1983 ASSESSMENT REPORT ON GEOLOGY, GEOCHEMISTRY AND EXAMINATION OF TRENCHES

> by I. G. Sutherland, B.Sc.

> > on the

Al 2, 3 and 4 Mineral Claims

situated north of Metsantan Lake $\begin{array}{c} Z \bigcirc \\ \blacksquare \end{array}$ in the Liard Mining Division $\begin{array}{c} Z \bigcirc \\ \blacksquare \end{array}$

57°28'N, 127°24'W NTS 94E/6W

owned by KIDD CREEK MINES LTD.

work by KIDD CREEK MINES LTD.

Vancouver, B.C.

U Z

88

,___ F=

 $\triangleleft Z$

GIC. SME

0 5

GEOL ASSE

June, 1984

TABLE OF CONTENTS

LOCATION, ACCESS AND TERRAIN	1
PROPERTY HISTORY & DEFINITION	5
SUMMARY OF WORK COMPLETED	6
Trenching	6
Geological Surveys	6
Geochemical Survey	7
Distribution of Work	8 +
GEOLOGY	8
Regional Setting	8
Property Geology	12
Bonanza Area Geology	13
Property Structure	17
Property Alteration	19
GEOCHEMISTRY	25
Rock Geochemistry	26
Soil Geochemistry	27
Bonanza-Ridge Grid	30
SW Grid	31
TRENCHING	33
Procedures	
Compilation of Trenching Results	33
Bonanza-Ridge area	34
Thesis II zone	34
	52
DISCUSSION	55
BIBLIOGRAPHY	56

Page

•

APPENDICES

Appendix	А	Statement of Qualifications
Appendix	В	Statement of Expenditures
Appendix	С	Analytical Techniques
Appendix	D	Rock Geochemistry Results
Appendix	Е	Soil Geochemical Profiles

•

LIST OF FIGURES

Fig.	Title	Scale	Page
1	B.C. Location Map	1:10,000,000	2
2	Toodoggone Properties	1:380,000	3
3	Claim Map	1:100,000	4
4	Property Geology	1:25,000	14
5 a	Al-East Geology	1:5,000	pocket
5b	Al-West Geology	1:5,000	pocket
6	Bonanza-Ridge Alteration	1:2,000	pocket
7	Bonanza-Ridge Lithology & Structure	1:2,000	pocket
8	Thesis II Zone-Rock Geochemistry	1:1,000	28
9a	SW Grid - Soil Sample Locations	1:2,000	pocket
9b	SW Grid - Au in Soils	1:2,000	pocket
9c	SW Grid - Ag in Soils	1:2,000	pocket

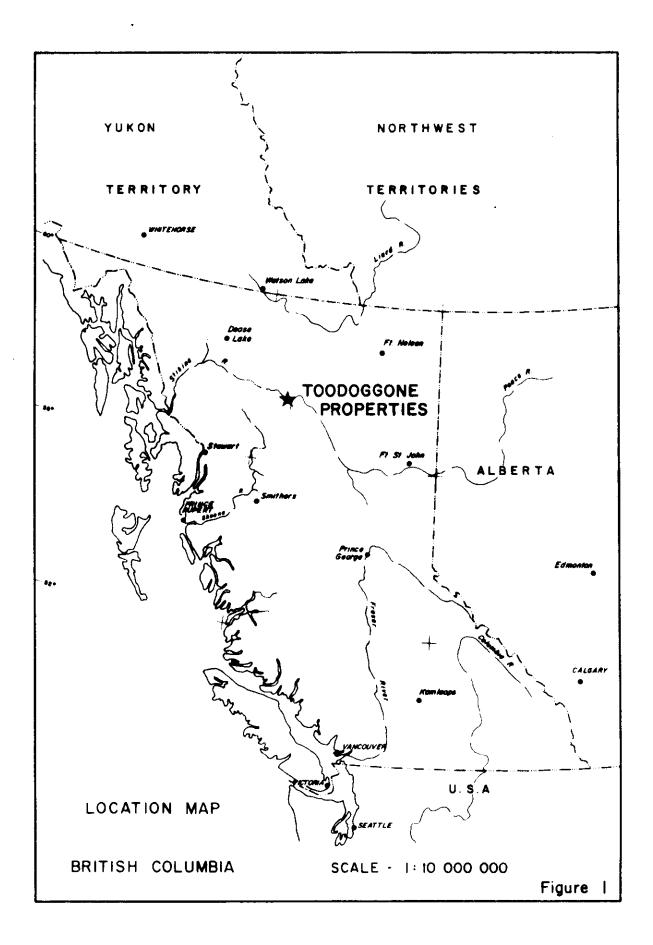
LIST OF FIGURES

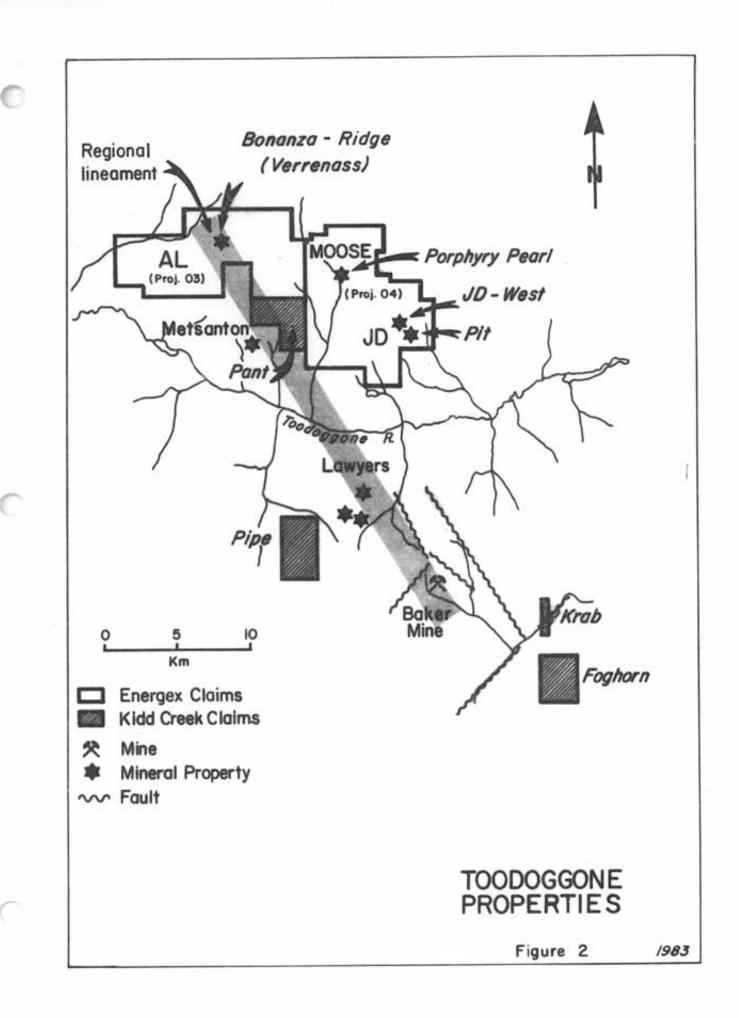
.

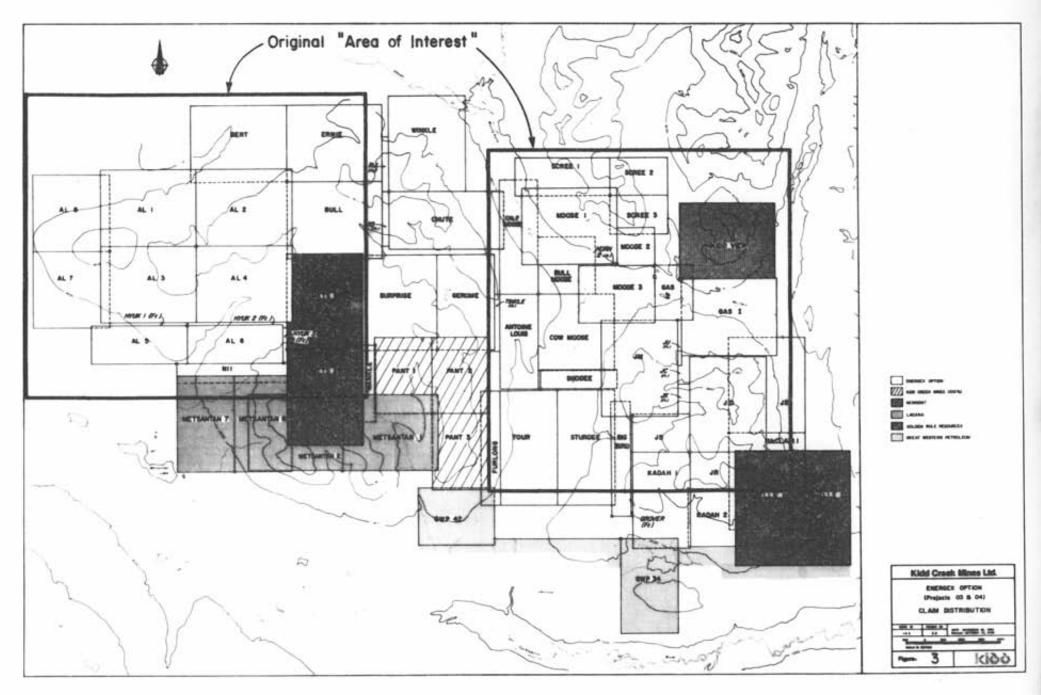
Fig.	Title	Scale	Page
10a	B/R Soil Sample Locations	1:2,000	pocket
10b	B/R Au in Soils	1:2,000	pocket
10c	B/R Ag in Soils	1:2,000	pocket
11	Bonanza Area - Summary	1:2,000	36
12	Verrenass Showing	1:500	37
13	Ridge Zone - Summary	1:2,000	49
14	Thesis Zone - Summary	1:1,000	33
	LIST OF TRENCH FIGUR	ES	
15	ATR 83-1	1:200	VOL. II
16	ATR 83-2	19	84
17	ATR 83-3	12	M
18	ATR 83-4	11	1)
19	ATR 83-5		ŧt
20	ATR 83-6	18	58
21	ATR 83-7	••	60
22	ATR 83-8	п	11
23	ATR 81-1	n	n
24	ATR 83-9	58	67
25	ATR 83-10	71	11
26	ATR 83-11	79	11
27	ATR 83-12	11	18
28	ATR 83-13	"	n
29	ATR 83-14	и	**
30	ATR 83-15	11	n
31a	ATR 83-16 (West)	W	11
31b	ATR 83-16 (East)	u	**
32a	ATR 83-17 (West)	17	n
32b	ATR 83-17 (East)	11) F
33	ATR 83-18	**	n
34	ATR 83-19	"	"

Fig.	Title	Scale	Page
35	ATR 83-20	1:100	VOL. II
36	ATR 83-21	28	
37	ATR 83-22		"
38	ATR 83-23	0	**
39	ATR 83-24	••	••
40	ATR 83-25	н	5 1
41	ATR 83-26	ur	F9
42	ATR 83-27	19	11
43	ATR 83-28	it	10
44	ATR 83-29	18	11
45	ATR 83-30	19	н
46	ATR 83-31	19	IT
47	ATR 83-32	11	17
48	ATR 83-33	II.	t#
49	ATR 83-34	19	1 88
50	ATR 83-35		28
51	ATR 83-36	11	"
52	ATR 83-37	"	11
53	ATR 83-38	**	11
54	ATR 83-39	u	n
55	ATR 83-40	**	11
56	ATR 83-41	10	ti
57	ATR 83-42	**	FT
58	ATR 83-43	19	tt
59	ATS 83-1	t 9	
60	ATS 83-2	17	11
61	ATS 83-3	*7	Ŧŧ
62	ATS 83-4	29	87
63	ATS 83-5	**	11

•


LIST OF TRENCH FIGURES


LOCATION, ACCESS AND TERRAIN


The Al property is located in north-central British Columbia at 127°24'W and 57°28'N, within the area of NTS 94E/6W (Figure 1). The claims lie east of the Stikine River and directly north of Metsantan Lake. Figure 2 indicates the position of the property with respect to other Kidd Creek properties in the Toodoggone. Claim boundaries are shown with respect to local features (Figure 3). The nearest supply and transportation centre is Smithers, located 300 km to the south. 1

The Toodoggone district is fairly inaccessible. The Al claims can be reached by а combination of fixed-wing aircraft to the Sturdee Valley airstrip (30 km southeast of the property) and helicopter: thereafter. Small float-equipped aircraft can also land at Metsantan Lake.

Alberts Hump is the most prominent physical feature on the property. It is located near the eastern margin of the Spatsizi Plateau, and comprises a low. and an easterly trending broad rounded hill ridge, surrounded by deeply incised stream valleys. The overall relief is gentle to moderate, with elevations ranging from 1400 m to 1690 m. The lowermost parts of the property are covered by conifers (dominantly spruce) mixed with scrub willow. Above 1600 m, the vegetation is restricted to alpine grasses and occasional clumps of "buckbrush". Drainage is fair over most of the property with the exception of isolated swampy patches, and boggy terrain on the lower slopes of Al 5 and 8 claims. Water supplies are generally adequate for drilling requirements. No permafrost has yet been recognized but may exist along the northern slopes of the property. The property is usually snow-bound from October to June.

PROPERTY HISTORY & DEFINITION

Between 1971-1973, Sumac Mines explored the area for Cu-Mo porphyry deposits. They conducted limited soil geochemical (Cu, Pb, Zn, Aq, Au), induced polarization, magnetic, and geological surveys, with generally negative results (Rodgers, 1972; Rodgers and Scott, 1973; and Yoshida and Kawasaki, 1973). Sumac Mine's claims were allowed to lapse. In 1979, Al 1-4 were staked by a group of individuals, who later became affiliated with Energex Minerals Ltd. At that time, precious metal prices were rising and interest in the Toodoggone district had been heightened by the Au-Ag discoveries of the Chapelle/ Baker (Dupont) and Lawyers (Serem) deposits. In 1980 the Al 1-4 claims were acquired by Texasgulf Canada Ltd., subject to the terms of the Energex option agreement.

Work by Texasgulf in 1980 consisted o£ reconnaissance scale geological mapping and limited "orientation" type soil geochemistry (Au, Ag, Cu, Pb, Zn, Mo, As, Hg) as described by Peatfield (1980). Two claims, Al 5 and 6, were staked to extend coverage over Alberts Hump. A major exploration program was initiated in 1981 on the basis of encouraging 1980 results, and extensive soil geochemical (Au, Ag, Cu, Pb, Zn, Mn, Ba, Hg) and geological surveys indicated good potential for the property. In addition, some trenching and orientation geophysical surveys (VLF, magnetometer) were completed. Further staking covered additional alteration systems and potential extensions of known systems (Al 7-8, Bert, Ernie, and Bull).

Ownership of the claims was transferred to Kidd Creek Mines Ltd. following the corporate name change in 1982. The 1982 Al exploration program consisted of diamond drilling, geological mapping and rock geochemistry regional and detailed soil geochemistry, induced polarization surveys, trenching, and a legal survey of LCP's.

SUMMARY OF WORK COMPLETED

Trenching

A total of 48 trenches (2694 m) were excavated on the Al property in 1983. Between July 15 and Aug 2, 25 trenches were completed on the Bonanza-Ridge area of Al 2 M.C.. Second phase trenching on this same area involved the completion of 18 additional trenches between September 7 and September 13. Trenching on the Thesis II zone of the Al 4 M.C. was completed between August 2 and 3; 5 trenches were excavated.

A Case 450 backhoe was used for the mechanized trenching. This machine, operated by s. Jaycox of Smithers, B.C. was flown by Hercules aircraft from Smithers to the Sturdee airstrip and thereafter driven to the Al property. 1-2 m wide trenches were dug to bedrock, the depth of which varied between 0.5-2 m. Prior to sampling the trench, floors were hand-mucked.

Geological Surveys

From July 15 to August 18 and September 9 to September 19, all the trenches were mapped at a scale of 1:100 by J.R. Clark with assistance from J.F. Macdougall, L. Louis, L. Haering and R. Vandenbrink. Trench maps (Figure 15 to 63) were produced with emphasis on alteration. Trench panel samples of the more intensely altered zones were collected primarily from the trench floors.

Compilation of the geology in the Bonanza-Ridge area (Figures 6 and 7; 1:2,000) was carried out by I.G. Sutherland, assisted by L. Louie, from Aug 7 to Sept 7 and Sept 9 to Sept 16. This work attempted to present a general correlation of the geology from each trench with that of the exposed rocks from across the grid area.

Geochemical Surveys

Between July 15 and August 18, 1079 trench panel samples from the Bonanza-Ridge area (Al 2 M.C.) were collected and shipped to Acme Analytical Laboratories of Vancouver. Samples from "phase 1" trenching were analysed geochemically (687 analyses) and by assay (437 analysesincluding 45 duplicate assays) for Au and Ag. Second phase sampling from this area was undertaken between Sept 9 and 13; 367 samples were assayed for Au and Ag.

Prior to trenching on the Thesis II zone (Al 4 M.C.), 12 rock samples were analysed geochemically for Au and Ag; 5 samples were also assayed for Au. All analyses were done by Acme Analytical Laboratories.

A detailed soil geochemical program was carried out on the SW grid area (Al 3 and 4 M.C.) from June 20 to July 3 and from Aug 28 to Sept. 7. Of the 608 total samples, 337 were collected prior to July 11 and 1271 were collected after this date. All samples were geochemically analysed for Au and Ag by Acme Analytical Laboratories. A sample interval of 25 m was used on 50 m-spaced lines (Figures 9a to 9c).

A brief program of soil sampling was also completed along the western part of the Bonanza-Ridge grid as a supplement to the 1982 survey. Two lines were also sampled between L15E and L16E over a resistivity anomaly. station spacings of 20 m in both directions were employed and a total of 203 samples were analysed geochemically for Au and Ag. (Figures 10a to 10c).

A total of eleven soil profiles were sampled from the Bonanza-Ridge area as part of the geological mapping program. Trenched soil profiles were selectively sampled and analysed geochemically for Au, Ag, Cu, Pb, Zn, Hg and Ba. A total of 53 samples were analysed and 1 sample was checked by Au assay. Sampling by I. Sutherland and L. Louie was undertaken between Sept. 10 and Sept. 19. Analyses were carried out by Chemex Labs Ltd. of North Vancouver using techniques outlined in Appendix C.

Distribution of Work

Work was carried out in several stages on the Al 2, 3 and 4 M.C. of the Fiji-83 group. . A detailed breakdown of time distribution and exploration expenditures is presented in Appendix B.

GEOLOGY

Regional Setting

The Toodoggone district lies along the eastern margin of the Intermontane Belt. It is flanked to the east by the Omineca Crystalline Belt, to the north by the Stikine Range, and to the west and south by the Sustut and Bowser Basin assemblages. Regional mapping was conducted in the 1970's by the Geological Survey of Canada (Gabrielse and Dodds, 1974; Gabrielse, et al. 1976), and a 1:250,000 scale geology map was produced by Gabrielse, et al., 1975. The B.C. Ministry of Energy, Mines and

ł

Petroleum Resources has recently undertaken more detailed work, and will soon publish a comprehensive regional map.

The Toodoggone volcanic rocks were first distinguished by Carter (1971), who described them as a Jurassic sequence of dacite and latite porphyry flows and pyroclastic rocks, which unconformably overlie the Upper Triassic Takla Group. Souther (1977) analysed some Toodoggone rocks and identified them as being mainly calc-alkaline in character. Schroeter (1981a, b; 1982) and Panteleyev (1982) described the Toodoggone volcanic sequence as a complexly intercalated pile of volcanic and volcaniclastic rocks of Lower to Middle Jurassic age, comprising a transitional submarine-subaerial island arc environment. The district contains at least some units which appear to have shoshonitic affinities (Clark and Williams-Jones, 1983), therefore the simple island arc model may require further gualification or revision. Additional petrochemistry is anticipated to be completed in 1984 by J.R. Clark (McGill) and L. Diakow (U.W.O.) on volcanic rocks from the Al property.

The oldest rocks exposed in the Toodoggone area are blocks of Permian Asitka Group limestones which sit in thrust fault contact with younger volcanic rocks. The Triassic Takla Group consists of submarine basaltic to andesitic, augite-phyric flows and pyroclastic rocks, and is in turn unconformably overlain (often fault contacts) by the Toodoggone volcanic sequence. Toodoggone rocks have been subdivided by Diakow (1983) into an early explosive period and a later quiescent period. The early period consists of (oldest to youngest): 1. andesitic ash falls with minor flow unit components, 2. a lithic

tuff unit with minor discontinuous members of subaqueous limestones, lava flows and epiclastic volcanic greywackes near the top of the sequence, 3. an ashfall (in part flow) unit, stratigraphically overlying the lithic tuffs. The characterized later period is by andesitic to trachyandesitic (latitic) lava flows crowded with porphyritic textures and no observable quartz phenocrysts. Minor epiclastic and interformational clastic members are present. The locality for these rock types is Tuff Peak on the eastern side of the Al property. The stratigraphy outlined by Diakow is only partially correlative with the lithologic units of Panteleyev (1983) for the region south of the Toodoggone River.

The sequence is at least 1000 m thick and has been tentatively correlated with the early Jurassic Hazelton Group which lies to the east. The belt extends at least 90 km in a NW-SE direction and is up to 15 km wide (35 km if Hazelton Group is included). Upper Cretaceous to Tertiary conglomerates and sandstones (Sustut Group) unconformably overlie both the Toddoggone and Takla rocks.

rocks Toodoggone are cut by the Omineca intrusions (granodiorites to quartz monzonites). Rb-Sr and K-Ar dates for the intrusions range from 181-207 Ma, and for the volcanics from 179 +8 to 189 +6 Ma (Gabrielse, et al., 1980), indicating that they may be, in part, Schroeter (1981b) points out that these large coeval. plutonic bodies have porphyry deposits which are anomalous in precious metals, and that local "syenomonzonite" and quartz-feldspar porphyry dykes may represent feeders to the Toodoggone volcanic rocks. No true volcanic centres or calderas have yet been identified.

10

The dominant structural component of the Toodoggone district is northwest-trending faults, with lengths of more than 50 km. These major structures may be transcurrent and long-lived in nature. Extensive and repeated normal block faulting has also occurred from Jurassic through Tertiary time (Schroeter, 1981a). Folding is not evident, and most anomalous dips can be accounted for by natural depositional dip variations in a dynamic volcanic environment and by fault block movement. On average, the Toodoggone volcanic rocks dip gently to the west (Schroeter, 1981a; b). Metamorphism is very low grade, ranging up to lower greenschist facies.

Precious metal showings in the Toodoggone are abundant and characterized by both vein/breccia and_{i} replacement-type systems. The main showings, as known in 1981, are summarized by Schroeter (1982), and the Baker Mine is described by Barr (1978). An update of regional prospects is outlined in Sutherland (1983). Regional variations in deposit types are noteworthy. Many of the most important properties (e.g., Baker, Lawyers, Silver Pond, Moosehorn, Metsantan, and Bonanza/Ridge) lie along a 30 km (or greater) airphoto lineament. The deposits to the southeast are generally dominated by "deeper" sulphide-bearing veins/breccias, "shallower", whereas sulphate/oxide-bearing replacement and vein types are more common near Alberts Hump.

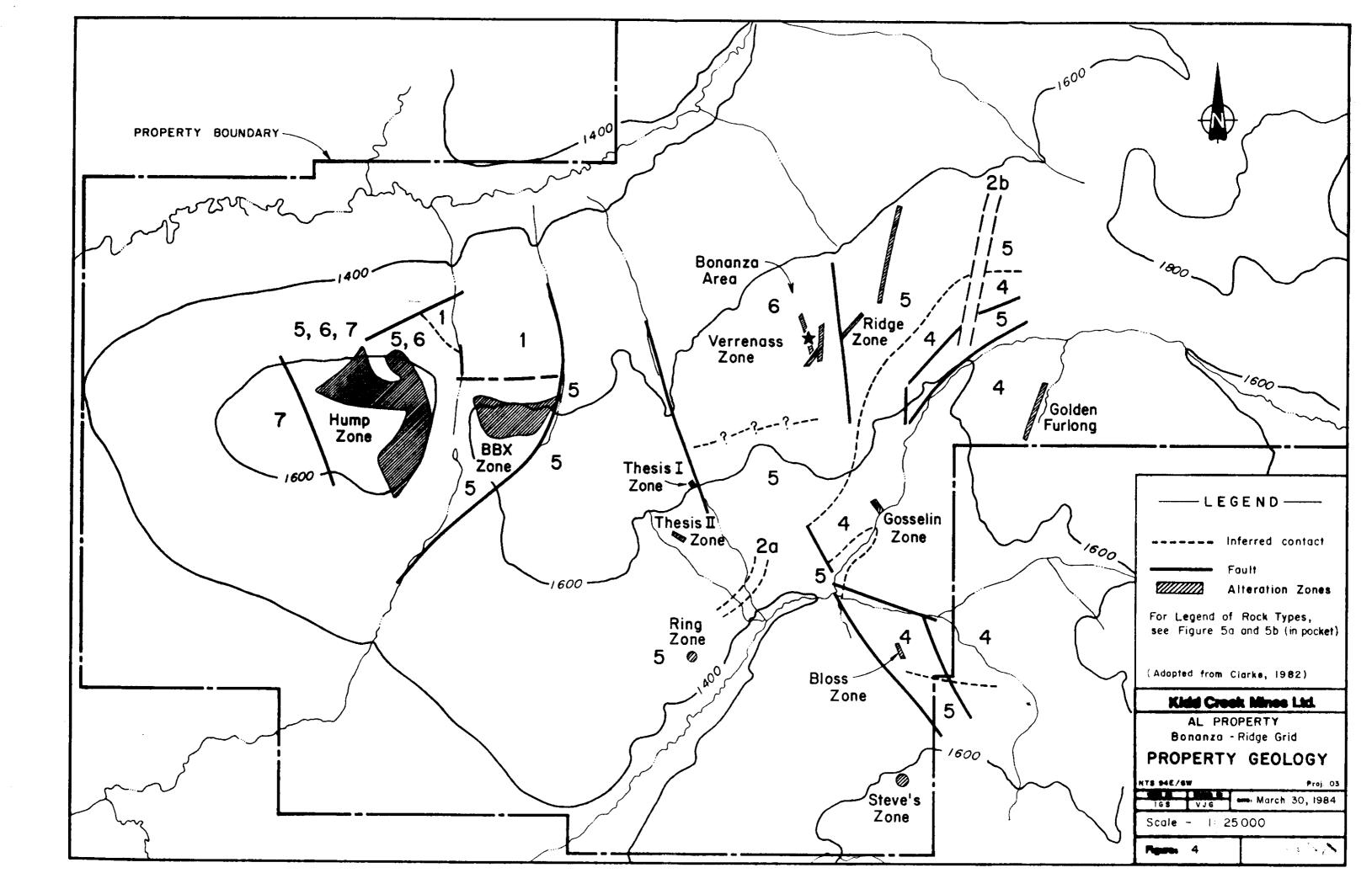
Although the Mesozoic Toodoggone district is similar in many respects to the classic, younger, epithermal/geothermal gold belts in the southwest United States, Kamchatka, and New Zealand, it also bears a strong metallogenic resemblance to the epithermal Au districts in Fiji and New Guinea.

Property Geology

The claims are underlain by a sequence of subaerial to shallow water volcanic rocks, including tuffs, flows, intrusives, and reworked volcaniclastic equivalents. The rocks are andesitic, dacitic, and latitic, and are invariably porphyritic. Reconnaissance mapping has been carried out over much of the areas with significant exposure. Detailed geological mapping is incomplete.

The geology is extremely complex. Because of the lack of outcrop, much of the geology is interpreted from talus, frost-heaved material, and from variably spaced trench exposures.

Outcrops are deeply weathered, except where Lithological contacts are rarely observed. silicified. Many units apparently grade into one another and the compositional differences between most units are minimal. Local unconformities are also fairly common between and within units. The gradational nature of some units is characterized by subtle changes in a minor mineral constituent (e.g., quartz, K-feldspar), changing ratios of the dominant mafic phenocryst abundances (e.g., differing hornblende, biotite). degrees of apparent diagenetic hematization (i.e. hematitic alteration), and intercalations of tuffs and sediments. Equally common are fault contacts between units. Many units have reworked equivalents, where tuffaceous and blocky material has been moved or washed by local alluvial processes such as debris slides/flows, sheet wash, stream channeling, and other erosive activities present in a dynamic, subaerial volcanic environment.


Subhorizontal stratigraphy and numerous normal transverse faults complicate the and geological interpretation. Dyke rocks are compositionally similar to the volcanic units, and may represent feeder systems. Felsic intrusions, encountered in several of the 1982 drill holes, are rarely exposed at the surface; these may be genetically related to the rocks late-stage, ore-forming fluids.

The recent stratigraphic mapping bv Diakow (1984) suggests the dominance of three rock units on the by Clark A1 property. Mapping (Sutherland, 1982) subdivided the rocks of the Al property into seven (Figures 4. 5a 5b) lithologies and which differ substantially from the classification by Diakow. The limited mapping undertaken in 1983 was too localized to justify changes to the existing property-wide lithologic subdivisions (see Sutherland, 1982 for details of units).

Bonanza-Ridge Area Geology

Most of the Bonanza-Ridge area was mapped in detail in conjunction with the 1983 trenching (Figures 6 and 7). Earlier mapping classified this area as dacitic to andesitic tuffs and minor flow, flow breccia and ash flow components (Unit 5). Recent mapping indicates that many rocks are dacitic ash flows and may belong to the younger Unit 6 (Sutherland, 1982).

The Bonanza-Ridge area lies between lines 6E and 18E of the original Ridge grid on the Al 2 claim. Outcrop exposure is less than 10%, much of which consists of intensely silicified rock. Widespread till cover is 13

responsible for the limited exposure. The rocks of the Bonanza-Ridge area have been divided into 5 units based on field-recognizable characteristics. Shallow, southerly to westerly dips are observed. As elsewhere on the A1 property, many contacts are fault-controlled, making relative age determinations of units difficult. Correlation of these new units with the property-wide classification of Clark and the regional classification of Diakow has not yet been carried out.

