REPORT OF PHASE ONE OF AN

EXPLORATION PROGRAM ON THE

MIN FR., WEST FR. LOPE AND

CORK REVERTED CROWN GRANTED CLAIMS

SLOCAN MINING DIVISION

50° 00' N LATITUDE 117° 16' 30" W LONGITUDE

N.T.S. 82-K-3 AND 82-F-14

FOR: AMHAWK RESOURCE CORP. 807 - 700 WEST PENDER ST. VANCOUVER, B.C.

BY: NORMAN W. STACEY

GEOLOGIST VANCOUVER, B.C.

MARCH 17, 1984

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

Introduction	1
Location, Physiography, Access	3
History	5
Geology	6
Fieldwork	7
Soil Geochemistry	9
Cork Workings	10
Conclusion	12
Recommendations	13
Estimated Cost	14
Bibliography	16
Statement of Qualifications	17

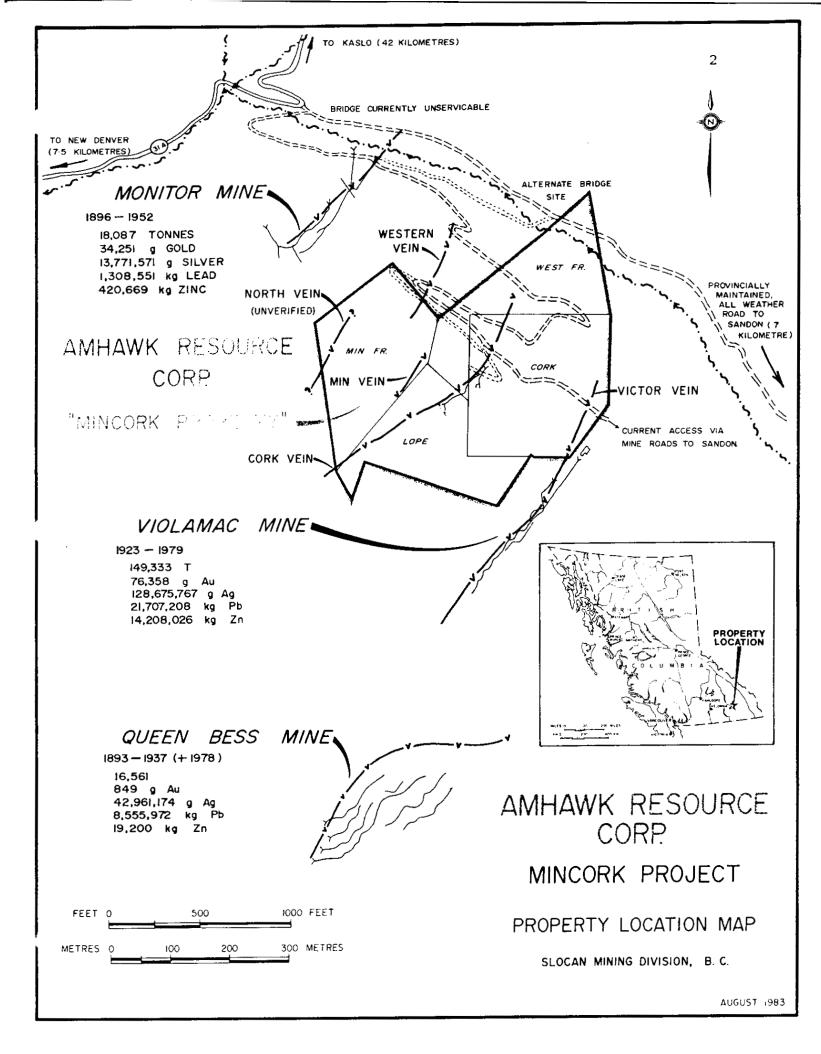
FIGURES

Property Location Map and Postulated Veins	2
Plan l Soil Geochemistry Survey	(in pocket)
Plan 2 Lead in Soil (Moving Cell Averages)	(in pocket)
Plan 3 Silver in Soil (Moving Cell Averages)	(in pocket)

APPENDED

- Initial soil Geochem. Acme Analytical Labs, Geochemical Assay Certificate File # 83-2289 (9 pages)
- Follow up Geochem. Acme Analytical Labs, Geochemical Assay Certificate File # 83-2679 (6 pages)
- 3. Annotated Drill Sludge Samples. Acme Analytical Labs, Geochemical Assay Certificate File # 83-3178 (2 pages)
- 4. Cost breakdown of exploration program (physical work and Geochemical Survey) performed on the Cormin Group during 1983.

INTRODUCTION


Field work was carried out during the late summer and early winter of 1983 at the request of Mr. Harold Williams, then President of Amhawk Resource Corp. The program was pursuant to the recommendations of Mr. G.C. Singhai P. Eng.in his Engineers report dated Sept. 1983.

A bridge was constructed across Carpenter Creek at Three Forks and the old road reopened to facilitate access.

An initial soil sampling program was completed and subsequently enhanced by follow-up to complete a 50 m grid covering the property. This proved successful in confirming and defining known and postulated mineralization.

An attempt was made to excavate the old Upper Min Adit with a loader which proved inadequate.

Efforts to reopen the No 2 Level of the Cork mine were unsuccessful due to excessive caving. A raise through to surface was, however, reopened which revealed a sublevel between Nos 1 and 2 levels. A limited test steeling program into the hangingwallyielded encouraging results.

LOCATION, PHYSIOGRAPHY AND ACCESS

The property lies on the northeast facing flank of Howson Ridge from a high of 4500 feet (1372m) a.s.l. to the valley floor at 2900 feet (884m). Slopes are steep to moderate, easily traversable on foot, and with adequate soil and sufficiently moderate slopes to allow easy additional roadbuilding or site construction with caterpillar tractors.

A year round stream traverses the property and the Upper Cork Adit is making adequate water for exploration and potential mining purposes.

The area may be expected to be snow free from mid April or May through to mid October or November. Access and elevation are such that snow removal would be manageable for year round production.

Mature conifers, predominantly Hemlock and Cedar with lesser Fir and Larch (Tamarack), abound on the property, for mining or roading purposes. Willow, Alder and immature Cottonwood provide a dense understory and cover slides and previously disturbed areas.

The northeasternmost point of the property touches on the Provincially maintained, all-weather Sandon road, at a point approx. 1 km southeast of Three Forks junction with paved Provincial Highway 31 A. Three Forks is 8 km from the township of New Denver, or 40 km from the township of Kaslo on Kootenay Lake. New Denver is 130 km by paved road to the custom smelting facilities of Cominco at Trail. New Denver is additionally 100 km from the schedule carrier serviced airport at Castlegar, or the regional supply centre of Nelson.

Local equipment operators, contract miners, trucking etc. are available in New Denver and neighboring communities.

Access to the property is 8 km east of New Denver to Three Forks, thence over the new bridge and approx 2 km up the reopened old Violamac

3

mines access road, a formed gentle gradient road. Steeper four-wheeldrive trails have been reopened to the Cork and Min showings. All other trails or roads on the property are ingrown with alder, willow and scrub species.

HISTORY

The property consisting of four reverted crown grants covers approx. 60 hectares between two post producers and incorporates two known showings and several projected or indicated fault-fissure veins. Previous work has been documented by Cairnes(1934), Hedley(1952), Lakes(1953), Legg(1953) and is reviewed by G.C. Singhai P. Eng.(1983).The reader is referred to that report for details.

