R. W. PHENDLER, P.Eng., GEOLOGICAL CONSULTANT, EXPLORATION AND MINING 7360 DECOURCY CRES., RICHMOND, B.C. V7C 4E9 (604) 271-2588

REPORT

on the

F F H GOLD PROSPECT,

OSOYOOS MINING DIVISION, BRITISH COLUMBIA

for .

FREEDOM RESOURCES LTD.

and

LITTLE BEAR RESOURCES LTD

by

R.W. PHENDLER, P. Eng.

Vancouver, Canada

Nov 22,1983

GEOLOGICAL BRANCH ASSESSMENT REPORT

12,116

TABLE OF CONTENTS

			Page
Part	"A"		
	Summary and Conclusions	•••••	1
	Recommendations	• • • • • • • • • • • • • • • • • • • •	•• 3
	Cost Estimate		3
Part	"B"		
	Introduction		•• 5
	Location and Access		•• 5
	Property and Ownership		••• 6
	History		7
	Geology and Mineralizati	on	8
	Geochemistry		• • • • 12
	Geophysical Diamond Drilling Comment		13
	Certification	•••••	••••16
	Bibliography	• • • • • • • • • • • • • • • • • • • •	• • • • • 17
	Assay Certificate	•••••••	18
	ILLUSTRAT	CIONS	
Fig.	1 - Location Map	1" = 200 Miles -	frontispiece
Fig.	2 - Property Map	1 : 20,000	19
Fig.	3 - EM, Geochem Map	1 : 2,500	20
Fig.	4 - Sample, Drillhole Map	1 : 5,000	21

PART "A"

SUMMARY AND CONCLUSIONS

Although not being located in a heavily mineralized part of British Columbia, the FFH property has a number of interesting types of mineralization. It lies adjacent to the Shepherd - Sunrise property, which produced a few hundred tons of 0.53 oz Au material in 1962 from a couple of quartz veins that may project into the FFH ground. These veins are reported to have drill - indicated reserves of 3100 tons averaging 0.84 oz Au and 1.99 oz Ag per ton.

The FFH property is located close to Olalla in south central British Columbia, is easily accessible and lies astride the contact between the Olalla multi-facies intrusive and mixed sediments of the Shoemaker Formation.

As well as the gold-bearing quartz veins, the FFH area has magnetite - chalcopyrite - bearing skarn deposits derived from the replacement of limey beds within sediments and a little understood pyritic siliceous breccia zone that is up to forty meters in width and is reported to contain significant gold values. The breccia zone is closely associated with a major east - west zone of weakness (Valley Fault) that is at least two kilometers in length and is believed to have a vertical dip. One drill hole (1962) intersected 10.8 meters of the breccia which assayed 0.110 oz Au per ton at a depth of 115 meters.

The mineralized breccia zone has been located by diamond drilling (1962) in two areas about 700 meters apart along the Valley Fault and recently - completed geochemical and electromagnetic surveys has indicated that gold values and the associated sulphides are continuous throughout this unexplored distance.

Drill hole 81-1 (drilled in 1981) tested a co-incident electromagnetic conductor and gold geochemical anomaly and intersected 40 meters of pyritic breccia close to the Valley Fault. This zone averaged .002 Au with the best ten foot section in the hole assaying 0.02 oz Au per ton.

A second previously unknown elongate zone of anomalous gold in soils and electromagnetic conductors was discovered 400-500 meters south of the Valley Fault.

At the south end of the FFH claim but within Crown Grant claim L1451 (not held by Freedom Resources Ltd.) a gold bearing shear zone within argillites was drifted on in 1937. Detail sampling at that time showed that 110' of the adit averaged 0.42 oz Au per ton across an average width of 1.86 feet. This showing is known as the "Something Good" vein and may project westward into the FFH claim.

The potential of the property for the discovery of large tonnages of low grade gold within the breccia zone and gold bearing quartz veins appears to be relatively good. It warrants additional exploration, including geochemical work, electromagnetic surveying and diamond drilling.

Three drill holes totalling 1245 feet completed in April,
1983 tested some quartz veins and part of the Valley fault. Some
narrow intersections in the 0.02 - 0.05 oz Au per ton range were cut.

RECOMMENDATIONS

It is recommended that:

Phase I

One 500 foot diamond drill be drilled to explore the Valley fault breccia zone over a gold geochemical anomaly and a strong EM conductor.

Phase II

Additional diamond drilling be carried out.

Phase III

Additional diamond drilling be carried out.

COST ESTIMATE

Phase I

1)	Diamond drilling - 500 feet @ \$30/foot	\$15,000
Pha	se II - (dependent upon favourable results from Pha	se I)
1)	Diamond drilling - 1,500 feet @ \$25/foot	37,500
2)	Engineering, Geology, Assays	4,000
3)	Travel and Accommodation	2,000
	Total -	\$43,500
	15% Contingencies -	6,525
	Total, Phase II -	\$50,025

Pha	se III - (dependent upon favourable results from Phase	II)
1)	Diamond drilling - 1,500 feet @ \$25/foot	\$37,500
2)	Engineering, Geology, Assays	4,000
3)	Travel, Accommodation	2,000
	Total -	\$43,500
•	15% Contingencies -	6,525
	Total, Phase III -	\$50,025

The sum of \$15,000 should be made available at this time to carry out Phase I of the above program.

