GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

- on the -

ALLENDALE LAKE PROPERTY

OSOYOOS AND GREENWOOD MINING DIVISIONS, BRITISH COLUMBIA

SELLERICAL BRANCH ASSESSMENT REPUT

- for -

ALLENDALE RESOURCE CORP 224 ESPLANADE STREET, NORTH VANCOUVER, B.C. PART 2012

V7M 1A4

COVERING: Fox and Lynx Claims

LOCATION:

(1) 49° 23' North Latitude 119° 21' West Longitude

(2) NTS Map No. 82E/6W

Prepared by:

KERR, DAWSON AND ASSOCIATES LTD., #206, 310 NICOLA STREET, KAMLOOPS, B.C. V2C 2P5

Werner Gruenwald, B. Sc.

May 18, 1984.

TABLE OF CONTENTS

Page No.

• •

i

INTRODUCT	rI	ON		•	•	•			•	•	•	•	•	•		•	•	•	•	•	•		•	1
SUMMARY		•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	1
LOCATION	A	ND	A	CCI	ESS	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	2
PHYS10GR	API	HY	Al	ND	VI	EGI	ET.	AT	101	N	•	•	•	•	•	•	•	•	•	•	•	•	•	3
PROPERTY				•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
HISTORY	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	4
EXPLORAT	101	N	PR	OGI	RAI	MMI	Е	•		•	•			•	•		•	•	•	•	•	•	•	5
GEOLOGY	•	•			•		•	•	•		•	•	•	•		•	•				•			6
GEOCHEMI	ST	RY		•	•			•		•	•			•	•	•	•	•	•	•	•	•	•	9
GEOPHYSI	CS	•	•	•	•	•		•		•	•	•		•	•	•	•	•	•	•	•	•	•	11
EXPLORAT	IO	N	PO	TE	NT	IAI	L	•	•	•	•	•	•	•	•		•		•	•	•	•	•	13
RECOMMEN	DA	TI	ON	s																				14

APPENDICES

Appendix	Α	Geochemical Results
Appendix	В	Personnel
Appendix	С	Statement of Expenditures
Appendix	D	References
Appendix	E	Writer's Certificate
Appendix	F	Maps

LIST OF MAPS

Figure 282-2Index Map1:50,000Figure 282-3Geochemical Plan (copper)1:5,000Figure 282-4Geochemical Plan (silver)1:5,000Figure 282-5Magnetic Plan1:5,000Figure 282-6Compilaton of Geochemical, Magnetic and Induced Polarization Data1:5,000	Figure 2	282-1	Location Map	1"=64 miles
Figure 282-3Geochemical Plan (copper)1:5,000Figure 282-4Geochemical Plan (silver)1:5,000Figure 282-5Magnetic Plan1:5,000Figure 282-6Compilaton of Geochemical, Magnetic and Induced Polarization Data1:5,000	Figure 2	282-2	Index Map	1:50,000
Figure 282-4Geochemical Plan (silver)1:5,000Figure 282-5Magnetic Plan1:5,000Figure 282-6Compilaton of Geochemical, Magnetic and Induced Polarization Data1:5,000	Figure 2	282-3	Geochemical Plan (copper)	1:5,000
Figure 282-5Magnetic Plan1:5,000Figure 282-6Compilaton of Geochemical, Magnetic and Induced Polarization Data1:5,000	Figure 2	282-4	Geochemical Plan (silver)	1:5,000
Figure 282-6 Compilaton of Geochemical, Magnetic and Induced Polarization Data 1:5,000	Figure 2	282-5	Magnetic Plan	1:5,000
and Induced Polarization Data 1:5,000	Figure 2	282-6	Compilaton of Geochemical, Magnetic	
			and Induced Polarization Data	1:5,000

ŝ

INTRODUCTION

The Allendale Lake property was staked in the early 1980's to cover copper/silver mineralization associated with a Tertiary stock near Okanagan Falls, B.C. During the summer of 1982, Allendale Resource Corp. completed five diamond drill holes in areas of known mineralization. Kerr, Dawson and Associates Ltd. were retained in 1982 to examine the core, assay data, and showing area. The results of this examination are described in a report by J.R. Kerr, P. Eng. dated November 5, 1982.

The recommendations outlined in Mr. Kerr's Phase I programme were carried out during the 1983 field season. The present writer's compilation and appended maps outline, in detail, the results and interpretations of the 1983 programme. This report is meant to fulfil the B.C. Ministry of Energy, Mines and Petroleum Resources assessment work requirements.

SUMMARY

1). The Allendale Lake property consists of 10 mineral claims (104 units), located in the Osoyoos and Greenwood Mining Divisions. The property is located 18 kilometers east of Okanagan Falls and is accessible by gravel road (approximately 25 km.).

2). The claims were located to cover known copper/silver mineralization in a Tertiary syenite stock. Mineralization was believed to have been discovered in the early 1960's with subsequent drilling being carried out by Selco in the early 1970's. The property lay dormant until 1982 when Allendale Resource Corp. completed five diamond drill holes in the area of the known showings. 3). The 1983 exploration programme consisted of reconnaissance geochemical and magnetic surveys over much of the claim block. Followup detailed geochemical, geological, magnetic and induced polarization surveys were carried out in the anomalous target areas of the southcentral portion of the claim block.

4). The property is primarily underlain by a coarse grained, porphyritic Tertiary syenite stock. Mapping indicates that the northern portion of the stock is fresh, massive and generally devoid of structural features. Rocks found in the southern portion of the stock indicate several phases of intrusive activity manifested by variable alteration intensity, composition and structural features. Geological evidence, to date, suggests that late stage structural and/or intrusive activity may have been centered in or around a prominant arcuate basin found around L-4N; 2+00W.

5). The 1983 geochemical data indicates several zones of copper and silver mineralization. Co-incident I.P. anomalies have provided five distinct targets for further exploration. Magnetic data lends support to the hypothesis of a structural and/or intrusive center being associated with the arcuate basin on L-4N; 2+00W. To test the 1983 results, a 750 meter ($\sim 2,500$ ft.) diamond drill programme is recommended.

LOCATION AND ACCESS

The property is located 18 km. east of Okanagan Falls, B.C., in the southern portion of the Okanagan Valley. Geographic co-ordinates for the approximate center of the property are 49° 23' North latitude and 119° 21' West longitude on N.T.S. Map No. 82E/6W.

Access to the claims is via a well maintained logging road to Allendale Lake, a distance of 24 km. from Okanagan Falls, and thence 1.5 km. west to the main showings along a 4 x 4 road. Access to other areas of the claim block is possible via several logging roads.

PHYSIOGRAPHY AND VEGETATION

3.

The claims are situated on the divide between the Okanagan and Kettle River valleys. Topographic relief ranges from 1500 m (a.s.l.) to 1850 m (a.s.l.). Slopes are generally moderate, however, locally precipitous areas are found adjacent to some rocky knolls.

Found in the southern portion of the claims is a topographic feature of considerable interest. Centered on L-4N; 2+00W is an arcuate shaped, steep walled valley approximately 1,000 meters in diameter. The valley bottom is flat, containing a small lake surrounded by a large swampy area. Apparent on both aerial and satellite photos, this area is highly suggestive of a major structural or lithologic event.

The property is for the most part lightly forested, consisting of stands of jackpine and fir. Local depressions are often the site of swampy areas and light to thick deciduous underbrush. Overburden in these depressions is generally deep while most other areas have only a thin to moderate veneer of glacial overburden. Rocky knolls are only lightly covered by overburden and are occasionally devoid of vegetation.

PROPERTY

The property consists of ten mineral claims, details of which, are as follows:

Name	Type of Claim	Record No.	No. of Units	Mining Division	Expiry Date
Lynx 1	2 post	15423	1	Osoyoos	June 10, 1986
Lynx 2	2 post	15424	1	Osoyoos	June 10, 1986
Lynx 3	2 post	1422	1	Osoyoos	July 16, 1986
Lynx 4	2 post	1423	1	Osoyoos	July 16, 1986
Fox 1	M.G.S.	3103	20	Greenwood	June 21, 1987
Fox 2	M.G.S.	3104	20	Greenwood	June 21, 1987
Fox 3	M.G.S.	3105	20	Greenwood	June 21, 1987
Fox 4	M.G.S.	3106	20	Greenwood	June 21, 1987
Fox 5	M.G.S.	1892	20	Osoyoos	Sept.20, 1984
Fox 6	M.G.S.	1893	20	Osoyoos	Sept.20, 1984

The Lynx 1 and 2 claims are recorded in the name of Robert Bechtel, and the Lynx 3 and 4 claims are recorded in the name of Florence Bechtel (nee Niddery). These claims are under an option agreement to Allendale Resource Corp.

The Moon and Dick claims were located after the Lynx claims, and prior to the location of the Fox claims. At last report these claims were in good standing, and are recorded in the name of Knie Resources Ltd. Thus any portion of these claims falling within the Fox claims will take precedence over that portion of the Fox claims. The Cameron, Shelley, Kam and P.W. claims postdate the Fox 1-4 claims but were located prior to the Fox 5 and 6 claims. Therefore, only those portions of the Fox 5 and 6 claims outside of these claims are in good standing. Since many of the claim posts have been located during the course of the field programme, the accompanying claim map (Fig. No. 282-2) is considered relatively accurate.

HISTORY

It is unknown when mineralization was first discovered at Allendale Lake however, during the 1960's the property was recognized for its porphyry copper potential. Work in the past consisted of trenching and the drilling of at least two drill holes. This work was completed by Selco in the early 1970's however, no evidence or documentation of an organized exploration programme (ie-geochemistry, geophysics) has been found.

Allendale Resource Corp. acquired the property and completed a five hole diamond drill programme during 1982. This work is documented in a report by J.R. Kerr, P. Eng. dated November 5, 1982.

EXPLORATION PROGRAMME (1983)

Initially a reconnaissance grid was established over a large portion of the Allendale property. This consisted of a 5 km. north-south baseline and 44 km. of east-west grid lines at 500 meter intervals. Sample sites were marked every 50 meters. Soil sampling and magnetometer readings were completed on this grid with the exception of two lines (L-40N, L-45N). Anomalous soil values and highly erratic magnetic readings necessitated the establishment of a detailed grid from L-0 to L-20N (Total 32 km.). Lines were spaced at 100 meters with stations every 50 meters. Soil sampling and magnetometer readings were taken over this grid as well. Geological mapping was carried out with the emphasis on the southern portion of the claim block. Rock chip sampling was carried out concurrently with the geological mapping. All of the above work was completed by the staff of Kerr, Dawson and Associates Ltd.

In late September, 1983 an I.P. survey was carried out over 13 km. of grid between L-4N and L-11N. This phase of the programme was coordinated by the staff of Phoenix Geophysics Ltd. with back up support by Kerr, Dawson and Associates Ltd.

The geophysical staff of Phoenix Geophysics Ltd. compiled all of the I.P. data and have submitted their interpretation in a separate report. A summary of these results is included in this report as well as on a 1:5000 scale compilation plan (see figure No. 282-6).

GEOLOGY

The general geological setting of the Allendale Lake area is documented on the 1"=4 mile G.S.C. Map sheet #15-1961, by H.W. Little.

The claim block covers a small (8 km²) syenitic stock related to the mid-Tertiary Coryell intrusions. This stock intrudes granodiorite and quartz monzonite rocks of the Cretaceous Valhalla and Nelson plutonic events, as well as schists and gneisses of the pre-Cambrian Monashee Group. Outliers of mid-Tertiary sedimentary and volcanic rocks exist within the general area of the claims.

Geological mapping was completed on a reconnaissance basis over the entire claim block with emphasis on the detailed grid area. Field work by the writer and J.R. Kerr, P. Eng. along with the documented drill logs of Mr. Kerr have led to a better understanding of the structural features and intrusive complexities of the property. At present four distinct phases of the Coryell syenite stock are recognized as follows:

1). Coarse grained, porphyritic, dark grey hornblende/biotite rich syenite distinguished by large phenocrysts of white orthoclase. The rock is generally massive, fresh and relatively unfractured. Alteration when present is weak and includes kaolinization of the orthoclase, chloritization of the mafic minerals (biotite, hornblende), and chlorite/ epidote along fractures. Pyrite is occasionally disseminated in the rock or found along fractures. Magnetite content is relatively high (1-3%), being found as grains and clots throughout the rock.

2). Fine to medium grained, mafic rich dark grey to black intrusive rock (syenite?). Contacts of this rock with the main syenite mass are very gradational. Weak to moderate chloritic alteration is prevalent. Occasionally this rock contains appreciable pyrite (1-3%) and traces of chalcopyrite.

3). Light grey, fine to medium grained syenite or monzonite. The mafic content is considerably lower than in the main syenite mass. Mafic minerals when observed consist primarily of biotite. The rock is generally fresh, massive and shows little or no alteration. The contacts of this rock are sharp and well defined suggesting it to be a separate and probably later intrusive event.

4). Small pods, dykes and sills of fine grained to locally coarse grained buff/white/light grey granodiorite, granite or aplitic (pegmatitic) rock. Both the mineralogy and secondary alteration of this rock are highly variable. Alteration is highly variable ranging from weak to strong secondary silicification, sericitization, potassium feldspar and kaolinization. Sulphide content is also quite variable, with assays indicating a content of 2-5% Cu and 1-3 oz/t Ag. Sulphides observed include pyrite, chalcopyrite, chalcocite, bornite, and possible tetrahedrite. These pods and dykes of variably mineralized rock appear locally prevalent however, diamond drill records (J.R. Kerr) indicate the encounter of only one 10-15 cm dyke. Bedrock exposures are generally well oxidized with abundant copper carbonate stain.

To give an idea of the local complexities of the above rock unit, the area of rock sample AR-10 is cited. This area is the site of some blasting along an old road which has exposed a coarse grained biotite syenite. Near the center of the exposure is a northerly trending, steeply dipping, 1.5 meter wide pegmatitic dyke. This dyke consists primarily of "graphic granite" and irregular patches of massive quartz and minor amounts of chlorite, sericite, amphibole, fluorite, chalcopyrite, malachite and magnetite. The syenite in the immediate area contains disseminations and fractures containing chlorite, epidote, pyrite, chalcopyrite, malachite, magnetite and molybdenite.

These pods, sills and dykes intrude all other phases and variations of the syenite and likely represent the last geological event associated with the syenite intrusion.

Observed in numerous outcroppings and in drill core are irregular masses of fine to coarse grained, dark grey to black rock thought to be highly thermally altered xenoliths. These xenoliths or inclusions appear to be of intrusive origin however, they cannot be definitely identified with the dark altered mafic rich phase of the syenite previously discussed.

There appears to be an apparent spatial distribution of the various phases of this particular intrusion. In the northern portion of the stock, the coarse grained, porphyritic variety (1) is most abundant. The southern portion of the stock (south of L-20N) sees the gradational increase in the abundance of the other phases. Accompanying the phase change is an increase in structural elements such as fault and fracture densities, alteration intensity and copper mineralization.

The arcuate land feature in the south-central portion of the property would appear to be the center of a major structural, intrusive and/or extrusive event. Specifically, this feature may be a major fault center, a later altered felsic phase, a breccia pipe or a volcanic caldera. Though no direct geological evidence points directly to any one of these possibilities, the geochemical and especially the magnetic expression lend support to this hypothesis.

GEOCHEMISTRY

The initial work carried out in the 1983 programme involved the establishment of a chain and compass reconnaissance grid over the entire property. A north-south oriented baseline was run along the center claim line (Fox 1-4) with east-west cross lines at 500 meter intervals. Fill-in cross lines at 100 meter intervals were established from L-ON to L-20N. In all, a total of 81 km. of lines were established. Sample stations were marked at 50 meter intervals along all grid lines.

Sampling over this grid resulted in the collection of 1,484 soil samples and 42 rock chip samples. Soil samples were collected from the "B" horizon when possible and were placed in kraft envelopes labelled with the appropriate grid co-ordinates. All soil and rock samples were then shipped to Acme Analytical Laboratories Ltd. for copper, silver and gold analysis.

After drying the soil samples were sieved to obtain a -80 mesh fraction. Rock samples were crushed to obtain the appropriate mesh size. Sample analyses were as follows:

Element

Digestion

Determination

9.

Copper, Silver A 0.5g sa nitric an 1 hour an

with water.

A 0.5g sample is digested in hot An nitric and hydrochloric acid for 1 hour and then diluted to 10 ml

Atomic Absorption

Gold

A lOg sample is ignited and then Atom digested in hot aqua regia.