GEOLOGY

As previously reported by Singhai(1983) the property is underlain by black carbonaceous sediments, weakly metamorphosed to argillites, slates and quartzites of Triassic age Slocan Series. Rare float and one outcrop indicate salic sills or dykes of undetermined age.

Economic mineralization is reported Lakes(1953) from both the Min and Cork workings. Within the Sandon Camp orebodies occur in northeast striking, southeast dipping fault fissures, generally as shoots controlled by crosscutting northwesterly trending structures.

FIELDWORK

Grid origin was established beside the upper Cork tunnel (No 1) and a baseline extended 020° for 500m and southward for 300m. Crosslines at 100m spacings were extended perpendicular and sampled at 20m intervals. While encouraging, results of lead and silver content were excessively dispersed and infill lines were extended at 50m intervals. Analyses are appended and are plotted an accompanying plan.

Attempts were made to excavate the upper Min Tunnel. It is rumoured by area prospectors that 'ore' was left in the level under the posts at one point. Lakes(1953), reports extremely high silver values from this system. A small piece of tetrahedrite was observed in float in earlier costeaning efforts immediately upslope. Three sets of timber were excavated in current work but the level was totally collapsed. An unconsolidated high wall precluded continuing with the small equipment employed. A subsidence upslope indicates the entire working is likely collapsed. An anonymous sketch map of the lower Min adit was obtained from Dickenson Mines, Silvana Division files in New Denver. This adit was initially located in reconnaissance and may be oble to be reopened with hand mucking.

Attention then focused on reopening and rehabilitating the lower Cork tunnel where a developed lode was rumoured to have been abandoned after caving. Ground conditions are of fissile blocky slates which, while favourably oriented for ore deposition, require extensive support. The level was mucked ahead for forty feet where an old backfilled raise caved through to surface. The ground would not hold up and the costs of driving lagging ahead are not warranted by the current quality of data.

7

A sublevel was exposed between the Cork levels in the excavated raise. The sublevel is sound and contained rail and an old ore-car. A test steeling program of 9 holes driven 28 feet was conducted with sludge collected and analysed in the hope of picking up an indication of the fissure.

A small lead is exposed in the No 1 Cork level in which small cobs of high grade, silver bearing galena is visible. The lead is of an uneconomic width however, and its orientation may be distorted by near surface effects.

The old Crown Granted Claimpost at the westernmost extremity of the Min Fraction was located in reconnaissance.

8

SOIL_GEOCHEMISTRY

Lead values are plotted on accompanying soil geochemistry plan. Anomalous values are often isolated and surrounded by low values. A smoothing technique was employed using a cell average. The cell employed was 20m by 50m with adjacent sample sites combined with parallel sites and the average value attributed to the mid-point. Results are most encouraging. Lead anomaly A is attributable to the Min vein systems. Local highs define the areas of known workings with upslope continuity. This anomaly is reinforced by a coincident silver anomaly. Lead to silver ratios are consistent with a tetrahedrite bearing, very high-grade silver bearing vein as reported by Lakes(1953).

Lead anomaly B is attributed to the Cork workings. This also has a coincident silver anomaly, with silver lead ratios consistent with an argentiferous galena vein. The anomaly was not intensively covered by sampling as mineralization is visible in workings and dumps. This does however serve as confirmation of the technique.

Lead anomaly C is most encouraging running the length of the property with a favourable northwest trend. The most favourable and extremely elevated values are in the most mortherly portion, in the downslope extremes of the property. Anomaly C has coincident anomalous silver values, and is additionally coincident with a north-northeasterly drainage which may reflect an underlying structural feature.

Anomaly D, depicted by both silver and lead values is attributable to dispersion from the known Victor property workings of Violamac Mines. This provides further evidence of the success of the technique.

CORK WORKINGS

The upper or No 1 Cork level has reportedly been driven 1100 feet. The first 480 feet encounters several poorly exposed shears, at least one of which is mineralized, and another developed with a short raise. The level was crosscut southeast repeatedly to intersect another fissure vein and encountered some sphalerite (Van Hansen pers. comm.). This may substantiate the subparallel fissure indicated by anomaly C and the watercourse. The level is in a salic intrusive in its later extent as evidenced by the dump material. While apparently accessible, the level has bad air.

A sublevel exists approximately 30 feet below the No 1 level and connected by a double compartment, backfilled raise. This sublevel is 60 feet long and follows a tight shear trending 040 and dipping 60°E. This shear appears to be in the footwall of the mineralized shear in the No 1 level.

Extension test steel drill holes were driven from 15 foot spaced stations in the sublevel. A plus 10° hole and +30° hole were driven from each settup at a 130° orientation for 28 feet each. An additional hole 9 of 24 feet was driven at 310°, plus 20° from the first settup into the footwall. Return fluids were captured and the sludge bagged at 4 foot intervals and analysed for lead, zinc and silver. Annotated results are appended.

Holes H3 and H4 yielded significant lead, zinc and silver values throughout their length. While analyses are subeconomic, and contamination from ore sample to another was probably extensive, they demonstrate

10

mineralization continuing downslope of No 1 level.

The well defined silver/lead bearing fissure vein in the Upper Level may be dispersed through a less favorable slate host rock, and converge in the lower level in a more favourable host to form the rumoured ore. Several faults subparallel to bedding at approximately 315/305 result in favourable wallrock lithology in contact with less favourable sections.

CONCLUSION

Several targets of mineralization were delineated by the soil geochemistry, with the technique verified by response to known showings.

The Min Vein system is a major priority with coincident silver and lead in soil values indicative of very high grade silver bearing vein. This corroborates the showing reported by Lakes(1953). The Upper Min working has been located, along with an old adit and archive plan indicating over 200m strike length to the structure.

A major anomaly is delineated between the known Cork workings and Violamac Mines past producer. Extremely anomalous lead and silver values are depicted in conveniently located lower slopes of the property and may be reflected in a watercourse following the regionally favourable northeast trend. This subparallel system is consistent with the rumoured reasons for the Cork No 1 tunnel extension which may have crossed the structure in an unfavourable host lithology.

The lower Cork No 2 tunnel could unfortunately not be economically reopened. However a limited extension test steel drill program from a reopened sublevel does indicate downward continuing mineralization.

Visible mineralization is evident in the Cork No 1 level, while rumoured zinc mineralization remains to be confirmed.

RECOMMENDATIONS

A large bulldozer (D6) should be employed to excavate the unconsolidated overburden and expose the Upper Min Workings. The reported mineralization should be mapped and sampled and the structure traced by stripping or costeans.

The highly anomalous lower portions of anomaly C should be crosscut with a bulldozer. Self Potential geophysics may be useful in locating a fissure vein in opened cuts. Any mineralization should be stripped and sampled and the structure traced.

The initial portions of the Cork No 1 tunnel developing the fissure vein, and the sublevel should be washed and accurately surveyed for control. A detailed geological map (scale 1:200 or better) should be undertaken with particular emphasis on projectable northeasterly trending structures which may constitute ore controls at their projected intersection with the fissure vein at depth.

The above constitute three separate targets. Following assessment of surface or subsurface extent, grade and width, drilling for depth continuity and tonnage may be assessed, and economics of scale could be achieved by amortizing drill mobilization costs, etc.

A drilling decision should await results of the above recommended exploration.

