

123

Geological Report on the 3/87 Silver Mountain-Chieftain-Hat Projects

of NAKUSP RESOURCES LTD. Slocan Mining Division, B.C.

February 1984

GEOLOGICAL REPORT

on the

SILVER MOUNTAIN-CHIEFTAIN-HAT PROJECT

of

NAKUSP RESOURCES LTD.

SLOCAN MINING DIVISION, B.C.

Lat. 50°04'; Long. 117°41'

NTS 82F/13; 82K/4

zo e 2. 22 (요) 的背 < Z N Ø 0 0 1 0 છ **62 (2)** 5 €

by

I.M. WATSON & ASSOCIATES LTD.

L.M. Watson U. Schmidt

į

February, 1984

3

TABLE OF CONTENTS

- -----

· · ·)

)

``}

Page

INTRODUCTION	1
LOCATION	1
PHYSIOGRAPHY AND ACCESS	2
CLAIMS	3
HISTORY	4
REGIONAL GEOLOGY	6
PROPERTY GEOLOGY	6
ECONOMIC GEOLOGY Chieftain Zone Eureaka Creek Zone Upper Tyee Creek Windy Creek Alteration Zone Lower Tyee Creek Big Spring Skarn Zone GEOCHEMISTRY (1) - RECONNAISSANCE SURVEY Method Analysis Discussion of Results Tyee-Caribou Anomaly Little Giant Anomaly Chieftain Eureaka Area Little Giant South Little Giant East Big Spring Eureaka East Erin Lee Sue Hat South Brick 3	10 10 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 16 17 18 19 19 19 19 19 19 20 20 20 20 20 20
GEOCHEMISTRY (2) – DETAIL SURVEY – CHIEFTAIN GRID	21
GEOPHYSICAL SURVEYS - CHIEFTAIN GRID	22
SUMMARY	23
RECOMMENDATIONS	23
CERTIFICATES OF QUALIFICATIONS	25,26
REFERENCES	27

Appendices

APPENDIX I

)

)

)

Claim Summary

APPENDIX II

Certificates of Analysis

$\frac{\text{List of Illustrations}}{(\text{In Text})}$

Following Page

1

Fig. 1	Index Map	
Fig. 2	Location	1
Fig. 3	Claim	3
Fig. 4	Regional Geology	6
Fig. 5	Chieftain Workings	10
Fig. 6	Eureaka Showing	12
Fig. 10	Geochemical Anomaly Index Plan	16

List of Illustrations (Attached)

Fig. 7-1 Fig. 7-2	Geology Silver Mountain West Geology Silver Mountain East
Fig. 7-3	Geology Chieftain West
Fig. 7-4	Geology Chieftain East
Fig. 7-5	Geology Hat
Fig. 8-1-1	Geochemistry Silver Mountain West - Sample Location
Fig. 8-1-2	Geochemistry Silver Mountain West – Au-Ag-As
Fig. 8-1-3	Geochemistry Silver Mountain West - Cu-Pb-Zn
Fig. 8-2-1	Geochemistry Silver Mountain East - Sample Location 🖉
Fig. 8-2-2	Geochemistry Silver Mountain East – Au
Fig. 8-2-3	Geochemistry Silver Mountain East- Ag ,
Fig. 8-2-4	Geochemistry Silver Mountain East- As
Fig. 8-2-5	Geochemistry Silver Mountain East- Cu 🦯
Fig. 8-2-6	Geochemistry Silver Mountain East- Pb
Fig. 8-2-7	Geochemistry Silver Mountain East- Zn 🦯
Fig. 8-2-8	— Geochemistry Silver Mountain East- Interpretation 🚽
Fig. 8-3-1	Geochemistry Chieftain West-Sample Location 🖉
Fig. 8-3-2	Geochemistry Chieftain West- Au 🥜
Fig. 8-3-3	Geochemistry Chieftain West- Ag /
Fig. 8-3-4	Geochemistry Chieftain West- As 🦯
Fig. 8-3-5	Geochemistry Chieftain West- Cu
Fig. 8-3-6	Geochemistry Chieftain West- Pb ,
Fig. 8-3-7	Geochemistry Chieftain West- Zn
• Fig. 8 3 8	Geochemistry Chieftain-West-Interpretation

List of Illustrations (Cont'd)

ţ

Fig. 8-4-1	Geochemistry Chieftain East - Sample Location
Fig. 8-4-2	Geochemistry Chieftain East- Au
Fig. 8-4-3	Geochemistry Chieftain East- Ag
Fig. 8-4-4	Geochemistry Chieftain East- As
Fig. 8-4-5	Geochemistry Chieftain East- Cu
Fig. 8-4-6	Geochemistry Chieftain East- Pb
Fig. 8-4-7	Geochemistry Chieftain East- Zn 🦯
Fig. 8-4-8	Geochemistry Chieftain East- Interpretation
-	
Fig. 8-5-1	Geochemistry Hat – Sample Location 🦯
Fig. 8-5-2	Geochemistry Hat – Au 🧭
Fig. 8-5-3	Geochemistry Hat – Ag
Fig. 8-5-4	Geochemistry Hat - As
Fig. 8-5-5	Geochemistry Hat - Cu 🖉
Fig. 8-5-6	Geochemistry Hat - Pb 🖉
Fig. 8-5-7	Geochemistry Hat – Zn 🦯
Fig. 8-5-8	Geochemistry-Hat - Interpretation -
Fig. 9-1	Geology Chieftain Grid 🦯
Fig. 9-2-1	Geochemistry Chieftain Grid - Au
Fig. 9-2-2	Geochemistry Chieftain Grid - 🍂 🔨 🗛
Fig. 9-2-3	Geochemistry Chieftain Grid - Ag 🖉 🗛
Fig. 9-2-4	Geochemistry Chieftain Grid - Cu 🖉
Fig. 9-2-5	Geochemistry Chieftain Grid – Pb 🦯
Fig. 9-2-6	Geochemistry Chieftain Grid - Zn 🧭
Fig. 9-3-1	Magnetometer Survey Chieftain Grid 🧹
Fig. 9-3-2	VLF EM Survey Chieftain Grid

·)

)

)

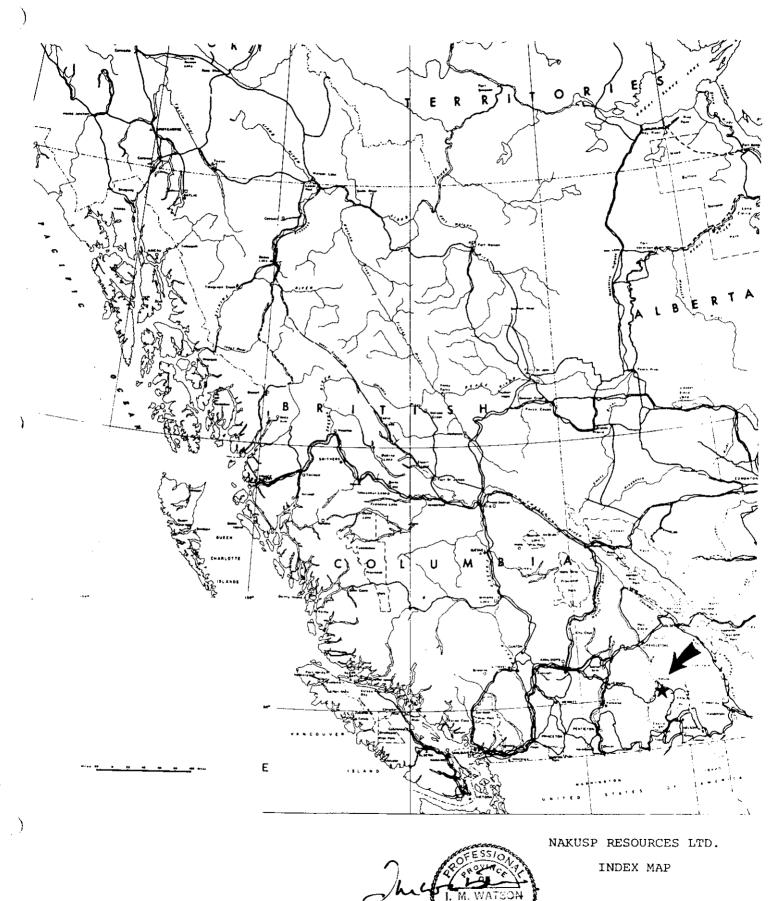


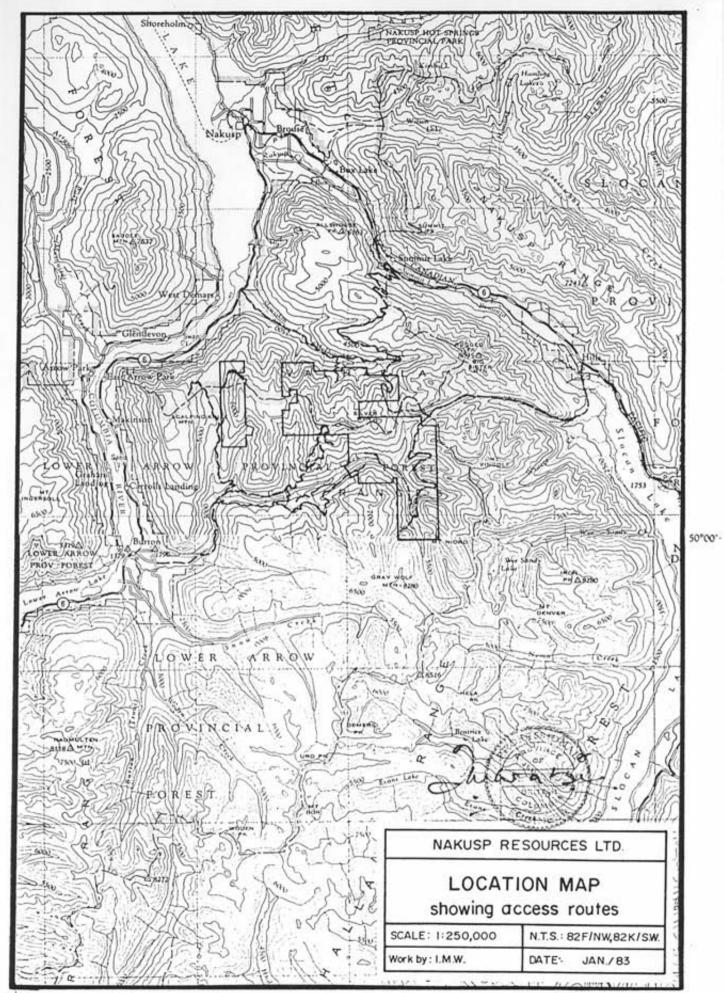
FIG.1

INTRODUCTION

During the period June 24th to October 4th, 1983, I.M. Watson & Associates carried out reconnaissance geochemical sampling, prospecting and geological mapping on the Silver Mountain-Chieftain-Hat property in the Nakusp-Burton area of southeastern B.C., on behalf of Nakusp Resources Limited. Detailed geological, geochemical and geophysical surveys were also conducted over an area containing known gold-silver quartz veins (Chieftain Zone).

The Nakusp-Burton area has a long history of precious metal exploration and small scale production dating from the placer operations on Caribou Creek in the late 1800's. Interest was revived in 1980 by the discovery of a high grade gold showing in reputed Milford Group (Mississippian-Permian) metasediments on Tillicum Mountain. Subsequent exploration revealed the presence of several widespread gold-bearing zones, now being tested by Esperanza Explorations Ltd.

The Nakusp Resources 1983 exploration programme was designed to explore primarily for precious metal deposits of the Tillicum type and for Pb-Zn-Ag-Au quartz veins similar to those known from early work in the area (e.g. Chieftain, Eureaka, Promestora and Millie Mack veins). This report summarizes the results of that programme and provides recommendations for on-going work.


LOCATION

j

The property is situated in the Valhalla Ranges of the Selkirk Mountains, approximately 20 kilometres south of Nakusp, in the Slocan Mining District of southeast B.C.

The approximate centre of the claim block is at latitude 50 04'N and longitude 117 41'W, and the claims lie within NTS map areas 82K/4 and 82F/13.

For administration purposes, the claims have been assigned to three projects - the Silver Mountain, Chieftain and Hat.

118°30'. FIG. 2

The Silver Mountain group of 197 claims and units forms the largest part of the property and covers all but the southwestern flank of Silver Mountain, extending from McDonald (Slewiskin) Creek in the north to Caribou Creek in the south.

The 19 claims/units of the Chieftain group occupy an area on the south bank of Caribou Creek three kilometres southeast of Silver Mountain Peak.

The 64 units of the Hat claims form a 2.5 X 4 kilometre block straddling the upper reaches of Caribou Creek.

PHYSIOGRAPHY AND ACCESS

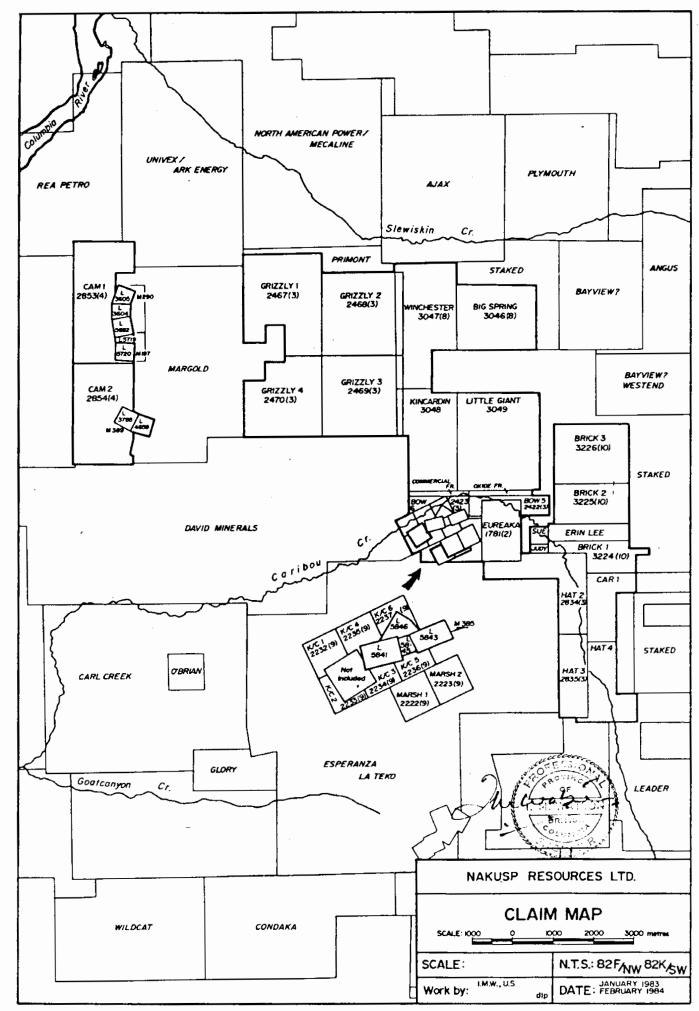
)

The claims encompass a large area of rugged terrain with elevations ranging from 1100m to 2400m. The treeline is at 2200 metres, and dense evergreen forest covers all but the upper slopes of Silver Mountain and logged-off areas along Walton and Caribou Creeks in the eastern part of the property. Slopes are steep, but outcrop is confined to drainages, open ridge crests, and numerous cuts along logging access roads.

The property is accessible by the logging roads which follow the main drainages flanking Silver Mountain (Fig. 2). The northern and eastern parts of the claim block (Silver Mountain and Hat project areas) can be reached by the McDonald Creek and Shannon Creek logging roads via Highway 6 at McDonald Creek, 12 kilometres south of Nakusp, or from Hills Siding, 29 kilometres southeast of Nakusp.

The north and south branches of the Caribou Creek logging road also provide access to the Silver Mountain summit area, and to the Chieftain claims and workings on the south side of Caribou Creek. Several well-marked foot trails provide access to various parts of the Silver Mountain, Chieftain and Eureaka areas. These are indicated on the relevant geological and geochemical map accompanying this report. The property consists of claims and units acquired by Nakusp Resources by purchase, by option agreement, and by staking.

Claims are summarized by project below. Claim data are listed in Appendix I.


