84-#315-12254

H

ASSESSMENT REPORT GEOLOGICAL AND GEOCHEMICAL SURVEY ON THE PI 1 - 3 MINERAL CLAIMS

N.T.S. 82E/9

49⁰36'N Lat. 118⁰16'W Long. GREENWOOD MINING DIVISION

John Keating

-

Contraction of the local division of the loc

Contraction of the second s

M

Noranda Exploration Company, Limited

(No Personal Liability)

May 25 - May 30, 1983

GEOLOGICAL BRANCH ASSESSMENT REPORT

ABSTRACT

- 1 -

- (Subplice

- I Linkshow

10 March 10

- Anna -

121

and the second s

This is a second se

E

During May 1983 geological and geochemical surveys were completed on the PI 1-3 mineral claims by Noranda Exploration Company, Limited.

The claims, some 67 km north of Grand Forks, B.C. lie on the northern edge of the Franklin Mining Camp.

Geologically, the claim group is underlain by two periods of volcanism and sedimentation (Midway Volcanic Group, Kettle River Formation), which unconformably overly a granodioritic (Nelson) basement complex.

The geochemical survey produced 141 samples of which, 3 coincident silt samples and 6 soil samples returned anomalous copper values with one soil sample displaying higher than background zinc.

1) INTRODUCTION

- House

a designation of

Ω

Q

Contraction of the second

and the second se

and the second se

The PI 1-3 mineral claims, comprising 42 units, were staked in the spring of 1983 by <u>Amex Exploration Services Limited</u> of 1714 Clifford Avenue, Kamloops, for <u>Noranda Exploration Company</u>, <u>Limited</u> (No Personal Liability). Staking was undertaken on the premise that the area was geologically similar in age, lithologies and structure to that of the Phoenix Camp.

2 -

Between May 25 and May 30, 1983, a reconnaissance geological mapping programme (scale 1:10,000) and geochemical survey (120 soil samples, 21 silt samples) were completed on the PI claims and pertinent adjacent areas.

Due to the shape and size of the claim blocks, in relation to lithology, structure and topography, it was necessary to extend the soil, silting and mapping surveys to the south in order to properly assess the properties potential. In doing this the Opher Crown Grant was also covered.

The exploration programme was restricted, west of Burrell Creek, due to high water which had washed out the east bank road some 20 km south of the property.

2. LOCATION AND ACCESS

The PI 1-3 claims are located some 67 km north of Grand Forks and 12 km west of Lower Arrow Lake, on Tenderloin Mountain. They are centered on longitude $118^{\circ}16'$ and latitude $49^{\circ}36'$, within the Greenwood Mining Division on N.T.S. mapsheet 82E9W/2.

Access is good, via the Granby River Road north from Grand Forks for some 40 km. Then follow the Burrell Creek road (secondary dirt road) some 20 to 25 km, to the base of Tenderloin Mountain.

3. TOPOGRAPHY

PI 1 and PI 2 claims straddle the west, central and southern half of Tenderloin Mountain, which has an approximate maximum elevation of 1,620 metres. Where as the PI 3 claim flanks the east bank of Burrell Creek.

Terrain varies from gentle to moderately rugged with a maximum relief of 730 metres.

4. CLAIMS INFORMATION

Claim Name	Owner	Record #	Record Date
 PI 1	Noranda Exploration	3964	April 11/83
PI 2	Company, Limited	3965	April 11/83
PI 3	(No Personal Liability)	3966	April 11/83

5. GEOCHEMICAL SURVEY

5.1 Introduction

One hundred and twenty soil samples and 21 silt samples were collected from the PI claims and immediate adjacent areas. Analysis was done for parts per million copper, zinc, lead, silver, molybdenum, arsenic and parts per billion gold at Noranda Exploration Company, Limited (No Personal Liability) laboratory at 1050 Davie Street, Vancouver, B.C.

- 3 -

Anomalous values for copper and zinc are considered to be Cu (150 ppm), Zn (220 ppm). All other commodities (Ag,Au,Pb,Mo + As) have values which are too low to be considered.

5.2 Silt Sampling Methods

Silt samples were obtained by hand selecting a portion of the finest transported material available, preferably free of organic impurities, from accessible stream beds. The samples were placed in "Hi Wet Strength Kraft 3 1/2" x 6 1/8" Open End" envelopes and the sample numbers were marked on the envelopes with an indelible felt pen. The sample locations were recorded on 1:10,000 scale topographic map.