Atomic Absorption

The results for copper and silver are expressed in parts per million (ppm) and gold is expressed parts per billion (ppb). All geochemical values have been plotted on accompanying base maps at a scale of 1:5,000 (see figure no.s 282-3,4). A separate map for gold has not been drawn up due to the limited number of samples analysed for gold and the negative results obtained. From inspection of the geochemical data the following geochemical categories for copper and silver were derived.

	Copper	Silver
Probably Anomalous	50-150 ppm	0.3-0.5
Definitely Anomalous	> 150 ppm	>0.5 ppm

Metal values falling within these categories were coded with symbols and presented on the accompanying geochemical plans. In addition, the significant copper/silver anomalies are presented on a compilation plan (see figure 282-6) to ascertain if any coincidence with magnetics and/or I.P. exist.

The geochemical response in the northern portion of the claims is very low with the background content of copper and silver being in the range of 2-10 ppm and 0.1 ppm respectively. A few erratic anomalies in the 20-40 ppm range do exist however, these are likely organic concentrations of copper and therefore of no significance.

In the southern portion of the claims the copper background increases to the 20-30 ppm range and silver increases to 0.2 to 0.3 ppm. Erratic, isolated anomalies ranging 50-100 ppm Cu, and 0.5-0.6 ppm Ag in the area between L-12N and L-15N are known to at least in part reflect the small mineralized dykes and sills in this area.

Geochemically, the most significant area is found from L-4N to L-12N between 3+00E and 12+00W. Soil anomalies in the range of 150-1450 ppm Cu and 0.6-1.3 ppm Ag are indicated, with a moderately good correlation between the two metals. Field investigation of the anomalous areas by the writer demonstrated the presence of copper mineralization in several areas. Rock chip sample locations with the appropriate metal values are ' plotted on the geochemical plans to exemplify this fact. In the valley floor, between lines 3N and 7N, deep swampy overburden exists and therefore this area was not sampled. However, soils from around the north, west and eastern edges of this swamp are quite anomalous. This would seem to suggest that the anomalies in this area may be considerably larger, taking in a large portion of the swampy area.

Soils from L-4N to L-12N were analyzed for gold, however no anomalous values were encountered.

GEOPHYSICS

A magnetometer survey was carried out on the property using a Geometrics Model G-836 Proton Magnetometer. This particular instrument measures the total magnetic field of an area with a 10 gamma (\aleph) accuracy limit.

The magnetic response over the property is quite varied due primarily to the multiphase nature of the intrusive body. In the northern portion of the property the background magnetic field ranges from 58,000 &to 58,500 & with very few erratic variations. This correlates well with the massive, dense, unaltered synnite which is known to have an evenly disseminated magnetite content in the range of 1-3%.

In the southern portion of the property, primarily south of L-15N, the following magnetic features are evident:

1). An arcuate pattern of erratic magnetic "lows" and "highs" ranging from 53,000 - 62,000 follows the rim of the circular, steep-walled valley.

2). An elongated magnetic pattern of "highs" ranging to 63,000 & entends from L-0 to L-20N at 8+00 to 10+00W.

3). A broad magnetic "low" ranging from 57,500% to 58,500% is found in and around the floor of the circular valley (swamp). There appears to be a good correlation between the geochemical anomalies and the "lows" in this area.

The magnetic features outlined above are suggestive of intrusive and/or extrusive activity. The magnetic "low" in the valley floor would seem to indicate a rock type low in magnetic minerals, such as felsic igneous/volcanic rocks. The erratic magnetic response surrounding the valley is suggestive of an alteration zone or phase that contains erratically distributed pods of magnetic minerals. This magnetic feature has associated chlorite, epidote, secondary biotite and kaolinite alteration.

The northerly trending feature extending from L-O to L-20N at 8+00 to 10+00W may be an "offshoot" of the arcuate magnetic "highs" and "lows" or possibly a localized fault or shear zone.

The results of the Induced Polarization survey are briefly summarized here. A comprehensive description of I.P. methodology, results and interpretation are outlined in a separate report by Phoenix Geophysics Ltd. (Dec.16, 1983). This work and the report have been filed for assessment work separate from the writer's report.

In summary, the "definite" category I.P. anomalies generally coincide with the zone of erratic magnetic response, and likely represents a significantly high content of magnetite $\stackrel{+}{-}$ other sulphides. The only correlation of definite I.P. anomalies to geochemical anomalies is found on L-IIN; 10+00W and on L-ION; 6+00W. Several weak to moderate category I.P. anomalies have been interpreted within the broad magnetic "low" to directly correlate with copper (silver) geochemical anomalies. These zones should also be regarded as viable exploration targets.

EXPLORATION POTENTIAL

The compilation of the present data would seem to indicate that a geological environment(s) capable of hosting a large tonnage ore deposit could exist on the Allendale property. Discussion of the results of the 1983 programme between the writer and Mr. Kerr have established five viable exploration targets.

1. L-3N to L-5N from the B/L to 5+00W

This area is largely underlain by swamp, where I.P. and geochemical response is detected only on the western and eastern flank of the swamp. The eastern portion of this zone is apparently on the Moon claims, not controlled by Allendale.

II. L-7N to L-10N from the B/L to 2+50E

The strongest copper/silver geochemical anomaly forms a lineal pattern in a general NW-SE direction. This anomaly correlates well with moderate strength I.P. anomalies detected on all lines. The I.P. response is confused to the east, probably due to a high magnetite content. This coincident I.P./geochemical anomaly can be traced to the south of Lines 5+00N and 6+00N, however this portion of the anomaly falls on the Moon claims.

III. L-7N to L-10N; 5 to 6+00W

A strong copper/silver geochemical anomaly is coincident with moderate-strong I.P. response. The area flanks the zone of erratic magnetic response. Float of highly altered, felsic intrusive rock is noted in this area.

IV. L-8N to L-10N (B) from 1+50W to 3+00W

This zone is the largest most consistent copper geochemical anomaly, with no obvious silver correlation. Moderate I.P. response is detected on L10+OON (B), which does not correlate well with the anomaly, however downhill dispersion of geochemical values must be suspected, as the area of the anomaly is very steep.

V. L-10N (B) and L-11N; 10+00W

A copper geochemical anomaly coincides with a strong I.P. anomaly. Outcrop exposures indicates lenses and pods of bornite/chalco pyrite rich felsic intrusions in this area.

All five targets are sufficiently advanced to the drill stage of exploration, which warrants the following recommended exploration programme.

RECOMMENDATIONS

The results of the 1983 programme are considered encouraging. Having developed a viable model for a major ore deposit it is recommended that Allendale continue to the next phase of exploration. The following two phase programme is recommended:

Phase I:

1).	Five sites have	been selected that	warrant diamond drilling.	
	Holes should be	drilled to a minim	num of 150 meters (\sim 500ft.))

- Drill access roads established into proposed drill sites with any rock cuts being examined and sampled if warranted.
- Log, split and sample the drill core as drilling progresses. Mineralized sections should be sampled and assayed for copper, silver and gold.
- 4). Compile drill results in report form.

Phase II:

Contingent on favourable results in Phase I a second phase of drilling is recommended utilizing rotary or percussion methods.

Respectfully Submitted by:

ERR. DAWSON & ASSOCIATES LTD.

W. Gruenwald, B. Sc. GEOLOGIST

Kamloops, B.C. May 18, 1984.

APPENDIX A

GEOCHEMICAL RESULTS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C.	DATE RECEIVED SEPT 26 1983	adaz
PH:253-3158 TELEX:04-53124	DATE REPORTS MAILED	2110
GEOCHEMICAL A	SSAY CERTIFICATE	/
SAMPLE TYPE : PULP AU+ - 10 GM, IGNITED, HOT AQUA REGIA LEAC	CH MIBK EXTRACTION, AA ANALYSIS.	
ASSAYER DEAN	TOYE, CERTIFIED B.C. ASSAYER	4
KERR DAWSON & ASSOCIATES	FILE # RE: 83-1390 PAGE#	1
SAMPLE	AU* PPB	
11N BL	5	
10+50N BL	5	
ION BL	5	
9N BL	5	
8+50N BL	5	
EN BL	5	
ZN BL	5	
6+50N BL	5	
6N BL	5	
5+50N BL	5	
4+50N BL	5	
4N BL	5	
3+50N BL	5	
3N BL	5	
10N 10W	5	
10N 9+50W	5	
10N 4W	3.	1
10N 8+50W	5	
10N 8W	5	
10N 7W	5	
10N 6+50W	5	
10N 6W	5	
10N 5+50W	5	
10N 5W	5	
10N 4+50W	5 6	
1014 40	3	
10N 3+50W	5	
ION 3W	5	
10N 2W	5	
10N 1+50W	5	
10N 1W	5	
10N 0+50W	5	

-

4

4

SAMPLE	AU* PPB
10N 0+50E 10N 1E 10N 1+50E 10N 2E 10N 2+50E	ភម ភេទ ភេទ ភេទ
10N 3E 10N 3+50E 10N 4E 10N 4+50E 10N 5E	ភេទ ទេទ
5N 10W 5N 9+50W 5N 9W 5N 8+50W 5N 8W	រោម ទា មា មា
5N 7+50W 5N 7W 5N 6+50W 5N 6W 5N 5+50W	រ ា សសារ សារា សារា
5N 5W 5N 4+50W 5N 4W 5N 3+50W 5N 3W	<u>ស</u> ស្រភ្លេស
5N 0+50W 5N 0+50E 5N 1E 5N 1+50E 5N 2E	ទ ា ទា ទា ទា ទា
5N 2+50E 5N 3E 5N 3+50E 5N 4E 5N 4+50E	ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ ភ
SN SE	5

	ACME ANALYTICAL LABOR, ORIES 852 E. HASTINGS, VANCOUVER B.	C. DATE RELEIVED SEPT 26 1983
	PH:253-3158 TELEX:04-53124	DATE REPORTS MAILED
	GEOCHEMICA	L ASSAY CERTIFICATE
	SAMPLE TYPE : PULP	
	AU+ - 10 GM, IGNITED, HOT AQUA	REGIA LEACH MIBK EXTRACTION, AA ANALYSIS.
6	ASSAYER	DEAN TOYE, CERTIFIED B.C. ASSAYER
	KERR DAWSON PROJECT # 28	2 GROUP-LX FILE # RE: 83-1682 PAGE# 1
0	SAMPLE	AU*
		РРВ
	4N 10W	5
	4N 9+50W	5
	4N 9W	5
	4N 8+50W	5
	4N BW	5
	4N 7+50W	5
	4N 7W	5
	4N 6+50W	5
	4N 6W	5
	4N 5+50W	5
22		-
	4N SW	5
	4N 4+30W	5
	4N 4W	5
	4N 3450W	5
	in on	
	3N 10W	5
	3N 9+50W	5
	3N 9W	5
	3N 8+50W	5
	3N BW	5
	7N 7+50M	5
	3N 7H	5
	TN 6+50W	š
	3N AW	Š
	3N 5+50W	5
	3N 5W	5
	3N 4+50W	5
	3N 4W	5
-8	3N 3W	5
	3N 1W	5
	7N 0+50E	5
-	IN 1F	5
	3N 1+50E	5
	3N 2F	5 (
2	3N 2+50E	10
	7N 7E	5
	TN JE	5
2	3N 4F	10
	3N 4+50F	5
	3N 5E	5

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C.	DATE RECEIVED SEPT 26 1983
PH:203-3158 TELEX:04-03124	DATE REPORTS MAILED CONTENTS
GEOCHEMICAL	ASSAY CERTIFICATE
SAMPLE TYPE : PULP	
AU* - 10 6M, IGNITED, HOT AQUA REGIA L	EACH MIBK EXTRACTION, AA ANALYSIS.
ASSAYER DEA	N TOYE, CERTIFIED B.C. ASSAYER
KERR DAWSON PROJECT # 2	82 FILE # RE: 83-1622 PAGE# 1
CAMPLE	011*
SHIPLE	PPB
11N 10W	5
11N 9+50W	5
11N 9W	ວ ຮ
11N BW	5
11N 7+50W	5
11N 7W	5
11N 6+50W	2
11N 6W	5
1110 3+300	5
11N 5W	5
11N 4+50W	5
11N 4W	5
11N 3+50W	5
11N 3W	5
11N 2+50W	5
11N 2W	5
11N 1+50W	5
11N 1W	5
11N 0+50W	5
11N 0+50E	5
11N 1E	5
11N 1+50E	5
11N 2E	5
11N 2+50E	5
11N 3F	5
11N 3+50E	5
11N 4E	5
11N 4+50E	5
11N 5E	5
10N-R 10H	5
10N-B 9+50W	5
10N-B 9W	5
10N-B 8+50W	5 '
10N-B BW	5
10N-D 71E0H	5
10N-B 7W	5
10N-B 6+50W	5

-

8

SAMPLE	AU* PPB
10N-B 6W	5
10N-B 5+50W	5
10N-B 5W	5
10N-B 4+50M	5
TON B 4400W	5
10N-B 4W	5
10N-B 3+50W	5
10N-B 3W	5
10N-B 2+50W	5
10N-B 2W	5
10N-B 1+50W	5
100 0 10	-
ION-B IW	5
10N-B 0+50W	2
9N 0+50E	5
9N 1E	5
9N 1+50E	5
9N 2E	5
9N 2+50F	5
SN 3E	5
ON AE	5
TH HE	5
4N 4+50E	5
9N 5E	5
BN 10W	5
8N 9+50W	5
BN 9W	5
8N 8+50W	5
ON OH	2
BN BW	5
BN 7+50W	5
BN /W	2
8N 6+50W	5
en 6w	5
8N 5+50W	5
BN 5W	5
8N 4+50W	5
BN 4W	5
BN 3+50W	5
an aroow	U
BN 3W	5
8N 2+50W	5

KERR I	DAWSON
--------	--------

SAMPLE	AU*
	PPB
8N 2W	5
8N 1+50W	5
EN 1W	5
BN 0+50W	5
BN 0+50E	5
014 01002	2
8N 1E	5
8N 1+50E	5
BN 2E	5
BN 2+50E	5
AN 3E	5
BN 3+50E	5
BN 4E	5
8N 4+50E	5
BN 5E	5
7N 10W	5
71 0-504	5
	5
	34
7N 8+50W	5
	56
7N 7+50W	5
7N 7W	5
7N 6+50W	5
7N 6W	5
7N 5+50W	5
7N 5W	5
71 4+504	5
7N AW	5
71 3+504	5
751 34	F ,
7N 2W	5
7N 1+50W	5
7N 1W	5
7N 0+50W	5
7N 0+50E	5
7N 1E	5
7N 1+50E	5
7N 2E	5

Accession of the	
KERR	DAWSON

ROJECT # 282 FILE # RE: 3-1622 PAGE# 4

ł.

SAMPLE	AU*	
	PPB	
7N 2+50F	5	
7N 3E	5.	
7N 3+50E	5	
7N AF	5	
7N 4+50F	5	
7N 47B0E	5	
7N SE	5	
7N 5+50E	5	
7N 6E	5	
7N 6+50E	5	
7N 7E	5	
7N 7+50F	5	
TN OF	5	
TN DESOF	5	
TN BESOE	5	
	5	
7N 9+50E	5	
7N 10E	5	
6N 10W	5	
6N 9+50W	5	
6N 9W	5	
6N 8+50W	5	
AN OH	F	
AN 7450H	5	
	5	
GIN /W	2	
6N 6+50W	5	
SN SW	5	
6N 5+50W	5	
6N 5W	5	
6N 4+50W	5	
6N 4W	5	
6N 3+50W	5	
(1) 70	F	
	5	
ON IW	5	
AN OFFOR	2	
EN OTSUE	5	
6N 1E	5	
6N 1+50E	5	
6N 2E	5	
08798 - ULTO	1	

SAMPLE	AU*
	PPB
6N 2+50E	5
6N 3E	5
6N 3+50E	5
6N 4E	5
6N 4+50E	5
6N 5E	5
4N 0+50E	5
4N 1E	5
4N 1+50E	5
4N 2E	5
4N 2+50E	5
4N 3E	5
4N 3+50E	5
4N 4E	5
4N 4+50E	5
4N 5E	5

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

DATE RECEIVED SEPT 8 1983 DATE REPORTS MAILEDQ

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HND3 TO H20 AT 90 DEG.C. FOR I HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : CU, AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -80 MESH.