Unit 1: These rocks are plagioclase-hornblende Ŧ biotite, porphyritic, andesite flows, flow breccias and tuffs. They are restricted to the Ridge zone and predominate along the east side of the main alteration zone. Flow (1) and flow breccia (1x) units predominate and generally occur together. Minor crystal-lithic tuff (1p) ash tuff (1r) and aquagene tuff breccia (1q) beds/ lenses within the flow units may be correlative over short distances. All units have a fine-grained, feldspathic groundmass. Minor traces of biotite and specularite are observed locally. phenocrysts Chloritization is ubiquitous and makes recognition of textures and of lithologies differentiation difficult. very The aquagene breccias are only recognizable on cut surfaces and are characterized by monolithic, porphyritic fragments. with distinctive, bleached chill rims. These rocks imply a shallow water environment of deposition.

Unit 2: These rocks latites. are similar in appearance to the Unit 1 andesites. Differentiation of units is based on the presence of scattered, megacrystic K-feldspars (sanidine?) and traces of quartz and apatite phenocrysts. The flows(2), flow breccias (2x) and local aquagene tuff breccias (2q) of this unit are also restricted to the immediate area of the Ridge zone. Intermediate, fine-grained xenoliths are rarely observed. Units 1 and 2 are obviously similar in most respects; segregating them may be premature because their differences may only reflect subtle physio-chemical variations in different flows from a single magma source.

Dacitic rocks are the most widespread units Unit 3: on the Bonanza-Ridge area and most are ash flows(3w). These rocks are plagioclase+biotite+hornblende-phyric with (≦2%) each specularite, minor amounts of quartz Three fragment types occur in a commonly and/or apatite. feldspathic, fine-grained groundmass: (1)grey, very intermediate fragments (1-2)fine-grained, cm, some pumiceous); (2) brown, felsic fragments (<1 cm) with feldspar phenocrysts; (3) subrounded, intermediate, and porphyritic fragments. Bedding planes are locally defined by flattened fragments, aligned plagioclase phenocrysts and/or flaggy cleavage. Erratic occurrences of intermediate. fine-grained xenoliths are recognized. Attempts to subdivide this unit on the basis of the absence of pumiceous fragments, sanidine presence or megacrysts, and intermediate xenoliths were unsuccessful. This is mainly because of the difficulty in recognizing these features on broken surfaces, the commonly intense alteration in the rocks and the generally sparse distribution, particularly of xenoliths and mega-crysts, even when present. Textural variations are common within Phenocryst contents might and between individual beds. also be used to distinguish units but the same problems of recognition limit this type of unit subdivision as well.

Unit 4: Only two quartz latite dvkes were recognized on the Bonanza-Ridge area. This massive rock, located in trenches ATR 83-03 and -18, is very similar to adiacent volcanics but the lack of visible mafic phenocrysts makes it distinctive. Fine- to coarse-grained plagioclase phenocrysts and minor coarse-grained K-feldspar phenocrysts occur in a very fine-grained, The rock is relatively quartzo feldspathic groundmass. fresh but feldspars are weakly altered to sericite and chlorite. Finely disseminated pyrite is rarely present. This unit likely represents feeder dykes to latitic rocks noted in the Bonanza-Ridge zone area.

Unit 5: Rhyodacite dykes occur in several They localities in the Bonanza area. contain plagioclase, hornblende, guartz and biotite phenocryst fine-grained, felsic to phases in а intermediate Angular to subrounded, dioritic xenoliths are groundmass. rare but locally make up 10-15% of the rock. Little is known about the geometry of this unit but the narrow widths commonly encountered these suggest that are dyke-like bodies and may be feeders to overlying dacitic ash flow units.

Property Structure

Structural interpretation is limited by the poor rock exposure. Where bedrock is exposed, the volcanic units are generally flat lying or dip gently to No folding has been observed. Locally steeper the west. dips (although usually less than 30°) are likely the result of original paleotopography, fault rotations. and/or unconformities. Structures (faults, fractures) are far more important than stratigraphy in controlling most alteration and mineralization.

The Al claims are near the northwestern end of linear trend of alteration (and а associated mineralization) centres. This NW trend is reflected in the orientations of many major lineaments on the property (Figure 6b). These NW to NNW lineaments commonly control A second NNE trend drainage and vegetation patterns. appears to control some local alteration zones.

The geometry and chronology of fault movements are poorly understood, and reconstructions are tenuous. Mapping, geophysics and drilling indicate that there are severe structural complexities associated with alteration Block faulting with dip-slip movement is suggested zones. where alteration is abruptly truncated, and strike-slip movement is common along many linear silicified zones. The lateral sense of movement is preserved by slickensides and oriented tectonic breccias. Unconsolidated clay zones, many of which contain angular, altered fragments, may also have resulted from such faulting. Joint patterns on the outcrop scale often trend E-W in areas distant from major lineaments, but also parallel the major alteration zones when proximal to them.

The intersections of major structures are difficult to locate. Alteration styles and intensities vary along strike and down dip. Unaltered structures may also cut altered systems without discernable offset. The ambiguous natures of multiple offsets, barren versus mineralized trends, and cross-cutting and reactivated faulting remain as some of the more disturbing problems facing exploration on the property. Even detailed mapping of trenches around the Verrenass showing has not yielded sufficient information to unravel most of the complexities of the structural controls of this showing and adjacent alteration zones.

Property Alteration

Hydrothermal alteration on the Al property is widespread and ranges in effect from partial to complete obliteration of primary features. Where mineralization is present, it is always directly or spatially associated with the strongest alteration zones, but many intensely altered areas have no apparent metal anomalies. The intense alteration zones usually are confined to structurally controlled linear fault/fracture systems. Shallower and broader, strong alteration zones exhibit less distinct structural much controls. The weak. prevailing alteration of minor and patchy zeolites and minor propylitization seems to be virtually property-wide, and is superimposed on diagenetic hematization. This weak, alteration is easily confused with the effects of paleo-weathering the subaerial depositional on environment. It is commonly difficult to distinguish the very low grade hydrothermal alteration from this latter effect.

A schematic, vertically descending sequence of alteration types in and above a hydrothermal conduit on the property would include quartz-alunite, quartz-clay, quartz-barite-clay, quartz, quartz-hematite, and quartz-sulphide. The assemblages are complicated by multiple telescoping) events (e.g., and structural Brecciated, banded, rearrangements. anđ massive alteration textures are common, and depend on proximity to hydrothermal pathways of greatest flow and activity. Mineralization is found primarily in association with barite-guartz veins (Verrenass zone). Lower grade mineralization is associated with guartz-hematite and quartz-sulphide alteration, and with drusy quartz veins.

Quartz veins occur at all but the highest levels of alteration.

The simplified classification of alteration types used in Figures 5a & b, 6, and 11-61 is based on the dominant alteration mineral assemblages.

TYPE Al: This distinctive yellow-green to brownish silicification-alunitization occurs on the central portion of Alberts is characterized Hump. It by complete replacement of the original volcanic rock; primary textures are frequently preserved. Quartz and alunite seem to be dominant in the core of such zones, with increasing (but still minor) amounts of hematite and clays towards the margins. Alunite preferentially replaces lapilli fragments of the host tuffs, and quartz crystals show syntactic overgrowths. Additional detail of this alteration type is outlined in Clark and Sutherland (1982).

TYPE A2: Type A2 alteration is characterized by white to grey or purplish argillization. Quartz and clays (primarily kaolinite and dickite, lesser illite, sericite, montmorillonite, and nacrite) completely replace pre-existing volcanic rocks. Occasionally alteration is almost entirely to clay minerals, but usually quartz dominates and clays are disseminated and/or line fractures. Brecciation is fairly common. Hematite, sericite, and sulphates sometimes accompany argillization. In the general alteration model, argillization occurs vertically above massive silicification, and peripheral to various other intense alteration zones. Argillization is considered to represent a relatively acidic and oxidizing in several environment, but its presence different settings requires complicated models to account for the apparant variations in the alteration environment.

TYPE A3: Maroon to bluish, weak argillic, sericitic, and propylitic alteration characterizes type A3. The alteration occurs as a partial replacement of primary mineralogy, and preserves original igneous Brecciation is rare. Small veinlets of clays textures. and micas (dickite + kaolinite, sericite + illite) may locally be present. Incipient development of montmorillonite in feldspars and the groundmass is Iron is remobilized by this alteration, however common. pyrite is rare. Type A3 is common throughout the property in fracture/fault zones, and peripheral to zones of more intense argillization. A3 alteration represents the lowest grade of readily distinguishable hydrothermal activity.

The A3 alteration type is characterized by a predominance of weak argillic alteration. Plagioclase is variably altered to clay/sericite, biotite is sericitized (other mafics indistinct), and groundmass components are commonly replaced by sericite and hematite (+ clays). The variant A3a is a weak argillic alteration in which all mafics are hematized and the groundmass is generally altered to clay and hematite (+ sericite). A3b alteration consists of weak generally propylitization and sericitization; plagioclase is sericitized, mafics are chloritized and/or epidotized, and the groundmass is Hematization is less dominant sercitized and chloritized. and Fe/Mn stains are common along fractures.

TYPE A4: Pervasive silicification-argillization with abundant barite is not common on the property, but where present, is intense and distinctive. Type A4 alteration is usually grey to brownish in colour, with a purplish cast when hematite is present. Original rock

textures are variably preserved. Barite commonly occurs pervasively, in a breccia matrix, in veins, and as vug fillings. The associated minerals found in Type A4 alteration include sericite, kaolinite, hematite, and possibly dickite, illite and alunite. The role of this barite-rich alteration is difficult to assess, but it seems to be restricted to massive, irregular zones hydrothermal centres?). (perhaps In the general alteration model, A4 alteration is found beneath Type A1 and A2. and in variable positions with respect to silicification (A5). It is associated with spotty, low grade Au-Ag mineralization.

The distinction between A4 alteration and A5 alteration with barite veining (as in the Verrenass showing) is made on the presence of mixed, alteration quartz and clays in the former and the absence of clays (especially where mineralized) in the latter. The A4 alteration of the BBX zone (the type locality) consists, in part, of pervasive barite alteration associated with alteration quartz and clays. Where clays do appear in the Verrenass showing (i.e A2/A5 or A5/A2 alteration) one basic alteration type generally occurs as patches in the more dominant alteration facies. Au values are relatively poor in A2 alteration.

This alteration type is characterized by TYPE A5: complete silicification with only minor auxiliary Large, silicified, alteration zones weather as minerals. long ridges or low hills, but when the zones are smaller and other alteration types are present in the silicification (e.g. Types A2, A6, and A7), Type A5 may occur in gullies and depressions. Silicification tends to preferentially frost-heave, and piles of rubble often

indicate buried alteration zones. The quartz is crypto-crystalline to fine-grained, and has a greyish, brownish or white colour. Original textures are generally preserved except where destroyed by brecciation or veining. Hornblende and specularite are visible as silicified tan-brown ghosts, and guartz crystals are either unaffected or syntaxially augmented. Plagioclase may be silicified or leached from the rock. These cavities and other vugs are usually partially infilled by quartz and coated with a light druse. Small barite plates often occur in the vugs, and barite veinlets may cut the silicification. Leaching of pumiceous fragments may also account for significant vug development. Vug fillings, veinlets stockworks and of barite reach maximum proportions in the Verrenass showing with barite contents up to 258 and very significant associated Au mineralization. This newly recognized association of barite and adds potential Au to other barite vein Steve's occurrences (e.q. zone, Bloss BBX zone. zone).

Traces of hematite frequent are along fractures. The silicification may be massive, but it is commonly distorted by polyphase brecciation and fracturecontrolled quartz veining. Туре A5 can be roughly subdivided into "drusy" (A5a) "dry" and (A5b) The "drusy" variety appears to have the silicification. best potential for precious metals mineralization. "Dry" silicification alone is usually barren unless it is cut by veins, breccias, or it contains quartz druses. Silicification is directly associated with the localization of mineralization, and is found beneath Types A1, A2, and A4, and above Types A6 and A7 in the idealized system.

TYPE A6: This alteration type, silicificationhematization, is quite similar to Type A5, but with the addition of hematite as disseminations and fracture and cavity coatings. A6 alteration is usually purplish to reddish brown, and where the hematite is fracturecontrolled, takes on a distinctive mottled pattern. Silicification normally precedes the addition of hematite. However, disseminated hematite is often with silicification. contemporaneous Replacement is complete and primary textures are preserved as in Type A5. The hematite content is often proportional to the amount of brecciation and fracturing. Vugs and guartz + hematite drusy infillings are A6 common. Type contains mineralization at most localities, but the Au grades tend to be low to moderate and somewhat erratic. Nevertheless, this alteration is an important potential mineralization host. The Au values exhibit little correlation with hematite abundances, but the fluids which carried and deposited the Fe probably transported the precious metals The "dry" hematitic silicification zones are as well. less mineralized than the "drusy" equivalents. Type A6 several localities at alteration occurs on the **A**1 property, mainly as linear zones. This alteration appears to lie above quartz-sulphide and below 'non hematitic' silicification and argillic alteration in the idealized system. The potential exists that the hematite may be late, hydrothermal or 'post-hydrothermal', or supergene alteration of pyrite associated with silicification. Ϊn outcrop, the hematite may be altered to limonite, but does not form significant gossans due to the low overall iron content of these silicified zones.

24

TYPE A7: These silicification-sulphidization assemblages have been divided into two subtypes. Type A7a alteration consists of grey silicification-pyritization with very minor phyllosilicates. The replacement is volcanic complete, and original rock textures are preserved except where heavily banded or brecciated. Vugs are commonly associated with brecciation and veining. Barite is present in minor amounts usually as a late cavity-filling or vein mineral. Type A7a alteration contains variable Au-Aq mineralization and may include traces of base metals. If Cu-Pb-Zn sulphides predominate over pyrite, the classification becomes Type A7b. Both types A7a and A7b are iron-stained in outcrop, but rarely develop extensive gossans.

TYPE A8: Previously termed A7c (Clark and Sutherland, 1982), this alteration is characterized by the phyllic alteration assemblage of quartz-sericite-pyrite. In contrast to the almost complete replacements of A7a and A7b, this alteration is variable in intensity. Phyllic alteration is generally structurally controlled, but is not always spatially or temporally related the to alteration types. Phyllic assemblages are nowhere directly related to significant Au-Ag mineralization. Occasionally A8 alteration may be superimposed upon other alteration types. The timing of such events is not clear. Type A8 is concentrated along river valleys (faults/ fractures) in the southeast corner of the property.

GEOCHEMISTRY

Soil geochemistry has proved to be a fairly good exploration technique on the Al proeprty. Work in 1983 consisted of semi-detailed, 'fill-in' sampling over the Thesis I and II zones and nearby reconnaissance25

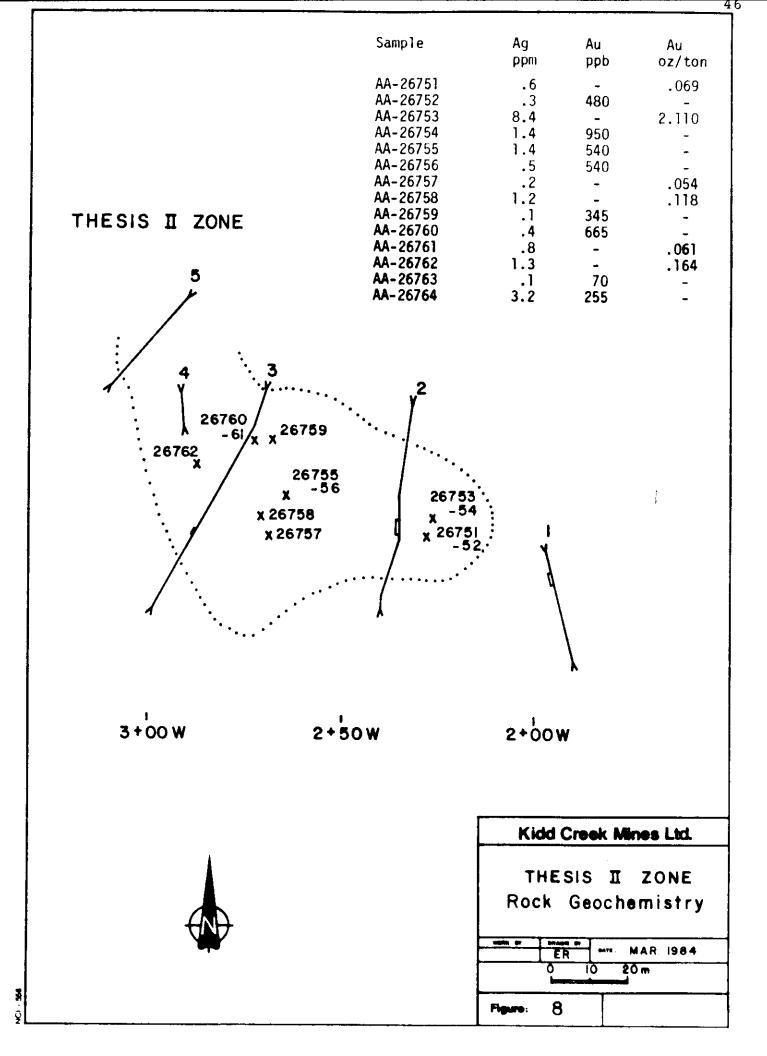
scale anomalies identified in earlier surveys (see Clark and Sutherland, 1982). In addition, the detailed soil geochemical program on the Bonanza-Ridge grid (1982) was augmented along the western edge of the previous survey. Following completion of the trenching, ten soil profiles were selectively sampled from the surface down to the trench floor (or solid rock), in an attempt to identify the characteristics of, and problems associated with, metal dispersion in the Bonanza-Ridge area soils. Rock sampling was restricted to a brief resampling program on the Thesis II zone early in the field season as an aid to directing later trenching activities. Geochemistry conducted in association with the trenching is discussed in the appropriate section below.

Throughout this report, values are expressed in a/t (fire assay) or (atomic ppm absorption qeochemistry). These units are essentially interchangeable (i.e. 1 g/t = 1 ppm) and primarily illustrate the analytical technique. Assay results are considered the most accurate because of the large sample size used in <u>≥</u>1.0 analysis. Au values q/t the and Αq values 250.0 "significant" q/t are recognized as mineralization.

Rock Geochemistry

Rock sampling on the Al property in 1983 was restricted primarily to the Thesis II zone (SW grid area). Resampling by I.G. Sutherland was carried out on June 28 in hopes of recognizing the extent of the zone and the style of alteration with the greatest potential for Au-Ag mineralization. A total of 12 samples were collected and geochemically analysed for Au and Ag by Acme Analytical Laboratories of Vancouver, utilizing preparation and analytical procedures outlined in Appendix C.

A11 of these samples were at least 1 kg, cleaned grab samples. Usually two or more samples were taken from each significantly altered outcrop in order to obtain representative mineralization. Intensely variably silicified and brecciated rocks (+ limonite/hematite) were sampled in every case.


The rock geochemistry results from the Thesis II zone are included in Appendix D, and the Au and Ag values are plotted in Figure \Im . These results indicate good potential for the Thesis II zone. Six samples had Au values greater than 1.0 g/t.

Soil Geochemistry

The majority of soil sampling completed in 1983 was from the SW grid over the Thesis I and II zones' adjacent, reconnaissance-scale base and anđ precious metals anomalies (Al 4 claim). A total of 608 samples were collected and analysed geochemically for Au and Ag by Acme Analytical Laboratories of Vancouver. These samples were gathered along 50-m spaced grid lines at an interval of 25 m with the intent of detailing earlier anomalies. The sample preparation and analytical procedures employed are summarized in Appendix C. The sample distribution and analytical results are given in Figures 9a to 9c.

Α brief program of sampling was completed along the western part of the Bonanza-Ridge grid as a supplement to the 1982 survey. Two lines were also sampled between L15E and L16E over a resistivity anomaly. Station spacings of 20 m in both directions were employed and a total of 203 samples were analysed geochemically for Au and Ag. The same sample preparation and analytical procedures were used as above (see Appendix C). The sample locations and analytical results are presented in Figures 10a to 10c.

27

The development of soil profiles on the Al property varies from fair to poor. The alpine and high latitude environment has stunted the evolution of solum, and the sampled material varies from regolithic material to till or swampy, organic-rich accumulations. On the upper slopes and ridges, soils are regosols to brunisols. On the lower slopes and valley, the soils tend to be brunisolic to podzolic. Drainage is fair over most of the property and is dominantly structurally controlled. Boggy patches are found locally. All of the grids are located on the upper slopes and ridge, with the exception of the Muzzer grid and small portions of the Boss and SW grids.

Soil profiles on the upper slopes are characterized by thin A_o horizons (essentially a grass mat), overlying poorly developed B horizons which grade downward into the dominant C horizons. Sometimes the B horizon is absent and a thin layer of organic material directly overlies the regolithic material. The overburden almost always less than m is 3 deep and averages There is no evidence of substantial approximately 1 m. soil creep, solifluction, or permafrost. Recent trenching has shown that much of the area of the upper slopes is till covered (average 1.0 m of lodgement(?) till) where alpine meadow predominates. The till was seen to overlie a weathered soil profile (see Appendix E, Profile 11) in at least one trench (ATR83-16) on the Bonanza Ridge grid. The paleosol had been essentially unaffected by ice activity. These overburden components indicate serious problems with respect to interpretation of soil geochemical data. A complex environment of trace element dispersion and potential geochemical masking is evident.

Discussion of soil profile geochemistry (below) outlines these problems.

The lower forested slopes have thin to fairly thick A₀ and A₁ horizons, and may include thin zones of eluviation. B horizons are weakly to fairly well developed. Areas of drainage and poor organic accumulation are quite common. The overburden on the lower slopes and valleys may be tens of metres thick but average less than 3 m. In some areas these valleys and lower slopes have been filled with glacial till and/or glaciofluvial deposits. No Eh-pH studies have been undertaken, but the soils are probably relatively acidic.

Soil samples were generally taken at a 20-40 cm depth with the aid of a grubhoe. A standard soil data sheet including depth, colour, texture, and composition was completed (information on file in the Vancouver Office). B horizon material was collected, when feasible, but C horizon (upper slopes) or organic-rich soil (poorly drained areas) was substituted where B horizon could not be obtained. A few duplicate samples were collected, but no strict controls were exercised over the quality of lab results.

Soil geochemistry has been an important exploration tool since the property was first explored by Sumac. The discussions of Kidd Creek's soil geochemical (Sutherland, 1982) results outlined all significant anomalies from the various grid areas as based on statistical evaluations of the data.

Bonanza-Ridge Grid

The recent sampling was responsible for no new anomalies of major significance. The two-station Au

anomaly in the vicinity of the Verrenass zone appears to northwest. continue towards the The indicated trend of contradicts that the mineralized zone, however, implying some anomaly transport. Au and Ag values from the 1983 survey are apparently much lower than 1982 results, implying some unknown change(s) in sampling or analytical techniques.

SW Grid

The most important anomalous area of this grid is a Au-Zn-Hg+Pb anomaly lying between the **Thesis I** and **II zones**, which may extend northward towards the west end of the Ridge grid baseline. The Thesis I and II zones have high gold values in grab samples, and only the latter has been partially delineated by trenching; Preliminary soil geochemistry (1981-82) showed a wide and consistent north-trending Au anomaly, and a northeasttrending Zn anomaly.

The detailed survey completed over this area in 1984 confirmed the main, north-trending anomaly centred on L2+00W of the 1981 survey (centred on L2+50W in the recent survey). The anomaly can be considered in three each with northwest- to northeast-trending segments, elements. Between 1+00N and 3+25N, three parallel anomaly components, each trending east-northeast, represent the area immediately around the Thesis II zone. In contrast, the reconnaissance scale survey shows a northwesterly trending anomaly that parallels the northeast margin of the Thesis II zone. The central segment of the anomaly (3+25 to 5+00N) appears to be composed of two to three, east-northeasterly trending components cut by a stronger northwesterly trend. From 5+00 to 7+00 N a dominant, north-south, highly anomalous zone occurs (strongest along

lines 3+50W). This may be due to downslope and/or glacial dispersion from the Thesis I zone. One of two northeast and northwest components can be inferred but these are much less dominant than the north-trending anomaly. One of these weaker components may be part of the northeast-trending Zn anomaly that lies between the Thesis I and II zones.

The northeast-trending Au anomaly located just north of the Thesis I zone was also well developed in the recent survey but is apparently more widespread than originally thought.

A second, north-south 'string' of Au anomalies lies between L5+00W and 6+50W, north of 2+50N. The extent and exact location of individual anomalies varies between the two surveys to a greater degree than the adjacent anomalies to the east.

(2 anomalies ¥ A11 Au 2SD + or GX + 2GSD, based on 1981-2 data) from the reconnaissance survey were confirmed and no new multi-station anomalies were detected. The detailed survey added greater resolution to known anomalous areas and effectively altered anomaly shapes. Local variance is noted between the Au values from the two surveys. Background values are stations símilar resampled (not but necessarily the identical sample location) show signficant divergences of >100 ppb in many cases. Even 1984 duplicate samples collected between L5+50W and L6+00W from identical sample locations show similar variations (as high as 1000 ppb). These variations represent an important sampling problem, probably due to a "particle sparsity effect" with respect to Au in the soils.

Anomalous Aq values (i.e. ≥ X + 2SD or GX + 2 GSD, based on 1981-2 data) are extremely scarce in both survey results. A small, low-order anomaly, centred on L 4+00W at the baseline, was confirmed in the detailed survey. The latter survey also recognized single-station Ag anomalies on L 3+00W south and downslope of the Thesis II zone and on L 5+50W south of an untested, Au anomaly.

Follow-up work on the above-mentioned anomalies (especially Au) is required in 1984. Test pits over anomalous areas are required to evaluate the nature of metal dispersion and the potential for geochemical masking in anomalous and adjacent background areas. The nature of each anomaly will determine the type of followup evaluation required.

TRBNCHING

Procedures

The 1983 exploration program on the A1 property consisted primarily of detailed trenching on the Bonanza-Ridge area and Thesis II zone. Work was done by a bulldozer-mounted backhoe followed by limited hand mucking. Trenches were generally about 1 m wide at the bottom and 2 m wide at the top. Overburden depths ranged from 30 cm to 2 m; only rarely was bedrock not exposed. Panel areas on the trench floors were sampled where the intensity of alteration indicated potential Au and/or Ag mineralization. Rocks with visible mineralization were sampled in panels of 0.5 m (along the trench) by 1.0 m (across the trench). Intense silicification, (e.g. A5, A5/A2, A7, A8) without visible mineralization, was sampled in panels of 1.0 m (along the trench) by 0.5 m (across the trench). Panels 2.0 m long by 0.5 m wide were used for

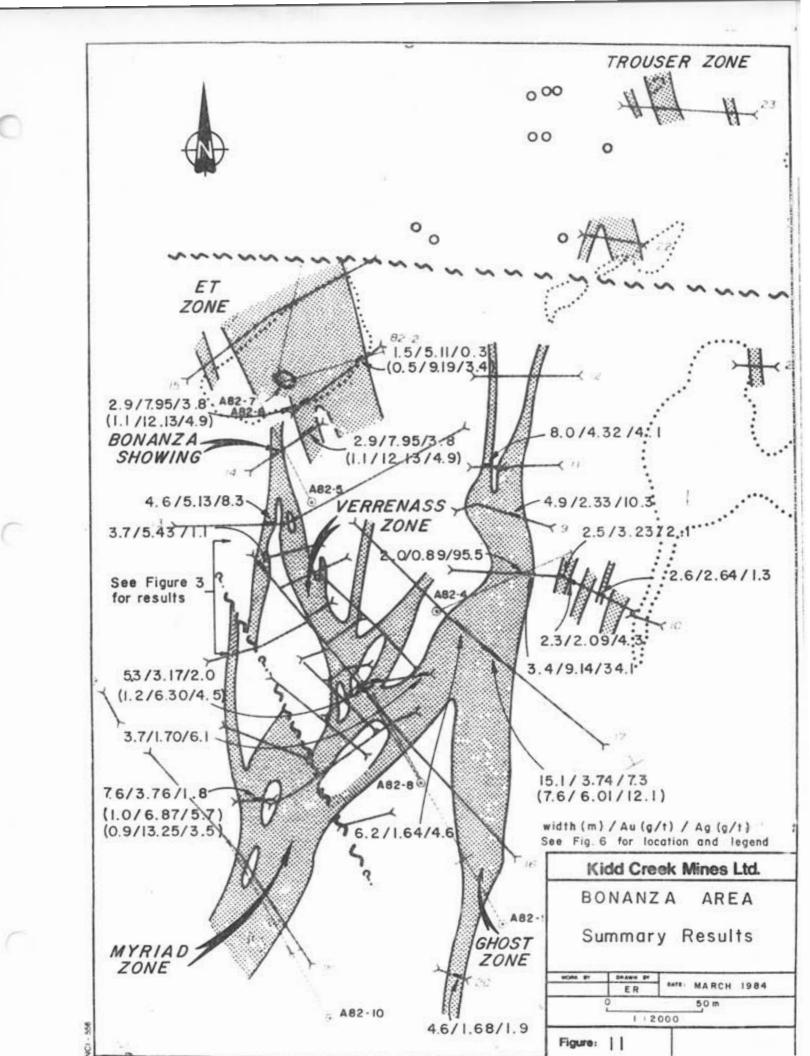
of intense alteration with zones lower, apparent mineralization potential (e.g. A2, A2/A3). Significant changes in alteration resulted in local variations in panel length: intensely altered rock was sampled in narrower panels. Panel samples weighing approximately 10 Analytcial were shipped to Acme Laboratories kq of Vancouver and analysed for Au and Ag.