Respectfully submitted,

R.W. Phendler, P. Eng

PART "B" - Introduction

At the request of Freedom Resources Ltd. and Little Bear Resources, Ltd. the writer has compiled this report which includes work carried out in 1981, as recommended in his report of June 2, 1981. Examinations of the property were made on January 22, March 13 (during the program) and June 10, 1981 when drill core was logged and sampled. Again on July 15, 1982 the writer visited the property, checking on trenching carried out by property vendor F. Haidlauf in early 1982. The 1983 core was logged on site on April 13, 1983.

LOCATION AND ACCESS

The FFH property is located on an elevation of 600 - 1500 meters about 250 kilometers east of Vancouver in south central British Columbia. It lies 40 kilometers southwest of Penticton and half a kilometer west of Olalla on Highway 3A. Access to the east half of the property is by a 4-wheel drive vehicle from Olalla.

The region is considered to be semi-arid with the lower elevations having a moderate coniferous tree cover. Olalla Creek runs eastward along the north boundary of the claims and sufficient water is available for exploration purposes.

No buildings exist on the property.

PROPERTY AND OWNERSHIP

The property consists of the following claims:

Name	Size	Reco	ord No.	Record D	ate	
FFH	20 uni	ts 1019	(3)	March 31	, 1980	
Joan	16 uni	ts 1215	(8)	August 2	6, 1980	١
Copper	King l cla	im L306	55			

Assessment work has been recorded to keep the claims in good standing up to their anniversary dates, 1984.

The FFH claim covers four Crown granted claims (L3439, L3441, L3437 and L1451) that are not included in the property under discussion. They are not held by Freedom Resources Ltd.

HISTORY

Little is known of the early mining history of the Olalla area other than that small scale operations were carried out in the late 1800's for gold, silver and copper. This work was principally done on the Golconda & Shepherd - Sunrise properties in the FFH area and the Bullion, about one mile to the east. Some work was done on the Shepherd - Sunrise in 1937 but results were discouraging.

The Shepherd - Sunrise property consists of mineral-bearing quartz veins within pyroxenite with the veins probably being related to the principal east-west striking Valley Fault and the lesser Shepherd Fault.

Between 1946 and 1948 the Shepherd-Sunrise property was held by Hedley - Monarch Mines Ltd. and some underground work was carried out. It is reported that 300 tons of material averaging 0.53 oz Au/ton and 0.45 oz Ag per ton was shipped.

During 1961 and 1963 the property was held by Friday Mines Ltd. At this time the holdings were composed of three Crown granted claims (L18S, L1451 and L3441) and 20 mineral claims and covered the northern part of the ground presently held by Freedom Resources Ltd. Geological mapping, trenching and diamond drilling was carried out by Chapman, Wood and Griswold for Friday Mines, Ltd. Reserves on the principal Sweetner vein was estimated to be 3100 tons averaging 0.84 oz Au and 1.99 oz Ag per ton - most of it located below the adit level.

During 1962 Friday Mines, Ltd. carried out 1,182 feet of diamond drilling in two holes (on the property), (Cl and C2). Hole C-l intersected 4.2' of mineralization assaying 0.03 Au, 0.09 oz Ag, .03 Cu and .02 MoS2 at 100'. C-2 cut 22 feet of

pyritic siliceous breccia with traces of gold and silver.

At least four holes were also drilled about 100 meters east of the FFH property line in the vicinity of the Shepherd adit. The object of the drilling principally was the number of quartz veins in the area but it is reported that significant widths of gold-bearing, pyritic breccia were intersected.

During 1981 Freedom Resources Ltd. carried out a geochemical and geophysical (VLF) survey on the FFH property. Coincident anomalies were discovered, one of which was diamond drilled. This hole (81-1) was drilled to a depth of 500 feet between the old sets of drill holes and intersected a 40 meter width (132 feet) of pyritic breccia with low gold values.

In April, 1983 three drill holes totalling 1,245 feet were completed.

GEOLOGY AND MINERALIZATION

The area in which the FFH property is located is underlain by the southwest end of the Olalla intrusive stock in contact with sedimentary rocks of the Shoemaker Formation of Triassic (?) Age.

The Olalla stock is a multi-facies intrusive composed of pyroxenite, monzonite, syenodiorite & augite syenite that covers about fifteen square kilometers of area.

The sedimentary Shoemaker formation is composed predominantly of massive black to grey hornfels derived from cherty argillites with lesser greywacke, conglomerate with angular fragments, quartzites and limestone, which is often metamorphosed to marble and skarn close to the intrusive contact.

Mineralization on the FFH property consists of mineral bearing quartz veins (as in the Shepherd Sunrise workings), typical
erratic magnetite - chalcopyrite bearing skarn - type occurrences
in altered limestone bands and a pyritic siliceous breccia zone
within syenite that appears to be related to the east-northeasterly
striking Valley Fault.