Silver Mountain Project: Big Spring Brick 1 - 3 Eureaka Grizzly 1 - 4 Kincardin Little Giant Ora Winchester Erin-Lee Commercial Fr. Judy Sue	s
Oxide Fr. Sun Fr. 197	-
Chieftain Project:Bow 5 & 6K/C 1 - 6Marsh 1 & 2Mineral Lease #385 (Chieftain, Duchess, Dundas, Mammoth #2)19	
Hat Project: Hat 2 - 4 Car <u>64</u> . <u>280</u>	

*Two post claims

)

The following is a summary of information provided by Nakusp Resources Ltd., and, to the best of the writer's knowledge, is an accurate account of Nakusp's tenure of the claims:

- All claims are registered in the name of the company.
- Those listed under the Silver Mountain Project are wholly owned by Nakusp and were acquired by purchase.

ļ

FIG. 3

- All but 2 of the Chieftain and Hat project claims were acquired under the provisions of an option agreement between Nakusp Resources Limited and Chieftain Resources Limited dated October 21, 1982.

- The exceptions, listed below, were staked on behalf of the company.

Car 1

Hat 4

HISTORY

)

)

ì

The history of mining in the Nakusp area dates back to the late 1800's and the discovery of placer gold in Caribou Creek. First published information refers to development work on the Promestora lead-zinc-silver-gold showings on Mineral Creek in 1896. Other significant zones developed during the late 1890's included the Millie Mack, Chieftain and Tillicum, followed by the Skylark, Mountain Meadow and Eureaka.

Production records are incomplete, but indicate sporadic small shipments, mostly during the period between the turn of the century and the 1930's, from several of the deposits including the Promestora, Chieftain, Tillicum and Millie Mack. Largest production came from the Millie Mack – a total of 419 tons during the period 1899 to 1979.

The only records of work on the Nakusp Resources property refer to the Chieftain and Eureaka zones.

The Chieftain lead-zinc-silver-gold vein was first staked in 1890. The owners, Messrs. Clark, Burns and McKenzie, developed the vein in two adits and an internal shaft (Marshall, 1982). Work continued until at least 1903, and the government report for that year notes that there was a large quantity of shippng ore on the dump which assayed \$200/ton. The ore was said to carry native silver.

The property apparently lay idle until 1920, when W. Clarke of Sandon held the claims. The government engineer made a detailed examination of the workings that year and sampled the vein in the upper and lower adits, with the following results:

		<u>Au ozs/ton</u>	Ag ozs/ton	<u>Width</u>
Upper adit				
- opposite winze	2	0.02	3.8	3'
- selected grab,	muck pile	1.32	8.6	-
Lower Adit				
- 3' from east fa	ace	0.24	5.0	13"
- 11" from east	face	Trace	296.0	14"

The Minister of Mines reports mention sporadic activity and attempts to achieve production during the period 1928 to 1934. In 1930, a Vancouver syndicate mined and sorted 'several tons', but funds ran out and the operators again shut down. In 1934, a production of 5 tons was recorded; the reported assay was:

0.80 ozs/ton Au; 77.86 ozs/ton Ag; 1.66% Pb; and 1.5% Zn

)

)

In 1955, the workings were held under lease by Randolph Harding of Silverton. A three-ton shipment to Trail that year assayed:

0.166 ozs/ton Au; 24 ozs/ton Ag; 1.02% Pb; and 0.57% Zn

Early work on the Eureaka zone is poorly documented and it is not known when the showings were first staked. The B.C. Department of Mines Annual Report for 1931 mentioned three adits on the Eureaka claim, but gives no details of the workings or the mineralised zone.

The claims comprising the Silver Mountain, Chieftain and Hat projects were acquired by Nakusp Resources during 1982. During November and December 1982, Glen White Geophysics Ltd. carried out an airborne geophysical survey on an area which encompassed the holdings of Nakusp Resources Limited and the Esperanza Tillicum gold property. The project combined magnetometer and VLF-EM surveys.

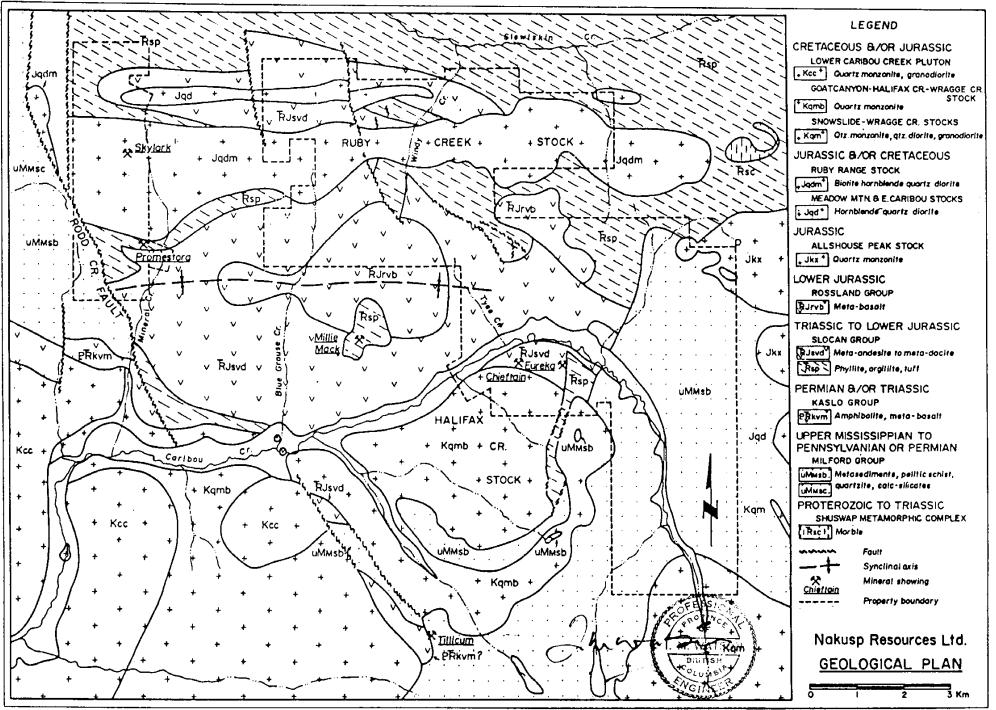
REGIONAL GEOLOGY (Fig. 4)

)

)

}

This description of the geological setting of the property is based mainly on regional mapping by Wheeler and Read in 1976, and by Hyndman in 1968.


The property lies on the southern limb of the Slocan synclinorium, which strikes eastsoutheast through the Valhalla Range, swinging southerly to the east of Slocan Lake. The fold is terminated to the west by the Rodd Creek Fault, a branch of the Columbia River Fault Zone. The north and south limits of the syncline are marked by the Kuskanax Batholith and the Valhalla Dome respectively.

The rocks within the syncline are highly deformed metasediments and metavolcanics of Permian to early Jurassic age intruded by granitic plutons of Jurassic to Cretaceous age. The regional metamorphism predates the intrusions, and the grade of metamorphism is lowest (green schist facies) in the structural troughs, rising to staurolite facies towards the flanks. The bulk of the rocks within the Slocan syncline has been assigned to the Slocan Group (Triassic - Lower Jurassic) and consists of thick succession of argillites overlain by about 1200 metres of volcanics. The volcanics form the cores of the synclinal folds.

The Columbia River Fault is a complex zone, over 250 kilometres long, striking north along the Columbia River valley, from the Nakusp area to Mica Dam (Read and Brown, 1981). It dips gently to the east and has effected major displacements of a normal dip slip nature. The fault marks the eastern boundary of the Shuswap and Monashee Metamorphic Complexes. According to Read and Brown, major tectonic slices on the east or hanging wall side of the Columbia River Fault have been transported several tens of kilometres eastward over the Shuswap and Monashee Complexes during the late Jurassic.

PROPERTY GEOLOGY

Because of the size of the property, the rugged terrain, and time constraints, the 1983 mapping/prospecting programme was mainly of a reconnaissance nature; efforts were

I.M.Watson & Associates Ltd., after Hyndmon (1968), Read & Wheeler (1973), Porrish (1981)

FIG. 4

January 1983

concentrated on the identification of geological environments similar to those hosting the Tillicum Mountain gold deposits and the shear controlled quartz veins of the Chieftain, Promestora and Millie Mack zones. In order to obtain the most information in the least time, mapping was concentrated on areas of maximum exposure along logging roads, drainages and ridges. Areas of geochemical interest (the Chieftain and Eureaka zones) were mapped and prospected in greater detail.

According to Hyndman (1968), the area covered by the Nakusp Resources property is underlain by mixed metasediments and metavolcanics of the Milford (Pennsylvanian-Triassic), Slocan (Traissic-Lower Jurassic), and Rossland (Jurassic) Groups, intruded by granitic rocks of Jurassic to Cretaceous age. However, stratigraphic interpretation and correlation are tentative in many areas because of the complexity of lithologies and structure and the relative sparsity of exposure.

Rocks of the Milford Group underlie the eastern and southern portions of the property, straddling the upper stretches of Caribou Creek and forming the eastern and southern slopes of Silver Mountain. They trend generally northwest and dip southwest. The group is sedimentary is character, composed mainly of argillaceous schists, with less abundant carbonates, calc-silicates, and mica schists. These lithologies interdigitate and their definition, correlation and extrapolation is correspondingly difficult. Nevertheless, the reconnaissance mapping identified five main rock types:

> Black shale and schist Grey phyllites Banded muscovite schist Marble and limey phyllite Quartzo-feldspathic gneiss

The argillaceous rocks predominate in the northeastern corner of the property but become progressively more calcareous and then quartzose to the south and east. The siliceous and schistose rocks in the southeastern area are believed to be the product of contact metamorphism effected by the granitic stocks east of Caribou Creek.

Hyndman's mapping shows the western limit of the Milford Group as trending northerly along the course of Walton Creek (Fig. 4); the 1983 reconnaissance mapping suggests that the Milford rocks extend further west, as far as Tyee Creek, forming a broad embayment into the Slocan rocks north of Caribou Creek (Fig. 6-2).

)

)

The metasediments and metavolcanics of the Slocan Group underlie most of the central and western parts of the property, and are more intimately intermingled than indicated by Hyndman's mapping. In addition, the Slocan argillaceous rocks are particularly prone to deformation by faulting and the succession is cut by innumerable strong shear zones, many with obvious but indeterminable displacements. As a result, only broad distinctions have been made between dominantly volcanic and dominantly sedimentary rocks.

The sediments are dark grey to black, fine, shaly argillites, which become phyllitic in zones of deformation. Hyndman has distinguished between phyllitic and non-phyllitic argillaceous rocks in the Nakusp area, but this distinction was not found to be evident or of practical use in mapping the property. Intercalated with the argillites are bands of grey, massive, fine grained andesites or andesitic tuffs, which become finely schistose in areas of shearing and faulting. The more detailed mapping of the Chieftain zone illustrates the complexity of the lithology and the rapid variation along and across strike (Fig. 9-1).

The dominantly volcanic rocks of the Slocan Group are best exposed along the ridges and scarps of Silver Mountain (Figs, 6-1 and 6-2). Typically, the rocks are grey to grey-green, fine to medium grained, locally porphyritic flows. Within the succession are tuffaceous units, and less abundant breccias. The andesites have been subjected to low grade regional metamorphism, and are usually weakly foliated and chloritic, becoming schistose in areas of strong faulting and shearing.

Ì

)

According to Hyndman, basaltic volcanics, described as greenstones, overlie the Slocan rocks north of Caribou Creek. Hyndman tentatively assigns these rocks to the Rossland Group; however, our examination of the 'greenstone' unit in the areas immediately east and west of Silver Mountain peak suggest that it is a dioritic intrusion. The rock is distinctively massive, jointed, pale grey weathering, finely crystalline, in part porphyritic. Foliation is absent or weak, except in narrow zones of late fracturing, brecciation and quartz veining. Similar rock is encountered on the Eureaka claim along the trail between Caribou Creek and the Eureaka workings.

Fifteen hundred metres east of Silver Mountain peak, there is outcrop of dark greyblack fine grained metabasalt, which possibly does correspond to Hyndman's Rossland Group greenstone. The basalts are in fault contact with Slocan argillites to the south; no other occurrences of this unit were seen.

- 8 -

The volcanics and metasediments are intruded by a variety of granitic rocks in the form of small calc-alkalic plutons which almost completely ring the property (Hyndman, 1968 and Fig. 4, this report).

The variable magnetic response of some of these stocks, as indicated by the airborne magnetic survey (White, 1982) suggests a greater complexity of composition and/or structure than depicted by Hyndman. The Ruby Creek pluton strikes east-west across the northern part of the property, and is exposed on the northern upper slopes of Silver Mountain and in northerly draining creeks (Fig. 6-1). On Windy Creek, the intrusion is cut by a major northerly trending shear zone which has provided channels for intense epithermal alteration; kaolinisation and silicification completely obliterate the original texture of the intrusion along a 750-metre stretch of the creek. Beyond the shear zone, the rock is revealed as grey, coarsely crystalline hornblende diorite.

Three hundred and fifty metres north of the exposures in Windy Creek, there are outcrops of a distinctively textured pink porphyritic granite, containing potash feldspar megacrysts; although there are no intervening outcrops of sediments or volcanics, it is possible that this is a part of the smaller **Meadow Mountain pluton** which lies parallel to and north of the Ruby Creek stock.

Granite-granodiorite of the Halifax Creek stock outcrops on the slopes above and south of the Chieftain zone and on the Chieftain access road west of the property boundary (Fig. 6-3).

Minor intrusions, such as narrow aplite and feldspar porphyry dykes, cut the country rocks near the contacts with the plutons, and are probably generated by the major intrusions. Dark lamprophyre dykes, usually only a few metres wide, are more widely spread, and intrude volcanic, sedimentary rocks and intrusive rocks.

)

1

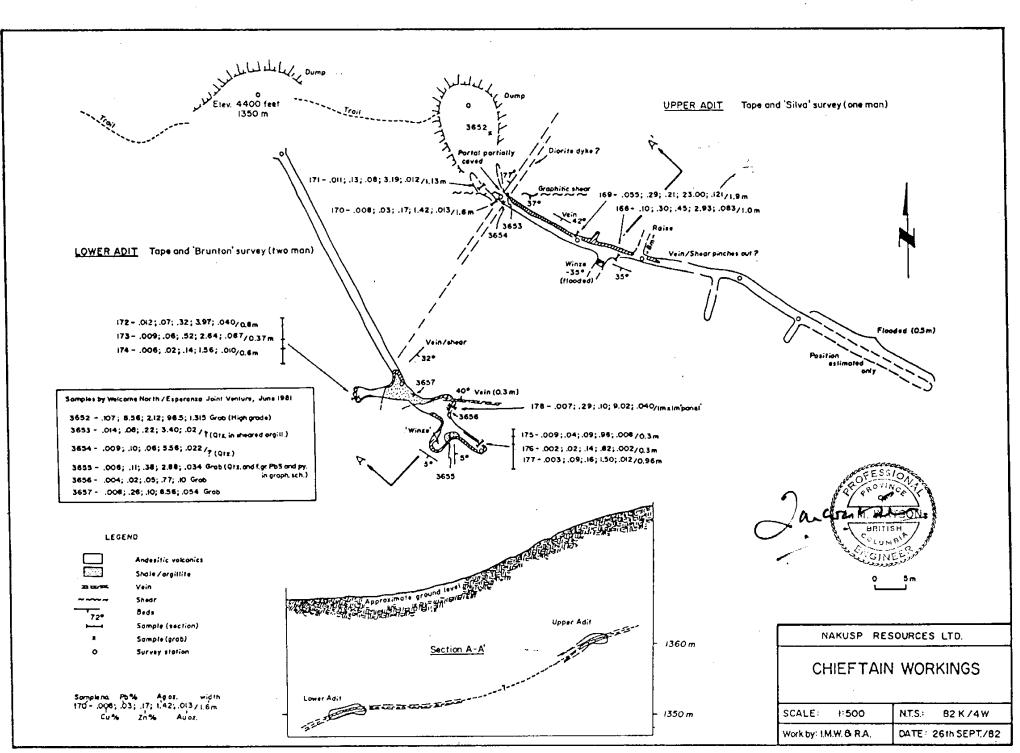
ECONOMIC GEOLOGY

)

)

The most common type of deposit in the Nakusp area is the lead-zinc-silver-gold bearing quartz veins in graphitic shear zones. Host rocks are usually schistose argillites of the Slocan Group.