Sample preparation and analytical procedures (geochemical and assay) are outlined in Appendix C. The geological and analytical results from trenching are presented in Figures 11 to 61. Trenching results are discussed in the following sections.

Compilation of Trenching Results

Bonanza-Ridge Area

A total of 43 trenches (2504 m) were excavated on the Bonanza-Ridge area (Figures 6 & 7). The first phase of trenching (trenches ATR83-1 to -25) was completed between July 15 and Aug. 2. Trenching tested priority soil and rock geochemical and IP anomalies as well as potential extensions of known altered and/or mineralized zones. The second phase of trenching (ATR83-26 to -43) involved more detailed testing of the Verrenass and adjacent zones between Sept. 9 and Sept. 13.


following The is а discussion of trenching results for each of the major mineralized systems recognized. (Figures 6, 7 and 11-13). Subdividing the alteration into individual systems is convenient but overly simplistic because the chronology of events, responsible for the present character and distribution of the individually described zones, is unknown. It is probable that the alteration systems are inter-related to varying degrees. Continued evaluation of the zones may

1

help determine these inter-relationships and help to isolate zones of greatest mineral potential.

The Verrenass zone (Figures 6, 7. 11 and 12) occupies the southwestern region of the Bonanza-Ridge area and is the most promising gold prospect recognized to date on the property. Disseminated, native gold occurs with late stage barite, sericite and guartz in a yuggy, silicified dacitic ash flow. The mineralized zone is 80 m long by 3.9 m (average) wide and is controlled by a fault structure that trends roughly at 150° (Plates 1, 2 and 3). It is hosted in intensely silicified rocks (A5) along the western half of a wider zone of intense alteration (A5/A2, A2, clays) that measures at least 100 m long by 14 m (average) wide. The apparent flexure in the mineralized zone implies possible dilatency along the controlling fault. Two or more altered structures apparently intersect the southern third of the mineralized zone and may also contribute to higher grades present at this end of the zone. Complete replacement through silicification and/or argillization is common and preservation of locally observed. original textures is Pumiceous fragments, where abundant, have hydrothermally been corroded during the silicification process leaving vugs generally 1 to 2 cm long. Vugs also result locally from corrosion of plagioclase phenocrysts and from brecciation (i.e. between breccia fragments).

Au mineralization ìs hosted primarily in veins barite anđ stockworks. Au values correlate relatively well with the percentage of vein barite Fine- to very fine grained Au occurs primarily present. as small patchy concentrations within the veins. Au is

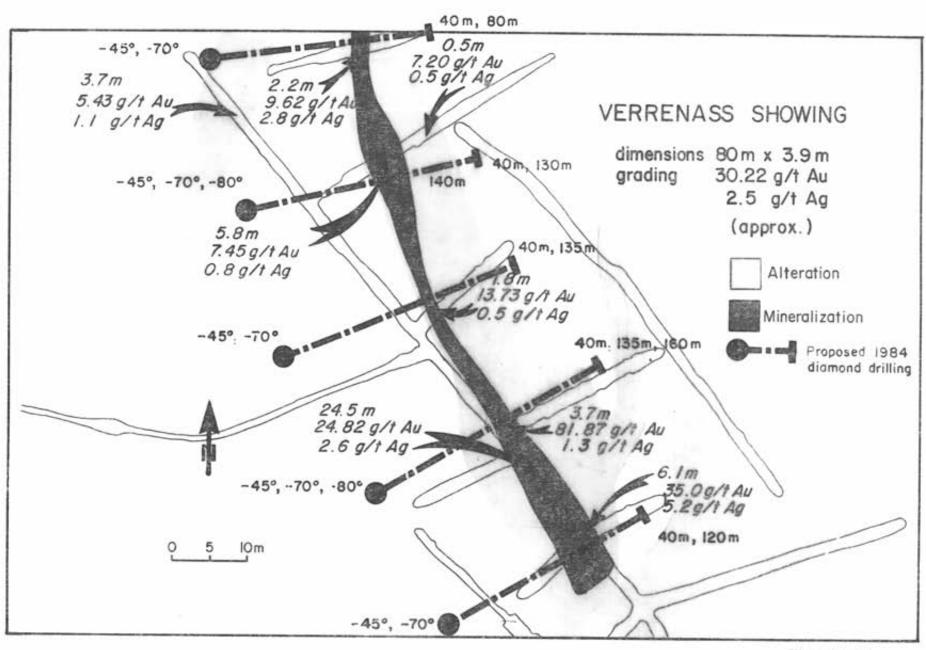


Figure 12

present within the barite crystals as well as between individual barite grains. Significant concentrations of barite also occur as drusy vuq fillings where porosity has permitted fluid flow and subsequent crystal arowth. Coarser Au, rarely seen, on the surface of coarse barite blades in vuqs, may illustrate very minor Au remobilization or may be indicative of minor variations in the hypogene environment of metal deposition. Barite contents locally reach 50% but more commonly range from 5 A general increased abundance of to 20%. argillic alteration and a corresponding decrease in barite veining (and proportional Au values) is noted to the north of trench ATR83-32. Otherwise, alteration zoning is, at best, crude.

Au Ag ratios suggest that to native Au predominates Ag mineralization. over Α Cu-bearing (or mixture of sulphosalt mineral minerals) occurs sporadically and is locally associated with An mineralization. This Cu mineralization is very similar to the original Bonanza showing mineralization (Clark and Sutherland, 1982) and likely has a similar composition. Preliminary microscopic investigations suggest possible arsenopyrite crystals accompanying this Cu-Au mineralization. X-ray diffraction of this mineralization is to be carried out in 1984 by J.R. Clark as part of an M.Sc. thesis study. An indistinct, spatial correlation exists between visible, higher grade Au and this Cu The only other associated minerals are mineralization. quartz and sericite. The former occurs as a minor constituent with barite in veins and vug-fillings and rarely contains traces of native Au. Sericite appears to be later than barite and is present lining and filling

vugs and fractures. The southern end of the zone is marked by the abrupt appearance of orange brown clays that are rich in jarosite $(K_2 \text{ Fe}_6 (\text{OH})_{12} (\text{SO}_4)_4)$ (personal communication; Clark, 1984). A minor occurrence of chalcedonic quartz vein material noted in trench ATR 83-35 does not appear to have any direct association with Au mineralization.

The 1982 diamond drill holes A82-8 and -9 terminated at depth immediately east and south of the southern limit of the Verrenass zone mineralization. The former hole ended roughly 80 m beneath the jarosite clay noted above but did not intersect any alteration typical of the mineralized Verrenass zone. Both holes appear to have intersected alteration associated with the Myriad zone.

No mineralized float was detected from the Verrenass zone prior to trenching. Grab samples with abundant visible Au were collected from trench ATR83-32 and returned Au assays of up to 750.1 g/t. A total of 16 of the 28 samples analysed greater than 69 g/t Au. These samples were also analysed by ICP for 30 additional Those samples with visible Cu mineralization elements. and correspondingly high Cu values also generally have anomalous amounts of Mo, As, Sb, Bi, V, Sn and Au. This multi-element suite is similar to that obtained from the Bonanza showing mineralization.

The following are averages of the geochemical/ assay results across five trench sections from the mineralized zone: 6.1 m of 32.84 g/t Au, 5.2 g/t Ag* (south end)
3.7 m of 81.87 g/t Au, 1.3 g/t Ag*
1.8 m of 13.73 g/t Au, 0.5 g/t Ag
5.8 m of 7.45 g/t Au, 0.8 g/t Ag
2.2 m of 9.62 g/t Au, 2.8 g/t Ag (north end)

Overall average 3.9 m of 30.22 g/t Au, 2.5 g/t Ag.
(Involve various approximations of widths and grades due to the two sampling orientations; some geochemical results used: see Figures 12; 31a, and 44 to 51).

The values illustrate a general decrease in Au contents towards the north end of the zone.

The Verrenass zone can be traced along strike to the northwest into the **Bonanza showing** (Sutherland, 1982). A recent trench over this showing (ATR-83-14) failed to uncover any additional mineralization in a 70 m wide zone of silicified and argillized host rocks (A5/A2). Trenches ATR83-13 and ATR83-16 intersected mineralized sections in the apparent continuation of the **Bonanza** zone to the south (Figures 6, 7 and 11). Barite veining occurs in intensely silicified rocks in these trenches. Significant values include the following: ATR83-13 4.6 m of 5.13 ppm Au, 8.3 ppm Ag ATR83-16 3.7 m of 5.43 ppm Au, 1.1 ppm Ag.

The 1982 diamond drill hole A82-5 was located directly on the Bonanza showing and was thought to have been directed perpendicular to the trend of the zone. Unfortunately, the hole was oriented obliquely to the alteration trend. This may explain the discouraging results obtained both geologically and geochemically from the drilling. The many similarities of the Bonanza and Verrenass mineralization reinforce the possibility that the Bonanza showing may be an extension of the Verrenass zone. The discontinuously mineralized structure would then have a total length of approximately 140 m.

Considered collectively, the Verrenass/Bonanza showings are controlled by at least two major fault structures that appear to coalesce between the two showings (Figures 6, 7 and 11). The oblique structures inferred to intersect the southern end of the Verrenass zone add to the complexity of possible structural The nature of faulting is poorly understood but controls. the local presence of veining and slickensides indicates both extensional and compressional elements in the tectonic history of these zones. Unravelling these structural complexities may be critical to the ultimate economic viability of this zone. This may be particularly important at the southern end of the Verrenass zone where the widest, well mineralized section has been abruptly terminated against one or more, cross-cutting alteration systems ('Myriad' zone). Similar problems exist at the north end, as well. The narrow alteration zone of the Bonanza showing (ATR83-14) appears to parallel and then become part of a broader alteration system (the 'ET' zone). Structural complexities may, aqain, be over-printing a highly variable alteration zone. Details of this zone are discussed below.

The **BT** zone is a broad area of intense alteration located immediately north of the Verrenass zone (Figures 6, 7 and 11). It may be, in part, an extension of the Verrenass-Bonanza system but it is also present 12 m east of the original Bonanza showing. Alteration includes silicification <u>+</u> hematite (A5 and A6) and argillization (A2 and clays), all of which are apparently controlled by a northerly trending structure (or group of structures). Alteration is traceable from trench ATR 83-14 through ATR 82-2 and on to ATR 83-15. Exposed widths of alteration increase progressively to the north. Disruption of the zone due to faulting is implied by apparently discontinuous alteration trends over relatively short distances.

Alteration consists predominantly of silicification (A5) and hematitic silicification (A6) in the southern two trenches (ATR 83-14, ATR 82-2). Silicification in the northern trench (ATR 83-15) is non-hematitic and is commonly brecciated. Argillic alteration is similar in all trenches.

Late-stage veining is present in all trenches but varies from south to north. The A5 and A6 alteration in ATR 83-14 locally contains up to 10% barite veinlets. Minor quartz veinlets (<u>+</u> trace barite) are present in ATR 82-2. Quartz-barite veinlets are also common in the brecciated A5 alteration of ATR 83-15. As well, a single quartz-barite vein, approximately 1.2 m wide, cuts the trench. The southeasterly trend of this vein and the possibly coincidental situation of several other veins along this trend, suggest a single, structural control to these vein occurrences (e.g. ATR 83-13; ATR 83-9).

Significant Au mineralization is restricted to the two southern trenches and is primarily related to hematitic silicification. Encouraging results include the following: ATR 83-14 10.4 m width of 4.3 ppm Au, 1.3 ppm Ag including 3.2 m width of 8.7 ppm Au, 1.9 ppm Ag ATR 82-2 2.9 m width of 7.95 g/t Au, 3.8 g/t Ag including 1.1 m width of 12.13 g/t Au, 4.9 g/t Ag 4.7 m width of 1.3 g/t Au, 0.3 g/t Ag 1.5 m width of 15.11 g/t Au, 1.7 g/t Ag including 0.5 m width of 9.19 g/t Au, 3.4 g/t Ag

In 1982, diamond drilling of this zone was undertaken in two holes (A82-6, -7) to test rock and soil geochemical anomalies between trenches ATR 82-2 and ATR 83-15. Both holes intersected poorly mineralized alteration. Au values generally <2 were q/t over ≥1.0 The m. highest grade intersection contained 3.10 g/t (A82-7). Drill hole A82-6 intersected 19 m of This is much less than intense silicification. was expected from surface alteration indications. The most likely reason for this abrupt truncation of the zone is moderate to low angle faulting. Such faulting is unconfirmed and a more complex structural situation may actually exist. Hole A82-7 encountered more continuous, intense alteration including almost 35 of m silicification. of possible The nature structural disruptions in this hole remains uncertain.

The Myriad zone represents а convenient but probably artificial grouping of numerous, varied alteration zones with a composite north to northeast trend (Figures 6, 7, 11). Immediately south of the Verrenass zone, the Myriad zone overlaps the anomalous chargeability trend that was diamond drilled in 1982 (holes A82-8, -9, -10, of the Extension zone; Sutherland, 1982). Host rocks are the same ash flows that occur across the Bonanza area.

Alteration varies from intense argillization (A2 or clay) to intense silicification (A5). Irregular patches of sulphide fine-grained, disseminated (or limonitic. weathered equivalents) are locally common. It is likely that several different structural trends control the Scattered, low-grade mineralization (mainly alteration. Au) occurs in the most intensely silicified zones. Values rapidly decrease with an increase in argillic content. Galena and chalcopyrite are rarely present in trace in silicified and amounts in argillized rocks, but precious metals contents do not relate to base metals. Significant values include the following:

ATR 83-39 7.6 m width of 3.76 g/t Au; 1.8 g/t Ag including 1.0 m width of 6.87 g/t Au; 5.7 g/t Ag and 0.9 m width of 13.25 g/t Au; 3.5 g/t Ag ATR 83-42 5.3 m width of 3.17 g/t Au; 2.0 g/t Ag

including 1.2 m width of 6.30 g/t Au; 4.5 g/t Ag

The previous drilled holes A82-8, -9, -10, all encountered alteration styles and Au and Ag grades similar to the Myriad zone trench exposures. The observed decrease in the intersected widths of intense alteration from A82-8 to A82-9, over a vertical extent of 60 to 80 m. complexities of may be due to alteration or post-alteration faulting. Intersected alteration in A82-10 at depths of 80 to 120 m indicates a general similarity to the alteration exposed in ATR 83-18. The apparent vertical continuity of alteration here may only be coincidental.

A quartz-feldspar (rhyodacite) porphyry dyke was intersected in drill holes A83-9 (15 m) and A82-10 (50 m). These dykes are assumed to be similar but may not be part of a single dyke. Trench ATR 83-43 exposed similar dyke rock that may be associated with the intersected equivalents. The position of these dykes implies that they represent two or three separate dykes or, a single dyke that has been disjointed by later faulting.

The Ghost zone is situated approximately 100 m east of the Verrenass zone. It appears to intersect the northern limits of the Myriad zone in the vicinity of trench ATR 83-10. This zone is at least 350 m long and the width of intense alteration varies from approximately 10 m to 70 m. The north end of the zone appears to terminate through a combination of pinching of the zone and post-alteration faulting. The southern limits remain unknown but the zone projects south through the Au soil geochemical anomalies known as the 'Orewell' zone (Figures 6 and 62).

The Ghost zone is characterized by intense silicification (A5) and argillization (A2) and resembles alteration zones in this region many other of the Host rocks are the dacitic ash flow units. property. characteristic of the Bonanza area. Locally abundant pyrite accompanies the A5 and A2 alteration styles. As in other zones, precious metals are associated with intense silicification and locally with late stage barite. No mineralization appears to be associated with the clay alteration. No distinctive of zonations alteration assemblages have been recognized.

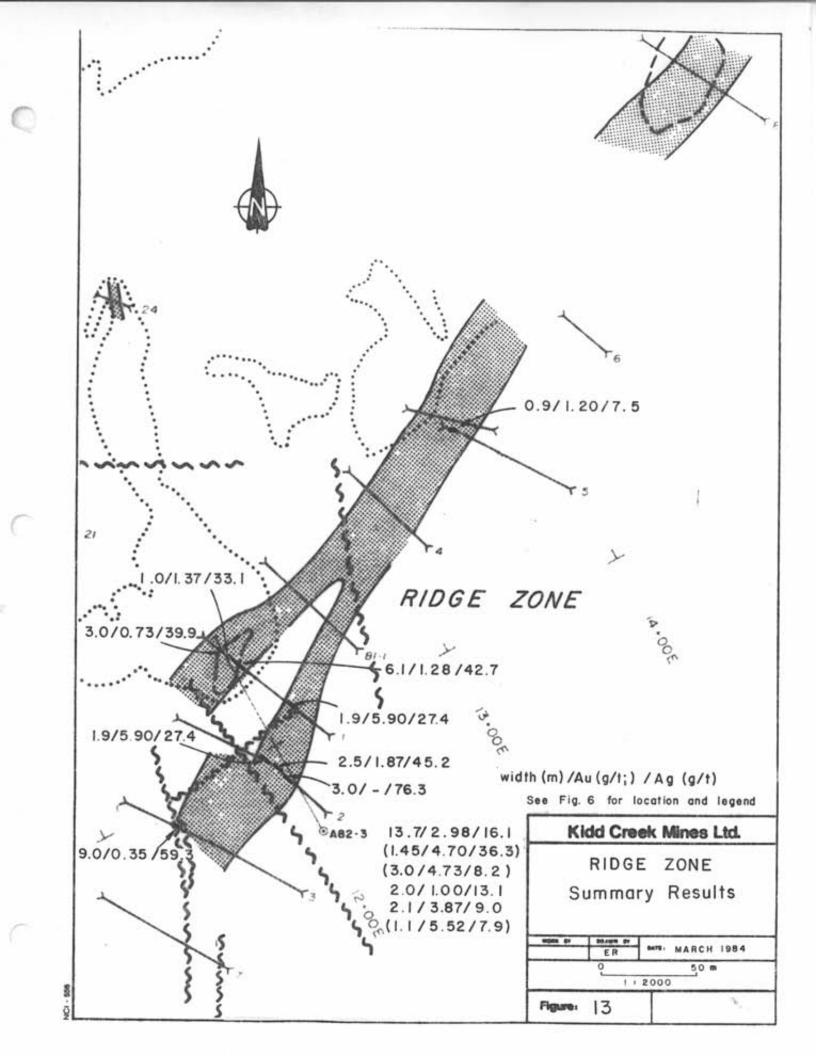
The 1982 trench ATR 1015E/168N (expanded as ATR 83-11), yielded favourable assays, averaging 4.32 g/t Au and 4.1 g/t Ag over the probable true width of 8 m. Several higher grade sections (e.g., 0.5 m of 10.70 g/t

Au) occur within the main zone of alteration. Encouraging results from 1983 trenching include: ATR 83-9 4.9 m width of 2.33 g/t Au, 10.3 g/t Ag ATR 83-10 3.4 m width of 9.14 ppm Au, 34.1 ppm Ag 2.0 m width of 0.89 ppm Au, 95.5 ppm Ag 2.5 m width of 3.23 ppm Au. 2.1 ppm Ag 2.3 m width of 2.09 ppm Au, 4.3 ppm Ag 2.6 m width of 2.64 ppm Au, 1.3 ppm Ag ATR 83-17 15.1 m width of 3.74 ppm Au, 7.3 ppm Ag including 7.6 m width of 6.01 ppm Au, 12.1 ppm Ag 6.2 m width of 1.64 ppm Au, 4.6 ppm Ag

Mineralization is generally related to intense silicification + pyritization (A5 and A7a) with late stage barite in fractures and local vugs. In trench ATR 83-10, pyrite contents range from 10% to 50% (15% average) accompanied by 1% to 5% barite. Only patches of pyritic silicification appear in trench ATR 83-20 but limonite on fractures in the silicification (A5) may indicate weathering of pyrite. The mineralized section in trench 83-17 is intermediate in ATR nature with pyritic silicification (A7a) and brecciated silicification (A5) present together in almost equal amounts. From 1% to 5% barite is present as fracture fillings in most of the mineralized sections.

The mineralization in trench ATR 83-9 is related to quartz veins and stockwork breccias with a general northwesterly trend. Vein material accounts for 40% to 70% of the silicified host rock where present, and consists almost entirely of quartz (locally amethystine). Sulphides include chalcopyrite (1-5%), pyrite (trace-2%), and galena (trace). Minor vugs present in the silicified host rock are often lined with drusy quartz + barite.

The 1982 drill hole A82-4 tested this zone at the apparent intersection with the Myriad zone. Drilling was based on the coincidence of mineralized, silicified float, а Aq soil geochemical anomaly, and a weak chargeability anomaly. Only very minor zones of predominantly argillic alteration were intersected at depths of 30- 60 m below the surface. This is in contradiction to the 20 m wide zone of silicification and argillization present in trench ATR 83-10. Rapid pinching of the alteration system and low angle, displacive faulting are possible explanations for this complexity.


The top 50 m of diamond drill hole A82-9 intersected discontinuous, intense alteration akin to that of trench ATR 83-20 and to that in the south end of ATR 83-16, although it is only about half as wide as in this latter trench. Once again, pinching of the system with depth and/or displacive faulting is suspected.

The Trouser zone (Figures 6, 7, 11) was previously defined on the basis of rock and soil geochemical values, the presence of silicified float, and roughly coincident, chargeability and resistivity anomalies. A few grab samples from this zone yielded values up to 4.24 g/t Au and 2.5 g/t Ag. Strong multi-element soil anomalies occur in drainage channels downstream from this zone. An adjacent multi-station soil anomaly contained Au values up to 3200 ppb.

Unfortunately, the soil geochemical values are apparently due to transported, silicified material (see discussion in "Soil Geochemistry", this report). Trenching in the area of the silicified float and geophysical anomalies exposed several narrow zones of northerly trending, intense argillization, clays and silicification. The presence of minor patches of disseminated pyrite suggests an explanation for the chargeability anomaly. Grades encountered in trenching were consistently poor.

The Ridge zone, located 300 m east of the Verrenass showing on the Bonanza-Ridge grid, consists of a zone of intense alteration that linear splits and coalesces between trenches ATR 83-3 and ATR 83-4 (Figures 6, 7 adn 13). A 'north' and a 'south' half exist where the zone splits. Host rocks are predominantly andesitic flows, tuffs and affiliated breccias. A dacitic ash flow unit (as on the Bonanza area) is locally present but is restricted to the western side of the altered structure. The zone lies along a lineament with a minimum length of 2.3 km. The strike length of the Ridge zone is semi-continuous over at least 350 m (possibly 550 m). The southern end of the zone terminates abruptly against a northerly trending fault structure. The zone trends to the northeast past the western edge of trench ATR 83-6 and probably projects through to the intense alteration in trench ATR 83-8. Beyond this point the above mentioned lineament bends to the north and continues as the Continuation zone (see Sutherland, 1982).

The north and south segments of the Ridge zone exhibit intense silicification and hematization (A5 and A6), polyphase brecciation, and late, fracture-controlled alteration. The mineralized zones appear to be roughly lensoid and are clearly very discontinuous in nature. The zones apparently coalesce north of trench ATR 81-1. Trenching has exposed alteration widths of 15-30 m on the northern zone, and 5-35 m of strongly altered rock on the

geophysical anomalies exposed several narrow zones of northerly trending, intense argillization, clays and silicification. of The presence minor patches of disseminated pyrite suggests an explanation for the chargeability anomaly. Grades encountered in trenching were consistently poor.

The Ridge zone, located 300 m east of the Verrenass showing on the Bonanza-Ridge grid, consists of a linear zone of intense alteration that splits and coalesces between trenches ATR 83-3 and ATR 83-4 (Figures 6, 7 adn 13). A 'north' and a 'south' half exist where the zone splits. Host rocks are predominantly andesitic flows, tuffs and affiliated breccias. A dacitic ash flow unit (as on the Bonanza area) is locally present but is restricted to the western side of the altered structure. The zone lies along a lineament with a minimum length of 2.3 km. The strike length of the Ridge zone is semi-continuous over at least 350 m (possibly 550 m). The southern end of the zone terminates abruptly against a northerly trending fault structure. The zone trends to the northeast past the western edge of trench ATR 83-6 and probably projects through to the intense alteration in trench ATR 83-8. Beyond this point the above mentioned lineament bends to the north and continues as the Continuation zone (see Sutherland, 1982).

The north and south segments of the Ridge zone exhibit intense silicification and hematization (A5 and A6), polyphase brecciation, and late, fracture-controlled alteration. The mineralized zones appear to be roughly lensoid and are clearly very discontinuous in nature. The zones apparently coalesce north of trench ATR 81-1. Trenching has exposed alteration widths of 15-30 m on the northern zone, and 5-35 m of strongly altered rock on the (local hematization) with only minor argillic alteration.

At depth, the character of the northern segment of the Ridge zone changes dramatically to banded clays and quartz, with discouraging geochemical results (DDH A83-3; Sutherland, 1982). Late stage faulting and very rapid changes in alteration style (vertically, laterally and longitudinally) are the apparent causes of the discontinuity in the mineralized zones.

Mineralization is restricted on surface to the section of the zone between trenches ATR 83-3 and ATR 83-5. Significant Au and Ag values (Au \geq 1.0 g/t; Ag \geq 50.0 g/t) occur primarily between ATR 83-3 and ATR 83-1. Grab samples from the 'north' zone (1981) contained up to 6.47 g/t Au and 131.2 g/t Ag. No previously sampled sections were resampled in 1983. Significant Au-Ag values from trenching (1981, 1983) include the following:

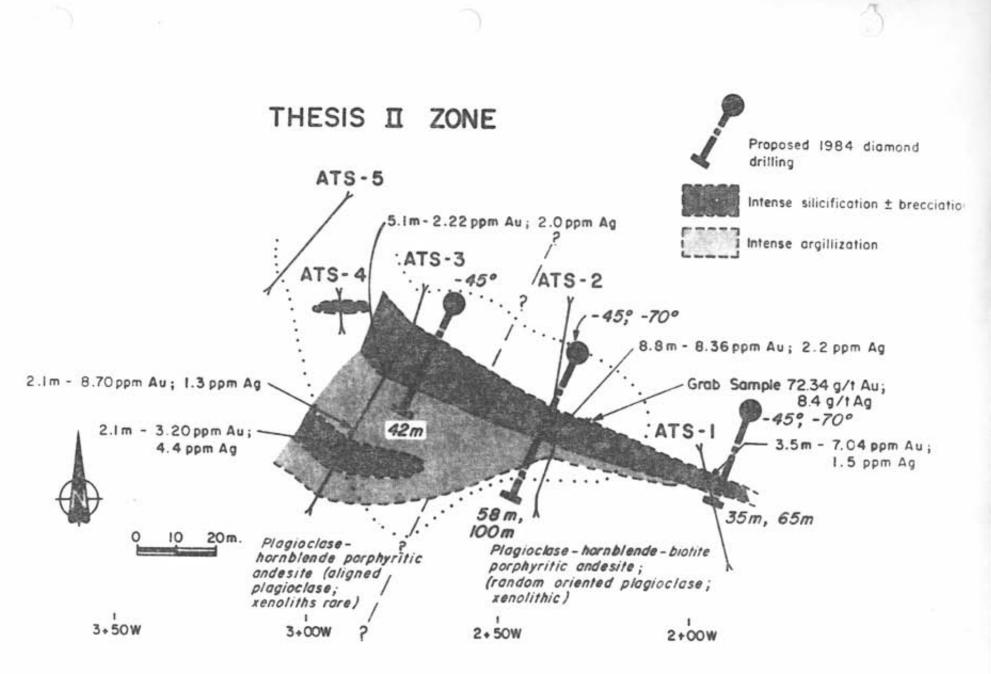
"Trench 3" (1981) 3.0 m of 0.73 g/t Au, 39.9 g/t Ag (now part of 3.0 m of 1.23 g/t Au, 44.2 g/t Ag ATR 83-1) 1.0 m of 1.37 g/t Au, 33.1 g/t Ag "Trench 5" (1981) 2.5 m of 1.87 g/t Au, 45.2 g/t Ag

(now part of 3.0 m of 76.3 g/t Ag ATR 83-2)

ATR 83-16.1 m of 1.28 g/t Au, 42.7 g/t AgATR 83-21.9 m of 5.90 g/t Au, 27.4 g/t AgATR 83-39.0 m of 0.35 g/t AU, 59.3 g/t AgATR 83-50.9 m of 1.20 g/t Au, 7.5 g/t Ag

The 1982 diamond drill hole A82-3 intersected the following mineralized sections:

13.7 m of 2.98 g/t Au, 16.1 g/t Ag
including 1.45 m of 4.70 g/t Au, 36.3 g/t Ag
and 3.0 m of 4.73 g/t Au, 8.2 g/t Ag
2.0 m of 1.00 g/t Au, 13.1 g/t Ag
2.1 m of 3.87 g/t Au, 9.0 g/t Ag
including 1.1 m of 5.52 g/t Au, 7.9 g/t Ag


Mineralization is exclusively hosted in silicified and often hematized rocks. Higher grade sections are commonly brecciated with two or more alteration stages in evidence. The only exception is the narrow, mineralized zone in trench ATR 83-2 consisting of 5 to 10% chalcedonic quartz veining in brecciated silicification.

Thesis II Zone

The Thesis II zone (Figures 3, 8 and 14) outcrops on the southwest grid, 1850 m southwest of the Verrenass showing. Between Aug. 2 and Aug. 3, five trenches (totalling 190 m) were excavated across the zone.

The quartz-limonite and quartz-hematite breccias present are vaguely similar to breccias of the Ridge zone. Host rocks are andesitic to dacitic flows. Α hornblende porphyry occupies the northwestern part of the a xenolithic, biotite-hornblende porphyry area and predominates on the eastern part. The dimensions of the Thesis II zone are uncertain. The alteration appears to trend in a northwest direction parallel to weakly defined airphoto lineaments. Previous suggestions that the Thesis II zone may be connected with the Thesis I zone are now considered erroneous.