5.3 Soil Sampling Method

and state

Soil samples were obtained by digging holes with a maddock to a depth of 15 - 30 cm where the visible B horizon when ever possible was exposed. Samples were then placed in a "Hi Wet Strength Kraft 3 1/2 x 6 1/8" Open End" envelopes with the sample number marked on the envelopes with an indelible felt pen. The sample locations were recorded on 1:10,000 scale topographic field maps.

5.4 Laboratory Analytical Methods

5.4.1. Preparation

The silt and soil samples were dried at approximately 80° C and then sieved with a -80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is then used for geochemical analysis.

5.4.2. Analysis

Ag,Cu,Pb,Zn and Mo: 0.200 grams of-80 mesh material is digested in concentrated perchloric acid and nitric acid (3:1) at reflux temperature for 5.0 hours. A Varian-Techtron Model AA-5 or AA-475 Atomic Absorption Spectrophotometer is then used to determine the parts per million (ppm) silver, copper, lead,, zinc and molybdenum in each sample.

Au: 10.0 grams of -80 mesh material is digested with aqua regia (one part nitric acid and 3 parts hydrochloric acid). The resulting solution is subjected to MIBK (Methylisobutyl Ketone) extraction, which extract is analyzed for parts per billion (ppb) gold using an AA-475 Atomic Absorption Spectrphotometer. As: 0.2 - 0.3 grams of -80 mesh material is digested with 1.5 ml of (70%) perchloric acid and 0.5 ml of concentrated nitric acid. A Varian AA-475 Atomic Absorption Spectrophotometer, equipped with an As-EDL, is used to measure arsenic content in the digest.

- 4 -

5.5 Presentation of Results

Ŋ

Ū

Ω

Q

and the second se

U

Geochemical (silt/soil) results for the PI claims are presented in Appendix 1 and on Map 1 of this report. Map 1 is a 1:10,000 scale location plot of the sample numbers with their corresponding values of ppm Cu,Pb,Zn,Ag,Mo,As and ppb Au in tabular form.

5.6 Discussion of Results

5.6.1. Stream Sediment Silt Samples

The majority of Cu,Zn,Pb,Ag,Mo,As and Au analysis fall within background levels, with the exception of 3 coincident anomalous copper samples (#30025, 30101, 30102). These occur at the headwaters of Pinto Creek on the PI 2 claim and represent a contiguous trend of approximately 200 meters in length.

5.6.2 Soil Samples

The majority of Cu,Zn,Pb,Ag,Mo, Au and As analysis fall within or slightly above background levels. One weakly anomalous zinc sample (#30230) has two adjacent samples (#30231, 30232) which are very slightly elevated in zinc.

Sporadic highs in copper values occur on the Opher Crown Grant (#30031) and flanking Gloucester Creek (samples 30126, 30129, 30139, 30146, 30147). The anomalous copper values on Gloucester Creek occur within a horizontal span of 800 metres, but do not appear to form any contiguous trend.

6. GEOLOGICAL SURVEY

6.1 Introduction

Twelve man days were spent mapping the PI 1, PI 2 part of the PI 3 and immediate surrounding areas. The remainder of the PI 3 claim was inaccessible, due to the road being washed out, as mentioned in the introduction.

The mapping was plotted on a 1:10,000 scale topographic field map and is presented on Map 2 (scale 1:10,000) of this report.

6.2 General Geology

The region is underlain by a Jurassic granodioritic basement complex which is unconformably overlain by Tertiary rhyolitic to dacitic flows and sediments. These in turn have been intruded and capped by intermediate intrusives (monzonite, syenite) and their extrusive equivalents (tachyte).

6.3 Lithological Descriptions & Discussion

Jurassic in age, the granodioritic rocks form part of the Nelson Batholith complex which represent the oldest rocks on the claim group. They are greyish-green to white, weathering grey to grey-brown and appear uniform in composition and texture. The major constituents are plagioclase feldspar and amphibole (horneblende).