The Tillicum gold deposit in hosted within a complex sequence of metasediments and calc-silicates of the Milford Group, in an apparent transition zone overlying basic volcanics. Faulting, fracturing, host rock composition, and the presence of porphyritic intrusions within the sedimentary sequence, are all possible ore controls.


These types of deposits were the prime targets for the Nakusp 1983 exploration programme.

The main areas of interest on the property are described below:

Chieftain Zone (Figs. 5, 9-1)

- <u>Setting</u> The Chieftain workings are situated on the old Chieftain Crown Grants now part of Mineral Lease 385, at about 1350 metres elevation on the steep, heavily forested slopes south of Caribou Creek.
- <u>Description</u> The area containing the Chieftain veins is underlain by Slocan Group metasediments and metavolcanics. The sediments, consisting of dark grey to black argillites and shales are intercalated with grey, massive, medium grained andesitic flows or tuffs.

Bedding and foliation attitudes strike west to north west with southerly dips. The vein consists of quartz veinlets and lenses within a two metre thick graphitic shear in dark grey argillites. The shear strikes west-northwest and dips southwest at about 30° . The vein has been developed by two southeasterly directed adits about 30 metres apart. The upper, easter adit is approximately 75 metres long and was driven on the vein/shear zone. The vein pinches out 26 metres from the portal. The adit continues beyond the limit of the

vein for about 45 metres. The last 20 metres of the drift are flooded to a depth of half a metre. The vein is further developed by a short raise, a 15-metre winze (now flooded), and by two short crosscuts.

In late September 1983, the winze was pumped out, to check local prospectors' reports of high-grade material at depth. It was found that the vein pinches out at about 10 metres below the sill of the drift, and contains only minor patchy sulphides.

The lower tunnel, at approximately 1350 metres elevation, is 10 metres below the upper adit. It was driven 38 metres through fractured, buff weathering, mottled grey and purple andesitic volcanics before it cut the shear zone. The 'vein' flattens abruptly with dips ranging from 32° southeast to 5° southwest and east. The drift follows the vein for about 20 metres. Development from the drift consists of a small slash in the northeast wall, an 8-metre extension of the drift to the westy, and a shallow winze, now flooded.

Chip samples were taken across the vein in both adits. Results are shown on Fig. 5a.

The search for strike extensions of the vein led to the discovery of a third adit 100 metres east of the upper adit. The 45-metre long tunnel was driven south across the shear zone, which has an apparent width of 20 metres, but contains only narrow veinlets of quartz and is barren of sulphides.

The detailed geochemical and geophysical surveys over the Chieftain area (discussed later in this report) afford little evidence of there being any extensions of the vein. The strong geochemical and soil anomalies appear to be related to sources other than the known vein.

)

)

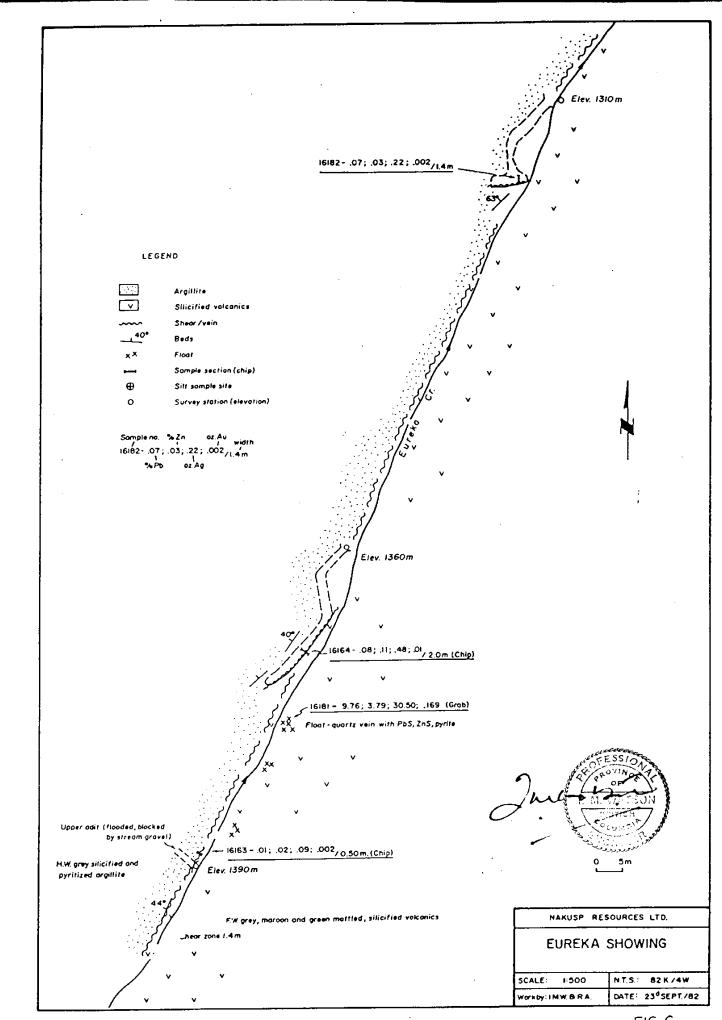
ļ.

Eureaka Creek Zone (Figs. 6 and 6-4)

)

)

)


- <u>Setting</u> The Eureaka Creek zone is situated between 1310 and 1390 metres elevation on Eureaka Creek, a north flowing tributary of Caribou Creek. Access is by a foot trail from the logging road on Caribou Creek, 1100 metres to the east. The zone is near the centre of the six unit Eureaka claim (Silver Mountain Project).
- <u>Previous Work</u> Apart from a brief reference to the existence of three adits on Eureaka Creek in the 1931 B.C. Minister of Mines Annual Report, there is no record of early work. During 1981, prospector R. Allen carried out reconnaissance soil sampling over the southern part of the Eureaka claim, and in September 1982, I.M. Watson mapped and sampled the shear zone and adits in Eureaka Creek (Fig. 5b) (Watson, 1983).

During the 1983 reconnaissance soil sampling, traverses were made over the area, and the upper reaches of Eureaka Creek were prospected in an attempt to trace the source of rich lead-zinc-silvergold quartz vein float.

<u>Description</u> Veins, pods, and lenses of rusty quartz occur within a two to three metre thick, north-east striking, northwest dipping shear zone in graphitic argillites. The shear and 'host' argillites lie within a sequence of dominantly volcanic rocks, assumed to be part of the Slocan Group (Hyndman, 1968). To the east, the volcanics are flanked by grey-green massive diorite, similar to that on Silver Mountain, three kilometres to the north.

> The shear separates northeasterly striking northwesterly dipping argillites on the west from grey, maroon and green mottled andesites on the east. Both argillites and andesites are moderately silicified and the argillites contain finely disseminated pyrite.

> The shear zone veins have been explored by two short adits and an inclined shaft at 1310, 1360 and 1390 metres elevation. The uppermost opening, the shaft, is blocked by debris. The two adits

}

have been driven into the hanging wall argillite for a short distance, and then directed south into the shear.

The shear zone contains weakly disseminated pyrite, but sampling failed to reveal any significant precious metal content.

Upstream from the upper shaft, more quartz lenses were found in the shear zone, but none contained any significant amount of sulphides, and no source could be found for the high grade float littering the trail between the middle and upper workings.

In addition to the Chieftain and Eureaka zones, several mineral occurrences and alteration zones are worthy of mention.

Upper Tyee Creek

Pyrite-sphalerite-galena bearing quartz float was found at 2210 metres elevation near the headwaters of Tyee Creek on the south side of Silver Mountain. So far no source has been found for this material (Fig. 6-3).

Windy Creek Alteration Zone

On the north side of Silver Mountain, a zone of intense epithermal alteration is developed along a major northerly trending shear exposed in Windy Creek (see under Property Geology, this report and Fig. 6-1). The original diorite is completely obscured by pervasive kaolinisation and silicification in zones of intense fracturing. At the northern end of the alteration zone, finely disseminated sulphides occur adjacent to a narrow lamprophyre dyke. Stream sediments from this stretch of Windy Creek contain anomalously high arsenic.

Little Giant Alteration Zone

}

Highly anomalous gold and arsenic soil contents drew attention to a 30-metre wide alteration zone along a northerly trending diorite/argillite contact (Fig. 6-2) at about

2200 metres elevation in an east facing cirque 2.5 kilometres east of Silver Mountain peak. Alteration consists of silicification and rusty weathering carbonatisation of fractured and brecciated diorite talus.

A sampling of the soil overlying the zone contained 2150ppb Au; 4.3ppm Ag; and 2514ppm As. Two rock samples of alteration material produced analysis as follows:

ppb Au	ppm Ag	ppm As
325	5.7	1954
120	0.5	356

Preliminary follow-up soil sampling has confirmed the presence of the anomaly but further sampling will be required to establish its full extent (fig. 8-2-2 to 8-2-7).

ł

Lower Tyee Creek

)

ì

Boulders of pyritic quartz carbonate float were found near the mouth of Tyee Creek. Pyrite occurs in beige to brown weathering grey-green altered quartzo-feldspathic rocks. A northwest trending steeply west dipping zone of similar material occurs in outcrop on the east side of the creek, upstream from the float occurrence.

Big Spring Skarn Zone

A ten-metre thick pyrite-pyrrhotite skarn zone is exposed in a logging road cut at the 1800 metre elevation near the eastern boundary of the Big Spring claim (Fig. 6-2). The skarn is developed in calcareous tuffs of the Slocan Group close to the contact with the hornblende quartz diorite of the Ruby Range stock.

GEOCHEMISTRY (1) - RECONNAISSANCE SURVEY

Method

)

Ι

Samples were collected at 50-metre intervals along contour lines. Selection of the contour line spacing was based mainly on steepness of terrain. All but the least accessible parts of the property (Silver Mountain west area) were covered by at least two contour sample lines. Traverses were controlled by altimeter, hip chain, and 1:5000 enlargements of the government 1:50,000 topographic maps. Samples were taken from the 'B' horizon wherever possible, by digging holes about 30cms. deep using a 'tree planters' spade. Sufficient sample was collected to fill a standard gusseted soil sample envelope.

Stream sediment samples were taken wherever a contour traverse crossed a stream; the major drainages were also sampled at approximately 500 metre intervals. Kraft bag size samples and bulk samples were collected at each sample point. The bulk samples were screened (1/2" sieve) and panned. A total of 1437 soil samples were collected during the season.

Analysis

Samples were analysed by Acme Analytical Laboratories in Vancouver. Soils and stream sediments were analysed for 30 elements by the Inductively Coupled Argon Plasma method (ICP) and for gold by atomic absorption (AA).

The elements reported by the ICP analysis method are as follows:

Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Au, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W

The sample is prepared by dissolving a 0.5 grams in hot aqua-regia (3:1:3 nitric acid to hydrochloric acid to water) at 90 C for 1 hour. This is diluted to 10ml with water and converted to an aerosol.

A brief description of the ICP analysis is as follows: high frequency currents in a few turns of induction coil surround a plasma cell and generate a magnetic field. The cell consists of argon plasma enclosed between two concentric quartz tubes surrounding a glass sample injector. The plasma gas is seeded with electrons - resulting temperatures range from 7000 to 10,000 K. The sample, in the form of an aerosol, is injected into the centre of the cell and rises above into the doughnut-shaped plasma ring. The high temperatures vaporize the sample and dissociate molecular species. Spectral intensities of the excited samples are then recorded and compared with standards by a computer controlled direct-reading emission spectrometer.

Discussion of Results

)

)

The anomalous level for each element was statistically established as the mean plus two standard deviations. Five elements (Ag, As, Cu, Pb and Zn) were determined to be of geochemical significance. Results for these elements, as well as gold (A.A. analysis) were plotted on the accompanying plans at a scale of 1:5000. The format used is a series of six size-graded solid circles, each representing a different and equal range of values, the largest being anomalous. The readily visible density contrast patterns reveal not only statistically derived anomalies, but any significant trends of the individual elements. Analytical results for Mo, Ni, Co, Mn, Fe, U, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, and W are appended to this report and can be keyed to the numbered sample locations shown on the appropriate plans accompanying this report.

Anomalies and areas containing significant geochemical trends are outlined and identified by name on the series of geochemical interpretation plans.

Three major multi-element soil anomalies have been identified. All occur in the Silver Mountain-Chieftain area. All are open, and require further work to establish their extent and source.

Tyee-Caribou Anomaly

Au-As-Pb-Zn (Ag, Cu) (Fig. 8-2-8)

This anomaly extends for two kilometres along the north side of Caribou Creek, and is presently defined by sampling along the 4500' (1370m) and 4800' (1460m) contours.

The gold component of the anomaly is particularly strong and continuous immediately west of Tyee Creek, with soil contents ranging up to 630ppb over a distance of one kilometre.

Arsenic (176-630ppm) and lead (up to 111ppm) correlate almost directly with gold, but have a more diffuse dispersion.

Zinc has the widest anomalous distribution within the area; as with arsenic and lead, highest analyses correlate well with those for gold. Analyses range up to 1449ppm.

Silver and copper have a more limited distribution within the anomalous area; small coincident anomalies occur just west of Tyee Creek.

This anomaly was found by traverses made during the last stages of the reconnaissance programme, and sample analyses were not available until after the field work was completed. No follow-up work has been done but earlier mapping and prospecting led to the discovery of pyritic quartz carbonate alteration in a quartzo-feldspathic rock outcropping on the east side of the lower stretches of Tyee Creek.

Little Giant Anomaly

)

£

Au-As-Pb

(Fig. 8-2-8)

This anomaly was found as a result of follow-up work to investigate an anomalous geochemical rock sample on the 2200-metre high ridge 2.5 kilometres east of Silver Mountain peak. The anomalous area, as outlined by sampling to date, is roughly circular, about 700 metres in diameter. Lead has the widest distribution; arsenic is confined to the western and central part of the area. Both elements correlate well with those for gold, which forms an arc along the western side of the multi-element anomaly. The soils in this area contain the strongest concentrations of arsenic, gold, and lead encountered on the property:

Au	-	up to 2150ppb
As	-	100 to 2514ppm
Pb	-	30 to 234ppm

The area is underlain by diorites in faulted contact with altered Slocan sediments. The strongest soil anomalies are associated with a rusty quartzcarbonate alteration zone at the diorite sediment contact.

Sampling of the Little Giant area was carried out during the last days of the field season and there has been no follow-up investigation of the anomaly.

Chieftain-Eureaka Area

)

)

Au-As-Ag (Zn, Cu, Pb) (Fig. 8-2-8)

The Chieftain-Eureaka anomalous area is a series of poorly defined anomalies detected by contour sampling along the south side of Caribou Creek. The extent and shape of the anomalous area is mainly a function of the limited nature of the reconnaissance sampling and further more detailed sampling may establish greater continuity and size.

The largest and strongest metal concentrations occur in soils in the central part of the elongated anomaly, adjacent to and downhill from the Chieftain workings, and in the area between the Chieftain and Eureaka zones. In the Chieftain area, roughly correlating gold, arsenic and silver anomalies are flanked by weaker, smaller zinc, copper and lead zones.

Gold, arsenic and silver form the 'core' of the more easterly zones. Gold analyses range from 20 to 285ppb; the same samples contain from 1.4 to 12.8ppm silver and arsenic varies from 64ppm to an exceptional 2263ppm.

As noted, the anomalies are 'open', and with the exception of those obviously associated with the Chieftain mineralised vein, there is no evidence of their source.

In addition to these major anomalies, there are eight other areas which contain weaker, smaller, or less well-defined soil anomalies; these are summarised below, in order of interest.

- 19 -

Little Giant South

)

Pb-Cu-As (Ag-Zn)

(Fig, 8-2-8)

- North side of Caribou Creek, opposite Eureaka Creek, between 1370 (4500') and 1525 (5000') metres elevations.
- Cluster of four correlating Pb-As-Cu anomalies, with weak associated zinc and silver. Underlain by Milford Group schists and carbonates?.

