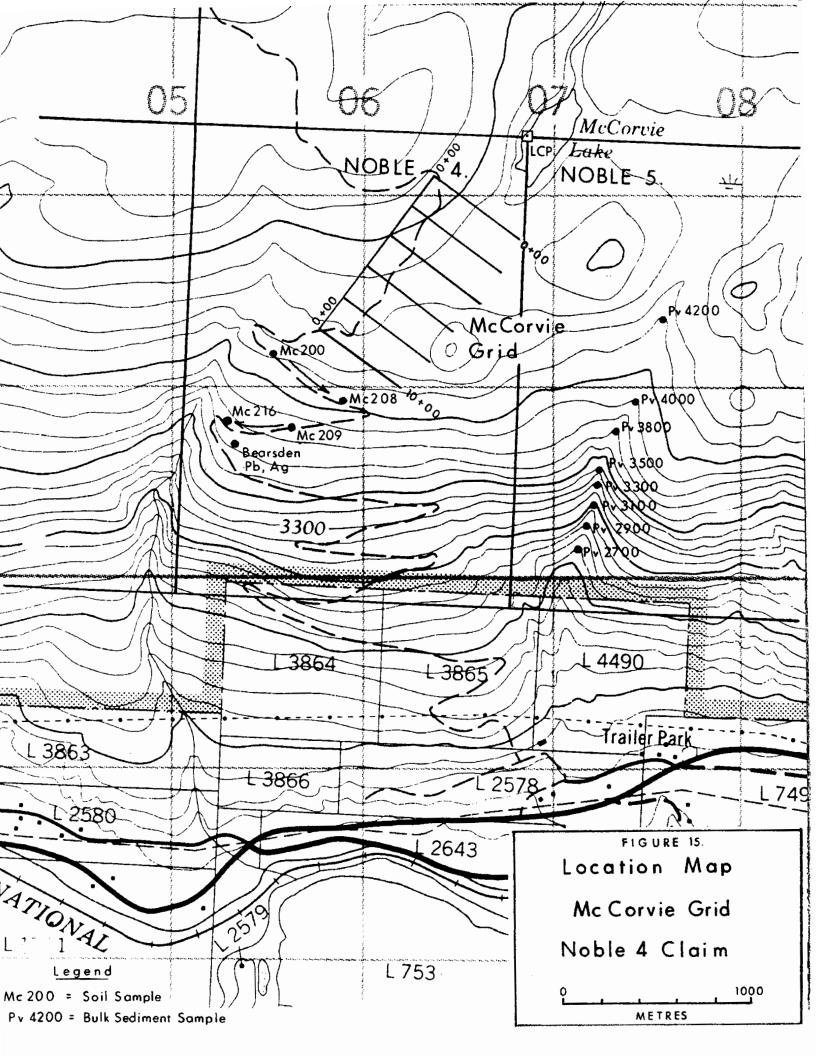
The soil data obtained by Canadian Nickel Co. Ltd. was not effective in outlining known areas of mineralization and it was not able to demonstrate continuity between the mineral showings. The results define two broad zones of single point anomalies which appear to correlate with the two limbs of the antiform. Placer Development Ltd. personnel collected 300 B-horizon soils samples on selected areas of the property. The samples were shipped to the Company Research Laboratory in Vancouver and the -80 mesh fraction was analyzed for Mo, Cu, Zn, Pb and Ag. A total of 183 samples were also analyzed for Cd and Mn. The results are listed in Appendix I and the values for Cu, Zn, Pb and Ag are posted in Figures 7, 8, 9 and 10.

The results show broad agreement with the Canadian Nickel Co. Ltd. data. Chemical dispersion appears to be inhibited both by the presence of carbonate in the soil and the local presence of a transported till. Individual samples anomalous in one or more of Cu (>120 ppm), Zn (>250 ppm), Pb (>50 ppm) or Ag (>0.6 ppm) define point anomalies within the over all trend. The data is consistent with the observed presence of a large number of mineralized horizons within a thick stratigraphic package.

4.2.4 Ground Geophysics

A total of 27 line km of ground magnetometers and VLF (E-M 16) data was collected on the existing grid. Data was recorded at 10 m intervals on lines spaced 150 m apart.

The ground magnetic data (Figure 11) show that the pyrrhotite lens on the Sunrise prospect is limited in extent and that there is no indication of extensive pyrrhotite mineralization on the north limb of the inferred antiform, between the Redtop and Sunrise mineral prospects. Local magnetic peaks were observed on many of the north-south lines. These are attributed to local, minor, development of pyrrhotite within the over-all, 300 m thick, pyritic rock package. Four lines of magnetic data in the southwest corner of the survey area show a strong and coherent magnetic anomaly which correlates with a moderate to weak VLF conductor. The anomaly is located in an area of calc-silicate "skarn" (Unit 7) on the southern limb of th inferred antiform.


The VLF survey was undertaken using base stations at Annapolis and Cutler. The survey reveals the presence of a series of semi-continuous conductors which appear to represent pyritic, pyrrhotitic and/or graphitic interbeds within the Eaglebay Formation (Figures 12-14). The surface trace of the conductors is consistent with the presence of an inferred antiform which strikes roughly east-west and plunges a few degrees to the east (Figure 4).

4.3 McCorvie Lake Area

4.3.1 Geology

The McCorvie grid was constructed over a topographic depression which is defined by the axis of McCorvie Lake (Figure 15). The depression is presumed to be controlled by a fault which strikes approximately northeast southwest. The depression is filled with glacial till and there is very little outcrop exposed on the grid. An outcrop of deformed and carbonatized graphitic and chloritic sericite schist is exposed in a road cut in the south

-16-

west corner of the grid and an outcrop of deformed meta-basalt was located off the grid to the northeast.

Canadian Nickel Co. Ltd. mapped deformed quartz sericite schist in a number of road cut outcrops on the projection of the fault system exposed on the lower slopes of the mountain (assessment report 6603). The fault is inferred to dip at approximately 45° to the southeast.

4.3.2 Mineralization

No mineralization has so far been located on the McCorvie grid although it was constructed over the inferred location of the Morrison Au showing (assessment report 436). Leitch describes the showing as consisting of a short shaft leading to a some-what caved tunnel. A channel sample taken across quartz lenses and altered country rock is reported to have run 0.4 oz/ton Au.

The Bearsden Pb, Ag prospect appears to be a quartz vein occurrence located in the fault zone on the lower slopes of the mountain.

4.3.3 Soil Geochemistry

The McCorvie grid was established by running a base line at an azimuth of 217° from a point 500 m west and 210 m south of the legal post for Noble 5. The line was marked at 200 m intervals and six grid lines, approximately 500 m in length were constructed to the east of the baseline (Figure 15). A total of 71 standard, B-horizon, soil samples were collected from the underlying till at 50 m intervals along the grid lines. The samples were shipped to the Company laboratory and the -80 mesh fraction was analyzed for Mo, Cu, Zn, Pb, Ag, Au, As and Hg. The results are listed in Appendix II and the Cu, Pb, Zn, As and Hg values are posted in Figures 16 to 20. No coherent geochemical anomalies were identified on the grid but a few, weak, point anomalies were detected.

A further 17 B-horizon soil samples (MC200-MC216) were collected at intervals of approximately 50 m along the upper switchbacks of the old forestry road which intersects the projection of the fault zone on the lower slopes of about McClennan (Figure 15). The -80 mesh fraction was analyzed for Mo, Cu, Zn, Pb, Ag, Au, As, Mn and Hg. The results are listed in Appendix III. No significant anomalies were detected.

4.3.4 Ground Geophysics

A total of 3.4 line km of EM-16 data was gathered on the six-line McCorvie Grid. Data was collected at 10 m intervals using a base station at Seattle. In phase and quadrature data were noted. The in phase data was subjected to the Fraser Filter and profiles were generated for the grid. (Figures 21-23).

-18-

The survey revealed three continuous and several sympathetic conductors which traverse the grid from northeast to southwest. The conductors are presumed to represent the surface expression of the McCorvie Fault Zone. Anomaly amphitudes decrease markedly at the south end of the grid, between lines 8+00 and 10+00 south.

4.4 Peavine Creek Area

4.4.1 Geology

Peavine Creek is an incised drainage which descends rapidly from a upland plateau at elevation 4250' (1295 m) to the valley of the North Thompson River at elevation 1500' (457 m). The Creek cuts a section through a mixed package of Eaglebay Formation strata. Outcrop exposed in the section includes a small amount of fractured meta-basalt which strikes at 150° and dips 40° NE at elevation 3900' (1189 m); a mixed and deformed black meta-argillite and recrystallized limestone package at 3700' elevation (1128 m) and a thick meta-basalt unit which extends from the 3600' (1097 m) elevation to the 2800' elevation (853 m).

Blocks of meta-basalt located in the creek bed below an elevation of 3700' (1128 m) are veined and they show signs of weak to intense quartz-carbonate alteraton.

4.4.2 Mineralization

There is no known source of mineralization on Peavine Creek but a heavy

mineral sample previously collected at an elevation of 2600' (792 m) was found to contain anomalous amounts of Cu, Pb, Zn, Cd, Ag, Au and As.

4.4.3 Silt Geochemistry

A total of eight, -20 mesh, bulk sediment samples were collected from the Creek bed at elevation intervals of approximately 200' (61 m) using an altimeter. A correction of 100' (33 m) was later applied (Figure 15). The 5 lb (2.3 kg) samples were collected at an elevation of 2600' (792 m), 2800' (853 m), 3000' (914 m), 3100' (945 m), 3400' (1036 m), 3700' (1128 m), 3900' (1189 m) and 4100' (1250 m). Each sample was subsequently shipped to the Company laboratory in Vancouver, dried, shaken and sieved to -150 mesh. The -150 mesh sample was analysed for Mo, Cu, Zn, Pb, Ag, Au, Hg and Sb. The Au analysis was conducted in triplicate. The analytical results are listed in Appendix IV.

The bulk sediment data show that Cu, Zn, Pb and As enter the creek system somewhere between the 3400' (1036 m) and 3700' (1128 m) elevation contours. The data also show that Au and minor As enter the creek at a slightly higher level, between 3700' (1128 m) and 3900' (1189 m) elevation.

The analytical data and the presence of boulders of quartz-carbonate altered rock at 3700' (1128 m) elevation suggests that the source of the mineralization is located above the main section of meta-basalt.

5.0 Discussion

The exploration programme carried out on Mount McClennan confirms some of the results of the programme carried out by Canadian Nickel Co. Ltd. in 1976. The exhalative Pb, Zn, Ag mineralization exposed on the plateau portion of the mountain appears to consist of several narrow mineralized horizons within a 300 m thick package of weakly to intensely pyritized guartz-sericite schists. The package appears to extend from Redtop to Sunrise and beyond and it appears to be warped about an east-west axis into an antiform which has a shallow easterly plunge. The southern limb of the fold is poorly exposed and it has not been fully evaluated. The package contains numerous semi-continuous VLF conductors which include pyritic and pyrrhotitic horizons, with or without Pb,Zn, Ag mineralization, and interbeds of graphitic schist. The best combination of geophysical conductors is located at the west end of the southern limb, in an area underlain by calc- silicate "skarn". The geochemical survey was used to evaluate the existing data from Canadian Nickel Co. Ltd. and to test the application of soil geochemistry in a few key areas. The results confirm that the geochemically active rock package can be traced by geochemistry, but that it is not possible to define coherent geochemical anomalies related to specific bodies of mineralization.

The exploration programme carried out on the McCorvie Grid located a major fault system running down the axis of McCorvie Lake. The fault was thought to control the location of the Morrison Au occurrence, as defined by Leitch (assessment report 436). The occurrence was not located and no significant mineralization was detected.

-21-

Bulk sediment samples collected in Peavine Creek have bracketed the source of a Au, As and base metal anomaly detected in a heavy mineral sample previously collected from the creek. The specific source and nature of the mineralization is not known but it appears to be related to quartz-carbonate alteration.

6.0 Conclusion

The principal conclusions derived from the above can be summarized as follows:

(1) The exhalative mineralization on Mount McClennan consists of small lenses within a thick over-all package which has been deformed into an antiform. The down plunge and southern limbs of the fold are not well exposed and they are largely unexplored. There is still potential for a large exhalative, Ag rich, massive sulphide deposit.

(2) The McCorvie Grid was constructed over a fault controlled, till-choked, topographic depression. The Morrison Au showing was not located and no mineralization was detected. The presence of carbonate alteration in outcrop suggests that there is some potential for epithermal Au mineralization.

(3) The results show that there is a reasonably well defined source area for the Au, As anomaly on Peavine Creek. The presence of quartz-carbonate altered rock in the creek bed suggests an epithermal mineral occurrence.

7.0 Statement of Expenditures

Labour Cost - Personnel R. Pinsent (Project Geologist) June 7-17th & Sept. 9-21st 24 days @ \$260. = 6,240. Boyce (Geologist) R. June 7-17th & Sept. 9-21st 24 days @ \$200. = 4,800. J. Thornton (Geophysicis) June 7-17th & Sept.13-21st 20 days @ \$210. = 4,200. (Technician) B. Ott Sept. 13-18th 6 days @ \$200. = 1,200.\$ 16,440.00 Room & Board "Jasper Way Inn" Clearwater, B.C. \$ 2,680.00 67 man days & \$40./man day Vehicle Expense 1 4x4 Suburban @ \$40./day June 7-17th (11 days) \$440. 1 3/4 ton Chev 4x4 P.U. @ \$35./day June 7-17 (11 days) 385. 1 4x4 Suburban @ \$40./day Sept. 7-21 (13 days) 520. 1 4x4 Suburban @ \$40./day Sept.13-18 (6 days) 240. \$1,585.00 Sample Preparation & Assay Cost 127 soil samples geochem for: Mo,Cu,Pb,Zn,Ag @ \$4.90/sample plus .65¢ sample preparation \$704.85 183 soil samples geochem for: Mo,Cu,Pb,Zn,Ag plus Cd & Mn @ \$10.30/sample \$ Š1.884.90 71 soil samples geochem for: Mo,Cu,Zn,Pb,Ag \$1.061.45 As & Hg @ \$14.95/sample 8 bulk samples geochem for: Mo,Cu,Zn,Pb, Ag(Aux3) As,Hg & Sb @ \$23.05/sample plus \$10./sample preparation \$264.40 30 rock samples geochem for: Mo,Cu,Zn,Pb,Cd Au,As,Mn,Hg & Sb @ \$21.15/sample plus sample preparation @ \$2.50/sample \$709.50 \$4.635.10 Report Preparation - Personnel \$2,600. R. Pinsent 10 days @ \$260./day J. Thornton 5 days @ \$210./day 1,050. A. Kemp (Draftman) 3 days @ \$175./day 525. D. Dussault (Typist) 1 day @ \$150./day 150. 300. Ś. Map Reproductions Computer Time 150. \$4,775.00 TOTAL \$ 30,105.10 _____

8.0 Statement of Qualifications

I, Robert H. Pinsent of 108-2080 Maple Street, Vancouver, British Columbia (V6J 4P9), do hereby certify that:

- I am a geologist employed by Placer Development Ltd., of 1200 - 1055 Dunsmuir Street, Vancouver, British Columbia (V7X 1P1).
- I am a geology graduate of the following Universities:

Aberdeen University, B.Sc., Hon., (1968)

University of Alberta, M.Sc. (1971)

Durham University, PhD. (1975)

- 3. I have been engaged in the practice of geology since graduation in 1968.
- 4. I have supervised and carried out the fieldwork, and interpreted the data from the exploration programme on the Noble Claim Group (Latitued 51° 38', Longitude 119° 48') in the Kamloops Mining District.