- 5 -

Unconformably overlying the granodiorite is the Kettle River Formation (Tertiary). This sequence of acidic flows, minor tuffs and clastic sediments is rarely exposed on the claim blocks and is visible in the southeast corner of PI 2 and north-west corner of the PI 3 claim. the clastic sediments are medium to pebble size conglomerates with minor interbedded sandstone (arkosic wacke) units, which may show graded bedding. The acidic volcanics are rhyolitic to dacitic flows and minor tuffs. They are massive, purple-grey to grey and sometimes porphyritic (feldspar phenocrysts) with an aphanitic groundmass.

The grey-brown to pink, medium grained, equigranular monzonite plug, which forms the peak of Tenderloin Mountain may represent a feeder for the young Tertiary Volcanic flows.

The Trachytic flows belong to the Midway Volcanic Group and form a blanket, covering over 2/3 of the Pi 2 claim block. They are purple-pink, weathering grey-brown to reddish brown, massive and often porphyritic.

The Syenite Intrusive which is just south of the Opher Crown Grant is pink-grey, weathering grey, essentially medium grained, but can be slightly porphyritic with up to 1 cm K-feldspar phenocrysts.

6.4 Mineralization

The only mineralization found was on the PI 2 claim and consisted of a 0.5 m wide, 4 m long silicified shear zone containing less than 1% pyrite and chalcopyrite.

6.5 Structure

Ω

Π

Ω

0

0

Ű

D

No.

U

Graded bedding, in the sandstones of the Kettle River Formation, indicates a strike of Az 47° with dips of 10° to the north-west. No major faulting or folding was noticed.

7. SUMMARY AND RECOMMENDATIONS

The PI 1-3 claims consist of a Tertiary Monzonitic plug and Trachytic flows which intrude and unconformably overly older acidic volcanic flows and clastic sediments. This entire package is sitting unconformably on a Jurassic Granodioritic basement complex.

The reconnaissance geochemical survey produced two areas of interest. One of these is located at the headwaters of Pinto Creek and consists of 3 coincident silt samples returning anomalous copper values. The other is a indiscrete zone of 6 sporadic copper highs in soil samples which straddle Gloucester Creek on the PI 1 claim. The follow-up programme, if considered, should consist of detailed mapping, soil sampling and geophysics (if warranted) for those areas returning anomalous copper values.

Ŋ

D

0

Ω

0

0

0

Û

D

D

U

D

BIBLIOGRAPHY

Drysdale, C.W.: Geology of Franklin Mining Camp, Geol. Surv. Can.

O

N

D

0

Ŋ

0

Û

0

D

Ű

Û

Û

Û

Û

APPENDIX 1

The second s

Non-Long

All showing the

Contraction of the local distance of the loc

and the second se

Contraction of the local division of the loc

SOIL SAMPLE RESULTS

) 	Entrued -	Ine	2183	NC				M LAE	BORAT	ORY		۲ ج	3302	Ol	
-OCA	TION <u>Choenix</u>		<i></i>	PROJECT	1066		CTOR P. B	DATE	RECEIVED	June /	3 /85	CODE 8	306-011		· · · · · · · · · · · · · · · · · · ·
ATE	RIAL <u>S, 1t - Soi</u>	<u>l</u>						DATE	ANALYSED	June /	9 /83	ANALYS	$T = \frac{\mathcal{K}I}{\mathcal{K}I}$	P	
EMA	RKS	Cu,	Zn,	РЬ, А	g Mo	in	opm;	Au i	n ppb.			an a			
			(0.2	1/2 m	e Hei	04 HNC	$\gamma \rightarrow 5$	- nl)		NIC					
T.T. NO.	SAMPLE NO.		Cu	Zn	Pь	Ag	Mo	Au	(Au wordt)	As				NTS	0CI
1	Cherk NL-3		60	60	8	0.8	6			280	· · · · · · · · · · · · · · · · · · ·				
2	30001		20	48	2	0.2	-2	10		- 2				82E/9	02155
3	2.		86	32	2	0.8	2	10		- 2					
4	3		40	38	2	0.2	- 2	10		- 2					
5	4		16	38	2	0.2	< %	10		- 7					
6	5		26	26	2	0.2	- 2	10		- 2					
7	6		12	42	2	0.2	~ 7	10		- 2					
8	7		50	100	6	0.4	22	10	(5.08)	- 7					
9	8		12	120	ュ	0.2	-2	10		• 2					
10	9		10	74	2	0.2	12	10		• 2					
1	(0		10	64	ス	0.2	- 2	10		- 2	·			·	
2	11		16	66	ス	0.4	- 2	10		- 2	<u></u>				
3	12		110	42	2	0.2	4	10		- 2		ļ			
4	13		62	70	2	0.4	2	10		- 7				<u> </u>	
5	30014		120	78	2	0.4	- 2	10		< 2					
6	30051		50	64	2	0.2	- 2	10		< 2					
7	2		90	40	12	0.2	- 2	10	(2.95)	- 2					
8	3		34	60	2	0.2	- 2	10		- 2			ļ		
9	4		28	26	2	0.2	- 2	10		< 2			<u> </u>		
20	5		10	60	4	0.2	- 2	10		\$ 2					
1	6		12	56	4	0.2	- 2	10		- 2					
22	30057		68	90	6	0.2	- 2	10		- 2	e - 1922			82E/9	02155