Little Giant East

Au (Zn, Cu, Pb) (Fig. 8-2-8)

- Eastern flank of Silver Mountain, one kilometre east of the Little Giant anomaly, between 1980 (6500') and 2070 (6800') metre elevations.
 - A 'one' spot gold anomly (275ppb) occurs within a 200 X 400 metre area of correlating high background Cu-Pb-Zn underlain by Slocan sediments?.

Big Spring

Zn (Cu, As) Fig. 8-2-8

- Eastern part of Big Spring claim, at 1675m (5500')
- Scattered Zn anomalies cover a wide area underlain by Slocan sediments and volcanics, immediately east of the pyrite-pyrrhotite skarn zone at the contact with the Ruby Range stock. Correlates with weak copper and arsenic dispersions.

Eureaka East

Zn (Cu, Ag, As) (Fig. 8-2-8)

- South side of Caribou Creek, 700 metres east of Eureaka Creek, elevations
 1370m (4500') and 1525m (5000').
- Zn anomalies (973, 1185ppm) with correlating, smaller, weak Cu, Ag, and As (no geological information).

Erin Lee

Ì

١

į

Cu-Ag-Pb (Zn) (Fig. 8-4-8)

- East side of Caribou Creek, on the Erin Lee and Brick 1 claims, between 1525m (5000') and 1675m (5500').
- Cu anomalies (up to 127ppm) with partially correlating Ag, Pb, and low Zn. Underlain by Milford Group carbonates and schists.

Sue

Au, Zn

(Fig. 8-4-8)

- West side of Caribou Creek, within 100m of the Erin Lee and Brick 1 LCPs and the Caribou Creek bridge.
 - A small anomaly centred on a stream sediment sample containing 14,480ppb Au, and adjacent gold and zinc soil anomalies. No geological information.

Hat South

Zn (Cu, Pb) (Fig. 8-5-8)

- Headwaters of Caribou Creek in the southern part of the Hat 3 claim.
- A cluster of zinc anomalies (417 991ppm) and a lone Pb anomaly (81ppm) occur within a broader area containing soils weakly enriched in Cu, Pb, and Zn. The anomaly correlates with outcrops of Milford Group schists and shales, which appear to be barren of sulphides.

Brick 3

(Pb, Zn, Cu) (Fig. 8-4-8)

- Centre of Brick 3 claim, west of Walton Creek at approximately 1900m (6200') elevation.
- A poorly defined area containing 'high background' lead, zinc and copper underlain by Milford Group sediments.

GEOCHEMISTRY (2) DETAIL SURVEY - CHIEFTAIN GRID

)

J

A soil sampling survey was carried out over the Chieftain showing area as part of the detailed investigation of the zone. Control for the geochemical and geophysical surveys was provided by a 12.5 X 25m grid, oriented so that the base line was approximately parallel to the sulphide quartz vein (120°). Flagged and blazed lines were controlled by chain and compass.

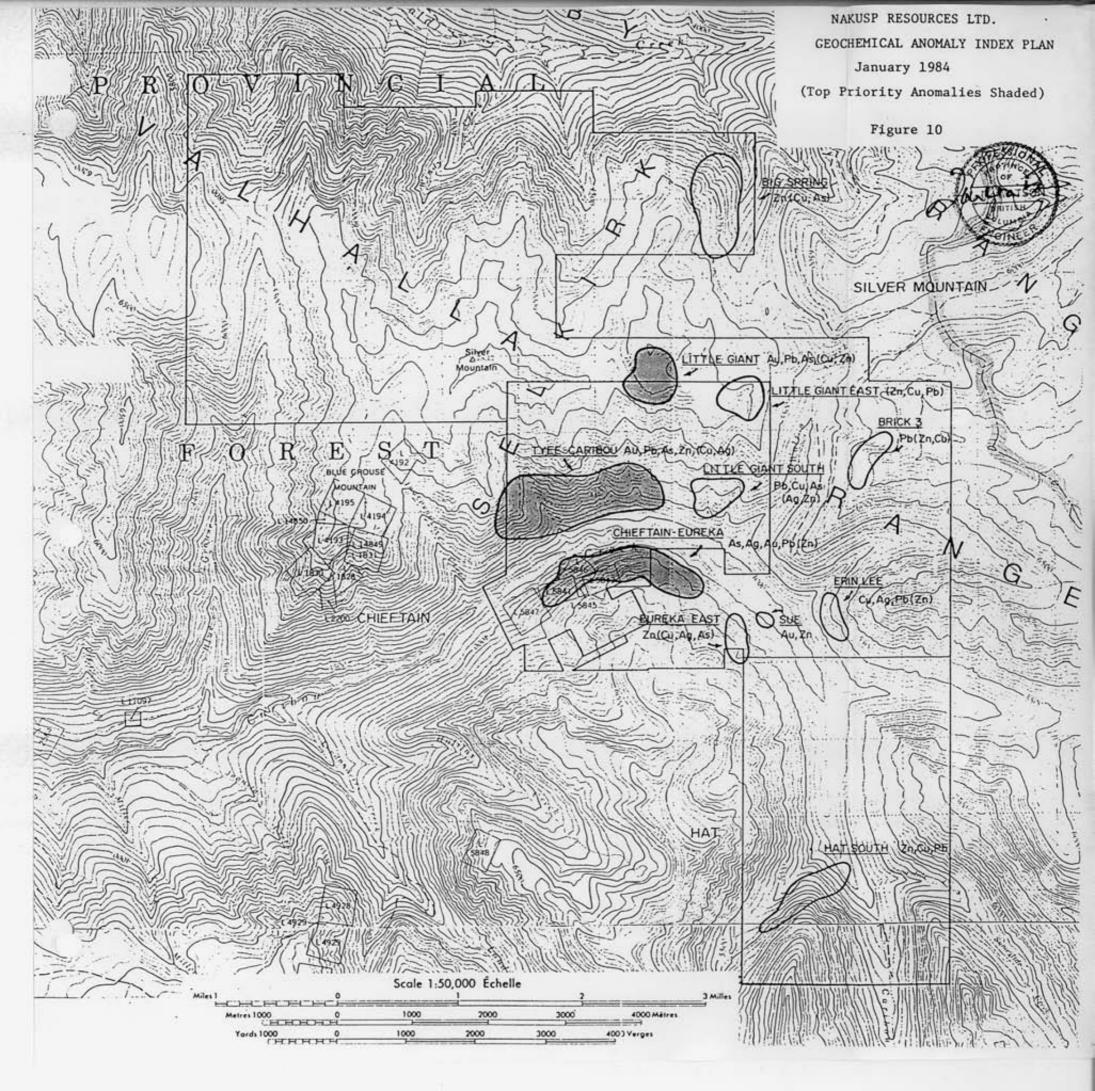
The sampling and analytical procedures were the same as those employed for the reconnaissance survey. However, because of the generally elevated metal contents of the soils in the Chieftain area, threshold/anomalous levels were established separately. Altogether 266 soil samples were collected over 3825 metres of grid lines.

Results of the survey are illustrated in Figs. 9-2-1 to 9-2-6, and are summarised below.

Three anomalous areas have been defined.

- 1. An arsenic gold anomaly in the northern corner of the grid, open to the north and east and extending south to 200+25N and east to 200+50E. The arsenic component of the anomaly is particularly consistent and strong and correlates with the more erratic and smaller gold anomaly. Both anomalies tend to be stronger downhill. The anomaly does not appear to be related to the Chieftain zone, but overlies Slocan Group shales and a massive red-brown weathering, micaceous felsic rock of uncertain origin, possibly representing contact alteration from intrusive rocks at depth. No sulphides were noted in the area.
- 2. A silver-lead-gold-arsenic-copper anomaly which straddles the north flowing creek in the eastern part of the grid. The anomaly is more diffuse than that to the north, but there are good correlations between silver and lead, and gold and arsenic. The anomaly is open uphill to the south. No source has been detected. Bedrock exposures in the area consist of Slocan argillite.
- 3. The third anomaly is situated in the western corner of the grid and is open to the north and west. Here zinc is very prominent in the soils, which contain as high as 3839ppm. Silver, arsenic and lead all show close correlations. Copper is also present in anomalous amounts but is more diffusely dispersed.

This area is underlain by black shales and possibly metavolcanics of the Slocan Group; no sulphides have been noted.


GEOPHYSICAL SURVEYS - CHIEFTAIN GRID (Figs. 9-3-1 and 9-3-2)

)

VLF EM and magnetometer surveys were carried out over the Chieftain area to determine whether the mineralised vein and/or the shear zone could be detected by these methods.

The surveys were conducted over the 12.5 metre X 25 metre grid used to control the geochemical survey. Total line length surveyed was 3800 metres. Instruments used were a Ronka EM 16 and a Scintrex total field proton magnetometer.

Neither survey provided any indication of a direct response from the Chieftain vein. Both suggest an easterly trend. A strong VLF anomaly just north of the base line might represent the Chieftain shear at depth, but the anomaly is too limited to be encouraging. The magnetometer survey shows some relief at the southern end of the grid where portions of small high and low anomalies are apparent. One such 'dipole'? lies immediately south of the western geochemical anomaly.

SUMMARY

ì

λ

The 1983 reconnaissance exploration of the Nakusp Resources property has resulted in the discovery of three major gold and multi-element geochemical soil anomalies in the Silver Mountain Caribou Creek area of the property. The anomalies have been designated by area/claim name:

> Tyee-Caribou Little Giant Chieftain-Eureaka

All three anomalies were found during the last stages of the exploration programme. As a result, analyses were not available until after the field work had been completed, and no follow-up work has been possible. All the anomalies are 'open'. Their size, strength and consistency make them prime exploration targets. Further contour/grid sampling, prospecting and mapping is required to delineate the anomalies and to determine their source.

Several lower priority anomalies also require follow-up investigation.

Detailed geological, geochemical and geophysical investigation of the Chieftain zone failed to establish sufficient size or consistency of grade for the vein to be of economic significance. However, detail geochemical soil sampling resulted in the partial delineation of three substantial anomalies in the north, eastern and western portions of the grid. These gold/multi-element anomalies are also 'open' and require further investigation.

RECOMMENDATIONS

1. Follow-up prospecting, mapping and geochemical soil sampling of the Tyee-Caribou, Little Giant, and Chieftain-Eureaka anomalies is strongly recommended. Initial geochemical sampling should be in the form of contour traverses spaced at approximately 200 metre 'slope' intervals above and below the anomalies. Once the anomaly has been delineated, detailed grid sampling should be done, if warranted, and if the terrain permits.

Further work will depend on results obtained but should consist initially of trenching, by hand where feasible, and/or by bulldozer.

Systematic rock geochemistry sampling should be combined with the soil sampling.

2. Follow up of the Chieftain-Eureaka anomaly should include extension of the Chieftain grid to provide control for extended soil sampling, prospecting and mapping of the three 'grid anomalies'. Here too, systematic geochemical rock sampling should be carried out.

Trenching and sampling would follow, dependent on results obtained.

1

-ì

CERTIFICATE OF QUALIFICATIONS

- I, Ivor Moir Watson, of 584 East Braemar Road, North Vancouver, hereby certify that:
- 1. I am a consulting geologist with offices at 410 675 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of St. Andrews, Scotland (B.Sc. Geology, 1955).
- 3. I have practised my profession continuously since graduation.
- I am a member in good standing of the Association of Professional Engineers of B.C., and a Fellow of the Geological Association of Canada.
- 5. Work on Silver Mountain-Chieftain-Hat Project was carried out by the following people working under my supervision:
 - U. Schmidt, project geologist
 - R. Allan, prospector
 - L. Westervelt, geological assistant
 - G. Perrier, prospector
 - K. Swartz, sampler
 - R. Krawinkel, sampler
 - B. Dent, sampler
 - D. McDonald, sampler
 - J. Ashenhurst, prospector
 - R. Gibbs, sampler

LM. Watson, B.Sc.

February 21st, 1984 Vancouver, B.C.

)

)

STATEMENT OF QUALIFICATIONS

I. Uwe Schmidt, with residential address in Port Moody, B.C., do hereby declare:

)

)

)

- I am a 1971 graduate of the University of British Columbia with a B.Sc. degree in Geology.
- Since graduation, I have been engaged in mineral exploration in Yukon Territory and British Columbia.

1

U. Schmidt, B.Sc.

REFERENCES

Allen, R.

)

)

1

1982 Physical work, Geochemical Survey and Prospecting, for the Eureaka-Ora Claims

Hyndman, D.W.

1968 Petrology and structure of Nakusp map area, British Columbia; Geol. Surv. Can., Bull. 161.

Marshall, C.A.

1982 In "Whistle Stops Along the Columbia River Narrows"; Burton New Horizons Book Committee.

-

Read, P.B. and Wheeler, J.O.

1976 Lardeau west-half; Geol. Surv. Can., Open File Map 658.

Watson, L.M.

1983 Geological Report on the Properties of Nakusp Resources Ltd.

NAKUSP RESOURCES LTD.

.

.

1027 - 470 Granville St., Vancouver, B.C. V6C 1V5 Telephone (604) 687-1658

SUMMARY OF COSTS FOR THE SILVER MOUNTAIN CLAIMS

During the period	April	. 1983 to January	31.	1984
-------------------	-------	-------------------	-----	------

	Expenditures
Assays and Geochem. Analyses	8,690.45
Camp Maintenance	1,456.88
Consulting Fees	3,637.47
District, phone, expediting	629.52
Field supplies, equipment	1,138.47
Maps, printing, drafting	995.93
Rotary wing, Helicopter	2,091.75
Salaries and Wages	11,959.00
Miscellaneous, transportation	2,973.80
Field supervision and report writing	2,831.37
TOTAL FIELD COST	\$ 36,404.64
	#=========

2-8

NAKUSP RESOURCES LTD.

1027 - 470 Granville St., Vancouver, B.C. V6C 1V5 Telephone (604) 687-1658

Summary of Costs for the HAT CLAIMS

._____

During the Period: April 1, 1983 - January 31, 1984

	Expenditure
	\$
Assays and Geochem Analysis	7,509.18
Camp Maintenance	617.89
Consulting fees	2,387.45
District, phone, expediting	319.36
Field supplies/equipment	610.18
Maps, printing, drafting	1,167.59
Rotary wing - Helicopter	108.90
Salaries and Wages	10,884.00
Miscellaneous transportation	1,209.81
Field supervision and report writing	2,156.10
TOTAL FIELD COST	\$ 26,970.46

NAKUSP RESOURCES LTD.

1027 - 470 Granville St., Vancouver, B.C. V6C 1V5 Telephone (604) 687-1658

Summary of Costs for the CHIEFTAIN CLAIMS

During the Period: April 1, 1983 to January 31, 1984

	Expenditure
Assays & Geochem analyses	3,460.84
Camp Maintenance	1,932.94
Consulting fees	3,732.47
District, phone, expediting	794.42
Field supplies/equipment	2,974.84
Maps, printing, drafting	2,470.98
Rotary wing – helicopter	326.70
Salaries and Wages	16,617.50
Miscellaneous Transportation	3,723.78
Roads and Trenches	3,545.00
Field supervision and report writing	3,211.53

TOTAL FIELD COST

42,791.00

·.`·

I

30

APPENDIX I

.