Respectfully submitted,

R.H. Raverat

R.H. Pinsent

RHP/dd 84.03.27

APPENDICES

Appendix	Ι	Soil (Geochemica	l Data:	Noble Gr:	id
Appendix	II	Soil (Geochemica	l Data:	McCorvie	Grid
Appendix	III	Soil (Geochemica	l Data:	McCorvie	Road Section
Appendix	IV	Bulk S	Sediment G	eochemic	al Data:	Peavine Creek

OCHEMICAL	DATA L	.ISTING: Mount					DATE: 84-03-22
AREA: MAPSHEET	NO:	file: NOBLE CLAIMS 82M-12W					
VENTURE: GEOLOGIST LAB PROJE	CT NO:	R. PINSENT 3067					
			T.	I SUKENNKA I			
PDL La	b data	file:	P3174		······································	· · · · · · · · · · · · · · · · · · ·	
MAPSHEET VENTURE: GEOLOGIST	NO:	NUBLE CLAIMS 82M12W 188B R. PINSENT					
LAB PROJE	ČT NO:	3174		••••••••••••••••••••••••••••••••••••••			
REMARKS:	PLEASE	E DISTRIBUTE RE	SULTS TO:	R. PINSENT I. THOMSON	S. TENNANT R. Shklanka	B. HODGSON	
STANDARD	ANALYSI IS EXPE EPTION	IS METHODS USER BESSED AS INDIC FOR THIS PROJ	BY PDL GE	OCHEM LAB A	RE LISTED BELOW: Below	:	
REMARKS:	INTERN SAMPLE	NAL LAB STANDAR E NUMBERS FOLLO	IDS HAVE BE	EN INCLUDED Re DUPLICAT	FOR REFERENCE. E ANALYSES.		
MO PPP CU PPM	WT.6 A1 U.5 C U.5 C	TACK USED HCL04/HN03 HCL04/HN03 HCL04/HN03	TIME 4HRS 4HRS	RANGE 1-1000 2-4000	METHOD ATOMIC ABSORPTI ATOMIC ABSORPTI	LON	
ŽN PPM P8 PPP	ŎĮ	HCL04/HN03 HCL04/HN03	4HRS	2-3000 2-3000			and the second
CD PPM	0.5 C	HCL04/HN03	4 HR S	0.2-200	A.A. BACKGROUNI	D CUR. Tan	
- AG1 - PPM	C • 5 - C -	HCL04/HN03 HCL04/HN03 HCL04/HN03		2-2000 	ATOMIC ADJURFT		
AU PPM	10.0 AG	HNO3 DUA REGIA	2HRS 3HRS	0.02-4.00 0.02-4.00	A.A. SOLVENT EXA.A. SOLVENT EX	(TRACT.	
		HF/HCIO4/HNO3	HCL AHRS		FLOURIMETRY SOL ATOMIC ABSORPT	[ON	aan baalada ka saalada takayoo kayoo maraa aha aha ahaa ka kayoo ahaa ah
W PPM F PPM	1.0 C 0.25 N/	HF/HNO3/HCL/H A2CO3/KNO3 FUSI HCLO4/HNO3	SOA AHRS ON JOMIN	5-500 40-4000	A.A. SOLVENT E	LECTODE	
AŠ PPM SB PP M—	0.5 C	HCL04/HN03 HCL04/HN03	4 HR S 4 HR S	2-100C 	A.A. BACKGROUN	COR.	
BI PPM	0.5 C	HCLO4/HNO3	4HRS 4HRS	2-200C	ATOMIC ABSORPT ATOMIC ABSORPT	LON	
		HCL04/HN03 HF7HCL04/HN03/	HCL 6HRS	2-3000 0.02-20%	ATOMIC ABSORPT:	LON	·····
BAX	G.25 C	IL HNO3 HF/HI/OXALIC	4 H R S		A.A. COLD VAPO ATOMIC ABSORPT	ION	
NA X	C•5 C	HF/HCL04/HN03/	HCL 6HRS	0.2 -20%	ATOMIC ABSORPT	LON	
CĂ X Se ppm	0-5 C	-HF/HCE04/HN037	HCL-6HRS-		- ATOMIC-ABSORPT	[ON	<u> </u>
K X CA X Sr PPM	U-5 C U-5 C	-HF/HCL04/HN03/ HF/HCL04/HN03/	HCL 6HRS- HCL 6HRS		ATOMIC ABSORPT ATOMIC ABSORPT ATOMIC ABSORPT ATOMIC ABSORPT	ION	<u> </u>
	0.5 C 1.0 NH	HF/HCLO4/HNO3/ H41 FUSION	HCL 6HRS	5-500	A.A. SOLVENT E		

DUALED GEOCHER ASSAY SYSTEM: DATA FROM MOUN	: McClennan soi	l grid,	Noble Llaims, orm	ICW
---	-----------------	---------	-------------------	-----

GRID	SAMPLE	ROJECT				•••
1+50E 1+5CE	3+00s 2+50s	3067 3067	1 25 78 2 156 277 1 23 122	28 38 18	<0.2 <0.2 <0.2	
1+50E 1+50E 1+50E 1+50E	2+005 1+505 1+005 0+505	3067 3067 3067	2 15 87 2 43 168 2 570 99	28 18 20 	<0.2 0.6 <0.2	
-1+3UE	- 0+0C	-3067	2 18 225 3 113 205			
1+50E 1+50E 1+50E 	0+5CN 1+00N 1+5CN 	3067 3067 3067 	2	60 32 24 18	···<8.2	n na ann an ann an t-ann an t-ann ann an t-ann an t-ann ann an t-ann an t-ann an t-ann an t-ann an t-ann an t-a
1+5 CE 1+5 OE 7+5 OE	2+5CN 3+0CN 2+0CS	3067 3067 3067	2 83 98 1 12 63 3 68 103	24	<0.2 <0.2 <0.2 <0.2	
- 745 6			2 58 222 1 18 04 2 43 170		<0.2 <0.2 <0.2	
7+5 CE 7+5 CE 7+5 CE 7+5 CE 7+5 CE			-2	15 8 16	••••••••••••••••••••••••••••••••••••••	
7+50E 7+50E 7+50E 0+00	1+00N 1+50N 2+00N 3+005	3067 3067 3067 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 43	<0.2 <0.2	
0+00 0+00 0+00 0+00	2+505 2+005 1+505	3067 3067 3067	1 13 96 2 35 82 2 37 120 2 21 98	19 23 27 36	<0.2 <0.2 <0.2 <0.2 <0.2	
0+00 0+00 0+00	1+005 1+005* 0+505 0+00		2 21 98 2 20 94 2 30 134 2 70 350	36 38 33 220	<0.2 <0.2 0.2 1.0	
			-1	220 		
0+00 0+00 0+00	1+0CN 1+50N 2+00N 	3067 3067 3067 	2 19 166 2 30 83 2 42 76 1 37 131	16 20 13	<0.2 <0.2 <0.2 <0.2	
0+00 1+5CW 1+5OW	3+005 3+005 3+005	3067 3067 3067	2 20 108 1 19 110 1 19 113	32225	<0.2 0.2 0.2	
	_2+50s	— -3067	1 22 102 2 126 210 2 14 114		5.0> 5.0> 0.0	
1+50W 1+50W 1+50W 1+50W	2+005 1+505 1+0C5 0+505	3067 3067 3067 3067			<0.2	
1+50W 1+50W 1+50W	0+00 0+50N 1+0CN	3067 3067 3067	2 80 57 2 85 183 4 47 122 2 72 198	24 58 66 	<0.2 0.5 	
1+50W 1+50W 1+50W 1+50W		3067 3067 3067 3067 3067	2 33 84	27	<0.2 0.2 0.2	
		3067 3067 3067 3067	3 75 118 2 24 50 2 27 103 3 15 183 3 124 1670 2 14 131	29 22 66 14 357	<0.2 0.4 0.8	
3+00W 3+00W 3+00W 	3+5CS 3+00S 2+50S 	3067 	2 14 131 <u>115166</u> -		0.2	
3+0 CW 3+0 DW 3+0 DW	1+5CS+ 1+5CS+ 1+5CSB	3067 3067 3067	1 6 60 1 12 58	10	<pre>0 • 2 <0 • 2 <0 • 2</pre>	an a sa na
	* -	3 A A B		2011	₹0+4	

PLACER G.	JHEM ASSAY	SYSTEM: DAT/	A FROM Moul	nt McCler	n soil gi	id, Noble Claims, 82m12w	DATE: 84-1
GRID	SAMPLE PRO	JECT MO	CU ZN	P8	CD AG-		
3+00w 3+00w	0+00 3 0+50N 3		37 150 28 147	33 24	<0.2 <0.2		
	1+00N 3	067 2 067 1		15			
3+0 CW 3+0 QW	1+50N 3 2+00N 3 2+50N 3 3+00N 3		25 132	12 50	0.2		
	3+00h 3	0671	$-\frac{10}{10}$ $\frac{103}{120}$		<0.2 <0.2		
12+00W 12+00W 12+00W	0+505 3 1+005 3 1+505 3	067 2 867 1 867 3	13 271	21 45 17			
- 	-2+00.53	0671		17	0.2		· · · · · · · · · · · · · · · · · · ·
12+00W 12+00W 12+00W	2+505 3 2+705 3 3+505 3	067 2 067 2 067 4	17 78 34 93 58 44	17 24 10	<0.2 <0.2 <0.2		
- 12+00w	-3+505+	067 - 3 -	6043	10			
12+00W 13+5CW 13+50W	4+005 3 0+505 3 1+005 3	067 4 867 2 887 3	170 86 17 117 31 189	35	0.6 <0.2 <0.2		
13+50¥ -13+50¥	1+505	067 2		16	0.2		
13+50W 13+50W 13+50W	2+005 3 2+505 3 3+005 3	067 2 067 2 067 3	14 122 14 65 120 86	23	0.2 <0.2		
13+50¥ 13+50¥	3+00š 3 -3+50s	067 <u>3</u> 067 <u>3</u>	14 65 120 86 -31 - 131				
13+50W	4+00s 3	067 2	105 66	17	0 2 2 2 2 2		
13+50W 15+00W	4+40s 3 0+50s 3	067 3 067 2	69 141 26 137 16 192	30	<0.2 0.6		wang di kanang kanan
15+00w 15+00w 15+00w	1+005 3 1+505 3 2+005 3	067 2 067 2 067 1	16 192 8 70 26 24	23	<0.2 0.6		
15+00W	2+50s 3	067 1	41 55 -171 - 62		0.4		
15+00w 15+00w 15+00w	3+50s 3 4+00s 3	067 1 067 1	11 90	12	<0.2 <0.2		
15+00₩	4+50S 3	067 1	50 173	17	0.6		
	4+50s+3 0+50s 3 1+00s 3	067 067 1067 3	50 173 29 96 12 95	18	0.4		
24+004	1+505 3	i067 1	15 90	13	<0.2		
24+00W 24+00W 24+00W	2+005 3 2+505 3 3+005 3	067 <1 067 <1 067 <1	19 110 23 107 12 80	2	<0.2		
24+00w 24+00w	3+5CS 3	5067 <1	14 68	12	0.2		
24+00W	4+00 s 3 4+50 s 3 4+50 s 3	887	29 118	13	<0.2 <0.2 <0.2		
24+00W 24+00W 24+00W	4+505* 3 5+00s 3	5067 1 5067 1	50 67	13	2.0		
24+00W 24+00W	-5+5053	067 2	25 97 19 76	26 18	<0.2 <0.2 <0.2 <0.2 <0.2		
24+00W 24+00W	6+005 3 6+505 3 7+0C5 3	067 2 067 2 067 2	10 76 15 96 19 48	18	<0.2 <0.2		
24+0CW 25+50W 25+50W	8+005 3	5067 2	24 97	16	<0.2 <0.2 <0.2		in anna i i in tha anna a
25+50W 25+50W	1+005 3 1+505 3	5067 2 5067 2 5067 3	21 69 9 75 18 81	14	<0.2 0.8		
25+50W	2+005	5067 2	10 66	<u>9</u>	D - 3 0 - 2 0 - 3	· · · · · · · · · · · · · · · · · · ·	and an
25+50W 25+50W 25+50W	2+0Cs 2+50s 3+00s	067 6 067 2	22 160 11 96 12 92	22 17 19	0.3 <0.2		
25+50W 25+50W	4+505 3	5067 2 5067 1	22 126	21	0.3		
25+50w	5+00s 3	3067 2	42 140	64	1.0		

PLACER G. THEM ASSAY SYSTEM: DATA FROM Mount McCler. n soil grid, Noble Claims, 82m12w

DATE: 84-0

10	SAMPLE	PROJECT	MO	CU	- ZN -	P1	3CD	AG	MN		······································	
5 0 W	5+50s 6+00s	3067 3067	3	70 20	118	Ş						
5 0W 5 0W 5 0W 0 0W	6+50S 6+50S* 7+00S	3067 3067 3067 3067	2	27 27 21 15	107 98 97	21	9	0.3	and a second			
	7+00s 5+00s 	3067	<u>ź</u>	-45	97 32 91		8	0.3				
	6+0CS 6+50S 7+0CS	3067 3067 3067	2	88 68 28	136 92	2	5	8.4 8.7 0.2				
UUW	7+505 8+00s	3067	2		57			<0.2 <0.2		••••••••••••••••••••••••••••••••••••••	······	
00W 50W	4+50\$ STD G	3067 3067 3067	12	29 21 90	78 123 70	10	5 7	0.2				
t t	STD G STD G STD G		15	104 100	72 72 70		3					
it It	STD G STD G STD_G	3C67 3067 3067	15	100	73	11	3		•••••••••••••••••••••••••••••••••••••••	·	·····	······································
5 0E	STD G 1+75N 1+25N	3067 3174 3174	15	99 92 43	70 69 123 107	11	2 9 0.4 9 0.2	0.8 <0.2 0.2	640 280			
SOE	0+25N 0+25N 0+25S	3174		28 124	134-	2	7	0.4	300 320 180			
50E	0+75S	3174	3	86	142	- 31	l Ŭ+5	1.5	490			
754	0+25N 0+5CN 0+75N	3174	<1 <1	522	175 214 72	5	8 0 • 2 5 U • 7 5 U • 3	0.3	1250 230			
75W	1+CCN	<u> </u>	2	<u> </u>	93	2	<u>↓ 0.2</u>	0.2	480			
500 500 500	1+25N 1+25N 0+75N 0+25N	3174 3174 3174	3	115 <2 8	233 132 110 104			0.2	1030 270 350 280			
25W 25W	0+255 0+5CN	3172		54	430	· ··· 5	8 8 8	0.5	204	· · · · · · · · · · · · · · · · · · ·	- • · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••
258	0+75N 1+00N 	3174 3174 	22	- 17	149 83 134 -	2	3 0.6	0.2	67Ŭ 240			
25W 25W 25W	1:7ŜN	3172	Ĩ.	33 8	115	1(]{		~0.2 8:3	250 410 230			
25W 25W 25W	2+00N 2+25N 2+50N	3174 3174 3174	2		74 87 86		3 <u.2< td=""><td>0.3</td><td>310 480 270</td><td></td><td></td><td></td></u.2<>	0.3	310 480 270			
	2+3UN 1+755 2+005A	3174	431	27	95 210	1		1:1	270 340 192			
				Ś	205	6	7		170			
00W 00W 00W	2+0058 2+255 3+255 3+555	3174 3174 3174	5	41	149 1440 240	1 3 	5 2.5	0.5 0.3 1.3	203 1530 			
0 CW 5 CW	34755	3174	32	<2	181	19	9 0.4	0.4	210			
00w -00w	2+755 3+045 3+255 3+505	3174 3174 		5	232 133 	2	5 0-; 4	8.3	200 650			· · · · · · · · · · · · · · · · · · ·
ŬĈW DCW DCW	3+565 3+755 3+755*	3174 3174 3174	2,	528	226 300	29	2 1.1 2 0.9 1 1.0	2.0 0.8	780 880			
-0 CW	- 4+00s	3174		~ žž	300 300 167	2	, < <u>0</u> , -2	0.8	980 950 370	.		