NORANDA GEOCHEM LABORATORY

and the second second

LOCAT	ION <u>fhoenix</u>			PROJECT	1066		TOR P.	DATE	RECEIVED _	June /	3 /85	CODE _	8306-01		2
MATER	IAL 5,1E - 5,	<u>zil</u>					·	DATE	ANALYSED	June/	9 /83	_ ANALYS	TR	F	
REMAR	IKS		Cy,	Zn F	°Ь, Аз	Mo	in pp	n; /	qu in	PPb.					
<u></u>		••••••••••••••••••••••••••••••••••••••	(0.2 g/	2 nž	HCIOY	· HNO,	-> 5	me)						
r T			<u> </u>						<u> </u>	NC			<u></u>	1	1
T.T. NO.	SAMPLE NO.		Cu	Zn	Pb	Ag	Mo	Au		As				NTS	GCI
23	30058		6	68	4	0.2	< 2	10		• 2				82E/9	02155
4	59		12	130	2	0.2	<2	10		- 2					
5	60		14	60	4	0.2	• 2	10		- 2					
6	61		8	46	2	0.2	42	10		- 7					
7	62		24	46	2	0.2	* 7	10		- 2					
8	63		26	48	2	0,7.	* R	10		- 2					
9	64		70	56	2	012	. 2	10		- 2		· .			02155
30	65		18	56	2	0.2	* 2	10		* 2					02156
	66		50	54	2	0.2	4 2	10		- 2					
2	67		14	40	ス	0.2	• 2	10		42					
3	68		28	130	4	0,2	- 2	10		* 2					
4	67		50	64	4	0.2	- 2	50		- 2					
5	70		28	46	2	0.2	* 2	10		- 2					
6	71		50	56	4	0,2	- 2	10		- 2					
7	72		54	40	4	0.2	- 2	10		- 2					
8	73		36	100	2	0.2	- 2	20		- 2					
9	74	**************************************	34	48	4	0.2	- 2	40		- 2					
40	30075		20	46	2	0.2	- 2	10		- 2					
	30125	· · · · · · · · · · · · · · · · · · ·	50,	52	2	0.2	2	10		- 2					
2	4		1600	58	6	0.8	4	10		< 2					
3	7		52	48	4	0.2	2	10		4 2				1	
44	30128		32	66	6	0.2	2	30		- 2				82E/9	02156