Trenching revealed highly variable widths of

alteration over a maximum strike length of 150 m. The narrow zone of alteration exposed by the southern two trenches rapidly widens to 60 m in trench ATS 83-03 then is absent in the essentially unaltered, northern trench (ATS 83-05). This rapid variation is likely a result of faulting and/or pinching of the system. Such faulting could also contribute to the sharp change in lithologies observed between trenches ATS 83-02 and -03.

Three grab samples from the zone (1982)contained more than 700 ppb Au. The highest values were 12.00 g/t Au and 1.7 g/t Ag. Detailed sampling in 1984 returned a grab sample which assayed 72.34 g/t Au and 8.4 Most 1984 grabs yielded values between 0.4 and q/t Aq. 0.9 ppm Au with only minor Aq. The high-grade sample was collected in situ near trench ATS 83-02 and consisted of a silicified and brecciated rock with about 15% limonite/ goethite cement.

Some of the better values encountered in trenching include:

ATS 83-01 3.5 m width; 7.04 ppm Au, 1.5 ppm Ag ATS 83-02 8.8 m width; 8,36 ppm Au, 2.2 ppm Ag ATS 83-03 5.1 m width; 2.22 ppm Au, 2.0 ppm Ag 2.1 m width; 8.70 ppm Au, 1.3 ppm Ag 2.1 m width; 3.20 ppm Au, 4.4 ppm Ag

The mineralized sections in ATS 83-01 and -02 are clearly related and are likely continuous. Values are associated with silicified breccias with quartz and/or limonite/geothite cement. Work by J.R. Clark (M.Sc. student, McGill University) has shown Au to be present in both the quartz and the limonite/goethite cement. This implies a hypogene origin to the mineralization, though the possibility of supergene enrichment cannot be disregarded. The depth of weathering is unknown. Late-stage veins and stockworks of barite (5-10%) occur locally (ATS 83-01, ATS -03) and also contain significant mineralization. Trench ATS 83-04 was not sampled because of some confusion in the field.

DISCUSSION

The Al property continues to exhibit a high potential for Au-Ag mineralization. The central region of the property (Al 2, 4 and 8 claims) appears to have the best potential for one or more, economically viable Au-Ag deposits. Of all areas, the Bonanza/Ridge grid is the most promising with several zones of significant (and, locally, spectacular) mineralization.

Additional work is clearly warranted on the Al proeprty. Diamond dirll testing of the Berrenass zone and hte Thesis II zone is required. Tenching of various geochemical anoamlies on the Bonanza-Ridge and SW grids is also necessary and should be compelted prior to diamond drilling.

BIBLIOGRAPHY

- BARR, D.A., 1978. Chapelle gold-silver deposit, British Columbia: C.I.M. Bull., v. 71, no. 790, p. 66-79.
- BUCHANAN, L., 1981. Precious metal deposits associated with volcanic environments in the southwest <u>in</u> Relations of Tectonics to Ore Deposits in the Southern Cordillera. W. Dickinson and W. Payne (Eds.), Arizona Geol. Soc. Digest Vol. XIV, pp. 237-262.
- CARTER, N.C., 1971. Toodoggone River (94E): B.C. Dept. Min. Petrol. Res., Geol. Explor. Mining in B.C., p. 63-71.
- DIAKOW, L.J., 1984. Geology between Toodoggone and Chukachida Rivers (94E): B.C. Ministry of Energy, Mines and Petroleum Resources, Geol. Fieldwork, 1983, Paper 1984-1, p. 139-145.
- GABRIELSE, H., DODDS, C.J., 1974. Operation Finlay: Geol. Surv. Can., Paper 74-1A, p.13.
- GABRIELSE, H., DODDS, C.J., and MANSY, J.L. 1975. Geology of the Toodoggone River (94E) map-area: Geol. Surv. Can., Open File 306.
- GABRIELSE, H., DODDS, C.J., and MANSY, J.L., 1976. Operation Finlay: Geol. Surv. Can., Paper 76-1A, p. 87-90.
- GABRIELSE, H., WANLESS, R.K., ARMSTRONG, P.R., and ERDMAN, L.R. 1980. Isotopic dating of early Jurassic volcanism and plutonism in north-central British Columbia: Geol. Surv. Can., Paper 80-1A, p. 27-32.
- MONGER, J.W.H., 1976. Lower Mesozoic Rocks in McConnell Creek Map-Area: Geol. Surv. Can., Paper 76-1A, p. 51-55.

MUIR, W.W., 1983. Baker Mill Start-up and Early Operation: Copy of speech given at C.I.M. Eighth District Six Meeting, Smithers, B.C., 17 p.

PANTELEYEV, A., 1982. Toodoggone volcanics south of Finlay River; B.C. Ministry of Energy, Mines and Petroleum Resources, Geo. Fieldwork 1981, Paper 1982-1, p. 135-141.

- PANTELEYEV, A., 1984. Stratigraphic position of 'Toodoggone' Volcanics (94E): B.C. Ministry of Energy, Mines and Petroleum Resources, Geol. Fieldwork, 1983, Paper 1984-1, p. 136-138.
- PEATFIELD, G.R., 1980. Final Report, 1980 Geological and Geochemical Surveys, Al Property: Texasgulf Inc., internal rept. (unpublished), 15 p.
- RODGERS, T., 1972. Report on the geology and geochemistry of the Met, San, and Tan groups: B.C. Ministry of Energy, Mines and Petroleum Res., Assess. Rept. 4060 (unpublished).
- RODGERS, T., and SCOTT, T.C., 1973, Report on the geology, geochemistry of the Met, San, and Tan groups; B.C. Ministry of Energy, Mines and Petroleum Res., Assess Rept. 4681 (unpublished.
- SCHROETER, T.G. 1981a. Selected precious metal deposits of northern British Columbia: Western Miner, v. 54, no. 6, p. 22-38.
- SCHROETER, T.G. 1981b. Toodoggone River (94E): B.C. Ministry of Energy, Mines and Petroleum Resources, Geol. Fieldwork 1980, Paper 1981-1, p. 124-131.
- SCHROETER, T.G., 1982. Toodoggone River (94E): B.C. Ministry of Energy, Mines and Petroleum Resources, Geol. Fieldwork 1981, Paper 1982-1, p. 122-133.
- SCHROETER, T.G., 1984. Bill Prospect (94E/13): B.C. Ministry of Energy, Mines and Petroleum Resources, Geol. Fieldwork 1983, Paper 1984-1, p. 131-133.

- SOUTHER, J.G., 1977. Volcanism and tectonic environments in the Canadian Cordillera- a second look, in Barager, W.R., Coleman, L.C., and Hall, J.M., eds., Volcanic Regimes in Canada: Geol. Assoc. Canada, Spec. Paper 16, p. 3-24.
- SUTHERLAND, I.G., 1983. Report on Soil Geochemical Surveys on the Al 1-4 M.C.: Assessment Report, B.C. Minis. Ener., Mines and Petrol. Res., Victoria.
- SUTHERLAND, I.G., 1983. Report on Diamond Drilling on the Al 1 M.C.: Assessment Report, B.C. Minis. Energ., Mines and Petrol. Res., Victoria.
- SUTHERLAND, I.G., 1982. Report on Diamond Drilling on the Al 2 M.C.: Assessment Report, B.C. Mins. Energ., Mines and Petrol. REs., Victoria.
- SUTHERLAND, I.G., 1982. Report on Diamond Drilling on the Bull M.C.: Assessment Report, B.C. Mins. Energ., MInes and Petrol. Res., Victoria.

APPENDIX A Statement of Qualifications

t t

APPENDIX A Statement of Qualifications

I.G. Sutherland - Geologist

I.G. Sutherland holds a B.Sc., (Hons) Degree in Geology from the University of Western Ontario, granted in 1976. Since that time he has held several positions in Industry and Government, and has been employed by Kidd Creek Mines Ltd. in Vancouver since March 1981.

J.R. Clark - Geologist

J.R. Clark holds a B.Sc. (Hons) Degree in Geology from McGill University, granted in 1979. He has wide exploration experience and has been temporarily employed by Kidd Creek Mines Ltd. since the 1981 field season. He is presently enrolled in a M.Sc. program at McGill, where he is researching various aspects of the geology of properties in this region.

J.F. Macdougall - Sr. Geologist

J.F. Macdougall holds a PhD. from McGill University. He has worked as a geologist for Kidd Creek Mines (previously Texasgulf Inc.) in Canada and the USA since 1958.

APPENDIX B

Statement of Expenditures

,

APPENDIX B Statement of Expenditures

1) Physical Work

•			
S. Jaycox - Backhoe Op July 15-Aug 3 135. Sept 9-13 38.	0 hrs @ \$45.00	1,710.00	7,785.00
2) Trench Mapping and	Sampling		
B. Anderson - Assistan Sept 9-13 5 da	t ys @ \$55/day	275.00	
J. Black - Assistant July 18-Aug 20 29.5 d	ays @ \$54/day	1,593.00	
J. Clark - Geologist July 15-Sept 9 50.5 d	ays @ \$104/day	5,252.00	
D. Coolidge - Assistan July 16-Sept 13 24 d		1,560.00	
L. Haering - Geologica July 18-Aug 20 29.5		1,976.50	: ,
D. Horvat - Assistant July 17-Sept 13 34.5	days @ \$54/day	1,863.00	
A. Hunt - Assistant Sept 9-13 5 d	ays @ \$55/day	275.00	
J. Leigh - Assistant July 17-Aug 15 28 d	ays @ \$60/day	1,680.00	
M. Logan - Assistant Sept 12-13 2 d	ays @ \$46/day	92.00	
L. Louie - Geological July 16-Sept 19 34.5		2,311.50	
J.F. Macdougall - Geol July 15-23 8 d	ogist ays @ \$185/day	1,480.00	
M. Neave - Assistant Sept 12-13 2 d	ays @ \$46/day	92.00	
K. Norris - Assistant July 18-Aug 21 19.5	days @ \$50/day	1,131.00	
R. Vandenbrink - Assis July 18-Aug 19 23 d		1,426.00	
		21,907.00	\$21,907.00

APPENDIX B Statement of Expenditures

3) Geochemical Survey

B. Anderson - Assistant Sept 3-7 4 days @ \$55/day	220.00	
J. Black - Assistant June 24-Aug 28 - 3 days @ \$54/day	162.00	
D. Coolidge - Assistant June 30-Sept 7 6.5 days @ \$65/day	442.50	
L. Haering - Geological Assistant June 30 1 day @ \$67/day	67.00	
D. Horvat - Assistant June 24-Sept 7 9.5 days @ \$54/day	513.00	
A. Hunt - Assistant Sept 7 1 day @ \$55/day	55.00	
J Leigh - Assistant June 20-Aug 28 5 days @ \$60/day	300.00	(
L. Louie - Geological Assistant June 28-July 3 2.5 days @ \$67/day	167.50	
K. Norris - Assistant June 21-Sept 7 10.5 days @ \$58/day	609.00	
R. Vandenbrink - Assistant June 20-Sept 3 5.5 days @ \$62/day	341.00	
4) Geological Survey (Compilation)	2,857.00	2,857.00
I.G. Sutherland - Geologist Aug 7-Sept 16 11 days @ \$136/day	1,496.00	
L. Louie - Geological Assistant Aug 21-31 7 days @ \$67/day	469.00	
	1,965.00	1,965.00
5) Room & Board		
S. Jaycox 24 man-days @ \$80 Kidd Creek Personnel	1,920.00	
361.5 man-days @ \$80	28,920.00	
	30,840.00	30,840.00

APPENDIX B Statement of Expenditures

6) Helicopter Support - Personnel		
ALC, Hughes 500D; 60.9 hrs @ \$510/hr		31,059.00
7) Sample Shipping		
a) Helicopter to Airstrip ALC, Hughes 500D 28.4 hrs @ \$510/hr	14,484.00	
b) Fixed-wing to Smithers Central Mountain Air Service, 'Islander' 20 half trips @ \$375	7,500.00	
c) Greyhound Bus to Vancouver 41,230 lbs @ \$0.28/lb	11,544.40	
	33,528.40	33,528.40
8) a) Analytical Costs (Acme Analytical)		
<pre>1656 Au and Ag geochemical analyses @ \$5.60 804 Au and Ag assays @ \$10.00 5 Au assays @ \$9.00 1604 rock sample preparations @ \$2.50 24,704 lbs 'overweight' charges @ \$0.25/lb 811 soil sample preparations @ \$0.50</pre>	8,040.00 45.00 4,010.00	
b) Chemex Labs Limited (Soil Profile S	amples)	
53 Cu,Pb,Zn,Ag,Hg,Ba and Au geochemical analyses @ \$18.35 1 Au assay @ \$7.50 53 soil sample preparations @ \$0.60	972.55 7.50 <u>31.80</u> 28,961.95	28,961.95
9) Report Preparatiaon Costs		
Typing - D. Leigh 2.5 days @ \$127.00 Drafting - D. Phillips 121 hrs @ \$17/hr - V. Goodfellow 3 mos @ \$2050/mo Reproductions	317.50 2,057.00 6,150.00 75.00 8,600.00	8,600.00
•	IOTAL	\$167,502.95

APPENDIX C

ANALYTICAL THCHNIQUES

ĺ

APPENDIX C

ANALYTICAL TECHNIQUES

a) Acme Analytical Laboratories, Vancouver, B.C.

Soils:	Au	Ag
	Geochemistry	Geochemistry
		1
size fraction analysed	-80 mesh	-80 mesh
analysed weight	10 gm	0.5 gm
technique	Aqua Regia; MIBK; AA	3:1:3 (HC1:HNO3:H2O);AA
detection limit	5 ppb	0.2 ppm
		l
Rocks:		

Rocks:

size fraction analysed	-100	mesh	–100 me	sh	
analysed weight	as for	soils	as for s	bils	
technique			-		
detection limit			•		
			ĺ		

Fire Assays: - "1/2 assay ton" basis -100 mesh fraction analysed

APPENDIX C

ANALYTICAL TECHNIQUES

b) Chemex Labs Ltd., North Vancouver, B.C.

Soils: (Profiles, 1 Appendix D/E):

<u>Klement</u>	Analysed Wt	Technique	Detection Limit
Cu	1 gm	Perchloric + nitric; AA	2 ppm
Pb	t gan	Perchloric + nitric; AA	1 ppm
Zn	1 gm	Perchloric + nitric; AA	1 ppm
Ag	1 g m	Perchloric + nitric; AA	0.1 ppm
Au	10 gm	FA prep; AA	5 ppb
Ba	1 gm	Perchloric + nitric + HF; AA	10 ppm
Hg	1 gm	nitric acid + stannous sulphate;	5 ppb
		flameless AA	

APPENDIX D

,

Į

Analytical Results

,

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

DATE RECEIVED AUG 5 1983

DATE REPORTS MAILED Aug 12

ASSAY CERTIFICATE

SAMPLE TYPE : RDCK - CRUSHED AND PRULVERIZED TO -100 MESH.

ASSAYER __ ALL DEAN TOYE, CERTIFIED B.C. ASSAYER

SAMPLE AG AU

KIDD CREEK MINES

PROJECT # 03 FILE # 83-1512 PAGE# 1

	GM/TNE	GM/TNE
AA-27251 AA-27252 AA-27253 AA-27253 AA-27254 AA- 27255	7.0	.45
AA-27252	7.0	. 65
AA 27253	8.0	.80
AA-27254	.5	
AA-27255	.5	
AA-27256	7.5	.40
AA-27257	10.5	
AA-27258	5.5	.40
AA-27259	3.0	.10
AA-27260	2.0	.10
AA-27261	1.0	.10
AA-27262	.5	.05
AA-27263	.5	.05
AA-27264	.5	.05
AA-27265	.5	
AA-27266	.5	
AA-27267	.5	.05
AA-27268	.5	
AA-27269	.5	.05
AA-27270	.5	.05
AA-27271	.5	.05
AA-27272	.5	
AA-27273	.5	.05
AA-27274	.5	
AA-27275	.5	
AA-27276	.5	.05
AA-27277	.5	.05
AA-27278	.5	.05
AA-27279	.5	
AA-27280	2.5	
	2.0	.05
AA-27281	14.5	.15
AA-27282	1.5	.05
AA-27283	16.5	1.25
AA-27284	35.5	3.45
AA-27285	28.5	2.80
AA-27286	10.5	.55
AA-27287	6.5	.25
AA-27288	4.5	.05
And Automatic	4.5	.05

OPH'L F.	141.5	nu
	GND THE	OMETINE
66 27 289	169.5	.05
00-27290	8.0	. 05
66-27291	9.0	. 20
00-27292	8.5	.30
AA-2729.5	13.5	.15
1111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 - 2 - 2 - 3	·
66-27794	1.7 - 5	- 1.0
66-27295	20.5	+ 0.123
66-27296	13. Q	- 0.5
00-77297	44.5	
66-27290	1.4 - 55	. OʻS
AA-27297	15.0	.05
AA-27300	4.5	.05
00-27301	.5	.05
AA-27302	. 5	.05
AA-27303	.5	
1111 1. 1. 0. 010101		• 3./ s./
AA-27304	. 5	.05
AA-27305	. 5	.05
66-27306	. 5	.05
AA 27307	.5	. 05
AA-27308		. 05
AA-27309	. 5	.05
AA-27310	.5	.05
AA-27311	.5	.05
00-27312	.5	.05
AA-27313	.5	.05
AA-27314		
AA-27315	1.5	.05
AA-27316	5	. O 55
AA-27317	1.0	• Q55
AA-27318	.5	. OS
HH4-227-2118	1.0	.05
AA-27319	2.0	.05
AA-27320	4 . O	. 1 5
AA-27321	5.0	.35
00-27322	34.0	7.95
AA-27523	21.5	4.05
AA-27324	8.0	.05
AA-27325	5.0	.05
AA-27326	.5	.05
		a

* MOTE - GMZINE = GRAMZIONNE

SAMPLE	AG	
	GM/TNE	GM/TNE
AA-27327	.5	.05
AA-27328	.5	.05
AA-27329	.5	
AA-27330	.5	
AA-27331	.5	
111 27501		.05
AA-27332	.5	.05
AA-27333	.5	.05
AA-27334	6.5	
AA-27335	1.5	.05
AA-27336	2.0	
AA 07777		1.54
AA-27337	4.0	
AA-27338	1.5	.10
AA-27339	1.5	.05
AA-27340	2.0	.05
AA-27341	.5	.05
AA-27342	1.5	.05
AA-27343	2.5	.10
AA-27344	1.5	.45
AA-27345	1.5	
AA-27346	.5	.05
AA-27347	.5	.05
AA-27348	33.5	.05
AA-27349	.5	.05
AA-27350	.5	.05
AA-27351	.5	.05
AA-27352	.5	.05
AA-27353	.5	.05
AA-27354	.5	.05
AA-27355	.5	.05
AA-27356	.5	.15
	C-C-C-C- (122)	
AA-27357	.5	.05
AA-27358	74.5	.05
AA-27359	68.5	.05
AA-27360	43.5	.05
AA-27361	88.5	.20
AA-27362	48.5	.20
AA-27363	83.0	.40
AA-27364	27.0	.30
	27.0	

1

SOMPLE.	AG	AU
COMPACIT ALLA	GH/ TNE	
66-27365	69.0	1.00
AA-22366	41.0	. 80
AA-27367	34.5	. 130
AA-27368	1.5	
AA-27369	.5	.05
	• • • · ·	
AA -27370	315	.05
AA 27371	1.5	- O25
AA-27372 AA-27373	17.5	
AA-27373	10.0	
00-27374	8.0	.20
	1.55.57	1.12
AA-27375	11.5	.05
AA-27376	14.5	. 0.55
AA-27377	4.0	. 05
AA-27378	15.5	.05
AA-27379	3.0	
	1743 - 1743	10.000 (A.D.A.)
AA-27380	20.5	- 05
AA-27381	7.5	.05
AA-27382	11.5	.05
AA-27383	12.5	.05
00-27384	12.5	. 05
	A 46 7 67	a 197.697
AA-27385	16.0	- 05
AA-27386	10.5	.05
AA-27387	11.0	.05
AA-27388	13.0	. 05
AA-27389	12.0	
1111 61 510 1	A 20.4 CT	- CA (2)
AA-27390	12.0	.05
AA-27391	11.5	
AA-27392	9.5	- 30
AA-27393	14.5	.20
AA-27394	19.0	
		- 10° 6.2
AA-27395	13.5	- 0.95
AA-27396	3.0	. 05
AA-27397	1.5	. 05
AA-27398	. 5	. 05
AA-27399	. 5	.05
AA-27400	.5	.05
1.091 VSN/122235		
# NUTE -	GMITNE - GRAMITONN	

SAMPLE	AG GM/TNE	AU GM/TNE
AA-27401		
NA-22402	.5	.05
	. 5	.05
AA-27403	- 5	.05
AA-27404	.5	.05
AA-27405	.5	.05
AA-27406	.5	.05
AA-27407	.5	.05
AA-27408	. 5	. 05
AA-27409	. 5	.05
AA-27410	. 5	.05
AA-27411	.5	.05
AA-27412	. 55	.05
AA-27413	.5	.05
AA-27414	. 5	.05
AA-27415	.5	.05
AA-27416	.5	.05
AA-27417	.5	.05
AA-27418	.5	.05
AA-27419	.5	.05
AA-27420	.5	.05
AA-27421	.5	.05
AA-27422	.5	.05
AA-27423	. 5	.05
AA-27424	.5	.05
AA-27425	.5	.05
AA-27426	.5	-0. #T
AA-27427	.5	. 05
AA-27428		.05
AA-27429	. 5	.05
AA-27430	.5	. 05
HH-27430	.5	.05
AA-27431	1.0	. 05
AA-27432	5.0	.05
AA-27433	12.5	.05
AA-27434	7.0	.05
AA-27435	.5	. 05
AA-27436	1.5	.05
AA-27437	2.5	.05
AA-27438	1.0	.05
ACCIDENTIAL COMPANY AND A STREET AND A STREE		

AMELE			AU
		GM/TNE	GM/TNE
00-27439		. 5	1015
AA-27440		.5	- 05
00-27441			.05
AA-27442		.5	.05
		. 5	.05
AA-27443		.5	. 05
AA-27444		8.0	. 25
AA-27445		5.5	. 10
AA-27446		6.0	. 15
AA-27447		15.5	. 60
AA-27448		10.0	. 60
AA-27449		13.5	. 95
AA-27450		13.5	. 60
AA-27451		2.5	.05
AA-27452		.5	.05
AA-27453		1.5	.05
AA-27454		. 5	.05
AA-27455		. 5	.05
AA-27456		. 5	. 05
AA-27457		. 5	.05
AA-27458		. 5	.05
AA-27459		. 5	.05
AA-27460		.5	. 05
AA-27461		.5	.05
AA-27462		.5	.05
AA-27463		. 5	.05
AA-27464		-	
AA-27465		2.0	.35
AA-27466		.5	.05
AA-27466		7-5	1.20
AA-27467		6.0	. 40
MIA-27408		.5	. 05
AA-27469		.5	.05
AA-27470		. 5	. 05
AA-27471		.5	.05
AA-27472		. 5	.05
AA-27473		.5	.05
AA-27474		.5	.05
AA-27475		:5	.05
AA-27476		.5	.05
12010101-000-001003-2001-1			
* NOTE -	CM / TNE	 GDAM / TONN	(C)

- * NOTE GM/TNE = GRAM/TONNE

T

FILE # 83-1512

SAMPLE		AG	
		GM/TNE	GM/TNE
AA-27477		.5	.05
AA-27478		.5	.05
AA-27479		.5	
		.5	
AA-27480		.5	.05
AA-27481		. 5	-05
AA-27482		.5	
AA-27483		.5	.05
AA-27484		.5	.05
AA-27485		. 5	.05
AA-27486		.5	.05
AA-27487		.5	.05
AA-27488		.5	.05
AA-27489		.5	.05
AA-27490		.5	.05
AA-27491		.5	.05
AA-27492		.5	.05
AA-27493		.5	.05
AA-27494		.5	.05
AA-27495		.5	.05
AA-27496		1.0	
AA-27497		.5	.05
AA-27498		.5	
AA-27499		.5	
AA-27500		.5	
AA-27501		.5	
AA-27502		. 5	.05
AA-27503		.5	.05
AA-27504		.5	.05
AA-27505		.5	.05
AA-27506		.5	
AA-27507		.5	.05
AA-27508		.5	.05
AA-27509			.05
AA-27510		.5	.05
AA-27511		.5	.05
HH 2/011			.05
AA-27512		.5	.05
* NOTE -	GM/TNE	= GRAM/TON	INE

C

PAGE# 7

4

SAMPLE AA-27513

AA-27514 AA-27515 AA-27516 AA-27517

AG	AU
GM/TNE	GM/TNE
.5	.05
.5	.05
.5	.05
.5	.05
.5	.05

* NOTE - GM/TNE = GRAM/TONNE

Į.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

DATE RECEIVED AUG 10 1983

DATE REPORTS MAILED Augle

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH.

ASSAYER ---

DELATDEAN TOYE, CERTIFIED B.C. ASSAYER

1 150 CREEF MINES

PRUJECT # 03 FILE # 83-1553

PAGE# 1

1

COMPACT.	1 27.20	
SAMPLE	AG	5. 7 Fight
	GM2 TNE	GM/TNE
AA-24545	3.5	6.80
AA-24347	1.5	24.20
AA-24348		
AA-24349	2.5	3.90
AA-24350	3.0	
111 24020	2.0	13.60
AA-24351	.5	13.40
AA-24352	.5	3.15
AA-24353	1.5	31.70
AA-24354	1.5	2.80
AA-24355		16.60
AA-24356	2.5	9.25
AA-24357	1.5	5.25
AA-24358	1.0	1.30
AA-24359	.5	2.80
AA-24360	.5	1.20
AA-24361	2.0	3.80
AA-24362		4.40
AA-24363	.5	38.30
AA-24364		140.80
AA-24365	3.0	35.40
	5.0	55.40
AA-24366	3.0	31.90
AA-24367	5.0	54.60
AA-24368	4.0	33.50
AA-24369	5.5	87.90
AA-24370	4.0	69.20
AA-24371		
AA-24372	5.5	61.90
AA-24373	6.0	82.10
AA-24374		85.80
AA-24375	12.5	98.40
nn 243/3	5.5	44.20
AA-24376	3.5	8.05
AA-24377	2.5	6.45
AA-24378	3.0	3.70
AA-24379	.5	4.35
AA-24380	.5	13.70
00-243H1	.5	2. 1.0
444-2438		7.60
00-243813	-5	9.30
1113 - 47.7 35,1-2	• 0	9.20

D0)TL -- LB1/THE = GEAM/TONNE

ł

3 s. Matt (1)	AG GM71NE	
(0.) . 4.504 No 4.505	.5	6.35 8.79
(m): 24.306 661-24.307	.5	
AA-24 508	1.5	8.90
Añ -24389	1.0	
A0-24400	. 5	2.95

ACME ANALYTICAL LABORATENIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

DATE RECL.JED AUG 7 1983

DATE REPORTS MAILED

D <u>Aug/8/83</u>

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH.

ASSAYER _____ DEAN TOYE, CERTIFIED B.C. ASSAYER

KIDD CREEK MINES LTD

(

PROJECT # 03 FILE # 83-1515

PAGE# 1

SAMFLE	AG GM/TNE	AU GM/TNE
AA-27518 AA-27519 AA-27520 AA-27521 AA-27522	.5 .5 .5 .5	.05 .05 .05 .05 .05
AA-27523 AA-27524 AA-27525 AA-27526 AA-27527	.5 1.5 .5 .5	.05 .05 .05 .05 .05
AA-27528	.5	.05
AA-27529	.5	.05
AA-27530	6.5	.05
AA-27531	3.0	.05
AA-27532	2.5	.05
AA-27533	5.5	.05
AA-27534	6.0	.05
AA-27535	8.5	.05
AA-27536	4.5	.05
AA-27537	.5	.05
AA-27538	2.0	.05
AA-27539	1.0	.05
AA-27540	.5	.05
AA-27541	.5	.05
AA-27542	1.0	.05
AA-27543	2.5	.05
AA-27544	2.5	.05
AA-27545	2.5	.05
AA-27546	48.0	.05
AA-27547	2.0	.05
AA-27548	.5	.05
AA-27549	5.0	.05
AA-27551	.5	.05
AA-27552	.5	.05
AA-27553	.5	.05
AA-27554 AA-27555	.5	.05

SAMPLE

.