CLAIM SUMMARY

>

J

Claim Name	Grant No.	Recording Date	<u>Due Date</u>	No. of Units/ <u>Claims</u>	<u>Total</u>
Silver Mountain Pro	oject				
Big Spring Brick 1 - 3 Commercial Fr. Erin Lee Eureaka Grizzly #1, #4 Grizzly #2, #3 Judy Kincardin Little Giant Ora Oxide Fraction Sue	4005 3224-3226 3963 4129 1781 3027, 3028 2468, 2469 4001 4003 4006 2434 3964 4002	Aug. 3, 1983 Oct. 4, 1982 June 17, 1983 July 18, 1983 Feb. 26, 1980 Aug. 26, 1982 Mar. 25, 1981 Aug. 3, 1983 Aug. 3, 1983 Feb. 25, 1981 July 6, 1983 Aug. 3, 1983	Aug. 3, 1984 Oct. 4, 1984 June 17, 1984 July 18, 1984 Feb. 26, 1985 Aug. 26, 1984 Mar. 25, 1984 Aug. 3, 1984 Aug. 3, 1984 Feb. 25, 1986 July 6, 1984 Aug. 3, 1984	$20 \\ 32 \\ 1 \\ 5 \\ 6 \\ 36 \\ 40 \\ 1 \\ 15 \\ 20 \\ 6 \\ 1 \\ 1$	20 32 1 5- 6 76 1 15 20 6 1 1
Sun Fraction Winchester	4009 4004	July 19, 1983 Aug. 3, 1983	July 19, 1984 Aug. 3, 1984	1 12	1 <u>12</u> 197
Chieftain Project					
Bow 5 - 6 K/C #1 - #6 Marsh #1 - #2 Mineral Lease #385 Chieftain Duchess	2422-2423 2232-2237 2222-2223 Lot. No. 5845 Lot. No. 5846	Mar. 11, 1981 Sept. 19, 1980 Sept. 19, 1980	Mar. 11, 1984 Sept. 19, 1984 Sept. 19, 1980 Aug. 14, 1984 Aug. 14, 1984	7 6 2 1 1	7 6 2
Dundas Mammoth #2	Lot. No. 5843 Lot. No. 5841		Aug. 14, 1984 Aug. 14, 1984	1	<u>4</u> 19
Hat Project					
Car #1 Hat 2, 3 Hat 4	4026 2834-2835 4027	July 18, 1983 Mar. 4, 1982 July 18, 1983	July 18, 1984 Mar. 4, 1984 July 18, 1984	12 40 12	64
			TOTAL		280

APPENDIX II

)

Certificates of Analyses

į

I.M. WATSON FILE # 83-1692 PROJECT # NAKUSP

SAMPLE #	No ppa	Cu pp a	Pb ppe	In ppe	Ag ppe	Ni ppe	Co ppe	Mn ppe	fe I	As ppe	U ppe	Au pp a	Th ppe	Sr ppe	Cd ppe	Sb ppa	Bi ppa	V ppe	Ca Z	P X	La ppe	Cr ppe	Hg I	Ba pp#	Ti Z	g ppa	Al I	Na Z	K I	M pom	Aut ppb
KSB-36073 KSB-36074 KSB-36075 KSB-36076 KSB-36077	6 1 1 1	11 10 29 8 15	17 16 13 12 10	76 151 156 108 106	.1 .7 .3 1.5 .4	8 17 24 11 17	5 12 11 4 7	339 848 464 259 499	4.60 4.44 3.86 2.75 3.53	57 20 20 16 9	10 2 2 2 5	nd Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr	7 7 5 6 4	32 37 19 14 21	1 1 1 1 1	2 2 2 2 2 2	5 7 5 2 4	94 84 80 53 78	. 22 . 31 . 18 . 13 . 24	.04 .09 .08 .08 .19	30 35 11 8 11	22 30 31 34 46	.51 .71 .82 .36 .86	97 328 165 137 138	.25 .20 .17 .18 .18	4 3 4	2.13 3.19 3.53 3.95 3.07	.03 .02 .02 .03 .03	.11 .22 .17 .10 .14	2 2 2 2 2	5 5 5 5
KSB-36078 KSB-36079 KSB-36080 KSB-36081 KSB-36082	1 1 1 1 1	9 12 17 27 24	13 13 12 14 13	109 104 122 113 170	.5 .2 .5 .1 .7	8 9 10 17 19	6 8 11 10	511 393 535 636 476	2.84 3.89 3.13 4.89 4.00	8 13 12 23 24	2 2 2 2 2 2	nd Nd Nd Nd	3 3 2 2 3	14 15 15 20 18	1 1 1 1 1	2 2 2 2 2 2	4 5 4 3	54 96 93 147 103	.11 .13 .14 .18 .19	.24 .18 .11 .22 .11	7 7 5 6 7	20 23 29 52 45	.34 .67 .54 1.13 .70	121 148 185 230 166	.16 .20 .19 .23 .20	5 4 3	3.63 3.00 2.40 3.14 4.38	.02 .02 .03 .03 .03	.10 .15 .17 .31 .20	2 2 2 2 2 2	5 5 5 5
KSB-36083 KSB-36084 KSB-36085 KSB-36085 KSB-36087	1 1 2 5	22 31 55 87	17 16 14 15 12	262 213 344 441 489	.7 .1 .7 1.2 1.5	22 23 46 43 55	11 13 20 24 21	600 766 665 1144 656	3.70 4.77 4.53 5.39 5.40	31 25 15 24 19	2 2 3 2 3	nd Nd Nd Nd Nd	2 3 2 2 3	25 34 30 60 43	3 2 3 4 5	2 2 2 2 2 2	4 5 5 5 6	87 124 140 140 231	.30 .32 .24 .57 .34	.10 .10 .16 .16 .13	13 9 8 7 8	35 43 59 62 98	.74 1.09 .87 1.19 1.97	136 182 331 375 598	.20 .21 .16 .13 .20	2 2 2	4.62 3.78 4.19 4.99 5.31	.03 .03 .04 .03 .04	.20 .35 .15 .24 .63	2 2 2 2 2 2	5 35 5 5 5
KSB-36088 KSB-36089 KSB-36090 KSB-36091 KSB-36092	4 7 5 1 1	123 98 105 19 23	15 24 23 15 28	480 2055 979 178 330	2.3 3.0 1.7 .3 .4	57 116 66 16 31	23 23 25 11 14	639 1027 1701 913 656	5.87 6.24 5.26 4.29 4.64	25 61 41 103 51	6 2 9 2	nd Nd Nd Nd	2 3 2 4 4	42 41 37 30 33	4 8 14 1 2	2 5 2 2	6 6 8 7 7	212 190 157 102 95	.25 .25 .30 .37 .37	.10 .20 .13 .05 .06	6 10 12 13 11	84 80 66 40 52	1.66 1.51 1.26 .80 .82	532 278 273 164 247	.17 .10 .11 .20 .20	4 7 5	4.85 4.49 4.80 3.90 4.53	.05 .02 .03 .04 .03	.28 .21 .19 .20 .23	2 2 2 2 2 2	5 10 5 5
KSB-36093 KSB-36094 USC-33060 STD A-1	4 1 1 1	10 8 19 28 29	14 18 11 18 38	89 141 74 127 182	1.8 .1 .1 .3	8 10 7 15 36	8 8 13	535 513 423 628 1022	2.56 3.61 3.30 3.35 2.83	121 59 109 5 9	23 2 2 2 2 2	ND ND ND ND	2 4 7 2 2	39 30 36 44 36	1 1 1 1	6 3 2 2 2	7 4 5 2	46 70 73 84 60	. 58 . 32 . 46 . 61 . 60	.08 .04 .09 .13 .10	14 10 26 12 7	11 21 25 19 74	.15 .54 .70 .88 .73	74 121 92 128 280	.16 .19 .17 .10 .08	4 4 5	5.15 2.59 2.29 2.01 2.08	.04 .02 .03 .03 .02	.06 .22 .25 .20 .20	2 2 2 2 2 2	5 5 25 15 5

· · ·

PAGE # 5

Ĵ,

.

·

I.M. WATSON FILE # 83-1692 PROJECT # NAKUSP

SAMPLE #	No ppa	Cu ppe	РЬ рра	Zn ppe	Ag ppe	Ni 9pe	Co ppe	Min ppæ	fe L	As ppa	U ppe	Au ppe	Th ppe	Sr ppa	Cd ppa	Sh ppe	Bi pps	V ppe	Ca 1	P I	La ppe	Cr ppe	Hg Z	Ba ppa	Ti Z	9 ppe	Al X	Ha X	K Z	¥ ppe	Au‡ ppb
LNS-34155 LNS-34156 LNS-34157 LNS-34158 LNS-34159	2 2 2 2 2 2	53 37 38 39 26	23 23 23 23 21 21	133 142 139 145 102	.5 .5 .8 .9	35 36 36 41 24	11 12 12 12 9	844 923 936 966 724	3.48 3.57 3.49 3.60 3.00	70 87 84 86 50	2 2 2 2 2 2	ND ND ND ND ND	2 2 2 2 2 2	34 38 34 39 31	1 1 1 1	2 2 4 4 2	2 2 2 2 2 2	45 50 48 49 45	.46 .52 .46 .52 .40	.13 .13 .13 .13 .10	17 17 17 18 13	25 26 31 30 20	.82 .82 .83 .86 .64	108 104 102 112 80	.03 .03 .03	4 4 3	1.21 1.23 1.22 1.23 1.05	.02 .02 .02 .02 .03	.17 .15 .15 .17 .14	2 2 2 2 2 2	10 20 5 5 5
LWS-34160 RKS-32032 RKS-32033 RKS-32034 RKS-32035	2 3 2 2 2	33 42 41 39 39	13 23 21 21 22	103 145 143 139 141	.4 .8 .5 .5	24 41 40 38 39	8 13 12 12 12	660 947 931 900 928	2.65 3.62 3.53 3.59 3.50	43 79 79 82 84	2 2 2 2 2 2	ND ND ND ND	2 2 2 2 2 2 2	36 57 59 34 37	I 1 1 2 1	2 2 3 2 2 2	2 2 2 2 2 2	60 41 42 42 44	.54 .51 .48 .48 .51	.07 .13 .13 .13 .13	11 17 18 17 17	41 27 32 25 32	1.02 .85 .87 .84 .84	109 114 114 104 105	.08 .02 .03 .02 .02	2 2 2 2	1.77 1.22 1.25 1.20 1.21	.04 .02 .02 .02 .01	.26 .17 .17 .14 .14	2 2 2 2 2 2	20 5 5 5 5
RK5- 52036 RK5-32037 RK5-32038 RK5-32039 RK5-32040	2 2 1 2 1	2 2 8 28 28	23 21 12 10 8	142 147 102 96 84	.7 .8 .2 .2 .2	57 36 6 4 5	12 12 5 4 5	918 958 587 704 673	3.64 2.73	79 99 24 11 16	5 2 32 34 43	nd Nd Nd Nd Nd	2 3 13 19 13	38 36 45 36 37	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 52 53 48 44	.47 .50 .60 .45 .49	.13 .14 .10 .07	17 17 40 52 41	26 31 16 19 12	.84 .61 .66 .66	106 97 102 89 99	.03 .03 .14 .17 .15	4 3 2	1.23 1.24 1.67 1.68 1.59	.02 .01 .03 .03 .02	.15 .14 .23 .35 .34	2 2 2 2 2 2	5 10 15 75 5
RKS-32041 RKS-32042 RKS-32043 KSS-36063 KSS-36064	1 1 2 1 2	5 5 9 12	2 5 8 31 32	45 56 61 113 108	.2 .2 .1 .5 .2	4 5 15 19	3 4 5 6	336 411 430 697 748	1.75 2.05 2.03 2.05 2.35	15 17 19 109 172	4 17 30 2 2	19 19 19 19 19 19 19 19 19	11 12 10 2 2	30 34 35 48 37	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	31 37 38 30 31	.53 .52 .54 .68 .54	.14 .11 .11 .08 .08	38 40 34 11 12	17 10 17 19 31	.40 .44 .47 .54 .68	70 75 84 74 88	.08 .09 .09 .04 .04	2 3	.97 1.16 1.22 1.35 1.35	.03 .04 .02 .03 .03	.20 .20 .22 .17 .21	2 2 2 2 2 2	10 10 5 10 5
KSS-36065 KSS-36066 KSS-36067 KSS-36068 KSS-36069	4 3 4 2 2	36 31 50 21 35	31 46 37 15 18	134 129 164 91 119	.5 .6 .9 .3 .7	143 107 81 33 34	20 16 19 9 10	889 992 1466 654 812	3.99 2.98 4.51 2.48 3.09	207 163 155 86 57	2 5 2 2 2	nd ND ND ND ND	2 2 2 3 2 3	63 98 54 32 34	1 2 1 1	2 2 5 2	2 2 2 2 2 2	61 48 39 27 30	1.00 1.45 .67 .39 .52	.14 .14 .15 .09 .10	24 20 27 13 15	85 79 47 23 20	2.46 1.81 .97 .55 .68	320 239 209 80 95	.11 .08 .04 .03 .02	6 5 3 2	2.04 1.75 1.27 .96 .96	.02 .03 .02 .02 .01	.28 .23 .19 .17 .14	2 2 2 2 2 2	15 5 10 10 5
KSS-36070 KSS-36071 JAS-30045 JAS-30046 JAS-30047	2 2 4 6 1	34 49 31 42 16	21 28 22 31 8	122 158 211 273 90	.7 1.1 .5 .6 .3	32 48 21 27 11	10 14 10 13 8	813 1093 804 1100 675	3.92	65 94 63 85 47	2 2 2 2 2 2	888888	3 3 2 2 2	32 41 38 51 143	1 2 3 5 1	2 2 2 2 2 2	2 2 2 2 2 2	31 42 63 82 76	.45 .55 .42 .62 .70	.10 .13 .10 .13 .17	14 18 12 15 15	26 25 27 30 22	. 48 . 86 . 76 . 93 . 79	103 124 99 123 93	.02 .02 .04 .04 .09	3	1.01 1.20 1.41 1.81 1.47	.02 .01 .02 .05 .06	.17 .15 .10 .22 .24	2 2 2 2 2 2	5 15 5 10
JAS-30048 JAS-30049 JAS-30050 JAS-30051 JAS-30052	4 3 4 2	29 27 19 24 48	22 17 13 9 8	182 173 120 129 250	.5 .4 .2 .5 1.5	18 15 18	9 9 7 10 11	757 779 579 541 860	3.39 3.26 2.95 3.54 3.62	58 57 58 50 59	2 2 2 5	ND HD ND ND	2 2 2 2 2	46 48 38 39 44	3 2 2 2 4	2 2 2 2 2	2 2 2 2 2 2	70 71 68 72 111	.49 .52 .42 .45 .78	.11 .11 .10 .11 .12	12 12 10 12 17	23 29 19 25 52	.75 .76 .67 .62 1.00	96 96 83 78 178	.05 .05 .05 .05 .12	2 2 3	1.43 1.45 1.29 1.21 2.57	.05 .06 .04 .03 .04	.20 .20 .18 .15 .31	2 2 2 2 2	5 5 5 5 5
JAS-30053 JAS-30054 STD A-1	1 4 1	16 58 30	9 23 39	108 531 182	.2 .6 .3	76 75	8 12 12	636 761 1020	4.54	45 34 9	7 2 2	ND ND ND	2 3 2	29 64 36	1 11 1	2 2 2	2 2 2	78 164 60	. 41 .94 .60	.08 .11 .10	9 12 8	24 66 72	.75 1.18 .72	74 279 283	.07 .10 .08	2	1.47 2.78 2.07	.03 .08 .02	.18 .44 .20	2 2 2	10 15 5

- -- .

.

· 🔍

PAGE # 6

 \sim

							I.M	. WA	TSO	N	FI	LE #	83	-169	2	PR	OJE	CT #	NAI	KUSP	,								F	AGE #	7
No ppe		Pb ppe	Zn Ppe	•				Fe I										Ca I			Cr ppe			Ti I) ppe	-	Na I		W pps	Au 1 ppb	
2 4 1 4 1	67 46 28	Z7	582 191 162	.4 .6	40 23 17	13 10 10	849 811 648	3.83 4.75 3.65 3.50 2.77	105 124 57	2 5 2 2 2 2	KD ND ND	3 2	53 55 46	10 3		2 2	170 111 77	.68 .78 .48	.11 .09 .11	14 11 11	77 45 29	1.38 1.01 .74	313 148 99	.10 .13 .06	2 2 2	2.94 2.45 1.46	.03 .06 .04 .05 .01	.56 .38 .20	2 2 2	5 10	

· · ·

 \sim

 \sim

.

