84-#224 - 12327

Geochemical Survey Report

on the

Valentine Group

in

Artlish River Area, Vancouver Island, British Columbia

N.T.S. 92L/2W - Woss Lake map sheet

Lat. 126° 54' W. Long. 50° 07'N

ALBERNI MINING DIVISION

Owner-Operator David W. Murphy

by

David W. Murphy

Prospector

GEOLOGICAL BRANCH ASSESSMENT REPORT

12,327

Vancouver, B.C.

March 1984

TABLE OF CONTENTS

			Page No.
	Summan	ry	i
	List of	Illustrations	ii
1.	GENERA	AL INFORMATION	2
	1.1	Location	2
	1.2	Access	2
	1.3	Topography	2
	1.4	Claim Status	2-3
	1.5	Previous Work	3
2.	REGION	IAL INFORMATION	3
	2.1	Regional Geology	3-4
	2.2	Mineralization	4
3.	GEOCHI	EMICAL SURVEY	4
	3.1	Objectives	4
	3.2	Grid #1	5
	3.3	Grid #2	5
	3.4	Rock Samples	6
	3.5	Procedures	6
4.	SUMMA	RY AND CONCLUSIONS	6
		APPENDICES	
APPE	ND1X "A"	Statement of Qualifications	7-8
APPE	NDIX "B"	Cost Data Summary	9-11
APPE	NDIX "C"	Analytical Data	12-22

SUMMARY

A geochemical survey was carried out on the Valentine #4 claim, part of the Valentine group. These are located 16 Kilometers North of Zeballos, Vancouver Island, British Columbia, in the Alberni Mining Division.

A programme of soil, silt, and rock sampling was carried out on two separate grids. A total of 330 samples were analyzed for 30 element data to test distribution and dispersal of Au.

Previous work in the area had outlined pyritic zones in a sedimentary sequence, whose control and distribution were not readily explained.

The 1984 programme was carried out from February 6th to 17th, 1984. A field crew of 4 prospectors were utilized to sample and prospect the claim area.

The survey outlined some gold geochemical anomalies in the west of grid #1. These are as yet not fully explained. Further work is warranted.

A total of at least \$8,500.00 was expended on the property.

LIST OF ILLUSTRATIONS

Page

iii

FIGURE 1 Detail claim map and

Regional geology In pocket

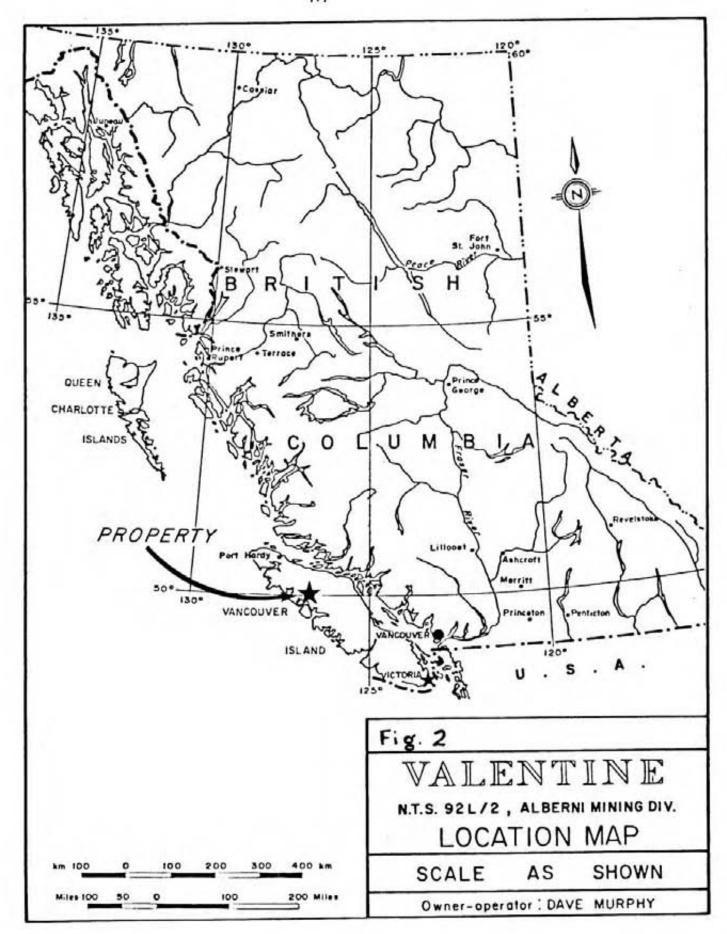

Scale: 1:50,000

FIGURE 2 Location map

Scale: 1:500,000

FIGURE 3 Soil, Silt, Rock Location

Scale: 1:5000

GENERAL INFORMATION

1.1 Location

1.

The Valentine claim group is located at Toray Creek, a north flowing tributary of the Artlish River. It is located 16 Kilometers north of Zeballos, B.C. (Fig. 1)

The group is in the Alberni Mining Division, N.T.S. 92L/2W Woss Lake map sheet. The group is at 126° 54'W 50° 07'N.

1.2 Access

Access to the property is some 25 kilometers along Tahasis Logging Co. gravel roads from Zeballos through to the Artlish Main Line. Four wheel drive vehicle use is recommended. Within the claim group, gravel roads provide easy access to the showings.

1.3 Topography

The claim group occupies a north trending valley, ranging in elevation from 360 meters to 1410 meters.

The group is densely wooded with mature cedar, hemlock and balsam fir. Tahasis Logging Co. has logged parts of the property, facilitating general access. Their future plans encompass logging over areas within the property.

Rock outcrops are sparce, being largely restricted to stream courses, and cliff faces.

1.4 Claim Status

The Valentine group comprises 85 units. (Fig. 1)

Date: February 17,1984

TABLE I

Valentine Group # N/G 1115

Name		No. Units	Record #	Date
Valentine	#1	20	1628	Feb.18,1983
Valentine	#2	20	1629	Feb.18,1983
Valentine	#3	10	1630	Feb.18,1983
Valentine	#4	20	1631	Feb.18,1983
Valentine	#5	15	1632	Feb.18,1983

The owner and operator of the claim group is: David W. Murphy P.O. Box 142, Vananda, British Columbia VON3KO.

1.5 Previous Work

Esperanza Exploration Ltd. carried out a detailed programme in 1979 and 1980 on previous claims in the area. This work comprised, silt, soil and rock geochemistry, followed up by trenching. Their data outlined an area of gold mineralization of some potential. Other corporate commitments prevented a detailed follow up, and subsequently the claim lapsed. (Assessment Report 8612)

The present claim group was recorded in February 1983.

No other detailed work is known in the area.

2. REGIONAL INFORMATION

2.1 Regional Geology

The geology of the area has been described by Muller, Northcote and Carlisle. G.S.C. paper 74-8.

The general area lies near the flanks of a large quartz diorite intrusive. A westerly dipping sequence is present ranging from nasal karmutsen volcanics, overlying quatsino linestone and passing to the Parson Bay sedimentary sequence. Within the property, identified rock units consist largely of quatsino linestone overlain by the Parson Bay sedimentary sequence. Bonanza volcanics are identified in the west of the property. Units appear to dip to the south west at moderate angles.

2.2 Mineralization

The known mineralization on the property is identified in Toray Creek.

It comprises of pyritic beds (?) within a siliceous siltstone. These are intercalated in calcareous beds, which locally are altered to an actinolitic assemblage, containing pyrite, pyrrhotite, magnetite and sparce chalcopyrite. Some arsenopyrite is associated.

Detailed controls whether lithological or structural, are unknown, and outside the scope of this report.

GEOCHEMICAL SURVEY

3.1 Objectives

3.

The objective of the soil sampling programme was to:

- (a) verify previous sample data
- (b) extend previous data and locate new zones.

The objectives were accomplished by soil sampling along a 5.4 Km. grid with a further grid 0.9 Km. detail grid. The lines were flagged, blazed, chained and compassed.

Samples were run for 30 elements (ICP Technique) to test, alteration envelopes and gold associates.

Samples were collected at 25 meter intervals and lines 100 meters apart. A total of 293 samples were collected. Twenty rock samples were collected at outcrops.

3.2 Grid #1

this grid covered and extended the previous Esperanza grid.

The eastern part of the grid is flat, with some alluval cover, passing westward to a steep slope.

The results (Fig. 4) show anomalous values at the western part of the grid.

Gold values range from 5ppb to 535ppb. The highest value was at 2S-10W.

The data (30 element) was not subject to rigorous statistical analyses. However, some notable features are present.

These are:

- (1) Gold values show a partial correlation with Fe.
- (2) High gold values appear to have some flanking Hg anomalies.
- (3) Au-As. correlation is weak though As. values (> 1000ppm) do not correlate with Au values.
- (4) Ba-Au correlation is weak.

The concentration of high Au values (> 100 ppb) relate, as far as present information, to be developed on the flank of a dacite intrusive.

More follow up work is required at these locations (lines 2S-10W; 3S-9.25W; 2S-7.50W).

3.3 Grid #2

This was a contour grid. It measured 0.9 Km. A total of 37 samples were collected. (Fig. 4)

The results were inconclusive with no Au values above 5ppb. Other elements showed a random pattern with no clear correlation. The highest As (332ppm) was at UP-21.

3.4 Rock Samples

A total of 20 rock samples were collected and analyzed. These were from random, mineralized outcrops. Assay data for Au-Ag did not give any values greater than 0.08 ozs. Au/ton. No correlations were drawn.

3.5 Procedures

4.

Soil samples were taken from the B horizon using a soil grub-hoe. Depths to the B horizon ranged from 5 to 50 cm. and averaged 15 cm. Samples were placed in kraft paper envelopes and a standard sheet for soil type and site information was filled in by the samples. Analysis was done by Acme Analytical Laboratories Ltd. and their analytical procedures and results are outlined in Appendix C.

SUMMARY AND CONCLUSIONS

- (1) The mineralization on the Valentine group comprises showing of pyrite in a siliceous siltstone, intercalated in a variably altered calcareous sequence.
- (2) Geochemical surveys were conducted to extend and confirm previous data over this area.
- (3) The present survey totalled 6.2 Kms. of line and a total of 293 soil and silt samples. These were analyzed for multiple elements to test element patterns, dispersal patterns and pathfinder elements. Twenty rock samples were run for Au, Ag.
- (4) The survey revealed, in grid #1 some high (> 100 ppb) Au values in the west of the grid. These have not been fully explored. A correlation of Au-Fe was established. Scattered sample As anomalies and weak flanking Hg anomalies have not been explained.
- (5) Further ground prospecting should be carried out to test and sample these occurrences fully.

APPENDIX A

Statement of Qualifications

A. DAVID W. MURPHY

- I, David W. Murphy, of Vananda, British Columbia, hereby certify that:
- I have worked continuously in mineral exploration since 1972.
- (2) I have worked in Open Pit mining operations for a period of 2 years. (1971-2)
- (3) I have been trained in the correct procedures for soil and silt geochemistry while working in mineral explorations for 12 years.
- (4) I have completed the Chamber of Mines prospecting course in 1976, and have been awarded prospecting grants in 1978, 1979 and 1980.
- (5) This report is based on personally working and supervising the geochemical work on the Valentine Group in 1984.