1

 ·•··•	A	,	600	101
AG		AL		
GM/TNE	GM/1	NE	-	
			_	
. 5	•	05	5	
.5	-	05	j –	
.5		05	5	
.5		05	j	
.5		05	5	
.5		05	i	
.5		05	i	
.5		05	ł	
.5		05	i	

AA-27556 AA-27557		.5	.05
AA-27558 AA-27559 AA-27560		.5 .5	.05 .05 .05
AA-27561 AA-27562 AA-27563 AA-27564 AA-27565		.5 .5 .5 .5	.05 .05 .05 .05 .05
AA-27566 AA-27567 AA-27568 AA-27569 AA-27570			.05 .05 .05 .05 .05
AA-27571 AA-27572 AA-27573 AA-27574 AA-27575		.5 .5 1.5 .5	.05 .05 .05 .05 .05
AA-27576 AA-27577 AA-27578 AA-27579 AA-27580		.5 .5 1.5 4.5 .5	.05 .05 .05 .05 .05
AA-27581 AA-27582 AA-27583 AA-27584 AA-27585		.5 2.0 1.0 1.5 4.0	.05 .05 .10 .15 .50
AA-27586 AA-27587 AA-27588 AA-27589 AA-27589 AA-27590		3.5 1.5 .5 .5	.40 .20 .10 .15 .10
AA-27591 AA-27592 * NOTE -	GM/TNE =	.5 .5 = GRAM/TONNE	.05 .05

ļ

SAMPLE	AG GM/TNE	AU GM/TNE
AA-27593 AA-27594 AA-27595 AA-27596 AA-27597	.5 2.0 1.5 .5	.10 .15 .45 .35 .30
AA- 27598 AA-27599 AA-27600 AA-27601 AA-27602	.5 .5 .5 .5	.10 .20 .05 .05 .05
AA-27603 AA-27604 AA-27605 AA-27606 AA-27607	.5 .5 .5 .5	.05 .05 .05 .05 .05
AA-27608 AA-27609 AA-27610 AA-27611 AA-27612	.5 .5 .5 .5	.05 .05 .05 .05 .05
AA-27613 AA-27614 AA-27615 AA-27616 AA-27617	.5 .5 .5 .5	.05 .05 .05 .05 .05
AA-27618 AA-27619 AA-27620 AA-27621 AA-27622	.5 .5 .5 .5	.05 .05 .05 .05 .05
AA-27623 AA-27624 AA-27625 AA-27626 AA-27627	. 5 . 5 . 5 . 5	.05 .05 .05 .50 .05
AA-27628 AA-27629	.5	.05 .05

* NOTE - GM/TNE = GRAM/TONNE

1

,

ļ

4

SAMFLE		AG GM/TNE	AU GM/TNE
AA-27630		.5	.05
AA-27631		.5	.05
AA-27632		8.5	.50
AA-27633		23.5	1.98
AA-27633		.5	.05
AA-27635 AA-27636 AA-27637 AA-27638 AA-27639		.5 .5 .5 .5 3.5	.05 .05 .15 .20
AA-27640 AA-27641 AA-27642 AA-27643 AA-27643		4.5 1.5 8.5 .5	.10 .25 1.65 .10 .05
AA-27645		3.5	.20
AA-27646		1.0	.05
AA-27647		.5	.05
AA-27648		.5	.05
AA-27649		1.5	.05
AA-27650		4.0	.15
AA-27651		16.5	.55
AA-27652		10.5	4.85
AA-27653		4.5	1.00
AA-27653		5.5	4.70
AA-27655		4.5	.75
AA-27656		4. 0	.70
* NOTE -	GM/TNE =	= GRAM/TONNE	-

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

DATE RECEIVED SEPT 20 1983 DATE REPORTS MAILED

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH.

1.12 DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER FIDD CHLEF MINES LID FROJECT # 03 FILE # 83 2220 FAGE# 1

SAMPLE	AG GM/1NE	AU GM7TNE
AA-29501 AA-29502	.5 17.5	.05
AA-29503 AA-29504 AA-29505 AA-29506 AA-29506	.5 3.5 7.0 3.9	.05 .05 .15 1.20 .10
AA-19508 AA-19509 AA-19510	2.5 13.5 .5	.15 .15 .15

ENDIE GM/INE # GRAM/TUNNE

(

PAGE# 2

SAMPLE	GM,	AG / TNE	AU GM/TNE
AA-29511 AA-29512 AA-29513 AA-29513 AA-29514 AA-29515		3.0 4.0 1.5 1.0 2.5	.30 .05
AA-29516 AA-29517 AA-29518 AA-29519 AA-29520		.50000	.05 .05
AA-29521 AA-29522 AA-29523 AA-29523 AA-29524 AA-29525			.05
AA-29526 AA-29527 AA-29528 AA-29529 AA-29530		5.5 .5 1.0 .5	.05 .05 .10
AA-29531 AA-29532 AA-29533 AA-29533 AA-29534 AA-29535		.5 .5 2.5 2.5	.30 .05
AA-29536 AA-29537 AA-29538 AA-29539 AA-29539 AA-29540		.5 1.5 .5 2.5 1.5	.05 .95
AA-29541 AA-29542 AA-29543 AA-29544 AA-29545		2.0 .5 .5 .5	.05 .05 .05
AA-29546 AA-29547 AA-29548	GM/TNE = GRAM/	.5 1.5 .5	.05 .05 .05

C

1

.

SAMPLE	AG GM/TNE	AU GM/TNE
AA-29549	.5	.05
AA-29550	.5	.05
AA-29551	.5	.10
AA-29552	.5	.05
AA-29553	.5	.05
AA-29554	.5	.10
AA-29555	.5	.05
AA-29556	.5	.05
AA-29557	.5	.45
AA-29558	18,5	47.50
AA-29559	3.0	34.35
AA-29560	2.0	19.45

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-33124

1

DATE RECEIVED SEPT 22 1983

DATE REPORTS MAILED (194-77/83

ASSAY CERTIFICATE

ASSAYER	DELL DEAN	TOYE,	CEF	RTIFIED	B.C.	A68A	YER
KIDD CREEK	MINES PROJECT			E # 83-22			AGE#
	SAMPLE		AG	<u></u>			
		GM,		AU GM/TNE			
	AA-29611		.5	.05			
	AA-29612		. 5				
	AA-29613		1.0				
	AA-29614		1.5	4.50			
	AA-29615		.5	.05			
	AA-29616		2.0	.05			
	AA-29617		.5	.15			
	AA-29618		.5	1.10			
	AA-29619			2.60			
	AA-29620		.5	68.50			
	AA-296 2 1		.5	232.10			
	AA-29622			82.50			
	AA-29623			117.05		ł	
	AA-29624			61.50			
	AA-29625			154.20			
	AA-29626		.5	5.85			
	AA-29627		.5	.80			
	AA-29628		.5	. 25			
	AA-29629		.5	2.80			
ļ	AA-29630		1.5	3.45			
	AA-29631		1.5	3.40			
	AA-29632		. 5	.20			
	AA-29633		1.0	1.70			
	AA-29634		.5	.25			
	9a-29635		.5	1.20			
	A-29636		2.0	1.70			
	AA-29637		1.0	.25			
	A-29638		.5	. 65			
	AA-29639		.5	.70			
•	A-29640		.5	.10			
	A-29641		3.5	.15			
	A-29642		.5	.05			
	A-29643		1.5	.15			
	A-29644		.5	.05			
6	A-29645		.5	.05			
f	A-29646		.5	.05			
f	A-29647		.5	.10			
4	A-29648		.5	.65			

C

1

ļ

SAMFLE	AG AU
	GM/TNE GM/TNE
AA-29649	.5 .35
AA-29650	.5 6.95
AA-29651	.5 12.30
AA-29652	.5 21.90
AA-29653	.5 2.10
AA-29654	.5.40
AA-29655	.5 .10
AA-29656	.5 .05
+ NOTE -	GM/TNE = GRAM/TONNE

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

C

DATE RECEIVED SEPT 21 1983 83

DATE REPORTS MAILED Cot 3

ASSAY CERTIFICATE

	A55	SAY C	ERT	IFI	CATI			
SAMPLE TYPE	E : ROCK - CRUSH	ED AND PRULVERI	ZED TO -100	MESH.				
ASSAYER	- Jene de'	P. DEAN	TOYE,	CER	TIFIED	B.C.	ASSAYER	
KIDD CREEK	MINES	PROJECT	# 03	FILE	# 83-22	237	PAGE#	1
	SAMPLE		GM/	AG (TNE (AU GM/TNE			
	AA-29657 AA-29658 AA-29659 AA-29660 AA-29661				.10 .05 2.55 .25 .35			
	AA-29662 AA-29663 AA-29664 AA-29665 AA-29665			.5 .5 1.5 .5	.05 .05 .15 .05 .05			
	AA-29667 AA-29668 AA-29669 AA-29670 AA-29671			ະ 	.05 .05 .05 .05 .50		Į	
	AA-29672 AA-29673 AA-29674 AA-29675 AA-29675				.05 .25 6.15 .45 6.95			
	AA-29677 AA-29678 AA-29679 AA-29680 AA-29681				4.15 13.60 4.75 13.80 5.95			
	AA-29682 AA-29683 AA-29684 AA-29685 AA-29685			1.0 1.5 .5 .5	11.80 11.55 5.25 .10 .30			
	AA-29687 AA-29688 AA-29689 AA-29690 AA-29691				.35 .25 2.80 7.20 .50			
	AA-29692 AA-29693 AA-29694			.5 .5 .5	.05 .15 .05			

SAMPLE	AG GM/TNE	AU GM/TNE
AA-29695 AA-29696 AA-29697 AA-29698 AA-29698	.5 .5 5.5 2.5	.05 .05 .10 .05 .30
AA-29700 AA-29701 AA-29702 AA-29703 AA-29704	.5 .5 .5 .5	.05 .20 .05 .05 .05
AA-29705 AA-29706 AA-29707 AA-29708 AA-29709	.5 .5 .5 .5	.05 .05 .50 1.40 7.45
AA-29710 AA-29711 AA-29712 AA-29713 AA-29714	1.5 3.5 6.5 4.0 7.0	13.65 8.75 8.25 2.80 1.90
AA-29715 AA-29716 AA-29717 AA-29718 AA-29719	1.5 .5 .5 .5	1.05 .05 .05 .10 .05
AA-29720 AA-29721 AA-29722 AA-29723 AA-29724	.5 2.0 .5 .5	
AA-29725 AA-29726 AA-29727 AA-29728 AA-29729		.40 .20 .25 .40 .15
AA-29730 AA-29731	.5 .5	.30

NOTE -	GM/TNE	= (GRAM/TONNE

ļ

.

		_			
- 01	12.01		.	44	
- 11	PA	1.70	- 1		1.00
		-	.		- No

SAMPLE	AG	AU
	GM/TNE	GM/TNE
AA-29732		
AA-29733	.5	.05
AA-29734	3.5	4.60
AA-29735	- 5	. 10
	1.5	.25
AA-29736	.5	. 20
AA-29737	. 5	.50
AA-29738	.5	.30
AA-29739	.5	.75
AA-29740	- 53	1.25
AA-29741	.5	2.25
AA-29742	1.5	1.40
AA-29743	.5	.15
AA-29744	.5	.05
AA-29745	1.5	.80
AA-29746	4.5	1.00
AA-29747	.5	.15
AA-29748	2.0	.35
AA-29749	.5	.05
AA-29750	.5	.10
AA-29751	2.5	. 10
AA-29752	.5	. 10
AA-29753	.5	.05
AA-29754	1.0	.15
AA-29755	1.0	. 10
AA-29756	.5	. 10
AA-29757	2.0	.50
AA-29758		. 10
AA-29759	.5	. 60
AA-29760	.5	2.90
AA-29761	8.5	7.05
AA-29762	1.5	6.60
AA-29763	1.0	4.10
AA-29764		3.20
AA-29765	3.5	13.25
AA-29766	.5	4.10
AA-29767	.5	3.45
AA-29768	2.0	5.85
AA-29769	2.0	1.10
Contraction and		

C

PAGE#	4
-------	---

ļ

SAMPLE	AG GM/TNE	AU GM/TNE
AA-29770 AA-29771 AA-29772 AA-29773 AA-29774	.5 .5 1.0 .5	3.40 .50 .20 .25 .30
AA-29775 AA-29776 AA-29777 AA-29778 AA-29778 AA-29779	.5 1.0 1.5 1.0 .5	.35 .10 2.45 .10 .05
AA-29780 AA-29781 AA-29782 AA-29783 AA-29783	.5 .5 .5 .5	.35 .30 .30 .05 .10
AA-29785 AA-29786 AA-29787 AA-29788 AA-29788 AA-29789	.5 .5 .5 .5	.15 .05 .10 1.25 .80
AA-29790 AA-29791 AA-29792 AA-29793 AA-29793	.5 .5 .5 .5	.15 .65 .05 .10 .05
AA-29795 AA-29796 AA-29797 AA-29798 AA-29798	.5 .ទ .១ .១	.05 .05 .05 .05 .05
AA-29800 AA-29801 AA-29802 AA-29803 AA-29803	.5 .5 .5 .5 1.5	.05 .05 .05 .05 .05
AA-29805 AA-29806 AA-29807	.5 .5	.05 .40 .05

1

P	AG	E+	ŧ 5	
---	----	----	-----	--

Į

SAMPLE	AG GM/TNE	AU GM/TNE
AA-29808 AA-29809 AA-29810 AA-29811 AA-29812	.5 1.5 .5 .5	.25 3.15 1.60 .85 1.05
AA-29813 AA-29814 AA-29815 AA-29815 AA-29816 AA-29817	.5 .5 .5 .5 1.0	.55 .75 .30
AA-29818 AA-29819 AA-29820 AA-29821 AA-29822	.5 .5 .5 .5 1.5	.05 .05 .05 .10 .10
AA-29823 AA-29824 AA-29825 AA-29825 AA-29826 AA-29827	2.5 .5 1.0 .5	.05
AA-29828 AA-29829 AA-29830 AA-29831 AA-29832	.5 .5 .5 .5 1.5	.05 .20 .05 .05 .05
AA-29833 AA-29834 AA-29835 AA-29835 AA-29836 AA-29837	.5 3.5 .5 .5 4.5	2.15 1.75
AA-29838 AA-29839 AA-29840 AA-29841 AA-29842	.5 .5 .5 .5	.75 .45 .15 .30 .10
AA-29843 AA-29844 AA-29845	1.5 .5 .5	.25 .20 .15

 $\left(\right)$

SAMPLE	AG GM/TNE	AU GM/TNE
AA-29846 AA-29847 AA-29848 AA-29849 AA-29850	.5 .5 .5 .5 3.0	.15 .10 .05 .40 .20
AA-29851 AA-29852 AA-29853 AA-29853 AA-29855 AA-29855	6.0 11.5 4.0 3.5 .5	.15 .70 .30 .45 .10
AA-29856 AA-29857 AA-29858 AA-29859 AA-29859 AA-29860	.5 .5 4.0 11.5 3.0	.10 .85 .15 .70 1.15
AA-29861 AA-29862 AA-29863 AA-29864 AA-29864 AA-29865	14.5 4.0 3.5 1.0 .5	1.25 2.20 2.25 .45 .10
AA-29866 AA-29867 AA-29868 AA-29869 AA-29869 AA-29870	3.5 .5 .5 1.0 .5	.70 .40 .05 1.05 .05
AA-29871 AA-29872 AA-29873 AA-29874 AA-29875		.05 .15 .05 .05 .05
AA-29876 AA-29877 AA-29878 AA-29878 AA-29879 AA-29880	.5 .5 .5 .5	.20 .05 .10 .05 .05
AA-29881 AA-29882 AA-29883	.5 .5 .5	.20 .05 .05

* NOTE - GM/TNE = GRAM/TONNE

I

(

SAMPLE	AG GM/TNE	AU GM/TNE
AA-29884 AA-29885 AA-29886 AA-29887 AA-29888 AA-29888	.5 .5 .5 1.5	.15 .15 .10 .10 .50
AA-29889	1.0	. 40
		

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. TELEX:04-53124 PH: 253-3158

DALL RECEIVED SEPT 24 1983

ļ

DATE REPORTS MAILED

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH.

DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER "

RIDD CREEK M 292 PAGE# 1

ć,	MINES	PROJECT	#	03	FILE	#	83-22
	SAMFILE.			G۲	AG 17 TNE (3M/	AU TNE
	AA-29561 AA-29562 AA-29563 AA-29564 AA-29565				2.5 2.0 .5 .5	24 10 20	1.10 3.40
	AA-29566 AA-29567 AA-29568 AA-29569 AA-29570				.5 .5 2.5 .5		.10 .05 .30 .05 .05
	AA-29571 AA-29572 AA-29573 AA-29573 AA-29574 AA-29575						.05 .40 .05 .05 .05
	AA-29576 AA-29577 AA-29578 AA-29578 AA-29579 AA-29580				.5 .5 .5 .5		.05 .05 .05 .05 .05
	AA-29581 AA-29582 AA-29583 AA-29584 AA-29585				.5 1.0 3.5 1.5 1.0		.10 .05 3.20 .05 .05
	AA-29586 AA-29587 AA-29588 AA-29589 AA-29589 AA-29590				.5 .5 .5 1.5	1	.05 .20 .30 .05 .05
	AA-29591 AA-29592 AA-29593 AA-29594 AA-29595						.05 .05 .05 .05 .10
	AA-29596 AA-29597				2.5		.10

* NOTE - GM/TNE = GRAM/TONNE

.35

1.0

AA-29598

C

SAMFLE	AG GM/TNE	AU GM/TNE
AA-29599 AA-29600 AA-29601 AA-29602 AA-29603 AA-29603 AA-29605 AA-29605 AA-29605 AA-29607 AA-29608	.5 .5 .5 5.0 6.5 12.0 1.0 .5	.65 .30 .60 .20 60.80 44.50 30.20 .10 2.50 1.10
AA-29609 AA-29610	1.0 .5	$2.25 \\ 1.30$

* NOTE - GM/TNE = GRAM/TONNE

ł

٠

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINOS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE RECEIVED SEPT 3 1983

L 15/23

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GH SAMPLE IS DIGESTED WITH 3 HL OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 NLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 NESH.

AU+ - 10 BH, IGNITED, HOT ADUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.

AU+ - 10 BH, IGNITED, HOT ADUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.				
ASSAYER DEA	N TOYE, CERT	IFIED B.C.	ASSAYER	
KIDD CREEK MINES PROJEC	T#03 FILE#	83-2 000	PAGE# 1	
SAMPLE	AG	AU+		
	PPM	PPB		
AA-24041	. 3	180		
AA-24042	- 1	50		
AA-24043	. 4	55		
AA-24044	- 1	30		
AA-24045	. 1	25		
AA-24046	. 1	40		
AA-24047	.2	75		
AA-24048	. 1	15		
AA-24049	. i	10		
AA-24050	.3	240	,	
AA-24051	.2	20	ł	
AA-24052	. 1	10		
AA-24053	- 1	5		
AA-24054	. 1	5		
AA-24055	. 1	15		
AA-24056	. 1	20		
AA-24057	.2	10		
AA-24058	- 1	80		
AA-24059	- 1	10		
AA-24060	. 1	5		
AA-24061	. 1	20		
AA-24062	. 1	5		
AA-24063	. 1	5		
AA-24064	.3	5		
AA-24065	. 1	5		
AA-24066	.2	10		
AA-24067	. 1	5		
AA-24068	. 1	10		
AA-24069	. 1	5		
AA-24070	. 1	5		
AA-24071	. 4	10		
AA-24072	.2	5		
AA-24073	. 1	5	:	
AA-24074	- 1	5		
AA-24075	.2	5		
AA-24076	. 1	5		
AA-24077	.3	5		
FTFT & TVF77	ب	5		

-

PAGE#	2
-------	---

SAMPLE	AG PPM	AU+ PPB
AA-24078	.1	25
AA-24079	.3	40
AA-24080	.3	15
AA-24081	.5	10
AA-24082	.5	20
AA-24083	.1	275
AA-24084	.3	200
AA-24085	.1	250
AA-24086	1.0	250
AA-24087	.5	500
AA-24088	.8	500
AA-24089	.4	235
AA-24090	1.2	400
AA-24091	1.1	340
AA-24092	.7	220
AA-24093	.6	540
AA-24094	.9	270
AA-24095	.5	630
AA-24096	.7	530
AA-24097	2.5	1700
AA-24098	4.6	5000
AA-24099	1.3	2400
AA-24100	.9	1060
AA-24101	.8	1080
AA-24102	.7	450
AA-24103	.7	230
AA-24104	.5	240
AA-24105	.3	520
AA-24106	.8	580
AA-24107	.4	220
AA-24108	.8	200
AA-24109	.9	145
AA-24110	.1	130
AA-24111	.2	150
AA-24112	.4	300
AA-24113 AA-24114	.3	510 390

SAMPLE	AG	AU+
	PPM	PPB
AA-24115	2.3	17000
AA-24116	. 4	1150
AA-24117	.6	605
AA-24118	.8	750
AA-24119	1.0	945
AA-24120	4.4	3200
AA-24121	.2	575
AA-24122	. 4	510
AA-24123	.6	705
AA-24124	.3	595
AA-24125	. 4	505
AA-24126	.3	205
AA-24127	. 4	295
AA-24128	.2	230
AA-24129	.3	305
AA-24130	.2	280
AA-24131	. 1	320
AA-24132	- 1	415
AA-24133	- 1	220
AA-24134	- 1	50
AA-24135	. 1	30
AA-24136	.8	870
AA-24137	.3	10
AA-24138	.1	5
AA-24139	. 1	10
AA-24140	.3	20
AA-24141	.2	5
AA-24142	- 1	20
AA-24143	.2	50
AA-24144	1.2	880
AA-24145	1.1	1180
AA-24146	1.2	9000
AA-24147	2.1	12000
AA-24004	. 1	40

 $\left(\right)$

ACME ANALYTICAL LABORHTORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. TELEX:04-53124 PH: 253-3158

DATE RECEIVED SEPT 7 1983

DATE REPORTS MAILED

PAGE# 1

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 NLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 NESH. AU+ - 10 GM, IGNIJED, HOT AQUA REGIA LEACH HIBK EXTRACTION, AA AMALYSIS.

DOW DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER

KIDD CREEK MINES LTD

PROJECT # 03 FILE # 83-2041

SAMPLE	AG PPM	AU+ PPB
AA-24017	.3	160
AA-24018	. 4	360
AA-24021	.8	680
AA-24022	1.3	1650

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

DATE RECEIVED AUG 27 1983

DATE REPORTS MAILED /

GEOCHEMICAL ASSAY CERTIFICA

A .500 GM SAMPLE IS DIGESTED WITH 3 NL OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH. AU+ - 10 GM, IGNITED, HOT AQUA REGIA LEACH MIDK EXTRACTION, AA ANALYSIS.

DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER R FIDD CREEK MINES PROJECT # 03 FILE # 83-1863

	11 V_2/1		# 0100
SAMPLE		AG FPM	AU* PPB
AA-24001 AA-24002 AA-24003 AA-24005 AA-24005		.1 .1 .3 .3 .3	5 5 45 80 525
AA-24007 AA-24008 AA-24009 AA-24010 AA-24011		.1 .1 .3 .2	95 405 865 510 550
AA-24012 AA-24013 AA-24014 AA-24015 AA-24015		.5 .3 .4 .1 .4	305 145 335 985 690
AA-24019 AA-24020 AA-24023 AA-24024 AA-24025		.6 .2 1.2 2.3 2.3	775 355 960 1490 2650
AA-24026 AA-24027 AA-24028 AA-24029 AA-24029		2.4 2.6 2.8 2.6 2.3	6600 6500 10300 14600 10700
AA-24031 AA-24032 AA-24033 AA-24034 AA-24035		2.8 3.2 3.3 1.0 1.4	18300 23100 30700 2700 2100
AA-24036 AA-24037 AA-24038 AA-24039 AA-24039		2.6 1.5 .4 .3 .3	2800 1370 630 175 180

PAGE# 1

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

1

DATE RECEIVED AUG 22 1983

DATE REPORTS MAILED Huy

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TD HND3 TD H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH. AU+ - 10 GM, IGNITED, HOT ADUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS. N

ASSAYER DEAN TOYE	E, CEF	RTIFIED B.C.	ASSAYER
KIDD CREEK MINES / PROJECT # 03		E # 83-1762	PAGE# 1
SAMPLE	AG	AU+	
	PPM	P PB	
AA-24651	5.9	5400	
AA-24652	2.9	410	
AA-24653	1.5	225	
AA-24654	1.0	300	
AA-24655	1.0	280	
AA-24656	.8	130	
AA-24657	. 4	20	
AA-24658	1.4	5 70	
AA-24659	.5	135	
AA-24660	1.5	520	
AA-24661	1.9	1500	1
AA-24662	1.6	1220	Į
AA-24663	2.6	2840	
AA-24664	1.9	1760	
AA-24665	1.3	970	
AA-24666	.6	280	
AA-24667	.7	47 0	
AA-24668	.2	5	
AA-24669	.3	5	
AA-24670	3.6	15	
AA-24671	3.4	10	
AA-24672	9.4	10	
AA-24673	7.8	25	
AA-24674	2.9	20	
AA-24675	.3	5	
AA-24676	2.9	5	
AA-24677	2.9	165	
AA-24678	2.6	10	
AA-24679	5.9	15	
AA-24680	1.8	5	
AA-24681	1.0	280	
AA-24682	2.5	5100	
AA-24683	1.4	520	
AA-2 4 684	6.2	415	
AA-24685	2.2	35	
AA-24686	1	10	
	-6	10	
	10.3	20	

KIDD	CREEK	MINES	PROJECT	#	03	FILE	# 83-1762
		SAMPLE				AG PPM	AU* PPB
		AA-24688 AA-24689 AA-24690 AA-24691 AA-24692				.6 .3 .8 .5 2.2	5 5 10 155 1800
		AA-24693 AA-24694 AA-24695 AA-24695 AA-24697 AA-24697				1.4 1.6 1.2 1.1 3.6	1700 2200 925 990 1180
		AA-24698 AA-24699 AA-24700 AA-24701 AA-24702				5.0 3.2 1.3 1.3 1.1	3600 4500 795 1350 1410
		AA-24703 AA-24704 AA-24705 AA-24706 AA-24707				2.9	3300 3200 595 190 195
		AA-24708 AA-24709 AA-24710 AA-24711 AA-24712				10.4 4.4 1.5 1.5 .6	345 1430 230 80 85
		AA-24713 AA-24714 AA-24715 AA-24715 AA-24716 AA-24717				1.3 1.2 .9 1.4 .6	65 85 75 90 45
		AA-24718 AA-24719 AA-24720 AA-24721 AA-24722				1.2 1.3 1.0 .8 .9	120 55 150 75 135
		AA-24723 AA-24724				.3 .2	105 45

PAGE# 2

-

SAMPLE	AG FFM	AU∗ PPB
AA-24725	1.5	45
AA-24726	2.3	50
AA-24727	3.8	35
AA-24728	3.2	50
AA-24729	2.2	95
AA-24730	2.3	5
AA-24731	1.0	20
AA-24732	.8	5
AA-24733	.7	5
AA-24734	1.4	30
AA-24735 AA-24736 AA-24737 AA-24738 AA-24739	. 9 1. 1 . 4 . 8 . 6	5 5 15 5
AA-24740	.4	5
AA-24741	.7	30
AA-24742	1.0	5
AA-24743	1.0	15
AA-24744	.3	5
AA-24745	.6	5
AA-24746	.7	5
AA-24747	1.8	10
AA-24748	1.0	20
AA-24748	1.7	120
AA-24750	7.0	810
AA-24751	34.0	3850
AA-24752	12.8	2650
AA-24753	12.6	1780
AA-24754	.1	5
AA-24755 AA-24756 AA-24757 AA-24758 AA-24759	2.2 .8 .5 .8 2.4	15 5 5 40
AA-24760 AA-24761	.2	5 15

للمستري

ł

.

SAMFLE	AG FPM	AU* PPB
AA-24762 AA-24763 AA-24764 AA-24765 AA-24766	. 1 . 1 . 1 . 3	60 15 50 35 30
AA-24767	- 1	20
AA-24768	- 1	15
AA-24769	- 7	10
AA-24770	- 1	5
AA-24771	- 1	15
AA-24772	- 1	155
AA-24773	- 1	90
AA-24774	- 1	10
AA-24775	- 1	10
AA-24776	- 1	5
AA-24777	. 1	5
AA-24778	. 1	10
AA-24779	. 1	10
AA-24780	. 1	170
AA-24781	. 1	105
AA-24782	- 1	40
AA-24783	- 1	30
AA-24784	- 1	90
AA-24785	- 1	95
AA-24786	- 1	45
AA-24787	- 1	110
AA-24788	- 1	85
AA-24789	- 1	15
AA-24790	- 1	15
AA-24791	- 1	20
AA-24792 AA-24793 AA-24794 AA-24795 AA-24796	.1 4.2 .4 5.9	15 25 10 15 280
AA-24797 AA-24798	.7.1	10 5

PA	GE	#	5

ł

SAMFLE	AG PPM	AU* PPB
AA-24799 AA-24800 AA-24801 AA-24802 AA-24803	. 2 . 4 . 3 . 4 . 1	10 ទ ទ ទ ទ
AA-24804 AA-24805 AA-24806 AA-24807 AA-24808	. 1 . 1 . 1 . 3	5 15 20 10 10
AA-24809 AA-24810 AA-24811 AA-24812 AA-24813	.2 .3 .2 .2	5 15 20 10 15
AA-24814 AA-24815 AA-24816 AA-24817 AA-24818	.1 .6 .5 .1 .1	10 5 5 5
AA-24819 AA-24820 AA-24821 AA-24822 AA-24823	.1 .2 .1 .1	ទ ទ ទ ទ
AA-24824 AA-24825 AA-24826 AA-24827 AA-24828	.1 .2 .4 .1 .2	<u> </u>
AA-24829 AA-24830 AA-24831 AA-24832 AA-24833	- 1 - 1 - 1 - 1	5 5 5 20
AA-24834 AA-24835	.1 .2	10 5

1

SAMPLE	AG PPM	AU + PPB
AA-24836 AA-24837 AA-24838 AA-24839 AA-24839	.2 .1 .2 .3 .1	ទ ទ ទ ទ ទ ទ ទ
AA-24841 AA-24842 AA-24843 AA-24844 AA-24845	. 1 . 1 . 4 1. 1 . 4	មាទទេទ
AA-24846 AA-24847 AA-24848 AA-24849 AA-24850	.2 .5 .4 .6 .4	ភ ភ ភ ភ ភ ភ

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124 DATE RECEIVED AUG 21 1983

DATE REPORTS MAILED HUEY 25/

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HDUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH.

AU+ - 10 GM, IGNITED, HOT AQUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.