PLACER	GEOLHEM /	ASSAY SYSTI	EM: DA'	TA FROI	M Moun	t McCl	enna	soil g	rid, No	oble Claims, 82m12w	DATE: 84-01
GRID											
6+75w 6+75w	3+25N 3+50N	3174 3174	2	80 40	320 105	223 18	<0.2 <0.2	1.0	200 240		
0+75W 6+75W	3+75N 4+0CN 0+75N	3174	23	390 83 3	101 73	25	<0.2 <0.2 <0.2	<0.7 <0.2 <0.2	1380 183		
8+25W	1+0CN	3174	<u>j</u>	38	156	21	<0.2	<0.2	230		
8+25W 8+25W	1+5CN 1+75N	3174 3174	<1	³ 25	380 120 480	11 49	<0.3 <0.2 <0.2	0.3	610 193 230		
8+25W 8+25W 8+25W	3+56N	3174	<u>.</u>	120		130	<u><u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	9.3		······································	
8+25W 8+25W	2+50N 2+75N	3174 3174	Ž	74 37	210 82	53 16	0.3 <0.2	0.4 <0.2	370 370		
8+25W 8+25W 8+25W	3+0CN	3174	·		95	13	<0.2 	0.3	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
8+25W 8+25W	3+50N 3+50N*	\$174 * 3174	1	12	78 92 94	13 14	<0.2 <0.2	0.3	290 300		
9+00W	0+75N		1		174	44				······································	·
9+00w 9+00w	1+25N 1+50N	3174 3174	Ž	Š	265 128 114	113 570	<0.2 <0.2	0.4 5.0	200 136		
	340 CN	2174	ż	Ĩ.	212	36	0.2	0.5	132		

	61	÷73	W j	÷Ó	ÇN			2	2 2	វិទ្ធី 1	101 73	22	ŠŬ	-Z	<Ŭ:	ż 1	1380 183	
3 2 4 4 9 0 2 1 3 230 3 4 0 0 2 1 3 230 3 4 0 0 2 1 3 230 3 0 1 <	- 8 4	25	Li ()+7 +0	5N CN						156			• • • • • • • • • • • • • • • • • • • •			230	
3 2 4 4 9 0 2 1 3 230 3 4 0 0 2 1 3 230 3 4 0 0 2 1 3 230 3 0 1 <	- 8 -	23	W	÷2	ΞN		1	· · · · · ·	2 4	í —	₿ġŏ~	+ <u>1</u>	ğ	ंडुः			910	
3 3	8+	25	8	+5	CN SN			14 < 14		25				• 4	1.	3	-230	
B * 25 yr 3 * 7 * 10 3 7 * 82 16 C · 2 C · 2 7 * 0 B * 25 yr 4 * 0 * 7 1 4 C · 2<	- 0 - R 4	25		×-	EN.	1	1	74	र ।	3.	570) Ų	ž	ġ.	ξ.	250	
B * 25 yr 3 * 7 * 10 3 7 * 82 16 C · 2 C · 2 7 * 0 B * 25 yr 4 * 0 * 7 1 4 C · 2<	-ğ-	77	W	+7	51				4	20	189 110	35	1	• 5	1.	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
8 4 4 10 56 13 20 500 8 4 4 4 4 20 3 300 8 4 4 4 4 20 3 300 9 000 7 7 14 2 0 3 300 9 000 7 7 17 0 13 20 0 3 300 9 000 7 7 17 14 5 100 14 100 110 20 14 110 20 14 110 20 14 110 20 17 14 110 20 110 100 100	- 84 - 84	53	14 d 12 2	5+7	UN SN			74	2]	57	82		s <ŏ	.ź	<0.	2	370	
3: 22 U 3: 52 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U <td< td=""><td>84</td><td>25</td><td>Ŵ 3</td><td>5+0</td><td>I ÇN</td><td></td><td>1</td><td>74</td><td>1</td><td>56</td><td>25</td><td>13</td><td>5 <ü</td><td>.2</td><td>Q.</td><td>3</td><td>200</td><td></td></td<>	84	25	Ŵ 3	5+0	I ÇN		1	74	1	56	25	13	5 <ü	.2	Q.	3	200	
3: 22 U 3: 52 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U 9: 00 U <td< td=""><td>- 8 1</td><td>ßŧ</td><td>¥</td><td></td><td>5N CIN</td><td></td><td></td><td>72</td><td></td><td>3</td><td>63</td><td>1</td><td>5</td><td>:2</td><td>8:</td><td>3</td><td>290</td><td></td></td<>	- 8 1	ßŧ	¥		5N CIN			72		3	63	1	5	:2	8:	3	290	
Y UU Y C 37 157 157 20 2000 Y OU 113 0 113 0 133 2000 Y OU 113 0 114 570 2000 133 2000 Y OU 114 570 2000 123 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 133 0 <td>84</td> <td>25</td> <td>ų i</td> <td>5 + 5</td> <td>) CIN</td> <td>* 3</td> <td>51</td> <td>74</td> <td>i 1</td> <td>iž</td> <td>94</td> <td>14</td> <td>· <0</td> <td>•2</td> <td>0.</td> <td>3</td> <td>300</td> <td></td>	84	25	ų i	5 + 5) CIN	* 3	51	74	i 1	iž	94	14	· <0	•2	0.	3	300	
9 9 124 2 14 2 12 30 12 132 0 102 21 102 21 102 20 175 0 102 21 102 21 102 20 175 0 102 21 102 21 102 20 175 0 117 117 117 117 117 117 117 0 117	91	ÞÖQ	W (+7	(5N		1	24	1	4	174		}	• 3	<u> </u>	3	- 338	and a manage of the second
9 9 124 2 14 2 12 30 12 132 0 102 21 102 21 102 20 175 0 102 21 102 21 102 20 175 0 102 21 102 21 102 20 175 0 117 117 117 117 117 117 117 0 117	- Y -	00	W W '	172	5N		51	74	2 .	6	ĨŽŔ	113	i <ğ	• 2	٦ğ.	4	ŻŎŎ	
9:000 2:75 N 3174 1 26 150 29 0.3 C0.2 187 9:000 3:CCN 3174 1 18 1.0 0.7 600 9:000 3:CCN 3174 14 18 1.0 0.7 600 9:000 3:CCN 3174 14 107 18 1.0 0.6 500 9:000 4:CCN 3174 24 120 2.0 3:C 0.6 500 9:000 4:CCN 3174 24 176 31 0.4 710 9:000 4:CCN 3174 24 176 31 0.4 720 9:000 4:CCN 3174 24 176 31 0.4 200 9:000 3:CCN 3174 2 2 176 1.0 200 200 200 9:0000 3:CCN 3174 2 0.5 200 200 200 200 200 200 200 200 200 200 200 200 200	-94	•00	₩ '	+5	i C N		11	74	1	5	114	570) <0	• ද	5.	0 E	136	
9:000 2:75 N 3174 1 26 150 29 0.3 C0.2 187 9:000 3:CCN 3174 1 18 1.0 0.7 600 9:000 3:CCN 3174 14 18 1.0 0.7 600 9:000 3:CCN 3174 14 107 18 1.0 0.6 500 9:000 4:CCN 3174 24 120 2.0 3:C 0.6 500 9:000 4:CCN 3174 24 176 31 0.4 710 9:000 4:CCN 3174 24 176 31 0.4 720 9:000 4:CCN 3174 24 176 31 0.4 200 9:000 3:CCN 3174 2 2 176 1.0 200 200 200 9:0000 3:CCN 3174 2 0.5 200 200 200 200 200 200 200 200 200 200 200 200 200	_21	20	W i	<u>}</u>	<u>G</u> N		1	<u>,</u>	×	15	646 -	938	3¥	<u>:</u> £	<u> </u>	8	-450	
9+800 3+174 1 53 65 10 7 44 107 18 1.3 0.6 5300 9+800 3+77 2 44 107 18 1.3 0.6 5300 9+800 3+77 2 44 107 18 1.3 0.6 5300 9+800 4+75 3174 2 44 175 18 1.3 0.6 5300 9+800 4+75 3174 2 41 275 20 3.8 0.4 710 9+800 4+75 3174 2 42 176 31 0.4 0.6 200 9+000 4+75 3174 2 88 18 0.2 0.2 200 2 200 9+000 4+55 3174 3 85 14 7 0.2 0.3 14 10 10+500 3+76 3 85 14 0.2 0.5 320 12 14 14 14 14 14 14 14 <td< td=""><td>- 94</td><td>ŏč</td><td>W S</td><td>243</td><td>ÓŇ</td><td></td><td>51</td><td>74 3</td><td></td><td>3</td><td>ĮÓŽ</td><td>Ž</td><td>(< ý</td><td>•2</td><td><<u>0</u>.</td><td>2</td><td>175</td><td></td></td<>	- 94	ŏč	W S	243	ÓŇ		51	74 3		3	ĮÓŽ	Ž	(< ý	•2	< <u>0</u> .	2	175	
9+0Cu 4+75N 3174 2 45 000 2200 9+0Cu 5+CuN 3174 2 38 16 0+2 2012 200 9+0Cu 5+CuN 3174 2 5 10 0+2 2012 200 9+0Cu 5+CuN 3174 3 85 147 17 20+2 20+2 200 10+5Cu 1+75N 3174 3 85 147 17 20+2 20+3 143 10+5Cu 1+75N 3174 1 11 200 36 20+2 0+3 143 10+5Cu 2+75N 3174 1 11 200 16 20+2 0+3 153 10+5Cu 2+75N 3174 1 16 25 20+2 0+5 350 10+5Cu 2+75N 3174 1 16 25 20+2 20+6 320 13+50u 1+50u 0+75S 3174 1 16 20+2 20+6 320 13+50u 1+50u 3	- 94	•00	W 1	2+7	5N		51			26	120	1/	7 U	• 2		2	420	
9+0Cu 4+75N 3174 2 45 000 2200 9+0Cu 5+CuN 3174 2 38 16 0+2 2012 200 9+0Cu 5+CuN 3174 2 5 10 0+2 2012 200 9+0Cu 5+CuN 3174 3 85 147 17 20+2 20+2 200 10+5Cu 1+75N 3174 3 85 147 17 20+2 20+3 143 10+5Cu 1+75N 3174 1 11 200 36 20+2 0+3 143 10+5Cu 2+75N 3174 1 11 200 16 20+2 0+3 153 10+5Cu 2+75N 3174 1 16 25 20+2 0+5 350 10+5Cu 2+75N 3174 1 16 25 20+2 20+6 320 13+50u 1+50u 0+75S 3174 1 16 20+2 20+6 320 13+50u 1+50u 3	- 61		¥	372	5N		4		1	\$ġ	118		š – Ť	÷ý	Ŏ	7	- 66Q	
9+0Cu 4+75N 3174 2 45 000 2200 9+0Cu 5+CuN 3174 2 38 16 0+2 2012 200 9+0Cu 5+CuN 3174 2 5 10 0+2 2012 200 9+0Cu 5+CuN 3174 3 85 147 17 20+2 20+2 200 10+5Cu 1+75N 3174 3 85 147 17 20+2 20+3 143 10+5Cu 1+75N 3174 1 11 200 36 20+2 0+3 143 10+5Cu 2+75N 3174 1 11 200 16 20+2 0+3 153 10+5Cu 2+75N 3174 1 16 25 20+2 0+5 350 10+5Cu 2+75N 3174 1 16 25 20+2 20+6 320 13+50u 1+50u 0+75S 3174 1 16 20+2 20+6 320 13+50u 1+50u 3	ġ,	ÞÕŎ	W .	+	ĈN		51	74	1 (44	197	18		• 3	0.	6	250	
9+0Cu 4+75N 3174 2 45 000 2200 9+0Cu 5+CuN 3174 2 38 16 0+2 2012 200 9+0Cu 5+CuN 3174 2 5 10 0+2 2012 200 9+0Cu 5+CuN 3174 3 85 147 17 20+2 20+2 200 10+5Cu 1+75N 3174 3 85 147 17 20+2 20+3 143 10+5Cu 1+75N 3174 1 11 200 36 20+2 0+3 143 10+5Cu 2+75N 3174 1 11 200 16 20+2 0+3 153 10+5Cu 2+75N 3174 1 16 25 20+2 0+5 350 10+5Cu 2+75N 3174 1 16 25 20+2 20+6 320 13+50u 1+50u 0+75S 3174 1 16 20+2 20+6 320 13+50u 1+50u 3	91		14 . 14 .) * (L + (') N) C N		21	74	3	49 1	130	20	1 2	.2	ŏ	6	450	
9+0Cu 4+75N 3174 2 45 000 2200 9+0Cu 5+CuN 3174 2 38 16 0+2 2012 200 9+0Cu 5+CuN 3174 2 5 10 0+2 2012 200 9+0Cu 5+CuN 3174 3 85 147 17 20+2 20+2 200 10+5Cu 1+75N 3174 3 85 147 17 20+2 20+3 143 10+5Cu 1+75N 3174 1 11 200 36 20+2 0+3 143 10+5Cu 2+75N 3174 1 11 200 16 20+2 0+3 153 10+5Cu 2+75N 3174 1 16 25 20+2 0+5 350 10+5Cu 2+75N 3174 1 16 25 20+2 20+6 320 13+50u 1+50u 0+75S 3174 1 16 20+2 20+6 320 13+50u 1+50u 3	-4-	ΰŬ	W	÷	źN		H	<u>i</u>		54-1	7 <u>9</u> 0-	7	<u> </u>	٠Ž	- <u></u> .	8	-870	
9+00u 9+25N 3174 2 3 75 10 0.4 0.2 2 560 10+50u 1+50N 3174 3 85 147 17 40.2 40.2 560 10+50u 1+75N 3174 3 85 147 17 40.2 40.2 413 10+50u 1+75N 3174 1 11 200 36 40.2 0.3 143 10+50u 2+75N 3174 1 11 200 36 40.2 0.5 212 10+50u 2+75N 3174 1 12 206 169 16 40.2 0.5 320 13+50u 1+75S 3174 2 26 169 25 40.2 0.6 320 13+50u 1+25S 3174 3 8 154 14 40.2 0.6 320 13+50u 1+25S 3174 1 22 400 23 0.6 94 18 15+00u 1+55S 3174 15	91		V 4	6+: 6 - 7) (IN 75 м		57	74 76	2	42 45	66	19	, v	-2	<0.	.2	200	
10+30W 1+75N 174 10+50W 1+75N 10+50W 1+00N 10+50W 1+00N 10+50W 1+00N 1174 11 200 16 00-2 16 00-2 0-3 153 10-50W 1+00N 1174 226 169 16 00-2 0-5 212 153 10-5 1174 16 16 16 16 16 16 16 16 16 16	ģ	+00	¦₩ '	5+0	CN		śİ	74	2	Ž	88	11	β Ŏ	•Ž	<ð	Ž	ŽŽ	
10+30W 1+75N 174 10+50W 1+75N 174 11 10+50W 1+00N 10+50W 1+00N 174 11 10+50W 1+00S 174 11 10+50W 1+00S 174 11 10+50W 1+25S 174 16 16 16 16 10-2 16 16 10-2 10-5 10-5 10-5 10-5 10-5 10-5 11 150W 1+25S 174 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 16 175 174 174 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 175 174 175 175 174 175 175 174 175 175 174 175 174 175 175 175 175 174 175 175 175 175 175 175 175 1		₩		21	S S N		打	74	3	5	75	7 (1		ri∎4inini La 2	<u :<="" td=""><td>5</td><td>560</td><td></td></u>	5	560	
10+30W 1+75N 174 10+50W 1+75N 174 11 10+50W 1+00N 10+50W 1+00N 174 11 10+50W 1+00S 174 11 10+50W 1+00S 174 11 10+50W 1+25S 174 16 16 16 16 10-2 16 16 10-2 10-5 10-5 10-5 10-5 10-5 10-5 11 150W 1+25S 174 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 141 16 16 175 174 174 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 174 175 175 174 175 175 174 175 175 174 175 175 174 175 174 175 175 175 175 174 175 175 175 175 175 175 175 1	104	+50	W.	1+5	5 C N		51	74	3 1	8Š '	147	1	7 <0	-2	<ŏ.	2	-410	
10+50W 2+75N 3174 1 11 200 36 <0.2 0.3 153 10+50W 3+00N 3174 2 26 169 16 <0.2 0.5 212 13+50W 0+75S 3174 2 26 169 34 <0.2 0.5 200 13+50W 1+25S 3174 1 16 141 16 <0.2 0.5 350 13+50W 1+25S 3174 3 8 154 14 <0.2 0.5 350 13+50W 1+25S 3174 3 8 154 14 <0.2 0.2 208 15+00W 1+25S 3174 3 8 154 14 <0.2 0.4 183 15+00W 1+25S 3174 3 15 99 15 <0.2 0.4 183 15+00W 0+75S 3174 2 15 94 18 <0.2 0.4 183 15+00W 0+55S 3174 2 15 94 18 <0.2 0.4 183 15+00W 0+55S 3174 2 15 94 18 <0.2 0.4 183 15+00W 0+25S 3174 2 15 94 18 <0.2 0.4 183 15+00W 0+25S 3174 2 15 94 18 <0.2 0.4 183 15+00W 0+25S 3174 2 15 94 18 <0.2 0.4 183 15+00W 2+25N 3174 2 29 177 24 0.2 0.4 20 15+00W 2+25N 3174 2 29 177 24 0.2 0.5 300 15+00W 2+75N 3174 4 229 177 24 0.2 0.5 300 15+00W 2+75N 3174 4 229 177 24 0.2 0.5 300 15+00W 2+75N 3174 4 229 177 24 0.2 0.5 300 15+00W 2+75N 3174 4 229 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 229 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 229 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 229 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 229 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 2 29 177 24 0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 22 100 21 <0.2 0.5 300 15+00W 3+25N 3174 4 1 20 138 113 <0.2 0.5 300 15+00W 3+25N 3174 4 1 20 138 113 <0.2 0.5 300 15+00W 3+25N 3174 4 1 21 208 113 <0.2 0.5 300 15+00W 3+25N 3174 4 1 21 208 113 <0.2 0.5 300 15+00W 3+25N 3174 4 1 21 20 138 113 <0.2	10	+50	W	1+7	7 <u>5</u> N		51	24	2	18	22	1	6 (J	• 3	0.	.3	143	
10+50w 3+00N 3174 2 26 169 16 <0.2	10	• • •		51	75N		31	74	f	11	200	3	š žŭ	•2	Ŏ	3	153	3
13+50w 1+50s 3174 3 8 154 14 <0.2	104	+ 5 C	} ₩	3+(3 Q N		51	74	2	26	169	10	6 <0	•2	0.	. 5	212	
13+50w 1+50s 3174 3 8 154 14 <0.2	13:	<u>+ 5 (</u>	W	Q+)	ζŞS		1	<u> </u>	3	<u> 3</u>	122	ξ	2 ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	1 5			-268	
13+50w 1+50S 3174 3 8 154 14 40+2 0+3 250 15+80w 1+25S 3174 1 22 400 23 0+3 250 15+80w 1+0CS 3174 1 15 000 23 0+3 250 15+80w 1+0CS 3174 3 15 99 15 40+3 220 15+00w 0+75S 3174 2 15 94 18 40+2 0+4 183 15+00w 0+25S 3174 2 7 61 12 0+2 210 560 15+00w 0+25S 3174 2 29 177 24 0+2 210 210 15 210 15 210 15 210 15 15 15 15 15 15 16 12 16 1	13-	+ 5 C) 🖬	1+;	25S		31	74	1	16	141	1	6 <¥	i • 2	- ğ	۶ <u>۶</u>	350	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13·	+50)₩	1+	5 Q S		31	74	3	-8	154				0.	2	200	5 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	*8 6		11	623		34	52	<u>_</u>	fe	175-	<u>\$</u>	d a	1 . 3			2:21	J
15+00w 0+25S 3174 2 7 61 12 0+2 0+4 56 15+00w 2+25N 3174 1 20 140 21 0+2 0+2 210 15+00w 2+25N 3174 2 29 177 24 0+2 0+3 300 15+00w 2+75N 3174 1 22 100 21 40+2 0+5 300 15+00w 2+75N 3174 1 22 100 21 40+2 360 15+00w 3+75N 3174 2 25 168 33 4+2 0+3 200 15+00w 3+74 -1 25 168 33 4+2 0+3 200 15+00w 3+74 -1 25 166 31 0+2 0+3 200 15+00w 3+25N 3174 <1	15·	+0(3₩	0+ `	75S	; .	31	74	3	15	-99	1	5 <0 ° <0					
15+00w 2+50N 3174 2 29 177 24 0.2 0.5 300 15+00w 2+75N 3174 1 22 100 21 <0.2 <0.2 360 15+00w 3+00N 3174 2 25 168 33 0.2 0.3 200 15+00w 3+00N+ 3174 - 1 25 168 31 0.2 0.3 200 15+00w 3+00N+ 3174 <1 21 208 113 <0.2 0.3 330 15+00w 3+25N 3174 <1 21 208 113 <0.2 0.3 330	15	+0(אַל זש	0+	565		51 7 1	74 71	5	7	61		2 0	1+2	0.	4	5	6
15+00w 2+75N 3174 1 22 100 21 <0+2 360 15+00w 3+00N 3174 2 25 168 33 0+2 0+3 200 15+00w 3+00N+ 3174 -1 25 168 31 0+2 0+3 220 15+00w 3+25N 3174 <1 21 208 113 <0+2 0+3 330 15+00w 3+25N 3174 <1 21 208 113 <0+2 0+3 330 15+00w 3+25N 3174 <1 21 208 113 28	43	¥₿ł	Ju	2+:	25N	, 1	ŝł	22	- f	20	140	ż	<u>זַ</u> ייייַנ	Į Į	ğ i	Ż	21	
15+00W 3+00N 3174 2 25 168 33 U+2 0+3 200 5+00W 3+00N 3174 - 1 25 166 31 U+2 0+3 220 15+00W 3+25N 3174 <1 21 208 113 <u+2 0+3="" 330<br="">15+00W 3+25N 3174 <1 20 133 28 U+2 0+5 205</u+2>	15	+0(3₩	2+1	<u>5 Ç</u> n	1	31	74	2	29		2	4 U 1 C ()	1+2	ູ (ມີ ເຊີຍີ	3		
15+000 3+25N 3174 <1 21 208 113 <0+2 0+3 330 15+000 7+50N 3174 1 20 133 28 0+2 0+5 205	12	+01 +∩1	18 19				21 31	74	2	25	168	3	3 0	1.2	ŏ	3	Žŏŭ	
τέμοῦς τμείου 31777 1 / 20 133 28 θμ2 0μ5 205	15	÷₿ł	<u> </u>	3+	ŬČ	*	<u></u>	74	-1	25	166		1C	÷ž	· -Đ-	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U v v v v v v v
15+ÚČW 3+75N 3174 5 18 103 30 (Ú-2 CO-2 240 18 80 18 0.2 0.3 170						4	ンゴ え1	74 ⁴ 74	1 /	20	133	2	8 () - 2	<u> </u>	. 5		
	15	+ŭi	ĊŴ	3+	7 Š M	N	31	74	5	18	103	3	ō ≤ō	į•Ž	<ğ.	- 2	24(0
15+000 2+000 3174 20 18 80 18 0.2 0.3 170 + + + + + + + + + + + + + + + + + + +	12	†ğļ	2 ₩	4+	ČČ,	N	31	74		18 30	200	1	ğ ‴≺l 3 l	1+2	0	• <u>3</u> "	210	ŏ