·-----

SAMPLE #

JAS-30055 JAS-30056 JAS-30057 USS-33050 STD A-1

I.M. WATSON FILE # 83-1692 PROJECT # NAKUSP

-

 \sim

.

sample #	No ppe	Cu ppe	Pb ppe	In ppe	Ag ppe	Ni ppe	Co ppe	Nn pps	Fe 1	As ppa	U ppe	Au pps	Th ppa	Sr ppa	Cd pp=	Sb ppe	Di ppe	V ppe	Ca I	P 1	La ppe	Cr ppe	Hq I	Na ppe	Ti Z	8 ppe	A) I	Na X	K I	¥ ppe	Ац.Т ррб
RGP-31022 RGP-31023 RGP-31024 RGP-31025 RGP-31026	2 1 1 1 2	15 16 13 16	5 12 8 36 10	71 68 69 74 74	5.3 8.3 .2 1.5 .1	15 14 12 14 14	13 12 9 15 12	749 796 574 829 699	8.67 7.73 3.93 9.72 6.64	36 37 31 97 33	4 2 15 2	ND 85 85	32 27 24 34 35	62 61 59 70 65	1 1 1 1	3 2 2 2 2	5 5 6 10 6	272 216 118 287 206	1.56 1.47 1.26 1.71 1.59	.30 .24 .17 .31 .26	121 107 100 130 134	87 56 64 67 87	.58 .65 .72 .60 .67	49 63 64 51 35	.14 .14 .16 .13 .14	6 5	1.08 1.14 1.16 1.12 1.14	.10 .10 .11 .11 .11	.14 .15 .18 .15 .15	337 I 50	17600 85500 3100 11000 5
LHP-34149 LHP-34153 LHP-34154 LHP-34158 LHP-34159	1 2 1 2 1	57 55 52 52 28	42 49 48 22 17	216 249 210 120 105	2.7 1.2 3.9 .5 .4	44 57 52 26 23	14 13 23 19 18	989 825 792 623 661	5.37 4.61 7.25 6.82 6.18	134 121 1923 63 58	4 2 2 2 2	ND ND ND ND	4 4 5 5 5	67 49 44 43 43	2 2 1 1	5 2 2 2 2	5 5 5 3	38 39 40 127 112	.72 .53 .49 .59 .54	.18 .15 .12 .14 .12	18 18 14 28 25	52 55 28 38 27	.65 .73 .64 .68 .70	167 192 152 80 94	.04 .04 .05 .05	9 8 7	1.28 1.39 1.32 1.09 1.15	.04 .04 .05 .03	.31 .29 .18 .20	3	1620 80 4300 660 790
6PP-37044 6PP-37045 6PP-37046 KSP-36055 KSP-36056	1 1 2 4 1	10 30 30 52 18	32 45 39 13 40	174 252 235 355 263	.2 1.0 2.0 .1 .6	15 52 29 28 11	7 12 13 12 9	994 796 741 579 1034	3.08 4.67 4.29 5.14 3.62	83 105 113 93 84	2 2 2 2 2 2	NÐ ND 2 ND ND	4 4 3 4	43 53 42 53 27	2 2 5 4	2 2 3 2 2	2 3 3 2 3	35 41 35 132 35	. 43 . 61 . 49 . 82 . 36	.13 .14 .14 .12 .11	18 22 18 13 17	39 28 41 33 28	.40 .67 .64 1.17 .60	130 187 123 177 112	.03 .05 .03 .11 .02	12 8 7	1.41 1.39 1.25 1.94 1.47	.08 .04 .10 .04	.39 .31 .25 .33 .32	2 2 2 2 2 5 2 5	890 380 520 5 110
KSP-36057 KSP-36058 KSP-36060 KSP-36061 JAP-30036	2 2 3 23 4	30 36 34 44 56	25 34 29 55 31	262 291 240 196 318	.2 .4 1.3 3.2 .5	17 20 22 27 27	9 12 13 26 15		4.33 4.26 4.72 15.94 5.50	66 74 73 120 60	2 2 2 12 3	nd ND ND ND	2 2 4 2 2	44 34 49 60 46	3 3 3 3	2 3 2 2 2	2 3 2 2 2 2	87 63 74 377 91	.57 .49 .62 .88 .50	.11 .14 .12 .22 .12	14 18 17 25 17	29 34 27 85 37	.93 .83 .87 .70 1.13	146 121 134 106 175	.08 .04 .05 .11 .05	8 7 2	1.76 1.57 1.64 1.53 2.06	.07 .04 .05 .07 .06	. 32 . 26 . 29 . 22 . 33	2 2 2 3 2	5 5 50 5
JAP-30037 JAP-30039 JAP-30041 JAP-30044 JAP-30045	3 5 5 4	39 41 44 32 39	33 36 36 27 22	296 290 239 196 237	.6 .4 3.1 .9 .9	20 21 30 19 22	13 13 19 13 15	982 945 794 748 749	4,73 4,96 6,57 4,88 4,96	80 90 145 89 86] 2 3 3	ND ND ND ND	3 3 4 3 3	53 40 46 52 40	4 3 3 3	2 2 2 2 2 2	2 3 2 4 3	62 74 105 90 73	.47 .50 .63 .64 .52	.12 .12 .16 .12 .13	18 17 20 20 16	38 25 43 24 26	.84 .90 .77 .81 .78	133 149 124 117 82	.04 .04 .05 .06	6 5 6	1.71 1.79 1.44 1.59 1.31	.05 .06 .04 .06 .02	.30 .33 .23 .28 .18	2 2 22 2 2 2	5 20 5 5
JAP-30046 JAP-30047 JAP-30048 JAP-30049 JAP-30050	5 1 4 4 2	32 24 28 28 22	19 11 18 17 12	199 69 431 138 125	.6 .3 .5 .2	18 13 16 13	13 19 14 15 10	677 498 592 537 537	4.92 5.78 4.68 4.80 3.82	66 52 57 49 57	2 2 3 2	nd Ng Ng Ng Ng	3 5 4 2	44 187 51 52 53	3 1 2 2 2	3 2 2 2 2 2	3 5 4 5	88 129 93 98 85	.59 1.06 .59 .63 .60	.13 .24 .13 .14 .11	19 30 19 21 15	22 33 21 28 20	.74 .60 .69 .65 .66	87 64 78 68 79	.06 .10 .06 .06	4 6 5	1.36 1.12 1.23 1.15 1.21	.04 .06 .04 .04 .05	.20 .18 .18 .16 .20	2 11 2 6 2	5 10 5 5 470
JAP-30051 JAP-30052 STD A-1	4 4 1	30 29 30	12 14 39	150 134 185	.5 .5 .3	16 17 36	15 15 13	550 540 1077	5.17 5.49 2.84	44 53 9	2 2 2	ND XD XD	4 4 2	53 52 38	2 2 1	2 2 2	4 5 6	110 106 63	. 66 . 68 . 63	. 14 . 12 . 10	22 22 8	30 19 73	. 68 . 65 . 73	74 85 276	.07 .09 .09	5	1.24 1.24 1.98	.04 .06 .02	.18 .19 .20	2 2 2	30 10 5

· · ·

PAGE # 8

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253~3158 TELEX:04-53124

ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 HL OF 3:1:3 HCL TO HWO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,AI,TI,La,Na,K,W,Ba,SI,Sr,Cr AND B. AU DETECTION 3 ppm. AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - P1-10 SOIL P11-12 SILI P13-PAN CONC P14 POOX

-13 BASSAVER by DEAN TOYE, CERTIFIED B.C. ASSAYER DATE RECEIVED SPI 3 1983 DATE REPORTS MAILED S ` *م*ي

> I.M. WATSON & ASSOCIATES PROJECT # NAMUSP FILE # 83-1992 **.**..

SAIPLE #	Mo pp∎	Cu ppe	РЪ рр∎	Zn ppe	Ag ppe	Ni ppa	Со рра	Min ppa	Fe Z	As ppe	U pp∎	Au ppe	Th pp∎	Sr ppe	Cd ppe	Sb ppa	Bi ppe	V 99R	Ca Z	P Z	La ppm	Cr ppa	Ng I	Ba pps	Ti Z	8 ppe	A) Z	Na L	ĸ	и ppa	Aut ppb	
3KD-32103	1	6	17	26	.1	4	1	130	1.35	2	4	ND	2	17	1	2	2	34	.04	.06	5	20	.10	40	.10	2	. 50	.04	.05	2	5	
RKB-32104	1	7	16	46	.2	5	2	118	2.69	В	2	ND	2	24	1	2	2	73	.04	.03	5	15	.17	29	. 17	4	. 96	.03	.06	2	5	
RKB-32105	1	16	27	88	.2	36	13	392	5.12	4	- 4	ND	2	33	1	2	2	118	. 15	. 08	10	181	2.18	225	.25	6	2.56	.02	.14	2	5	
RKB-32106	1	7	16	55	.2	5	3	306	2.63	2	2	ND	2	24	1	2	2	58	. 16	.10	4	16	. 49	70	.13	4	1.46	. 03	.23	8	5	
RKB-32107	1	7	17	42	1.	5	2	237	2.03	4	2	ND	2	26	1	2	2	55	. 12	. 05	2	14	. 50	53	.10	2	1.36	.03	.12	2	Š	
RICB~32108	2	7	23	46	.1	7	3	512	2.01	7	2	ND	2	14	1	2	2	54	.08	. 04	4	18	. 26	76	. 15	5	.97	.03	.09	2	5	
RKD-32109	- 4	8	16	5B	.4	10	4	184	3.07	5	3	ND	2	9	1	2	2	60	.04	. 03	5	ਸ਼	. 4B	60	. 18	4	2.39	. 03	.09	2	5	
RKB-32110	2	15	14	55	.3	16	6	163	2.84	3	3	ND	2	10	i	2	7	47	.05	.03	6	39	. 67	63	.11	4	2.12	.02	.12	2	5	
RKB-32111	3	10	15	20	.4	ģ	3	179	2.56	5	2	ND	2	8	i	3	z	46	.03	.06	4	24	. 29	55	.13	4	1.29	.03	.08	2	Ś	
RKB-32112	3	12	15	57	. 1	10	3	524	2.45	3	4	NÖ	2	11	1	2	2	41	.05	.06	5	26	.34	69	. 10	5	1.29	. 03	.10	Ž	5	
RKB-32113	2	12	15	25	.2	6	2	299	2.47	2	4	XD	2	6	1	2	2	35	.02	. 11	5	17	. 18	40	.09	4	2.35	. 03	. 07	2	5	
P/28-32114	2	20	16	45	.2	20	á	153	4.36	2	2	KD	3	9	1	2	2	69	. 02	.10	6	41	. 67	63	. 14	5	2.15	.02	.14	2	5	
RKB-32115	2	17	15	- 54	.2	18	6	218	3.60	2	2	ND	3	13	1	2	2	51	.09	. 06	8	43	.79	73	.11	5	3.30	. 02	.15	2	5	
RXD-32116	2	25	15	100	.4	21	10	1528	2.69	2	8	ND	2	66	1	2	2	44	.47	. 08	58	40	.78	82	. 07	5	2.52	. 03	.18	2	5	
809-32117	1	18	14	55	.2	21	7	176	3.26	2	2	ND	4	14	1	2	2	50	.04	. 03	9	39	. 81	67	.12	5	3.16	. 02	.16	2	5	
RKB-32118	1	11	10	52 58	.1	16 17	6	340	2.40	3	22	ND	22	15	1	22	2	48	.06	. 03	5	39 37	.73	75	. 14	5	1.72	.04	.13	2	5	
RKB-32119	1	11	17	58	.1 .3		6	175	3.51	2	-	ND	2	10	1	2	2	61	.04	.05	6	37	. 19	75 78	. 14	6	2.23	. 02	.13	2	5	
RKB-32120	1	28	- 24	110	.2	27	9	293	3.ZI	4	3	ND	- 4	22	1	2	2	53	.06	.06	12	48	.91	120	.12	5	2.94	.02	.16	2	5	
RCB-32121	1	23	13	79	.1	30	11	289	3.67	2	2	ND	2	19	1	2	2	61	.13	. 09	6	57	1.25	83	.07	6	2.28	.04	.13	2	5	
RKB-32122	2	32	15	257	.3	50	8	855	Z.90	2	5	ND	3	56	2	2	3	54	.43	.04	30	56	1.32	140	.16	4	2.65	.06	.26	2	5	
RKB-32123	8	α	21	147	.2	31		1217	3.06	2	2	ND	2	65	1	2	2	58	. 39	.10	14	38	.99	119	.04		2.57	. 03	.28	2	5	
RKB-32124	3	20	13	66	.3	16	6	433	2.32	2	2	ND	2	12	1	2	2	45	.08	.04	6	37	. 79	89	. 07	6	2.14	.03	.14	2	5	
503-32125	4	66	15	176	1.1	47	12	1136	4.37	2	5	DK	2	29	1	2	2	89	.10	.10	10	72	1.37	206	.09	7	2.85	.02	.24	2	5	
RKB-32126	3	65	21	241	.0	68	14	2365	3.75	2	- 4	ND	3	28	- 4	2	3	104	.37	.14	15	99	1.75	167	. 07	5	2.64	.04	.16	2	5	
RKB-32127	1	28	16	84	.7	27	8	515	2.51	2	2	ND	2	30	i	2	3	52	.11	.05	7	44	1.02	203	.09	4	2.08	.04	. 33	2	5	
RKB-32128	1	43	15	90	.7	52	13	716	3.50	5	2	ND	2	46	1	2	2	71	. 27	.05	9	83	i.89	77	. 12	8	2.04	. 08	.09	2	5	
RKB-32129	2	66	- 14	103	.7	21	6	1317	2.15	2	ģ	ND	2	40	2	2	2	37	.82	.10	42	40	.54	142	.06	5	3.00	.03	.16	2	5	
RKB-32130	2	- 12	12	40	.2	11	- 4	294	1.92	2	2	ND	2	13	1	2	- 2	35	. 19	. 03	8	20	.47	127	.11	- 3	1.07	.02	.20	2	5	
≈KB-32131	9	22	16	52	.4	1B	5	357	2.81	2	4	NÐ	Z	10	1	2	2	52	.05	.06	11	40	.56	73	.10	5	1.94	. 01	.15	2	5	
RKB-32132	11	26	23	58	.5	14	6	667	3.55	2	7	ND	4	7	1	2	2	64	.04	.09	12	47	. 57	58	. 13	6	3.52	.02	.14	2	5	
RKB-32133	7	18	16	88	.4	30	7	413	3.18	2	5	ND	3	24	1	2	2	52	.52	.04	22	53	. 83	58	.11		3.64	.01	.14	2	5	
RKB-32134	2	17	16	52	, ŧ	19	6	416	3.32	2	- 4	жD	2	17	1	2	2	58	.08	.17	12	54	.72	112	.11	5	2.18	.01	.21	2	5	
RCB-32135	3	21	- 11	51	.3	15	5	708	2.57	2	2	ND	2	9	1	2	2	Si	.04	.07	8	42	. 63	79	.10	- 4	1.74	.02	.14	2	5	
RKB-32136	- 4	28	16	32	.3	11	3	210	2.93	2	2	ND	2	6	1	2	2	51	.02	.13	7	45	.34	59	. 09	5	1.69	.01	.12	2	5	
RCB-32137	4	22	18	42	.7	23	9	466	3.20	2	3	ND	2	16	1	2	2	62	. 12	.10	11	Π	. 90	96	.13	5	2.77	.02	,22	2	5	
RKB-32138	2	54	18	98	'2	39	10	537	2.97	5	4	ND	4	17	1	2	2	59	.16	. 08	11	51	1.22	124	.14	6	3.78	.02	, 38	2	5	
508-32139	2	33	13	51	.6	20	9	822	2.66	2	5	ND	2	16	1	2	2	53	.14	. 18	14	67	.71	78	.11	6	4.31	.03	. 15	2	5	
STD A-1/AU 0.5	1	31	38	184	.3	39	12	1044	2.82	10	2	ND	2	29	1	2	2	58	.58	.10	8	74	.75	281	.09	8	2.05	.02	,21	2	48G	

~.