Dated at Vancouver, B.C.

D. 1/1/1.

avid W. Murphy

Appendix A (continued)

B. FIELD CREW

- Roy Samuelson, prospector of Vananda, B.C.
 years field experience.
- (2) Charles Henshaw, prospector, soil sampler, of Vancouver, B.C. 9 years field experience.
- (3) Marshall Van Dusen, prospector, soil sampler, of Vancouver, B.C.
 3 years field experience.

APPENDIX B

COST DATA SUMMARY

Total wages	6,100.00
Meals, Groceries and Accommodations	1,275.65
Transportation, Fuel and Oil	315.00
Vehicle Rental	1,440.00
Geochemical Analyses	3,200.00
Report Preparation and Reproduction	342,80
Equipment, Goods and Miscellaneous	534.26
Maps and Publications	38.50
	TOTAL 13,246,21

Applied Work as Follows

Geochemical work	\$13,246.21	Applied	\$8,500.00
	Valentine Group		
Valentine #1	20 units	5	l year
Valentine #2	20 units	5	1 year
Valentine #3	10 units	5	1 year
Valentine #4	20 units	5	1 year
Valentine #5	15 units	5	1 year

STATEMENT OF COSTS

W	A	0	r	C
n	n	v	-	J

Name	Nature of Work	1	Dates	Days	1	Rate
D.W. Murphy	Prospecting and Supervision	Feb	6-18,1984	13	@	150.00
Roy Samuelson	Prospecting and Rock Sampling	Feb	6-16,1984	11	@	150.00
Charles Henshaw	Soil Sampling	Feb	7-16,1984	10	@	125.00
Marshall Van Dusen	Soil Sampling	Feb	7-16,1984	10	@	125.00
Total Wages	24 days @ \$150.00				\$3,	,600.00
	20 days @ \$125.00				\$2,	,500.00
			Total		\$6	,100.00
MEALS, GROCERIES Little Prospector M Zeballos, B.C.	AND ACCOMMODATION fotel February	1	\$55.00	per	Tax	495.00 34.65 529.65
Meals and Grocerie	es		Total		1	746.00 ,275.65
TRANSPORTATION						
Fuel and Oil						185.00
BC Ferries			Total			130.00 315.00

VEHICLE RENTAL

Two - 4X4 Truck rental, February 6 - 17, 1984 10 days @ 50.00 per day plus .10 per Km. and insurance. 20 days =

1,440.00

Appendix B (Continued)

GEOCHEMICAL ANALYSES

ICP analysis Geochemical Au by Aa Assay Soil sample preparation Au + Ag (FA) Assay Rock sample preparation	1,595.00 1,170.00 145.00 240.00 50.00		
	S	Total	3,200.00
REPORT PREPARATION AND REPRODU	UCT1ON		342.80
EQUIPMENT, GOODS AND MISCELLAN	EOUS		
Flagging, sample bags, grub-hoe,	tools et al		534.26
MAPS AND PUBLICATIONS			38.50

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

GEOCHEMICAL LABORATORY METHODOLOGY - 1984

Sample Preparation

- Soil samples are dried at 60°C and sieved to -80 mesh.
- Rock samples are pulverized to -100 mesh.

Geochemical Analysis (AA and ICP)

- 0.5 gram samples are digested in hot dilute aqua regia in a boiling water bath and diluted to 10 ml with demineralized water. Extracted metals are determined by :
- A. Atomic Absorption (AA)

Ag*, Bi*, Cd*, Co, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Sb*, Tl, V, Zn (* denotes with background correction.)

B. Inductively Coupled Argon Plasma (ICP)

Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cu, Cr, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Geochemical Analysis for Au*

10.0 gram samples that have been ignited overnite at 600°C are digested with hot dilute aqua regia, and the clear solution obtained is extracted with Methyl Isobutyl Ketone.

Au is determined in the MIBK extract by Atomic Absorption using background correction (Detection Limit = 5 ppb direct AA and 1 ppb graphite AA.)

Geochemical Analysis for Au**, Pd, Pt, Rh

10.0 - 30.0 gram samples are subjected to Fire Assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and Au. Pd, Pt and Rh are determined in the solution by graphite furnace Atomic Absorption.

Geochemical Analysis for As

0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml. As is determined in the solution by Graphite Furnace Atomic Absorption (AA) or by Inductively Coupled Argon Plasma (ICP).

Geochemical Analysis for Barium

0.1 gram samples are digested with hot NaOH and EDTA solution, and diluted to 10 ml.

Ba is determined in the solution by Atomic Absorption or ICP.

Geochemical Analysis for Tungsten

1.0 gram samples are fused with KCl, KNO_3 and Na_2CO_3 flux in a test tube, and the fusions are leached with 20 ml water. W in the solution determined by ICP with a detection of 1 ppm.

Page Thirteen.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS. VANCOUVER B.C.

PH: 253-3156

TELEX: 04-53124

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 SL OF 3:1:3 HCL TO HMM3 TO H2D AT 90 BEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca.P.Mg.Al.Ti, La.Ma.K.W.Ba.Si.Sr.Cr AND B. Au DETECTION 3 ppm.

AUX AMALYSIS BY AA FROM 10 BRAM SAMPLE. SAMPLE 1:FE - SUIL

DATE RECEIVED FOR 16 1984 DATE REPORTS MAILED F. D. 2/84 ASSAYER & July DEAN TOYE, CERTIFIED B.C. ASSAYER

							CA	4L - D	E.NVE	PR	5	PR	OJEC	7 #	VAL	ENT	INE	F	ILE.	# 8	4-02	2050								P	AGE	# 1	
SAPLE .	No	Eu	Pb	?n	Ao	Ni	Ea	Mn	Fe	44	g.	Au	Ih	Sr	Ed	Sb	Pi	Y	Ca	P	La	Cr	Ma	84	Ti		Ai				Aul		
	ppe	pp+	pos	pps	994	ppe	ppe	994	1	ppe	pp.	99*	900	ppe	99.	ppe	pps	ppa	1	1	ppe	ppe	:	ppe	1	ppa		1	1	998	apb		
⊕ 10₩	5	39	37	78	.8	17.	12	607	6.96	18	:	ND	*	15	1			178	.11	.65	6	27	.59	44	. 25		5.58	-éi	.65	2	5		
0 9+75W	7	56	55	108	.7	24	17	722		\$9	2	M	- 2	20	1		2	134	.10	.06	8	34	.97	30	.11		5.39	.91	.03	2	5		
er 9+50W	9	31	28	94	-6	23	9	222	7.99	.18	- 2	2H	2	11	1	7	2	150	.03	- 05	-	41	.46	47	. 15	-	4.46	-54	+0.	- 3	5		
0 9+25h	1	47	16	37	-1	14	3		16.51	24	2	2	2	14	- 1	2	2	241	.04	.97	3	20	.11	le	.47		4.13	.01	.91	1	5		
's \$M	1	29	,	23	.1	9		117	11.72	14		172	2	•	,	3	5	170	. 02	-09	5	9	.09	9	.90	-	1.71	.01	· X.	Ÿ	5		
0.0+75M	2	22	7.	22	.3		.7	169		19	- 7	Nū	. 2	- 5	1	5	2	169	.01	.94	2	12	.10	9	.54	4	1.22	.91	.23	1	5.		
0 8+50W	3:	31	7	91	.2	12	1	194		17	2	MP	2	4	1	2	2	85	.01	.0a	5	44	.29	21	. 22	2	1.46	.01	-91	2	5		
4-8x25#	2	13	1	25	.t	8	5	229	7.54	8		46	2	15	- 1	5	7	221	.05	.94	2	17	.12	10	.74			.51	.02		5		
0 SM	2	38	4	105	.1	26	12	315	7.52	è		MI	-	12	- 1	3	2	150	.31	.04	3	55		30	. 22	- 3	4.17	.01		2	5		
D 7+75W	2	76	17	155	.1	21	25	1481	7.42	741	2	MÉ	2	80		.3	2	75	.72	.04	9	36	1.:5	40	.03	2		.01	.70	2	5		
- 154		32	12	58	.1	19	12	202	1.46	34		ME-	2	15	1	2	:	241	.12	.05	2	60	.75	21	. 16	2	5.15		. 15				
4 T+25%	1	60	15	107	.1	25	25			23	ź	40	- 2	612	1	2	2	85	2.95	.03	4	49	.95	5.	12		7.55	.57	.94				
6.79			2		.1	27	14	367	6.28	29	4	HD.	2	214	1	2	2	76	.80	.07	. 7	43	.55	52	.15	2	. 64	.+*		-		*	
6 2075N					.:	21	- 1	175		33	2	ND	2	73		2	2	166	.11	.45	11	38	.49	85	.16	2	5.40	.91	.43	3	5		
0.6+50#		34	11	33	.1	17		126	8.04	20	2	NO	2	51	1	2	2	150	.54	.03	2	35	.13	20	-27	2	2.99	-91	.92	i	5		
0 6+254	1	55	12		.1	22	11	103		26		ME-	2	100	1	2	2	97	.50	.67	7	41	.56	48	.14		5.64	.41	, 4	5	5		
17 à 4	4		12		. 7	32	1	253		27	1	110	- 2	- (1	1	2	7	142		.08	3	72	.75	34	.40		9.60	.01	97	. 2	5		
0.5+754					-1	24	15		10.44	335	- 2	ND		83		7	2	191	1.19	.67	•	48		27	.31	2		.91	231		5		
5 5+5cW	2				- 4	21	14			195	12	HD				2	2	165	2.06	.05	- 1	52		15	.47	5		.01	.01	-	. 3	1000	
⊕ 5+25W	3	45	12	154	.1	21	21	420	8.87	43	7	MS	- 2	97	1	2	2	132	.73	.07	3	45	.75	36	.20	2	5.47	.51	.94	3	10	-	
v 54	2	84	10		.4	:8	22	801	9,77	51		нĐ	2	123	1	2	2	162		.10	2		1.68	40	. 29	- 1	5.70	.42	.02	2			
0 1-25	- 3				.3	29	10	1,000		25			2		- 1	2	2	73		.10	,	70		48	.12	2		.51	100	2	5		
0.4+5ch	2				.3	18		37.5		49	- 2	10		100	- 1	- 2	2	93		.06	5	42		62	.16	-		-91	.1.	:	5		
6 4/25%	2			2.0		22	12			45	2		- 2		- 1	- 2	. 2	77		67		43		77	-14	2		.62	.92	:			
n 40	2	37	,	73	-4	16	E	519	7.10	24	12	M	2	46	,		2	124	.94	94	1	48	.53	2.	.17	2	3.17	.11		*	5		
= 3+75%	2			0.70	.5	12	5			78	- 2	10	- 2		- 1	7	3	194		.95	5	36		21	-12	7	2,91	.91	.97		5		
* 3+50#			12		.1	1.		398		30	- 2	ME	- 2		1	2		122		.04	2	22		25	. 27	2	2.5	.93	.03	- 3	5		
3+254	2				.7					35	4				- 1	7	- 7			.69	7	23		50	.17	- 2		.42	.67		5		
9.24	3				.1	15				47	- 2			46	- 1	:	:	154		.63	3	35		45	.20	:	***	.61			5		
6 2+75 4	2	30		35	.5	15	- 7	462	7,14	2a		MB	:	12	,	2	2	167	.11	-05	3	32	.70	24	.24	7	2.34	.01	. 62	-	5		
9-24564	2	40	,	97	.1	21	12	1007		40		HD	2	243	- 1	2	2	92		.06	3	40		60	.17	2		-51	150	2	5		
6 2+25M	4	10.00						1194		45	2		2		- 1	2	:			.09	4	25		26	.14	3		171	3.4	1	5		
0. 2W		1000									2		7		- 1	2	2			.05				16	.24	2		.81	3.5	- 2	19		
0 14754	•									14	3		. 7	7		2	5					18		,	. 25	3		.51	.00	2			
0.1+504	- 3	36	- 11	35	-1	17	14	1544	7.86	55	5	ME	2	25	- 1	7	2	139	.28	.66	6	33	.91	37	-16	2	4.15	.91	.92	2	5		
⊕ 1+25W	5								7.85		2				1	2								28	.20		5.50		.62	2			
9 18	ė	88	13	130	.4	27	21	898	8.25	137	7	NO	2	41	- 1	- 7	2	155	.18	.05	9	- 05	1.78	40	. 14	- 2	5.50	.27	- 92		16	-	

appendix 'c'