PLACER GEUCHEM ASSAY SYSTEM: DATA FROM Mount McClennon soil grid, Noble Claims, 82m12w

GRID	SAMPLE	PROJECT			PB	CD	A G	<u>MN</u>	
15+00w 15+00w	5+75N 6+00N	3174 3174	2 <1	8 75 6 162	15	<0.2 0.7	0.3	102 580	
15+00W	6+25N 6+50N	<u> </u>	1	5 180 4 102	Ĩ	1:2		560 630	
15+00W 16+50W 16+50W 16+50W 16+50W	6+50N± 1+005 	3174 3174 3174	2	4 103 3 106 9 177-	14		0.6 0.6	600 194 	
16+50W	0+50s 0+25s	3174 3174 3174	1 4	6 0.29% 9 120	29 19	2.1 <0.2	0.6- 3.1 0.5	430	
16+50W 16+50W -16+50W	0+00 4+00N	3174		8 118	18	8:3		178	
16+5UW	4+25N 4+5CN	3174 3174	3	4 213	40 46	0.4 <0.2	0.3	213 240	
16+5CW 16+5CW -16+5CW	4+75N 	3174		3 230 8 87 7 400		<0.2 <0.2	0.8	290	
21+00W 21+00W 21+00W	1+00N 1+25N 1+5CN	3174 3174 3174	<u> </u>	17 400	15	<0.2 0.7 2.7	0-2 1-2 1-3	104 174 300	
-21+00w 21+00w	1+75N 2+00N	3174 3174		2 149		1.0	0.9	186 156	
21+00W 21+00W	2+25N 2+5CN	3174	2	3 125 0 120	114	<0.2		138 77 210	
21+00w 21+00w 21+00w	2+75N 2+75N* 3+0CN	3174	2 7	5 68 5 70 4 162		<0-2- <0-2	<0.2 <0.2	210	
21+00W 21+0CW -21+00W	3+0CN 4+5CN 4+75N	3174	2	4 162 3 90 5 188	22	<0.2 <0.2 <0.2	0.2	290 216 	
21+00W 21+00W 21+00W	5+00N 5+25N 5+50N	3174 3172	2 7	21 95 8 100 2 166	24	<0.2 <0.2 <0.2	0•4 8•8 0•3	210 220 280	
-21+00w-	5+7 <u>5N</u>	<u> </u>	2($\frac{2}{1}$ $\frac{100}{330}$		<0.2 <0.4 <0.2	<u> </u>	420	
21+75W 21+75W 21+75W	1+0CN 1+25N 1+50N 1+75N	3174		1 73 10 50	15	< <u>v</u> .2 < <u>v</u> .2	<0.2 0.3 <0.2	205 150 111	
21+75W	2+0CN	<u> </u>	1 1	4 <u>88</u> 5 136		<0.2 0.2	<0.2 <0.2	195 184	
21+75W	2+25N 2+5UN 2+75N	3172	1	5 4 <u>50</u>	300	8:2 	8:7	240 199 	
21+75	3+0CN	3174	2	10 77	23	<0.2	0.2	136	
21+75W 21+75W -22+50W	3+25N 3+5CN 1+5CN	3174	1	9 130 9 82 9 77	23 45 14	<0.2 <0.2		197. 185 101	
22+50W 22+50W 22+50W	1+75N 2+00N	3174 3174 3174		17 97 17 140 6 50	27 19	<0.2 0.2 <0.2	0.3 0.2 0.4	168 188 141	
	2+0CN 2+25N 	<u> </u>		27	16 13 26 16				
22+50W 22+50W 22+5CW	2+75N 3+00N 3+25N	3172			64 20 18	<0.2	0.2	181	
22+50W	3+5CN 3+5CN*	3174	2	14 83 14 83	18	<0.2 <0.2	2.0	210	
22+50W 22+50W -22+50W	7+25N 7+5CN 	3174 3174 	1	2 236	84 35 26	Ú•5 Ú•2	0.6	200 320 250	
22+504	8+0CN	3174	1	32 274	48 21 16	0.5	0.9	440	
22+50W 22+50W 22+50W	8+5CN 8+75N 9+0CN	3174 3174 3174	· · · 1 · · · · ·	10 660 265 0 630		1.7 1.2 1.U	<0.8 <0.2 1.1	330 370 210	and the second
00 + C 011	0 ± 7 € M	7476	7	ta 136	54	<n.></n.>	0.6	200	

DATE: 84-0

GRID		PROJECT	MO	tu	ŽN	PB		AG	• • • • • • • •		
2+50W 2+50W 2+50W	9+50N 9+75N 10+00N	3174]	19	113	21	 2 /ul>	0.3	200		and a second state of the second state of the
2+50W	10+25N	3174	<1 <1	8	89	13	0.4	<0.2	129	•	
2+50W	10+50N	3174	2	16 27	95 75	13	0-2 0-2	<0.2 <0.2	204		
2+50W 2+50W 2+50W	10+75N 1+00 11+25N	3174 3174		27	- 75 94	<u>15</u> 16			620		
2+50W 2+50W 2+50W	11+50N 11+75N 12+00N	3174	1	45 20	127	20	<0.2	0.4	420		
2+50W 2+50W	12+00N+	3174 3174 3174	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11 11	67 - 97	20 14 13	<0.2 <0.2 <0.2 <0.2	<0.2 0.3	330 119 117		an an an an an an an an Arabana an an Arabana
2+50W	12+25N	3174	3	18	165	12	2.4	<0.2 0.2	380		
2+50W 2+50W 8+25W 8+25W	12+50N 	<u> </u>		<u>26</u> 55	198 212	12 25 - 230 89	0.2 0.3				. <u>.</u>
8+25W 8+25W 8+25W	11+15N 11+4CN	3174 3174 3174	<1	>> 31 18	212 540 365	70	0.3	0.6 0.7 0.9	460 125		
8+2.51	11+65N 11+90N	3174	<1	19	189	130 23	<0.2	0°•5	260		a oo fi fi oogaagaa gaalaa aha ofi i i i ii i
8+25W 8+25W 8+25W	12+15N 12+4CN 12+65N	3174	1 2	21	160 213 130	30 33	<0-2 <0-2 <0-2	0.5	210 430 240		
8+25¥ 8+25¥	12+65N 	3174	<u>7</u>	14	130		<0.2				· · · · · · · · ·
8+25⊌	13+15N	3174	1	16	73	17	<0.2	<Ŭ.2	330 278		
8+25W 8+25W	13+40N 13+65N 9+50N	3174	ţ	41 32 28	110 95 	22 18 69	0.4 0.3 0.2	0.8	278 310	······································	
8+50w 8+50w 8+50w	9+75N	3174	2	24	190	70 62	<0.2 <0.2	0.6	430		
8+500	10+0CN 10+25N	3174	1	20	170	70	0.2	0.4	181		·
8+50W 8+50W 8+50W	10+5CN 10+75N 10+75N+	3174	<1	<2	186 310 320		0.2	0.4	210 95		
8+50¥ est	10+75N+ Std G	3174	<1 13	<2 <2 95	74	11 0	0.5	1.0	127		
est	STD G		15	92	80 77	109 112	0.6 Ú.6		135 135	an ann an an an ann an an an an an an an	, in approximation of a conservation of the second se
est	STD G STD G STD G	3174 3174 3174	15	92 92	77		Ú•6 Ú•6 Ú•5	1.8	133		
est est	STD G STD G	<u></u>	<u> </u>		74 74				135		
est	STD G STD G	3174	14	97 95 85	74	118	0.5 U.5 U.5		133		
est est	STD 6	<u></u>	15		74	112	0.5 0.5	0.9	135 132 132 132	nanna i naimpeante anna anna anna an tar chuire eachadhachan anna a' an bha chuireannamh	
est	STD G	5174	74	دة	12	110	U + J	U • 7	136		

· · · · ·

and a construction of a construction of the second s

· · · · · · · · · · · ·

.