13

ESTIMATED COST

(A) MIN VEIN PROGRAM

	Excavating Min Workings 24 Hrs. D6 @ \$65/Hr. Swamper 3 Days @ \$150/Day		\$ 1,560 \$ 450
	Stripping Véin 24 Hrs D6 @ \$65/Hr. Swamper 3 Days @ \$150/Day		\$ 1;560 \$ 450
	Geologist		\$ 500
	Sampline, Assays Etc. Allow		\$ 1,000
	Travel, Accomodation 8 Man Days @ \$35/M/D		\$ 280
	Vehicle		\$ 300
		SUBTOTAL	\$ 6,100
(B)	ANOMALY 'C'		
	Access 8 Hrs. @ \$65/Hr.		\$ 520
	Bulldozer Cuts 36 Hrs. @ \$65/Hr.		\$ 2,340
	Geologist		\$ 1,000
	Geophysics (S.P.)		\$ 500
	Sampling, Assays Freight		\$ 1,000
	Vehicle		\$ 300
	Accom., Meals, Etc.		\$ 350
		SUBTOTAL	\$ 6,010
(α)	CODE WORKINGS		
(C)	CORK WORKINGS		¢ 1 500
	Survey		\$ 1,500
	Equipment (Pump, Hose, Etc.)		\$ 1,000
	Mapping		\$ 1,500
	Level Examination with Air		\$ 1,000

.

14

٠

Sampling And Assaying		\$	2,000)
Vehicle And Fuel		\$	300)
Accom. And Meals		\$	400)
Geologist And Assistant		\$	2,000)
2	SUBTOTAL	\$ 	9,700)
Fieldwork 6,100 + 6,010 + 9,700		\$2	1,810)
Reporting Draughting, Repro, Off	ice, etc.	\$	2,500)
S	SUBTOTAL PROGRAM	\$2	4,310)
Contigencies @ 10%		\$2	6,741	

Respectfully Submitted an man 01 Norman W. Stacey F.G.A. FLIOW

GEOLOGIST March 15, 1984

BIBLIOGRAPHY

ADDIE, G.G. (1983) "QUICK KRIG" A comparison between a Computer, two dimensions moving average technique and "Kriging", examples. Copy from George Addie P. Eng. District Geol. Nelson, B.C.

CAIRNES, C.E. (1934) SLOCAN MINING CAMP, BRITISH COLUMBIA, Geol. Surv. Can. Mem. 173

CAIRNES, C.E. (1935) DESCRIPTION OF PROPERTIES, SLOCAN MINING CAMP, BRITISH COLUMBIA. Geol. Surv. Can Mem. 184.

HEDLEY, M.S. (1952) GEOLOGY AND ORE DEPOSITS OR THE SANDON AREA, SLOCAN MINING CAMP, BRITISH COLUMBIA. B.C. M.M. Boll 29.

LAKES, A. (C. 1938) REPORT ON ITS PROPERTIES. Corporate Report For Slocan Monitor Mines Limited (M.P.L.) Excerpts only regarding subject property obtained from Silvana Mines files in New Denver.

LAKES, A. (1953) PLAN OF MINCOR PROPERTY SCALE 1 IN. TO 600 FT. AND SECTION. Obtained from Map Room, Arthur Lakes Library, Colorado School of Mines G3512, M5.

LEGG, R.E. (1953) REPORT ON MINCOR MINING PROPERTY, SLOCAN DISTRICT, BRITISH COLUMBIA. Excerpts only regarding subject property obtained from Silvana Mines files in New Denver.

LITTLE, H.W. (1960) NELSON MAP-AREA, WEST HALF BRITISH COLUMBIA $(82.F.W^{\frac{1}{2}})$ Geol. Surv. Can. Mem. 308.

(ANON.) (1981) SLOCAN VALLEY PLANNING PROGRAM MINERAL RESOURCES, TECHNICAL REPORT. Prepared for Kootenay Resource Management Committee and Regional District of Central Kootenay, ky: Resource Data and Analysis, Geological Branch. B.C. M.E.M. & P.R.

MINDEP FILES. Computer based inventory of Mineral Properties. Available for inspection at Geol. Sci. Centre, U.B.C.

SINGHAI, G.C. (1983) Report on Min Fr., West Fr., Lope and Cork Reverted Crown Granted Claims. Corporate report for Amhawk Resource Corp. dated September 21, 1983.

STACEY, N.W. (1983) Geological Report on the Cork, Min Fr., West Fr., and Lope Contiguous Reverted Crown Granted Claims, Slocan Mining Division. Corporate report for Amhawk Resource Corp., dated September 7, 1983.

STATEMENT OF QUALIFICATIONS

I, Norman W. Stacey of #305-2320 Trinity Street, Vancouver, B.C., V5L 4W7 do state that:

1) I am a graduate of the University of Auckland, New Zealand with a B.Sc. in Applied Geology and Geophysics.

2) I am a Fellow of the Geological Association of Canada, and a Member of the Canadian Institute of Mining and Metallurgy.

3) Since graduating in 1974 I have pursued my career as a Geologist in New Zealand, Australia, and Western North America.

4) I have written this report titled "Report on Phase One of an Exploration Program on Lope Contiguous Reverted Crown Granted Claims" based on the references cited, and field work conducted personally or under my direct supervision. The assistance of Mr. Gerald Bennett of Silverton, B.C. in data processing is acknowledged.

5) I have no pecuniary interest in the shares or securities of Amhawk Resource Corp., nor in the subject properties nor any in the vicinity.

Norman W. Stacey F.G.A.C. New Denver March 15, 1984 ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

.

**

DATE RECEIVED SEPT 24 1983

DATE REPORTS MAILED

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : PB, AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -80 MESH.

ASSAYER _____ DEAN TOYE, CERTIFIED B.C. ASSAYER

NORMAN W. STACEY PROJECT # MINCORK FILE # 83-2289 PAGE# 1

SAMPLE	PB PPM	AG PPM
500N OE	25	.4
500N 20E	34	1.5
500N 40E	79	1.0
500N 60E	42	.9
500N 100E	76	.8
500N 120E	33	.5
500N 140E	27	.3
500N 160E	25	.8
500N 180E	53	1.1
500N 200E	43	1.0
500N 220E	1720	17.4
400N 0E	30	1.1
400N 20E	23	.6
400N 40E	31	1.4
400N 60E	28	2.0
400N 80E	29	1.1
400N 100E	24	1.0
400N 120E	27	.8
400N 140E	28	.7
400N 160E	30	.8
400N 180E	24	.7
400N 200E	29	.9
400N 220E	26	1.0
400N 240E	19	2.0
400N 260E	22	2.3
400N 280E	30	3.9
400N 300E	25	2.7
400N 320E	23	2.5
400N 340E	17	3.3
400N 360E	24	2.1
300N OE	22	.4
300N 20E	24	1.7
300N 40E	23	.8
300N 60E	20	1.0
300N 80E	18	.4
300N 100E	21	.8

.

.

•

SAMPLE	PB PPM	AG PPM
300N 120E	23	3.7
300N 140E	32	1.9
300N 160E	35	1.2
300N 180E	144	2.4
300N 200E	25	1.2
300N 220E	24	1.5
300N 240E	19	.8
300N 260E	23	1.0
300N 280E	18	1.6
300N 300E	21	1.5
300N 320E	23	.8
300N 340E	17	1.1
300N 360E	18	1.2
300N 380E	23	.5
300N 400E	22	.9
200N 400W	23	2.0
200N 380W	16	1.2
200N 360W	14	1.1
200N 340W	27	.6
200N 320W	18	1.2
200N 300W	16	1.1
200N 280W	11	.5
200N 260W	15	1.3
200N 240W	372	1.2
200N 220W	40	1.9
200N 200W	52	1.2
200N 180W	20	1.3
200N 160W	21	1.6
200N 140W	18	1.2
200N 120W	48	1.5
200N 100W	69	1.6
200N 80W	26	1.4
200N 60W	52	1.1
200N 40W	26	1.6
200N 20W	14	.4
200N OE	24	2.1
200N 20E	26	1.0
200N 40E	16	1.8

444

.