							C	AL - I	ENVE	R RE	S	FRO	JJEC	T #	9AL	ENT	IME	H	ILF	# 84	402	ÜĞH								F-6	AGE 4	Ħ
SAMPLE #	No ppa	Cu ppo	Pb ppe	Zn ppe	Aq ppo	Ni pps	Co pps	Ħn P ps	Fe	Às ppa	U ppa	Au ppa	Th pps	Sr ppe	Cd pps	Sb ppa	pp a Bı	y ppe	Ca I	F Z	La pps	Cr ppe	Ho Z	Ba ppe	Ti 2	B ppa	Al Z	Na Z	k Y	N spe	Au t opb	
0 0+75M 0 0+50M 0 0+25M 0 0M 15 10M	5 3 1 3	19 94 113 62 46	14 6 9 7 4	13 66 67 47 36	.3 .1 .1 .2	8 23 31 24 13	17 17 27 9	507 836 323		101 58 55 45 28	2 2 2 2 2	ND ND ND ND	2 2 2 2	76 52 17 7	1 1 1 1	4 3 2 3 2	9 3 7 3 5	228 78 93 155 243	.05 1.31 1.59 .27	.03 .08 .09 .03	2 5 5 3 3	19 33 34 61 81	.07 .95 .98 .99	14 29 33 22 13	.46 .10 .12 .34 .53	3 13 2	1.25 3.16 3.09 6.12 5.33	.01 .04 .04 .01	.02 .03 .03 .02 .01	2 2 2 2 2	190 5 40 5 5	
15 9+75M 15 9+56M 15 9+25M 15 9M 15 8475M	5 24 28 14 23	83 331 247 129 80	7 11 8 9	30 28 54 52 65	.4 .3 .4 .7	15 16 21 18 12	17 17 18 23	205 262 285	11.16 26.38 13.81 8.99 11.13	70 63 42 36 165	2 2 2 2 2	ND NE ND ND	2 2 2 2 2	7 3 7 16 15	i i i 1	2 2 2 2	3 3 2 7	224 204 197 165 200	.18 .04 .12 .42 .37	.04 .08 .05 .04	2 2 2 5 5	50 24 54 43 25	.46 .07 .46 .57	25 19 39 56 47	.26 .35 .26 .29	2 2 2	4.96 3.75 6.92 3.96 3.18	.01 .01 .01 .01	.03 .91 .03 .03 .03	2 2 2 2 2 2	25 15 10 -5 75	
15 8+50N 15 8+25M 15 8N 15 7+75M 15 7+50N	1 1 1 2 3	20 28 20 36 102	6 4 3 11 17	42 34 25 46 20	.2 .4 .1 .3	11 9 11	:	276 3 256 5 241	8.34 18.02 13.66 12.12 8.06	28 28 9 34 378	9 2 2 2	NĐ NĐ NĐ NĐ	2 2 2 2 2	16 17 8 3	1 1 1 1	2 2 8 6 3	9 7 10 2 6	191 311 314 242 101	.04 .07 .10 .02 .02	.03 .09 .07 .07	2 2 2 5 20	9 9 7 - 23 35	.08 .68 .10 .23	13 10 10 8 42	.39 .79 .84 .37	2	1.83 3.64 1.82 4.76 2.76	.01 .01 .01 .01	.02 .01 .02 .01 .02	2 2 2 1	5 5 5 5 5	
15 7+25W 15 7W 15 5+75W 15 5+56W 15 5+25W	4 8 2 2 2	65 67 58 22 18	9 16 7 8 5	115 161 103 29 21	.1	34 17 - 10	i 1	7 68° 1 45° 5 28	7.09	28 39 57 35 28	2 2 2 2 2	ND NG ND ND		57 282 15 6 5	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 4 5	122 81 108 168 177	.21 1.20 .42 .02 .02	.09 .09 .06 .03	9 11 4 2	26 23 32 32	.40 .47 .76 .23	58 75 21 9	.24 .17 .11 .24	Crein erra	5.74 5.87 4.87 2.35 1.80	01 .01 .01 .01	.93 .93 .92 .91	22.24.24.24	מיייני מיייני	÷
15 6M 16 5+75M 18 5+56M 18 5+25M 18 5W	3 2 3 1 3	48 45 46 29 40	11 2 8 1 13	87 78 39	. 4	25 31 20	1	2 34 ¹ 7 22 7 15	2 7.01	56 27 75 8 56	214252	NO NO NO NO	3 2 2 2 2 2	8 46 23 8 54	1 1 1 1	2 2 1 5	2 4 2 7 5	141 89 118 200 95	.17 .02	.05 .06 .64 .01	4 9 7 2 3		.66 .58 .45 .17	23 28 32 9 25	.15 .16 .21 .40	0.54.54.04.04.04	4.50 .98	.91 .91 .91 .91 .91	.02 .03 .01 .02 .01	2 2 2 2 2	87 67 87 87 87	
15 4+75W 15 4+50W 15 4+25W 15 4W 16 3+75W	2 1 2 2 3	51 50 47 23 25	9 7	96 85 48 23		2 3i 1 1i) 	4 22	2 3.95 6 5.26	- 13 45 - 48	2 2 2 2 2	HS HB HB HB HB	5	86 85 29	1 1	? ? ? ?	3 2 4 6	83 79 80 121 160	.77 .26 .09	.09	9 5 2 2		.98 .93 .60 .34	50 50 18 12 14	.11 .07 .12	2	1,54	.11 .10 .01 .01	.02 .01 .03 .02 .01	7	נש כש דש ניש בי	
15 3+50W 15 3+25W 15 3W 15 2+75W 15 2+50W	4 1 4 2 3	21	5	17 25 27		3 9	? ? ?		4 6.60	18 57 20	5 6 2	HD	2 2 2	8	i i	2 3 2 3 2	5 5 6 9	113 138 148 198	.08 .01 .05	. 05 . 03 . 04	2	19 16 9	.34 .08 .20	29 14 . 7 . 8 . 22	.13 .18 .17 .48	2	1.40	.01	.92 .93 .91 .91	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	10 5 5	
15 2+25W 15 2W 5TD A-1:AU 0.5	3 3					3 1	2	? 38	2 11.23 11 9.9 1 2.86			AN Mi Gr				2	8 7 2	154 157 57						12 14 279		2	3.55 3.27 2.07	.01 .01 .02	.61 .62 .13			