The magnetite - chalcopyrite - pyrite skarn occurrences are scattered and discontinuous but generally show massive sulphides over small areas. Continuity of these pods are poor and potential is not considered to be good.

The quartz veins are prominent on the FFH claims and are the source of the significant gold assays returned on the Shepherd - Sunrise property, where it is reported that 300 tons of ore averaging 0.53 oz Au were shipped between 1946 and 1948 and where reerves totalling 3100 tons averaging 0.84 oz Au and 1.99 oz Ag are reported to exist.

During the writer's examination in January, 1981, eight chip samples were taken from quartz veins (see fig. 3) as follows:

Sample No.	Width	oz Au/ton	oz Ag/ton
42451	1.0'	0.158	0.05
42452	2.0'	0.072	0.03
42453	15.0'	0.003	0.02
42454	1.5'	0.001	0.02
42455	1.0'	0.002	0.55
42456	1.5'	0.001	0.01
42457	1.5'	0.056	0.50
42458	1.5'	0.011	0.48

Early drilling (1962) carried out by Friday Mines Ltd. on the Shepherd - Sunrise showings gave the following intersections on quartz veins:

D.H. No.	Intersection	Width	oz Au	oz Ag
H4	333' - 335.9'	2.9'	0.603	0.26
н5	347.5 - 355	7.5'	0.171	0.336

Although of great significance in the Shepherd - Sunrise area the quartz veins on the FFH property appear to be considerably lower in gold content. However, the possibility that the Sweetner vein projects westward into the FFH claim must not be overlooked. It is also possible that part of the 3100 tons of reserves blocked out on the Sweetner vein lie within the FFH claim. The location of the claim line has not been accurately determined on surface nor has the location of the reserves blocked out by diamond drilling in 1962.

Along the strike of the Valley Fault, which has been traced for about 1800 meters across the FFH claim, a pyritic siliceous breccia zone has been traced intermittently over a strike length of 700 meters. First encountered in the Shepherd - Sunrise area, it was later intersected by drilling carried out by Friday Mines, Ltd. on ground presently held by Freedom Resources Ltd. (the FFH claim). Reported drill hole intersections on this mineralized tectonic breccia zone within syenite are as follows:

D.H. No	Intersection	Width	oz Au	oz A	g Location
H - 5	315.6' - 354.7'	39.1'	0.056	0.14	Shepherd-Sunrise
H- 8	383.0' - 391.1'	8.1'	0.330	1.08	11 11
	365.2' - 400.7'	35.5	0.110	0.35	11 15
H- 10	354.9' - 360.1'	5.2'	0.063	0.25	11
**	403.8' - 411.7'	7.9'	0.139	0.53	11 H
C-1	100.8' - 115.1'	14.3'	0.030	0.09	0.02 MoS ₂ -FFHclain
C-2	715.0' - 727.5'	12.5'	tr	tr	FFH Claim

The above list shows the assay widths of the samples taken from the breccia zone but the mineralization and the brecciation (and the mineral potential) are reported to be in excess of fifty feet in two holes (H-5 and H-10).

Although untested by drilling over numerous hundreds of meters along the strike of the Valley Fault, the pyritic siliceous breccia zone has been located over a strike length of 700 meters. The host rock is syenite and alteration consisting of sericitization and silicification is widespread.

The Something Good prospect lies near the south limit of the FFH claim in argillites near the pyroxenite intrusive contact. Mineralization consists of a shear zone that strikes S75°W and contains calcite - cemented breccia with some quartz and interesting values in gold. Two adits were driven in 1936 - 1937, one for 350 feet (No. 1 adit) and the No. 2 adit located 200 feet lower in elevation for 315 feet.

The No. 1 adit followed the footwall of the shear zone, which varies between four and 16 feet in width. For the first 110' of the adit, a well-defined brecciated zone was followed and samples taken on 5 foot intervals by the regional geologist for the British Columbia Department of Mines in 1937 averaged 0.42 oz Au (uncut) across 1.86 feet. Beyond this point the footwall of the shear zone is marked by graphitic gouge and gold values are negligible.

The lower adit (No. 2) was driven in pyroxinite for the entire distance, failing to reach the contact with the argillite and the shear zone.

Anomalous gold geochemical values were obtained west of the Something Good showing and may indicate the west extension of the vein from the L1451 claim (not held by Freedom Resources Ltd.) into the FFH claim.

GEOCHEMISTRY

During March, 1981 a geochemical survey was carried out over 28 kilometers of grid lines spaced at 50 meter spacing.

Samples were taken on 25 meter intervals with 1400 samples collected. Copper and gold determinations were made with results showing the presence of five gold anomalies and three copper anomalies.

Of the five gold anomalies, three (A,Al and D) are closely associated with the Valley Fault and the gold mineralization as presently known. Anomalies B and C appear to be related to a secondary, east-west structure that parallels the Valley Fault and is located about 400 meters to the south. This secondary fault is also indicated by the EM survey showing the presence of two conductors close by.