ASSAYER __ A DEAN TOYE, CERTIFIED B.C. ASSAYER

FROJEC1 # 03 FILE # 03-1751

1 IDD CREEK MINES

17.5 17.5 N.7.5 Mar 102	11000001 0 00	 A. Sarber 	" WO 1/
SAMPLE		AG	AU*
		PPM	PPB
AA-24301		.2	40
AA-24302		1.3	60
AA-24303		1.4	70
AA-24304		.2	20
AA-24305		. 3	65
AA-24306		. 1	60
AA-24307		- 4	35
AA-24308			55
AA-24309		. 5	135
AA-24310			175
AA-24311		. 1	145
AA-24312		. 1	90
AA-24313		. 4	150
AA-24314		.2	25
AA-24315		. 1	85
HH 21010		• •	65
HA-24316		. 3	140
AA-24317		. 5	245
AA-24318		.5	95
AA-24319		3.9	90
AA-24320		.7	260
AA-24321		. 6	500
AA-24322		.2	375
AA-24323		1.1	2820
AA-24324		1.3	11200
AA-24325		1.5	3950
00 0070.		100	
AA-24326		• 4	3250
AA-24327		. 1	135
AA-24328		4.1	85
AA-24329		• 3	35
AA-24330		.2	40
AA-24331		. 4	125
AA-24332		. 4	85
AA-24333		. 1	35
AA-24334		. 1	105
AA-24335		. 1	115
AA-24336		. 1	155
AA-24337		.8	1590
HH-24027		• 0	1340

PAGE# 1

LU	UNEER MINES	FRUJELI	₩ QS	P° ≟L⊥È.	# 82-1/21
	SAMFLE			AG	AU+
				PPM	PPB
	AA-24338			.3	525
	AA-24339			. 1	2900
	AA-24340			. 1	1550
	AA-24341			. 1	70
	AA-24342			1.0	860
	AA-24343			. 6	5800
	AA-24344			3.1	29300
	AA-24345			2. 0	20600
	AA-24390			2.5	
	AA-24391			2.7	1230
	AA-24392			3.3	2050
	AA-24393			3.0	1320
	AA-24394			1.5	755
	AA-24395			1.3	545
	AA-24396			1.1	395
	AA-24397				235
	AA-24398			1.7	210
	AA-24399			2.8	240
	AA-24401			2.0	305
	AA-24402			1.2	295
	AA-24403			1.1	125
	AA-24404			. 4	45
	AA-24405			. 4	30
	AA-24406			. 4	730
	AA-24407			.2	50
				•	
	AA-24408			.6	195
	AA-24409			.9	220
	AA-24410			.7	350
	AA-24411			.8	410
	AA-24412			.7	290
					- • •
	AA-24413			.5	55
	AA-24414			.6	65
	AA-24415			. 6	30
	AA-24416			1.1	665
	AA-24417			.2	35
	AA-24418			.5	65

ļ

ı.

C

KIDD UREEK MINES PROJECT # 03 FILE # 83-1751 PAGE# 2

*

۰.

ł

SAMPLE	AG PPM	AU+ PPB
AA-24419	.5	15
AA-24420	1.2	355
AA-24421	.6	25
AA-24422	.7	20
AA-24423	.6	140
AA-24424 AA-24425 AA-24426 AA-24427 AA-24428	.3 .7 .9 .8 .7	5 5 25 15
AA-24429	.9	20
AA-24430	.5	520
AA-24431	1.0	1600
AA-24432	3.5	8800
AA-24433	4.7	6900
AA-24434	6.6	4500
AA-24435	5.9	3300
AA-24436	4.9	3700
AA-24437	1.6	1450
AA-24438	.8	185
AA-24439	.8	225
AA-24440	.6	980
AA-24441	1.3	47300
AA-24442	.7	60
AA-24443	.3	10
AA-24444	1.3	25
AA-24445	.4	10
AA-24446	.1	5
AA-24447	.9	40
AA-24448	.5	5
AA-24449	.3	5
AA-24450	1.9	50
AA-24451	.6	15
AA-24452	.1	5
AA-24453	.1	15
AA-24454	- 1	25
AA-24455	- 1	40

C

1

SAMPLE	AG PPM	AU* PPB
AA-24456	.5	205
AA-24457	1.2	395
AA-24458	1.1	175
AA-24459	.5	70
AA-24460	1.3	25
AA-24461	6.2	1050
AA-24462	.6	40
AA-24463	.8	295
AA-24464	3.7	735
AA-24465	3.1	640
AA-24466	2.1	325
AA-24467	2.7	405
AA-24468	2.0	325
AA-24469	1.6	210
AA-24469	1.5	110
AA-24471	1.5	95
AA-24472	1.0	780
AA-24473	.5	20
AA-24474	.5	25
AA-24475	1.6	340
AA-24476	1.5	135
AA-24477	.8	20
AA-24478	1.2	255
AA-24479	3.5	685
AA-24480	2.0	1450
AA-24481	2.6	2080
AA-24482	2.6	2160
AA-24483	3.4	3200
AA-24484	2.0	3800
AA-24485	5.1	4300
AA-24486	3.6	4200
AA-24487	2.4	3500
AA-24488	3.4	2500
HA-24489	2.1	2700
AA-24489	.7	1900
AA-24491	1.4	3200
AA-24492	1.9	5700

FAGE# 4

Į

(

۰.

PA	GI	E#	5
----	----	----	---

ł

SAMPLE	AG PPM	AU+ PPB
AA-24493	1.6	4100
AA-24494	1.4	3400
AA-24495	1.9	10400
AA-24496	2.6	10500
AA-24497	3.9	7700
AA-24498	2.1	3600
AA-24499	1.9	4200
AA-24500	3.2	10200

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124	DATE RECEIVED AUG 13 1983 DATE REPORTS MAILED Aug 23/83
GEOCHEMICAL ASSA	Y CERTIFICATE
A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL The sample is diluted to 10 mLs with water. Element Sample type : Rock - Crushed and prulverized to -10 AU+ - 10 GM, Ignited, Hot Aqua Regia Leach wibk ext	is ANALYSED BY AA : AG. Roquested by I Suthavanel.
ASSAYER DEAN TOYE,	, CERTIFIED B.C. ASSAYER
FIDD CREEK MINES PROJECT # 03	FILE # 83-1625 PAGE# 1
SAMPLE	AG AU* PPM PPB
AA-27657	1.8 25
AA-27658	2.6 15
AA-27659	2.3 25
AA-27660 AA-27661	.7 5
HH-2/001	
AA-27662	3.1 55
AA-27663	.2 5
AA-27664	1.0 190
AA-27665	
AA-27666	5.1 140
AA-27667	4.4 310
AA-27668	5.7 250
AA-27669	5.6 495
AA-27670	7.0 1500
AA-27671	1.9 170
AA-27672	.4 55
AA-27673	.5 160
AA-27674	.4 15
AA-27675	.7 15
AA-27676	.7 5
AA27677	.9 15
AA-27678	.3 20
AA-27679	.5 310
AA-27680	.1 5
AA-27681	.2 5
AA-27682	.1 5
AA-27683	.7 15
AA-27684	.3 340
AA-27685	2.6 7200
AA-27686	.1 205
AA-27687	1.1 950
AA-27688	.1 15
AA-27689	.1 10
AA-27690	.4 30
AA-27691	.6 15
AA-27692	.2 25
AA-27693	.3 5

C

.

KIDD CREEK MINES	PROJECT	ŧ	03	FILE	# 83-1625
SAMPLE				AG	AU+
				PPM	PPB
AA-27694				.6	5
AA-27695				1.3	
AA-27696				1.2	165
AA-27697				.6	60
AA-27698				. 9	80
AA-27699				.7	20
AA-27700				2.5	
AA-27701					2380
AA-27702				4.5	
AA-27703				1.1	525
AA-27704				1.0	60
AA-27705				.7	55
AA-27706				. 4	15
AA-27707				.3	40
AA-27708				6.8	175
AA-27709				2.3	150
AA-27710				2.4	
AA-27711				2.1	
AA-27712					2400
AA-27713				2.9	5100
AA-27714				.3	15
AA-27715				.8	65
AA-27716				. 6	65
AA-27717				.6	20
AA-27718				.9	15
AA-27719				1.5	15
AA-27720				1.9	40
AA-27721				16.3	
AA-27722				10.8	13800
AA-27723				61.0	8550
AA-27724				26.4	400
AA-27725				44.5	290
AA-27726				25.8	200
AA-27727				33.4	120
AA-27728			1	15.0	1080
AA-27729				50.0	440
AA-27730				4.4	195

ſ

ł

PAGE# 2

I

 $\left(\right)$

27

[

i.

SAMFLE	AG PPM	AU* PPB
AA-27731	2.3	45
AA-27732	1.9	160
AA-27733	2.1	20
AA-27734	1.5	930
AA-27735	2.5	10
AA-27736	2.3	185
AA-27737	1.0	10
AA-27738	.7	5
AA-27739	2.6	5
AA-27740	1.8	5
AA-27741	1.2	5
AA-27742	1.7	5
AA-27743	.8	5
AA-27744	1.8	135
AA-27745	1.2	5
AA-27746	.5	5
AA-27747	.8	5
AA-27748	.9	10
AA-27749	1.3	40
AA-27750	.6	30
AA-27751	1.2	35
AA-27752	.7	10
AA-27753	.2	5
AA-27754	.3	5
AA-27755	1.2	15
AA-27756	2.2	55
AA-27757	1.1	45
AA-27758	.4	5
AA-27759	.5	10
AA-27760	.3	25
AA-27761	.6	325
AA-27762	2.1	275
AA-27763	2.2	345
AA-27764	.5	15
AA-27765	.8	20
AA-27766	2.5	25
AA-27767	1.8	350

KIDD	CREEK	MINES	PROJECT	#	<u>0</u> 3	FILE	# 83-1625
	9	SAMPLE				AG	AU+
						PPM	PPB
		A-27768				.9	45
		A-27769				.9	25
		A-27770				.4	5
		A-27771				.7	15
	6	A-27772				1.5	20
		A-27773				2.4	5
		A-27774				. 4	5
		A-27775				.3	5
	6	A-27777				1.2	20
	f	A-27778				2.2	25
		A-27779				2.5	20
		A-27780				8.8	80
		A-27781				1.2	50
		A-27782				2.5	55
	f	A-27783				1.5	25
		A-27784				3.6	415
		A-27785				8.6	350
	A	A-27786				83.0	6150
	A	A-27787				.7	85
	A	A-27788		,		1.0	90
		A-27789				2.1	30
	A	A-27790				.8	35
	A	A-27791				. 3	45
		A-27792				2.9	10
	A	A-27793				1.5	15
	A	A-27794				.5	10
	A	A-27795				.6	20
		A-27796				.5	10
	A	A-27797				2.7	15
		A-27798				.5	15
	A	A-27799				. 4	15

ſ

PAGE# 4

ASTE ANALYTICAL LORREGUSEREB. LTD. DATE RECEIVED AUG 16 1983 FH: 253-3158 TELEX: 04-53124 DATE REPORTS NAILED GEOCHEMICAL ASSAY CERTIFICATE A .500 GH SANPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HWO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : ROCK - CRUSHED AND PRILVERIZED TO -100 MESH. AUX - 10 5M, IGNITED, HUT AQUA REGIA LEACH HIBK EXTRACTION, AA ANALYSIS. V.14 ASSAYER DEAN TOYE, CERTIFIED B.C. ASSAYER KIDD CREEK MINES PROJECT # 03 FILE # 83-1696 PAGE# 1 SAMPLE AU* AG - PPM PPB AA-27800 170 .2 AA-27801 .2 35 AA-27802 2.2 140 AA-27803 .1 240 AA-27804 .2 20 AA-27805 .2 150 AA-27806 .1 15 AA-27807 25 .6 AA-27808 .4 1:25 AA-27809 .3 60 1 AA-27810 .7 540 .4 AA-27811 45 AA-27812 50 . 6 AA-27813 ...6 170 AA-27814 7.1 10400 AA-27815 2450 1.6 AA-27816 19.5 5450 AA-27817 7.8 3600 AA-27818 4.5 4740 AA-27819 450 .8 AA-27820 .4 205 AA-27821 . 1 35 AA-27822 .1 30 AA-27823 .1 130 ..6 AA-27824 1690 AA-27825 .5 4270 AA-27826 .3 320 AA-27827 . 1 70 AA-27828 3.6 1800 AA-27829 2.4 7650 1.9 AA-27830 14800 AA-27831 1.4 4440 AA-27832 .7 19:50 .6 AA-27833 3680 2950 AA-27834 1.4 AA-27835 .2 370 AA-27836 1.8 40

DD	CREEK MINES	FROJECT	ŧ	03	FILE	# 83-1696
	SAMPLE				AG PPM	AU* PPB
	AA-27837 AA-27838 AA-27839 AA-27840 AA-27841				1.1 2.9 .8 .2 1.1	105 15 55 10 2100
	AA-27842 AA-27843 AA-27844 AA-27845 AA-27846				.3 .1 .1 .1 .3	20 30 75 320 380
	AA-27847 AA-27848 AA-27849 AA-27850 AA-27851				.1 1.6 1.8 .2 .1	35 15 20 5 5
	AA-27852 AA-27853 AA-27854 AA-27855 AA-27855				.4 .1 .8 34.0 7.5	5 5 25 2300 480
	AA-27857 AA-27858 AA-27859 AA-27860 AA-27861				20.0 .2 .2 2.8 .2	1150 10 10 5 5
	AA-27862 AA-27864 AA-27865 AA-27865 AA-27866 AA-27867				.6 .1 .1 .1	10 5 5 5 5
	AA-27868 AA-27869 AA-27870 AA-27871 AA-27872				.1 1.2 .5 .3 .4	20 5 40 60 43
	AA-27873 AA-27874				.1 1.1	50 55

l

5

CREEK MINES	PROJECT	# 03	FILE	# 83-1696
SAMPLE			AG	AU* FPB
			PPM	FFB
AA-27875			.6	50 55
AA-27876				
AA-27877			• 7	215
AA-27878			.5	105
AA~27879			.2	45
AA-27880			.2	35
AA-27881			. 1	45
AA-27882			.6	65
AA-27883			.3	50
AA-27884			3.5	345
AA-27885			.6	150
AA-27886			1.1	205
AA-27887			.7	195
AA-27888			7.4	3900
AA-27889			4.6	2200
AA-27890			7.7	16500
AA-27891			4.6	2300
AA-27892			8.8	3500
AA-27893			31.0	10200
AA-27894			16.0	2600
AA-27895			3.8	675
AA-27896			6.2	395
AA-27897			3.7	1600
AA-27898			2.0	710
AA-27899			2.9	5800
AA-27900			2.2	1350
AA-27901			5.3	965
AA-27902			.8	390
AA-27903			.1	105
AA-27904			.6	115
HH-27904				
AA-27905			.2	65
AA-27906	•		4.3	1600
AA-27907	,		4.8	2400
AA-27908			5.1	1500
AA-27905	1		4.8	1050
AA-27910)		10.0	1650
AA-27911			3.8	1620

KIDD

PAGE# 3

[

PAGE# 4

SAMPLE	AG PPM	AU* PPB
AA-27912	5.8	233
AA-27913	8.1	390
AA-27914	2.6	535
AA-27915	3.5	670
AA-27916	2.5	760
AA-27917	2.2	1230
AA-27918	1.8	640
AA-27919	.8	170
AA-27920	3.0	730
AA-27921	.2	10
AA-27922	.2	35
AA-27923	.3	10
AA-27924	70.0	10
AA-27925	.4	5
AA-27926	.7	5
AA-27927	.1	5
AA-27928	25.7	70
AA-27929	8.6	50
AA-27930	.2	20
AA-27931	1.1	10
AA-27932	.4	15
AA-27933	1.4	5
AA-27934	.3	5
AA-27935	.5	10
AA-27936	.2	55
AA-27937	.3	25
AA-27938	.2	20
AA-27939	.1	5
AA-27940	.2	5
AA-27941	.2	100
AA-27942	.4	20
AA-27943	.1	70
AA-27944	.2	185
AA-27945	.3	45
AA-27946	.2	30
AA-27947	- 1	100
AA-27948	- 1	45

ł

SAMPLE	AG PPM	AU* PPB
AA-27949	.6	260
AA-27950	.2	115
AA-27951	.3	55
AA-27952	.7	65
AA-27953	1.2	55
AA-27954 AA-27955 AA-27956 AA-27957 AA-27958	1.2 2.5 .9 .9 2.4 .7	85 450 605 395 295
AA-27959	1.8	260
AA-27960	6.8	5300
AA-27961	2.9	1760
AA-27962	.5	150
AA-27963	.7	190
AA-27964	2.8	260
AA-27965	1.4	235
AA-27966	1.3	250
AA-27967	1.1	105
AA-27968	.6	85
AA-27969 AA-27970 AA-27971 AA-27972 AA-27973	. 5 . 5 . 5 . 5	120 65 75 125 60
AA-27974	.2	75
AA-27975	.2	50
AA-27976	.3	105
AA-27977	.4	60
AA-27978	.3	65
AA-27979	.3	75
AA-27980	.5	55
AA-27981	.2	60
AA-27982	.3	95
AA-27983	.2	85
AA-27984	- 9	165
AA-27985	- 8	365

KIDD CREEK MINES	PROJECT # 03	FILE #	83-1696
SAMPLE		AG PPM	AU* PPB
AA-27986 AA-27987 AA-27988 AA-27989 AA-27989		.2 .1 .1 .2 .8	135 105 85 120 230
AA-27991 AA-27992 AA-27993 AA-27994 AA-27995		. 1 . 1 . 1 . 1 . 1	140 35 50 70 15
AA-27996 AA-27997 AA-27998 AA-27999 AA-28000		.1 .1 .2 .1	20 10 15 25 15

PAGE# 6

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

DATE RECEIVED AUG 10 1983

DATE REPORTS MAILED Aug 20

ASSAY CERTIFICATE

Re hein SAMPLE TYPE : PULP

Liff' DEAN TOYE, CERTIFIED B.C. ASSAYER

KIDD CREEK MINES

ASSAYER

/ FROJECT # 03 FILE # RE: 83-1553 PAGE# 1

	AG GM7 TNE	SAMPLE
5.90	3.5	A0-24346
17.20	2.0	AA-24347
4.50	2.5	AA24348
6.00		AA-24349
13,10		AA-24350
11.60	.5	AA-24351
3.05	1.0	AA-24352
37.60	1.0	AA-24353
3.30	1.5	AA-24354
13.60	.5	AA-24355
11.80	2.5	AA-24356
	1.5	AA-24357
	1.0	AA-24358
1.15	.5	AA-24359
1.30	.5	AA-24360
4.00	2.0	AA-24361
5.30	.5	AA-24362
47.70	2.0	AA-24363
136.20		AA-24364
	2.5	AA-24365
26.90	2.5	AA-24366
57.10	5.0	AA-24367
34.30	4 . O	AA-24368
80.30	4.5	AA-24369
60.40	3.5	AA-24370
63.10		AA-24371
76.40		AA-24372
90.50		AA-24373
94.80		AA-24374
36.90	5.0	AA-24375
9.20		AA-24376
6.95	2.5	AA-24377
3.05	3.0	AA-24378
4.75	. 5	AA-24379
12.30	.5	AA-24380
8.05	.5	AA-24381
8.10	1.0	AA-24382
8.30	.5	AA-24383

* NOTE - GM/THE = GRAM/TONNE

1

0.60

SAMPLE AG. AU LM THE GM/THE AA-24384 . 5 7.75 AA-24385 .5 8.45 .5 4.90 AA-24386 4.95 AA-24387 .5 AA-24388 1.5 10.95 AA-24389 1.0 3.55 AA-24400 . 5 4.05

* NOTE - GM/TNE = GRAM/TONNE

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

DATE RECEIVED OCT 27 1983 R3 DATE REPORTS MAILED Nov 4

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HOL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca, P, Mg, A1, Ti, La, Na, K, W, Ba, Si, Sr, Cr AND B. Au DETECTION 3 ppm. AUT ANALYSIS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - ROCK CHIPS

ASSAYER	DEAN TO	YE, CI	ERTIFI	ED B.C.	ASSAY	ER
KIDD CREEK MI	NES FILE	: # 83	2721		PA	GE# 1
SAMPLE	CU ppm	PB ppm	ZN ppm	AG ppm	Au‡ ppb	
AA-26765 AA-26766 AA-26767 AA-26768 AA-26876	16 11 33 19 3	4 50 10 7 3	42 46 26 15 61	.7 1.5 73.8 11.5 .4	10 15 280 40 5	
AA-26877 AA-26878 AA-26879 AA-26880 AA-26881	1 6 1 3 4	7 7 10 5	58 33 50 43 77		ទាសទា	
AA-26882 AA-26883 AA-26884 STD A-1	4 1 6 31	9 7 6 39	72 35 42 179	.2 .1 .3	5 5 5	

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE RECEIVED JULY 5 1983 DATE REPORTS MAILED July 9/8

PAGE# 1

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 NCL TO MNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH. AU* - 10 GM, IGNITED, HOT AQUA REGIA LEACH MIBK EXTRACTION, AA AMALYSIS. AU 02/TON RUN BY FIRE ASSAY

ASSAYER __ N DEAN TOYE, CERTIFIED B.C. ASSAYER

KIDD	CREEK	PROJECT#	03	FILE (\$ 83-	1063
S	AMPLE			AG	AU+	AU **
				PPM	PPB	DZ/TON
A	A-26751			. 6	-	.069
A	A-26752			. 3	480	
A	A-26753			8.4		2.110
A	4-26754			1.4	950	
	A-26755			1.4	540	
AF	A-26755			.5	540	-
AF	4-26757			.2		.054
AF	A-26758			1.2	-	.118
	9-26759			. 1	345	-
	A-26760			. 4	665	-
AF	9-26761			.8	-	.061
AA	4-26762			1.3	-	. 164
AA	4-26763			. 1	70	-
AA	4-26764			3.2	255	-

ACHE ANALYTICAL LABORATORIES LTD.

CARPIC &

852 E. HASTINGS, VANCOUVER B.C. FH: 253-3158

TELEX:04-53124

PAGE # 1

may be Suspect.

ASSAY CERTIFICATE

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HEL TO HARD TO HED AT 90 DEE.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca, P, Mg, AL, Ti, La, Na, K, W, Ba, St, Sr, Cr AND B. Au DETECTION 3 ppe. SAMPLE TYPE - ROCK CHIPS

DATE RECEIVED SPI 2 183 DATE REPORTS MAILED My DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER

> 22 FILE # 83-2323 KIDD CREEK -100

SAMPLE 0	70 204	Ci ppe	Pb ppe	2n ppe	Ag ppe	Ri ppe	Co ppe	fe pps	Fe 1	As pps	U pps	-	h pp	100	64		Bi		1 1	р 1		Cr 2010	Hq.	Ba ppe	Ti I	9	Al	Na	x		5n		
44-26769	19	42	37		.9			27	.73			1				1					-	11.4		24 a	. *	204	1	:	I	998	ppe	ç/1	
AA-26770		5453				- 2	- 1	21	.15		- 2			124					.01		- 3	10	.01	3356	.01	2	.04	.01	.00	-	- 2	67.50	
44-26771		7064	53			- 2	1				2			149	1			- 20	.01	.01	4	9	.01	1974	.01	2	.04	.01	.01			106.21	
44-26772	19								.29	714	2			147	1	268		5		.01	5	10	.41		.01	-	.64	.01	.01			277.40	
M-26773		53					2			26	2			106	1	11	2	2	.03	.01				3128	.01	2	.08	.01	.01	-		184.80	
		20	-21	ಿ	.8	- 1	2	28	-31	16	2	- 4	2	137	1	10	- 2	2	.05	.01	1		.41		.01	- 2	.04	.51	.01	-		55.10	
44-26774	6	15	31	4	4.7	1	2	25	.34		2	1																				449.51	
AA-26775	10		62			1	2	30	.36	23	ź			110		- 5		- 2			2			3275	.01	- 2	.06	1.01	.01	- 2		91.10	
A4-26776	5						ż	22	.24	10	- 5	14		151	1	26		- 2	.01		2		.01		.01	7	.04	.01	.00	-		1.50	
10-26777	15		72	6		- 1	3	33			2	10		144	1			2			- 3	10	.01	3413	.01	11	.04		.01			124.80	
AA-26778		61428	152	1592		1.1			.42	16	2	12		130	1	. 9		- 4	.01	.02	3	11	.01	3349	.01	8	.05	.01	.01	-		\$1.70	
	4.495	11.12.0	1.04	1014	10.0		1	36	1.72	\$557	2	181	2	73	28	2518	307	25	.01	.16	- 3	11	.01		.01	2	.06	.01	.65	-	226	1.7	
24-26779	17	603	35	13	1.4	2	3	30	. 15	óó	2	4	-	119	- 12	-		- 2														1.00	
AA-26790	14	686	25	16		2	2	27	.31	109	2	5		131	- 1	37	- 1	2	.01		2		.05		.01	- 2	. 54	.91		:	:	77.70	
44-26781	20	97	58	7		1	i	37	.45	105	2	12			1	41	3	2	.41	.01	1		.01	3063	.01	10	.04	.01	.01	:		46.80	
AA-26782	17	141	46	2		i	- 5	21	.28	85	ź	2525		:17	1		4	- 2	.01	.01	2	13	.01	3463	.01	2	.07	.41	.02	-		31.10	
AA-26783		125	54	ż		- 1	1	22	.30			22		133	1		9	2	.01	.41	3	10	.01	3466	.01	24	.04	.01	.01	-		54.05	
	***						*		- 30	62	2	2	- 2	123	1	44	29	2	.01	.01	- 3	10	.01	3537	.01	2	.04	.01	.01	-		74.50	
AA-25784	30	117	30	1	1.2	1	2	20	.24	76		6	-	129		-																	
AR-26785	27	534	40	- 4	1.0	1	ž	34	.17	445	2	12	2	135	1		18	2	-01	.01	- 1	- 9	.01	222	.00	. 9	.07	.01	.91		27	17.41	
44-25785	23		93	14	2.4	ż	3	41	.56	25	ž	12			1	135	. 1	2	.01	.01	- 1	10	.41	3460	.01	4	.04	.01	.01			44.80	
44-26787	16	41	71	2		1	2	77	.35	27	ź	ţ		122	1	16	4	8	.01	.02	2	12		页的	.01	E	.10	.01	.02		1	5.8	
A4-26788	14	25	53	1	3.1	1	2	20	.25	16				145	1	12	2	2	.01	.00	- 4	10	.01	3089	.01		. 07	.01	.01			19.11	
			<u></u>	÷.	***	•	*	20	.44	10	2	se	4	143	1	17	2	2	.01	.01	5	9	.00	1373	.01		.03	.01	.01	2		50.07	
44-26789	13		53	23	13.1	2	3	77	.81	30	:	22	12	99	1	13	1	11		47													
A4-26790	17	187	55	3	. 9	1	2	24	.34	253	2	14	2		i	90	28		.01	.02	2	13		3173	.01		-12	-14	.07		- 23	2.45	
49-26791	18	1313	50	- 24		1	1	20	.25	313	2	1		153		145		2	.01	.01	4	10		3122	.01	10		.01	.01	-		47.80	
AA-26792	451	5712	97	739	4.4	1	1	21	.43		ż	E.		116		140	65	6	.01	.01	5			2403	.01	15	. 64	.01	01	-	*	e7.50	
44-26793	11	194	67	.10	.4	1	2	3	.31	56	- 2	i.		150	1	31	4	1	.01	.03	4	ę 10	.01	387 3060	.01	11	04	.01	.0:	-	117	44. TX	
44-26794	5613	****	**			12	2022		-									•					-91	3080	.01	10	.04	.61	.44	1		£1.12	
44-25795	140 1		70	160	7.4	1	- 1	15		1679	2	∦D6		145	- 3	526	12	11	.01	.03	é	7	.01	486	.01	12	. 07	.01	.01	$\sim 10^{-10}$	1.00		
A4-26796			65	105	8.2	1	1	16	.35	890	2	\$4	- 2	168	1	307	11	4	.01	.07	7	10	.01	470	:01	7	.02	.01	.01	1			
STD A-1	15		70	4	.1	1	2	24	.34	166	2	87	2	139	1	57	18	2	.01	.01	4	15		3189	.01		.04	.01		-		1.10	
210 4-1	1	32	38	186	-2	36		1015		ę	2	10	2	36	1	2	2	S	.58	.10	7	77	.73	275	.01		.06	.01	.01	2		E2.18	
				Lu	-	10,0	00	1	29	ur	e	keg	×u.	ler	- 1	25	a	1												•	A		
			5	51		1.0	20)		1	· ·		/					/														1	1	
				10		,	-		1	5			сs.																		inan	be	

.. ...

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE RECEIVED SEPT 12 1983

DATE REPORTS MAILED Set 14

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 NL OF 3:1:3 HCL TO HND3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -B0 MESH, PULVERIZED. AU+ - 10 GM, IGNITED, HOT AQUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.

ASSAYER A. Dely	DEAN TOYE,	CERT	IFIED B.C.	ASSAYER
KIDD CREEK MINES LTD	PROJECT # 03			PAGE# 1
SAMPLE		AG	AU+	
		FFM	PPB	
SD-01800		.5	20	
SD-01801		.3	10	
SD-01802		. 4	70	
SD-01803		.5	5	
SD-01804		. 4	5	
SD-01805		.3	5	
SD-01806		.3	20	
SD-01807		.3	5	
SD-01808		.6	5	
SD-01809		.2	5	ł
SD-01810		.5	5	Ķ
SD-01811		. 4	15	
SD-01812		. 4	10	
SD-01813		.8	20	
SD-01814		.5	135	
SD-01815		.6	10	
SD-01816		.4	5	
SD-01817		.3	5	
SD-01818		.4	345	
SD-01819		.3	250	
SD-01820		.3	495	
SD-01821		. 4	390	
SD-01822		.5	485	
SD-01823		.3	240	
SD-01824		. 4	385	
SD-01825		1.2	10	
SD-01826		. 4	40	
SD-01827		.5	5	
SD-01828		.3	140	
SD-01829		.5	75	
SD-01830		.7	30	
SD-01831		.5	35	
SD=01832		. 4	70	
SD-01833		.4	25	
SD-01834		.9	45	
SD-01835		.7	5	
SD-01836		. 4	5	`

(

Ť

Į

SAMPLE	AG PPM	AU* PPB
SD-01837 SD-01838 SD-01839 SD-01840 P SD-01841 P	.6 .5 .3 1.2 1.6	5 5 5 5 5
SD-01842 P SD-01843 SD-01844 SD-01845 SD-01845 SD-01846	1.3 1.1 .8 1.2 1.0	<u>ទ្</u> រទទ្ធ
SD-01847 SD-01848 SD-01849 SD-01850 SD-01851	.7 .8 .2 .5 .4	5 5 5 5 5 5
SD-01852 SD-01853 SD-01854 SD-01855 SD-01856	.3 .1 .2 .7	5 5 110 5
SD-01857 SD-01858 SD-01859 SD-01850 SD-01861	.3 .4 .7 .4 .3	35 20 5 210 70
SD-01862 SD-01863 SD-01864 SD-01865 SD-01866	.4 .8 .4 .6 .3	105 30 80 10 60
SD-01867	.3	120

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE RECEIVED SEPT 21 1983

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 NLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -80 MESH.