OCATI	ON Phoenix	·		PROJECT	1066		TOR D.B	DATE		June /	3 /83		8306-0	M SHEET	3	· · ·
MATERI	AL	il						DATE	ANALYSED	June /	9 /83	_ ANALYS	ST <u><i>KP</i></u>	•		- <u>-</u>
REMAR	KS		Cy	, En,	РЬ А	g Mo	in pp	2 m	An in	ppb.					<u></u>	
				(02g1	2 nl	HCIO	+ HNO	,	- ml)						1 4 4 4 4 	
	<u>e de marco de contra de contra</u> En la contra de contra	T	<u> </u>					· · · · · · · · · · · · · · · · · · ·	10	NIE			<u> </u>	<u> </u>	$\overline{1}$	
T.T. NO.	SAMPLE NO.		Cu	Zn	РЬ	Ag	Mo	Au	weight)	As				NTS	602	Ζ_
45	30129		300	90	4	0.2	= 2	10		4 7				82E19	0215	56
6	30		30	50	2	0.2	× 2.	10		* 7		· · · · · · · · · · · · · · · · · · ·				
7	31		8	22	2	0.2	- 2	10		- 2		· · ·				
8	32		20	65	6	0,2	12	20		- 2						
9	33		82	78	4	0.2	< 2	50		- 7		· · · · ·				;
50	34		52	48	2	0.2	< 2	20		42						
(35		12	80	2	0.2	< 2	20		- 2						
2	3,6		12	50	16	0.2	<	10		2						
3	37		90	62	10	0.2	4 2	10	(2.65)	- 2						
4	38		38	42	4	0.2	2	10		6						
5	39		350	110	8	0.2	4	10		10						
6	40		20	110	4	0.2	- 2	10		42						
7	41		140	70	6	0.4	6	10		< 2						
8	42		52	46	2	0.2	- 2	10		2						
9	43	1	110	50	4	0.2	2	10	(5.59)	~ 2						
60	44		10	54	4	0.2	• 2	10		2						
	45		12	34	4	0.2	< 7	10		• 7						
2	46		220	130	26	0.2	< 2	10	(5.05)	4 7						
3	47		190	30	ス	0.2	12	20		< 7						
4	48		22	48	2	0.2	× 2	10		< 7						
5	49	-	14	40	4	0.2	12	20		< 7		· · · · · · · · · · · · · · · · · · ·				
66	30150		120	58	4	0.2	2	20		- 7	-			82E/9	021	56

LOCATIO	N Phoenix			PROJECT	1066	COLLEC	TOR D. B	DATE		June /	3 /83	CODE &	306-01	SHEET _	4
MATERI	AL Silt - S	50 1						DATE	ANALYSED	June /	9 /83	ANALYS	T R	F	
REMAR	(S		Cy.	zn P	5 Ag	Mo	in ppm	A	u in	196					
			(0291	2 ml	H C LO.	HNO,	-> 5	me)		1				
			T					· · · · · · · · · · · · · · · · · · ·	10 1	N/c.	<u> </u>)
T.T. NO.	SAMPLE NO.		Cu	Zn	Pь	Ag	Mo	Au	(An worst)	As				NTS	GCI
67	30023		40	60	18	0.4	- 2	10	(4.13)	2				82E/9	02156
8	4		34	58	8	0.6	< A	10	•	2					
9	30025		3000	80	14	1.2	2	10		. 250					
70	30101		200	20	6	0.6	2	20	(5.0g)	· 7			an a		
	2		120	68	6	0.6	~ 2	20	(5.9)	- 7		· · · · · · · · · · · · · · · · · · ·			
2	3		60	50	6	0.2	- 2	40		* 2					
3	4		90	58	6	0,2	- 2	10	(5.ag)	* A					
4	5		20	50	4	0,2	- 2	20	· · ·	* 7					
5	6		60	52	2	0.2	r 7	20	(4.25)	4 2					
6	7		70	52	4	0.2	x X	20	(5.05)	4 2					
7	8		26	54	6	8.2	~ N	20		- 2					
8	9		52	44	2	0.2	12	20		* 2					
7	10		46	38	2	0.2	× R	20		* 2					
80	(1		50	42	2	0.2	- 2	50		* 2					
1	12		50	40	ス	0.2	- 2	20		- 2					
2	30113		60	44	2	0.2	- 2	10	(5.05)	4					02156
3	30228		20	16	2	0.2	* 2	20		2		· · · · · · · · · · · · · · · · · · ·			02157
4	29		40	78	2	0.2	- 2	10		• 2					
5	30		56	3600	6	0,2	- 2	10		< 2				<u> </u>	
6	\$1		36	130	6	0.2	< 2	20		4 2					
7	32		28	110	10	0.2	< 2	20		- 2					
88	30233		10	74	4	0.2	< 2	10		4 2				82 E19	02157