Two of the copper geochemical anomalies (E and F) are related to the west portion of the Valley Fault while the third (G) lies on the north central limit of the FFH claim and is rather small (two samples).

It may be stated that the geo-chemical survey was successful in showing the relationship between the gold mineralization, the Valley Fault and the pyritic mineralized breccia zone.

GEOPHYSICAL

During March, 1981 a VLF electromagnetic survey was carried out by Columbia Geophysical Services Ltd. and two principal elongate east-west trending conductors were located.

Conductive zone A is coincident with the Valley Fault, a strong gold geochemical anomaly and the general area in which the mineralized breccia zone is located.

Conductive zone B is located 400 - 500 meters south of and parallels conductive zone A. It is coincident with anomalous soil conditions for gold and may be related to a second east-west mineralized fault zone.

DIAMOND DRILLING

As part of the recommendations included in my report on the FFH Gold Prospect dated June 2, 1981, diamond drilling was carried out between June 2 and June 10, 1981.

One 500 foot (166 meter) long hole was drilled to explore one of three coincident gold geochemical and electromagnetic anomalies. These anomalies are aligned in an east-west direction along the principal Valley Fault and the associated mineralized syenite breccia zone. The syenite breccia zone has been traced over a strike length of 700 meters and earlier drilling suggested a width in the 10 - 12 meter width. One earlier hole (1962) returned a grade of 0.110 oz Au across 10.8 meters.

Drill hole (81-1) was drilled due north at a -45° angle in a previously unexplored area where the presence of an electromagnetic conductor indicated the Valley Fault and geochemical work showed anomalous soil conditions for gold.

The drill hole encountered the Valley Fault at 70 meters below the collar within pyroxenite and passed from pyroxenite to the 40 meter wide siliceous syenite breccia zone at 72 meters below the collar.

The breccia zone is well pyritized and much wider than previously thought. Assays are sub marginal, averaging 0.002 oz Au across the 40 meters. The brecciation decreased in intensity

at 110 meters but continues to the end of the hole. The highest assay was located from 141.8 to 144.8 meters (0.019 oz Au per ton) near the end of the hole where the syenite is weakly fractured with minor pyrite.

The hole can be considered to be successful in locating the pyritic siliceous breccia zone across a 40 meter width. It now is evident that the entire 700 meter length of the Valley Fault must be systematically explored in the near future.

Drilling carried out in 1983 is as follows:

<u>Hole No.</u>	Dip	Bearing	Depth	<u>Intersections</u>
83 - 1	-45°	due south	388'	247- 252' .025 Zu/5.0'
n				261 -265' .029 Au/4.0'
83 - 2	-45°	due north	351'	70.5 -73.0 .08%Mo/2.5'
11				129 -130' .05%Mo/1.0'
н				237 -238.5' .05Au/1.5'
83 - 3	-45°	due south	5061	121 -131' .03Mo/10.0'
•				7.0 - 12.0 .016Au/5.0'
•				251 -253' .044Au/2.0'

All holes are shown on figure 3. Holes 83-1 and 83-2 were designed to explore known quartz veins while 83-3 explored the Valley fault. The 40 meter wide breccia zone intersected in hole 81 -1 was not cut in hole 83 -3.

COMMENT

An analysis of old data from the Shepherd - Sunrise property and work carried out by Friday Mines Ltd. on ground presently held by Freedom Resources indicates that the possibility exists that significant tonnages of gold bearing material in the 0.10 oz per ton range may be present.

Recently completed geophysical and geochemical surveys show that the principal zone of interest (Valley Fault) has good continuity along strike and that potential EM conductors in the area project to at least 60 meters in depth. The presence of a second, previously unknown zone of interest 500 meters south of the Valley Fault is encouraging and warrants additional exploration. It must also be remembered that both zones of interest may project further to the west and south where no exploration has yet been carried out.

The diamond drilling carried out in 1981 confirmed the presence of the gold-bearing pyritic breccia zone. Although gold values averaged .002 across the 40 meter wide zone, the intensity of the brecciation is impressive and indicates that additional drilling is warranted. The 1983 drilling showed low gold values in quartz veins.

Respectfully submitted,

R.W. Phendler, P. Eng.

CERTIFICATION

- I, R.W. PHENDLER, of 7360 Decourcy Crescent, in the Municipality of Richmond, in the Province of British Columbia, hereby certify as follows:
- 1) THAT I am a registered member of the Association of Professional Engineers of British Columbia No. 4421 1963.
- 2) THAT I am a graduate of McGill University, Montreal, with a Bachelor of Science degree in geology.
- 3) THAT I have practiced my profession continually as mine, exploration and consultant geologist for the past 27 years in all parts of Canada, the U.S.A., Mexico, Peru, Colombia and Chile.
- 4) THAT I have no interest directly or indirectly in the FFH claim group nor do I own directly or indirectly, any shares of Freedom Resources Ltd., or of Little Bear Resources Ltd.
- 5) THAT the information contained in this report was compiled as a result of my examination of the FFH claim group on January 22, March 13 and June 10, 1981, July 15th, 1982 and April 13th, 1983 & a study of available literature.
- 6) THAT I hereby consent to the publication of my report entitled "Report on the FFH Gold Prospect, Osoyoos Mining Division, B.C.", dated Nov. 22, 1983 in a prospectus or a statement of material facts.