.....

END OF LISTING - 344 RECORDS PRINTED GCLIST RUN AT: 14:26:33

PLACER DEVELOPMENT LTD (RESEARCH CENTRE)-

GEOCHEMICAL DATA LISTING: Soil Samples, McCorvie Grid, Noble Claims, 82m12w DATE: 84-03-26 PDL lab data file: A: REXSPAR P3071-1 AREAT 82M-12W MAPSHEET NO: 188 **VENTURE:** R. PINSENT 3071 GEOLOGIST: LAB PRCJECT NO: REMARKS: PLEASE DISTRIBUTE RESULTS TO: R. PINSENT I. THOMSON S. TENNANT R. SHKLANKA B. HODGSON STANDARD ANALYSIS METHODS USED BY PDL GEOCHEM LAB ARE LISTED BELOW: ALL RESULTS EXPRESSED AS INDICATED IN UNITS COLUMN BELOW ANY EXCEPTIONS FOR THIS PROJECT ARE NOTED ABOVE INTERNAL LAB STANDARDS HAVE BEEN INCLUDED FOR REFERENCE. SAMPLE NUMBERS FOLLOWED BY * ARE DUPLICATE ANALYSES. REMARKS: UNITS NT.G ATTACK USED PPP C.5 C HCL04/HN03 RANGE 1-1000 TIME METHOD C HCL04/HN03 4HRS ATOMIC ABSORPTION NO. ATOMIC ABSORPTION ATOMIC ABSORPTION Č.Š 2-40ŭČ HELO4/HNC3 4HRS CU. PPM С 2-3000 2-3000 0-2-2000 2-2000 L.5 0.5 C.5 4HRS 4HRS 4HRS C HCL04/HNC3 C HCL04/HNC3 C HCL04/HNC3 C HCL04/HNC3 C HCL04/HNC3 ZN PPF A.A. BACKGROUND COR. A.A. BACKGROUND COR. ATOMIC ABSORPTICN P P P PB CD ŇĬ 4HRS PPP C.S C HCL047HN03 2-2000 ATOMIC" ABSORPTION 4 HR S TO PPPP 0.2-2C 0.02-4.CC Č • 5 C HCL04/HN03 C HN03 A.A. BACKGROUND COR AG1 PPM 4HRS A.A. SOLVENT EXTRACT AGZ PPM 2HRS 0.02-4.CC 10.0 AGUA REGIA 3 HR S A.A. SOLVENT EXTRACT. PPM AU. 1.0-1000 5-1000 FLOURIMETRY SOLV. EX. DIL HN03 C HF/HCL04/HN03/HCL C HF/HN03/HCL/H2S04 PPF Ç.35 ZHRS Ħ PPN ATOMIC ABSORPTION V. 6HRS A.A. SOLVENT EXTRACT. SPECIFIC ION ELECTODE A.A. BACKGROUND COR. 5-500 PPF 1.0 4HRS H 0.25 NA2C03/KN03 FUSION C.5 C HCL04/HN03 C.5 C HCL04/HN03 C.5 C HCL04/HN03 C.5 C HCL04/HN03 40-4000 2-1000 2-1000 PPY 30MIN PPE **4HRS TS** 4HRS A.A. BACKGROUND COR. SB B1 PPM PPM 4HRS Ž-2000 ATOMIC ABSORPTION 2-300C 0.02-20* ATOMIC ABSORPTION ATOMIC ABSORPTION PPM Ğ.5 ۴Ň C HELO4/HNC3 4HRS 6HRS FE - 7 Ĉ • 5 C HF/HCL04/HN03/HCL 0.5 5-200CPPB A.A. COLD VAPOR GEN. PPB 2 HR S HG DIL HNO3 0.02-207 0.2 -207 0.2 -207 0.2 -207 ATOMIC ABSORPTION ATOMIC ABSORPTION CHF/HI/OXALIC CHF/HCL04/HN03/HCL **4HRS** ΕĀ. 6HRS ÑÂ. ATOMIC ABSORPTION ATOMIC ABSORPTION K C HETHCLO4/HNO3/HCL **6HRS** U • 5 C • 5 C HF/HCL04/HN03/HCL C A × 6HRS Č.5 PPF 6HRS 10-2600 ATOMIC ABSORPTION SR. C HF/HCL04/HN03/HCL 0.2-2C% 5-500 0.02-99% Ǖ5 ATOMIC ABSORPTION X C HF/HCL04/HN03/HCL 6HRS ₽G <u>ŤŠMĬN</u> Zhrš NH41 FUSION ASH 600 DEG C A.A. SOLVENT EXTRACT. PPN 1.0 5 N X WEIGH RESDUE LOI

.

GRID	SAMPLE	PROJECT	MO	CU	<u>Z N</u>	PB	AG	AU	AS	HG		
Q+Q Ç	0+00	3071 3071 3071	1	17	102 159 100	27	<ğ.ş	<0.02 <0.02 <0.02	ŚŚ	.7		
0+0C 0+0C 0+0C	0+00 0+50e 1+0Ce	3 857		14	150	27 20 19	<0.2 U.3 U.4	28:8 <u>5</u>	<2 <22	19		
0+00	-1ŦŠČĒ		Í	18	i Ćó	25	0.2	<0.02	<2	9		
Ö+ÜC	2+0CE	3071	1	13	208	27		<0.02	<2	18		
0+0C 0+0C	2+5CE 3+0CE	3071		16	232 165	19 17	Ú•3 0•7	<0.02 <0.02	<2 <2	20 23		
ŬŦŬŬ	-3+502	<u> </u>		<u></u>	146	23 32	Ŭ•8	<0.02	<2 <2	43		
0+0C	4+0CE	3071	2	87	151	32		<0.02	<2	46		
0+0C 0+0C	4+6CE 5+0CE	3071		39	93 120	42	1.0	<0.02 <0.02	<2 <2	64		
0+00				13	120	20	<0.2	<0.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23	antan menerikan karan yang karang dari karang ka	
2+005	0+0C	3071	<1	8	77	21	ý•2	<0.02	<2	25 25		
2+0CS 2+0CS	0+5CE	3071		17	115	26 18	0.2	<0.02	<2 <2			
ZTUUS	<u>1+00ē</u>		<u>2</u>	<u> </u>	<u>- 81</u> - 95		<u>8.3</u>	<u> </u>				
2+005	2+0CE	3071	1	Ţ	77	18	<0.2 0.3	\$8:8ž	ŞŞ	19		
2+0Cs 2+CCS 2+CCS	2+0CE 2+5CE 3+0CE	3671	1	16	77 65 62	18 13 12	0.3	<0.02	<2	56		
2+0C\$ 2+0C\$	3+5CE	3871	j	źĪ	<u>8</u>]	ź1 14	0.2	<0.02	ĘŻ	ŽĨ		
2+005	4+0CE	3071	2		83	14	<u> </u>	<0.02	<2			
2+0 <u>5</u> 2+0 <u>5</u>	4+5CE 5+0CE	3871	<1	14	58 58	18	8:3	<0.02	\$ 2	18		
2+005			<1	9	55		0.2	<0.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
2+0[\$ 4+0[\$	6+0CE 0+0C	3671	1	33	193	19	¥•3	< <u>C-02</u>	< 2 / 9	18		
4+0CS	0+5CE	3071 3071	<1	56	104	29 15	Ŭ-6 Ŭ-2	<0.02 <0.02 <0.02	<282 42	4		
4+0CS	0+5CE+	3071	1	9	105	13	0.2	<0.02	< 2	9		
4+0CS	1+90E	3C71 3C71 3071	<1	12	64	11	0.3 0.4	<0.02 0.02 <0.02	< 22 < 22	17		
4+0CS	1+6ČĒ 2+0ČĒ	3071		11	88 88	12	Ŭ.2	<ŏ:ŏź	22	18		
4+0(5	-2+5CE	3071	<u>1</u>	18	79	19	0.2	<0.02	<2	8	· · · · · · · · · · · · · · · · · · ·	
4+0CS	3+0CÉ	3071	~1	30 16	30 126	18	Ú.4 Ú.3	<0.02	< 2 2 2	30		
4+0CS	3+5ČE 4+0CE	3 Č 7 1 3 C 7 1	1	24	96	18	Ŭ.4	<0.02 0.02	<2 <2	20 13		
4+005	4+5CE 5+0CE	3071	1	102	86	18	0.7	0.02	</td <td>22</td> <td></td> <td>anga ata an anga ang ang ang ang ang ang ang an</td>	22		anga ata an anga ang ang ang ang ang ang ang an
4+0ČŠ 4+0ČS	5+00E 5+00E*	3071 3071	4	22	80 84	16 18	Ü.2 Ü. <u>2</u>	NSS	4 6	20		
4+0CS	5+5CE	3071 	2	34 55 	156	34	(J. /	<0.02	12			
4+0CS	6+0CE	3071		13			- <u.2-< td=""><td><u.u2< td=""><td></td><td> TŪ</td><td></td><td></td></u.u2<></td></u.2-<>	<u.u2< td=""><td></td><td> TŪ</td><td></td><td></td></u.u2<>		T Ū		
6+0CS 6+0CS	0+0C 0+5Ce	3071 3071	<1	14 28	117 115	12		<0.02 <0.02	× č	13		
6+0CS	1+0CE	3071	i	13	56	10	<0.2	<0.02	<2	7		
6+005	1+505	3071	<1	18	118	13	6.2	<0.02	<u> < </u>	8		
6+0Cs 6+0Cs	2+0CE 2+5CE	3071 3071	<1	18	107	13	<0.2	<0.02 <0.02		14 18		
6+0CS	3+6CE	3671	i	20	50	11	0.2	<0.02 <0.02	<2 <2	18 18		
6+0 <u>Cs</u> 6+0 <u>Cs</u>	3+5CE 4+0CE 4+5CE	3071 3071 3071		16	93	24	0.3	<0.02	<2	13		
8+0CS 8+0CS	47ULE 475CF	3071	<1	18	136 80	14	U•2 U•3	<0.02 <0.02	< Ž	14		
6+0CS	5+ÇÇÊ 5+ŞÇE	3č71	i	22	97	14	<u>.</u>	<0.02	ž	21		
6+0CS 6+0CS 8+0CS	5+5CE	3C71 3C71 3C71	1	22 18 20	97 80 90 84	11	0.2 2.0> 2.0>	<0.02 <0.02 <0.02	202 222	21		
8+0CS 8+0CS	Ó+ÓČ [−] 0+5Ce	3071	2	20	9U 84	16	<0+2 <0+2	<0.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13		
8+0Cs	1+GCE	3071	1	6	57	6	<u.2< td=""><td><0.02</td><td>< 2</td><td>21 23 13 23</td><td></td><td></td></u.2<>	<0.02	< 2	21 23 13 23		
E+UCS 8+UCS	1+5CE 2+CCE	3871	1	12	128 128	11	0.3	<8:8ž	< <u>₹</u>	21 25 30		
8+0CS - 8+0CS -	2+60E 2+50E	3071	ź	29	128	16 23	Ú•3 Ú•2	<0.02 <0.02	26	42		
8+0CS 8+0CS	3+0CE	3071		Ťé	111	17	0.2	<0.02		26		

FLALCA	UEVUNER A	Jant Jtalt	EPL UNIT	TRVN	3011	ναμι	eay ni		01 I U ş	NUULE		6.18 I 6 W	VAIE. 04"
GRID	SAMPLE	PROJECT	MO	CU	ZN	PB	AG	AU	AS	HG	· · ·		
8+0CS 8+0CS 10+0CS	4+0CE 5+0CE 0+0C	3071 3071 3071	~1	15 13	220	12 13	U•3 0•2 U•2	<0.02 <0.02 <0.02	< <u></u>	42 9 13			
10+0CS 10+0CS 10+0CS 10+0CS	0+5CE 1+0CE 1+0CE 1+0CE 1+5CE	3071 3071 3071 3071	1 1 1	29 15 15 10	151 79 80 75	17 13 13	0.2 0.2 <0.2 <0.2	<0.02 <0.02 <0.02 <0.02 <0.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25 12 10			
10+005 10+005 10+005 10+005	2+50E 2+50E 3+0E 3+5E	3071 3071 3071 3071	2	26 14 13	115 100 122 88	20 14 13	<0.2 <0.2 <0.2	<0.02 <0.02	<2 <2 <3	12 21 20			
10+005 10+005 10+005 10+005 10+005	4+0CE 4+5CE 5+0CE 5+0CE	<u>5071</u> 3071 3071 3071 3071	·····``i·····	18 22 14 13	122 113 87 86	19 16 15	0.2 0.2 0.2 0.2 0.2	<0.02 <0.02 <0.02 <0.02 <0.02	4 4 4 2 2	23 7 7			11 A 11 - 11 - 11 - 11 - 11 - 11 - 11 -
test test test	STD G STD G STD C STD C STD C	3071 3071 3071	13 13 13	95 90 93 90		107 107 113			70 70 74 68				
test test test test	STD HG STD HG STD HG STD HG STD HG STD AU	3071 3071 3071 3971								176 176 189 182			
test test test test	STD AU STD AU STD AL STD AL	3071 3071 3C71 3C71						1.90 1.32 1.55					