AUT - 10 GM, IGNITED, HOT AQUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.

ASSAYER _______ DEAN TOYE, CERTIFIED B.C. ASSAYER

KIDD	CREEK	MINES	PROJECT	¥	03	FILE	#	83-2239

PAGE# 1

SAMPLE	AG PPM	AU* PPB
SD-00543 SD-00544 SD-00545 SD-00546 SD-00547	.4 .5 .3 .3 .1	10 250 90 5 455
SD-00548 SD-00549 SD-00550 SD-00551 SD-00552	.2 .4 .1 .1	5 20 5 5 5
SD-00553 SD-00554 SD-00555 SD-00556 SD-00557	. 1 . 1 . 1 . 1	45 10 5 5 5
SD-00558 SD-00559 SD-00560 SD-00561 SD-00562	.3 .4 .2 .1	5 20 5 5 15
SD-00563 SD-00564 SD-00565 SD-00566 SD-00567	.2 .5 .4 .4 .1	30 5 40 20 10
SD-00568 SD-00569 SD-00570 SD-00571 SD-00572	.8 .6 .1 .2 .3	225 25 15 50
SD-00573 SD-00574 SD-00575 SD-00576 SD-00577	. 1 . 1 . 2 . 4 . 3	10 10 40 10 45
SD-00578 SD-00579	.2 .3	5 225

KIDD CREEK MINES	PROJECT	# 03	FILE #	83-2239
SAMPLE			AG PPM	AU* PPB
SD-00580 SD-00581 SD-00582 SD-00583 SD-00583 SD-00584			.2 .5 .4 .4 .2	5 15 30 20 5
SD-00585 SD-00586 SD-00587 SD-00588 SD-00589			.2 .4 .2 .1 .2	25 5 35 5 20
SD-00590 SD-00591 SD-00592 SD-00593 SD-00594			.1 .1 .1 .2	5 5 35 90 5
SD-00593 SD-00396 SD-00597 SD-00598 SD-00599			.3 .1 .1 .1 .1	5 5 35 20 120
SD-00600 SD-00601 SD-00602 SD-00603 SD-00604			.4 .2 .5 .1 .1	10 5 35 35 10
SD-00605 SD-00606 SD-00607 SD-00608 SD-00609			- 1 - 1 - 1 - 1 - 1	10 5 5 140 310
SD-00610 SD-00611 SD-00612 SD-00613 SD-00614			. 1 . 1 . 1 . 1 . 1	30 5 25 10 325
6D-00615 SD-00616			.1 .3	75 25

PAGE# 2

 \mathbf{C}

4 m m m

SAMPLE	AG PPM	AU* PPB
SD-00617	. 4	240
SD-00618	.3	95
SD-00619	.6	25
	.3	
SD-00620		70
SD-00621	.3	35
SD00623	.3	15
SD-00624	. 4	20
SD-00625	. 1	25
SD-00626	. 4	1300
SD-00627	.4	30
SD-00628	.2	25
SD-00629	.3	165
SD-00630	.6	130
SD-00631	.4	115
SD-00632	.2	
80-00832	• 2	10
SD-00633	.3	75
SD-00634	. 1	25
SD-00635	.2	80
SD-00636	.2	130
SD-00637	.4	25
		2.0
SD-00638	.3	45
SD-00639	.5	20
SD-00640	.2	15
SD-00641	.4	45
SD-00642	. 1	25
SD-00643	2	525
SD-00644	.2	60
SD-00645	• 4	
	.3	30
SD-00646	.3	25
SD-00647	.2	235
SD-00648	.6	210
SD-00649	.8	395
SD-01052	.3	10
SD-01053	. 1	5
SD-01054	.5	5
SD-01055	.7	10

K1DD	CREEK MINES	PROJECT	Ħ	03	FILE	# 83-2239
	SAMPLE				AG PPM	AU* PPB
	SD-01056 SD-01057 SD-01058 SD-01059 SD-01059 SD-01060				.4 .5 .1 .2 .3	65 20 5 5 75
	SD-01061 SD-01062 SD-01063 SD-01064 SD-01065				.1 .2 .2 .6	15 20 5 5 30
	SD-01066 SD-01067 SD-01068 SD-01069 SD-01069 SD-01070				.1 .5 .3 .3 .1	5 5 20 5 5
	SD-01071 SD-01072 SD-01073 SD-01074 SD-01075				.1 .1 .3 .1 .1	5 5 5 5 5
	SD-01076 SD-01077 SD-01078 SD-01079 SD-01080				1.0 .2 .1 .1 .1	10 15 5 5 5
	SD-01081 SD-01082 SD-01083 SD-01084 SD-01085				.1 .1 .2 .3 .3	5 5 40 10 5
	SD-01086 SD-01087 SD-01088 SD-01089 SD-01089 SD-01090				.2 .3 .3 .1	10 45 195 5 5
	SD-01091 SD-01092				. 1 . 4	10 5

Į

SAMPLE	AG PPM	AU* PPB
SD-01093 SD-01094 SD-01095 SD-01096 SD-02241	.3 .5 .4 .2	5 5 30 95
SD-02242 SD-02243 SD-02244 SD-02245 SD-02246	.1 .5 .4 .3 .3	5 600 25 115 40
SD-02247 SD-02248 SD-02249 SD-02250 SD-02251	.3 .2 .1 .4 .1	5 10 10 10 70
SD-02252 SD-02253 SD-02254 SD-02255 SD-02256	.3 .3 .2 .1 .2	20 20 45 5 20
9D-02257 SD-02258 SD-02259 SD-02260 SD-02261	.4 .4 .5 .3 .2	5 5 125 5
SD-02262 SD-03101 SD-03102 SD-03103 SD-03104	.6 .7 .3 .4 .5	5555
SD-03105 SD-03106 SD-03107 SD-03108 SD-03109	.3 .4 .6 .5 .6	5 5 5 5 5
SD-03110	.4	5

1

SAMPLE	AG PPM	AU+ PPB
SD-03111 SD-03112 SD-03113 SD-03114 SD-03115	.4 .5 .4 .2 .3	5 15 5 5 5
SD-03116 SD-03117	.5	5 5

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

DATE RECEIVED SEPT 21 1/83

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GH SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -BO NESH. AU+ - 10 GM, IGNITED, HOT AQUA REGIA LEACH MIDK EXTRACTION, AA ANALYSIS.

DEAN TOYE, CERTIFIED B.C. ABSAYER ASSAYER

KIDD CREEK MINES PROJECT # 03 FILE # 83-2238

PAGE# 1

SAMPLE	AG PPM	AU* PPB
SD-01097 SD-01098 SD-01099 SD-01100 SD-01101	.7 .5 1.2 .7 .9	5 5 20 10 5
SD-01102 SD-01103 SD-01104 SD-01105 SD-01106	- 7 - 5 - 4 - 6 - 6	5 5 35 5 5
SD-01107 SD-01108 SD-01109 SD-01110 SD-01111	.5 .9 .7 .7 .2	5 5 5 10 5
SD-01112 SD-01113 SD-01114 SD-01115 SD-01116	.6 .4 .5 .6 .9	5 5 5 5 5 5
SD-01117 SD-01118 SD-01119 SD-01120 SD-01121	.7 .9 .4 .2 .5	5 5 20 30
SD-01122 SD-01123 SD-01124 SD-01125 SD-01126	.5 .9 .5 .5	25 50 20 10 5
SD-01127 SD-01128 SD-01129 SD-01130 SD-01131	1.1 .9 .5 .8 .5	<u>ទ</u> ទ ទ ទ ទ
SD-01132 SD-01133	.4 .5	ຍ

SAMPLE	AG PPM	AU* PPB
SD-01134	- 5	5
SD-01135	1 - 4	5
SD-01136	- 7	5
SD-01137	- 4	5
SD-01138	- 4	5
SD-01139 SD-01140 SD-01141 SD-01142 SD-01143	.5 .4 .5 .4 .5	ភ ទ ភ ភ ភ
SD-01144	.6	5
SD-01145	.2	5
SD-01146	.1	5
SD-01147	.6	5
SD-01148	.9	5
SD-01149	.5	5
SD-01150	.5	5
SD-01151	.6	635
SD-01152	.8	5
SD-01153	.6	5
SD-02263	.5	5
SD-02264	.4	5
SD-02265	.3	10
SD-02266	1.1	10
SD-02267	.5	5
SD-02268 SD-02269 SD-02270 SD-02271 SD-02272	.3 .2 .1 .3 .6	5 5 10 5
SD-02273 SD-02274 SD-02275 SD-02276 SD-02277	.5 .2 .1 .2 .3	ភទ ្ធ ភេទ ភេទ
SD-02278	.4	5
SD-02279	.3	5

1

PAGE# 3	P	AG	E+	+ 3
---------	---	----	----	-----

SAMPLE	AG PPM	AU+ PPB
SD-02280 SD-02281 SD-02282 SD-02283 SD-02284	.3 .3 .8 .4	5 5 10 5 5
SD-02285 SD-02286 SD-02287 SD-02288 SD-02288 SD-02289	.1 .4 .1 .5 .4	5 5 30 10
SD-02290	.4	5
SD-02291	1.0	110
SD-02292	.3	5
SD-02293	.5	5
SD-02294	.4	10
SD-02295	.3	35
SD-02296	.6	15
SD-02297	.3	10
SD-02298	1.0	25
SD-02298	.4	5
SD-02300	.2	5
SD-02301	.4	15
SD-02302	.5	5
SD-02303	1.2	110
SD-02304	.1	1 5 0
SD-02305	.2	15
SD-02306	.3	225
SD-02307	.1	175
SD-02308	.2	30
SD-02309	.5	25
SD-02310 SD-02311 SD-02312 SD-02313 SD-02314	.6 .4 .5 .3	10 1100 480 75 145
SD-02315	.2	25
SD-02316	.3	2100

SAMPLE	AG FFM	AU+ PPB
SD-02317 SD-02318 SD-02319 SD-02320 SD-02321	.3 .3 .1 .3 .2	5 5 80 10
SD-02322 SD-02323 SD-02324 SD-02325 SD-02326	.5 .9 .5 .4 .3	ទ ទ ទ ទ ទ ទ ទ
5D-02327	.4	5
5D-02328	.4	15
5D-02329	.8	20
5D-02330	.7	225
5D-02331	.2	70
SD-02332	.8	65
SD-02333	.8	10
SD-02334	1.1	35
SD-02335	1.0	30
SD-02336	1.1	5
SD-02337	.7	5
SD-02338	.6	35
SD-02339	.1	10
SD-02340	.3	5
SD-02341	.5	40
SD-02342	.4	95
SD-02343	.7	25
SD-02344	1.1	10
SD-02345	1.0	10
SD-02346	.7	5
SD-02347 SD-02348 SD-02349 SD-02350 SD-02351	.3 .5 .1 .1	25 15 10 15 5
SD-02352	.4	5
SD-02353	1.0	5

.

ACME ANALYTICAL LABORAL. (IES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

DATE RECL.VED JULY 25 1983

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE

A .500 6M SAMPLE IS DIGESTED WITH 3 NL OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -80 MESH. AU+ - 10 GM, IGNITED, HOT AQUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.

FILE # 83-1342

M

SD-02107

ASSAYER

DEAN TOYE, CERTIFIED B.C. ASSAYER

PROJECT # 03

KIDD CREEK MINES

SAMPLE	AG PPM	AU* PPB
SD-02071	. 1	380
SD-02072	.2	70
SD-02073	.3	5
SD-02074	. 1	5
SD-02075	.3	150
SD-02076	.3	3300
SD-02077	. 3	60
SD-02078	.8	85
SD-02079	. 4	160
SD-02080	2.3	1500
SD-02081	.5	15
SD-02082	. 4	25
SD-02083	.3	5
SD-02084	. 4	5
SD-02085	. 4	5
SD-02086	.2	5
SD-02087	.8	5
SD-02088	.2	20
SD-02089	.5	10
SD-02090	1.1	10
SD-02091	.5	20
SD-02092	. 4	5
SD-02093	1.1	5
SD-02094	. 4	5
SD-02095	1.1	5
SD-02096	. 6	5
SD-02097	.3	10
SD-02098	.2	5
SD02099	. 4	15
SD-02100	. 2	5
SD-02101	. 4	5
SD-02102	. 4	5
SD-02103	. 7	5
SD-02104	. 7	5
SD-02105	.5	5
SD-02106	.2	10

.3

15

PAGE# 1

÷,

	•	
SAMPLE	AG PPM	AU* PPB
SD-02109 SD-02110 SD-02111 SD-02112 SD-02113	.1 .3 .6 .6 .4	5 5 5 105
SD-02114 SD-02115 SD-02116 SD-02117 SD-02118	.3 .1 .2 .2 .1	ភ ឆ ឆ ឆ
SD-02119 SD-02120 SD-02121 SD-02122 SD-02123	.1 .2 .3 .4 .2	5 40 5 5 5
SD-02124 SD-02125 SD-02126 SD-02127 SD-02128	.4 .2 .1 .1 .3	5 5 5 5 5
SD-02129 SD-02130 SD-02131 SD-02132 SD-02133	.3 .3 .3 .3 .1	ស ស ស ស ស
SD-02134 SD-02135 SD-02136 SD-02137 SD-02138	.1 .1 .2 .2 .1	ភ ឆ ឆ ឆ ឆ
SD-02139 SD-02140 SD-02141 SD-02142 SD-02143	.2 .2 .3 .5	១ ២ ១ ១ ១
SD-02144 SD-02145	.9 1.0	75 5

(

ł

SAMPLE	AG PPM	AU* PPB
SD-02146	- 5	10
SD-02147	- 3	90
SD-02148	- 5	25
SD-02149	- 7	15
SD-02150	- 9	10
SD-02151	- 4	5
SD-02152	- 5	5
SD-02153	- 6	15
SD-02154	- 5	5
SD-02155	- 4	25
SD-02156	.5	10
SD-02157	.4	895
SD-02158	.7	60
SD-02159	.5	10
SD-02160	.1	25
SD-02161	.3	20
SD-02162	.4	10
SD-02163	.1	15
SD-02164	.4	5
SD-02909	.3	5
SD-02910	- 1	5
SD-02911	- 2	15
SD-02912	- 2	5
SD-02913	- 4	5
SD-02914	- 4	5
SD-02915	.8	5
SD-02916	.3	15
SD-02917	.3	20
SD-02918	.3	35
SD-02919	.1	30
SD-02920	.1	10
SD-02921	.2	10
SD-02922	.1	15
SD-02923	.3	5
SD-02924	.3	5
SD-02925	- 1	5
SD-02926	- 1	5

ţ

•

į.

Į

SAMFLE	AG PPM	AU* PPB
SD-02927	.4	5
SD-02928	.9	35
SD-02929	.2	5
SD-02930	.3	125
SD-02931	.2	5
SD-02932	.5	30
SD-02933	.6	35
SD-02934	1.0	250
SD-02935	.3	10
SD-02936	.5	5
SD-02937	.3	5
SD-02938	.5	10
SD-02939	.6	25
SD-02940	1.1	5
SD-02941	.7	5
SD-02942	1.5	10
SD-02943	1.0	5
SD-02944	.4	5
SD-02945	.6	10
SD-02946	.5	5
SD-02947	• 3	5
SD-02948	• 4	5

ACME ANALYTICAL LABORAT FES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX: 04-53124

1

DATE RECI 'ED JULY 5 1983

DATE REPORTS MAILED July

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -BO MESH. AU+ - 10 GM, IGNITED, HOT AQUA REGIA LEACH WIBK EXTRACTION, AA ANALYSIS. Jan

ASSAYER DEAN TOYE	, CERTIFIED B.C	. ASSAYER
KIDD CREEK MINES PROJECT # 03	FILE # 83-1062	PAGE# 1
SAMPLE	AG AU* PPM PPB	
SD-01501 SD-01502 SD-01503 SD-01504 SD-01505	.2 5 .1 5 .1 10 .1 50 .1 25	
SD-01506 SD-01507 SD-01508 SD-01509 SD-01510	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
SD-01511 SD-01512 SD-01513 SD-01514 SD-01515	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ł
SD-01516 SD-01517 SD-01518 SD-01519 SD-01520	.6 20 .7 10 .3 10 .1 30 .2 10	
SD-01521 SD-01522 SD-01523 SD-01524 SD-01525	.1 20 .1 5 .1 5 .1 5 .1 5 .1 5	
SD-01526 SD-01527 SD-01528 SD-01529 SD-01530	.1 10 .1 5 .1 5 .1 10 .1 75	
SD-01531 SD-01532 SD-01533 SD-01534 SD-01535	.1 5 .1 5 .1 5 .1 5 .1 5	
SD-01536 SD-01537	.1 10 .2 5	

PAGE# 2

SAMPLE	AG FPM	AU+ PPB
SD-01538 SD-01539 SD-01540 SD-01541 SD-01542	.7 1.1 .3 .1	5 5 40 55 115
SD-01543 SD-01544 SD-01545 SD-01546 SD-01547	. 1 . 1 . 1 . 2	105 70 5 180 10
SD-01548	.1	35
SD-01549	.4	55
SD-01550	.3	45
SD-01551	.5	25
SD-01552	.6	15
SD-01553	1.6	20
SD-01554	.4	25
SD-01555	.1	50
SD-01556	.2	25
SD-01557	.5	60
SD-01558	.5	25
SD-01559	.2	10
SD-01560	.3	35
SD-01561	.6	20
SD-01562	.7	15
SD-01563	1.3	170
SD-01564	.2	85
SD-01565	.3	15
SD-01566	.3	20
SD-01567	.4	10
SD-01568	.4	10
SD-01569	1.0	25
SD-01570	.1	30
SD-01571	.2	10
SD-2501	.5	15
SD-2502	.5	10
SD-2503	.4	435
SD-2504	.5	25

(

Į

SAMPLE	AG PPM	AU+ PPB
SD-02505	.3	35
SD-02506	.4	5
SD-02507	.6	5
SD-02508	.4	5
SD-02509	.5	5
SD-02510 SD-02511 SD-02512 SD-02513 SD-02514	.4 .4 .2 .3 .1	មិភទទ
SD-02515	.3	5
SD-02516	.4	10
SD-02517	.3	5
SD-02518	.2	5
SD-02519	.4	5
SD-02520	.3	5
SD-02521	.4	5
SD-02522	.3	10
SD-02523	.4	5
SD-02524	.3	15
SD-02525	.1	5
SD-02526	1.1	5
SD-02527	.8	5
SD-02528	.5	35
SD-02529	1.1	5
SD-02530	.6	5
SD-02531	.8	80
SD-02532	1.0	5
SD-02533	.9	5
SD-02534	.8	10
SD-02535	.8	5
SD-02536	.4	5
SD-02537	.3	10
SD-02538	.5	35
SD-02539	.2	5
SD-02540	.2	10
SD-02541	.3	35

Į

SAMPLE	AG FPM	AU* PPB
SD-02542 SD-02543 SD-02544 SD-02545 SD-02546	.1 .1 .2 .2	10 5 5 5 5
SD-02547 SD-02548 SD-02549 SD-02550 SD-02551	.2 .1 .1 .1 .1	5 5 15 30
SD-02552 SD-02553 SD-02554 SD-02555 SD-02555	.2 .1 .2 .2 .4	5 45 5 50
SD-02557	.3	5
SD-02558	.4	5
SD-02559	.4	125
SD-02560	.4	25
SD-02561	.3.1	175
SD-02562	- 6	50
SD-02563	- 4	10
SD-02564	- 6	10
SD-02565	- 4	5
SD-02566	- 2	5
SD-02567	- 5	5
SD-02568	- 7	10
SD-02569	- 2	5
SD-02570	- 1	5
SD-02801	- 1	5
SD-02802	.4	20
SD-02803	.8	30
SD-02804	.5	10
SD-02805	.1	5
SD-02806	.2	5
SD-02807	.1	5
SD-02808	.5	5
SD-02809	.1	5

				'
SAMPLE		AG	AU+	
		PPM	PPB	
SD-02810		1.1	5	
SD-02811		.8	5	
SD-02812		.2	5	
SD-02813		.6	5	
SD-02814		.5	5	
SD-02815		.8	5	
SD-02816		.9	350	
SD-02817		.6	5	
SD-02818		3.0	45	
SD-02819		1.1	• =	
		I • I .	5	
SD-02820		2.4	5	
SD-02821		.4	5	

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

DATE RECEIVED JULY 5 1983

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -80 MESH. AU+ - 10 GM, IGNITED, NOT AQUA REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.

Della ASSAYER DEAN TOYE, CERTIFIED B.C. ASSAYER

KIDD CREEK PROJECT # 03 FILE # 83-1061

PAGE# 1

SAMPLE	AG PPM	AU* PPB
SD-01001 SD-01002 SD-01003 SD-01004 SD-01005	.4 .1 .4 .2 .8	5 10 350 145 15
SD-01006 SD-01007 SD-01008 SD-01009 SD-01010	.1 .3 .1 .2 .4	5 15 5 5
SD-01011 SD-01012 SD-01013 SD-01014 SD-01015	1.0 .1 .1 .5 .4	5 10 30 15 5
SD-01016 SD-01017 SD-01018 SD-01019 SD-01020	.5 .4 .5 .5 .4	5 5 10 5
SD-01021 SD-01022 SD-01023 SD-01024 SD-01025	.8 .4 .5 .2 .3	5 5 5 5 5 5 5 5
SD-01026 SD-01027 SD-01028 SD-01029 SD-01030	. 2 . 4 . 1 . 3 . 4	5 5 25 5
SD-01031 SD-01032 SD-01033 SD-01034 SD-01035	- 1 - 1 - 1 - 2 - 1	មមមម
SD-01036 SD-01037	. 1 . 1	5

(

.

SAMPLE	AG FPM	AU* PPB
SD-1038 SD-1039 SD-1040 SD-1041 SD-1042	.1 .2 .2 .1 .1	5 5 5 5 5
SD-1043 SD-1044 SD-1045 SD-1046 SD-1047	.3 .1 .1 .1 .3	ភ ម ម ម ម ម ម ម
SD-1048 SD-1049 SD-1050 SD-1051 SD-1573	.3 .1 .1 .1 .1	ទ ទ ទ ទ ទ ទ ទ
SD-1574 SD-1575 SD-1576 SD-1577 SD-1578	. 1 . 1 . 1 . 1 . 1	ទា មា មា មា
SD-1579 SD-1580 SD-1581 SD-1582 SD-1583	- 1 - 1 - 1 - 1 - 1	ទ ទ ទ ទ ទ
SD-1584 SD-1585 SD-1586 SD-1587 SD-1588	- 1 - 1 - 1 - 1 - 1	<u> </u>
SD-1589 SD-1590 SD-1591 SD-1592 SD-1593	.1 .1 .9 .4 .2	5 5 10 5
SD-1594 SD-1595	- 1 - 1	20 5

ł

•

PROJECT # 03

SAMPLE AG AU* PPM. PPB SD-1596 .2 5 SD-1597 . 1 5 SD-1598 5 . 1 SD-1599 5 . 1 SD-1600 . 2 5 SD-1601 - 12 5 SD-1602 5 . 1 SD-1603 . 4 5 SD-1604 .2 5 SD-1605 . 1 10 SD-1606 .3 5 SD-1607 .2 10 SD-1608 . 1 5 SD-1609 .2 5 SD-1610 5 . 1 SD-1611 5 . 1 SD-1612 5 . 1 SD-1613 .4 5 .3 SD-1614 10 SD-1615 .2 5 SD-1616 . 1 10 .3 SD-1617 5 SD-1618 .4 5 SD-1619 .2 5 SD-1620 .3 10 SD-1621 .3 5 SD-1622 . 1 10 SD-1623 .2 5 SD-1624 . 1 5 SD-1625 .2 5 . 1 5 . 1 10 10

SD-1626 SD-1627 SD-1628 .4 SD-1629 .2 35 SD-1630 . 1 10 SD-1631 .2 5 SD-1632 . 4 5 SD-1633

. 1

20

ļ

,

SAMPLE	AG FFM	AU* PPB
SD-1634 SD-1635 SD-1636 SD-1637 SD-1638	.5 .7 .6 .3 .2	5 5 45 5 10
SD-1639 SD-1640 SD-1641 SD-1642 SD-1643	.5 .3 .5 .2	ស ស ស ស ស ស ស
SD-1644 SD-1645 SD-1646 SD-1647 SD-1648	. 4 . 6 . 7 . 4 . 4	5 5 10 10
SD-1649 SD-1650 SD-1651 SD-1652 SD-1653	.5 .4 .1 .3 .1	5 10 10 25
SD-1654 SD-1655 SD-1656 SD-1657 SD-1658	- 4 - 1 - 1 - 1 - 1	10 15 65 10 10
SD-1659 SD-1660 SD-1661 SD-1662 SD-1663	.7 .2 .1 .1 .2	15 10 15 5 10
SD-1664 SD-1665 SD-1666 SD-1667 SD-1668	.1 .1 .2 .1	10 5 5 35 5
SD-1669 SD-1670	. 1 . 1	10 5

ł

.

SAMPLE	AG PPM	AU* PPB
SD-1671 SD-1672 SD-1673 SD-1674 SD-1675	.3 .2 .1 .2 .2	<u>ទេ ទេ ទេ</u> ទេ
SD-1676 SD-1677 SD-1678 SD-1679 SD-1680	. 3 . 1 . 2 . 1 . 4	មា មា មា មា
SD-1681 SD-2822 SD-2823 SD-2824 SD-2825	.5 .2 .1 .1 .1	ភ ភ ភ ភ ភ ភ ភ
SD-2826 SD-2827 SD-2828 SD-2829 SD-2830	.2 .3 .1 .2 .1	5 10 25 5 25
SD-2831 SD-2832 SD-2833 SD-2834 SD-2835	. 1 . 2 . 1 . 1 . 1	5 5 15 5
SD-2836 SD-2837 SD-2838 SD-2839 SD-2840	- 1 - 1 - 1 - 1 - 1	ទទទទ
SD-2841 SD-2842 SD-2843 SD-2844 SD-2845	- 1 - 1 - 1 - 1 - 4	5 55 15 5
SD-2846 SD-2847	.6 1.0	5 10

ļ

NIDD CREEK	ROJECT	#	03	FILE	#	83-1061
SAMFLE				A P'F	۱G M	AU* PPB
SD-2848 SD-2849 SD-2850 SD-2850 SD-2850	9) 			1.	64320	10 5 5 5 5
SD-2853 SD-2854 SD-2855 SD-2856 SD-2857	1 5			1.	5 6	55
SD-2858 SD-2859 SD-2860 SD-2860 SD-2860				•	332 14	5 5 5 5 5
SD-2863 SD-2864 SD-2866 SD-2866 SD-2866	1 5			•	4 2 2 1 1	5 5 5 10
SD-2868 SD-2869 SD-2870 SD-2871 SD-2872))				94323	5 5 10 5 10
SD-2873 SD-2874 SD-2875 SD-2876 SD-2876	k 5			•	1 9332	5 10 15 10 5
SD-2878 SD-2879 SD-2880 SD-2881 SD-2881 SD-2882)				6 1 3 4 2	5 5 25 10 10
SD-2883 SD-2884					1 1	5 10

.