R.W. PHENDLER, P. Eng.

11 la Phanaler G. Ing

To Mr. Roy Phendler, 7360 Decourcy Cres., Richmond, B.C. V7C 4E9

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253 - 3158

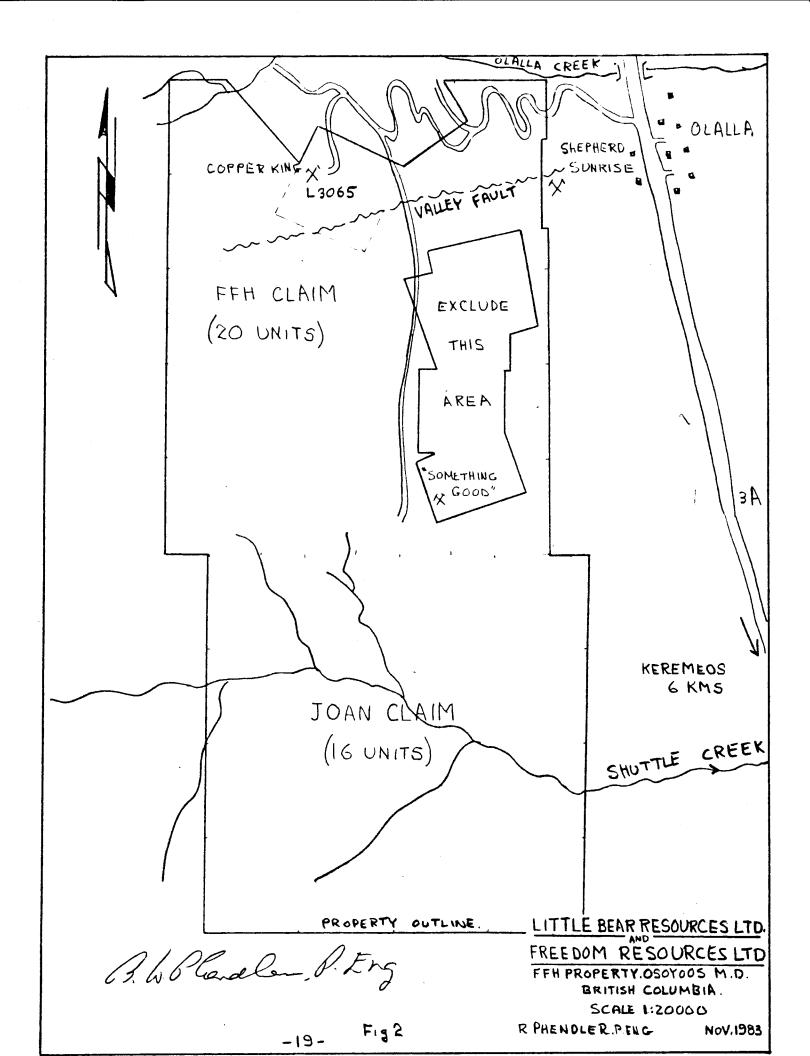
- Disposition_

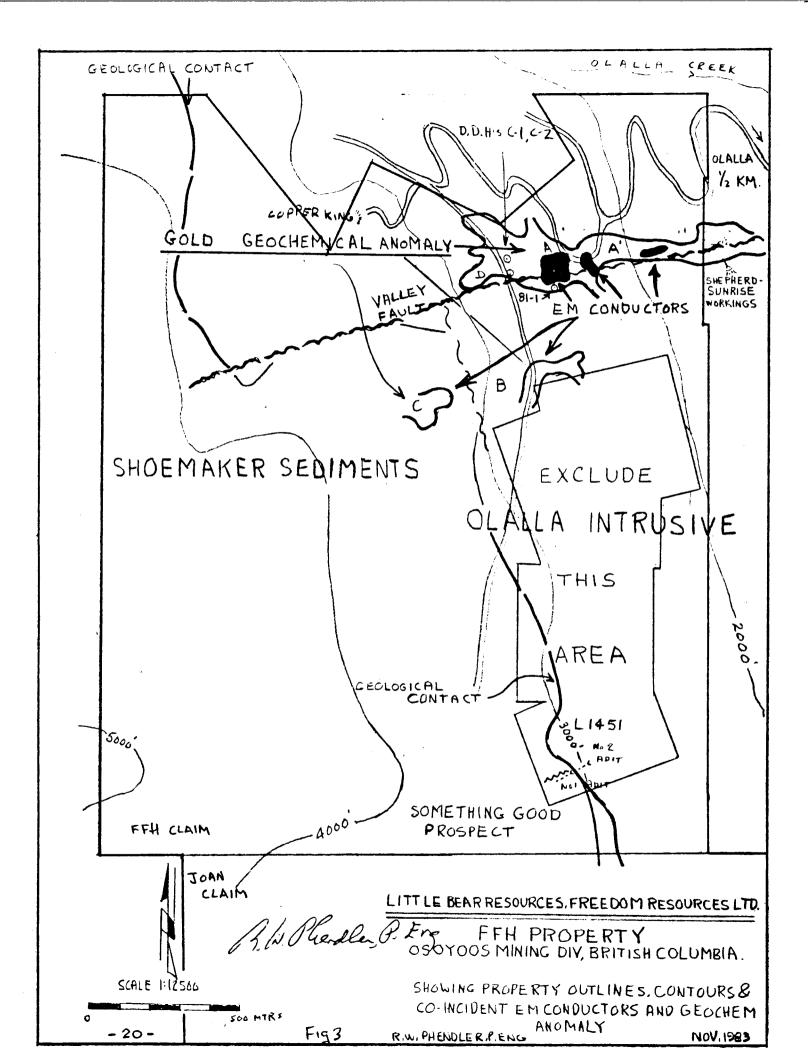
81-0	058
Type of Samples	Rock

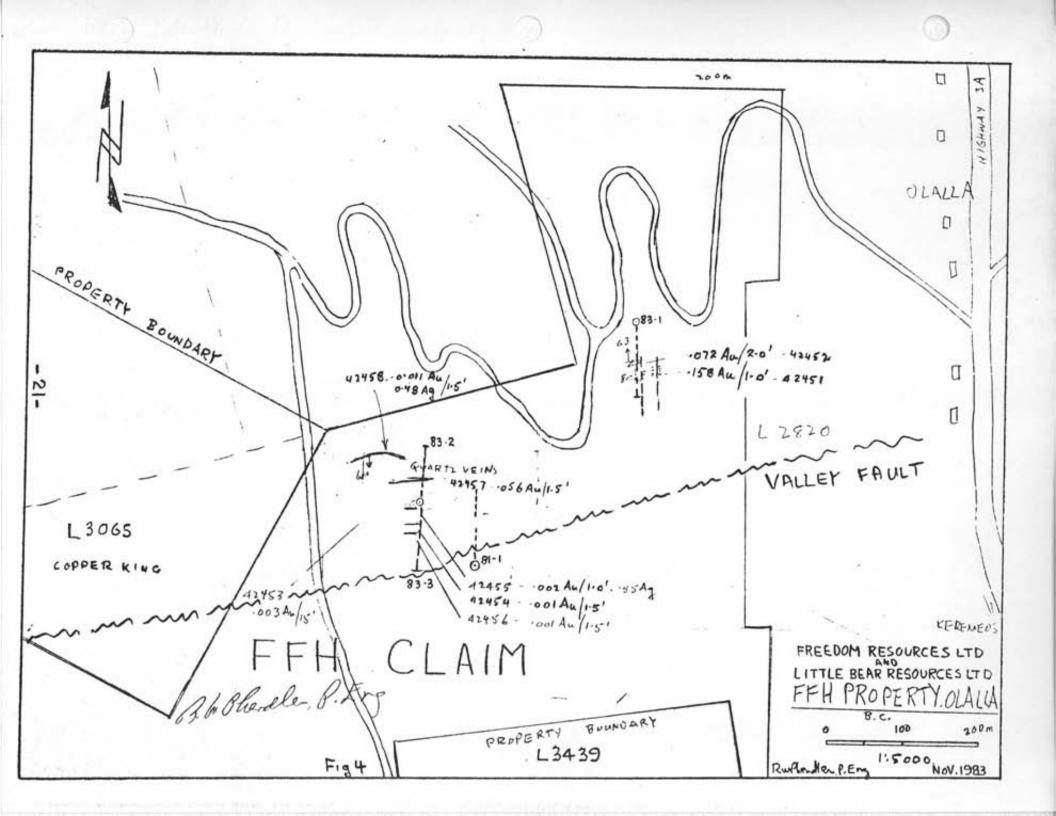
ASSAY CERTIFICATE

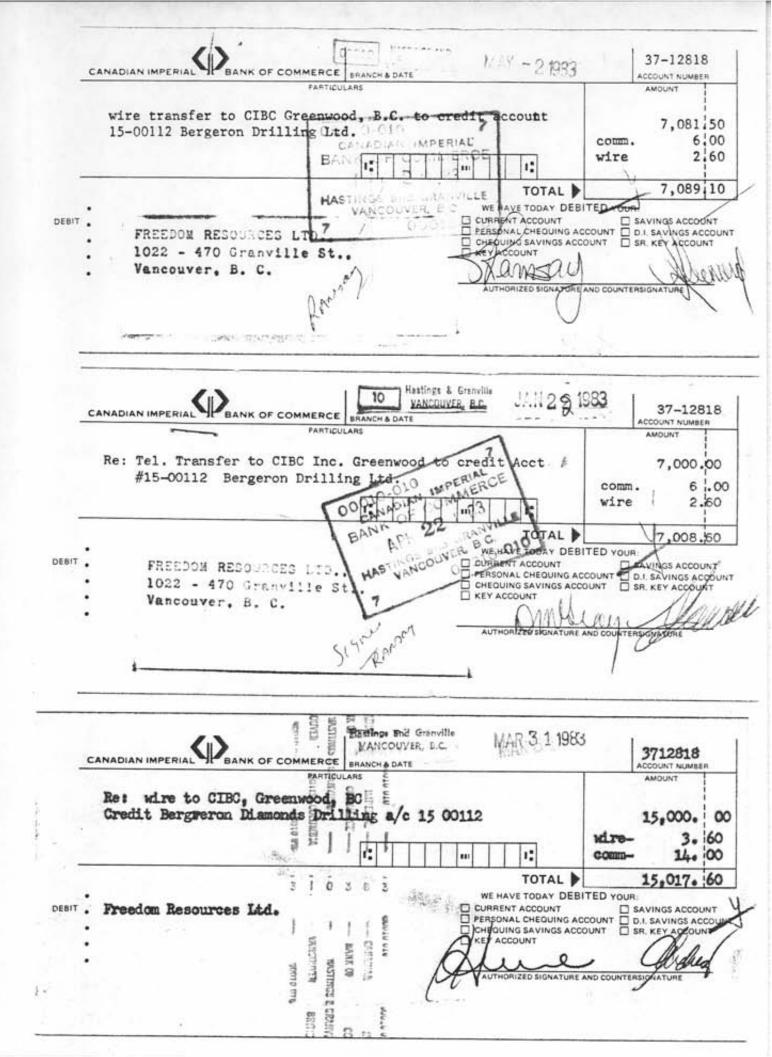
	**				<u> </u>					
No.	Sample	Ag oz/ton	Au oz/ton						No.	
1	042451	.05	.158		***			. 111511 1	1	
2	042452	⊘ .03	.072					,	2	
3	042453	. 02	.003	y e		•			3].
4	•042454	₩.02	.001	-		<u>.</u>	•		4	
5	042455	. 55	.002	1 1		Ĩ.			5	
6	042456	3 7:01	.001		l.		•	·	6	
7.	042457	.50	.056						7];
8	042458	.48	>011 ·•	A	aret GNG er Sk	A. C. Mar	-		8	
•	,					**			9	
10									10	
11		5		· 21					11	
12					•				12	
13		14	•	7	27				13	
14					41, 9	S. 3	.*	,	14	
15		, A. 100	ig.				٠,		15	
16	e a		4 2.		<u>, 3- (; -)</u>	14 M			16	
17		100 mg (18)			4.		,	`	17	
18	,	ì							18	
19	•	3			•				19	
20		1.,							20	

All reports are the confidential property of clients.