,

END CF LISTING - 87 RECORDS PRINTED GCLIST RUN AT: C9:11:03

,

GEOCHEMICAL DATA LISTING: Soil Sam	aples on	road sectio	on, McCorvie Grid Area,	DATE: 84-03-26
PDL Lab data file: P31 AREA: NOBLE CLAIMS WAPSHEET NO: &2M12W VENTURE: 1888 GEOLOGIST: R. PINSENT	76-1			
LAB PROJECT NO: 3176 REMARKS: PLEASE DISTRIBUTE RESUL	.TS TO:	R. PINSENT I. THOMSON	S. TENNANT B. HODGSON R. SHKLANKA	
STANDARC ANALYSIS METHODS USED BY ALL RESLITS EXPRESSED AS INDICATE ANY EXCEPTIONS FOR THIS PROJECT	1 PDL GEO ED IN UNI T ARE NOT	CHEM LAB AF TS COLUMN I ED ABOVE	RE LISTED BELOW:	
REMARKS: INTERNAL LAB STANDARDS SAMPLE NUMBERS FOLLOWED	HAVE BEE D BY . AR	N INCLUDED Re duplicate	L ANALTSLS.	
UNITS LT.G ATTACK USED MO PPM G.5 C HCLO4/HNO3 CU PPM G.5 C HCLO4/HNO3 ZN PPP G.5 C HCLO4/HNO3 PB PPM G.5 C HCLO4/HNO3 PB PPM G.5 C HCLO4/HNO3	4 H R S 4 H R S	RANGE 1-100C 2-400C 2-300C 2-300C 0.2-200	METHOD ATOMIC ABSORPTION ATOMIC ABSORPTION ATOMIC ABSORPTION A.A. BACKGROUND COR. A.A. BACKGROUND COR.	
PB PP# C.5 C HCL04/HN03 CD PP# G.5 C HCL04/HN03 NI PP# G.5 C HCL04/HN03 CO PP# G.5 C HCL04/HN03 AG1 PP# Q.5 C HCL04/HN03 AG2 PP# Q.5 C HN03 AU PP# Q.5 C HN03 U PP# G.25 DIL HN03	4 HR S 4 HR S 4 HR S 2 HR S 3 HR S	2-2000 2-2000 0.2-20 0.02-4.00 0.02-4.00	ATOMIC ABSORPTIGN ATOMIC ABSORPTION A.A. BACKGROUND COR A.A. SOLVENT EXTRACT A.A. SOLVENT EXTRACT.	
V PPM G.S C HF/HCLO4/HNO3/HCL W PPM 1.0 C HF/HNO3/HCL/H2SO F PPM G.25 NA2CO3/KNO3 FUSION AS PPM G.5 C HCLO4/HNO3 SB PPM 0.5 C HCLO4/HNO3	30MIN 4HRS 4HRS	1.0-1000 5-500 40-4000 2-1000 2-1000	FLOURIMETRY SOLV. EX. ATOMIC ABSORPTION A.A. SOLVENT EXTRACT. SPECIFIC ICN ELECTODE A.A. BACKGROUND COR. A.A. BACKGROUND COR.	
BI PPW 0.5 C HCLO4/HNC3 MN PPW 0.5 C HCLO4/HNC3 FE 2 C.5 C HF/HCLO4/HNO3/HC1 HG PPB 0.5 DIL HNO3 BA 2 0.5 C HF/HI/OXALIC NA 2 0.5 C HF/HCLO4/HNO3/HC1	4 HRS 4 HRS 1 6 HRS 2 HRS 4 HRS	2-2000 2-3000 0-02-207 5-2000PPB 0-02-207 0-2 -207	ATOMIC ABSORPTION ATOMIC ABSCRPTICN ATOMIC ABSORPTICN A.A. COLD VAPOR GEN. ATOMIC ABSORPTION ATOMIC ABSORPTION	
K X G.5 C HF/HCL04/HN03/HCL CA X G.5 C HF/HCL04/HN03/HCL SR PPM C.5 C HF/HCL04/HN03/HCL MG X C.5 C HF/HCL04/HN03/HCL MG X C.5 C HF/HCL04/HN03/HCL SN PPM 1.0 NH41 FUSION LOI X 1.0 ASH 60C DEG C	L ÓHRS L ÓHRS L ÓHRS	0.2 -20% 0.02-20% 10-20CU 0.2-2C% 5-500 0.02-\$9%	ATOMIC ABSORPTION ATOMIC ABSORPTION ATOMIC ABSORPTION ATOMIC ABSORPTION A.A. SOLVENT EXTRACT. WEIGH RESDUE	

A second s

- --- - ----

PLALER	SEVUNER A	Sant atare			3071	sampi	es on	ruau si		metur	vie sri	U AFEd, NUULE LIDUALE: 04-(
GRID	SAMPLE	PROJECT	MO	<u> </u>	Z N	PB	AG	AU	AS	MN	HG	
82M12W 82M12W 82M12W	MC2CC MC2C1 MC2C2	3176 3176 3176	{]	20 13 14	66 64	12 12	<0.2 <0.2 <0.2	<0.02 <0.02 <0.02	<22 <22	202	9 9 13	
82112W 82112W 82112W 82112W 82112W	MC2C3 MC2C4 MC2C5 MC2C5 MC2C6	3176 3176 3176 3176 3176		6 23 54	65 62 54 117	10 13 11 21	<0.2 <0.2 <0.2	<0.02 <0.02 <0.02	<2 <2 <2	216 240 490	14 18 12	na ann ann ann ann ann ann ann ann ann
82M12W 82M12W 82M12W	MC2C8 MC2C8 MC2C9	3176 3176 3176		11 46 9	110 76 98	15 22 13	<0.2 0.2 <0.2	<0.02 <0.02 <0.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	220 320 370	15 22 17	
82M12W 82M12W 82M12W 82M12W	MC21C MC211 MC212 MC213	3176 3176 3176 3176	<1 <1	43	210 96	16 23 55	<0.2 <0.2 <0.2	<0.02 <0.02 <0.02	<2	250	15 23 13	
82M12W 82M12W 82M12W 82M12W	MC214 MC215 MC216 MC217	3176 3176 3176 3176	<1 <1 <1		-110 59 141		<u-2 <u-2 <u-2 <u-2< td=""><td><0.02 <0.02 <0.02 <0.02</td><td><2</td><td>290 </td><td>19 19</td><td></td></u-2<></u-2 </u-2 </u-2 	<0.02 <0.02 <0.02 <0.02	<2	290 	19 19	
test test test test	STD G STD C STD AL STD AU	3176 3176 3176 3176	-12-	98	78	- 198-		1.60 1.63	66	135	157	· · · · · · · · · · · · · · · · · · ·
test test	STD HG	<u> </u>								•	159	· · · · · · · · · · · · · · · · · · ·

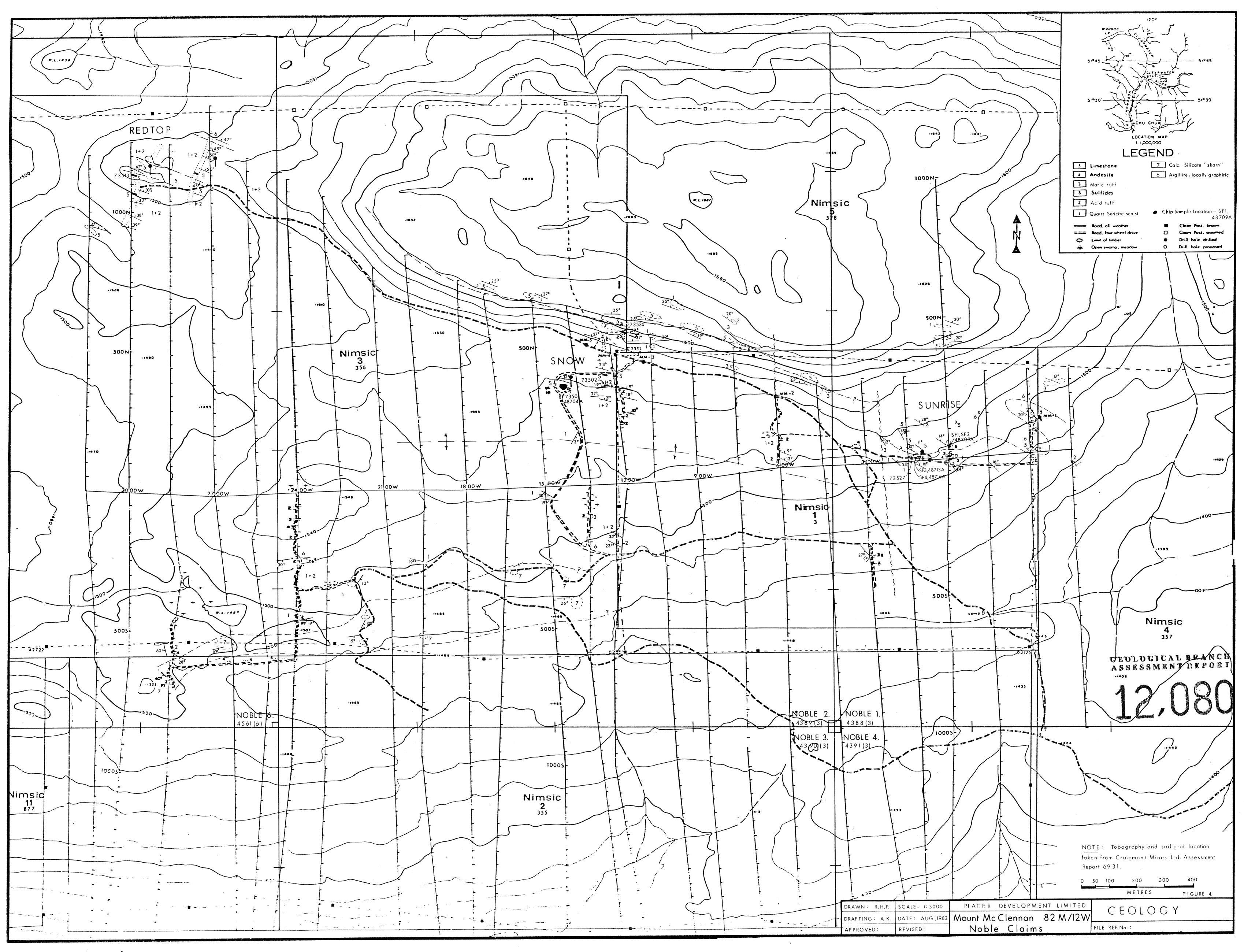
.

END OF LISTING - 24 RECORDS PRINTED GOLIST RUN AT: 09:13:47

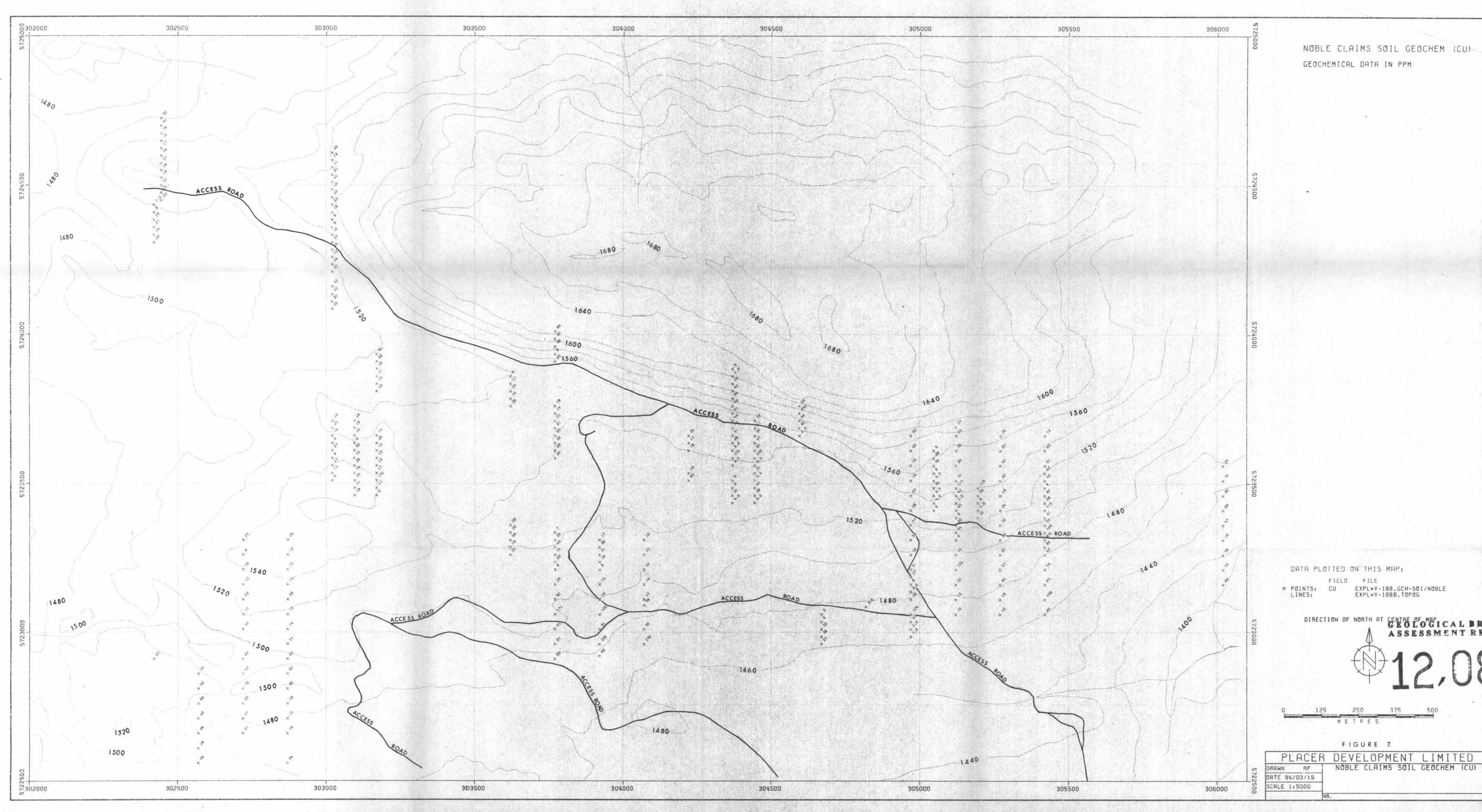
...