1

ŕ

(

ί

(

¢

1

ι

PAGE # 1

 \sim

SAMPLE #	Мо рр∎	Cu pp∎	РЪ рра	2n ppe	Ag ppe	Ni ppe	Co ppe	Men ppst	Fe Z	As gp∎	U PP#	Au ppe	Th ppe	Sr ppe	Cd pp≞	Sb ppe	Bi pp≠	V pp=	Ca Z	Р 2	La ppe	Cr ppe	Mg Z	8a ppe	T1 2	B pp∎	Al Z	Xa T	K Z	¥ ppa	Au l ppb
RK8-32140 PKB-32141 RKB-32142 FKB-32143 RKB-32143	2 1 1 1 2	26 40 23 54 42	8 14 11 17 19	102 126 99 122 91	1.1 .8 .4 .5	15 34 24 50 49		1194 1151 747 875 412	2.34 3.43 2.49 3.61 3.37	(211 4 (164	1 N N 1 1	nd Nd Nd Nd Nd	3 2 5 3	29 30 17 26 37	1 1 1 1	32323	2 2 3 2 2 2	43 76 54 67 57	.30 .28 .17 .19 .27	.07 .08 .07 .10 .12	7 8 7 15 14	33 51 44 58 66	.58 1.63 .99 1.47 1.28	87 159 70 163 167	.11 .14 .11 .14 .14	10 5 6	4.29 3.18 3.34 3.86 3.49	.03 .02 .03 .02 .03	. 10 . 31 . 09 . 43 . 31	~~~~	2000
RKB-32145 RKB-32146 RKB-32147 RKB-32150 RKB-32151	1 1 1 1	50 19 35 41 66	20 16 14 16 15	87 53 74 99 115	.3 .7 .4 .3	38 22 40 48 47	14 9 12 16 11	267 354 509	3,50 2,42 3,07 3,71 3,13	B 4 2 2 2	2 2 2 5 5	ND ND ND ND	5 5 4 4	34 24 27 40 24	1 1 1 1	2 3 2 2 2 2	7 7 7 7 2 7	56 38 52 84 84	.24 .26 .23 .46 .24	.05 .04 .07 .08 .07	13 8 15 13 11	47 27 65 129 68	1.14 .53 1.21 2.33 2.72	146 105 123 118 190	.15 .14 .13 .17 .15	5 6 6	4.82 4.82 3.65 3.04 3.67	.03 .03 .03	.34 .11 .29 .23 .35	2 2 2 2 2	5 5 5 5
RKB-32152 RKB-32153 RKB-32154 RKB-32155 RKB-32156	1 1 1 2 1	63 62 58 53 48	18 13 12 15 17	104 155 136 210 193	.6 1.8 .5 .7	50 61 59 52 61	10 13 13 12 11		2.83 2.96 3.37 3.63 3.07	6 D. 2 4 2	22232	ND ND ND ND ND	22882	19 19 14 17 24	1 1 1 1	4 2 2 2 2	72772	63 57 71 65 47	.29 .15 .16 .16 .15	.08 .06 .05 .07 .07	9 2 8 8 7	57 49 63 61 39	2.06 1.45 1.34 1.46 .96	121 176 264 122 166	.13 .14 .18 .14 .13	5 8 6	2,82 3,47 2,81 3,30 3,29	.02 .02 .02 .03 .03	.26 .20 .49 .15 .14	22212	5 5 5 5 5
RKB-32157 RKB-32158 RKB-32159 RKB-32160 RKB-32161	57 4 2 1	85 127 51 80 50	27 14 28 20 16	222 151 242 243 143	1.7 1.0 3.7 .8 .6	59 50 57 63 36	7 10 11 15 16	305 267 360 482 2906	B.04 3.13 3.02 3.90 2.73	22540	22222	NC ND ND ND	10 3 3 3 3 3	105 38 34 26 12	1 1 2 1 1	2 2 2 2 2 2 2	~~~~~	86 48 50 70 62	.20 .24 .17 .14 .12	.12 .05 .16 .10 .08	18 7 19 9 11	31 42 47 53 57	1.07 1.78 .83 1.34 1.59	250 114 151 257 143	.09 .11 .15 .16 .10	5	3.90 2.79 4.54 3.03 2.99	.02 .05 .03 .02 .02	.19 .24 .07 .31 .22	N N N N N N	5 5 5 5 5
RKB-32162 RKB-32163 RKB-32164 9KB-32165 RKB-32166	1 1 1 1	38 73 31 70 49	15 7 15 10 16	173 114 153 147 163	1.1 1.1 1.2 .5 .7	37 38 32 54 47	10 12 9 10 11	776 442 995 453 1116	3.18 3.66 3.02 2.85 3.43	7 5 5 4 5	2 2 2 2 2 2	ND ND ND ND		12 24 15 21 14	1 1 1 1	22222	2 2 2 2 2	65 78 52 56 63	.07 .14 .09 .16 .11	.06 .06 .14 .06 .10	7 7 6 8 7	34	1.13 1.48 .92 1.75 1.45	246 454 327 198 255	.19 .20 .17 .14 .18	4 5 4	3,54 2,99 3,64 2,79 3,29	.02 .02 .02 .02 .02	.20 .68 .19 .25 .36	7 7 7 7 7 7	5 5 5 5
RKB-32167 RKB-32168 RKB-32169 RKB-32170 RKB-32171	1 1 1 1	125 82 32 35 59	10 16 12 11 13	121 105 162 190 138	.7 1.0 .3 .9	70 36 37 42 49	16 10 11 10 9	979	5.16 4.06 3.10 2.79 2.49	6 5 2 4 2	4 7 7 4 7	nd Nd Nd Nd	3 2 2 3	27 15 24 17 19	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	70 87 59 51 57	.30 .17 .26 .10 .24	.08 .06 .15 .09 .08	5 7 6 6 8	57 56 43	1.59 1.92 1.41 1.26 2.03	386 276 257 130 146	.22 .27 .15 .10 .11	5 5 5	3.73 3.44 2.66 2.55 2.41	.06 .02 .03 .02 .02	.80 .97 .31 .10 .27	14 14 14 14 14	5 5 5 5
RKB-32172 9KB-32173 PKB-32174 DMB-39001 DMB-39002	1 1 1 3 2	46 48 37 25 28	16 13 8 16 23	108 116 117 89 100	.6 .7 .4 .5	41 47 35 27 33	8 7 9 5	566 707 294 1015 316	2.33 1.98 2.86 2.50 3.54	44222	4 2 2 4 2	ND ND ND ND ND	3 2 2 3	12 26 25 35 18	1 1 1 1 1	22222	2 2 2 2 2	56 56 62 48 56	.15 .32 .24 .53 .09	.05 .10 .07 .06 .05	8 8 5 17 9	57 64 46 43 46	1.91 1.78 1.38 .97 .98	85 117 189 117 119	.10 .13 .06 .09	5 4 4	2.69 2.47 2.43 1.95 2.71	.01 .02 .01 .05 .05	.17 .10 .17 .15 .17	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5
STD A-1/AU 0.5	1	30	40	192	.3	36	:2	1017	2.84	9	2	ND	2	36	ĩ	2	2	58	. 59	. 10	8	73	.75	279	. 08	8	2.06	. 92	. 30	2	470

· · · ·

FAGE # 1

SAMPLE #	Mo pp e	Cu ppa	Pb pp∎	Za ppe	Ag pps	Ni ppm	Co ppe	Mn ppe	Fe I	As pps	U Dpe	Au ppa	Th ppe	Sr ppa	Cd pp=	Sb ppm	Bi ppa	V ppm	Ca I	P Z	La ppa	Cr ppe	Mig Z	Ba ppe	Ti Z	B ppa	Al I	Na Z	K Z	W PP#	Aut ppb
DHB-39003 DHB-39004 DHB-39005 DHB-39006 DHB-39007	1 2 1 1 1	16 11 7 19 17	19 17 9 12 12	107 63 21 70 90	.3 .6 1.0 .5	22 15 5 19 14	10 5 2 5 5	966 265 176 676 627	3.21 2.91 1.17 2.69 2.95	9 7 3 2 7	2 7 7 3 2	nd Nd Nd Nd Nd	3 2 3 3	41 10 8 12 13	1 1 1 1 1	2 2 3 4	2 2 2 2 2 2	59 48 25 41 43	.45 .05 .02 .05	.12 .05 .02 .04 .04	6 5 4 7 5	48 28 12 33 32	1.23 .48 .17 .65 .65	257 91 53 116 132	.20 .13 .08 .10 .16	5 5 2 4 4	4.14 2.47 .79 2.31 3.38	.09 .02 .03 .02 .03	.13 .11 .06 .11 .13	2 2 2 2 2 2	5 5 5
DMB-39008 DMB-39010 DMB-39010 DMB-39012 DMB-39013	1 1 3 3 2	11 9 13 10	8 12 19 14 11	38 45 81 47 56	.4 .6 .4 .7	11 9 19 9 10	4 3 10 4 4	415 131 556 895 627	2.20 2.33 4.53 2.00 2.26	2 2 4 2 3	2 2 4 2 4	nd Nd Nd Nd Nd	2 2 2 2 2 2	10 8 21 6	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	57 58 108 53 55	.03 .02 .19 .02 .02	.04 .04 .05 .05	6 4 7 6 5	25 21 111 20 26	.39 .29 1.07 .27 .42	65 53 98 58 62	.09 .09 .15 .05 .11	4 6 4	1.66 1.66 3.82 1.42 1.91	.02 .03 .04 .01 .02	.10 .07 .07 .07 .07	2 2 2 2 2 2	5 5 5 5
DMB-39014 DMB-39015 DMB-39016 DMB-39017 DMB-39018	2 2 2 1 1	12 11 16 11 15	14 14 15 15 13	44 45 52 56 59	.7 .2 .3 .5	14 11 18 13 21	4 4 5 6	149 359 274 287 424	2.34 2.48 2.82 2.71 2.62	43457	4 2 2 2 2	ND ND ND ND	2 2 3 2 2	5 5 7 9	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2 2 2	39 40 41 39 41	.02 .02 .03 .03 .04	.02 .08 .02	7 6 7 5 8	24 25 32 26 42	. 44 . 38 . 66 . 42 . 68	52 65 81 83 70	.10 .12 .10 .12 .09	3 4 4	1.43 1.57 1.85 1.84 1.88	.01 .02 .02 .02 .02	.11 .12 .09 .07 .10	2 2 2 2 2 2	5 5 5 5
DNB-39019 DNB-39020 DNB-39021 DNB-39022 DNB-39023	2 1 1 3 2	12 30 18 24 15	15 19 14 14 9	60 62 57 40 63	.1 .4 .6 .5	15 28 20 21 17	4 9 7 5 6	202 520 489 190 265	2.88 3.28 2.15 3.25 2.48	6 5 7 3 6	2 2 2 2 2 2	ND ND ND ND ND	2 4 3 2 3	7 10 12 8 9	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	46 48 34 54 40	.03 .09 .11 .01 .04	.06 .08 .05 .03	7 9 8 9	29 44 35 40 37	.42 1.01 .71 .68 .67	75 104 110 53 75	.12 .09 .09 .10 .10	4 6 5	1.67 2.64 1.84 1.75 2.38	.01 .02 .01 .01 .02	.08 .12 .26 .12 .08	2 2 2 2 2 2 2 2	5 5 5 5
DMB-39024 DMB-39025 DMB-39026 DMB-39027 DMB-39028	1 1 1 2 1	16 19 17 15 36	15 11 15 14 9	72 124 79 40 123	.5 .5 .8 .4 1.0	18 27 14 15 25	4 8 5 4 8	285 727 697 192 505	3.13 3.41 2.30 2.62 1.98	7 2 5 3 5	4 2 2 2 2	ND ND ND ND	2 2 2 2 2 2	8 30 11 8 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	58 62 47 49 48	.04 .13 .03 .05 .14	.07 .12 .06 .07 .06	6 4 5 7	38 49 32 30 45	.75 .91 .53 .45 1.54	93 151 90 67 106	.16 .13 .09 .12 .11	5 3 4	2.02 2.60 1.73 1.21 3.37	.02 .03 .02 .01 .02	.11 .07 .05 .10 .12	2 2 2 2 2 2	5 5 5 5
DHB-39029 DHB-39030 DHB-39031 DHB-39032 DHD-39033	1 1 1 1	10 7 19 28 44	9 11 13 11 12	98 34 89 152 95	.6 .2 .8 i.2 4.1	13 12 16 24 24	3 2 5 9 5	532 1252 701 570 1043	1.44 .87 2.66 3.54 2.21	4 5 6 7 2	2 2 2 2 2 2	ND Ng Ng Ng	2 2 2 3 2	8 12 10 18 30	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	28 20 49 57 30	.08 .19 .04 .10 .48	.09 .05 .10 .10	4 11 6 8 10	28 26 38 45 36	1.07 1.60 .76 1.12 1.60	75 49 98 233 127	.10 .07 .13 .14 .07	2 3 5	2.46 1.56 2.04 3.46 1.81	.01 .01 .02 .02 .02	.04 .04 .07 .25 .15	2 2 2 2 2 2	5 5 5 5 5
DMB-39034 DMB-39036 DMB-39037 DMB-39038 DMB-39039	1 1 1 2 1	34 22 25 29 34	12 10 11 16 12	130 105 111 133 97	1.0 1.4 .9 1.1 .4	24 17 19 24 30	7 6 7 8 6	412 611 433 589 777	3.18 2.18 2.90 3.54 2.45	5 8 2 4 3	2 2 2 2 2 2	ND ND ND ND	2 3 3 3	12 9 12 12 8	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	53 31 47 60 45	.09 .04 .09 .06 .13	.06 .06 .07 .14 .20	9 8 8 11 8	40 34 35 40 44	1.22 .53 .95 .84 1.09	213 119 131 114 72	.13 .11 .09 .08	4	3.05 4.29 2.77 2.85 2.40	.01 .02 .01 .02 .01	.21 .04 .11 .07 .07	2 2 2 2 2 2	5 5 5 5
DMB-39040 DMB-39041 STD A-1/AU 0.5	1 1 1	10 29 30	8 10 39	56 91 181	.2 .4 .3	11 26 35	3 5 12	291 330 1031	1.23 1.87 2.84	2 6 11	2 2 2	N D ND ND	2 2 2	7 8 36	1 1 1	2 2 2	2 2 2	19 30 56	.11 .12 .58	.08 .12 .09	6 7 7	25 35 74	.94 1.02 .74	41 66 278	20. 20. 80.	- 4	1.90 1.91 2.06	.01 .01 .02	.04 .07 .20	2 2 2	5 5 495

~ --

 \sim

S. 1

(

 ϵ

(

ſ

t

÷.