GROUP-LYNX

ASSAYER

000100 DEAN TOYE, CERTIFIED B.C. ASSAYER

CU

14

12

19

.1

.1

.5

FILE # 83-2060

AG

KERR DAWSON

A

SAMPLE 19N 19N

18N 10W

18N 9+50W 18N 9W

PROJECT # 277

		PPM	PPM
19N	100	12	.3
19N	9+50W	24	. 1
19N	9W	8	.1
19N	8+50W	39	.3
19N	BM	17	. 1
19N	7+50W	18	.1
19N	7W	12	.1
19N	6+50W	13	.1
19N	6W	16	.1
19N	5+50W	24	. 1
19N	5W	11	.2
19N	4+50W	60	.2
19N	4W	11	. 1
19N	3+50W	20	. 1
19N	3W	96	.5
19N	2+50W	68	. 1
19N	2W	8	. 1
19N	1+50W	4	.1
19N	1W	3	. 1
19N	0+50W	5	.1
19N	1E	10	. 4
19N	1+50E	6	. 1
19N	2E	8	.2
19N	2+50E	5	.2
19N	3E	6	.1
19N	3+50E	12	.3
19N	4E	32	. 4
19N	4+50E	5	.2
19N	5+50E	6	. 1
19N	6+50E	2	.3
19N	7+50E	3	.2
19N	8E	10	.1
19N	8+50E	2	. 1
19N	9E	4	. 1
19N	9+50E	10	.1

PAGE# 1

5

12

ŧ

SAMPLE	CU PPM	AG PPM
18N 8+50W	32	.7
18N 8W	24	.8
18N 7+50W	16	.1
18N 6+50W	15	.5
18N 6W	13	.1
18N 5+50W	10	.5
18N 5W	3	.4
18N 4+50W	5	.3
18N 4W	3	.2
18N 3+50W	8	.2
18N 3W	11	.5
18N 2W	14	.1
18N 1+50W	20	.1
18N 1W	11	.1
18N 0+50W	13	.1
18N 0+50E	13	.2
18N 1E	10	.1
18N 1+50E	17	.4
18N 2E	13	.3
18N 2+50E	19	.2
18N 3E	13	.1
18N 3+50E	16	.5
18N 4E	53	.3
18N 4+50E	12	.4
18N 5E	39	.1
18N 7E	23	. 1
18N 7+50E	39	. 1
18N 8E	19	. 1
18N 8+50E	20	. 1
18N 9E	25	. 1
18N 9+50E 18N 10E 17N 10W 17N 9+50W 17N 8+50W	24 14 17 16 24	.3 .1 .2 .3
17N 8W	19	.3
17N 7+50W	18	.1

. .

PLE	CU PPM	AG PPM
7₩	3	.2
6+50W	23	. 6
6W	4	.2
5W	5	.3
4+50W	10	. 1
4W	6	. 1
3+50W	10	.2
ЗW	8	. 1
2+50W	12	.3
2W	6	. 1
1+50W	10	.5
1 W	46	.3
0+50W	27	.3
0+50E	8	. 1
1E	9	.3
1+50E	2	. 1
2E	22	. 1
2+50E	12	- 1
3E	14	. 4
3+50E	7	.3
4E	2	. 1
5E	4	. 1
5+50E	7	. 1
6+50E	6	- 4
8E	8	.5
8+50E	2	. 1
9E	6	- 4
9+50E	14	. 4
10E	10	.3
	PLE 7W 6+50W 6W 5W 4+50W 4+50W 2+50W 2+50W 2+50W 0+50E 1E 1+50E 2+50E 3E 3+50E 4E 5E 5+50E 6+50E 8E 8E 8+50E 9E 9+50E 10E	PLE CU PPM 7W 3 6+50W 23 6W 6H 23 6W 4 4 5W 4 5W 4 4+50W 10 3W 8 2+50W 12 2W 6 1+50W 10 1W 46 0+50W 27 0+50W 27 0+50E 8 1E 9 1+50E 2 2E 22 2+50E 12 3E 14 3+50E 7 4E 2 5E 4 5+50E 7 6+50E 6 8E 8 8+50E 2 9E 14 10E 10

ACME ANALYTICAL LABORAIORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE REPORTS MAILED SA GEOCHEMICAL ASSAY CERTIFICATE

> A .500 6M SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : CU, AG. SAMPLE TYPE : P1 ROCK P2 SOIL

ASSAYER	R Ale	Dup DE	AN T	TOYE, C	ER	TIFIED	B.C.	ASSAYER	
KERR	DAWSON	PROJECT #	282	FILE	E #	83-1903	7	PAGE#	1

SAMPLE	CU	AG	
	PPM	PPM	
00-01	07		Course amined bis securite
AR-01	8/	• • •	Course grande of
AR-02	60		linearty will some 115m
AR-03	295	1.1	Line and, some sea friend
AR-04	24	.2	·
AR-05	6550	20.8	Cpy, mat in I'm zone in C.g. Dio yearle
AR-06	11000	26.0	3 Mont, aplite lyke is bornite, molechete
AR-07	154	.8) source appears local.
AR-08	210	1.1	
AB-09	74	.2	
AR-10	122	.3	- C. growind exercite - chlorite + cpilote on fratures. Near peg lyle is cay, mal.
AR-11	20	.5	and the second
AR-12	118	. 4	
AR-13	246	. 6	
AB-14	298	.5	Limon tic biotite with inclusion in C.9
AR-15	22	. 1	symite.
AR-16	80	.2	
AR-17	5050	12.8	Bio sychite in diacom chalcopyrite/1m.
AR-18	120	.5	
AR-19	35	.5	
AR-20	10	.6)
AR-21	78	.6	
AR-22	20	. 1	
AR-23	138	. 4	
AR-24	106	.5	
AR-25	138	.7	
AR-26	35	. 1	
AR-27	26	. 1	
AR-31	16	.3	
AR-32	25	. 1	

KERR	DAWSC	ON O	GROUP-LX	FILE	# 83	-1907
	SAME	LE			CU	AG
				F	PPM	PPM
	12N	12+50	W		76	.3
	12N	12W			18	.3
	12N	11+50	W		54	. 4
	12N	11W			70	. 4
	12N	10+50	W	1	40	.5
	12N	100			80	.5
	11N	12+50	W		24	.3
	11N	12W			26	. 4
	11N	11+50	W		26	- 1
	11N	11W			28	. 1
	11N	10+50	ω		74	.1
	11N	100		1	130	.3
	8N 1	+50E		E	365	. 6
	5+50	ON OE		1	124	. 1
	5N 8	3W		3	320	.6
	5N ()+50E			270	1.3

PAGE# 2

SAME	PLE	CU	AG	
		PPM	PPM	
16N	9+50E	12	.2	
16N	10E	11	. 4	
15N	0+50E	26	. 6	
15N	1E	18	.5	
15N	1+50E	62	.5	
15N	2F	42	. 6	
15N	2+50F	22	5	
151	75	1.0	5	
1 ENI	3450E	13		
150	AF	13		
13N	46	1.4		
15N	4+50E	22	. 4	
15N	SE	15		
151	SASOE	9		
151	15	15		
101	OE LIEOE	10	- 4	
15N	8+30E	12	. 4	
15N	7E	42	. 6	
15N	7+50F	15	.5	
151	OF	34		
151	0+50E	19	.0	
151	OFJOE	13		
LUN	76	15		
15N	9+50E	12	. 4	
15N	10E	11	.3	
12N	0+50E	20	.2	
12N	1F	14	.3	
12N	1+50F	15	. 4	
1213	1.000			
12N	2E	34	.3	
12N	2+50E	29	. 4	
12N	3E	42	.3	
12N	3+50E	26	.3	
12N	4E	45	.5	
12N	4+50E	60	. 4	
12N	SE	29	.5	
12N	5+50E	38 -	.6	
12N	6E	17	.5	
12N	6+50E	19	.3	
12N	7E	18	.5	
12N	7+50E	12	.5	

÷.

RERK DAWSUN & ASSUL LLES LLD PROJECT # 282 F # 83-	1825	25	PAGE#	3	
--	------	----	-------	---	--

SAMPLE	CU PPM	AG FPM
12N BE	12	. 4
12N 8+50E	14	.3
12N 9E	11	. 1
12N 9+50E	17	.3
12N 10E	10	.2

BEEEANALSTINES, LOBREAUDERES. LTD. PH: 253-3158 TELEX: 04-53124

DATE RECEIVED AUG 17 1983 DATE REPORTS MAILED Aug 20/83

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : CU, AG. SAMPLE TYPE : P1-18 SOLL P19 ROCK

ASSAYER	Ac fleft	DEAN	TOYE,	CERTIFIED	B.C.	ASSAYER
---------	----------	------	-------	-----------	------	---------

KERR DAWSON

SAMPLE

PROJECT # 282

GROUP-LX FILE # 83-1682

PAGE# 1

SHIFLE	PPM	PPM	
52+40N 0+50E	5	.2	
52+40N 1E	6	.3	
52+40N 1+50E	7	. 4	
52+40N 2E	6	.3	
52+40N 2+50E	5	.2	
52+40N 3E	10	.3	
52+40N 4E	7	. 4	
52+40N 4+50E	7	.3	
52+40N 5E	5	. 1	
52+40N 5+50E	7	.2	
52+40N 6E	. 8	. 1	
52+40N 6+50E	6	- 1	
52+40N 7E	5	.3	
52+40N 7+50E	7	.3	
52+40N 8E	9	.2	
52+40N 8+50E	7	.3	
52+40N 9E	8	.2	
52+40N 9+50E	6	.3	
52+40N 10E	7	.3	
52+40N 10+50E	7	.2	
52+40N 10+80E	5	.2	
50N 20W	7	.3	
50N 19+50W	10	.3	
50N 19W	12	. 4	
50N 18+50W	9	. 4	
50N 18W	11	.3	
50N 14W	14	. 4	
50N 13+50W	6	.3	
50N 13W	5	. 1	
50N 12+50W	10	.2	
50N 12W	7	.2	
50N 11+50W	4	. 1	
50N 11W	5	. 1	
50N 10+50W	6	.3	
SON 10W	6	.2	
50N 9+50W	7	.4	
SON 9W	5	.2	
SAMPI	_E	cu	AG
-------	---------	-----	-----
		PPM	PPM
50N 8	8+50W	8	.1
50N 8	ΞW	4	. 1
50N	7+50W	5	.2
SON	714	0	
SON .		15	. 2
JON 4	5+30W	15	
50N 6	5W	6	.2
50N 5	5+50W	8	.2
50N 5	5W	7	.1
50N 4	4+50W	6	.2
50N 4	4 W	8	.3
SON 3	3+50W	6	- 1
SON	τω.	9	
SON .	2+5014	2	
SON A	2+300		• 4
SON .	2W	11	.2
SUN .	1+50W	4	
SON :	1W	6	.2
50N (WOC+SOW	5	.3
45N 3	ZOW	10	.2
45N	19+50W	5	.2
45N	19W	10	. 1
45N	18+50W	13	.2
45N	18W	6	. 1
45N	17+504	7	- 1
45N	16+504	Å	. 1
45N	16W	8	.2
45N	15+50W	5	. 1
45N	15W	4	. 1
45N	14+50W	8	.2
45N	14W	3	. 1
45N	13+50W	4	.1
45N	1 3 W	2	.1
45N	12+50W	5	. 1
45N	12W	5	.2
45N	11+504		.1
451	114	2	. 1
4014		5	• •
45N	10+50W	9	.1
45N	1 OW	8	.1

ŧ.

	SAMPLE	CU PPM	AG PPM	
	45N 9+50W	2	. 1	
	45N 9W	5		
	45N 8+50W	3		
	ASN 7+EON	2	• 4	
	45N 7450W	0		
	45N /W	6	- 4	
	45N 6+50W	5	. 1	
	45N 6W	5	.2	
	45N 5+50W	7	. 1	
S*	45N 4+50W	7	.2	
	45N 4W	2	. 1	
	45N 3+50W	5	.2	
	45N 2+50W	4	.2	
	45N 2W	Ĺ	2	
	45N 1+50W	0 1	. 4	
	AEN 1H	51	• •	
	4514 10	3	.1	
	45N 0+50W	4	.3	
	45N BW	3	. 1	
	45N AW	2	.2	
	45N 0+50E	2	. 1	
	45N 1E	4	. 1	
	45N 1+50E	4	.1	
	45N 2F	5		
	45N 2+50F	7		
	AEN ZE	3		
	45N SE	5	• 1	
	45N 3+50E	5	. 1	
	45N 4E	4	.1	
	45N 4+50E	6	.1	
	45N 5E	5	.1	
	45N 5+50E	3	.1	
	45N 6E	6	.6	
	45N 6+50F	7	1	
	ASN 7E			
	ASN 7450F	5 0		
	AEN DIROF	2	.1	
	45N 8+50E	3	.2	
	45N 9E	3	.1	
	45N 12E	5	.2	
	45N 12+50E	7	.1	
	I TRUCKING I THOUGH THE THE	- TA		

SAM	PLE	CU ' PPM	AG PPM
45N	13E	4	.1
45N	13+50E	4	. 1
45N	14E	3	- 1
45N	14+50E	21	.3
45N	15E	5	. 1
45N	15+50E	5	.2
45N	16E	4	. 4
45N	16+50E	4	.2
45N	17E	2	.2
45N	17+50E	5	. 1
45N	18E	7	.3
45N	18+50E	2	. 1
45N	19E	4	. 1
45N	19+50E	5	.6
45N	20E	5	. 4
40N	200	3	.2
40N	19+50W	2	.1
40N	19W	2	. 1
40N	18W	3	.2
40N	17+50W	2	.1
40N	17W	2	.1
40N	16+50W	4	.3
40N	16W	5	. 4
40N	15+50W	2	.3
40N	15W	7	.3
40N	14+50W	4	.2
40N	14W	2	.2
40N	13+50W	3	.1
40N	13W	6	.1
40N	12W	2	.2
40N	11+50W	5	. 1
40N	11W	4	.1
40N	10+50W	2	.1
40N	10W	3	.1
40N	9+50W	7	.1
40N	9W	5	. 1
40N	8+50W	9	.2

KERR DAWSON & AS	SOL-AIES
------------------	----------

 \hat{V}_{i}

PROJECT # 282 FIL. # 83-1682 PAGE# 5

SAM	PLE	CU PPM	AG PPM	
40N	BW	6	.3	
40N	7+50W	7	.3	
40N	7W	7	. 4	
40N	6+50W	5	.2	
40N	6W	5	. 1	
40N	5+50W	2	. 1	
40N	4+50W	6	. 1	
40N	4W	25	. 4	
40N	3+50W	5	.2	
40N	3W	10	. 4	
40N	2+50W	7	.3	
40N	2W	8	. 1	
40N	1+50W	8	.6	
40N	1W	8	. 1	
40N	0+50W	6	.3	
40N	0+50E	8	. 4	
40N	1E	8	. 1	
40N	1+50E	5	.4	
40N	2E	5	.5	
40N	2+50E	6	. 4	
40N	3E	6	.2	
40N	3+50E	5	. 1	
40N	4E	4	.2	
40N	4+50E	4	. 1	
40N	5E	5	. 1	
40N	5+50E	6	.1	
40N	6E	2	.2	
40N	7E	6	. 1	
40N	7+50E	5	. 1	
40N	8E	6	.1	
40N	8+50E	7	. 1	
40N	9E	6	.2	
40N	9+50E	6	. 1	
40N	10E	4	.3	
40N	10+50E	8	. 1	
40N	11E	6	.1	
40N	11+50E	4	. 1	
	A COLDANS COLDEN	34		