							C	AL-D	ENVE	ER R	ES	PR	OJEC	T #	VAL	ENT	INE	F	ILE	# 8	4-02	206A								P	AGE	#
SAMPLE 0	Mo pps	Cu ppe	Pb pps	Zn ppa	Aq ppe	Ni pps	Co ppe	Mn ppa	Fe 1	As ppm	U pps	Au pps	Th ppe	Sr ppe	Cd pps	Sb pp=	Bi ppe	y ppa	Ca Z	P	La	Cr ppa	Ma Z	Ba pps	Ti 1	B	Al Z	Na I	K	N DDe	Au I	
15 1+75W	6	194	11	68	.1	28	50	997	8.53	169	2	ND	2	75	1	2	2	73	. 98	.10		28	.72	32	.08	,	3.06	.04	.04	2		
IS 1+50W	7	196	9	68	.1	27	51			178	2	ND	2	74	1	2	2	71	.98	.10	i	23	.68	31	.07		3.04	.05	.04	2	5	
15 1+25W	7	132	6	52	.2	19	52	1410	7.75	164	2	HD	2	67	1	2	2	87	1.04	.09	3	25	.68	27	.08		3.15	.03	.03	2	5	
15 1W	4	55	5	24	.2	12	8	274	9.03	117	2	ND	2	11	1	2	2	138	.14	.02	2	30	.55	13	.31		2.33	.01	.03	2	5	
15 0+75W	2	32	2	18	.3	9	5	196	6.59	B1	2	ND	2	10	1	4	2	149	.14	.03	2	25	.58	13	.33		1.73	.01	.03	2	5	
15 0+50W	4	84	4	24	.1	12	7	260	10.13	150	2	ND	2	6	1	2	2	198	.06	.06	4	45	.29	15	.41	7	6.65	.01	.01	2	5	
15 0+25M	3	91	3	63	.1	78	27	884	5.96	36	2	ND	2	39	1	2	2	85	1.07	.10	4	30	.94	32	.08	2		.03	.02	2	5	
15 OM	3	68	4	51	.1	22	14	394	5.94	35	2	ND	2	28	1	2	2	89	- 68	.06	4	30	.81	26	.16		2.55	.02	.02	2	5	
25 10W	10	101	8	345	.i	25	38	6509	5.87	26	2	ND	2	9	3	2	2	94	.22	.06	6	43	.29	32	.14	2		.01	.02	2		
25 9475W	6	41	7	22	.2	9	5	149	8.65	28	2	HD	2	14	1	2	2	226	.10	.02	2	29	.14	15	.37		1.87	.61	.02	i	5	
25 9+50W	7	51	7	63	.1	17	32			47	2	ND	2	7	1	2	2	158	.13	.02	2	40	.42	19	.21	2	5.00	.61	.03	2	5	
25 7+25M	7	85	6	37	. 3	19	12		6.43	50	2	NÛ	2	5	1	2	2	138	.10	.64	2	5ú	.42	19	. 19	2	115	.01	.03	2		
25 9 W	- 1	11	2	13	.3	4	2			3	6	ND	2	7	1	4	3	154	.05	.03	2	1	.05	9	.51	2		.01	.01	2		
25 8+75W	. 9	46	4	37	.1	10	52	2392	6.46	41	2	ND	2	b	1	4	2	135	.12	.04	2	40	.10	15	.22	2	3.18	.91	.62	2		
25 8+50M	17	65	9	65	.4	18	14	298	9.87	79	2	ND	2	5	1	2	2	200	.08	.04	2	45	.47	26	. 21		4.03	.01	.03	2		
25 8+25W	10	87	3	23	.1	10	10	146	10.47	26	2	NE	2	13	1	2	2	163	.33	.03	4	35	.68	28	.38	2	1.23	.01	.01	2	5	
25 BM	4	100	3	99	.1	22	74	3436	5.07	43	4	ND	2	26	1	2	2	55	.49	.05	5	33	.22	43	.10		3.52	.01	.62	- 5	5	
25 7+75M	2	143	6	60	.1	24	25	1352	0.03	50	å	MI	2	26	1	2	2	97	.34	.63	5	43	.58	28	.22		4.81	.01	.01	?		
25 7+504	4	108	11	37	.5	13	28	791	7.97	162	2	ND	2	13	1	2	2	131	.27	.04	4	29	.47	29	.20	2	2.54	.01	. 02	2		
25 7+75W	3	205	3	55	.2	17	18	389	6.42	197	5	ND	2	4	1	2	2	105	.08	.05	6	45	.40	15	.19	2	4.60	.91	.03	2		
25 7W	3	234	12	102	.5	35	37	999	8.05	189	2	ND	2	8	1	2	2	123	. 15	.08	5	59	.76	26	.26	2	7.32	.01	.02	2	5	
25 6+75W	6	121	16	50	.2	11	12	486	12.09	1270	2	HD	2	4	1	2	2	119	.04	.07	2	21	.14	17	.14		2.50	.01	.03	- 1	5	
25 6+50M	4	52	10	33	.3	6	7	766	7.55	530	2	ND	2	6	1	3	2	121	.10	.06	2	12	.15	13	.34		1.45	.01	.62	2		
25 6+25W	3	36	5	47	.2	8	5	326	13.43	78	3	ND	2	6	1	2	2	116	.08	.07	6	9	.19	16	.44		4.15	.01	.01	2		
25 AW	1	18	2	22	.1	6	4	1279	9.38	15	2	ND	2	3	1	2	2	105	.04	.04	6	7	.08	9	.44	2		.91	.01	2		
25 5+75M	15	20	7	28	. 4	8	4	293	4.21	153	2	ND	2	24	1	2	2	133	.61	.04	2	34	.19	15	.23	2	3.32	.01	.03	2	5	
25 5+50M	2	41	6	94	.2	9	9	502	7.09	19	2	ND	2	9	1	2	2	99	.04	.06	4	16	.37	10	.23		4.73	.01	.01	2	5	
25 5+25W	1	20			.4	6	3	337	9.66	7	2	ND	2	4	1	2	2	130	.04	.08	3	5	.11	7	. 39		2.78	.01	.01	2		
25 5W	1	22	18	23	.1	8	6	454	10.52	15	2	NO	2	7	1	2	2	251	.02	. 05	2	14	.29	16	. 5à	7.0	2.76	.01	.62	2		
25 4+75#	2	30	7	26	.5	10	6	277	6.76	18	2	ND	2	5	1	2	2	138	.04	.05	5	23	.27	10	.21		3.82	.01	.02	2		
25 4+50N	2	81	2		.2	12	20	680	7.00	66	2	ND	2	11	1	2	2	102	.11	.08	4	31	.23	18	.22	2	5.07	.01	.01	2	5	
2S 4+25W	4	69	3		.4	14	12	581	6.46	76	2	NE	2	12	1	2	2	80	.14	.10		33	. 27	14	.16	2	Professional Control of the	.01	. 62	2		
25 4N	3				.2	11	5		12.35	76	2	ND	2	7	1	2	2	206	.07	.08	3	37	.17	12	.58		2.83	.01	.01	2		
25 3+75₩	1	20	8	21	.3	6	5	325	11.67	15	2	ND	2	4	- 1	2	2	114	.02	.06	3	6	.13	7	.59		1.98	.01	.ůI	2		
25 3+50M	1	19	1	16	.5	5	Ь	341	7.20	8	2	NG	2	4	1	6	3	145	.02	.04	2	2	.12	7	.83	2		.01	.01	2		
25 3+25M	1	16	1	17	.2	ò	3	17.00		11	2	ND	2	3	1	2	2	172	.02	.06	3	2	.68	7	.81	2	1.53	.01	.01	2	5	
25 3W	1	17		11/2/2	.4	4	4	236	5.10	à	6	ND	2	5	1	4	5	186	.02	.04	2	2	.04	8	.17	2		.01	.02	2		
STG A-1/AU 0.5	1	31	39	184	.3	35	11	1022	2.82	9	2	HD	2	36	1	2	2	57	.58	-10	8	73	. 68	275	.08		2.16	.02	- 20	700	530	

							C	AL-D	ENVE	ER R	ES	PR	OJEC	T #	VAL	ENT	INE	F	ILE	# 8	4-07	:06A	i.							· P	AGE	# 4
SAMPLE 8	Ho DBS	Cu	Pb	Zn ppe	Aq pp=	Ni pps	Co	An pps	Fe	As ppe	U	Au pps	Th pps	Sr pp=	Cd ppe	Sb	Bi pps	Ų DD0	Ca 1	P	La	Cr ppa	Ma Z	Ba pps	Ti	B ppe	Al Z	Ma Z	K	¥	Aut	
20 21754	TO THE REAL PROPERTY.	189		276	20	10.79	15.	37		- 2			A Committee			- Die seit					(Attention)	**		3000		• • •	70	•		ppe	ppb	
25 2+75W	,	27	1	29	.2	7	1		9.22	40	2	ND	2	5	,	2	2	204	.04	. 64	5		.13	10	-87		2.05	.01	.01	2	5	
25 2+50W		35		56	.1	4	5		9.97	18	2	MD	2	15	1	2	2	73	.10	.08	8	8	.27	14	.30		5.50	.01	.02	2	5	
25 2+25W	1	28		25	.2	8	1		12.31	32	2	HD	2	6	1	2	2	168	.01	.06	2	2	-96	9	- 67	2	2.30	.01	.01	2	5	
25 2W	6	113	11	46	.1	22	27	684	Y3 10 23	119	2	MD	2	35	1	2	2	102	.69	.07	4	37	.79	25	. 15	4	3.16	.04	.63	2	30	
25 1+75M	4	105	7	73	.1	26	23	1015	6.40	100	2	MD	2	38	1	2	2	195	.78	.06	3	53	1.22	21	.20	3	3.82	.03	.04	2	5	
25 1+50W	7	79	7	31	.1	16	14	448	8.71	136	2	ND	2	30	1	2	2	99	.67	.05	3	32	.55	22	. 18	2	2.59	.04	.03	2	40	
25 1+25W	8	71	8	26	.5	14	8	263	8.52	116	2	ND	2	26	1	2	2	110	. 48	.05	3	27	.44	17	.21		1.93	.03	.04	2	10	
25 1W	17	3à	1	16	.2	13	3	121	6.17	147	2	MB	2	7	1	2	2	177	.22	.02	3	22	.26	10	.41		1.08	.02	.01	2	5	
25 0+75#	6	28	1	30	.2	41	8	260	7.74	112	2	HD	2	14	1	2	2	187	.38	.04	4	48	1.04	13	. 53		1.70	.06	.02	2	5	
25 0+50M	8	26	3	13	.1	10	1	99	6.41	141	2	ND	2	8	1	2	2	197	.23	.02	3	23	.18	10	.46	2		.02	.01	2		
25 0+25M	5	68	4	22	.3	10	-	160	7.39	131	2	ND	2	8	1	2	2	142	.11	.03	5	34	.28	13	. 26	2	3.66	.02	.01	2	5	
25 ON	7	51	8	17	.1	11	2		10.10	141	2	HD	2	4	i	2	2	189	.10	. 94	Ĭ	30	.23	13	. 38		3.17	.01	.01	2	5	
3\$ 10W	8	14	7	19	.3	6	2		5.63	22	2	MD	2	7	i	2	2	211	.10	.02	- 1	22	.21	18	.17		1.90	.01	.02	2	5	
35 9+75M	11	48à	14	107	.1	23	105		19.49	257	15	ND	2	45	2	2	ž	134	1.35	.07	i	38	.12	37	.13		3.71	.04		2		
35 9+50M	13	109	11	59	.1	18	33		18.38	120	6	NB	2	17	i	2	2	154	.51	.03	3	40	.27	26	.19		2.57	.04	.09 .06	2	35 30	
35 9+25W	12	184	13	73	.1	19	46	385	21.00	619	2	ND	2	5	1	2	2	139	. 24	. 06	3	44	.11	16	.26	2	4.76	.04	.06	2	145	
35 9₩	11	59	10	32	.2	15	9		11.42	101	2	ND	2	8	- 1	2	2	199	.12	.03	3	35	. 48	23	. 22		2.91	.01	.03	2	10	
35 8+75W	4	33	3	19	.2	12	6		7.39	49	2	ND	2	8	1	2	2	263	.08	.02	2	34	.22	14	.34		1.61	.01	.02	2	5	
35 8W	5	137	10	28	.1	17	9		10.16	64	2	ND	2	1	1	2	2	141	.16	.06	5	57	.48	22	. 24		5.68	.02	.03	2	20	
3\$ 7+75M	5	95	8	28	.1	15	7		10.63	62	2	ND	2	9	1	2	2	196	.14	.06	4	59	.50	19	.31		4.65	.02	.03	2	5	
35 7+50W	4	73	7	18	,1	15		175	13.14	39	2	ND	2	5	1	2	2	253	.11	.05	3	63	.22	19	.52	7	3.42	.01	.02	2	5	
35 7+25W	13	100	3	11	.1	12	2		11.95	43	2	ND	2	4	1	2	2	224	.10	.06	4	25	.68	34	.61		1.56	.62	.03	2	45	
38 7W	15	63	1	20	.1	11	1	121	9.95	129	2	ND	2	ló	1	2	2	223	.17	.03	3	25	.10	19	.67		1.51	.01	.02	2	10	
35 6+754	10	141	12	29	.4	15	8	273	15.10	69	2	ND	2	8	1	2	2	167	. 18	.06	6	50	. 15	20	.42		5.08	.02	.03	2	5	
35 6+50M	12	242	12	48	.1	19	40	1571	12.44	106	3	NO	2	19	1	2	2	177	.50	.06	5	39	.55	28	.21		4.69	.04	.07	2	35	
35 6+25W	6	183	10	46	.1	25	36	449	9.87	218	7	NB	2	18	1	2	2	133	. 48	.08	11	56	.53	26	.19	,	7.26	.03	.03	2	115	
35 6W	4	99	9	52	.1	25	15	288		51	2	NO	2	22	1	2	2	169	.48	.04	4	46	.94	41	.19		4.47	.03	.05	2	5	
35 5+75W	4	31	4	19	.2	12	6	140		29	2	HD	2	5	i	2	2	279	.05	.02	2	31	.15	11	.40		1.89	.01	.01	2	5	
35 5+50W	3	35	8	26	.2	15	5	2017	2000	35	2	ND	2	7	i	2	2	212	.0B	.04	2	51	.33	18	. 29		4.35	.01	.02	2	5	
35 5+25W	4	20	8	26	.5	13	4	146		37	2	ND	2	8	i	2	2	256	.14	.06	3	35	.28	13	.31		2.21	.01	.02	2	5	
35 5W	6	26	10	41	.3	14	26	1029	6.06	29	2	ND	2	21	1	2	2	192	.50	.04	5	36	.28	40	.21	2	2.17	.01	.02	2	5	
35 4+75W	3	67	9	49	.3	24	7	233		12	2	ND	2	13	i	2	2	188	.14	.05	4	57	.79	19	.30		5.74	.01	.02	2	5	
35 4+50W	4	52	11	67	.2	30	11	298		49	2	HD	2	18	- 1	2	2	142	.28	.05	3	49	(2/2)	33	. 22		5.87	.02	.05	2	5	
35 4+25H	В	92	29	143	.5	58	18		9.11	55	2	HD	2	8		4	2	84	.17	.14	B	54		24	.13		3.50				5	
35 4W	2	61	14	145	.2	14	4		10.79	51	2	ND	2	23	i	2	2	184	. 22	.06	4	22	.41	20	.58		4.45	.01	.02	2	5	
STD A-1/AU 0.5	1	30	39	178	.3	36	11	994	2.79	11	2	ND	2	37	1	2	2	57	.59	.10	8	77	. 69	276	.08	9	2.04	.02	.21	2	535	