.

SAMPLE	PB PPM	AG PPM
200N 60E	26	.6
200N 80E	8	.5
200N 100E	34	1.0
200N 120E	22	1.3
200N 140E	43	1.1
200N 160E	48	1.9
200N 180E	33	1.6
200N 200E	25	1.5
200N 220E	21	.9
200N 240E	18	.8
200N 260E	150	5.6
200N 280E	25	1.3
200N 300E	32	.6
200N 320E	6	.4
200N 340E	20	1.2
200N 360E	26	.8
200N 380E	19	.9
200N 400E	16	1.3
200N 420E	21	1.5
200N 440E	22	.8
100N 440W	18	1.2
100N 420W	20	1.4
100N 400W	22	1.1
100N 380W	19	.6
100N 360W	18	1.1
100N 340W	13	.8
100N 320W	22	2.0
100N 300W	19	1.0
100N 280W	16	1.8
100N 260W	15	1.2
100N 240W	26	1.0
100N 220W	33	1.2
100N 200W	56	2.1
100N 180W	20	1.1
100N 180W	32	1.2
100N 140W	19	.8
100N 120W	29	1.1

.

.

SAMPLE	PB PPM	AG PPM
100N 100W	24	.8
100N 80W	20	1.3
100N 60W	19	.7
100N 40W	24	1.0
100N 20W	27	1.4
100N OW	30	.9
100N 20E	42	2.9
100N 40E	18	1.1
100N 60E	15	.4
100N 80E	24	.9
100N 100E	22	2.8
100N 120E	30	1.2
100N 140E	88	1.4
100N 160E	32	2.3
100N 180E	31	1.1
100N 200E	24	2.0
100N 220E	23	.7
100N 240E	21	1.2
100N 260E	25	1.0
100N 280E	26	.9
100N 300E	30	1.8
100N 320E	64	.9
100N 340E	26	1.3
100N 360E	24	1.8
100N 380E	29	.7
100N 400E	28	2.2
100N 420E	24	1.0
100N 440E	22	.9
100N 460E	38	1.9
100N 480E	32	1.2
100N 500E ON 500W ON 480W ON 460W ON 440W	44 16 18 22 20	$2.5 \\ 1.1 \\ 3.0 \\ 1.8 \\ 1.3$
ON 420W	21	1.6
ON 400W	18	1.1

-

• .

.

SAMPLE	PB PPM	AG PPM
ON 380W	17	1.2
ON 360W	15	1.1
ON 340W	28	3.1
ON 320W	18	.8
ON 300W	17	2.4
ON 280W	15	1.0
ON 260W	30	1.3
ON 240W	22	1.2
ON 220W	460	3.9
ON 200W	48	1.4
ON 180W	44	1.5
ON 160W	252	4.8
ON 140W	20	.9
ON 120W	34	.8
ON 100W	30	1.3
ON BOW	22	1.1
ON 60W	23	1.4
ON 40W	30	1.2
ON 20W	28	1.7
ON OE	42	1.8
ON 20E	35	1.3
ON 60E	22	1.2
ON 80E	19	2.4
ON 100E	16	.8
ON 120E	29	1.6
ON 140E	26	1.3
ON 160E	32	1.5
ON 180E	30	2.4
ON 200E	19	1.8
ON 220E	20	1.7
ON 240E	21	1.1
ON 260E	18	1.3
ON 280E	23	2.2
ON 300E	22	2.3
ON 320E	19	1.6
ON 340E	20	1.3

.

• •

SAMPLE	PB PPM	AG PPM
ON 360E	28	1.1
ON 380E	23	.9
ON 400E	29	.8
ON 420E	24	.7
ON 440E	22	2.4
ON 460E	122	2.6
ON 480E	742	16.6
ON 500E	26	.8
100S 480W	19	1.8
100S 460W	20	2.0
1005 440W	18	.7
1005 420W	20	1.2
1005 400W	19	.8
1005 380W	18	1.5
1005 360W	19	1.4
1005 340W	20	2.5
1005 320W	21	1.0
1005 300W	17	1.7
1005 280W	20	1.6
1005 260W	18	1.6
1005 240W	17	4.1
1005 220W	23	2.4
1005 200W	48	1.6
1005 180W	29	1.0
1005 160W	36	2.8
100S 140W	26	2.7
100S 120W	34	1.6
100S 100W	29	3.0
100S 80W	24	.9
100S 60W	26	1.4
1005 40W	21	1.5
1005 20W	23	.7
1005 0E	20	1.7
1005 20E	19	1.5
1005 40E	20	3.2
100S 60E	16	3.4
100S 80E	20	1.3

. $\tilde{\mathbf{x}}_{\mathbf{1}}$

ŝ

• -

•

SAMPLE	PB PPM	AG PPM
1005 100E	29	.8
1005 120E	24	1.3
1005 140E	42	1.7
1005 140E	69	2.2
1005 180E	35	.8
100S 200E	22	.7
100S 220E	35	6.7
100S 240E	19	.4
100S 260E	14	.5
100S 280E	16	.8
1005 300E	16	1.0
1005 320E	19	.8
1005 340E	8	.7
1005 360E	4350	74.0
2005 400W	23	5.8
2005 380W	21	4.2
2005 360W	16	3.1
2005 340W	20	1.7
2005 320W	18	1.2
2005 300W	20	4.5
2005 280W	23	7.9
2005 260W	21	1.8
2005 240W	19	3.2
2005 220W	20	2.1
2005 220W	25	3.6
2005 180W	36	1.5
2005 160W	6	2.0
2005 140W	18	1.8
2005 120W	19	2.3
2005 100W	17	1.7
2005 80W	16	1.8
2005 60W	20	2.1
2005 40W	16	1.0
2005 20W	20	1.5
2005 0E	24	1.5
2005 20E	18	3.1
2005 40E	34	2.2

.

• .

SAMPLE	PB PPM	AG PPM
2005 60E	21	.8
2005 80E	33	.6
2005 100E	19	.7
2005 120E	44	2.5
2005 140E	40	1.6
2005 160E	51	1.7
2005 180E	28	2.2
2005 200E	13	.6
2005 220E	27	2.6
2005 240E	31	1.4
2005 260E	36	1.3
2005 280E	20	.6
2005 300E	19	1.2
3005 380W	19	2.8
3005 360W	20	2.3
3005 340W	21	1.4
3005 320W	19	2.7
3005 300W	34	.8
3005 280W	21	1.1
3005 260W	19	.6
300S 240W	26	1.3
300S 220W	20	1.2
300S 200W	42	.7
300S 180W	21	1.8
300S 160W	19	3.1
3005 140W	24	1.8
3005 120W	42	.4
3005 100W	20	7.7
3005 80W	18	1.6
3005 60W	16	1.9
3005 40W	21	3.9
3005 20W	18	7.4
3005 0E	22	.8
3005 20E	29	1.6
3005 40E	32	1.5
3005 60E	20	.7
3005 80E	30	2.6

÷

1

• • •

SAMPLE	PB PPM	AG PPM
300S 100E	44	2.0
300S 120E	36	1.7
300S 140E	24	.9
300S 160E	23	2.8
300S 180E	32	1.4
300S 200E	19	1.1
300S 220E	20	1.3
300S 240E	25	1.2
300S 260E	18	1.4
300S 280E	15	.8
3008 300E	21	1.8

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

ASSAYER

.