Contraction of the

A Street and

LOCAT	ION _ Phoenix	٢		PROJECT	1066			BDATE		June /	3 /83	_ CODE _	8306-01		5
MATER	IAL 5,1t - 5	oil						DATE	ANALYSED	June /	4 /83	_ ANALYS	T_RF		
REMAR	IKS		C4. :	Zn Pb	Ag	Mo in	-ppm	Au	in ppb	<u> </u>					
			(0	2,12	ni	H < 104	· H~0,	<u> </u>	~í)						
			<u> </u>						T	M/C	<u> </u>		l	1	T
T.T. NO.	SAMPLE NO		Cu	Zn	РЬ	Ag	Mo	Au		A5				NTS	GCI
89	30234		25	64	6	0.2	* 2	20		12				82E19	02157
90	35		10	42	ス	0.2	12	20		• 2					
1	36		30	64	6	0.2	* 2	20		- 2					
2	37		36	76	8	0,2	* 7	20		4					
3	38		20	120	12	012	* 2	20		- 2					
4	3-)		18	140	8	0.2	42	10		- 2					
5	40		26	66	10	0.6	42	20		< R		· · ·			
6	41		30	120	6	0.2	4 2	10		- 2					
7	42		30	50	ス	0.2	42	20		* 2					
8	43		10	110	22	0.2	- 2	20		* 2					
9	30244		14	80	F'	0.2	2	20		- 2		I 1		82E19	02157
100	Check NL-3		60	60	6	0.6	6	-		290	 				
	30245		12	50	4	0.2	- 2	20		• 2) -		82E19	0215
2	6		8	40	2	8.2	4 2	20		- 2					
3	7		10	110	8	0,2	12	20		- 2					
4	Ś	1	10	20	4	0.2	× 2	30		- 2					
5)		8	56	4	0.2	12	20		- 2					
6	30250		22	56	14	012	1 2	10		< 7					
7	30451		8	60	12	0.2	- 2	100		. 7					
g	2.	1	22	46	8	0.2	• 2	10		- 2					
9	3	+	12	36	2	0.2	- 2	10		- 2					
110	30454		74	52	18	1.4	1 2	100		· 2		1	<u> </u>	82E19	02157

Constants -

OCA1	non <u>Phoen</u>	<u>X</u>		PROJECT	1066	COLLEC	TOR D.B	DATE		June /-	3 83		306-011 T RF		6
ATE	RIAL 3, 1 L = .3.	<u>o 11</u>	<u> </u>	2 PI	Δ.			. DATE	ANALISED _	ah		_ ANALTS			
EMA	RKS			<u> </u>	<u>, rg</u>	100 1	<u>> pp~</u>		<u>a 17 p</u>	7					
			(<u> 2 g / 2</u>	<u> </u>	H (104.	<u> </u>	<u> </u>	<u> </u>	N/C.					
T.T. NO.	SAMPLE NO.		Cu	Zn	Ph	Ag	Mo	Au		As				NTS	6 <i< th=""></i<>
<i>i</i> ı	30455		24	54	44	0.2	-2	20		- 2				82E/9	0215
2	30456		14	36	16	0,2	- 2	10		- 2					
3	30122		32	116	ス	0,2	- 2	20		* 2		· · · · · · · · · · · · · · · · · · ·			
4	3		140	600	2	0,2	2	20		- 2					<u> </u>
5	30124		38'	26	2	0,2	× 2	20		- 2					
6	30027		84	30	4.	0.2	2	10		- 7					
7	30		48	64	4	0.2	2	10		- 2			(
8	3 1		240	36	2	0.2	4	20		• 2		·			<u></u>
9	32		90	46	4	0.2	2	30		- 2					<u></u>
20	33		130	58	2	0.2	4	20		- 2		· · · · · · · · · · · · · · · · · · ·	L		
. 1	34		18	60	2	0.2	2	10		• 2				- 	+
2	30035		60	56	6	0,2	2	10		* 2		<u> </u>		<u> </u>	
3	300 26		S	36	え	0.2	< 2	20		- 2				<u></u>	
4	30027		22	36	4	0.2	* 2	20		10	· · ·			<u> </u>	0215
5	30115		34	86	16	0.2	× 2	20		• 2					0215
6	16		38	68	8	0.2	< 2	20		- 7	·				
7	17		48	20	12	0.2	- 2	10	(4.95)	- 7				_	
8	18	_	48	44	8	6.2	12	20,	(4.25)	* 7					
7	1.)		44	80	8	0.2	12	20	(4.13)	• 7					
130	20		46	60	6	0.2	< 2	20	(5.05)	- 2					
)	30121		40	24	12	0.4	- 2	10		- 2					+
13	1 30015		130	60	4	0.4	2	10		- 2				82E19	10215!