Page Seventeen

							C	AL-D	ENVE	RR	ES	FR	OJEC	T #	VAL	ENT	INE	F	IL.E	# 8	4-02	206A								P	AGE	# 5
SAMPLE 0	Ma ppa	Cu ppe	Pb ppe	In ppa	Aq ppa	Ni ppa	Co pps	Mn ppa	Fe	As pps	U .	Au ppa	Th pps	Sr ppa	Cd pps	Sb ppe	Bi ppe	y ppe	Ca I	P	La pps	Cr ppe	Mq Z	Ba ppa	Ti 1	8	Al Z	Ma 1	K Z	W ppa	Au I	
3S 3+75W	4	64	4	33	.2	15	12	546	7.87	91	2	ND	2	26		D	2	123		67		20		20		9877			3.5	- Process		
35 3+50W	2	43		25	.5	9	1	223	9.75	69	2	MD	2	11		2	2	295	. 49	.07	3	29	.40	28	. 28	2		.03	. 05	2	5	
35 3+25N	2	48	7	49	.1	19	i		11.45	46	2	ND	2			3		223	.22	. 05	3	14	.19	18	.83	2	7.5	.01	.02	3	5	
35 3W	2	67	11	65	.2	23	9	400	7.37	34	2	MD	2	19	- 1		2	(E.E.E.)	.17	.05	3	52	. 12	29	.53		3.13	.01	. 02	2	5	
35 2+75W	4	51	6	82	.1	23	17	1107		63	2	ND	2	25	i	2	2	151	. 25	.08	3	42 37	.78	34 51	. 18	1	5.83	.02	.02	2 2	5	
35 2+50W	3	73	11	127	.3	31	22	2498	5.07	50	2	ND	2	51	1	2	2	93	1.01	-12	6	32	.73	77	.13		4.57	.03		- Şi	15.4	
35 2+25W	3	80	8	127	.2	32	22	2165		47	2	ND	2	59	1	2	2	89	1.11	.12	6	32	.72	77	.12	- 1		.04	.02	2	5	
35 2W	3	108	15	91	.2	28	18	549	7.72	56	2	ND	2	27	1	2	2	123	.53	.08	4	39	.39	25	.23		2.74	.03				
3S 1+75W	2	49	9	29	.2	12	4	161	8.91	51	2	ND	2	1		2	2	165	.08	.05	- 1	35	.21	14	.34		1.29		.02	2	5	
35 1+50N	2	38	3	21	.4	12	2		9.48	56	2	ND	2	7	i	2	2	191	.19	.06	3	30	.23	19	. 48		2.23	.01	.01	2	5	
35 1+25W	3	46	7	34	.2	12	5	245	9.98	37	2	ND	2	10	1	2	2	120	. 27	.08	4	34	.36	16	- 28	3	5.50	.01	.02	2	5	
39 IN	2	34	8	29	.5	12	2	210	9.16	43	2	MD	2	6	1	2	2	188	.07	.07	4	29	-17	15	.40		3.55	.01	.02	3	5	
35 0+25W	2	51	7	32	. 6	12	4	279	8.07	70	2	ND	2	8	1	2	2	156	.15	.10	7	38	.30	15	.37		5.84	.02	.02	2	5	
35 0+50W	3	84	12	39	. 3	15	12	566	6.03	83	2	ND	2	11	1	2	2	86	.15	. 19	7	39	.44	15	.20	2		.01	.02	2	5	
35 0+25W	3	33	7	22	.3	12	3	208	8.79	61	2	HD	2	9	1	2	2	223	.16	.04	3	25	.31	11	.55		1.83	.01	.02	2	5	
35 ON	2	35	7	38	.5	13	5	277	7.35	39	2	ND	2	10	1	2	2	138	.13	.07	4	32	.52	19	. 26	3	3.00	.02	.02	2	5	
45 SM	2	116	5	57	.1	28	24	480	9.27	45	2	ND	2	42	1	2	2	106	. 86	.07	3	28	. 69	23	.19	3		. 05	. 63	2	5	
45 8+75W	2	91	8	62	.4	33	16	340	A.79	34	2	ND	2	23	1	2	2	144	. 37	.04	3	42	1.35	63	.18		4.27	. 03	. 0e	2	5	
45 8+504	3	224	7	25	.2	21	8	183	7.06	74	2	ND	2	14	1	2	2	91	.36	.05	5	36	.31	8	.27		8.52	.63	.01	2	5	
45 8+25W 2X	2	78	4	11	.2	8	3	78	7.19	101	2	ND	2	3	1	2	2	101	.09	. 93	2	18	.10	8	.32		3.Gá	.01	.02	3	5	
45 8W	43	53	25	36	.5	12	101	1539	9.59	70	3	ND	2	11	1	2	2	104	.41	.11	8	34	.12	28	.10	- 5	7.44	.01	.03	3	5	
45 7+75W	á	28	4	21	.2	10	7	277	5.38	30	2	ND	2	9	1	2	2	236	.33	.03	3	18	.11	23	.32		1.19	.01	.02	2	5	
45 7+50W	17	70	11	77	.1	37	18	497	10.11	101	2	MD	2	19	1	4	2	207	. 31	.04	4	57	1.27	68	.28	2		.01	. 05	2	5	
45 7+25W	15	133	5	79	.1	36	32	939	6.52	210	4	ND	2	41	1	2	2	122	. 95	.08	6	42	1.23	51	. 18		4.96	.03	. 60	2	10	
45 7W	17	47	9	49	.4	15	17	509	7.44	133	2	ND	2	23	1	2	2	151	.73	.06	6	50	.58	31	. 22	•	3.23	. 02	. 05	2	5	
45 6+75W	3	27	7	19	.4	12	4	215	9.39	37	2	ND	2	9	1	3	2	309	.11	.03	2	33	.19	9	.54	2	1.97	.01	.02	2	5	20
45 6+50M	2	22	4	17	.3	10	4	171	7.11	28	2	ND	2	8	1	2	2	277	.09	.07	2	24	-17	10	.48	2	1.80	.01	.02	2	5	
45 6+25W	3	72		B2	.2	39	24	476	6.30	33	2	MD	2	23	1	4	2	151	.32	.07	6	52	1.33	63	. 19		5.98	.01	. 05	2	5	
45 6W	2	34	4	28	. 1	14	7	175	6.66	25	7	MD	2	7	1	2	2	255	. 08	.03	2	27	. 29	15	.37	2	2.09	.01	. 02	2	5	
45 5+75N	3	46	9	51	.1	23	9	200	6.89	32	2	ND	2	12	1	2	2	172	-17	.06	4	53	.76	31	.24	2	6.95	.61	.02	2	5	
45 5+50M	4	25	7	23	.6	14	. 5	194	9.79	42	2	ND	2	9	1	4	2	229	.12	.05	2	43	.32	14	.39	2	2.40	.01	.02	3	5	
45 5+25W	1	23	9	21	.3	12	4	167	7.40	34	2	MD	2	12	1	6	2	216	.12	.04	3	30	.30	15	.36		2.23	.01	.02	2	5	
45 5W	3	63	6	53	.3	23	11	300	7.70	36	2	ND	2	18	1	2	2	195	.22	.05	5	53	.73	56	.22	2		.01	.03	2	5	
45 4+75N	3	60	8	53	.3	21	10	289	7.12	32	2	HD	2	20	1	2	2	197	. 23	.05	5	51	. 66	52	.22		5.16	.01	.02	2	5	
45 4+50W	2	61	7	88	.2	42	24	532		50	2	ND	2	19	1	2	2	152	. 23	.06	7	65	1.17	100	.21		7.82	.02	.06	2	5	
45 4+25#	3	50	10	41	.2	18	7	195	7.37	26	2	ND	2	48	1	2	2	146	.84	.08	5	38	.29	96	. 27	3	3.22	.02	.02	2	5	
45 4W	4	31	8	48	.3	17	13	415	8.06	30	2	ND	2	15	t	5	2	206	.27	.06	5	45	.65	33	. 25		4.05	.01	.04	2	5	
STD A-1/AU 0.5	1	29	38	183	.3	36	11	994	2.83	10	2	ND	2	35		2	2	57	40	11		75	70	281	08		7.04	02	71	2	100	