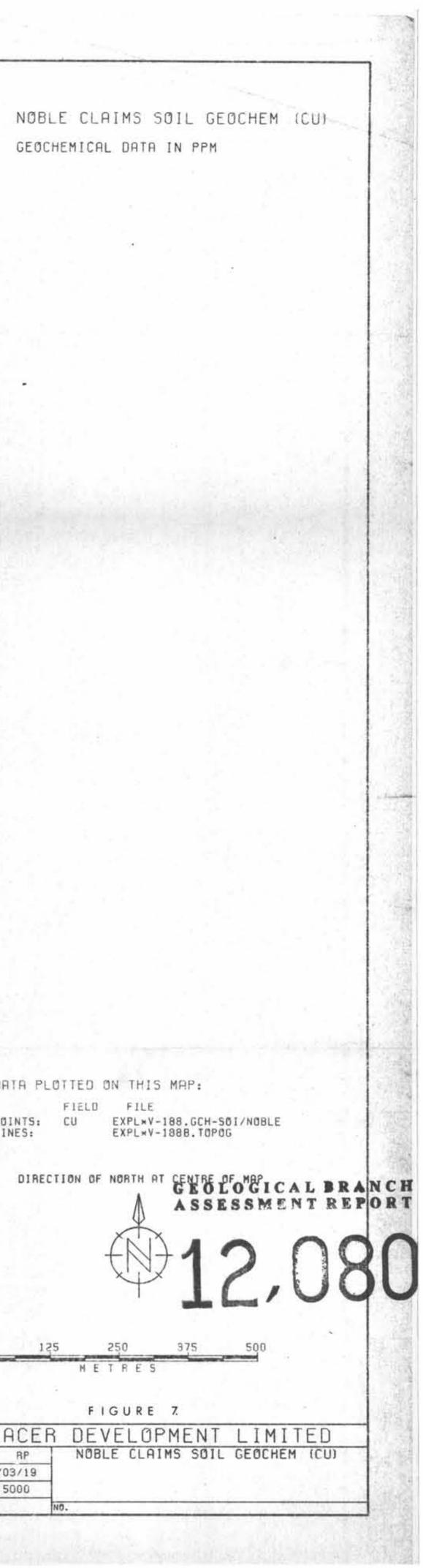
,

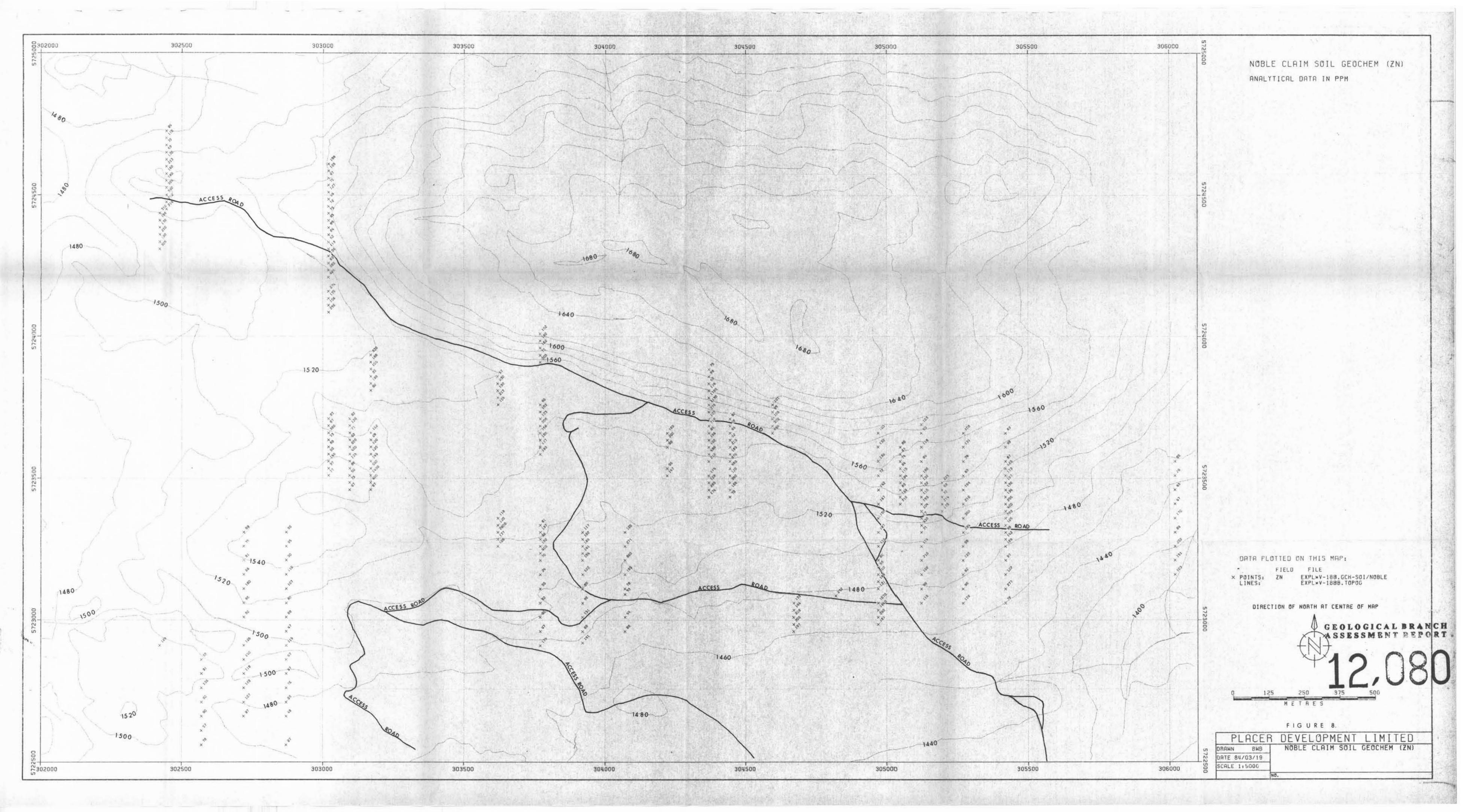
,

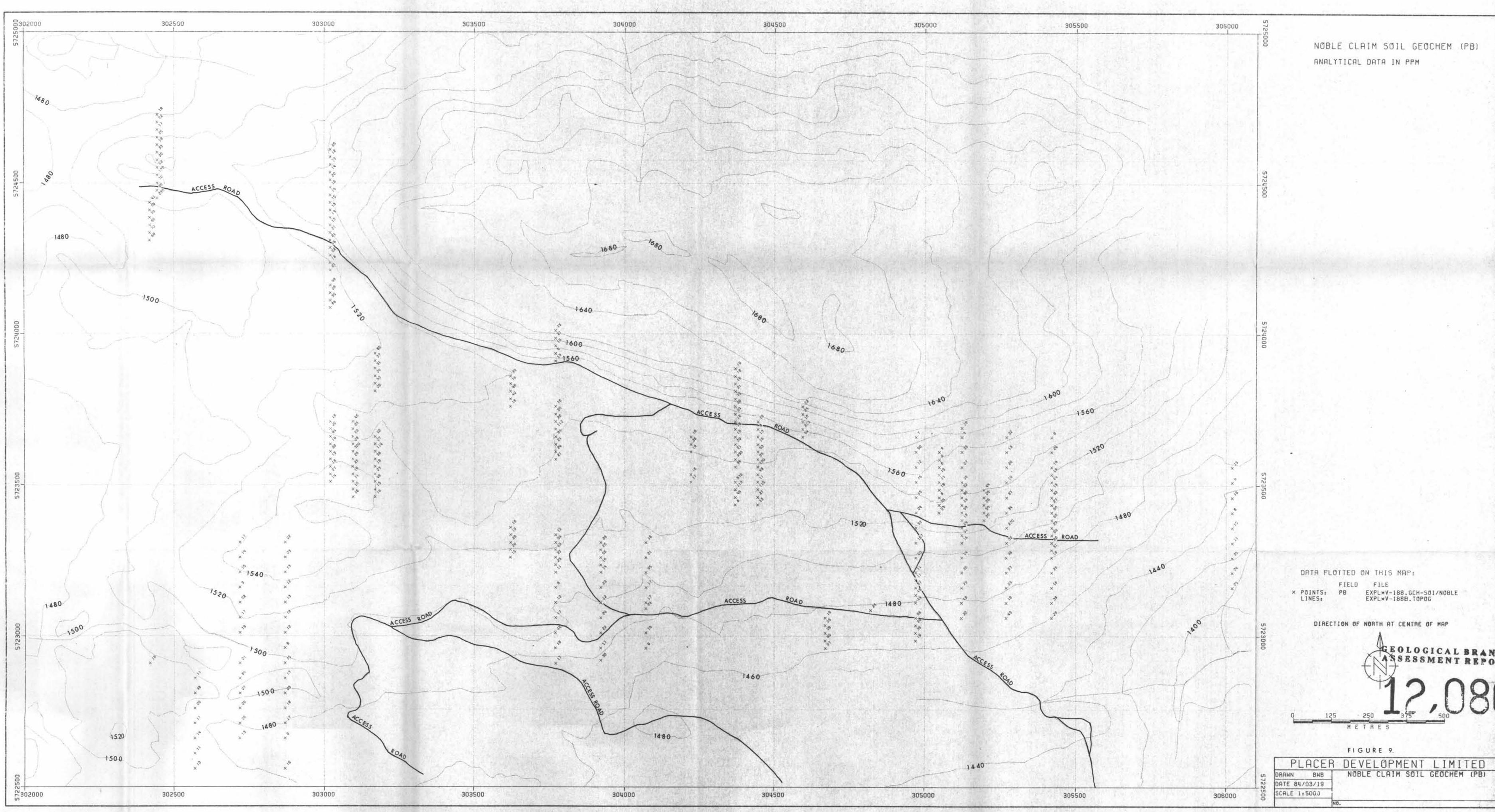

EOCHEMICAL DATA LISTING: BU	k Samples, Peavine Cr	eek, Noble 5 Claim 82m12w	DATE: 84-03-20
PDL lab data file: AREA: NOBLE CLAIN	P3178-1 IS		neme er ververe menemenen en en værvælster menemene i att atteret er er er sampeter og
MAPSHEET NO: 82M12W			
VENTURE: 1888 GEOLOGIST: R. PINSENT LAB PROJECT NO: 3178			
LAB PROJECT NO: 3178			
REMARKS: PLEASE DISTRIBUTE	RESULTS TO: R. PINSE	NT S. TENNANT B. HODGSON	
	I. THCMS	CN R. SHKLANKA	
STANDARD ANALYSIS METHODS U	ED BY POL GEOCHEM LAE	ARE LISTED BELOW: N BELOW	
ALL RESILTS EXPRESSED AS IN ANY EXCEPTIONS FOR THIS PI	LICATED IN UNITS COLUM	N BELOW	
REMARKS: INTERNAL LAB STANI SAMPLE NUMBERS FO	ARDS HAVE BEEN INCLUD Lowed By	ED FOR REFERENCE.	
UNITS NT.G ATTACK USED Mo PPM C.5 C HCLO4/HNO3	TIME RANGE 4HRS 1-100C	METHOD Atomic absorption	
CH PPM C.S C HCLO4/HNC3	4HRS 2-400C	ATOMIC ABSORPTION	
ZN PPM G.5 C HCLO4/HNC3 PB PPM C.5 C HCLO4/HNC3	4 HRS 2-3000 4 HRS 2-3000	ATÓMIC ABŠÓRPTIÓN A.A. BACKGROUND COR.	
CD PPM G.S C HCLO4/HNO3 NI PPM C.S C HCLO4/HNO3	4HRS 0.2-200 4HRS 2-2000	A.A. BACKGROUND COR.	
CO PPM C.5 C HCLO4/HNC3	4HRS 2-2060	ATOMIC ABSORPTION	· · · · · · · · · · · · · · · · · · ·
AG1 PPM C.5 C HCLO4/HNO3 AG2 PPM C.5 C HNO3	4HRS 0.2-20	A.A. BACKGROUND COR	
AU PPM 10.0 AQUA REGIA	4 HRS 0.2-20 2 HRS 0.02-4.0 3 HRS 0.02-4.0	G A.A. SOLVENT EXTRACT	
U PPM 0.25 DIL HNC3 V PPM 0.5 C HF/HCLO4/HNC	2HRS 1.0-1000	FLOURIMETRY SOLV. EX. Atomic Absorption	
PPM 1.0 C HF/HN03/HCL/	H2SO4 4HRS 5-50C	A.A. SOLVENT EXTRACT.	
F PPM G.25 NA2CO3/KNO3 FI AS PPM C.5 C HCLO4/HNC3	ISION 3CMIN 40-4000 4HRS 2-1000	SPECIFIC ION ELECTODE A.A. BACKGROUND COR.	· · · · · · · · · · · · · · · · · · ·
SB PPP C.5 C HCLO4/HNC3	4HRS 2-1000	A.A. BACKGROUND COR.	
BI PPM C.5 C HCLO4/HNO3 MN PPM C.5 C HCLO4/HNO3	4HRS 2-20UC 4HRS 2-300C	ATOMIC ABSORPTICN ATOMIC ABSORPTICN	
EE 2 0.5 C HE/HOLOK/HN	3/HCL 6HRS 0.02-202	ATOMIC ABSORPTION	
HG PPE 0.5 DIL HNC3 EA X 0.25 C HF/HI/OXALIO	2HRS 5-200CPF 4HRS 0-02-202	E A.A. COLD VAPOR GEN.	
	4HRS 0.02-207 3/HCL 6HRS 0.2 -207	ATOMIC ABSORPTION ATOMIC ABSORPTION	
K % G.5 C HF/HCL04/HN()3/HCL 6HRS 0.2 -20%	ATOMIC ABSORPTION	
CA 2 G.S C HF/HCLO4/HN SR PPM G.S C HF/HCLO4/HN)3/HCL 6HRS 0.02+202)3/HCL 6HRS 10-2000	ATOMIC ABSORPTION Atomic Absorption	
MG Z C.S C HF/HCLO4/HN SN PPM 1.0 NH4I FUSION LOI % 1.0 ASH 60C DEG C	3/HCL6HRS0.2-2C2	ATOMIC ARSCRPTICN	
	15MIN 5-500	A.A. SOLVENT EXTRACT.	