DATE SAMPLES RECEIVED Jan. 23, 1981


DATE REPORTS MAILED Jan. 28, 1981


CERTIFIED B.C. ASSAYER


ASSAYER

DEAN TOYE, B.Sc.
CHIEF CHEMIST

Drill Hole Log

ril 5, ril 7,	1983	Bearing due south Angle from Horizon _45	Lat. 10S	Collar	e:							
rgeron						Rei	gged by R.W. F	Phendle	Phendler Date April 13, 198			1983
Interval		Length 3881	Location	Level			Recove	erv - 8	35%			
Interes	RECOVERY		DESCRIPTION			Sample			ASSAY			
	%				Mineralization_	No			oz. Au.			
<u> </u>		Casing			Carbonaceous	22313	242-247	5.0	.005			
		Pyroxenite, Dark Green Gr	ey, Occassional slip,		Quartz Strgs	22314	247 - 252	5.0	.025			
ļ		medium grained, at 53.0'	Hematite and some		и н	22315	252 - 257	5.0	.012			
		Magnetite stringers - 2"	at 60' fault zone		0 11	22316	257 - 261	4.0	.001			
		108 - 110, 1" Qtz at 102'			11 11	22317	261 - 265	4.0	.029			
<u> </u>		130 - 133 slip parallel t	o core, rock generally		Minor Pyrite	22324	265 - 270	5.0	.001			
		massive at 168 - 1" Carbo	nate zone, occassional		6" Qtz. at 60°	22318	276 - 277	1.0	.001			
		Carbonate stringer.			iweak	[336 - 341	5.0	.001			
		At 203' - 1" Quartz vein	at 25°		Siliceous Fragments				1			
		At 205' - 1.5" Quartz vei	n at 10°				J.J. J. J.		1071			
		Barren epidote alteration	- pale grey - green									
		Altered zone - 20% quartz	throughout, weak magnet	ite.								
		After 265' - massive occ	oink feldspare crystals.									
		Weak shearing 280 - 288	· · · · · · · · · · · · · · · · · · ·					1				
								1				
		END OF HOLE	, ,					1				
					<u> </u>			 				
		*						 				
								†				
					1		1	1	, 1	1	1	
			Carbonate stringer. At 203' - 1" Quartz vein at 205' - 1.5" Quartz vein Barren epidote alteration Altered zone - 20% quartz After 265' - massive occ p Weak shearing 280 - 288	At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnet After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE	Carbonate stringer. At 203' - 1" Quartz vein at 25° At 205' - 1.5" Quartz vein at 10° Barren epidote alteration - pale grey - green Altered zone - 20% quartz throughout, weak magnetite. After 265' - massive occ pink feldspare crystals. Weak shearing 280 - 288 END OF HOLE