							C	AL-D	ENVE	RR	ES	PR	DJEC	T #	VAL	ENT	INE	F	ILE	# 8	4-02	06A								P	AGE #
SAMPLE 1	Mo pps	Cu ppm	Pb pps	Zn ppe	Aa ppa	Ni ppa	Co pps	Mn ppe	Fe I	As ppa	D .	Au ppe	Th pps	5r ppa	Cd pps	Sb ppa	Bi ppa	y ppe	Ca Z	P	La	Cr ppe	Mq Z	Da ppn	Ti Z	B ppe	Al I	Na 1	K 2	N pps	Au I ppb
45 3+75#	2	43	9	42	.1	20	7	340	7.89	36	2	ND	2	10	1	2	2	284	. 12	.02	2	50	.76	22	.48	2	2.52	.01	.02	2	5
45 3+50N	5	45	7	58	.4	25	7	255	9.24	45	7	ND	2	9	1	2	2	199	.12	.05	4	77	. 65	22	.34	2		.01	.03	2	5
45 3+25M	3	37	10	38	.4	15	5	212	7.64	30	2	ND	2	16	1	2	2	191	.43	.07	3	39	.34	24	.31		6.32	.01	.02	2	5
45 3W	4	81	6	16	.2	11	3	129	9.87	16	2	ND	2	1	1	5	2	218	.07	.04	3	58	. 13	19	.43		4.16	.01	.01	3	5
45 2+75W	4	34	7	43	.3	18	6	197	7.22	29	2	ND	2	8	1	2	2	191	.10	.04	4	54	.44	22	. 29		7.34	.01	.02	2	5
45 2+50W	3	57	7	47	.4	21	7	262	6.25	42	3	ND	2	11	1	2	2	154	.21	.05	5	50	.67	21	.26	2	6.14	.01	.01	2	5
45 2+25#	3	69	9	44	.5	17	5	246	8.50	37	2	ND	2	17	1	2	2	245	.31	.04	4	44	.22	18	.48	2	3.71	.02	.02	2	5
45 2W	2	56	12	53	.5	18	6	427	8.52	38	2	ND	2	32	1	2	2	178	.40	.07	5	51	.37	32	.31	2	3.76	.02	.01	2	5
45 1+75N	3	115	12	80	.3	24	18	599	6.66	45	5	HD	2	27	1	2	2	142	. 38	.10	5	51	. 45	25	.26	2	7.30	.02	.01	2	5
45 1+50W	2	52	9	35	.5	15	5	210	8.22	47	2	ND	2	8	1	2	2	200	.09	04	5	59	.30	16	.35	2	5.12	.01	.01	2	5
45 1+25W	7	75	8	100	.3	31	9	279	7.72	59	2	HD	2	26	1	2	2	158	.17	.05	4	52	.66	33	.30	2	6.66	.01	.03	2	5
45 1W	7	54	8	83	.4	24	7	202	9.18	64	6	ND	2	22	1	2	2	225	.97	.03	3	54	-41	38	.31	2	6.01	.01	.03	2	5
45 Ú+75W	10	29	8	56	.3	19	6	218	6.91	125	2	ND	2	13	1	2	2	199	.16	-04	5	52	.72	35	.24	2	4.60	.01	.02	2	5
45 0+50M	7	43	10	73	.4	20	16	1372	7.06	287	4	ND	2	21	1	2	2	163	.20	.07	9	52	.55	38	.19	2	5.28	.01	.02	2	5
45 0+25N	7	27	16	67	.4	16	20	1881	9, 38	153	8	ND	2	47	1	2	2	135	1.46	-08	2	29	.61	39	.12	2	3.57	.01	.02	2	5
45 ON	7	18	8	36	.2	13	6	342	6.92	110	2	ND	2	14	1	2	2	182	.19	.04	4	39	.61	19	. 25	2	2.55	.01	.02	2	5
55 5W 2X	2	?3	4	22	.2	13	3	111	4.67	21	2	HD	2	8	1	2	2	78	.11	.03	4	35	.13	19	.19	2	4.33	.61	.01	2	5
55 4+75W	4	116	6	38	.2	20	5	179	7.60	25	2	ND	2	12	1	2	2	133	. 16	.05	6	58	.15	30	.31	2	7.06	.01	.01	2	5
5S 4+50W	3	56	5	26	.3	15	-1	134	8.44	28	2	ND	2	10	1	2	2	179	.12	.06	6	37	.10	41	.56	2	3.30	.02	.02	3	5
55 4+25W	2	57	3	33	.5	14	2	119	6.56	27	2	ND	2	8	1	4	2	137	.13	.04	6	44	.13	20	.32	2	4.12	.01	.01	2	5
55 48	2	55	2	32	.2	13	2	115	6.18	21	2	ND	2	11	1	2	2	130	.16	.05	5	39	.13	24	.30	2	3.55	.01	.01	2	5
55 3+75W	3	58	6	20	- 4	14	2	124	7.08	21	2	ND	2	11	1	2	2	146	.14	. 05	5	40	.12	26	.35	2	3.25	.01	.01	2	5
55 3+50W	3	155	15	124	.3	33	24	613	8.98	53	2	MD	2	45	1	2	2	117	.71	.10	5	40	.57	25	.13	2	4.28	.04	.01	2	5
55 3+25M	1	41	2	25	.2	9	. 7	189	5.00	17	6	ND	2	8	1	2	2	96	.19	.04	2	30	.17	12	.21	2	6.48	.02	.01	2	5
55 3W	2	103	8	59	.2	26	32	2618	5.96	45	2	MD	2	20	- 1	2	2	87	1.05	.09	2	20	.31	19	. 16	2	4.08	.62	.02	2	5
55 2+75W	1	87	7	38	.1	17	16	860	5.18	19	5	ND	2	26	1	2	2	91	.45	.96	5	22	.37	16	.16	2	4.91	.02	.02	2	5
55 2+50W	1	54	7	24	.2	15	6	318	6.73	23	2	ND	2	13	1	2	2	171	. 31	.04	3	24	.30	16	. 36	2	2.04	.02	.01	2	5
55 2+25W	2	154	9	49	. 3		37	1087	6.84	70	3	ND	2	27	1	2	2	106	.82	.11	7	32	.51	16	.10	2	6.25	.02	.01	2	5
5S 2W	2	141	8	51	.1	36	37		6.32	74	3	HD	7	32	1	2	2	103	.77	.11	7	35	.55	17	.11	2	6.57	.02	.02	2	5
55 1+75W	4	40		32	.1	14	6	386	5.85	57	7	ND	2	18	1	2	2	145	. 27	.05	4	42	.49	15	. 20	2	6.13	.02	.01	2	5
55 1+50W	5	54	6	65	.1	20	8	269	5.57	196	15	ND	2	60	-1	2	2	130	1.00	.07	7	56	. 54	15	. 27	2	7.91	.01	.01	2	5
5\$ 1+25W	7	44	10	65	.4	26	16	0.000	7.19	48	12	HD	2	26	1	2	2	169	. 65	.04	ó	49	.95	45	.19		4.20	.02	.03	2	5
SS IN	5	74	9	89	.2	33	21	1172	5.66	57	4	ND	2	42	- 1	2	2	120	. 60	.05	?	38	1.02	52	.17	2	5.25	.03	.03	2	5
55 0+75W	7	38	6	44	.4	18	8	1200	6.48	98	2	MD	2	19	1	2	2	213	.50	.04	5	50	.61	26	.29	2	3.53	.02	.02	2	5
55 0+50W	5	47	6	55	.3	24	10	287	6.54	86	2	ND	2	13	1	7	2	134	.21	. 05	4	55	.76	31	.20	2	0.69	.01	.03	2	5
55 0+25W	5	57	è	71	.2		31	100,000	5.18	78	2	ND	2	25	1	2	2	109	.63	.10	?	51	.91	24	.16	2	7.97	.01	.02	2	- 5
55 00	5	58	5	71	.3		31	858	5.12	?6	2	ND	2	25	1	2	2	106	.64	.11	8	57	.91	24	.15	4	6.10	.01	.03	2	5
SID A-1/AU 0.5	1	36	39	180	.3	36	10	1005	2.81	11	2	ND	2	36	1	2	2	57	.59	.11	8	74	.69	279	.08	8	2.08	.02	.21	2	540

APPEND IX "C"

							C	aL-D	ENVE	R R	ES	FR	OJEC	T #	VAL	ENT	INE	F	ILE	# 8	4-02	06A								P	AGE	7
SAMPLE 0	Ho ppa	Cu	Pb ppa	Zn ppe	Ac pps	Ni ppa	Co	Mn pps	Fe 1	As DDB	U	nu	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Ma	Ba	Ti	8	Al	Na	ĸ		Aut	
	1	74-	ppm	ppe	-	ppm	ppm	pp=		pps	ppe	ppe	ppe	pps	ppe	pps	ppe	ppe	1	1	bbe	ppa	1	bbs	1	ppe	1	1	1	ppa	ppb	
UP-0	6	121	16	222	.4	53	41	2988	7.33	150	15	MD	2	23	3	6	2	144	.34	.12	13	67	.97	26	.16	2	5.81	.01	.02	2		
UP-1	5	78	5	52	.2	21	21	861	6.41	44	2	MD	2	9	1	3	2	130	.25	.10	7	55	.36	13	. 28		6.28	.01	.01	2	5	
UP-2	17	126	11	53	.4	21	26	668	9.24	50	2	ND	2	10	1	4	2	159	.23	.09		46	.40	17	.38		5.82	.01	.01	2	5	
UP-3	35	90	15	48	.1	17	11		14.19	53	2	ND	2	14	1	2	2	160	.34	.08	6	31	.18	16	.52		2.69	.01	.01	2	5	
UP-4	69	54	6	26	.1	12	5	298	12.35	42	2	ND	2	12	1	2	2	170	.57	.09	12	64	.15	18	.44		1.67	.01	.02	3	5	
UP-5	24	229	12	112	.2	27	77	1176	9.20	73	2	ND	2	32	1	2	2	88	1.18	.11	7	20	.56	28	.12		2.82	.03	.03	2	5	
UP-5	26	251	13	43	.4	24	98	1610	10.00	84	2	ND	2	27	1	2	2	94	. 55	.14	8	23	.54	32	.10		3.58	.03	.02	2	5	
UP-7	8	44	7	20	.1	15	11		3.85	73	2	ND	2	11	1	2	2	118	.17	.07	4	23	. 28	18	.18	200	2.39	.02	.01	2	5	
UP-8	4	54	8	37	. 2	22	27	1225	5.47	28	2	ND	2	32	1		2	144	. 37	.16	4	31	.73	24	.07		2.50	.02	.02	2	5	
UP-9	3	29	2	17	.1	12	1	260	2.97	19	2	ND	2	28	1	2	2	104	.52	.07	2	22	. 28	18	.11		1.16	.02	.01	2	5	
UP-10	1	33	8	38	.1	22	6	418	6.51	21	2	ND	2	9	1	2	2	241	.41	.06	1	44	.83	13	.53	2	3.66	.02	.01	2	5	
UP-11	2	21	•	18	.3	14	4	206	9.05	14	2	ND	2	9	1	3	2	212	.26	.07	3	40	.22	8	.45		2.38	.01	.02	3	5	
UP-12	8	29	7	21	.2	12	9	655	7.24	52	2	ND	2	15	1	2	2	197	.42	.07	3	31	. 20	11	.30	2	1.60	.02	.01	2	5	
UP-13	3	18	4	26	.2	15		1527		8	2	MD	2	25	1	6	2	149	.62	.05	45	35	. 38	25	.28		1.56	.03	.02	2	5	
UP-14	2	11	3	9	.1	8	3	110	1.07	3	2	ND	2	16	1	2	2	55	. 22	. 04	2	16	.06	17	.06	4	.62	.02	.02	2	5	
UP-15 10x	1	5	1	3	.1	2	1	22	.49	7	2	ND	2	2	1	2	2	12	.09	.02	2	1	.03	2	.02	2	. 15	.01	.01	2	5	
UF-14	5	73	5	42	.1	19	37	1158	4.72	46	2	MD	2	25	1	2	2	78	1.21	.13	4	22	.47	22	.07	4	2.39	.04	.04	2	5	
UP-17	7	95	6	51	.2	25	52	1212		60	2	ND	2	21	1	3	2	85	- 86	.14	ò	21	.53	21	.07	5	2.93	.02	. 02	2	5	
5P-18 UP-19	4	45	6	28	.3	16	8	507	8.96	48	2	MD	2	11	1	2	2	131	.34	.08	5	39	.33	11	. 26	2	3.77	.01	.01	2	5	
UF-17	1	69	5	28	.4	15	7	256	8.62	42	2	MD	2	13	1	2	2	136	.31	.08	2	37	.27	12	. 28	2	3.73	.01	.02	2	5	
UP-20	2	85	4	71	.1	28	27	1957	4.92	43	11	HD	2	39	1	2	2	88	1.78	.13		43	.62	37	.14	5	3.05	. 05	.04	2	5	
UP-21	5	125	9	65	.1	32	35			332	28	ND	2	39	1	2	2	121	1.74	.12	5	68	.62	29	.12		3.78	.02	.63	2	5	
UP-22	2	113	8	18	.2	15	10	391	11.87	25	2	MD	2	14	1	2	2	101	.49	.08	i	40	.31	23	.21		2.76	.03	.05	3	5	
UP-23	3	86	7	77	.1	26	21	3378	6.39	103	14	NĐ	2	20	1	2	2	151	.70	.11	6	70	.65	30	.21		1.69	.02	.02	2	5	
UP-24	4	136	1	78	.2	22	45	3433	5.64	147	13	ND	2	18	1	2	4	107	. 67	.15	7	62	.40	26	.10		5.51	.02	.02	2	5	
UP-25	5	115	4	58	.2	26	44	1313	7.57	38	2	ND	2	28	1	2	2	99	.92	.12	5	30	.60	31	.12	4	3.04	.02	.02	2	5	
UP-26	5	193	5	68	.1	36	45	868		58	2	ND	2	18	1	2	2	102	.44	.12	9	34	.55	20	.19		6.39	.02	.01	2	5	
UF-27	3	57	1	15	.1	12	11			23	2	ND	2	9	1	2	2	130	. 23	. 05	2	9	.16	11	. 25	3		.02	.02	2	5	
UP-28	10	47	5	18	. 3	12	12		7.24	23	2	ND	2	23	1	2	2	134	. 34	.09	4	19	.17	11	. 25	4	1.82	.07	.02	2	5	
UP-29	5	21	5	19	.2	12	6	276	6.29	12	2	ND	2	17	1	2	2	113	.27	.07	3	14	.20	15	.26	4	1.66	.02	.02	2	5	
UP-30	8	47	7	22	.2	12	10	2.753.777		22	2	ND	2	15	1	2	2	131	.33	.09	5	23	.20	15	.14	4	2.09	.01	.01	2	5	
UP-31	10	163	9	55	.3	29	85	- TOTAL		12	2	ND	2	25	1	2	2	101	.67	.17	9	25	.47	22	.06	4	3.58	.02	.01	2	5	
UP-32	5	24	5	14	.7	14	3		9.63	28	2	ND	2	8	1	2	2	324	.17	.05	1	58	.14	8	.71		1.83	.02	.01	3	5	
(A-32	2	17	9	20	.1	13	8	A 11 7.57		6	2	ND	2	14	1	2	2	111	. 35	.08	3	29	.30	22	.17	7-0	1.34	.02	.02	2	5	
UP-34	6	29	7	53	.5	13	22	3368	5.88	31	2	ND	2	24	1	2	2	154	.80	.13	5	44	.19	25	.14		3.20	.02	.01	2	5	
UF-35	8	74	7	70	.2	20	1.000		4.88	66	2	ND	2	31	1	2	2	91	1.45	.13	5	24	.30	28	.08	6	3.18	.02	.02	2	5	
Nb-29	7	2.7	5	19	.2	11	9		9.40	14	2	ND	2	9	1	2	2	124		.11	3	42	.10	7	.24		3.46	.01	.01	2	5	
STD A-1/AU 0.5	1	30	39	180	.3	37	12	1011	2.83	10	2	ND	2	36	1	2	2	57	.59	.12	8	75	.70	283	.09		2.00	.02	.20	2	510	