· 6

DATE RECEIVED OCT 24 1983

1

DATE REPORTS MAILED Oct

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : PB, AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -BO MESH.

ASSAYER	/ DEAN TOYE, CERTIFIE	D B.C. ASSAYER
N. STACEY	FILE # 83-2679	PAGE#
SAMPLE	PB AG PPM PPM	
450N 160E 450N 180E 450N 200E 450N 220E 450N 240E	29 1.2 43 .8 1600 25.0 104 1.9 10 .4	
450N 260E 450N 280E 450N 300E 450N 320E 450N 340E	29 .5 76 2.5 580 8.9 1350 22.0 70 2.4	
450N 360E 450N 380E 350N 160E 350N 180E 350N 200E	820 10.2 690 9.1 37 .6 78 1.0 16 .5	
350N 220E 350N 240E 350N 260E 350N 280E 350N 280E 350N 300E	23 .8 24 1.1 18 .3 13 .2 24 .5	
350N 320E 350N 340E 350N 360E 350N 380E 250N 140E	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
250N 160E 250N 180E 250N 200E 250N 220E 250N 240E	50 1.1 29 .5 60 .7 24 .5 21 .6	
250N 260E 250N 280E 250N 300E 150N 340W 150N 320W	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
150N 300W 150N 280W	18 .6 14 .5	

N. STACEY	FILE # 83-2679	
SAMPLE	PB PPM	AG PPM
150N 260W	12	1.8
150N 240W	19	.6
150N 220W	39	1.5
150N 200W	23	5.1
150N 180W	27	.5
150N 160W	28	.4
150N 140W	23	.6
150N 120W	30	1.3
150N 0E	22	2.1
150N 20E	36	1.2
150N 40E	194	2.3
150N 60E	27	1.0
150N 80E	16	.6
150N 100E	18	1.4
150N 120E	29	.8
150N 140E	27	.5
150N 160E	23	1.0
150N 180E	18	.4
150N 200E	12	.4
150N 220E	18	.6
150N 240E	19	1.2
150N 260E	18	.8
150N 280E	22	1.0
50N 520W	14	1.8
50N 500W	12	.8
50N 480W	14	.9
50N 460W	12	3.1
50N 440W	11	1.3
50N 420W	13	1.5
50N 420W	8	1.0
50N 380W	17	1.0
50N 360W	12	.9
50N 340W	13	1.2
50N 320W	12	1.0
50N 300W	22	2.6
50N 280W	17	1.8
50N 260W	13	1.2

.

· ·

.

PAGE# 2

N. STACEY	FILE # 83-2679	
SAMPLE	PB PPM	AG PPM
50N 240W	15	2.7
50N 220W	16	.8
50N 200W	13	.9
50N 180W	17	.3
50N 160W	35	.7
50N 140W	32	.5
50N 120W	13	1.0
50N 100E	22	1.1
50N 120E	21	.8
50N 140E	28	1.3
50N 160E	32	1.6
50N 180E	13	1.3
50N 200E	15	2.0
50N 220E	32	1.2
50N 240E	21	1.4
50N 260E	17	.5
50N 280E	31	.8
50N 300E	1230	7.8
50N 320E	21	2.1
50N 340E	20	1.6
50S 520W	10	.3
50S 500W	19	.9
50S 480W	12	.2
50S 460W	19	2.0
50S 440W	13	1.8
505 420W	19	.8
505 400W	17	.8
505 380W	15	.4
505 360W	11	.5
505 340W	14	1.0
50S 320W	15	.2
50S 300W	11	1.1
50S 280W	20	.9
50S 260W	9	.6
50S 240W	15	3.0
505 220W	31	1.8

•

•

....

N.STACEY	FILE # 83-2679	
SAMPLE	PB PPM	AG PPM
50S 200W	240	7.5
50S 180W	285	11.5
50S 160W	360	11.0
50S 140W	54	1.9
50S 120W	42	2.6
50S 100W	37	1.1
50S 80W	21	1.2
50S 0E	17	.6
50S 20E	20	1.4
50S 40E	15	1.7
50S 60E	20	1.2
50S 80E	19	2.6
50S 100E	17	1.0
50S 120E	24	.7
50S 140E	23	.6
50S 160E	31	1.3
50S 180E	34	1.1
50S 200E	21	.2
50S 220E	26	.1
50S 240E	12	.2
50S 260E	20	1.3
50S 280E	19	1.0
150S 420Ŵ	23	.6
150S 400W	20	.8
150S 380W	18	1.7
150S 360W	32	.5
150S 340W	14	.4
150S 320W	15	2.4
150S 300W	20	2.2
150S 280W	33	2.1
150S 260W	19	1.3
150S 240W	23	.8
150S 220W	32	.6
150S 200W	33	1.1
150S 180W	31	.7
1505 160W	23	1.3
1505 140W	22	2.4

٠

SAMPLE	PB PPM	AG PPM
1505 120W	23	.6
1505 100W	27	1.7
1505 80W	20	1.0
1505 60W	31	1.3
1505 40W	28	.6
150S 20W	20	1.5
150S 0E	19	1.1
150S 20E	16	1.5
150S 40E	26	1.1
150S 60E	32	.5
1508 BOE	19	1.1
1508 100E	27	.8
1508 120E	35	.9
1508 140E	43	.7
1508 140E	74	1.3
150S 180E	24	1.5
150S 200E	44	.2
150S 220E	25	1.0
150S 240E	24	1.1
250S 420W	22	1.3
2505 400W	18	1.7
2505 380W	24	2.0
2505 360W	20	1.0
2505 340W	18	1.9
2505 320W	15	2.8
2505 300W	18	1.7
2505 280W	15	4.2
2505 260W	17	.9
2505 240W	18	3.1
2505 220W	23	2.3
2505 200W	30	2.2
2505 180W	18	.4
2505 160W	12	.9
2505 140W	18	.7
2505 120W	20	1.9
2505 100W	21	1.6
2505 80W	15	2.1

-

N.STACEY FILE # 83-2679

4 . 9

•

.

.