Non-State

Contraction

Contraction of the

- Parilies

TERIA	Silt - So	11			- -			DATE	ANALYSED	June/	9 /83	ANALYS	r_R	F	
	ис		Cui	En Py	A í	Mo	in pp,	<u>`</u>	An in	pph.		· · · · · ·			
				(0.2.1	2 ml	HC	04 HN	0, ->	5 ml)			en de la composition		
					T				I	NC	T				T .
.T. O.	SAMPLE NO.		Cu	Zn	Pь	Ag	Mo	An		As				NTS	6 C I
3	30016		110	66	10	0.4	2	10		- 2				82E19	02151
4	17		56	60	8	0.2	• 2	10	(5.9)	4 2					
5	18		30	58	4	0.2	* 2	10		- 2					+
6)9		36	62	16	0,2	- 2	10		- 7					<u></u>
7	20		42	66	14	0.4	* 2	10		* 7					+
8	21		36	64	12	0,2	~ ス	147		~ 7				1	
,	30022		30	62	22	0.2	- 3	10		* 2				82E19	0215
+0	30028	:	22	50	CX	0.2	* 2	10		- 2	· .			2	
				•									5 get	<u> </u>	<u></u>
2	30226		16	22	2	0.2	- 2	10		42	1			<u> </u>	
3	30 227		64	52	2	0,2	- 2	10	1	- 2	·				
						•									
~ 1			-	-		-	-								
													<u> </u>		
										·	ļ				-
										·					
+															· · · · · ·
														N 12	
	· · · · · · · · · · · · · · · · · · ·														

0.00 A Company - Local Address A STREET A STREET Sources and AND ALL PROPERTY OF

APPENDIX 2

STATEMENT OF COSTS

NORANDA EXPLORATION COMPANY, LIMITED

STATEMENT OF COST

DATE MARCH 1984

PROJECT - PI CLAIMS TYPE OF REPORT Geochem

a) Wages:

- Allenation

Sector Sector

No. of Days -	24		
Rate per Day -	56.02		
Dates From -	May 25 - May 31 19	83	
Total Wages	24 X 56.02		\$1,344.54

b) Food and Accommodation:

No. of Days -	24		
Rate per Day -	25.00		
Dates From -	May 25 - May 31	1983	
Total Cost -	24 X 25.00		\$ 600.00

c) Transportation:

No. of Days -	6	
Rate per Day -	45.00	
Dates From -	May 25 - 31 1984	
Total cost	6 X 45.00	\$ 270.00

d) Analysis

\$2,558.94

e) Cost of Preparation of Report

Author		\$ 200.00
Drafting		\$ 227.88
Typing		\$ 200.00
Total Cost		\$5,401.36

UNIT COSTS

NITS STATE

A DESCRIPTION OF

Unit Costs for Geochem

No. of Days -	24
No. of Units -	132 Samples
Unit Costs -	40.92 / sample
Total cost	132 X 40.92

\$5,401.36

NORANDA EXPLORATION COMPANY, LIMITED

DETAILS OF ANALYSES COSTS

Project:	PI	CLAIMS
----------	----	--------

Element No. o		of Determina	tions	Cost	per	Determination	<u>Total</u>		
Cu	n an an shirin La shirin	132				1.60	211.20		
Zn		132				.60	79.20		
Pb		132				.60	79.20		
Mo		132				.60	79.20		
Ag		132				.60	79.20		
Mr		132				.60	79.20		
Fe		132				.60	79.20		
Au	L.	132				4.00	528.00		

Total

V

-tanana

Ŋ

Ŋ

0

ļ

A STREET

\$2,558.94

APPENDIX 3

() (

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, John Keating of the City of Vancouver, Province of British Columbia, do hereby certify that:

I am a resident of British Columbia, residing at 1877 West 5th. Avenue.

I am a graduate of Concordia University, Montreal, with a Bachelor of Science Degree in Geology.

I am a member in good standing with the Canadian Institute of Mining and Metallurgy.

「「「「「「「」」」

I have been a temporary employee with Noranda Exploration Company, Limited since May, 1979 and a permanent employee since March, 1983.