APPENDIX "C"

							CF	#L-D	ENVE	ER R	ES	PR	DJEC	T #	VAL	ENT	INE.	F	ILE	# 8	4-02	206A								P	AGE	# 8
SAMPLE I	No ppe	Cu pps	Pb ppm	Zn pps	Ao ppe	Xi ppe	Co pps	Mn pps	Fe 1	As ppa	U pps	Au	Th pps	Sr ppa	Cd pps	Sb pps	Bi pps	V pps	Ca 1	P	La ppa	Cr ppe	Ma Z	Ba ppe	Ti 2	9 pps	Ai 1	Ma Z	K	N pps	Aus	
UP-37	1	40	11	21	.3	17	10	370	12.11	18	2	ND	2	19	1	2	4	226	.45	.12	2	40	.33	13	.34	2	2.30	.02	.04	2	5	98
UP-38	6	16	8	14	.3	9	3		11.75	30	2	ND	2	16	1	2	3	296	1.03	.06	2	35	.07	8	.56		1.75	.01	.02	2	5	
UP-39	1	101	7	44	.4	29	20		6.44	20	2	ND	2	26	1	2	2	138	.70	.13	4	37	.57	16	.22		3.28	.01	.03	2	5	
UP-40	25	95	12	41	.2	13	18		8.28	88	2	ND	2	16	1	i	2	139	.47	.12	7	21	.31	31	.14		2.73	.02	.03	2	5	
UP-41	84	221	13	71	.3	20	57		10.59	105	2	ND	2	20	i	5	2	197	.60	.16	7	26	.39	30	.11		4.52	.02	.03	2	5	
UP-42	23	183	Iá	101	.4	24	99	2253	7.66	77	2	ND	2	36	1	2	2	95	.86	.17	6	21	.48	29	-11	2	3.70	.03	.04	2	5	
VAL-SI	2	69	6	62	.3	29	17	652	4.66	28	2	ND	2	30	1	2	2	138	1.16	.08	3	71	1.92	18	.24	2	3.06	.04	.04	2	5	
VAL-52	4	127	10	88	.3	34	39	1073	6.33	102	2	MD	2	50	1	2	2	134	1.25	.09	4	59	1.54	29	. 20		3.91	.03	.03	2	5	
VAL-53	2	200	9	49	.1	24	38	668	6.95	125	4	ND	2	40	1	2	2	62	2.08	.11	3	20	-69	35	.12		2.30	.07	.10	2		
VAL-54	3	94	2	71	.4	34	24	974	5.35	55	2	MD	2	75	1	2	2	165	1.55	-08	4	79	2.15	23	- 26		3.92	.04	.04	2	5	
VAL-55	2	103	1	67	.5	40	33	1213	5.68	100	2	HD	2	41	1	2	2	166	1.60	.09	4	96	2.15	24	.26	3	4.46	.03	.03	2	5	
VAL-56	3	94	6	66	.5	39	31	1198	6.69	97	2	HD	2	29	1	2	2	212	1.14	.09	3	87	2.24	25	.27	3	4.18	.03	.04	2	5	
VAL-57	2	17	7	9	.7	7	2	111	7.48	24	2	ND	-2	5	1	3	4	253	.10	.04	3	18	.15	17	.47	2	2.21	.01	.03	2		
VAL-58	13	82	5	21	.1	10	138	2377	4.66	1399	2	ND	2	5	1	6	2	82	.06	.09	12	34	.05	18	-10		12.51	.01	.01	2		
VAL-59	9	227	12	32	.2	16	18		13.67	195	2	MD	2	6	1	5	2	179		.07	3	61	.32	lò	. 30		5.27	.01	.02	2		
VAL-60	2	17?	8	55	.1	26	34	739	7.31	47	7	ND	2	43	1	2	2	97	2.24	.11	3	37	1.13	37	.18	2	2.91	.07	.10	2	5	
VAL-61	5	177	8	59	.1	27	48	672	6.46	117	5	NE	2	71	1	2	2	66	1.78	.13	4	26	.72	21	.15	3	2.94	.07	.04	2	5	
VAL-62	11	336	12	54	.1	29	86	776	3.45	219	6	ND	2	38	1	2	2	66	2.95	.15	4	28	.60	28	.13	2	2.89	.05	.07	2	20	
VAL-63	6	1053	17	30	.4	36	153	902	20.87	375	2	HD	2	31	2	2	2	121	.63	. 20	2	11	1.01	18	.19	2	4.15	.01	.01	2	5	
VAL-64	16	343	13	57	.1	28	75	678	8.55	214	10	ND	2	44	1	2	2	66	2.47	.14	4	29	. il	26	. 15	3	3.16	.06	.07	2	15	
VAL-65	14	130	10	126	.1	23	36	1637	7.38	38	3	ND	2	33	1	2	2	86	1.49	.15	8	26	.56	32	.14	3	2.70	.04	.05	2	5	
VAL-65	3	77	8	5è	.2	28	22	568	4.72	22	2	ND	2	54	1	2	2	143	1.44	.19	6	31	1.24	27	.15	3	2.40	.05	.04	2	5	
VAL-67	1	132	9	51	.5	30	20	541	5.77	15	2	NO	2	40	1	2	2	243	1.32	.18	6	29	1.41	25	.16	2	2.55	.06	.03	2	5	
VAL-68	4	102	10	62	.2	15	46	824	3.53	51	2	ND	2	34	2	4	2	81	1.31	.15	15	19	.41	26	.10	5	2.93	.02	.03	2	5	
VAL-69	16	216	10	79	.2	22	52	765	7.28	51	2	ND	2	20	1	2	2	85	1.71	.17	6	18	.69	30	. 15	3	2.78	.05	.06	2	5	
VAL -70	13	171	6	86	.1	24	44	1505	7.21	30	2	ND	2	20	1	2	2	B3	1.23	.13	5	22	.49	26	.16	2	3.83	.03	.03	2	5	
VAL -71	9	151	12	86	.3	22	41	1747	7.87	31	6	MD	2	31	1	7	2	79	2.22	.14	5	30	.49	60	.12	2	3.34	.06	.12	2	5	
VAL -72	2	84	8	63	.1	23	19	691	4.48	18	4	MD	2	53	1	2	2	57	2.09	.14	5	23	.76	52	.13	61	2.44	.05	. 03	2	5	
VAL-73	2		7	69	.2	33	29	702	5.16	31	6	ND	2	51	1	2	2	69	1.98	.13	4	26	.94	35	.14	82	2.57	.04	.02	2	5	
VAL-74	2	142	5	24	. 1	24	47	404	8.26	290	2	HO	2	16	1	2	2	85	1.15	.16	4	36	.17	10	.11	5	7.40	.01	.02	2	10	
VAL-75	4	40	7	19	.2	11	8	301	4.38	134	2	ND	2	52	1	2	2	88	1.32	.10	4	34	.26	11	.15	5	4.38	.07	.02	2	5	
VAL-76	4	100	8	36	.4	16	18	422	8.55	154	2	HD	2	17	1	2	2	132		.11	6	55	.27	23	.18		6.23	.02	. 03	2		
VAL-77	t	71	5	157	.1	20	17	583	4.04	16	4	ND	2	34	1	2	2	61	2.22	.15	5	23	.75	18	.13	42	2.40	.04	.02	2	5	
STD A-1/AU 0.5	1	30	38	183	.3	37	12	1019	2.79	11	2	NU	2	35	1	2	2	58			8	77	.69	280	.08		2.05	.02	. 19	2	480	

ACME ANALYTICAL LABORATORIES LTD.
852 E. HASTINGS, VANCOUVER B.C.
PH: 253-3158 TELEX: 04-53124

Page Twenty-One
DATE RECEIVED FEB 16 1984

DATE REPORTS MAILED Feb 2/84

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TO -100 MESH.

AG & AU BY FIRE ASSAY

ASSAYER ___ NOULY DEAN TOYE, CERTIFIED B.C. ASSAYER

CAL-DENVER RES.