SAMPLE	PB PPM	AG PPM
2505 60W	15	1.8
2505 40W	14	2.8
2505 20W	15	1.3
2505 0W	14	.5
2505 20E	10	.9
2505 40E	16	.5
2505 60E	27	.7
2505 80E	26	.6
2505 100E	23	1.2
2505 120E	26	.7
250S 140E	42	1.9
250S 160E	30	3.5
250S 180E	38	3.6
250S 200E	27	2.4

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE RECEIVED DEC 20 1983

DATE REPORTS MAILED WC

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HND3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : PB, ZN, AG. SAMPLE TYPE : SLUDGE \checkmark

ASSAYER

DEAN TOYE, CERTIFIED B.C. ASSAYER

AMHAWK RESOURCES

SHIPMENT-AHK FILE # 83-3178

PAGE# 1

HUHF	AWK RESOURCES	SHIPMENI-AHK	FILE #	83-3178	PAGE# 1
	SAMPLE	PB FPM	ZN F'F'M	AG PF'M	
140°@ + 10°	$ \begin{pmatrix} H-1 & 0-4 \\ H-1 & 4-8 \\ H-1 & 8-12 \\ H-1 & 12-16 \\ H-1 & 16-20 \end{pmatrix} $	27 28 40 58 45	2260 1620 1160 1708 1105	2.6 1.9 1.7 2.4 1.5	
	$ \begin{pmatrix} H-1 & 20-24 \\ H-1 & 24-28 \\ H-2 & 0-4 \\ H-2 & 4-8 \\ H-2 & 8-12 \end{pmatrix} $	36 40 20 40 35	514 1830 2030 1860 1400	1.0 2.4 1.3 1.8 1.5	, FIRST SEITUP 15' INTO CORK SUBLEVEL
/40°@ + 30°	H-2 20-24 H-2 24-28	26 28 29 26 250	1120 1350 1025 1398 2800	1.2 1.5 1.2 1.3 8.8	-
(40°@ +10°	H-3 4-8 H-3 8-12 H-3 12-16 H-3 16-20 H-3 20-24	126 106 186 196 74	2250 2360 2800 2360 1708	3.3 3.1 4.6 5.6 2.4	SETTUP #2
120°@ 430°	$ \begin{array}{c} H-3 & 24-28 \\ H-4 & 0-4 \\ H-4 & 4-8 \\ H-4 & 8-12 \\ H-4 & 12-16 \end{array} $	70 88 78 64 92	1780 2700 2710 2300 1985	2.0 5.4 4.6 2.9 2.5	- 30' INTO CORK SUBLEVEL
,	$ \begin{pmatrix} H-4 & 16-20 \\ H-4 & 20-24 \\ H-4 & 24-28 \\ \begin{pmatrix} H-5 & 0-4 \\ H-5 & 4-8 \end{pmatrix} $	270 166 58 23 16	2600 2300 1600 320 158	4.9 3.7 2.5 .8 .4	
140°@ +10°	H-5 8-12 H-5 12-16 H-5 16-20 H-5 20-24 H-5 24-28	21 20 14 16 18	410 228 146 150 465	- 8 - 4 - 4 - 3 - 4	SETTUP #3 45' INTO CORK

ų

SUBLEVEL

AMHAWK RESOURCES SHIPMENT

SAMPLE

;

.

.

.

	0.111		
140° (a) +30°	H-6 H-6 H-6 H-6 H-6	0-4 4-8 8-12 16-20 20-24	
190° @ +10°	14-7	24-28 0-4 4-8 8-12 12-16	
	H-7 H-8 H-8	16-20 24-28 0-4 4-8 8-12	ι.
140 (a) +30°	H-8 H-8	12-16 16-20 20-24 24-28 0-4	
310°@) + 20°]	H-9 H-9 H-9	4-8 8-12 12-16 16-20 20-24	

PAGE# 2	83-3178	FILE #	г-анк
	AG	ZN	PB
	1-1-1 -1 -1-1	PFM	PPM
ł	.e)	905	26
	.6 /	360	18
-	.7 (160	19
SETTUP #3	.6 >	- 125	17
451 INTO	. 4 (160	13
SUBLEVEL	.4)	96	18
	.4 🔿	100	20
	.8)		15
	.5	124	18
	-6	110	19
	.5	104	20
A the factor of the	.7 \	80	17
SETUP #4	.5 >	152	11
60' INTO \$.5 /	104	19
AT FACE OF	.6	135	17
1	.7	115	18
SUBLEVEL	.7	84	13
/	.6 /	150	i 20
	.6_/	92	18
	. 7)	1200	16
FROM SETTUP #1	.6 (926	19
SETTUP #1	1.3 >	1450	30
15' INTO	.7 1.3	625	23
		325	19
CORK SUBLEVEL	.6) (260	20

COST BREAKDOWN OF EXPLORATION PROGRAM (PHYSICAL WORK AND GEOCHEMICAL SURVEY) PERFORMED ON THE CORMIN GROUP DURING 1983

IA

1		Record No.
O.T.	Norman W. Stacey, Geologist	167 - min 2~
- 12.463.¥ 11.334.4	Box 151	168 - Neal S.
法标准 公告信证书	New Denver, B.C. VOG 1SO	169 - Cente M
173 (1 1 7) 및	V00 150	
7710s : 190011	ALMAND RESOURCES CORF.	175 - Loger Mi
	2807 - 700 West Pender Street	
	Vancouver, B.C. V6C 108	
leque of	Attention: Nr. Marold Williams	
12: 417. T Leque # 432 . 187 	Ne: <u>Mincork</u> - Followup Geochem	
Paul Livesey, Fi	ield Geologist	
	October 6, 7, ½8, 9	
	3.5 days 0 \$125.00 per day	\$ 437 .5 0 * -
Gary Times, Pros	meetor	
• •	October 6, 7, 38, 9	
	3.5 days 3 \$125.00 per day	437.50 +
Expenses:	$l_{\rm H} \gtrsim l_{\rm I}$ truck	
	4 days 350.00 per day	200.00 ^ /
	Fuel	38.00 4 -
Disbursements:	Freight	13.004
	Field Supplies (est.)	50.00 4
	Telephone	30.00 M
	Accommodation	
	8 man days 3 \$35.00 per day	280.00 * -
Sub-total:		\$1,491.00
	Administration 15%	223.65* -
· .	Total Fayable:	C 1 711 65 4
	Total Fayable:	\$ 1,714.6

Norman W. Stacey, Geologist 4

November 19, 1983

Norman W. Stacey, Geologist Box 151 New Denver, B.C. VOG 180

HIVOICE TO:

ANNAWK RESOURCES CORF. W307 - 700 West Fender Street Vancouver, B.C. VGC 168 Attention: IIr. Harold Williems

Re: <u>Hincork - Cork Hine Rehab.</u> Nemo Invoice

 N.W. Stacey - Supervision

 2 days C (200 per day
 \$ 400.00 4

 Vehicle, Heals, Expenses (cst.)
 200.00 4

 Hemo Invoice
 6,578.94 1

Total Tayable:

1. Course Norman W. Stacey, Geologist

November 19, 1983

2A

	NEMO RESOURCES LTD. BOX 54	_		2
. •	NEW DENVER, B.C. VOG 1SO	OUR N	UMPLA	19
•		DATE		
		1		10,_1983
SOLD	TO AMHAWK RESOURCES	CUSTO	MER'S OR	DER
	c/o Norm Stacey	SALES	MAN	
SHIPPI	D то	TERMS		
	55 VIA	r.o.		· <u> </u>
ω [RE: Rehabilitation of portals on Min-Cork pro	operty		
	Materials, lumber >		15 7	1
	nails S.		00 {	-
ź	450 John Deere Loader - 4 days			
-	transportation to Three Forks and back to	,,,,		
	Silverton - 2 hours	110	00 5	
1	4 x 4 truck - 8 days	240.	·-	
	Labour	3,300		
	SUB TOTAL	3,300		5,263.
	Plus 25%		· · · · · · · · · · · · · · · · · · ·	1,315.7
				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
	TOTAL			6 570 0
D ,				6,578.9