John Keating Project Geologist Noranda Exploration Company Limited(No Personal Liability)

SAMPLE No.	Cu (ppm) (p	Zn Pb pm) (ppm) Ag (ppm) Mo (ppm) (ppb)	As (ppm)	SAMPLE No.	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppm)	Mo (ppm)	Au (ppb)			
SILTS 30002 30023 30024 30025 30057 30057 300101 30102 30102 30102 30102 30102 30102 30102 30103 30104 30105 30106 30107 30108 30107 30108 30107 30108 30107 30108 30109 30110 30113 30143 S01LS 30001 30013 30004 30005 30006 30001 30010 30010 30010 30010 30010 30010 30010 30010 30010 30010 30010 30010 30010	86 50 40 340 300 34 300 34 300 34 68 200 170 60 90 70 60 90 70 60 90 70 60 90 70 60 90 70 60 90 70 60 10	32 2 32 2 300 6 60 18 58 8 80 14 60 2 90 6 70 6 58 8 50 6 52 2 52 4 54 6 44 2 38 2 42 2 40 2 50 4 52 2 44 2 38 2 42 2 44 2 50 4 76 2 77 2 78 2 60 4 62 10 64 12 65 6 64 2 65 2 76 2 77 2 78 2 60	0.8 0.4 0.4 0.4 0.4 0.2 0	2 2 42	IO IO	$\begin{array}{c} & \langle 2 \\ \langle 2$	SOILS (Cont'd) 30115 30116 30117 3018 30120 30121 30122 30123 30124 30125 30126 30127 30128 30127 30128 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30144 30145 30144 30145 30144 30145 30146 30147 30148 30147 30148 30149 30140 30142 30230 30246 30231 30244 30245 </th <td>34 38 48 48 48 44 46 40 32 140 38 50 1600 52 32 300 30 8 20 300 30 8 20 12 12 80 350 20 140 52 12 12 80 350 20 140 52 12 12 14 120 14 120 16 64 20 40 56 36 20 30 30 30 30 30</td> <td>86 68 70 44 80 60 74 46 60 74 46 60 74 46 60 72 58 48 66 90 50 22 68 78 48 80 50 22 68 78 48 80 50 62 42 64 76 130 10 70 48 40 58 22 16 78 360 130 10 70 56 60 120 10 70 <</td> <td>I6 8 I2 8 6 I2 2 2 2 2 2 2 6 4 2 6 4 2 6 4 2 6 10 4 2 2 4 2 2 6 10 4 2 2 4 2 2 6 10 4 2 6 10 4 2 8 4 12 8 4 12 8 4 12 8 4</td> <td>0.2 0</td> <td>$\begin{array}{c}$</td> <td>20 20 20 20 10 20 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20</td>	34 38 48 48 48 44 46 40 32 140 38 50 1600 52 32 300 30 8 20 300 30 8 20 12 12 80 350 20 140 52 12 12 80 350 20 140 52 12 12 14 120 14 120 16 64 20 40 56 36 20 30 30 30 30 30	86 68 70 44 80 60 74 46 60 74 46 60 74 46 60 72 58 48 66 90 50 22 68 78 48 80 50 22 68 78 48 80 50 62 42 64 76 130 10 70 48 40 58 22 16 78 360 130 10 70 56 60 120 10 70 <	I6 8 I2 8 6 I2 2 2 2 2 2 2 6 4 2 6 4 2 6 4 2 6 10 4 2 2 4 2 2 6 10 4 2 2 4 2 2 6 10 4 2 6 10 4 2 8 4 12 8 4 12 8 4 12 8 4	0.2 0	$ \begin{array}{c} $	20 20 20 20 10 20 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20			
30073 30074 30075	36 IC 34 4 20 4	100 2 18 4 16 2	0.2 0.2 0.2 0.2	42 42 42	20 40 10	42 42 42 42						LE	GEND			
30076	N.R. N	I.R. N.R.	N.R.	N.R.	N.R.	N.R.				• 3	30074	Soil	sample			

LEGEND

× 30143 Silt sample location and number N.S. No sample N.R. No lab. results available

GEOLOGICAL BRANCH ASSESSMENT REPORT 12,254

Metres

Scale

REVISED PROJ. No. 27 N.T.S. 82/E/9 W/2 DWG. No. 1

<u>To Accompany</u>: Assessment Report, Geological and Geochemical Survey on the PII-3 mineral claims, Greenwood M.D., B.C. By John Keating; Geologist, May 25 - 30, 1983.

• 30074 Soil sample location and number

Survey Date 1983