40N 12E 10 .2 40N 12+50E 7 .1 40N 13E 12 .2 40N 14E 10 .2 40N 14E 10 .2 40N 14E 10 .2 40N 14E 10 .2 40N 14E 12 .2 40N 15+50E 8 .1 40N 16E 7 .2 40N 16+50E 7 .2 40N 16+50E 7 .2 40N 17+50E 12 .1 40N 18+50E 8 .1 40N 19+50E 7 .2 40N 19+50E 7 .2 40N 20E 6 .1 35N 18+50W 3 .1 35N 18+50W 5 .2 35N 17+50W 5 .2 35N 14+50W 7 .2 35N 14+50W 7 .2 35N 14+50W 7 .2 35N 14+50W 11 .1 35N 12W 4 .1 35N 11W 6	SAMPLE	CU PPM	AG PPM	
40N 12+50E 7 .1 40N 13E 12 .2 40N 14E 10 .2 40N 14E 10 .2 40N 15E 15 .1 40N 15E 12 .2 40N 15E 12 .2 40N 15E 12 .2 40N 15E 12 .1 40N 16+50E 7 .3 40N 16+50E 7 .2 40N 18E 7 .3 40N 18E 7 .3 40N 19E 9 .2 40N 19E 9 .2 40N 19E 9 .2 40N 19E 9 .2 40N 19F50E 7 .2 40N 19F50E 7 .2 35N 18H50W 5 .2 35N 18H50W 5 .2 35N 15H50W 7 .2 35N 15H50W 7 .2 35N 14H50W 7 .2 35N 14H50W 10 .1 35N 114H50W 8 .1 </td <td>40N 12E</td> <td>10</td> <td>.2</td> <td></td>	40N 12E	10	.2	
40N 13E 12 .2 40N 14E 10 .2 40N 14+50E 15 .1 40N 15E 12 .2 40N 15E 12 .2 40N 15E 12 .2 40N 15E 8 .1 40N 16E 7 .3 40N 16E 7 .2 40N 16E 7 .2 40N 16E 7 .2 40N 16+50E 8 .1 40N 18E 7 .3 40N 19E 9 .2 40N 19E 9 .2 40N 19E 9 .2 40N 19E 9 .2 40N 20E 6 .1 35N 18W 3 .1 35N 17W 9 .1 35N 17W 9 .1 35N 16+50W 7 .2 35N 16W 7 .2 35N 14+50W 10 .1 35N 12W 4 .1 35N 12W 4 .1	40N 12+50E	7	. 1	
$40N \ 14E$ 10 .2 $40N \ 14+50E$ 15 .1 $40N \ 15+50E$ B .1 $40N \ 15+50E$ B .1 $40N \ 15+50E$ B .1 $40N \ 16E$ 7 .3 $40N \ 16+50E$ 7 .2 $40N \ 17+50E$ 12 .1 $40N \ 18+50E$ B .1 $40N \ 19+50E$ 7 .2 $35N \ 18+50W$ 5 .2 $35N \ 17+50W$ 5 .2 $35N \ 16+50W$ 7 .2 $35N \ 16+50W$ 7 .2 $35N \ 15+50W$ 7 .2 $35N \ 14+50W$ 10 .1 $35N \ 13W$ 11 .1 $35N \ 14+50W$ 8 .1 3	40N 13E	12	.2	
40N 14+50E 15 .1 $40N 15E$ 12 .2 $40N 15+50E$ 8 .1 $40N 16E$ 7 .3 $40N 16E$ 7 .2 $40N 16E$ 7 .2 $40N 17+50E$ 12 .1 $40N 18E$ 7 .3 $40N 18E$ 7 .3 $40N 19+50E$ 7 .2 $40N 19+50E$ 7 .2 $40N 20E$ 6 .1 $35N 18+50W$ 5 .2 $35N 18W$ 3 .1 $35N 17+50W$ 5 .2 $35N 17+50W$ 5 .2 $35N 17+50W$ 7 .2 $35N 17+50W$ 7 .2 $35N 15+50W$ 7 .2 $35N 15+50W$ 7 .2 $35N 14W$ 9 .1 $35N 14+50W$ 10 .1 $35N 14+50W$ 8 .1 $35N 12W$ 9 .1 $35N 10W$ 10 .3	40N 14E	10	.2	
40N 15E 12 .2 $40N$ 16E 7 .3 $40N$ 16E 7 .2 $40N$ 16+50E 7 .2 $40N$ 17+50E 12 .1 $40N$ 18E 7 .3 $40N$ 18E 7 .3 $40N$ 18E 7 .3 $40N$ 18E 7 .3 $40N$ 18E 7 .2 $40N$ 19E 9 .2 $40N$ 19E 7 .2 $40N$ 19E 7 .2 $40N$ 19E 7 .2 $35N$ 18W 3 .1 $35N$ 18W 3 .1 $35N$ 17W 9 .1 $35N$ 16+50W 7 .2 $35N$ 15W 7 .2 $35N$ 15W 7 .2 $35N$ 15W 7 .2 $35N$ 15W	40N 14+50E	15	.1	
40N 15+50E 8 .1 40N 16+50E 7 .2 40N 17+50E 12 .1 40N 18E 7 .3 40N 17+50E 12 .1 40N 18E 7 .3 40N 18F50E 8 .1 40N 19E 9 .2 40N 19E 7 .2 35N 18W 3 .1 35N 18W 3 .1 35N 18W 3 .1 35N 16W 5 .2 35N 15+50W 7 .2 35N 15H 9 .1 35N 14+50W 10 .1 35N 14+50W 9 .	40N 15E	12	.2	
40N 16E 7 .3 40N 16+50E 7 .2 40N 17+50E 12 .1 40N 18E 7 .3 40N 19E 9 .2 40N 19E 7 .2 40N 20E 6 .1 35N 18+50W 5 .2 35N 18+50W 5 .2 35N 17W 7 .1 35N 16+50W 7 .2 35N 16W 7 .2 35N 16W 7 .2 35N 15H 7 .1 35N 16W 7 .2 35N 14+50W 10 .1 35N 13W 11 .1 35N 14W 9 .1 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 10W 10 .3 <t< td=""><td>40N 15+50E</td><td>8</td><td>. 1</td><td></td></t<>	40N 15+50E	8	. 1	
40N $16+50E$ 7 $.2$ $40N$ $17+50E$ 12 $.1$ $40N$ $18+50E$ 8 $.1$ $40N$ $19E$ 9 $.2$ $40N$ $20E$ 6 $.1$ $35N$ $18+50W$ 5 $.2$ $35N$ $18W$ 3 $.1$ $35N$ $16+50W$ 7 $.2$ $35N$ $16+50W$ 7 $.2$ $35N$ $14+50W$ 10 $.1$ $35N$ $14+50W$ 11 $.1$ $35N$ $114W$ 9 $.1$ $35N$ $11+50W$ 9 $.1$ $35N$ $10+50W$ 9 $.1$	40N 16E	7	.3	
$40N \ 17+50E$ $12 \ .1$ $40N \ 18E$ 7 .3 $40N \ 18+50E$ 8 .1 $40N \ 19E$ 9 .2 $40N \ 19+50E$ 7 .2 $40N \ 20E$ 6 .1 $35N \ 18+50W$ 5 .2 $35N \ 18+50W$ 5 .2 $35N \ 18+50W$ 5 .2 $35N \ 17+50W$ 5 .2 $35N \ 17W$ 9 .1 $35N \ 16+50W$ 4 .1 $35N \ 16+50W$ 7 .2 $35N \ 15+50W$ 7 .2 $35N \ 15+50W$ 7 .2 $35N \ 15+50W$ 9 .1 $35N \ 14W$ 9 .1 $35N \ 14W$ 9 .1 $35N \ 12W$ 4 .1 $35N \ 11W$ 6 .2 $35N \ 11W$ 6 .2 $35N \ 10W$ 10 .3 $35N \ 10W$ 10 .3 $35N \ 9W$ 9 .1 $35N \ 9W$ 9	40N 16+50E	7	.2	
40N $18E$ 7.3 $40N$ $18+50E$ 8.1 $40N$ $19E$ 9.2 $40N$ $20E$ 6.1 $35N$ $18+50W$ 5.2 $35N$ $18W$ 3.1 $35N$ $18+50W$ 5.2 $35N$ $17W$ 9.1 $35N$ $16W$ 5.2 $35N$ $16+50W$ 4.1 $35N$ $15+50W$ 7.2 $35N$ $15W$ 9.1 $35N$ $15+50W$ 7.2 $35N$ $15W$ 9.1 $35N$ $14W$ 9.1 $35N$ $13+50W$ 10.1 $35N$ $13+50W$ 11.1 $35N$ $13+50W$ 9.1 $35N$ $10+50W$ 9.1 $35N$ $10+50W$ 9.1 $35N$ $10+50W$ 9.1 $35N$ $9W$ 9.2 $35N$ $8+50W$ 9.2 $35N$ $8+50W$ 9.2 $35N$ $8+50W$ 9.2	40N 17+50E	12	. 1	
40N 18+50E 8 .1 40N 19E 9 .2 40N 19+50E 7 .2 40N 20E 6 .1 35N 18+50W 5 .2 35N 18W 3 .1 35N 18+50W 5 .2 35N 17W 9 .1 35N 17+50W 5 .2 35N 17+50W 9 .1 35N 16+50W 4 .1 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15W 9 .1 35N 14+50W 10 .1 35N 13W 11 .1 35N 13W 11 .1 35N 14+50W 8 .1 35N 12W 4 .1 35N 11W 10 .3 35N 10W 9 <td>40N 18E</td> <td>7</td> <td>.3</td> <td></td>	40N 18E	7	.3	
40N 19E 9 .2 40N 19+50E 7 .2 40N 20E 6 .1 35N 18+50W 5 .2 35N 18W 3 .1 35N 18W 3 .1 35N 17W 5 .2 35N 17W 9 .1 35N 17W 9 .1 35N 16+50W 4 .1 35N 16+50W 7 .2 35N 16+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15W 9 .1 35N 14+50W 10 .1 35N 13+50W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 10W 10 .3 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	40N 18+50E	8	. 1	
40N $19+50E$ 7 $.2$ $40N$ $20E$ 6 $.1$ $35N$ $18+50W$ 3 $.1$ $35N$ $18W$ 3 $.1$ $35N$ $18W$ 3 $.1$ $35N$ $17W$ 9 $.1$ $35N$ $16+50W$ 4 $.1$ $35N$ $16+50W$ 4 $.1$ $35N$ $16+50W$ 7 $.2$ $35N$ $15+50W$ 7 $.2$ $35N$ $15+50W$ 7 $.2$ $35N$ $15+50W$ 7 $.2$ $35N$ $15+50W$ 7 $.2$ $35N$ $14+50W$ 9 $.1$ $35N$ $14W$ 9 $.1$ $35N$ $12W$ 4 $.1$ $35N$ $12W$ 4 $.1$ $35N$ $10W$ 10 $.3$ $35N$ $10+50W$ 9 $.1$ $35N$ $8+50W$ 9 $.2$ <td>40N 19E</td> <td>9</td> <td>.2</td> <td></td>	40N 19E	9	.2	
40N 20E 6 .1 35N 18+50W 3 .1 35N 18W 3 .1 35N 18W 3 .1 35N 17W 9 .2 35N 17W 9 .1 35N 17W 9 .1 35N 17W 9 .1 35N 16+50W 4 .1 35N 16+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 7 .1 35N 15+50W 7 .1 35N 14+50W 10 .1 35N 13+50W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 10W 10 .3 35N 10W 10 .3 35N 9+50W 12 .1 35N 9W 9 .2 35N 8W 10 .2	40N 19+50E	7	.2	
35N 18+50W 5 .2 35N 18W 3 .1 35N 17+50W 5 .2 35N 17W 9 .1 35N 16+50W 4 .1 35N 16+50W 4 .1 35N 16+50W 7 .2 35N 15+50W 9 .1 35N 14+50W 10 .1 35N 13+50W 11 .1 35N 13+50W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 10+50W 9 .1 35N 10W 10 .3 35N 10W 10 .3 35N 8+50W 9 .2 35N 8W	40N 20E	6	.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35N 18+50W	5	.2	
35N 17+50W 5 .2 35N 17W 9 .1 35N 16+50W 4 .1 35N 16+50W 4 .1 35N 16+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15W 9 .1 35N 15W 9 .1 35N 14+50W 10 .1 35N 14+50W 10 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 10+50W 9 .1 35N 10W 10 .3 35N 9W 9 .1 35N 8+50W 9 .2 35N 8H 9 .2 35N 8W 10 .2	35N 18W	3	. 1	
35N 17W 9 .1 35N 16+50W 4 .1 35N 16+50W 5 .2 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 7 .2 35N 15+50W 9 .1 35N 14+50W 10 .1 35N 13+50W 11 .1 35N 13+50W 11 .1 35N 13+50W 11 .2 35N 13+50W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 11+50W 8 .1 35N 10+50W 9 .1 35N 10+50W 10 .3 35N 9+50W 12 .1 35N 8+50W 9 .2 35N 8H 9 .2 35N 8W 10 .2	35N 17+50W	5	.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35N 17W	9	. 1	
35N 16W 5 .2 35N 15+50W 7 .2 35N 15W 9 .1 35N 14+50W 10 .1 35N 14+50W 10 .1 35N 14+50W 9 .1 35N 14W 9 .1 35N 13+50W 11 .1 35N 13W 11 .2 35N 13W 11 .2 35N 12W 4 .1 35N 11+50W 8 .1 35N 10+50W 9 .1 35N 10+50W 9 .1 35N 10H 10 .3 35N 10H 10 .3 35N 10W 10 .3 35N 9W 9 .1 35N 9W 9 .2 35N 8W 10 .2	35N 16+50W	4	.1	
35N 15+50W 7 .2 35N 15W 9 .1 35N 14+50W 10 .1 35N 14+50W 9 .1 35N 14W 9 .1 35N 14W 9 .1 35N 14W 9 .1 35N 13W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 11HW 6 .2 35N 10H 9 .1 35N 10H 10 .3 35N 10H 10 .3 35N 9H 9 .1 35N 9H 9 .1 35N 9H 9 .2 35N 8H50W 9 .2 35N 8W 10 .2	35N 16W	5	.2	
35N 15W 9 .1 35N 14+50W 10 .1 35N 14W 9 .1 35N 13W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 10+50W 9 .1 35N 10+50W 9 .1 35N 10W 10 .3 35N 9W 9 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 15+50W	7	.2	
35N 14+50W 10 .1 35N 14W 9 .1 35N 13+50W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 10+50W 9 .1 35N 10+50W 9 .1 35N 10+50W 9 .1 35N 10+50W 9 .1 35N 10W 10 .3 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 15W	9	. 1	
35N 14W 9 .1 35N 13+50W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 11+50W 6 .2 35N 10+50W 9 .1 35N 10W 10 .3 35N 10W 10 .3 35N 9W 9 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 14+50W	10	. 1	
35N 13+50W 11 .1 35N 13W 11 .2 35N 12W 4 .1 35N 12W 4 .1 35N 11+50W 8 .1 35N 11+50W 9 .1 35N 10+50W 9 .1 35N 10+50W 10 .3 35N 10W 10 .3 35N 9+50W 9 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 14W	9	.1	
35N 13W 11 .2 35N 12W 4 .1 35N 11+50W 8 .1 35N 11+50W 8 .1 35N 11W 6 .2 35N 10+50W 9 .1 35N 10W 10 .3 35N 10W 10 .3 35N 7+50W 12 .1 35N 7W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 13+50W	11	. 1	
35N 12W 4 .1 35N 11+50W 8 .1 35N 11W 6 .2 35N 10+50W 9 .1 35N 10+50W 9 .1 35N 10W 10 .3 35N 9+50W 12 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 13W	11	.2	
35N 11+50W 8 .1 35N 11W 6 .2 35N 10+50W 9 .1 35N 10W 10 .3 35N 9+50W 12 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 12W	4	. 1	
35N 11W 6 .2 35N 10+50W 9 .1 35N 10W 10 .3 35N 9+50W 12 .1 35N 9W 9 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 11+50W	8	. 1	
35N 10+50W 9 .1 35N 10W 10 .3 35N 9+50W 12 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 11W	6	.2	
35N 10W 10 .3 35N 9+50W 12 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 10+50W	9	. 1	
35N 9+50W 12 .1 35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 10W	10	.3	
35N 9W 9 .1 35N 8+50W 9 .2 35N 8W 10 .2	35N 9+50W	12	.1	
35N 8+50W 9 .2 35N 8W 10 .2	35N 9W	9	. 1	
35N 8W 10 .2	35N 8+50W	9	.2	
	35N 8W	10	.2	
35N 7+50W 19 .4	35N 7+50W	19	. 4	

.