· -

 \sim \sim \sim \sim

• •· ···

--

e come e come

(

ŧ

•

Norman W. Stacey, Geologist Box 151 New Denver, B.C. VOG 150 INVOICE TO: AIHAWK RESOURCES CORP. 807 - 700 West Pender Street Vancouver, B.C. V6C 1G8 Attention: Mr. Harold Williams Pet Mincork Initial Geochem Fridge Labour Freliminary Leport Personnel: N.W. Stacey, Geologist Ireliminary report & drafting 4 days . Eridge 1 day 4 Supervision 1 day A Fermits, etc. l day∢ Client 1 day 4 8 days 0 \$250.00 per day \$ 2,000.00 1 Faul Livesey, Field Geologist Aug 31, Sept 3, 4, 5, 18, 19, <u></u>¹/₂ 20 6.5 days Grid & Geochem C \$125 / day 812.50 * 1 Sept 6, 7, 8, 9, 10, 11, 12, 13, 14 15, ½ 16 10.5 days bridge supplies & C \$125 / day construction 1,312.50* Gary Timus, Prospector 812.50* 1,312.50' Paul Livesey Expenses: 4 x 4 Bronco II DXP 189 BRUGE 11 DAYS 550.00* C \$50 / day Geechem GEOCHEM 7 DAYS 350.00* 4 x 4 Toyota 4 days C \$30 / day 120.00* Chainsaw /2 days @ \$10 / day -110.001 1.15

... /2

3A

Amhawk Resources Corp. Hincork Fage 2.

Disburschents:

Field Supplies	140.00 *
Phone	210.00 4
Dridge Supplies	77.05 *
Fuel	204-48
Accommodation & Heals	
44 man days @ \$35 /man /day	1,470.00*
Freight	3\$ •35 *
Hisc. (typing, packaging, otc.)	68.00 *
ABSays (Acmo) FILE 83- 2289 - SET 30/83	902 .70 1

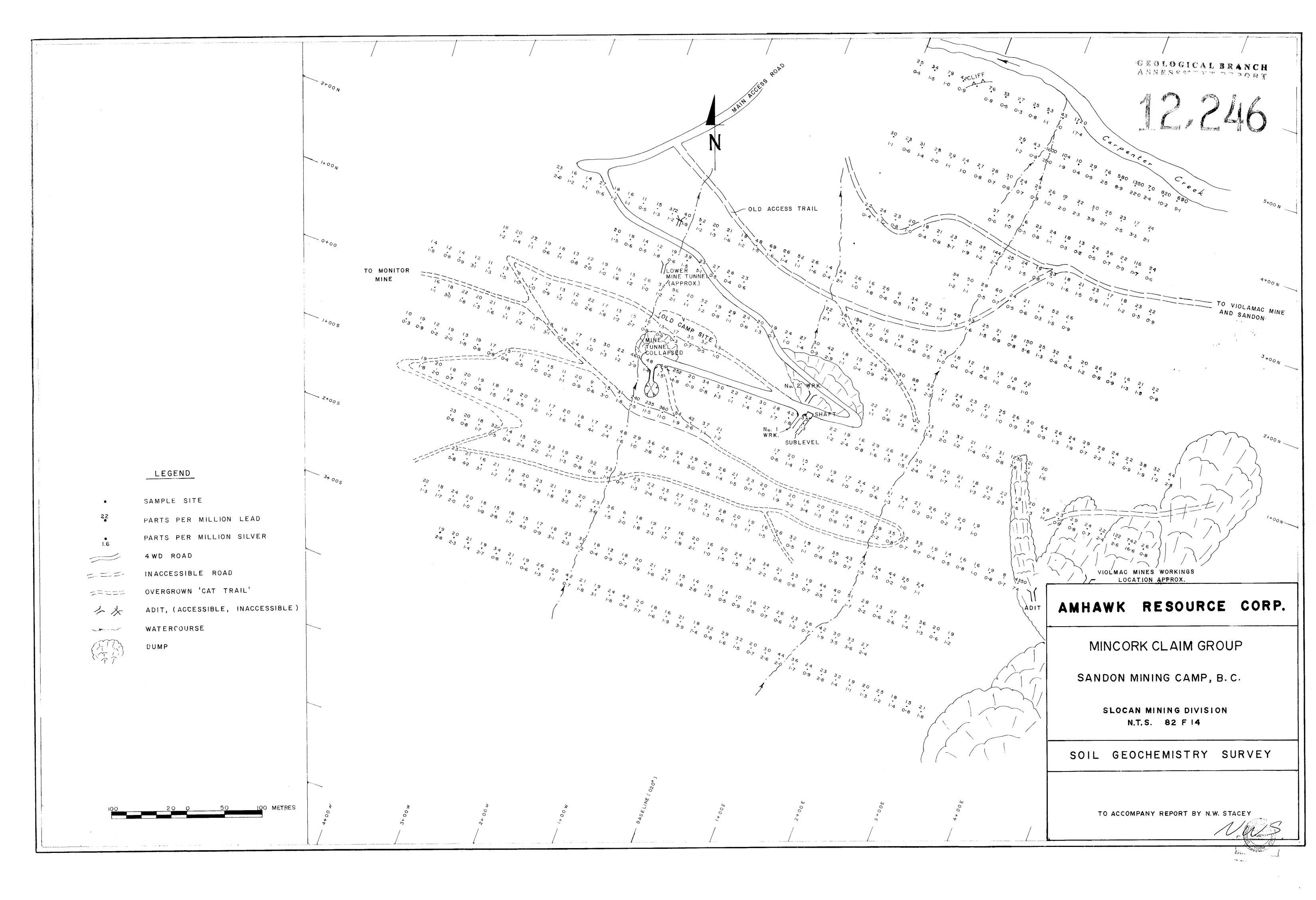
Payable:

\$ 10,490.58

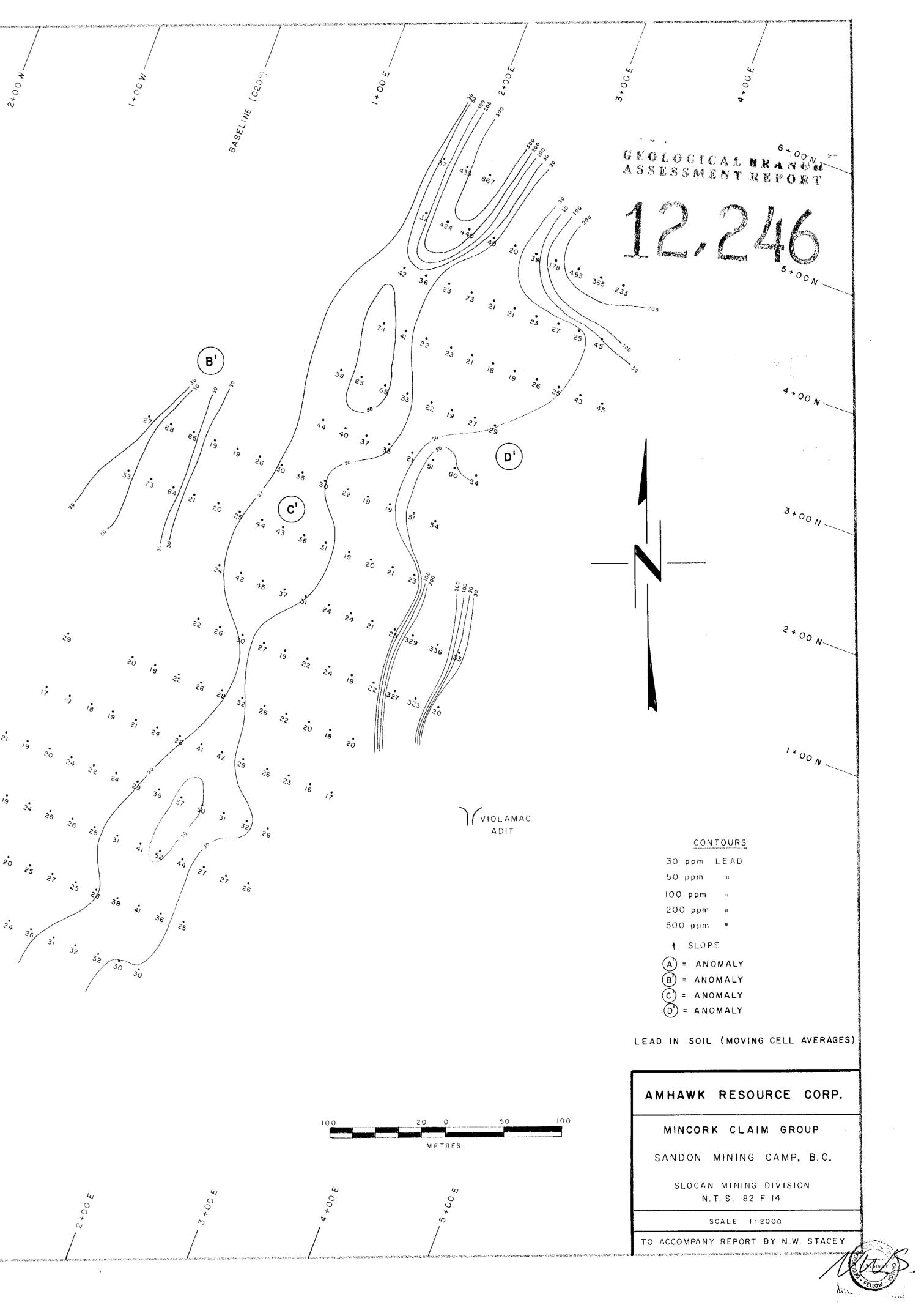
Norman J. Stocey, Geologist

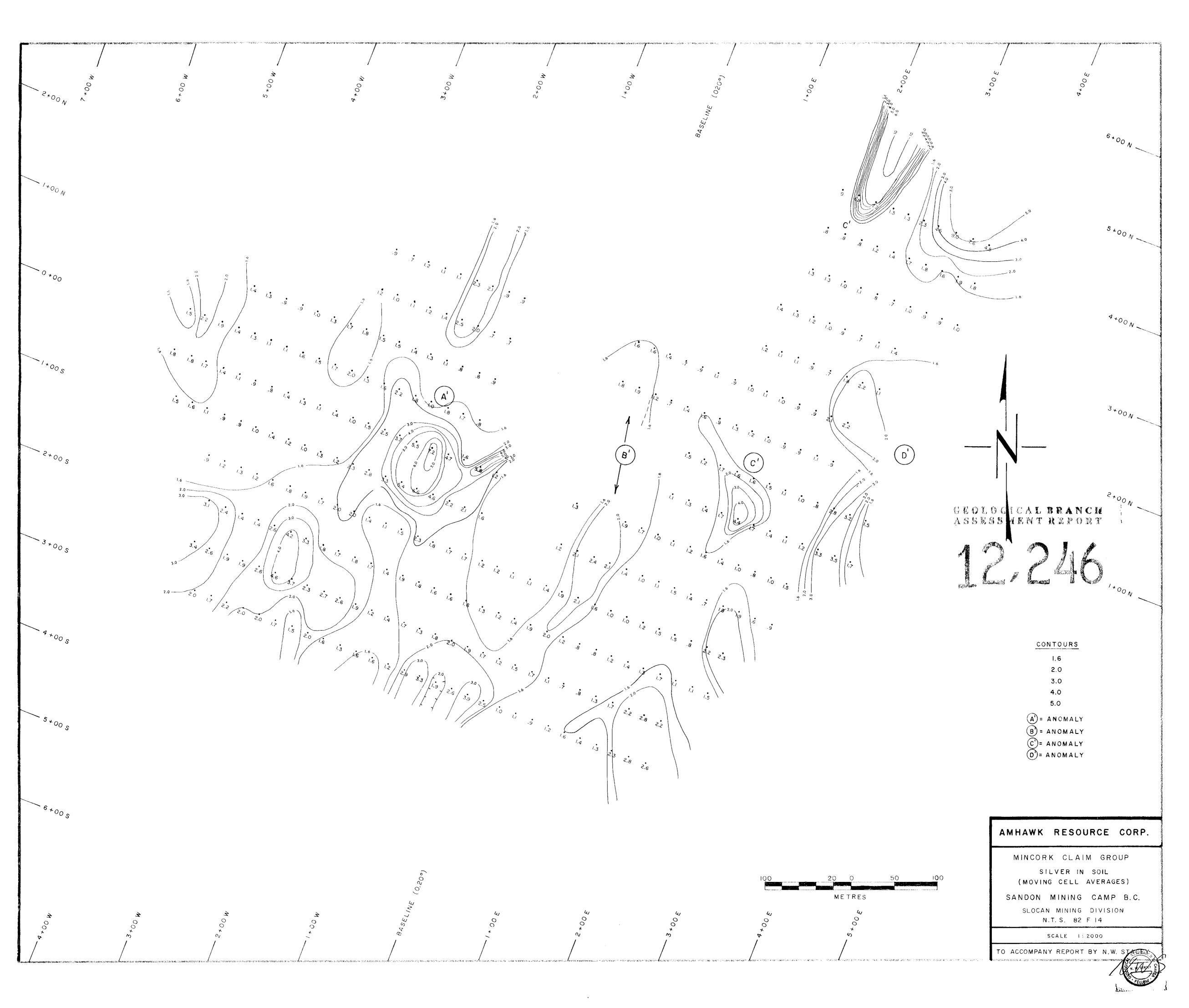
Novembor 19, 1983

Note: Dreakdown by category
1) Geochem Report, Geology
2) Bridgework & Roadclearing


\$5,623.53 * 4,867.05 *

ΞB


		ate: <u>SEPT</u>	30 198
 [NORMAN W. STACEY 305 - 2320 TRINITY ST VANCOUVER B.C. V5L 4W7	TERMS: NET TWO WEEKS PER MONTH CHARG OVERDUE ACCOUN	SED ON /
IBER	ASSAY	PRICE	AMOUNT
06 06	PROJECT : MINCORK 6 Amhawk." GEOCHEM PB AG ASSAY C SOIL SAMPLE FREPARATION C	2.45 .50	749.7 153.0 902.7
		· · ·	


.

•

00 0 0 0 0 2×00 N 4 ~ / + 00 N Α' 16 ~ o * 00 3<mark>8</mark> 34/ /8 /6 /> 23 15 17 3> 35 27 25 25 29 26 25 ~/*00s /8 /9 23 87 85 19 /9 195 142 (223) Y32 21 ~ 2 * 00 S 17 38 و/ 36 28 15 5,5 5,5 55 86 18 18 138 165 23 23 19 24 34 35 302, 22 $\frac{1}{18}$ $\frac{2}{24}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{8}$ $\frac{3}{3}$ 28 z, 2*7 26 28 22 20 /9 - 3 × 00 s 1 24 17 z^{i} z^{i} i^{j} z^{j} z^{j /9 /9 21 22 4 +00 s - 5 +00 S 6 + 00 S 34SELINE (0200) 100 * M 00+ 4 *00 W 00 H 4 0 N