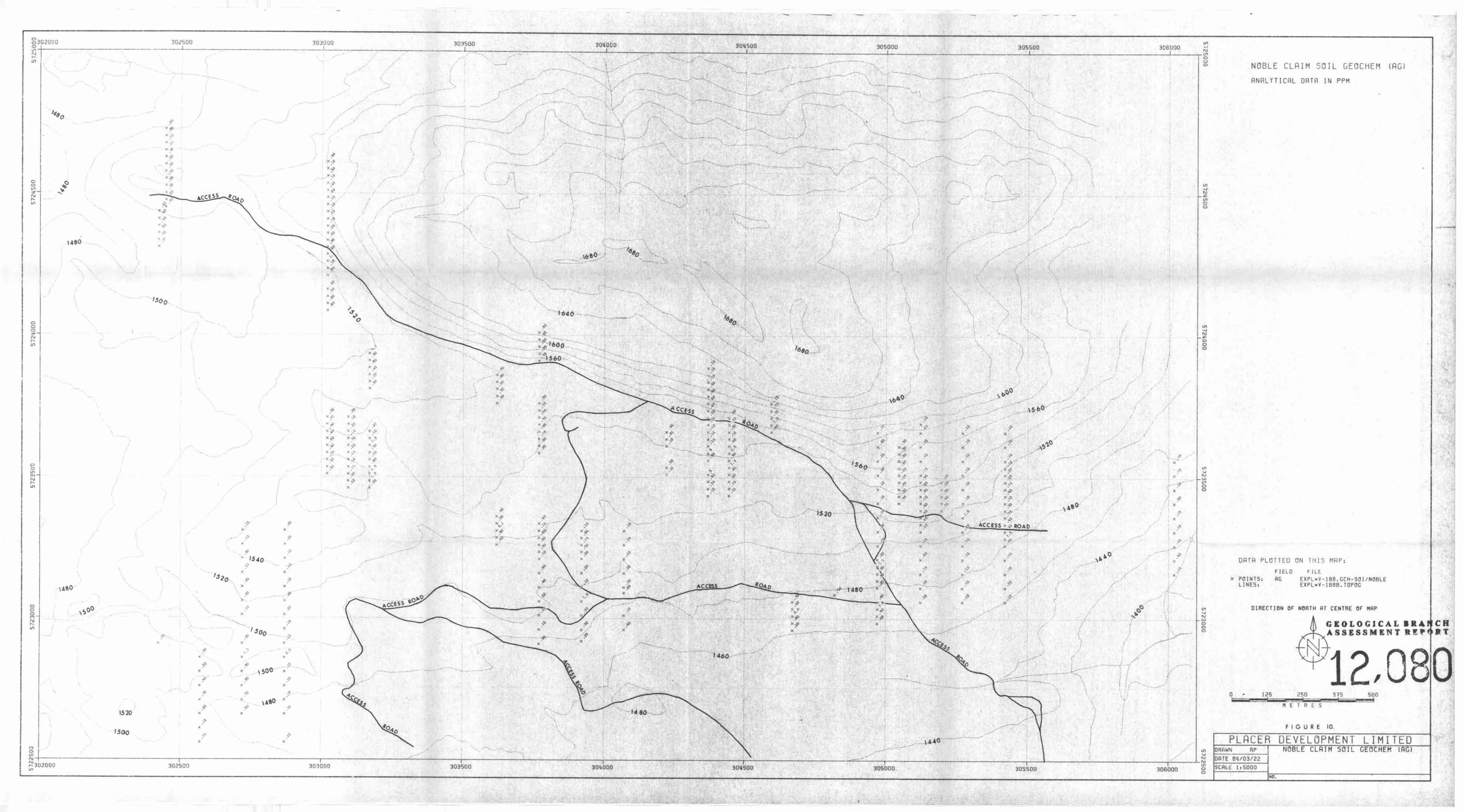
ing nan and nan ing nan ing nan ing nan ing nan Nanan. Ing nan
•

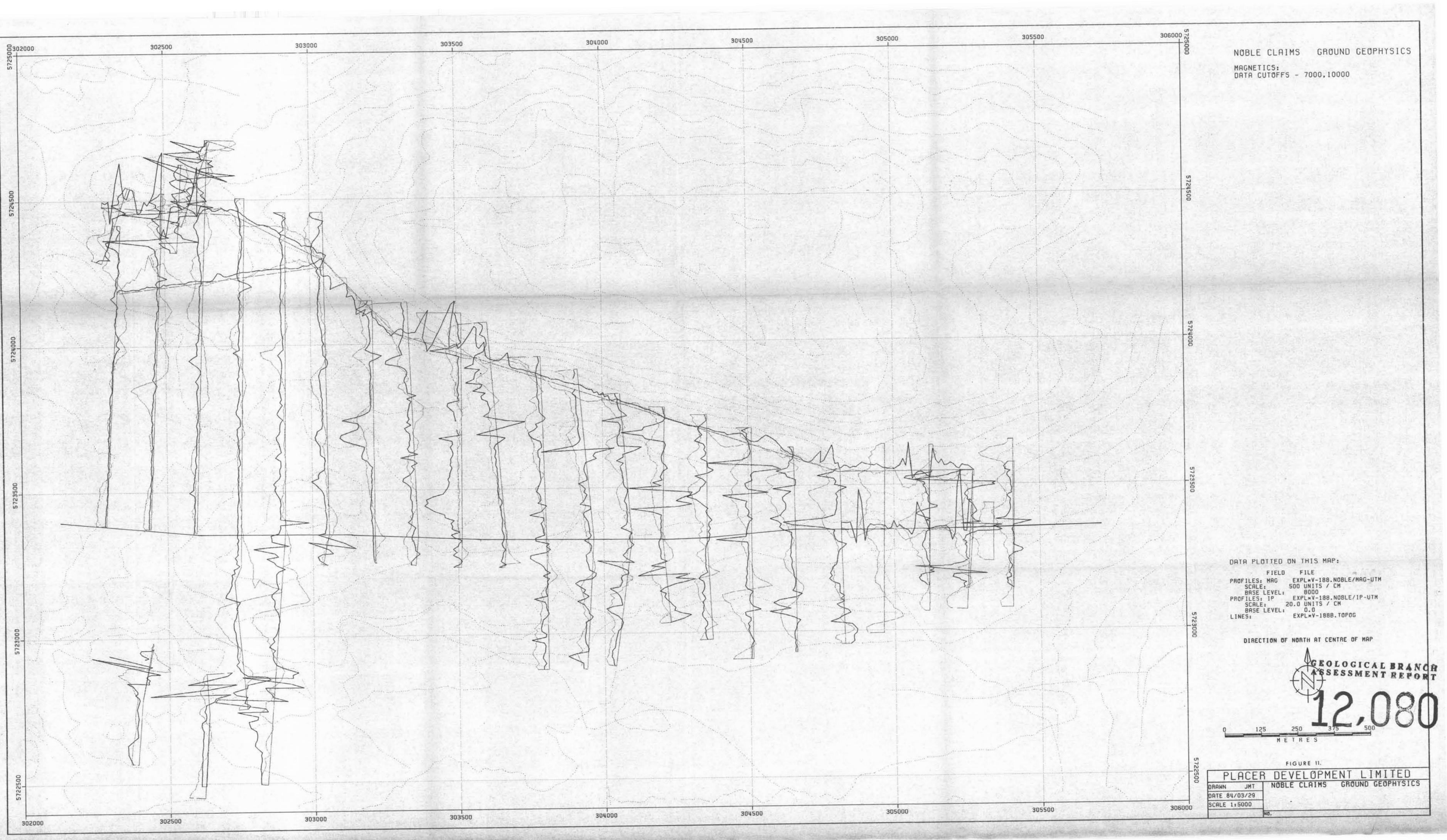

PLACER	GEOCHEM	ASSAY SYSTE	MI DATA	FROM	Bulk	Sampl	es, P	eavine	Creek,	Noble 5	Claim	82m12w	DATE: 84-(
-GRID	SAMPLE	PROJECT	M Q	C-U	Z_N	P-B	A G		A S		\$ 8		
82M12W 82M12W 82M12W	PV2766 PV2766 PV2766	* 3178 * 3178 * 3178	1	58			0.2	0.07		38			
82M12W 82M12W	PV29C0 PV29CC	* 3178						6.09		95		an a	
82M12W 82M12W	PV29CC	• <u>3178</u> <u>3178</u>	2	55	129		<u-2< td=""><td></td><td>1-80</td><td>68</td><td>_<2</td><td></td><td></td></u-2<>		1-80	68	_<2		
82M12W 82M12W 82M12W 82M12W	PV31CC PV31CC PV33CC PV33CC	* 3178 3178	2	57	132	60	<0.2	0.03	166	80	<2		
82M12W 82M12W 82M12W 82M12W	PV33CC PV35CC PV35CC PV35CC	3178	2	57	140	74	<0.2	0.06	296	101	<2		
82M12W 82M12W	PV38CC PV38CC PV38CC PV38CC	3178 ± 3178 • 3178	1	36	86	22	<0.2	0.50	-	23			
82M12W	PV4CCC	<u> </u>	1	43	90	15	<0+2	×0.02	<2	15	< 2		
82M12W 82M12W 82M12W 82M12W	PV4CCC PV4CCC PV42CC PV42CC	* 3178 3178	1	24	70	16	<0.2	<0.02 <0.02	<2	26	<22 <2		
82M12W 82M12W test test	PV42CC PV42CC STD 6 STD AU		1 14	23 94	69 72	15 110	2•0> ∪•8	<0.02 <0.02 <0.02	8.8	-			
test test	STD SB STD HG	3178								172	156	•	

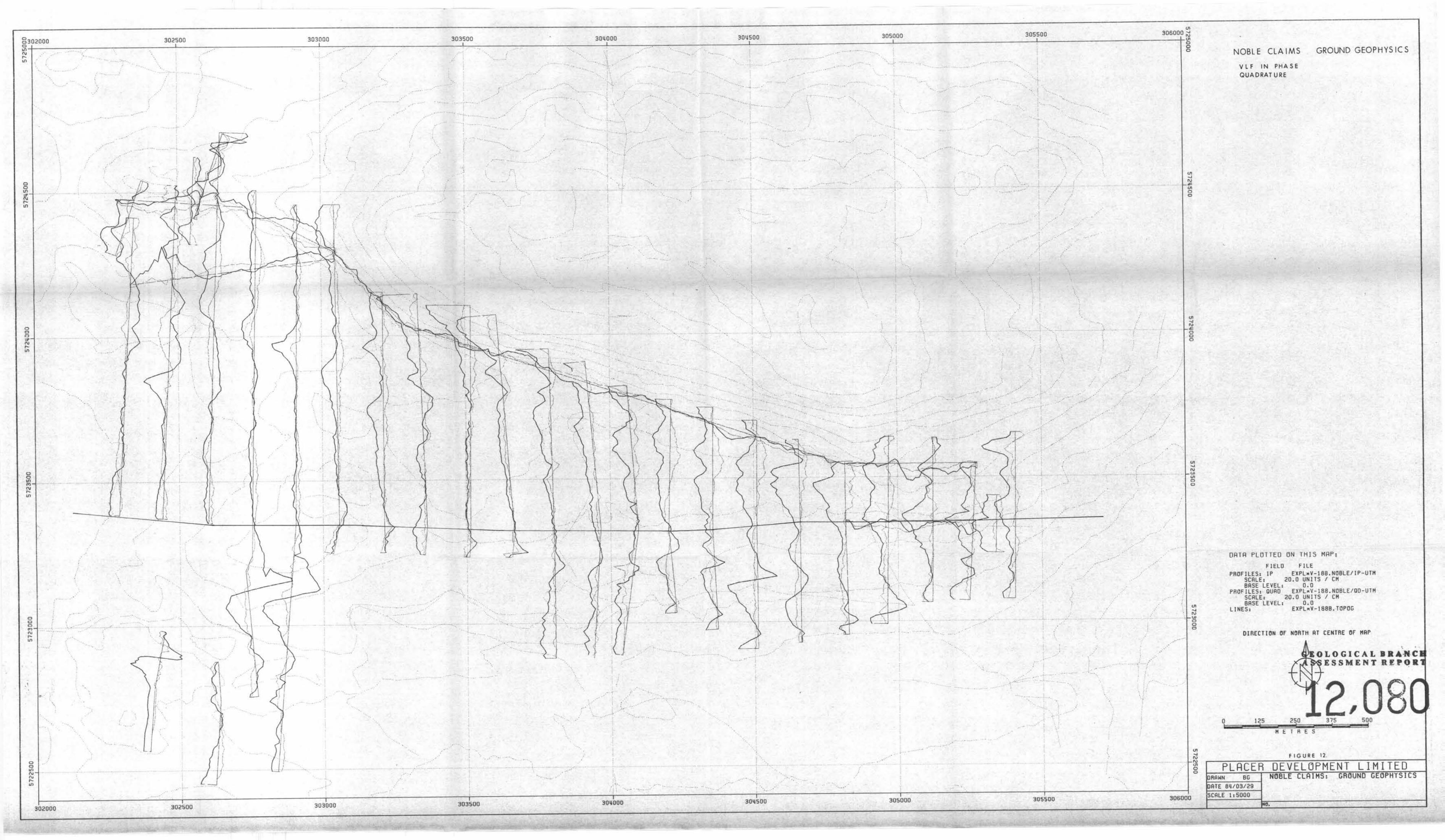

END OF LISTING - 29 RECORDS PRINTED GCLIST RUN AT: C9:07:56

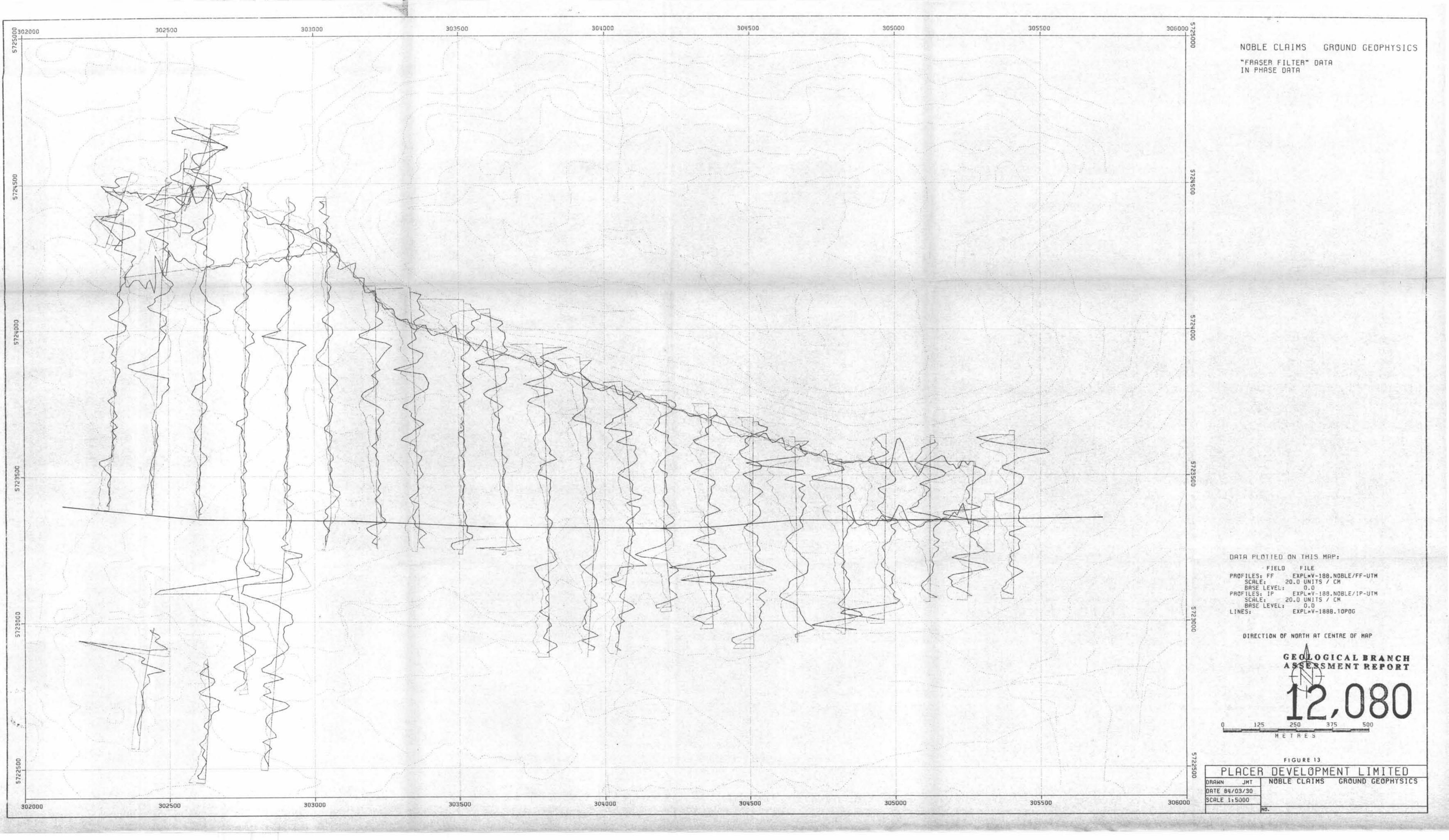



• A


alle, Lill Agence,







GEOLOGICAL BRANCH ASSESSMENT REPORT