	SAMPLE	CU	AG PPM	
	35N 7W	6	. 1	
	35N 6+50W	8	.3	
	35N 6W	7	. 4	
	35N 5+50W	7	.5	
	35N 5W	14	.3	
	35N 4+50W	12	.5	
	35N 4W	10	.3	
	35N 3+50W	20	.6	
2	35N 3W	6	.3	
	35N 2+50W	8	.3	
	35N 2W	7	. 1	
	35N 1+50W	9	. 1	
	35N 1W	6	.2	
	35N 0+50W	7	.2	
	35N 0+50E	10	.2	
	35N 1+50E	5	.3	
	35N 2E	5	. 1	
	35N 2+50E	6	.2	
	35N 3E	4	.2	
	35N 4E	7	.1	
	35N 4+50E	19	. 4	
	35N 5E	6	. 1	
	35N 5+50E	7	.2	
	35N 6E	8	.2	
	35N 6+50E	7	.2	
	35N 7E	4	. 1	
	35N 7+50E	9	. 1	
	35N 8E	6	.1	
	35N 8+50E	7	.2	
	35N 9E	3	.2	
	35N 9+50E	6	.3	
	35N 10E	6	. 4	
	35N 10+50E	7	.6	
	35N 11E	6	.2	
	35N 11+50E	8	.3	
	35N 12E	9	.2	

SAMF	٩LE		CU PPM	AG PPM
35N	13E		10	.1
35N	13+50E		6	. 1
35N	14E		14	. 1
35N	14+50E		9	.2
35N	15E		30	. 1
35N	15+50E		11	.3
35N	16E		7	.2
35N	16+50E		5	. 1
35N	17E		46	. 1
35N	17+50E		6	. 1
35N	18E		12	. 1
35N	18+50E		6	. 1
35N	19E		4	. 1
35N	19+50E		5	. 1
35N	20E		6	. 1
30N	200		2	. 1
30N	19+50W		2	.2
30N	19W		6	. 1
30N	18+50W		2	.1
30N	18W		2	. 1
30N	17+50W		6	.1
30N	17W		2	. 1
30N	16+50W		2	. 1
30N	16W		2	. 1
30N	15+50W		4	. 1
30N	15W		5	. 1
30N	14+50W	- 2	7	. 1
30N	14W		3	. 1
30N	13W		3	.1
30N	12+50W		2	. 1
30N	12W		4	.1
30N	11+50W		3	. 1
30N	11W		5	. 1
30N	10+50W		3	.1
30N	100		5	. 1
30N	9+50W		15	. 1
30N	9W		4	.1

.

÷

	SAMPLE	CU PPM	AG	
	30N 8+50W	7	А	
	JON BW	É.		
	JON JU	57		
	SON /W	3	• 2	
	30N 6+50W	2	.3	
	JON 6W	13	.2	
	30N 5+50W	3	.1	
	30N 5W	8	. 4	
	30N 4+50W	5	.1	
	JON AW	4	1	
	30N 3+50H	ě	• •	
	SON STOOM	5	• •	
	JON JW	2	. 1	
	30N 2+50W	5		
	TON 2W	7		
	JON 2W		- 1	
	30N 1+50W	23	.2	
	JON 1W	3	.2	
	30N 0+50W	7	.1	
	30N 0+50E	7	. 2	
	SON 1E	5		
	JON 1+505	5	• •	
	JON 1450E	2	• 4	
	SON 2E	в	.1	
	30N 2+50E	11	.1	
	30N 3E	7	1	
	30N 3+50F	12		
	SON AF	12		
	SON 4E	в	- 1	
	30N 4+50E	4	.1	
	30N 5E	21	.1	
	30N 5+50E	15	.1	
	JON 6E	19	3	
	JON 7E	12		
	JON 7. FOF	15	• •	
	30N 7+30E	15	• 1	
	30N BE	10	. 1	
	30N 10+50E	30	. 1	
	30N 11E	12	. 7	
	30N 11+50F			
	JON 12E	0	• •	
	SUN 12E	7	• 1	
	30N 12+50E	13	.2	
	30N 13E	15	- 1	

SAMP	PLE	CU PPM	AG PPM	
30N	13+50E	27	. 6	
30N	14E	5	. 4	
30N	14+50E	11	- 4	
30N	15E	14	.5	
30N	15+50E	8	.3	
30N	16E	4	.2	
30N	16+50E	11	. 3	
30N	17E	9	. 4	
30N	17+50E	6	.2	
30N	18E	10	.2	
30N	18+50E	8	.3	
30N	19E	7	.2	
30N	19+50E	5	. 1	
30N	20E	6	.2	
25N	200	2	. 1	
25N	19+50W	4	.2	
25N	19W	5	. 3	
25N	18+50W	4	.3	
25N	180	2	.2	
25N	17+50W	3	.3	
25N	17W	2	. 1	
25N	16+50W	2	. 1	
25N	160	8	-2	
25N	15+50W	2	.1	
25N	15W	2	.3	
25N	14+50W	3	. 1	
25N	14W	8	.2	
25N	13+50W	2	. 1	
25N	13W	6	.3	
25N	12+50W	6	.3	
25N	12W	10	. 4	
25N	11+50W	8	.3	
25N	11W	5	.3	
25N	10+50W	6	.3	
25N	100	10	.2	
25N	9+50W	4	. 1	
25N	9W	3	. 1	
		-		

SAMPLE	CU PPM	AG PPM
25N 8+50W 25N 8W 25N 7+50W 25N 7W 25N 6+50W	2 8 5 2 6	.1 .2 .2 .1 .2
25N 6W 25N 5+50W 25N 5W 25N 4+50W 25N 4W	7 5 8 7 12	.1 .3 .3
25N 3+50W 25N 3W 25N 2+50W 25N 2W 25N 1+50W	20 8 8 6 6	.4 .2 .3 .3
25N 1W 25N 0+50W 25N AE 25N BE 25N 0+50E	4 8 21 7 13	.2 .1 .2 .1 .1
25N 1E 25N 1+50E 25N 2E 25N 3E 25N 3+50E	8 9 12 17 14	.2 .2 .2 .1
25N 4E 25N 4+50E 25N 6E 25N 6+50E 25N 7E	16 13 8 7 10	.2 .1 .2 .1
25N 7+50E 25N 8E 25N 8+50E 25N 9E 25N 10E	12 6 11 9 9	.2 .1 .1 .3 .1
25N 10+50E 25N 11E	6 13	.3 .2

SAM	PLE	CU PPM	AG PPM	
25N	11+50E	6	- 1	
25N	12F	28	4	
251	12+505	20		
ZUN	124006	*	• 2	
ZON	ISE	4	. 2	
25N	13+50E	5	. 1	
25N	14E	8	. 1	
25N	14+50E	6	.2	
25N	15E	11	. 4	
25N	15+50E	8	.2	
25N	16E	 7	. 1	
25N	16+50E	10	.1	
25N	17E	5	. 1	
25N	17+50F	6	. 2	
25N	IRE	4		
DEN	TOLEOF		• •	
2514	18+505	4	.1	
25N	19E	6	. 1	
25N	19+50E	5	. 1	
25N	20E	7	. 1	
20N	20W	4	. 1	
20N	19+50W	3	. 1	
20N	19W	9	. 1	
20N	18+504	8	- 2	
201	194	74		
201	17+504	56	• •	
2014	174000	0	• •	
201	17W	5	. 1	
20N	16+50W	6	. 1	
20N	16W	5	.2	
20N	15+50W	32	.2	
20N	15W	9	.2	
20N	14+50W	7	. 1	
20N	1.4.4	र	1	
2014	TAFON	5	• •	
ZUN	13+50W	1		
200	13W	6	. 1	
20N	12+50W	10	.2	
20N	12W	5	. 1	
20N	11+50W	11	. 1	
20N	11W	6	. 1	
100000	1912-1920	177 C.	0.1	

	SAMPLE	CU PPM	AG PPM
	20N 10+50W	12	.2
	20N 10W	11	.3
	20N 9+50W	12	.3
	20N 9W	9	.2
	20N 8+50W	14	.3
	20N BW	11	.2
	20N 7+50W	40	.3
	20N 7W	28	.3
11412	20N 6+50W	24	.3
	20N 6W	11	.2
	20N 5+50W	13	.3
	20N 5W	14	.3
	20N 4+50W	43	. 4
	20N 4W	10	.2
	20N 3+50W	10	.2
	20N 3W	6	. 1
	20N 2+50W	19	. 1
	20N 1+50W	6	.2
	ZON 1W	9	.3
	20N 0+50W	6	.2
	20N 0+50E	32	.3
	20N 1E	8	.2
	20N 1+50E	7	. 1
	20N 2E	11	.2
	20N 2+50E	16	.2
	20N 3E	10	.2
	20N 3+50E	11	.2
	20N 4E	3	. 1
	20N 4+50E	7	.2
	20N 5+50E	33	.2
	20N 6E	11	.2
	20N 6+50E	32	.2
	20N 7+50E	20	.3
	20N BE	10	.2
	20N 8+50E	12	.2
	20N 9E	12	.2
	20N 9+50E	22	.3

KERR DAWSON & ASSOCIATES PROJECT # 282 FILL # 83-1682 PAGE# 14

SAMPLE	CU PPM	AG PPM	
20N 10E 20N 10+50E 20N 11E	11 11 12	.1 .2 .2	
20N 11+50E 20N 12E	12	.1	
20N 12+50E	7	. 1	
20N 13+50F	11	.2	
20N 14E	4	.1	
20N 14+50E	7	.1	
20N 15E	9	. 1	
20N 15+50E	8	- 1	
20N 16E	8	- 1	
20N 16+50E	8	- 1	
20N 17E	/	.1	
20N 17+50E	5	. 1	
20N 18E	8	. 1	
20N 18+50E	7	. 1	
20N 19+50E	7	.2	
20N 20E	8	.2	
4N 10W	86	.6	
4N 9+50W	12	.2	
4N 9W	13	.2	
4N 8+50W	16	.2	
4N BW	15	.2	
4N 7+50W	19	.3	
4N 7W	47	.2	
4N 6+50W	98	.5	
4N 6W	15	- 2	
4N 5+50W	/	• 1	
4N 5W	22	. 1	
4N 4+50W	12	.2	
4N 4W	186	.3	
4N 3+50W	22	. 1	
4N 3W	12	. 1	
3N 10W	17	.3	
3N 9+50W	14	.2	
3N 9W	13	.2	

	KERR	DAWSON	8	ASSOL.	ATE
--	------	--------	---	--------	-----

P	ΔG	E#	- 1	-
	80	E. 11		.

5	AMPLE	CU PPM	AG PPM	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	N 8+50W N 8W N 7+50W N 7W N 6+50W	11 14 37 27 30	.3 .4 .2 .5 .2	
3 3 3 3 3 3 3 3 3	N 6W N 5+50W N 5W N 4+50W N 4W	22 19 11 31 30	.4 .1 .1 .1 .1	
3 3 3 3 3 3	N 3W N 1W N 0+50E N 1E N 1+50E	22 25 5 8	.4 .5 .2 .1 .2	*
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	N 2E N 2+50E N 3E N 3+50E N 4E	44 19 33 24 8	. 4 . 1 . 4 . 1 . 3	14
3 3 3 3 3 3 3 3 3 3 3 3	N 4+50E N 5E N 5+50E N 6E N 6+50E	15 26 11 9 7	.2 .4 .3 .2 .3	• 51
3 3 3 3 3 3 3 3	N 7E N 7+50E N 8E N 8+50E N 9E	10 13 10 9 7	.2 .3 .2 .1	
3 3 2 2 2 2	N 9+50E N 10E N 10W N 9+50W N 9W	6 11 12 10 10	.332223	
222	N 8+50W N 8W	9 8	.2 .3	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE	CU PPM	AG PPM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 7+50W	18	.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 7W	37	.3
2N 6W 12 14 2N 5+50W 14 .3 2N 5W 7 .1 2N 4+50W 7 .1 2N 4+50W 7 .1 2N 4+50W 7 .1 2N 4W 26 .2 2N 2+50W 9 .1 2N 2W .30 .1 2N 2W .30 .1 2N 2W .30 .1 2N 14 .2 .2 2N 14 .2 .2 2N 0+50W .23 .2 2N 0+50E .17 .1 2N 1E .10 .2 2N 1E .33 .3 2N 2E .38 .3 2N 2E .38 .3 2N 2E .18 .3 2N 2SE .13 .1 2N 5E .13 .1	2N 6+50W	12	. 1
2N $5+50W$ 14 .3 2N $5+50W$ 7 .1 2N $4+50W$ 7 .1 2N $4+50W$ 7 .1 2N $4+50W$ 7 .1 2N $4W$ 26 .2 2N $2+50W$ 9 .1 2N $2W$.30 .1 2N $2W$.30 .1 2N $2W$.30 .1 2N $2W$.30 .1 2N $1+50W$ 17 .2 2N $1+50W$.23 .2 2N $0+50W$.23 .2 2N $1+50E$.18 .3 2N $2E$.38 .3 2N $2E$.18 .3 2N $2E$.18 .3 2N $2E$.18 .3 2N $4E$.13 .3 2N $4E$.13 .1 2N $4E$ <	2N AW	15	
2N 5W 7 .1 2N 4+50W 7 .1 2N 4W 26 .2 2N 2+50W 9 .1 2N 2W 30 .1 2N 1+50W 17 .2 2N 1+50W 17 .2 2N 0+50W 23 .2 2N 0+50E 17 .1 2N 0+50E 17 .1 2N 0+50E 18 .3 2N 1+50E 18 .3 2N 2E 38 .3 2N 2E 18 .3 2N 3E 18 .3 2N 3E 18 .3 2N 3E 18 .3 2N 3E 18 .3 2N 4E 13 .1 2N 5E 60 .2 2N 5F50E 13 .1 2N 6E 7 .1 2N 7E 9 .1 2N 7E 9 .1 2N 8E 10 .1 2N 8E 10 .1 1N 9+50W	2N 5+50W	14	.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 5W	7	. 1
2N 4W 26 .2 2N 2+50W 9 .1 2N 2W 30 .1 2N 1+50W 17 .2 2N 1+50W 23 .2 2N 0+50W 23 .2 2N 0+50E 17 .1 2N 1E 110 .2 2N 1+50E 18 .3 2N 1E 110 .2 2N 1+50E 18 .3 2N 2E 38 .3 2N 2E 38 .3 2N 2E 14 .2 2N 3E 18 .3 2N 3E 18 .3 2N 4E 13 .3 2N 4E 13 .3 2N 5E 60 .2 2N 5E 60 .2 2N 6E 12 .1 2N 6E 7 .1 2N 7F 9 .1 2N 7F50E 13 .1 2N 8F50E 5 .1 1N 7W 10 .1 1N 7+50W	2N 4+50W	7	. 1
2N 2+50W 9 .1 2N 2W 30 .1 2N 1+50W 17 .2 2N 1W 49 .1 2N 0+50W 23 .2 2N 0+50E 17 .1 2N 1E 110 .2 2N 1+50E 18 .3 2N 1E 110 .2 2N 1+50E 18 .3 2N 2E 38 .3 2N 2+50E 14 .2 2N 3E 18 .3 2N 4E 13 .3 2N 3E 18 .3 2N 4E 13 .3 2N 4E 13 .3 2N 5E 6 .2 2N 5+50E 13 .1 2N 6E 7 .1 2N 7E 9 .1 2N 7E 9 .1 2N 8E 10 .1 2N 8E 10 .1 1N 9+50W 10 .2 1N 7+50W 15 .2 1N 7+50W <td>2N 4W</td> <td>26</td> <td>.2</td>	2N 4W	26	.2
2N 2W 30 .1 2N 1+50W 17 .2 2N 1W 49 .1 2N 0+50W 23 .2 2N 0+50E 17 .1 2N 1E 110 .2 2N 1+50E 18 .3 2N 1+50E 18 .3 2N 2E 38 .3 2N 2+50E 14 .2 2N 3E 18 .3 2N 3E 18 .3 2N 3E 18 .3 2N 3E 18 .3 2N 4E 13 .3 2N 4E 13 .3 2N 5E 6 .1 2N 5E 6 .1 2N 6E 7 .1 2N 7E 9 .1 2N 7E 9 .1 2N 8E 10 .1 2N 8E 10 .1 2N 8+50E 5 .1 1N 9W 8 .1 1N 7+50W 15 .2 1N 7+50W <	2N 2+50W	9	. 1
2N 1+50W 17 .2 2N 1W 49 .1 2N 0+50E 17 .1 2N 1E 110 .2 2N 1E 110 .2 2N 1+50E 18 .3 2N 2E 38 .3 2N 2E 38 .3 2N 2+50E 14 .2 2N 3E 18 .3 2N 3E 18 .3 2N 3E 18 .3 2N 3E 18 .3 2N 3E 6 .1 2N 4E 13 .3 2N 4E 13 .3 2N 5E 60 .2 2N 5+50E 13 .1 2N 6E 7 .1 2N 7E 9 .1 2N 7E 9 .1 2N 8E 10 .1 2N 8+50E 5 .1 1N 10W 10 .2 1N 9+50W 10 .1 1N 8+50W 15 .2 1N 7+50W	2N 2W	30	. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 1+50W	17	.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 1W	49	. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 0+50W	23	.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 0+50E	17	- 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 1E	110	.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 1+50E	18	.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 2E	38	.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 2+50E	14	.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 3E	18	.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 3+50E	7	.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 4E	13	.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2N 4+50E	6	. 1
2N 5+50E 13 .1 2N 6E 12 .1 2N 6E 7 .1 2N 7E 9 .1 2N 7E 10 .1 2N 8E 10 .1 2N 8E 5 .1 1N 10W 10 .2 1N 9+50W 10 .1 1N 9+50W 15 .2 1N 7+50W 8 .1 1N 7+50W 8 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 5E	60	.2
2N 6E 12 .1 2N 6+50E 7 .1 2N 7E 9 .1 2N 7E 9 .1 2N 7E 9 .1 2N 7E 9 .1 2N 7E 13 .1 2N 7E 10 .1 2N 7+50E 10 .1 2N 8E 10 .1 1N 9H 10 .2 1N 9+50W 10 .1 1N 9W 8 .1 1N 9W 8 .1 1N 9H 15 .2 1N 7+50W 8 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 5+50E	13	. 1
2N 6+50E 7 .1 2N 7E 9 .1 2N 7+50E 13 .1 2N 8E 10 .1 2N 8E 5 .1 1N 10W 10 .2 1N 9+50W 10 .1 1N 9W 8 .1 1N 9W 8 .1 1N 9W 8 .1 1N 9W 8 .1 1N 7+50W 15 .2 1N 7+50W 8 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 6E	12	. 1
2N 7E 9 .1 2N 7+50E 13 .1 2N 8E 10 .1 2N 8E 5 .1 1N 10W 10 .2 1N 9+50W 10 .1 1N 9W 8 .1 1N 9W 8 .1 1N 9W 8 .1 1N 7+50W 15 .2 1N 7+50W 8 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 6+50E	7	. 1
2N 7+50E 13 .1 2N 8E 10 .1 2N 8+50E 5 .1 1N 10W 10 .2 1N 9+50W 10 .1 1N 9W 8 .1 1N 8+50W 15 .2 1N 7+50W 8 .1 1N 7+50W 10 .1 1N 7W 10 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 7E	9	. 1
2N BE 10 .1 2N B+50E 5 .1 1N 10W 10 .2 1N 9+50W 10 .1 1N 9W 8 .1 1N 8+50W 15 .2 1N 7+50W B .1 1N 7+50W 10 .1 1N 7W 10 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 7+50E	13	. 1
2N B+50E 5 .1 1N 10W 10 .2 1N 9+50W 10 .1 1N 9W 8 .1 1N 8+50W 15 .2 1N 7+50W B .1 1N 7+50W 10 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 8E	10	. 1
1N 10W 10 .2 1N 9+50W 10 .1 1N 9W 8 .1 1N 8+50W 15 .2 1N 7+50W 8 .1 1N 7W 10 .1 1N 7W 10 .1 1N 6+50W 13 .2	2N 8+50E	5	.1
1N 9+50W 10 .1 1N 9W 8 .1 1N 9+50W 15 .2 1N 7+50W 8 .1 1N 7W 10 .1 1N 7W 10 .1 1N 6+50W 13 .2	1N 10W	10	.2
1N 9W 8 .1 1N 8+50W 15 .2 1N 7+50W 8 .1 1N 7W 10 .1 1N 6+50W 13 .2	1N 9+50W	10	.1
1N B+50W 15 .2 1N 7+50W B .1 1N 7W 10 .1 1N 7W 13 .2	1N 9W	8	.1
1N 7+50W B .1 1N 7W 10 .1 1N 6+50W 13 .2	1N 8+50W	15	.2
1N 7W 10 .1 1N 6+50W 13 .2	1N 7+50W	в	. 1
1N 6+50W 13 .2	1N 7W	10	. 1
	1N 6+50W	13	.2