Drill Hole Log

COMPA	NY	FRE	EDOM RESO	URCES LTD.	RCES LTD. PROPERTY FFH				Section No.	HOLE No. 83-2					
Started Comple	April 8 , 1983 Bearing due south Ampleted April 10, 1983 Angle from Horizon -45		<u> </u>	Lat. 10S Collar EI. Dep. 5E Bottom, EI.			L	ogged by R.W. Pemarks NO	hendle	er	Date A	oril 13,	1983		
Driller		Bergen	·		gth 351	Location	Level			Recove	mv - (02%			
			RECOVER								Ī) <u>C</u>)0	AS	SAY	
From	Ťο	Interval	*			DESCRIPTION		Mineralization	Sample No.	From-To	Interval	oz. Au	MO	AS	W
0.0	5.0			0verb	ourden]
5.0	93			Pyrrox	kenite - medium grey k	reen, few Carbonate stro	rs,	30% pyrite in quartz	22321	69.5 - 70.5	1.0	.006	.011	.06	
						n 69.5 - 76.0' at 45° to		in quartz 90% Quartz, Vugqy	22322	l.		ŀ	.080	.02	<u> </u>
				core.	•			30% py. in Qtz	T	73.0 - 76.0		I	.014	.05	
93.0	95.5			Bioti				tite pegmatite	T	93.0 - 95.5		.001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.55	
95.5	236			Pyrox	Pyroxenite - medium grained,				22312		3.0	.001	-	 	
				Bioti	te Pegmatite 93 - 94	Mo Spks in Qtz			1.0	.003	.047				
				and f	and few minor bands at various angles to core - 50				22327		2.0	.001	.025		
236.0	248			Pegma	utite on contact. Šye	nite - medium grained -		Qtz Vn at 45°	22328	213.5 - 215	1.5	.001	.001	1	
				- 1	sh grey. Massive			6"&3" Qtz Vn	22333	237 - 238.5	1.5	.051	.001		
248	250			Pyrox	enite - grey green.			Mo or slips	B39	258 - 259	1.0	.011	.001		1
250	351			Syent	te - Med. grained. A	ndesite Dyke 259 - 260'		и и п	3 30	274 - 284	10.0	.003			.01
						at 30 some Molybdenite,		11 11 11	B34	330 - 340	10.0	.008	.019		
				309 -	310' - fracture zone	•								 	
					,										
351'				END OF	F HOLE										
							.~							1	1
									<u> </u>			····			1
							•		<u> </u>						1
									1		ς,				

Drill Hole Log

COMPANY FREEDOM RESOURCES LTD.				ES LTD.	PROPERTY FFH			Se	Section No.				HOLE No. 83-3			
Completed April 12, 1983 A				Bearing due south	Angle from Horizon _45 Dep. 5E Bottom. El.			Logged by R.W. Phe				endler Date April 13, 1983				
				Length 5061			Level		11.0	Recovery - 98%				•		
Bergeron RECO			RECOVERY	1 300 1					Kecover		<u>^y - </u>	18%	ASSAY			
From	То	Interval	%	DESCRIPTION		Mi	Mineralization	Sample No.	From-To		Intervel	oz. Au	T	‰cu	oz. A	
0.0	7.0			Overburden					22332	7.0 -				.08	.03	9=7
7.0	30			Syenite - Leached, fine g	rained, limon	nite stained.										
30	31.5			Andesite Dyke - 50° - Darl			W	ık Bx'd	22334	121 -	131	10.0	.001	.034		
				Dorphyrytil			Q	tz Zone	335	185 -	186	1.0	.017	.001	1	1
31.5	360			Syenite - fine grained, 1	imonite stain	ned to 70	М	finor Qtz.	336	186 - 1	196	10.0	.001	.001		1
				fractured to 100'. 1" Qua	ertz at 100'.	At 141' - 6	6'' A	plite Dyke	337	251 - 2	253	2.0	.044	.001		
				Andesite Dyke. At 164' -	1" Bleached	zone - 45° mi	inor S	iyenite	338	306 - 3	316	10.0	.001	.001		
				Quartz strgs. At 295' a				II	340	360 - 3	361	1.0	.001	.001	.10	
				At 336 - 341 - 1/4" Quart:	z 11 core.		Cı	p. Mag.	339	361 - 3	362	1.5	.001	.001	.15	
360	362			Pyroxenite - Siliceous - Last 6" CP, Quartz.				yenite	340	362 - 3	372	10.0	.001	.001	.10	
362	506			Syenite - medium grained,	pink			(1	42	416 - 4	116.9	0.9	.018	.001		
				Massive at 393 - 1" Bx zor	ne to 395			II	43	436 - 4	<u>––</u> 146	10.	.006	.001		
							Qı	uartz	44	466 - 4	168	2.0	.012	.001		
								11	45	496 - 5	 501	5.0	.008	.001		
								H	1	501 - 5		5.0				.01
							.~								1	
		, , , , , , , , , , , , , , , , , , ,													1	