PAGE# 6

ţ

ŧ

(

PAGE#	7
-------	---

SAMPLE	AG PFM	AU+ PPB
SD-2885 SD-2886 SD-2887 SD-2888 SD-2889	.1 .1 .3 1.2 1.9	ស ភេ ភេ ភេ ភេ
SD-2890	1.2	5
SD-2891	.2	5
SD-2892	.1	5
SD-2893	.1	5
SD-2894	.4	5
SD-2875	.3	15
SD-2876	.3	20
SD-2877	.1	5
SD-2878	.1	15
SD-2879	.3	5
SD-2900 SD-2901 SD-2902 SD-2903 SD-2904	.5 .3 .9 1.2 .5	5 5 5 5 5 5
SD-2905	.4	5
SD-2906	1.0	5
SD-2907	1.3	5
SD-2908	1.7	5

212 BROOKSBANK AVE. NORTH VANCOUVER. B.C. CANADA V7J 2C1

C

• ANALYTICAL CHEMISTS

GEOCHEMISTS

REGISTERED ASSAYERS

: A8315690-001-A

7-NCV-83

: 18315590

: NONE

:

			C 1	ERTIFICATE	C۶	ANALYSIS	
то : кі	DD CREEK	MINES LTD.	•				CERT. #
ΤA	N:PETEP	DELANCEY					INVEICE
70	1 - 1291	W. GEORGIA	ST	•			DATE
۲V	NC CUVER +	B • C •					P.C. #
V 6	E 317						03

							· · · · · · · · · · · · · · · · · · ·	
Sample	Prec	Cu	Pb	Zn	٨g	Hg	ва	
description	code	ppr	naq	nad	ppm	ppt	ppm	
1-1	201	19	14	128	0.6	80	180	
1-2	201	23	31	155	0.8	4 C	1040	
1-3	201	22	27	150	0.1	30	880	
1-4	201	23	35	245	0.1	40	1160	
1-5	201	42	68	458	0.1	60	1440	1
1-5	201	72	94	69C	0.8	50	1520	
1-7	201	77	223	790	0.7	110	1120	
1-9	201	67	570	93C	0.4	240	940	
2-1	201	22	22	150	0.5	50	140	
2 - 2	201	26	37	25 C	0.1	4 C	1020	
2-3	201	36	68	45 C	0.1	50	1480	
2-4	201	26	195	118	0.7	120	620	
2-5	201	14	158	30	0.8	120	24C	
3-1	201	26	42	253	0.1	50	900	
3-2	201	38	51	430	C•1	60	880	
3-3	201	102	112	565	0.7	8 C	1400	
3-4	201	95	80	782	2.3	140	1340	
3-5	201	120	98	130C	1.4	110	1560	
4 - 1	201	14	7	72	1.3	150	620	
4-2	201	18	8	94	0.5	100	720	
4-3	201	24	26	170	0.1	50	920	
4 - 4	201	27	62	31 C	0.1	50	1140	
4-5	201	15	35	233	0.1	60	1200	
4-6	201	15	38	278	0.1	100	1460	
5-1	201	17	12	90	0.8	80	520	
5-2	201	26	34	170	0.1	70	920	
5-3	201	105	64	415	0.1	80	1320	
5-4	201	150	73	555	0.1	160	2000	
5-5	201	265	92	20 C	1.3	50.	>10000	
6-1	201	15	18	123	0.6	80	720	
6-2	201	22	34	210	0.3	50	960	
ç-∠ 6-3				495				
5-5 6+4	201	26	98		0.1	50	1000	
6-5	201	35	67	850	1.0	130	1240	
7-1	201	23	59	820	0.5	100	1080	
	201	18	18	92	0.5	110	640	
7-2	201	39	30	185	C•5	150	920	
7-3	201	32	30	140	0.1	70	1000	
7-4	201	57	39	168	0.1	90	1080	
-1	201	12	10	90	0.1	70	680	1
2-2	201	20	26	160	<u>C • 1</u>	40	820	

MEMBER CANADIAN TESTING ASSOCIATION

212 BROOKSBANK AVE NORTH VANCOUVER, B C CANADA V7J 2C1

0	CF	
	· ANALYTICAL CHEMISTS	• 0
	1	CCPTIC

GEOCHEMISTS

REGISTERED ASSAYERS

TELEPHONE (604) 984-0221 TELEX 043-52597

	CEPTIFICATE OF ANALYSIS		
TC : KIDD CPEEK	MINES LTD	CERT. #	: A8315690-001-
ATTN: PETER	DELANCEY	INVEICE #	: 18315690
7 31 - 1281	W. GEERGIA ST.	CATE	: 7-NCV-83
VANCCUVEP.	8.6.	F.C. #	: NUNE
15 117		03	

1000	Sample	Prep	Δu		 	
	description	code	opt			
	1-1	201	20		 	
	1 - 2	201	75		 	
	1-3	201	60		 	
	1 - 4	201	325		 	
	1-5	201	1930		 	
	1-5	201	970		 	
	1 - 7	201	4070		 	
	1 - 2	201	6320		 	
	2-1	201	150		 	
	2-2	201	310		 	
	2-3	201	2020		 	
	2-4	201	417C		 	
0	2-5	201	310		 	
1	3-1	201	160		 	
	3-2	201	150		 	
	3-3	201	180		 	
	2-4	201	430		 	 22
	3-5	201	100		 	
	4-1	201	70	22	 	
	4-2	201	5	22	 	
	4-3	201	560		 	
	-4	201	70		 	
	5	201	ac		 22	
	4-6	201	20			
	5-1	201	150		 	
	5-2		40			
	5-3	201			 	
	5-4	201	1055		 	
	5-5		4720		 	
		201	>10000		 	
	6-1	201	140		 	
	6-2	201	nc		 	
	6-3	201	12C	100	 	
	6-4	201	70		 	
	6-5	201	∧ ⊆		 	
	7-1	201	100		 	
	7-2	201	940		 7.7	
	7 - 3	201	7 O F		 	
	7 - 4	201	14 0		 	
	9 - 1	201	2.0		 	
lann-	e - 2	2 1	50		 	

MEMBER CANADIAN TESTING ASSOCIATION

212 BROOKSBANK AVE NORTH VANCOUVER B.C. CANADA V7J 2C1

TELEPHONE (604) 984-0221 TELEX 043-52597

ANALYTICAL CHEMISTS	GEOCHEMISTS	REGISTERED	ASSAYERS	TE	LEX 043-52597
	CERTIFICATE OF A	NALYSIS			
IC : KIDD CREEK MINES LTD			CEPT. #	:	48715570-002-4
ATTN:PETER DELANCEY			INVEICE	# :	18315690
701 - 1281 N. SCERGIA	ST.		CATE	:	7-NCV-93
VANCOUVER, S.C.			P.C. #	:	NONE
755 237			0.3		

Sample	Prep	Cu	Pb	20	Arg	Hn	3a
description	code	DDT	opm	орл	ncm	ppb	DDT
3-3	201	23	45	222	0.1	50	900
° - 4	201	12	62	460	0.1	80	124C
2 - C	201	3	68	530	0.1	40	960

E

....

Hant Buchler Certified by ...

Į

C	HEMEX LA	BS LTD.	NC C/	ANADA	NCOUVER, B C V7J 2C1
· ANALYTICAL CHEMISTS		REGISTERED ASSAYERS		LEX	(604) 984-0221 043-52597
TE : KIDD CREEK MINES LTD. ATTN:PETER DELANCEY 701 - 1281 W. GEORGIA VANCOUVER. 3.C. V67 3J7		CERT. INVCICE CATE P.C. # C3	: * :	1931	CV-93

Sample	Prep code	Au daa			
8-3	201	150	 	 	
9-4	201	20	 	 	
3-5	201	20	 	 	

Certifies by Hart Brichler

212 BROOKSBANK AVE NORTH VANCOUVER, B.C. CANADA V7J 2C1

TELEPHONE (604) 984-0221

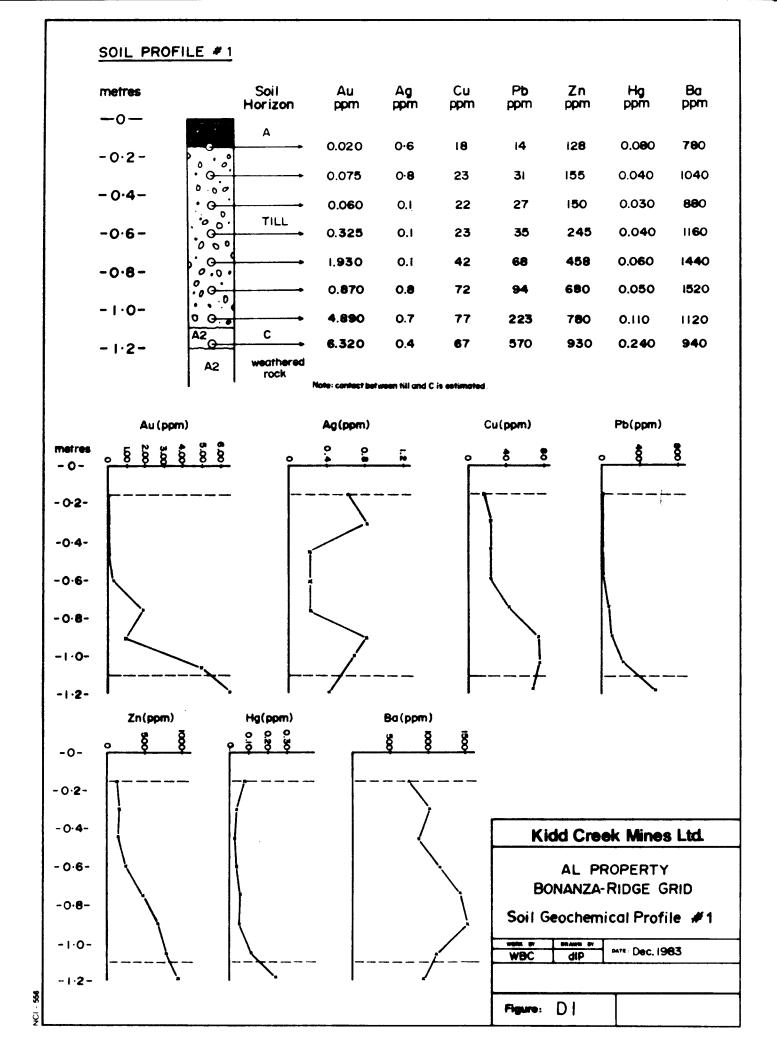
• ANAI		• GE	OCHEMISTS	• REGISTE	RED ASSAYERS	TELEX	043-52597
		CERTIFI	CATE OF	ANALYSIS			
TO : KIDD CREEK		,			CERT• #		16334-001-A
ATTN:PETER	DELANCEY				INVOICE	# : 183	16334
701 - 1281	W. GEORGIA	ST.			DATE	: 22-1	NOV-83
VANCOUVER.	8.0.				P.O. ⊭	: NON	E
V6E 3J7					03		
_ ATTN: IAN S	UTHERLAND						
Sample	Prep	Cu	Pb	Zn	Ag	Hg	8a -
description	code	DDM	maa	ppm	DDM	daa	<u> </u>
9-1	201	690	115	620	1.3	2100	720
9-2	201	296	131	490	1.4	480	740
9-3	201	301	96	540	1.0	370	1120
9-4	201	211	67	345	2.7	1000	1600
9-5	201	229	110	470	1.8	580	1300
10-1	201	28	58	245	0.2	60	880
10-2	201	25	53	230	0.3	40	880
10-3	201	25	53	260	0.2	20	760
10-4	201	26	52	240	0.2	30	740
10-5	201	26	50	245	0.3	40	680

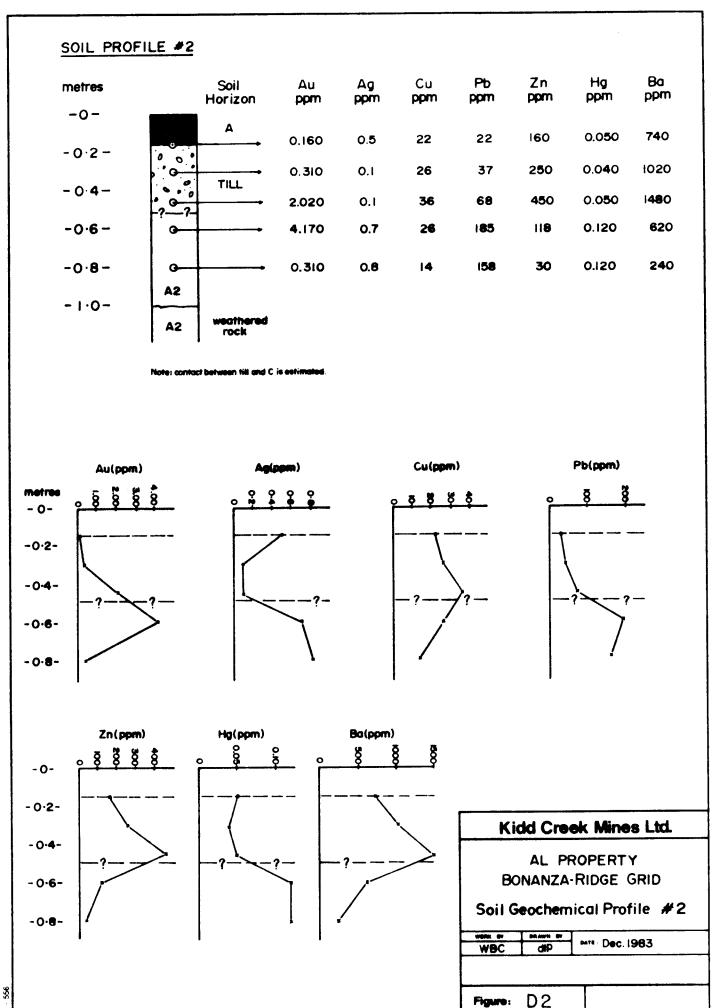
M		
	N	

CHEMEX LABS LTD.

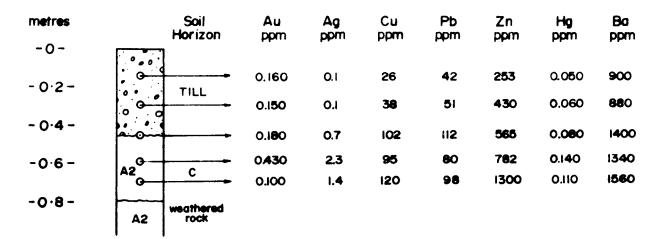
212 BROOKSBANK AVE NORTH VANCOUVER, B.C. CANADA V7J 2C1

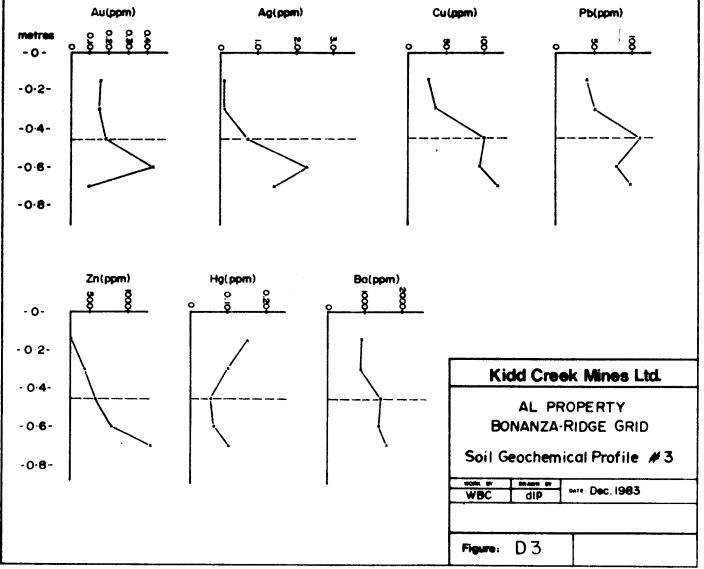
· ANA	ALYTICAL CHEMISTS	• G	EOCHEMISTS	• REGISTE	RED ASSAYERS	TELEPHON TELEX	E. (604) 984-0221 043-52597
		CERTIF	ICATE OF	ANALYSIS			
TO : KIDD CREEK ATTN:PETER 701 - 1281 VANCOUVER, V6E 3J7	DELANCEY W. GEORGIA				CERT. # INVOICE # DATE P.O. # 03		0V-83
ATTN: IAN	SUTHERLAND						
Sample	Ргер	Au ppb					
description	code	FA+AA					
9-1	201	850	••				
9-2	201	900					
9-3	201	600					
9-4	201	1800					
9-5	201	700					
10-1	201	10					
10-2	201	120					
10-3	201	10					
10-4	201	15					
10-5	201	15				;	

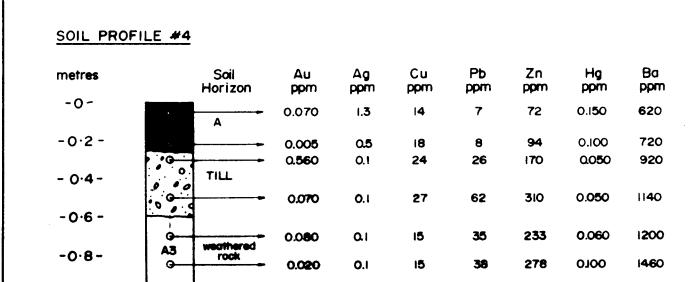


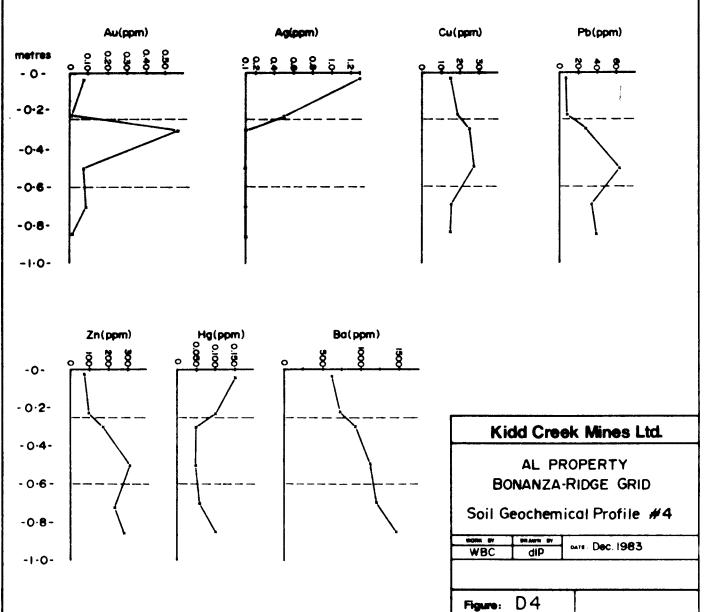

HartBichler Certified by ..

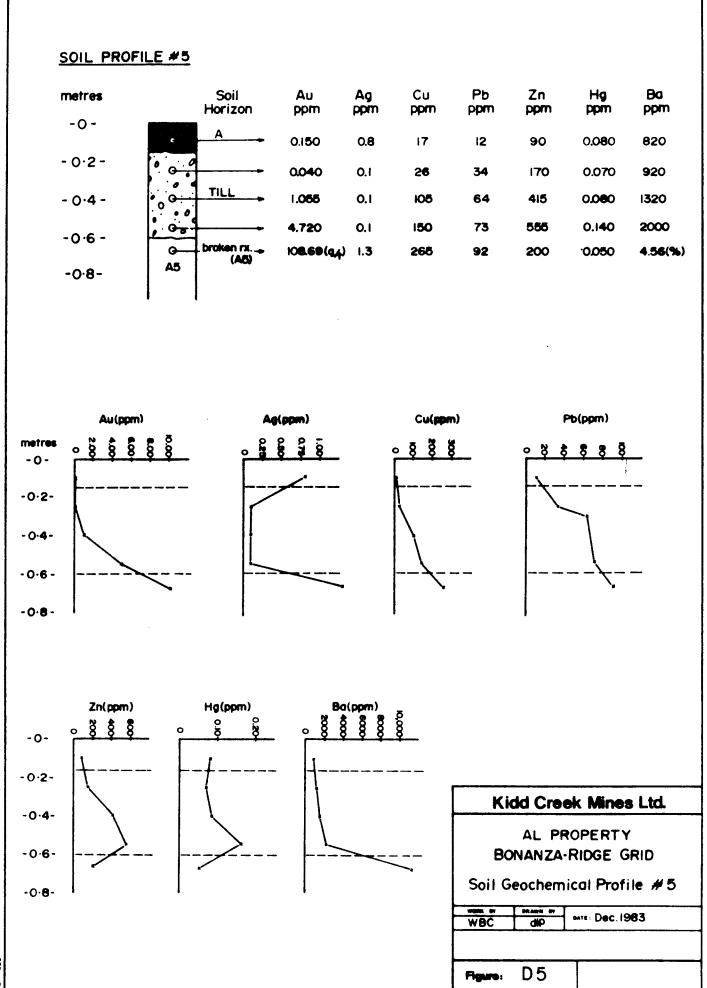
· ANALYTIC	CH CAL CHEMISTS		EX LAE		D.	CANADA	SBANK AVE. COUVER, B.C. V7J 2C1 (604) 984-0221 043-52597
		CERT	IFICATE OF	ASSAY			
O : KIDD CREEK MI ATTN:PETER DE 701 - 1281 W. VANCOUVER. B. V6E 3J7	LANCEY GEORGIA				CERT• # INVDICE # DATE P•O• # O3		
Sample	-	a NAA					
description 5-5	<u>code</u> 214	% 4.56					
	CI	HEMI	EX LA	BS LT	D.	NORTH VAN	COUVER, B.
CCC - ANALYT		• 0	GEOCHEMISTS	• REGISTE	D. RED ASSAYERS	NORTH VAN CANADA	NCOUVER, B.(V7J 20 (604) 984-022
CCC • ANALYT		• 0		• REGISTE		NORTH VAN CANADA TELEPHONE	KSBANK AVE ICOUVER, B.C V7J 2C (604) 984-022 043-5259
TO : KIDD CREEK M ATTN:PETER DI 701 - 1281 W VANCOUVER, B V6E 3J7	INES LTD. ELANCEY • GEORGIA	CERT	GEOCHEMISTS	• REGISTE		NORTH VAN CANADA TELEPHONE TELEX : A8310 : I8310 : 16-N	COUVER, B.C V7J 2C (604) 984-022 043-5259 6220-001 5220
TC : KIDD CREEK M Attn:Peter Di 701 - 1281 W VANCOUVER, B	INES LTD. ELANCEY • GEORGIA	CERT	GEOCHEMISTS	• REGISTE	CERT. # INVOICE # DATE P.O. #	NORTH VAN CANADA TELEPHONE TELEX : A8310 : I8310 : 16-N	COUVER, B. V7J 2C (604) 984-022 043-5259 6220-001 5220

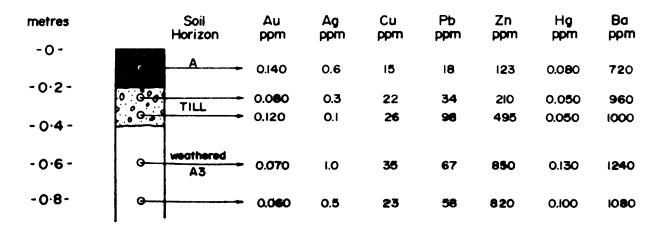

Appendix E


Soil Profiles

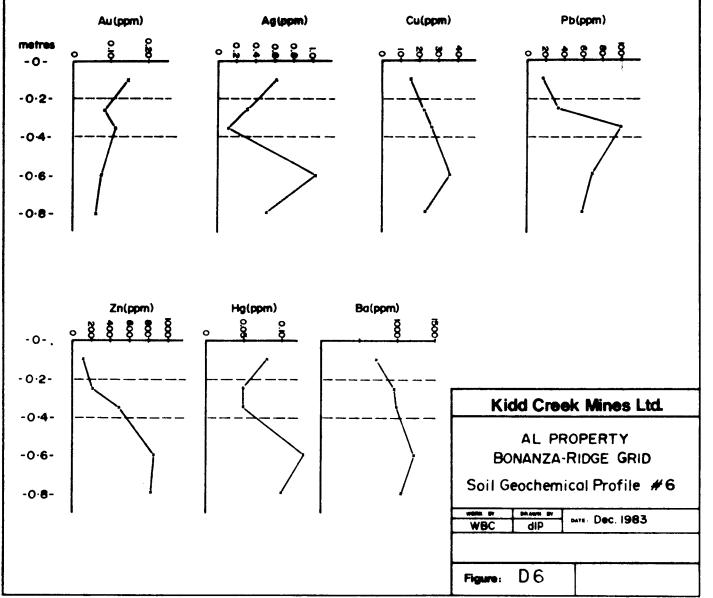



Ň

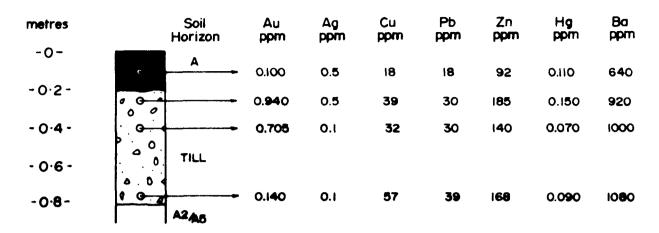

NCI - 556

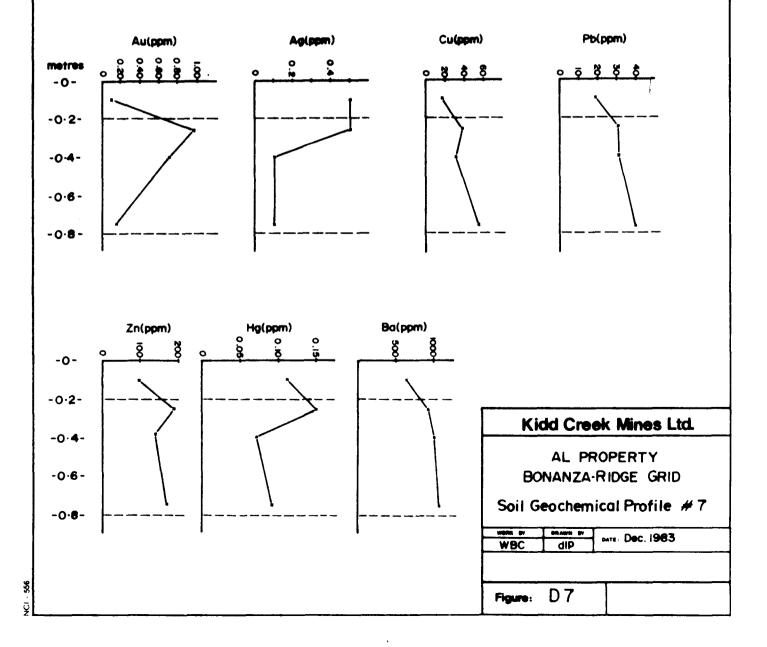

NCI - 556

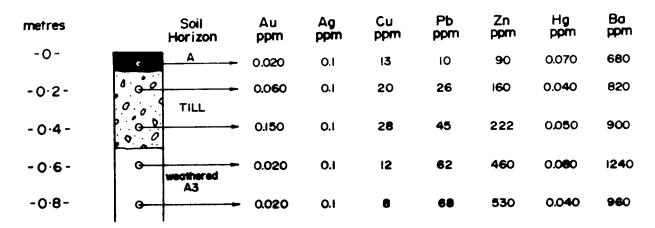
- 1.0-

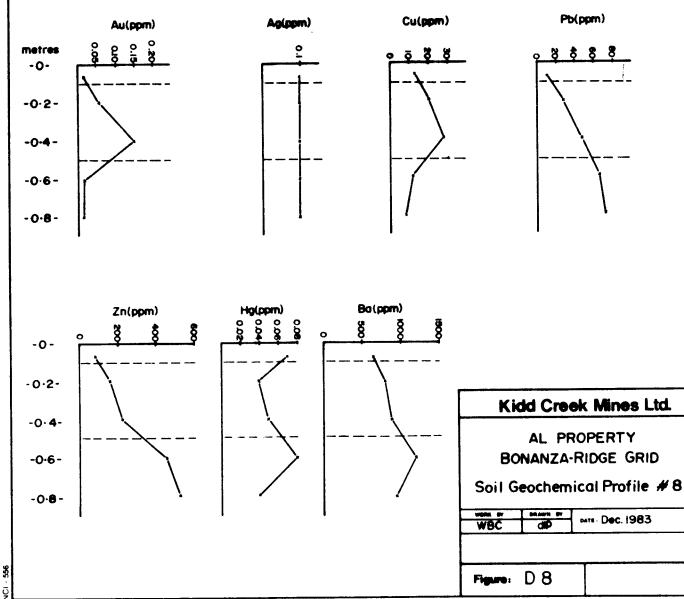


NCI - 566

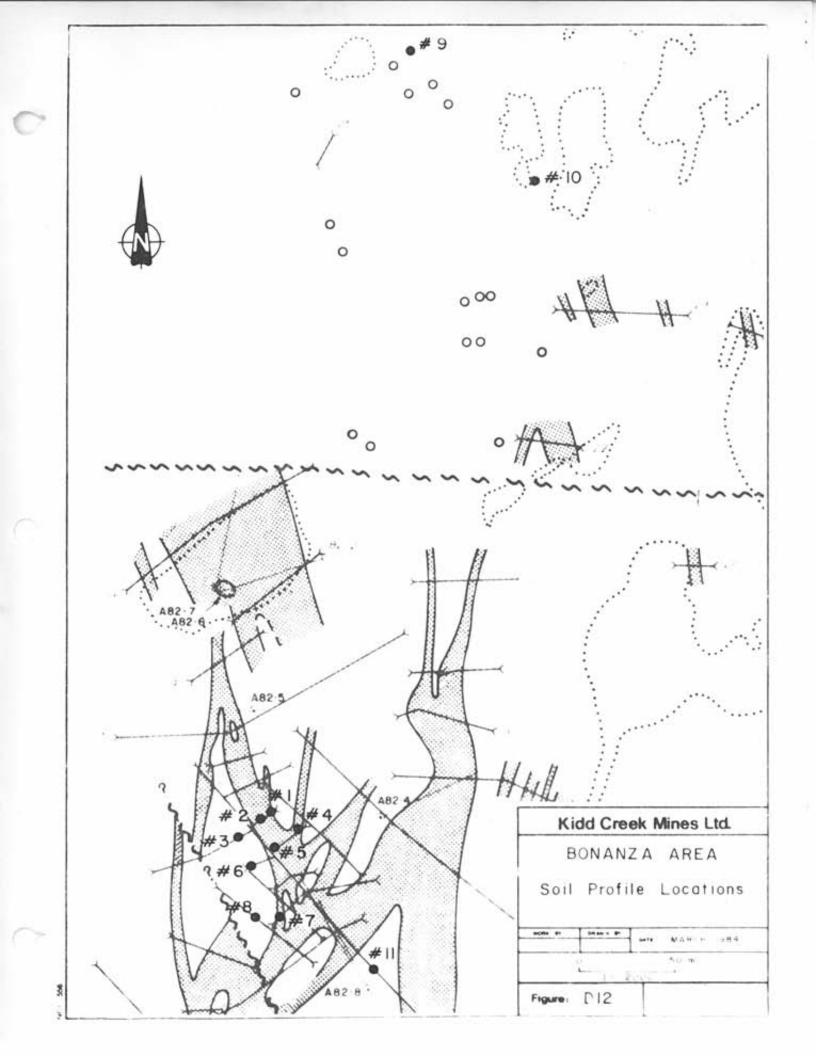





.



NCI - 566



õ