KERR DAWSON & ASSOLIATES PROJECT # 282 FILL # 83-1682 PAGE# 17

1N 6W 8 .1 1N 5+50W 6 .1 1N 5W 6 .1 1N 5W 6 .1 1N 750W 10 .1 1N 70 38 .1 1N 1+50W 38 .1 1N 1+50W 38 .1 1N 0+50W 17 .1 1N 0+50W 17 .1 1N 0+50E 21 .2 1N 11 12 .2 1N 12 .2 .1 1N 25 .1 .1 1N 250E 16 .1 1N 4E 12 .1	SAMPLE	CU PPM	AG PPM
IN 5+50W 6 .1 IN 5W 6 .1 IN 5W 6 .1 IN 4+50W 10 .1 IN 4+50W 10 .1 IN 3+50W 10 .1 IN 3W 16 .1 IN 3W 16 .1 IN 2W 9 .1 IN 2W 9 .1 IN 2W 9 .1 IN 1+50W 38 .1 IN 0+50W 17 .1 IN 0+50E 21 .2 IN 1E 23 .3 IN 0+50E 21 .2 IN 1E 23 .3 IN 2E 15 .1 IN 2E 15 .1 IN 2E 23 .2 IN 3E 112 .2 IN 4E 5 .1 IN 4E 5 .1 IN 4E 10 .1 IN 7E 5 .2 IN 7F 1 .1 IN 9E 1 </td <td>1N 6W</td> <td>B</td> <td>. 1</td>	1N 6W	B	. 1
IN 5W 6 .1 IN 4+50W 10 .1 IN 4+50W 10 .1 IN 4W 6 .1 IN 3+50W 10 .1 IN 3W 16 .1 IN 2+50W 25 .1 IN 2+50W 25 .1 IN 2+50W 25 .1 IN 0+50W 17 .1 IN 0+50E 21 .2 IN 1E 23 .3 IN 1+50E 30 .1 IN 2+50E 23 .2 IN 3E 112 .2 IN 3E 112 .2 IN 3E 112 .2 IN 3E 112 .2 IN 4E 5 .1 IN 4E 12 .1 IN 4E 12 .1 IN 4E 12 .1 IN 7E 1 .1 IN 7E 5 .2 IN 7+50E 11 .1 IN 9+50E 7 .1 IN 9+	1N 5+50W	Ä	1
IN 4+50W 10 .1 IN 4W 6 .1 IN 3+50W 10 .1 IN 3+50W 10 .1 IN 3+50W 10 .1 IN 2+50W 25 .1 IN 2+50W 25 .1 IN 2+50W 25 .1 IN 1+50W 38 .1 IN 1+50W 38 .1 IN 0+50W 17 .1 IN 0+50E 21 .2 IN 1E 23 .3 IN 1E 23 .3 IN 1E 23 .3 IN 1E 23 .3 IN 2E 15 .1 IN 2E 15 .1 IN 2E 12 .1 IN 2E 20 .3 IN 5E 8 .1 IN 5E 11 .1	1N 5W	2	1
IN 4W 6 .1 IN 34W 6 .1 IN 34W 16 .1 IN 2450W 25 .1 IN 2450W 25 .1 IN 2450W 25 .1 IN 1450W 38 .1 IN 0450W 17 .1 IN 0450W 17 .1 IN 0450E 21 .2 IN 16 .1 .1 IN 2450E 23 .2 IN 2450E 23 .2 IN 34E 112 .2 IN 34E 5 .1 IN 44E 5 .1 IN 450E 20 .3 IN 450E 11 .1 <	1N 4+50W	10	
1N 3+50W 10 .1 1N 3W 16 .1 1N 3W 16 .1 1N 2W 25 .1 1N 2W 9 .1 1N 1W 33 .2 1N 1+50W 38 .1 1N 1+50W 38 .1 1N 0+50W 17 .1 1N 0+50E 21 .2 1N 1E 23 .3 1N 1+50E 30 .1 1N 2+50E 23 .2 1N 2+50E 23 .2 1N 3E 112 .2 1N 3+50E 9 .2 1N 4E 5 .1 1N 5E 8 .1 1N 5+50E 16 .1 1N 6+50E 8 .1 1N 7E 5 .2 1N 7+50E 11 .1 1N 8E 7 .1 1N 9E 6 .1 1N 9E 7 .2 1N 9F 6 .1 1N 9E	1N 4W	6	. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	
1N 3W 16 .1 $1N$ 2+50W 25 .1 $1N$ 2W 9 .1 $1N$ 1W 38 .1 $1N$ 1W 33 .2 $1N$ 1W 33 .2 $1N$ 0+50W 17 .1 $1N$ 0+50E 21 .2 $1N$ 0+50E 21 .2 $1N$ 1E 23 .3 $1N$ 1+50E 30 .1 $1N$ 2E 15 .1 $1N$ 2E 15 .1 $1N$ 2E 23 .2 $1N$ 3E 112 .2 $1N$ 3E 112 .2 $1N$ 3E 9 .2 $1N$ 4E 5 .1 $1N$ 4E 5 .1 $1N$ 5E 8 .1 $1N$ 5E 8 .1 $1N$ 5F50E 16 .1 $1N$ 7E 5 .2 $1N$ 7F50E 11 .1 $1N$ 7F50E 7 .1 $1N$ 9F50E 7 .1<	1N 3+50W	10	. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1N 3W	16	. 1
1N 2W 9 .1 1N 1+50W 38 .1 1N 1W 33 .2 1N 0+50W 17 .1 1N 0+50E 21 .2 1N 1E 23 .3 1N 1+50E 30 .1 1N 2+50E 23 .2 1N 2+50E 23 .2 1N 2+50E 23 .2 1N 3+50E 9 .2 1N 3+50E 9 .2 1N 4+ 5 .1 1N 5+ 0 .3 1N 5+ 0 .3 1N 5+ 5 .1 1N 5+ 0 .3 1N 5+ 5 .1 1N 6+ 5 .1 1N 7 .1 .1 1N 7 .2 .1 1N 7 .1 .1 <td< td=""><td>1N 2+50W</td><td>25</td><td>. 1</td></td<>	1N 2+50W	25	. 1
1N 1+50W 38 .1 1N 1W 33 .2 1N 0+50W 17 .1 1N 0+50E 21 .2 1N 1E 23 .3 1N 1+50E 30 .1 1N 2+50E 23 .2 1N 3E 112 .2 1N 3+50E 9 .2 1N 3+50E 9 .2 1N 3+50E 9 .2 1N 4E 5 .1 1N 5E 8 .1 1N 5+50E 16 .1 1N 5+50E 16 .1 1N 5+50E 11 .1 1N 7 .1 .1 1N 7 .1 .1 1N 7 .2 .1 1N 7 .1 .1 1N 9E 5 .1 1N 9E 5 .1 1	1N 2W	9	. 1
1N 1W 33 .2 1N 0+50W 17 .1 1N 0+50E 21 .2 1N 1E 23 .3 1N 1+50E 30 .1 1N 2+50E 23 .2 1N 2+50E 23 .2 1N 2+50E 23 .2 1N 3E 112 .2 1N 3+50E 9 .2 1N 3+50E 9 .2 1N 5E 8 .1 1N 5E 8 .1 1N 5+50E 16 .1 1N 5E 8 .1 1N 5+50E 16 .1 1N 7 .1 .1 1N 7 .1 .1 1N 7 .1 .1 1N 8 .7 .1 1N 9E .5 .1 1N 9E .1 .1	1N 1+50W	38	. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1N 1W	33	.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1N 0+50W	17	. 1
1N 1E 23 .3 1N 1+50E 30 .1 1N 2E 15 .1 1N 2+50E 23 .2 1N 3E 112 .2 1N 3E 9 .2 1N 3 5 .1 1N 4E 5 .1 1N 5E 20 .3 1N 5E 8 .1 1N 5 5 .1 1N 5 5 .1 1N 6 1 .1 1N 7 .1 .1 1N 7 .1 .1 1N 7 .1 .1 1N 7 .2 .1 1N 7 .2 .1 51	1N 0+50E	21	.2
1N 1+50E $30 .1$ $1N 2E$ $15 .1$ $1N 2+50E$ $23 .2$ $1N 3E$ $112 .2$ $1N 3E$ $112 .2$ $1N 3+50E$ $9 .2$ $1N 4E$ $5 .1$ $1N 4E$ $5 .1$ $1N 5E$ $8 .1$ $1N 5E$ $8 .1$ $1N 5E$ $16 .1$ $1N 5E$ $16 .1$ $1N 5E$ $8 .1$ $1N 5E$ $8 .1$ $1N 5+50E$ $16 .1$ $1N 6+50E$ $8 .1$ $1N 7E$ $5 .2$ $1N 7+50E$ $11 .1$ $1N 8E$ $7 .1$ $1N 8E$ $7 .1$ $1N 9E$ $6 .1$ $1N 9E$ $4 .1$ $52N 8L$ $2 .1$ $51N 8L$ $7 .1$ $51N 8L$ $7 .1$ $51N 8L$ $7 .1$ $51N 8L$ $7 .1$	1N 1E	23	.3
1N 2E 15 .1 1N 2+50E 23 .2 1N 3E 112 .2 1N 3E 9 .2 1N 3+50E 9 .2 1N 4E 5 .1 1N 4E 5 .1 1N 5E 8 .1 1N 6 12 .1 1N 6 5 .2 1N 7 .1 .1 1N 7 .1 .1 1N 8 5 .1 1N 9E 7 .1 1N 9E 7 .1 1N 9E 7 .2 52N 8L 2 .1 51N 8L	1N 1+50E	30	. 1
1N 2+50E 23 .2 1N 3E 112 .2 1N 3E 9 .2 1N 3+50E 9 .2 1N 4E 5 .1 1N 4E 5 .1 1N 4E 20 .3 1N 5E 8 .1 1N 5+50E 16 .1 1N 5+50E 16 .1 1N 5+50E 8 .1 1N 6 5 .2 1N 7 .1 .1 1N 7 .1 .1 1N 7 .2 .1 1N 7 .1 .1 1N 8E 7 .1 1N 9E 6 .1 1N 9E 7 .2 1N 9E 7 .1 1N 9E 7 .1 1N 9 .2 .1 51N	1N 2E	15	. 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1N 2+50E	23	.2
1N 3+50E 9 .2 1N 4E 5 .1 1N 4E 20 .3 1N 5E 8 .1 1N 5E 8 .1 1N 5 16 .1 1N 5 12 .1 1N 5 8 .1 1N 5 5 .2 1N 7 5 .1 1N 8E 7 .1 1N 8E 7 .1 1N 9E 6 .1 1N 9E 7 .2 52N 8L 2 .1 51N 8L 7 .1 50+50N 8L 7 .1 50+50N 8L	1N 3E	112	.2
1N 4E 5 .1 1N 4+50E 20 .3 1N 5E 8 .1 1N 5+50E 16 .1 1N 5+50E 16 .1 1N 5+50E 12 .1 1N 6+50E 8 .1 1N 7E 5 .2 1N 7+50E 11 .1 1N 8E 7 .1 1N 8E 7 .1 1N 9E 5 .1 1N 9E 6 .1 1N 9E 7 .1 1N 9E 7 .1 1N 9E 7 .1 1N 9E 7 .1 1N 9E 2 .1 1N 10E 7 .2 52+40N BL 2 .1 51N BL 3 .1 50N BL 7 .1 50+50N BL 7 .1	1N 3+50E	9	.2
1N 4+50E 20 .3 1N 5E 8 .1 1N 5+50E 16 .1 1N 6E 12 .1 1N 6+50E 8 .1 1N 7E 5 .2 1N 7+50E 11 .1 1N 7E 5 .2 1N 7+50E 11 .1 1N 8E 7 .1 1N 8+50E 5 .1 1N 9E 6 .1 1N 9E 7 .1 1N 9E 7 .1 1N 9E 2 .1 1N 9E 2 .1 52N BL 2 .1 51N BL 2 .1 51N BL 7 .1 50+50N BL 7 .1	1N 4E	5	. 1
IN SE 8 .1 IN SHOE 16 .1 IN 6450E 12 .1 IN 6450E 8 .1 IN 7E 5 .2 IN 7450E 11 .1 IN 8E 7 .1 IN 8E 7 .1 IN 8E 7 .1 IN 9E 6 .1 IN 9E 6 .1 IN 9E 7 .2 IN 9F50E 9 .1 IN 9F50E 9 .1 IN 10E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 4+50E	20	.3
1N 5+50E 16 .1 1N 6E 12 .1 1N 6+50E 8 .1 1N 7E 5 .2 1N 7+50E 11 .1 1N 8E 7 .1 1N 8E 7 .1 1N 9E 5 .1 1N 9E 6 .1 1N 9E 6 .1 1N 9E 4 .1 1N 9E 7 .2 52+40N BL 7 .2 52+40N BL 2 .1 51N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 5E	8	. 1
1N 6E 12 .1 1N 6+50E 8 .1 1N 7E 5 .2 1N 7F 5 .2 1N 7+50E 11 .1 1N 8E 7 .1 1N 8F 5 .1 1N 8+50E 5 .1 1N 9E 6 .1 1N 9E 6 .1 1N 9E 7 .2 52 7 .2 .1 1N 9E 7 .2 52+40N BL 2 .1 51N BL 2 .1 51N BL 7 .1 50+50N BL 7 .1	1N 5+50E	16	. 1
1N 6+50E B .1 1N 7E 5 .2 1N 7+50E 11 .1 1N 8E 7 .1 1N 8E 7 .1 1N 8+50E 5 .1 1N 8+50E 5 .1 1N 9E 6 .1 1N 9E 6 .1 1N 9E 7 .2 52+40N BL 7 .2 52+40N BL 2 .1 51N BL 2 .1 51N BL 7 .1 50+50N BL 7 .1	1N 6E	12	. 1
1N 7E 5 .2 1N 7+50E 11 .1 1N 8E 7 .1 1N 8E 5 .1 1N 8+50E 5 .1 1N 9E 6 .1 1N 9E 7 .2 1N 9E 7 .2 1N 9E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 6+50E	8	. 1
1N 7+50E 11 .1 1N 8E 7 .1 1N 8+50E 5 .1 1N 9E 6 .1 1N 9E 6 .1 1N 9E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 7E	5	.2
1N 8E 7 .1 1N 8+50E 5 .1 1N 9E 6 .1 1N 9E 6 .1 1N 9E 7 .2 1N 10E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 7+50E	11	.1
1N 8+50E 5 .1 1N 9E 6 .1 1N 9E 7 .2 1N 10E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 8E	7	. 1
1N 9E 6 .1 1N 9+50E 9 .1 1N 10E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 8+50E	5	. 1
1N 9+50E 9 .1 1N 10E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 9E	6	. 1
1N 10E 7 .2 52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 9+50E	9	. 1
52+40N BL 4 .1 52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	1N 10E	7	.2
52N BL 2 .1 51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	52+40N BL	4	. 1
51+50N BL 3 .1 51N BL 7 .1 50+50N BL 7 .1	52N BL	2	. 1
51N BL 7 .1 50+50N BL 7 .1	51+50N BL	3	. 1
50+50N BL 7 .1	51N BL	7	. 1
	50+50N BL	7	. 1