PROJECT # VALENTINE

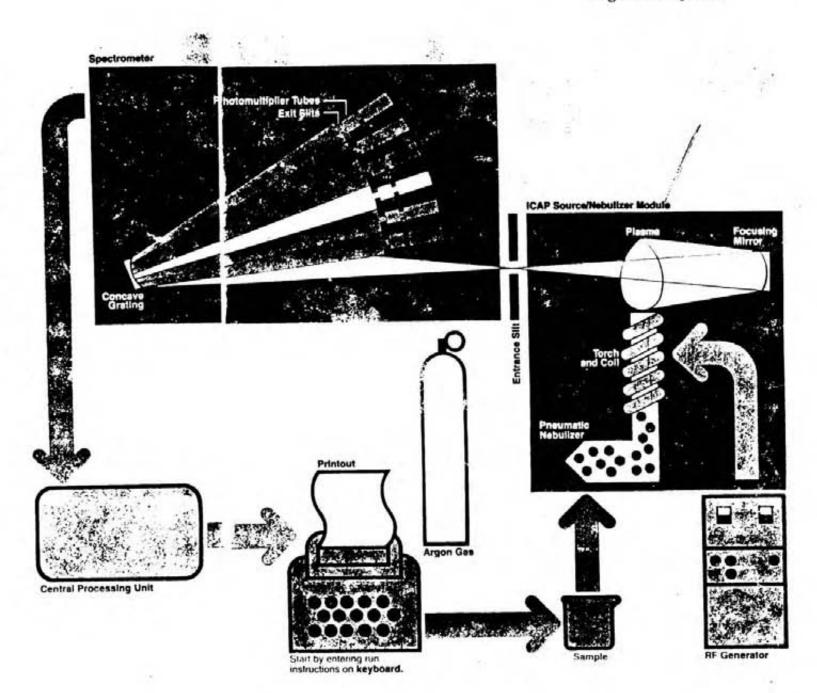
FILE # 84-0206B

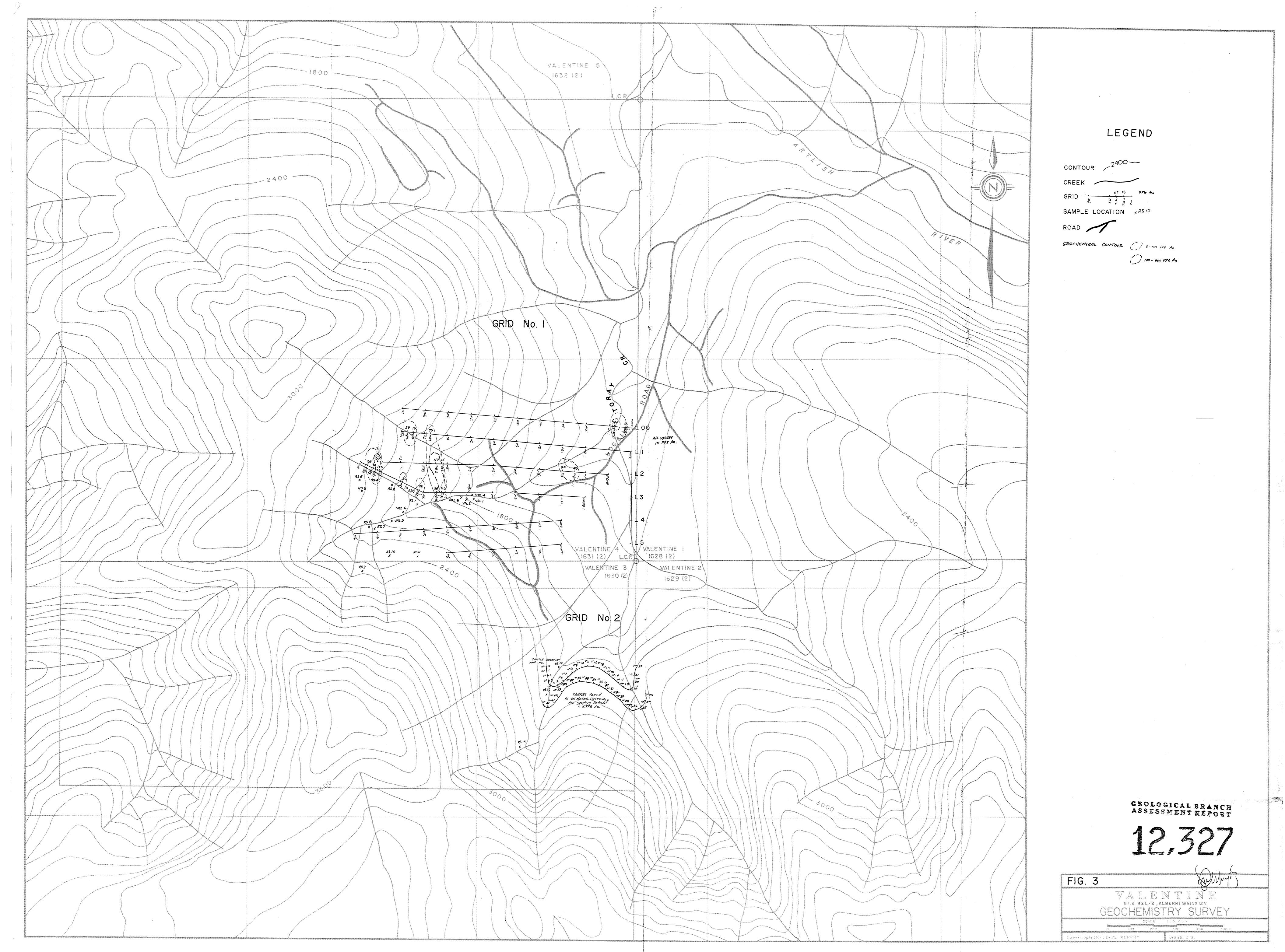
PAGE# 1

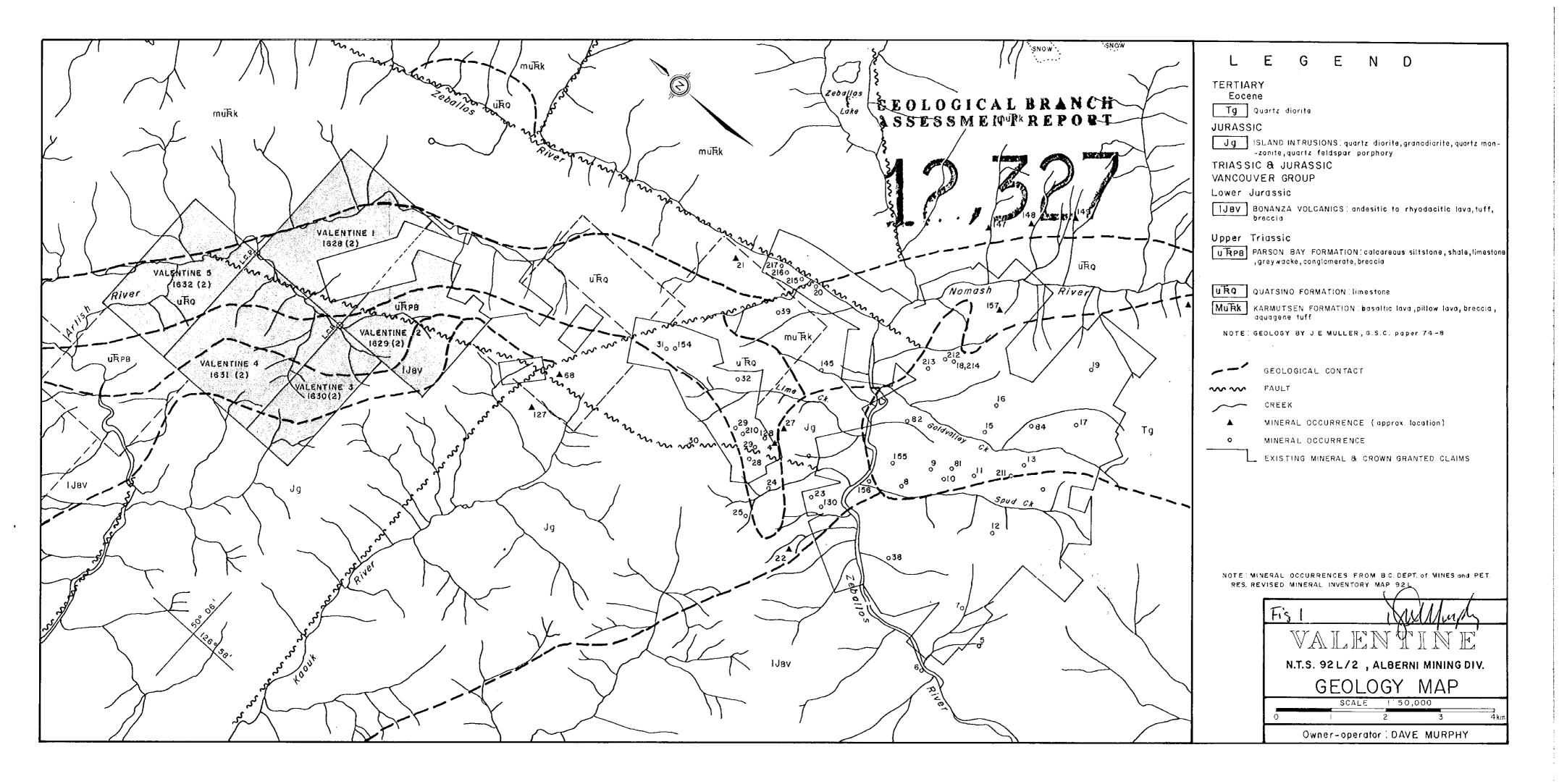
SAMPLE	AG	AU
	OZ/TON	DZ/TON
VAL-84001	.04	.001
VAL-84002	.03	.015
VAL-84003	.01	.001
VAL-84004	. 05	.082
VAL-84005	.01	.001
VAL-84006	.01	.001
RS-1	.01	.005
RS-2	.01	.001
RS-3	.01	.001
RS-4	.01	.001
RS-5	.01	.001
RS-6	.01	
RS-7	.01	
RS-8	.01	
RS-9	.01	.001
RS-10	.01	.001
RS-11	.01	.001
RS-12	.01	.001
RS-13	.01	.001
RS-14	.01	.001

How does an AtomComp work?

All the operator has to do is introduce a prepared liquid sample to the AtomCome. Type in a series of commands on the system's input output device. Read the results ported out directly on the device.


The Plasma AtomComp dues the rest (See diagram at right) A powerful, precinely regulated radio frequency (RF) generator provides energy to a plasma torch and creates an RF magnetic held. A stream of arrion gas, cassing through the field. Is classify invited to become the plasma.


An extremely efficient nebulizer alomizes the sample into the plagma where it becomes dissociated to form neutral and exceled along.


these atoms emit photons of radiant energy sight. A precisely aligned optical system optimates that direct this emitted light through an entrance sit anto a randove grating supram. The grating diffracts was energits unlight to a series of ent \$25, precisely processed along the specific members in Social curve.

Phytometholier tubes behind these exit sits convert emitted light to electrical energy proportional to the intensity of the spectral times.

A computer converts the signals into designal interest in mentions units (e.g. 1 ppb or point or in a faith or and describ from the Atomicijans, 4 input output forminal.