SAMPLE		CU	AG
		PPM	PPM
SON BL		4	.3
49+50N	BL	3	. 4
49N BL		8	. 1
48+50N	BL	8	.2
48N BL		4	.2
47+50N	BL.	5	.3
47N BL		4	. 1
46+50N	BL	3	. 1
45+50N	BL	6	.2
45N BL		5	.3
44+50N	BL	6	. 4
44N BL		6	.3
43+50N	BL	7	.3
43N BL		6	. 4
42+50N	BL	11	.3
42N BL		10	. 4
41+50N	BL.	9	. 4
41N BL		9	.2
40+50N	BL	4	- 1
40N BL		3	.2
39+50N	BL.	13	.3
39N BL		14	.2
38+50N	BL	5	. 4
38N BL		6	.4
37+50N	BL	6	.3
37N BL		26	.3
36+50N	BL.	10	.3
36N BL		10	. 4
35+50N	BL	11	. 4

SAMPLE	CU	AG
	PPM	PPM
1	1000	.8
2	110	1.2
3	. 1365	1.0
4	17500	27.2
5	14000	15.4
6	11000	18.8
7	27500	69.7
8	270	.9
9	280	.8
10	186	.5

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-53124

DATE RECEIVED AUG 13 1983

DATE REPORTS MAILED HUM

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL 10 HN03 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : CU, AG. SAMPLE TYPE : SQIL - DRIED AT 60 DEG C., -80 MESH.

lilly ASSAYER

DEAN TOYE, CERTIFIED B.C. ASSAYER

AG PPM

KERR DAWSON & ASSOCIATES

PROJECT # 282 FILE # 82-1622 PAGE# 1

UU

PPM

SAMP	LE
anare.	0.000

14N	100	11	.3
14N	9+50W	18	.2
14N	9W	26	. 4
14N	8150W	13	.3
14N	SW	30	.3
	02010-0		
1414	7+50W	22	:2
14M	761	10	.3
14N	3+50W	E.O.	.3
14N	6W	28	. 5
14N	5+50W	50	. 4
14N	SW	25	.5
141	4+500	30	. 4
14N	4W	35	.2
14N	3+50W	12	.3
14N	ЗW	1 1	.2
14N	20	14	.3
14N	1+500	15	.3
14N	1.01	16	. 1
14N	0+SOW	10	.2
13N	100	30	.3
13N	9+50W	15	. 1
1.3N	9W	98	.5
13N	8+50W	16	.2
13N	8W	12	.3
13N	7+50W	128	- 4
13N	7W	96	. 1
13N	6+50W	60	.5
13N	ъW	60	. 4
13N	5+50W	18	. 1
13N	5W	40	.2
13N	5+50W	14	.5
13N	4W	103	.3
13N	3+50W	10	. 4
13N	3W	18	.3
13N	2+50W	33	.3
13N.	2W	62	.3

SAM	PLE	CU PPM	AG PPM
130	1+504	24	4
13N	1.6	44	-2
1 31	0+504	22	- 2-
1.201	104	170	
12N	Q+SOM	1/2	
1214	7+30W	** 2	- 1
12N	9W	29	.3
12N	8+50W	22	. 3
12N	8W	34	.3
12N	7+50W	114	. 4
12N	7W	46	.3
12N	6+50W	65	. 6
12N	6W	115	.3
12N	5+50W	65	. 4
12N	50	100	5
12N	4+50W	28	.6
1.251	đы	37	-
12N	TARON	10	
120	3430W	40	
120	SW	24	
120	2+50W	27	• 2
1 ZN	2W	19	. 5
12N	1+50W	46	.7
12N	1 W	30	.5
12N	0+50W	32	.3
11N	10W	152	. 4
11N	9+50W	24	.2
11N	9W	17	.3
11N	8+50W	18	.3
11N	BW	20	.3
11N	7+50W	22	.5
11N	7W	126	.6
1.1.N	6+504	154	5
111	614	100	
1111	ELEAU	66	
TIN	3+30W	64	• • •
11N	DW WC	/5	
11N	4+50W	42	. 5
11N	4W	21	.3
11N	3+50W	56	.3

.

v.

.

SAMPLE	CU	AG
	PPM	PPM
11N 3W	28	. 4
11N 2+50W	23	.2
11N 2W	48	. 2
11N 1+50W	46	3
11N 1W	92	.2
11N 0+50W	75	.3
11N 0+50E	1.6	.2
11N 1E	10	. 1
11N 1+50E	17	- 1
11N 2E	10	. 1
11N 2+50E	37	.2
11N 3E	30	. 2
11N 3+50E	15	- 1
11N 4E	18	. 1
11N 4+50E	24	. 1
11N 5E	28	. 4
11N 5+50E	19	.2
11N 6E	14	.2
11N 6+50E	15	. 1
11N 7E	35	.2
11N 7+50E	17	.2
11N 8E	19	. 1
11N 8+50E	15	. 1
11N 9E	14	.2
11N 9+50E	9	. 1
11N 10E	8	.2
10N-B 10W	18	. 1
10N-B 9+50W	14	.2
10N-B 9W	11	.2
10N-B 8+50W	28	.2
10N-B 8W	85	. 4
10N-B 7+50W	16	.2
10N-8 7W	38	. 4
10N-B 6+50W	36	.2
10N-B 6W	80	.2
10N-B 5+50W	20	.5
10N-8 5W	112	.3

- 2

SAMPLE	CU	AG
	PPM	PPM
10N-B 4+50W	73	.3
10N-B 4W	22	.5
10N-B 3+50W	16	.3
10N-B 3W	17	. 4
10N-B 2+50W	28	.3
10N-B 2W	140	.2
10N-B 1+50W	154	.2
10N-B 1W	54	.2
10N-B 0+50W	225	.3
9N 0+50E	760	. 4
9N 1E	35	.3
9N 1+50E	80	. 1
9N 2E	78	.3
9N 2+50E	17	. 1
9N 3E	35	.1
9N 4E	12	. 1
9N 4+50E	18	.2
9N 5E	30	.2
9N 5+50E	32	.1
9N 6E	20	. 1
9N 6+50E	22	.2
9N 7E	20	. 4
9N 7+50E	21	.2
9N 8E	49	. 4
9N 8+50E	26	. 1
9N 9E	20	. 1
9N 9+50E	16	. 1
9N 10E	10	. 1
BN 10W	23	. 1
8N 9+50W	26	. 1
BN 9W	40	. 1
8N 8+50W	126	.2
BN BW	31	.3
BN 7+50W	27	.2
BN 7W	15	.1
8N 6+50W	34	.5

Ň

1

SA	MPLE	CU PPM	AG PPM
BN	ъW	192	7
BN	5+50W	108	7
AN	56	20	. 7
BM	4+504	25	
BN	414 .	20	
GIA	410	/ 4	
8N	3+50W	21	. 1
8N	3W	24	.2
8N	2+50W	23	. 1
8N	2W	152	. 1
8N	1+50W	16	. 1
8N	1 W	34	.1
BN	0+50W	18	. 1
8 N	0+50E	41	.5
8N	1E	20	. 4
8N	1+50E	1450	1.0
8N	2E	330	. 9
BN	2+50E	20	3
BN	3E	24	1
BN	3+50E	94	. 3
BN	4E	23	.1
8N	4+50E	27	. 2
BN	SE	16	. 1
8N	5+50E	20	4
BN	6F	16	1.2
BN	6+50E	26	
	0.012	20	.0
8N	7E	18	.6
BN	7+50E	19	. 4
8N	BE	20	.5
8N	8+50E	28	.1
BN	9E	13	. 4
8N	9+50E	12	.3
8N	10E	10	.3
7N	10W	19	.3
7N	9+50W	11	. 6
7N	9W	18	.7
7N	8+50W	16	.5
7N	BW	31	
	100 (F.C.)		

. 1

*

SAL	MPLE	CU	AG
		PPM	PPM
1233	22122222		Sa.
7N	7+50W	43	- 1
7N	7W -	32	.3
7N	6+50W	60	.2
7N	6W	40	.6
7N	5+50W -	45	.3
7N	5W	27	. 1
. 7N	4+50W	12	. 1
7N	4W	25	. 4
7N	3+50W	21	. 1
7N	3W .	82	.4
7N	2W	16	. 1
7N	1+50W	36	.3
7N	1W	138	.5
7N	0+50W	68	.2
7N	0+50E	30	. 1
7N	1E	15	.2
7N	1+50E	41	. 4
7N	2E	62	. 4
7N	2+50E	30	.3
7N	3E	24	.4
7N	3+50E	13	.2
7N	4E	60	.3
7N	4+50E	27	. 4
7N	SE	14	.3
7N	5+50E	15	. 4
12220		1000 C	
7N	6E	19	.3
7N	6+50E	21	.5
7N	7E	20	.5
7N	7+50E	13	. 6
7N	8E	10	.7
7N	8+50E	72	.6
7N	9E	78	.8
7N	9+50E	6	.1
7N	10E	12	.1
6N	10W	16	.3
6N	9+50W	12	. 4
6N	9W	14	.3
			1.

١.

4

SAMPLE	CU	AG
	PPM	PPM
6N 8+50W	34	.3
6N 8W	36	. 4
6N 7+50W	39	.2
6N 7W	20	. 1
6N 6+50W -	26	.1
6N 6W	33	. 1
6N 5+50W	74	- 1
6N 5W	41	. 4
6N 4+50W	15	.3
6N 4W	16	.2
6N 3+50W	74	. 4
6N 3W	20	. 1
6N 1W	16	.3
6N 0+50W	15	. 1
6N 0+50E	90	.7
6N 1E	50	.2
6N 1+50E	34	.5
6N 2E	40	.7
6N 2+50E	80	. 4
6N 3E	122	.4
6N 3+50E	27	.2
6N 4E	18	. 1
6N 4+50E	22	.2
6N 5E	12	.1
6N 5+50E	148	. 1
6N 6E	28	. 1
6N 6+50E	18	. 1
6N 7E	17	.2
6N 7+50E	16	. 1
6N BE	14	.6
6N 8+50E	13	.1
6N 9E	21	.3
6N 9+50E	15	. 1
6N 10E	10	.2

6N - 2150WE 1450 W - NS

 \hat{X}

4

.

SA	MPLE	CU	AG
		PPM	PPM
4N	0+50E	52	.6
4N	1E	15	.3
4N	1+50E	10	. 1
4N	2E	82	. 6
4N	2+50E	16	.3
4N	3E	22	.4
4N	3+50E	15	.2
4N	4E .	16	.3
4N	4+50E	12	.2
4N	SE	20	. 4
4N	5+50E	15	.1
4N	6E	30	.3
4N	6+50E	23	.3
4N	7E	13	.2
4N	7+50E	18	. 1
4N	8E	12	. 1
4N	8+50E	13	2
4N	9E	15	. 1
4N	9+50E	10	. 1
4N	10E	8	. 1

.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

.

DATE RECEIVED JULY 28 1983

DATE REPORTS MAILED Aug 2

GEOCHEMICAL ASSAY CERTIFICATE

A .500 GN SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H2D AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : CU, AG. SAMPLE TYPE : SOIL - DRIED AT 60 DEG C., -B0 MESH.

ASSAYER Delle

DEAN TOYE, CERTIFIED B.C. ASSAYER

KERR DAWSON FILE # 83-1390

PAGE# 1

SAMPLE	78			CU PPM	1	AG PPM	
35N BL				10		.3	
34+50N	BI			8		.2	
34N BI	2.2			13		.2	
TTLEON	DI						
33430N	DL			0			
SON DL				0		• •	
32N+50N	I BL			7		. 1	
32N BL				8		. 1	
21+50N	BL	14		14		.2	
31N BI				17		. 4	
30+50N	BI			9		.3	
3013014	DL			<u> </u>		• •	
30N BL				14		.2	
29+50N	BI			5		- 4	
20N BI	200			6		.1	
294 DL	DI			4		2	
20TJON	BL			4		. 2	
28N BL						• •	
27+50N	BL			5		.3	
27N BL				45		. 1	
26+50N	BL			10		.2	
26N BL				5		.2	
25+50N	BI			11		.2	
20.001						0.75	
25N BL				9		. 1	
24+50N	BL			11		.3	
24N BI				10		-2	
23+50N	BI			16		.3	
23N BI				40		.3	
2014 06				10		••	
22+50N	BL			31		.2	
22N BL		<i>a</i>		10		.2	
21+50N	BL		1.2	36		.2	
21N BL				12		. 1	
20+50N	BL			11	1.1	. 1	
20.001					1		
20N BL				12		.3	
19+50N	BL			13		.3	
19N BL	and the second sec			10		- 1	
18+50N	BL.			10		.2	
18N BI	1000			11		. 1	
17+50N	BL			66		.2	
17N BL	0.02.2220			23		. 1	

 \tilde{X}

KERR DA...ON FILE # 83-1390

PAGE# 2

SAMPLE	CU	AG
	PPM	PPM
16+50N BL	16	.2
16N BL	14	. 4
15+50N BL	27	.2
15N BL	24	. 1
14+50N BL	12	.3
14N BL	16	.2
13+50N BL	17	.3
13N BL	24	.2
12+50N BL	34	.2
12N BL	12	.3
11+50N BL	124	. 1
11N BL	29	- 1
10+50N BL	84	. 1
10N BL	140	.6
9+50N BL	18	.3
9N BL	50	. 1
8+50N BL	30	.2
BN BL	12	. 4
7+50N BL	12	.3
7N BL	13	.3
6+50 BL	10	.2
6N BL	16	.3
5+50N BL	160	.2
5N BL	15	.2
4+50 BL	60	. 1
4N BL	26	.3
3+50N BL	22	.2
3N BL	33	. 4
2+50N BL	43	.3
2N BL	28	.3
1+50N BL	110	. 1
1N BL	43	.3
0+50N BL	62	.3
ON BL	84	.3
15N 20W	8	.2
15N 19+50W	4	. 1
15N 19W	11	. 1
15N 18+50W	13	. 1
Contraction of Contract Access in the DATA Access of		

di

N

KERR DA JON FILE # 83-1390

PAGE# 3

SAMPLE		CU	AG
		E-E-IA	FFM
151 10		17	
151 15		10	
150 17	+SUW	12	• - 2
15N 17	W	'7	• 4
15N 16	+50W	1	- 1
15N 16	W	18	• 4
15N 15	+50W	11	.3
15N 15	W	7	.2
15N 14	+50W	21	. 1
15N 14	W	10	. 1
15N 13-	+50W	17	.2
15N 13	ω	16	.3
15N 12	+50W	15	. 1
15N 120	N	12	.2
15N 11	+50W	12	.3
15N 11	N .	15	.2
15N 10	+500	14	.3
15N 10	Al	11	. 3
15N 9+	50W	52	. 4
151 94		20	. 4
15N 8+	50W	14	.2
1 ENL OU		マウ	4
ISN BW	soul	এন বিব	.0
15N 74	30W	50	
	SOU	40	. 4
	30W	40	. 4
1214 84		40	• 44
15N 5+	50W	64	.3
15N 5W		60	- 4
15N 4+	SOW	29	.1
15N 4W		12	• 2
15N 3+	50W	13	- 3
15N 3W		23	.3
15N 2+	SOW	9	.2
15N 2W		12	. 1
15N 1+	50W	9	.2
15N 1W		11	. 4
15N 0+	50W	80	.3

KERR DA. JON FILE # 83-1390

PAGE# 4

SAMPLE		CU PPM	AG PPM
	17. N		201 840
13+50N	0+50E	26	.2
13+50N	1E	19	. 1
13+50N	1+50E	20	.3
13+50N	2E	10	- 1
13+50N	2+50E	15	.2
13+50N	3E	22	. 1
13+50N	3+50E	37	- 1
13+50N	4E	7	.3
13+50N	4+50E	8	- 2
13+50N	SE	7	.2
13+50N	5+50E	11	. 1
13+50N	6E	7	.2
13+50N	6+50E	8	.3
13+50N	7E	5	.2
13+50N	7+50E	15	. 1
13+50N	8E	14	.2
13+50N	8+50E	16	- 1
13+50N	9E	9	.2
13+50N	9+50E	. 8	. 1
13+50N	10E	11	.2
13+50N	10+50E	30	.2
13+50N	11E	104	- 4
13+50N	11+50E	5	. 1
13+50N	12E	8	.2
13+50N	16E	8	.2
13+50N	16+50E	7	. 1
13+50N	17E	5	. 1
13+50N	17+50E	11	. 1
13+50N	18E	12	.2
13+50N	18+50E	7	- 1
13+50N	19E	6	• 2
13+50N	20E	. 12	- 1
10N 19+	SOM	50	.3
10N 19W		- 21	.2
10N 18+	·50W	10	.2
10N 184	J	14	. 1
10N 17+	-50W	18	.3

KERR	DF. JON	FILE	#	83-1390	
SAME	PLE			CU	AG
				PPM	PPM
10N	17W			14	.3
1 ON	16+50W			12	. 3
1 ON	16W			32	. 2
10N	15+50W			15	. 4
1 O N	15W			21	.2
1 ON	14+50W			11	.2
10N	14W			12	.2
10N	13+50W			19	. 1
10N	13W			21	. 1
1 ÖN	12+50W			17	.3
10N	12W			86	. 1
1 ON	1+50W			35	. 4
10N	11W			23	. 4
10N	10+50W			17	.2
10N	10W			16	.3
10N	9+50W			15	. 1
10N	9W			13	.2
10N	8+50W			21	.2
10N	BW			12	.2
10N	7+50W			16	.2

. 1 . 4 . 4 .2 . 1 2222 10N 7W . 1 15 .3 10N 6+50W 30 10N 6W 77 10N 5+50W 250 .5 10N 5W 178 10N 4+50W 10N 4W . 4 110 .3 64 10N 3+50W 10N 3W . 4 150 .3 255 10N 2+50W 150 .2 . 1 10N 2W 23 .23.2 10N 1+50W 240 10N 1W 50 10N 0+50W 30 10N 0+50E 22 . 1 10N 1E 14 . 1 .1 10N 1+50W 10N 2E 22 17 . 1

Ń

KERR DF JON FILE # 83-1390

PAGE# 6

SAMPLE	CU PPM	AG PPM
10N 2+50E	16	.3
10N 3E	14	.2
10N 3+50E	46	.2
10N 4E	27	. 1
10N 4+50E	23	.2
10N SE	13	.2 .
10N 5+50E	140	.5
10N 6E	7	.3
10N 6+50E	76	.3
10N 7E	17	.4
10N 7+50E	21	.3
10N BE	24	. 1
10N 8+50E	26	.2
10N 9E	18	.3
10N 9+50E	12	. 1
10N 10E	13	.2
10N 10+50E	14	. 1
10N 11E	10	. 1
10N 13+50E	- 6	. 1
10N 14E	9	.1
10N 14+50E	9	.2
10N 15E	6	.2
10N 15+50E	7	.1
10N 16E	8	. 1
10N 16+50E	11	. 1
10N 17E	10	.2
10N 17+50E	13	. 1
10N 18E	6	. 1
10N 18+50E	5	. 1
10N 19E	5	. 1
10N 19+50E	10	. 1
5N 19W	9	. 1
5N 18+50W	8	. 1
5N 18W	17	. 1
5N 17+50W	6	. 1
5N 17W	7	.1
5N 16+50W	8	. 1
2017년 1월 - 2월 1999년 1979년 1	2012	12000

.

-

, ·

KERR K. WSON FILE # 83-1390

PAGE# 7

SAMPLE		CU PPM	AG PPM
-			
SN	16W	9	• 2
5N	15+50W	10	. 1
SN	15W	7	. 1
5N	14+50W	16	- 2
5N	14W	8	• 1
5N	13+50W	8	. 1
5N	13W	14	. 1
5N	12+50W	45	. 1
5N	12W	17	. 1
5N	11+50W	12	.2
5N	11W	71	.6
5N	10+50W	22	.2
5N	100	25	.2
5N	9+50W	12	.3
5N	9W	10	.3
5N	8+50W	31	.2
5N	aw	58	. 1
5N	7+50W	84	.2
5N	7W	95	. 4
SN	6+50W	30	.3
5N	6W	80	.3
5N	5+50W	32	.1
5N	5W	20	. 1
5N	4+50W	12	.2
5N	4W	15	.2
5N	3+50W	22	. 1
5N	ЗW	240	.6
5N	0+130W	6	. 1
5N	0+50E	248	1.2
5N	1E	48	.5
5N	1+50E	8	.2
5N	2E	32	.2
5N	2+50E	44	.3
5N	3E	205	.7
SN	3+50E	24	.6
5N	4E	15	.3
5N	4+50E	29	.2
SN	5E	12	.2

- 510-110

KERR I JSON FILE # 83-1390

SAMPLE		CU PPM	AG PPM
5N	5+50E	14	.2
5N	6E	16	.3
SN	6+50E	14	. 1
5N	7E	10	. 1
5N	7+50E	34	. 1
5N	8E	14	. 1
5N	8+50E	13	.2
5N	9E	7	. 1
5N	9+50E	10	. 1
5N	10E	14	. 1
5N	10+50E	10	. 1
5N	11E	19	. 3
5N	11+50E	8	. 1
5N	12E	5	. 1
5N	12+38E	12	. 1
5N	13E	11	.2
5N	13+50E	5	. 1
5N	14E	9	. 1
5N	14+50E	6	. 1
5N	15E	7	. 1
5N	15+50E	10	. 1
5N	16E	8	. 1
5N	16+50E	6	. 1
5N	17E	11	.2
5N	17+50E	10	.2
5N	18E	13	. 1
5N	18+50E	4	. 1
5N	19E	8	. 1
5N	19+50E	6	. 1
5N	20E	5	.2
ON	20W	9	. 1
ON	12+50W	4	. 1
ON	12W	6	. 1
ON	11+50W	8	. 1
ON	11W	6	. 1
ON	10+50W	10	. 1
DN	10W	11	.2

PAGE# 8

KERR & JSON FILE # 83-1390

.

PAGE# 9

£3

SAMPLE CU PPM	AG PPM
AN 0150H 4	
	- 1
ON P+SOM P	. 1
ON 7+50H 11	
	••
ON 7W 24	.1
ON 6+50W 7	. 1
ON 6W 10	- 1
ON 5+50W 64	. 1
ON 4+50W 10	. 1
ON 4W 9	.1
ON 3+50W 11	. 1
ON 3W 13	. 1
ON 2+50W 15	. 1
ON 2W 17	. 1
ON 1+50W 24	. 1
ON 0+50E 31	.2
ON 1E 50	.5
ON 1+50E 148	.8
ON 2E 8	. 1
ON 2+50E 8	.1
ON 3E 6	. 1
ON 3+50E 9	. 1
ON 4E 14	.1
ON 4+50E 11	. 1
ON 5E 14	.2
ON 5+50E 12	. 1
ON 6E 6	. 1
ON 6+50E 7	. 1
ON 7E 8	. 1
ON 7+50E 7	. 1
ON BE 6	. 1
ON 8+50E 7	. 1
ON 9E B	. 1
ON 9+50E 8	.2
ON 10+50E 7	.4
ON 11E A	1

 \hat{X}

KERR N. WSON FILE # 83-1390

PAGE# 10

. .

SAMPLE		CU	AG
		FER	FFR
ON	12E	13	. 1
ON	12+50E	6	. 1
ON	13E	7	. 1
ON	13+50E	2	. 1
ON	14E	5	.1
ÓN	14+50E	6	. 1
ON	15E	7	. 1
ON	15+50E	8	. 1
ON	16E	6	. 1
ON	16+50E	6	. 1
ON	17E	5	. 1
ON	17+50E	8	. 1
ON	18E	11	.1
ON	18+50E	4	. 1
ON	19E	10	. 1
ON	19+50E	7	. 1
ON	20E	6	.1

 \mathbf{N}
APPENDIX B

PERSONNEL

×.

PERSONNEL

J.R. Kerr, P. Eng. June 28, 30, 1983. July 13, 15, 18-20, 22, 25, 26, 1983. Aug. 1, 2, 8, 9, 18, 19, 29-31, 1983. Sept. 2, 6, 13, 14, 16, 21, 23, 24, 27-30, 1983. Nov. 1, 18, 25, 1983. 9 days Dec. 5, 9, 15, 1983. W. Gruenwald, B. Sc. Aug. 22-26, 29, 30, 1983. Sept. 12-14, 1983. Oct. 4, 6, 11, 12, 18-20, 31, 1983. May 4, 14, 15, 16, 17, 18, 1983. 14% days R. Henderson, Senior Assistant July 18-29, 1983. Aug. 2-12, 18, 1983. Sept. 24-30, 1983. Oct. 1-5, 1983 35% days John Menzies, Assistant July 18-29, 1983. Aug. 1-8, 23-27, 1983. Sept. 2-4, 1983. 30 days Karen Davies, Assistant July 18-29, 1983. Aug. 1, 2, 5-12, 18, 19, 1983. Sept. 1-7, 1983. 325 days Joel Whist, Assistant Sept. 24-30, 1983. 7 days

15

APPENDIX C

STATEMENT OF EXPENDITURES

Personnel:

J.R. Kerr, P. Eng. 9 days @ \$400/day	\$3,600.00
W. Gruenwald, B. Sc.	4 975 99
14% days @ \$300/day	4,275.00
R. Henderson, Assistant	
35½ days @ \$170/day	6,035.00
John Menzies, Assistant	
30 days @ \$120/day	3,600.00
Karen Davies, Assistant	
32½ days @ \$140/day	4,550.00
Joel Whist, Assistant	
7 days @ \$140/day	980.00

Expenses and Disbursements:

Geochemical Analyses (Acme	Analytical 5,827.35
Truck Expenses:	
52.5 days @ \$40/day 2	,100.00
3150 miles @ .40/mi 1	,260.00 3,360.00
Travel Expenses - J.R. Kerr	
Car rental, airfare	449.03
Accomodation & Meals	4,559.27
Magnetometer Rental	
29 days @ \$20/day	580.00
Field Equipment Rental	
53.5 days @ \$10/day	535.00
Power Saw Rentals (2 saws)	
13 days @ \$40/day	520.00
Fuel & Oil	31.50 551.50
Supplies, freight, misc. ex	penses 517.42
Telephone, photocopying, se	cretarial,
printing	665.70

17,045.27

\$23,040.00

GRAND TOTAL

\$40,085.27

2

APPENDIX D

REFERENCES

٤.

REFERENCES

Little, H.W.	1961	1"=4 mi. Geological Map of the Kettle River (West Half).
Church, B.N.	1973	Geology of the White Lake Basin.
Kerr, J.R.	Nov. 5, 1982	Report on the Lynx, Cam and Fox Claims.
Kerr, J.R.	Oct.31, 1983	Summary Report on the Allendale Lake Property.
Cartwright, P.A.	Dec.16, 1983	Report on the Induced Polarization and Resistivity Survey on the Allendale Lake Property. Phoenix Geophysics Ltd.

2

APPENDIX E

WRITER'S CERTIFICATE

Werner GRUENWALD, B. Sc.

Geologist

#6 NICOLA PLACE, 310 NICOLA ST., KAMLOOPS, B.C. V2C 2P5 . TELEPHONE (604) 374-0544

CERTIFICATE

I, WERNER GRUENWALD, OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:

- (1). I am a geologist residing at 1294 Highridge Drive, in the City of Kamloops, in the Province of British Columbia. I am employed by Kerr, Dawson & Associates Ltd., of Suite #206, 310 Nicola Street, Kamloops, B.C. V2C 2P5.
- (2). I am a graduate of the University of British Columbia, B. Sc. (1972), and a fellow of the Geological Association of Canada.1 have practised my profession for 12 years.
- (3). I am the author of this report which describes the results of the geological, geochemical and geophysical exploration programme on the Allendale Lake property, Osoyoos and Greenwood Mining Division, British Columbia.

KERR, DAWSON & ASSOCIATES LTD.

Grienwald, B. Sc.

GEOLOGIST

KAMLOOPS, B.C. May 18, 1984. APPENDIX F

MAPS

ŝ

"ATA " 00 1095 - 00 100 - 00 100 - 00 100 - 00 100 - 00 100 - 00 100 - 000 - 58450 58350 58350 58310 5 1860 \$ Ver Ser 57982 5842 2 4680 29 a lease 57600 L-20 N ب مدينو ويست 282 23 23 23 80 66 68 80 N' N' N' N' N' 17.05 17.05 58130 58130 58130 58130 58130 58130 58130 58130 58130 5 5 5 5 5 515.0 515.0 515.0 036129 L-16 N 25812 25812 24125 24125 STWE al s 19 S ______6065' L-15 N 28192 26192 26192 L- 13+50 N ŵ i AR+10 X∥ 0 LYNX 1,2,3,4 Service Security Secu 58050 δ \$ Ø AR • 04 ~ 01285 01285 Fishing Camp 000000 000000 000000 \mathbf{i} L-IIN ∇ 0.000 -----**11 12**/ 5 59 5 5 95 5 5 95 0 0 0 M **N**ONS 25852 < L-10 N(周) L-ION - 11 - 17 CAM 1,2 F. 58.00 <u>Dam</u>

0.1 0.2 L-20 N 0.4 6 6 0 50 10 000 1-16N 3 3 6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 6 6 0 0 0 0 10 L-13+50 N $\begin{array}{c} AR^{+}C6 \\ AR^{+}O3 \\ AR^{+}O4 \\ (0.2) \end{array} \qquad \begin{array}{c} AR^{+}C5 \\ AR^{+}C5 \\ COB \\ C$ Fishing Camp 01 0 0 0 0 0 0 0 0 6 6 6 6 L-IIN 10 10 M 010 col 10/2 W M AR-17. W DOH"S W COLOR S W 5 <u>5</u> 5 6 6 6 L-ION(B) AR-27 (0.1) 10 20 20 Terror to to to to to Dam *i i i i* \L-8 N ` - L E G E N D -

5000 TOPOGRAPHIC CONTOUR IN FEET (A.S.L.)