ţ

ť

ſ

PAGE # 3

 \sim

SAMPLE #	Мо рри	Cu ppe	Pb ppa	Zn ppe	Ag ppm	Ni ppm	Co gp∎	Min ppe	Fe I	As ppø	U ppe	Au ppe	Th ppm	Sr ppe	Cd PP=	Sb ppe	8i pp∎	V P p m	Ca Z	P I	La ppe	Cr ppe	Hq I	8a ppe	Ti I	B ppe	Al I	Na Z	K Z	W pps	Au I ppb
DNB-39042 DNB-39043 DNB-39044 DNB-39045 DNB-39046	1 1 1 1	19 19 20 15 39	9 9 10 10 8	131 109 144 107 141	.8 .7 1.7 1.0 .9	18 27 32 25 39	5 6 5 7	651 525 514 470 481	2.14 1.41 1.71 1.61 2.05	2 2 2 4	2 2 2 3 2 3	ND ND ND ND ND	2 2 2 3 2 3	8 13 20 13 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	34 28 34 27 37	.07 .18 .23 .15 .19	.13 .13 .13 .17 .12	9 5 8 8	32 41 39 31 38	.68 1.30 1.12 .80 1.21	109 80 101 90 183	.09 .08 .10 .10 .10	4 4 3 9	3.35 2.07 2.75 2.62 2.70	.02 .02 .03 .02 .03	.07 .05 .07 .07 .07	2 2 2 2 2 2 2	10 5 5 5
DH9-39047 DH9-39048 DH9-39049 DH9-39050 DH9-39051	1 1 2 1	22 41 41 25 27	13 10 11 11 9	191 156 228 130 135	1.1 .7 1.2 .5 .4	36 37 50 27 27	8 9 12 7 8	621 866 452 763 396	2.34 2.95 3.08 2.48 2.60	5 6 2 4 6	3 5 2 3 4	ND ND ND ND ND	2 3 2 2 2	18 27 27 16 17	1 1 1 1 1	2 2 2 3	3 2 2 2 2	45 55 49 48 48	.14 .16 .17 .12 .14	.11 .07 .20 .07 .05	5 9 8 7 6	36 40 38 38 32	.87 1.39 1.08 .93 1.23	218 415 305 269 345	.12 .16 .14 .15 .15	7	2.27 2.86 3.16 2.32 2.35	.02 .02 .02 .03 .02	.10 .25 .13 .25 .36	2 2 2 2 2 2	5 5 5 5
DHB-39052 DHB-39053 DHB-39054 DHB-39055 DHB-39055	1 1 1 1	25 10 13 20 16	12 15 14 9 12	113 129 147 90 105	.5 .9 .7 .1 .3	31 14 20 17 17	5 5 6 7 7	284 606 699 767 558	1.75 2.27 2.04 2.04 1.78	5254	2 2 4 3 2	nd Nd Nd Nd	3 2 3 2 2 3	14 15 19 28 23	1 1 1 1	2 2 2 2 2	2 2 2 2 2	35 31 37 34 36	.21 .10 .17 .37 .21	.13 .29 .15 .07 .04	7 4 5 7 8	42 22 31 33 32	1.41 .47 .72 .93 .74	81 187 164 205 297	.10 .10 .10 .13 .10	4 5 4 5	2.59 2.29 3.02 2.22 1.73	.01 .02 .03 .05 .02	.07 .06 .07 .18 .09	2 2 2 2 2 2	55555
DH9-39057 DH9-39058 DH9-39059 DH9-39060 DH9-39061	1 2 1 1 1	18 14 17 21 45	14 12 12 11 10	152 84 114 112 136	.3 .3 1.5 .3 .7	20 19 23 20 37	B 7 6 7 8	1623 584 503 1419 665	2.23 1.98 2.24 1.69 2.35	6 2 3 4 4	2 2 3 2	ND ND ND ND	2 2 2 3	22 14 29 28 20	2 1 2 2 1	2 2 2 2 2	2 2 2 2 2 2	45 38 34 37 54	.19 .10 .22 .21 .22	.08 .07 .31 .08 .12	7 7 4 7 8	34 23 26 35 48	.78 .66 .45 .94 1.61	219 164 297 262 191	.11 .12 .10 .09 .11	5 5	2.14 1.66 4.24 1.68 2.98	.03 .03 .04 .02 .02	.11 .12 .06 .09 .22	2 2 2 2 2 2	5 5 5 5 420
DMB-39062 DMB-39063 DMB-39064 DMB-39065 DMB-39066	1 1 1 1	19 18 19 16 12	8 9 12 11 9	181 109 126 149 78	.4 .3 .5 .3	27 16 19 17 9	6 7 7 9 6	1092 839 747 1074 2190	1.67 2.57 2.88 2.97 1.49	2 2 2 4 2	2 2 2 3 2	ND ND ND ND ND	2 2 2 2 2 2 2	15 25 17 21 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	39 54 53 62 27	.22 .17 .12 .22 .10	.07 .09 .12 .14 .07	5 6 5 4	42 32 35 28 15	1.46 .94 .96 .90 .26	194 250 172 329 229	.09 .12 .11 .15 .08		2.08 1.85 2.25 2.54 .89	.01 .02 .02 .02 .03	.06 .14 .11 .36 .14	2 2 2 2 2 2	5 5 5 5 5
DMB-39067 DMB-39068 DMB-39069 DMB-39070 DMB-39071	1 2 5 3	14 16 17 31 25	12 18 13 17 14	67 129 38 83 52	.1 .1 .4 1.0	13 21 12 27 16	7 9 5 8 5	1264 1249 807 743 466	1.90 2.61 1.30 2.91 2.47	4 9 2 4 4	2 2 2 3 2	nd ND ND ND	2 3 2 2 7	12 13 12 13 11	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	33 41 24 51 41	.13 .08 .11 .10 .10	.06 .09 .03 .09 .07	7 9 13 19 7	25 33 19 43 28	.31 .57 .13 .74 .34	180 155 150 96 105	.09 .11 .04 .10 .11	6 4 5	1.03 1.78 .70 2.60 1.98	.02 .03 .02 .01 .02	.11 .10 .07 .34 .14	2 2 2 2 2 2	10 5 5 5 5
DMB-39072 BDB-3800 BDB-3801 BDB-3802 BDB-3803	3 2 1 1 2	15 9 13 18 22	18 11 12 8	48 93 114 222 136	.2 .4 .5 .5	15 7 9 13 12	5 4 5 9 6	545 355 778 489 541	1.33 2.52 2.47 3.19 2.57	2 9 15 50	8 2 3 4 8	ND ND ND ND	2 3 2 2 2	43 16 17 16 57	1 1 2 2	2 2 2 2 2 2	2 2 2 2 2	26 41 55 90 73	1.10 .16 .14 .15 1.31	.06 .12 .09 .11 .08	10 6 7 6 7	39 20 35 32	.49 .24 .38 .72 .74	99 86 140 185 131	.05 .13 .15 .14 .10		1.03 4.77 2.27 2.88 2.36	.03 .03 .03	.16 .06 .11 .18 .22	2 2 2 2 2 2	5 5 5 5 5
808-3804 808-3805 STD A-1/AU 0.5	2 1 1	40 34 30	12 12 39	257 225 180	.5 .4 .3	26 24 36	10 11 12	589 720 1011	3.52 3.59 2.76	28 26 11	6 2 2	ND ND ND	2 2 2	30 23 37	3 2 1	2 2 2	2 2 2	105 99 57	.39 .25 .58	.07 .08 .10	10 6 7	50 44 76	.97 .91 .75	125 189 285	.14 .14 .09	5	4.24 2.93 2.07	.04 .04 .02	. 15 . 18 . 21	2 2 2	5 5 490

~ --

~

FAGE # 4

1

SAMPLE #	fia ppa	Cu ppe	РЪ рре	Zn ppm	Ag ppe	Ni ppm	Co ppe	Min ppe	Fe L	As ppe	U pp∎	Au ppe	Th pp≘	Sr pp a	Cd pp=	S6 pp∎	Bi ppa	V 9P e	Ca I	P I	La ppe	Cr opa	Mg I	8a ppe	Ti Z	B ppe	A) I	Xa Z	K Z	¥ ppe	Aus ppb
80 0 -3806 808-3807 808-3808 808-3809 808-3810	1 1 2 1 2	27 22 65 50 41	17 22 14 10 15	236 232 532 315 536	.2 .4 1.2 .8 .6	19 14 55 31 28	14 11 19 12 15	1360 2233 702 966 1308	4.54 3.30 5.24 3.35 4.91	35 19 48 44 21	2 2 4 2 5	NĐ Nđ Nđ Nđ	2 2 3 2 2	72 72 73	2 3 5 5	2 2 2 2 2	2 2 2 2 2	132 95 148 107 149	.30 .14 .34 .35 .19	.15 .15 .14 .12 .18	6 5 8 7 6	51 37 71 55 59	.85 .60 1.40 .90 1.07	259 239 236 257 442	.19 .16 .14 .13 .12	7 8 7	2.56 2.19 4.72 3.01 3.82	.03 .04 .03 .05 .02	. 21 . 11 . 29 . 22 . 21	2 2 2 2 2 2	5 5 5 5
808-3811 808-3812 808-3813 808-3814 808-3815	3 3 2 4	46 53 58 86	21 33 17 22 19	579 1284 514 527 791	.9 1.1 .5 .9 1.4	29 45 26 25 44	14 16 15 14 22	833 1662 985 923 966	3.95 4.74 4.30 4.86 5.10	31 100 33 113 122	2 3 5 2 3	ND ND ND ND	2 3 2 3 3	37 28 27 35 23	4 7 4 5 7	2 2 5 6	2 2 2 2 2 2	112 101 138 129 103	.44 .31 .23 .37 .28	.27 .10 .17 .11 .13	5 11 6 7 14	47 55 56 56 40	.94 1.04 1.02 1.02 1.06	224 165 228 205 171	.08 .11 .15 .15 .10	9 7 7		.03 .02 .03 .02 .02	.18 .19 .15 .15 .16	2 2 2 2 2	5 60 85 5 5
90 9-3 816 909-3817 909-3819 909-3819 909-3819 90 0- 3820	2 1 2 2 1	49 32 21 26 11	27 25 18 26 11	366 249 120 189 30	1.8 .6 .4 .3 .4	37 31 15 21 5	14 13 7 11 2	946 3707 1866 1624 174	4.40 2.79 2.00 3.40 .95	170 130 44 158 5	4 2 2 2 2	ND ND ND ND	2 2 2 2 2 2	25 43 19 23 12	3 3 2 2 1	2 2 2 2 2 2	2 2 2 2 2	94 53 34 57 24	.26 .55 .24 .32 .06	.13 .07 .03 .06 .03	12 11 6 8 5	52 46 18 39 13	1.07 .57 .27 .61 .10	132 292 120 133 95	.07 .08 .05 .11 .07	7 9 4 3	4.33 1.57 .95 1.95 .56	.02 .03 .03 .03	.16 .18 .05 .14 .04	2 2 2 2 2	10 15 5 5
BD9-3821 BD 0 -3822 BD 0 -3823 BD 0-3824 BD 0-3825	1 2 3 2	19 18 19 28 19	9 10 14 11 10	88 174 101 69 50	.3 .1 .5 .3	15 20 20 18 11	6 7 5 3	736 864 1132 554 423	2.65 2.84 2.67 2.69 2.15	10 5 8 6 2	2 4 2 2 2	ND ND ND ND ND	2 4 2 2 2	18 10 17 16 9	1 2 1 1	2 2 2 2 2 2	2 2 2 2 2	46 48 56 48 45	.18 .08 .18 .15 .02	.05 .05	9 13 12 9 7	29 38 43 36 29	.66 .84 .88 .66 .42	94 91 102 132 93	.07 .10 .09 .08 .09	5 9	1.76 3.20 2.45 1.48 1.16	.02 .01 .02 .02 .02	.09 .16 .10 .14 .12	2 2 2 2 2	5 5 5 5
808-3826 808-3827 808-3828 808-3829 808-3830	3 1 1 2 1	18 43 25 28 21	14 7 10 12 12	87 106 101 110 85	.2 .2 .5 .3	14 31 24 24 21	6 8 5 8 6	650 417 646 547 444	3.62 3.46 2.15 3.05 2.04	5 8 6 9 7	2 2 5 3 2	nd ND ND ND ND	2 3 3 3 3	13 10 10 17 14	1 1 1 1	2 2 3 2	2 2 2 2 2 2	64 51 41 56 42	.11 .06 .07 .14 .14	.05 .03 .06 .13 .11	8 11 9 11 9	32 46 41 50 43	.61 1.57 .85 1.10 1.22	122 263 97 108 85	.18 .16 .08 .09 .08	6 6 6	1.85 2.67 2.53 3.32 3.04	.02 .01 .01 .01 .02	.14 .64 .09 .16 .11	2 2 2 2 2 2	5 5 5 5
809–3831 809-3832 80 9- 3833 80 9- 3834 809-3835	1 1 1 1	27 18 16 14 6	13 12 12 12 12 8	57 133 87 61 19	.4 .4 .1 .1 .2	24 19 20 14 5	6 7 7 4 1	326 553 382 242 63	2.71 2.86 2.99 2.90 .80	7 5 7 3 3	2 2 3 2	nd Kd Nd Nd Nd	2 3 2 3 2	13 18 22 14 19	l 1 1 1	3 2 2 2 2 2 2	2 2 2 2 2	47 51 60 47 20	.05 .11 .17 .05 .03	.06 .06 .05 .05 .02	9 10 7 6 4	41 40 42 32 10	.85 .80 .87 .54 .07	86 150 120 74 40	.08 .11 .15 .11 .06	6	2.35 3.24 2.02 2.21 .45	.02 .02 .03 .02 .03	.18 .16 .14 .10 .05	2 2 2 2 2	5 5 5 5
90 9 -3836 808-3837 808-3839 808-3839 806-3840	1 2 2 2 2	3 13 12 15	5 17 18 12 9	9 77 72 40 56	.1 .7 .5 .4	2 10 11 8 9	1 4 3 4	40 479 464 237 343	.54 1.98 1.91 2.01 2.60	2 3 6 4	2 4 7 2 2	DX DX DX DX DX DX	2 2 2 2 2	31 64 63 13 12	1 1 1 1	2 2 2 2 2	7 2 2 2 2	12 43 42 52 54	.05 .74 .74 .07 .06	.01 .03 .03 .02 .03	3 39 42 7 7	10 52 52 19 25	.05 .30 .29 .34 .49	36 70 69 46 51	.02 .07 .06 .10 .11	5	.31 1.42 1.37 .96 1.43	.04 .05 .03 .02	.04 .07 .08 .05 .05	2 2 2 2 2 2	5 5 5 5
BDB-3841 809-3842 STD A-1/AU 0.5	2 2 1	15 14 30	10 10 38	53 51 182	.5 .4 .3	32 8 8	4 4 12	305 311 980	2.55 2.35 2.81	9 5 10	2 2 2	ND ND ND	2 2 2	14 16 36	1 1 1	2 2 2 2	2 2 2	56 51 58	.08 .09 .59	.03 .03 .10	7 6 8	25 24 75	.49 .46 .77	58 55 274	.11 .10 .08	5	1.47 1.37 2.06	.03 .03 .02	.06 .05 .20	2 2 2	5 5 525

. - --

 \sim

PAGE # 5

(

1

<u>(</u>

1

(

÷

;

X.

ί

FAGE # 6

SAMPLE I	Мо рра	Cu pp∎	Ръ рр∎	Zn gpæ	Aq ppm	Ni ppm	Co pp∎	Mn opa	Fe Z	As pp∎	U ppe	Au ppor	Th pp#	Sr pp#	Cd pp∎	56 թրա	8i ppe	V P p e	Ca X	P Z	Ea ppm	Cr ppe	Kç X	Ba pp=	Ti X	В рре	A1 7	Na I	K X	W ppe	Au t ppb
80 0- 3843 80 0- 3844 800-3845 800-3845 800-3845 80 0- 3847	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 24 22 21 18	14 12 19 16 15	95 86 44 62 58	.2 .3 1.1 .4 .4	26 25 19 23 16	8 9 9 9	498 705 283 346 474	2.35 2.82 2.91 2.65 2.94	27.229	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND ND ND ND	33223	16 11 12 12 9	1 1 1 1	2 2 2 2 2	22222	47 51 46 44 44	.16 .11 .07 .09 .04	.08 .07 .04 .05 .08	9 11 12 10 8	47 50 45 53 44	1.08 1.04 .50 .82 .48	92 95 63 115 109	.08 .07 .09 .08 .11	6 5 5	2.75 3.14 2.31 2.21 2.65	.01 .01 .01 .02 .02	.13 .19 .13 .22 .13	2 2 2 2 2 2	5 5 5 5
9DB-3848 9DB-3849 8DB-3850 8D8-3851 8D8-3851 8D9-3852	1 2 2 2 2	15 22 14 24 18	10 13 17 15 13	89 83 46 67 61	.3 .5 .1 .2	21 32 13 23 16	7 9 4 8 5	289 469 248 473 327	2.26 2.87 3.93 3.32 2.35	2 13 5 6 7	2 4 2 2 2	ND ND ND ND	2 3 3 4 2	16 29 9 18 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	37 52 47 50 42	.12 .42 .04 .16 .16	.04 .05 .05 .10 .07	8 17 9 11 9	37 89 45 53 39	.73 1.14 .40 .76 .59	106 126 76 125 100	.09 .11 .12 .09 .98	6 7 6	2.44 2.62 4.51 4.35 2.31	.01 .03 .02 .01 .02	.13 .30 .07 .14 .13	2 2 2 2 2 2	5 5 5 5
908-3853 908-3854 808-3855 808-3855 808-3855 808-3857	1 1 2 6 2	22 37 18 21 16	13 9 13 14 15	75 56 66 64 122	.9 .6 .4 .2 .2	19 20 17 17 24	7 8 7 5 9	360 477 1436 337 363	2,58 2,71 2,34 3,35 3,09	8 7 6 8 7	4 2 2 2 2	ND ND ND ND	23234	14 11 10 19	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2	44 44 43 54 52	.10 .04 .04 .05 .11	.08 .06 .06 .06	8 9 6 9	44 46 41 42 49	.74 .78 .55 .57 .96	134 108 119 86 136	.10 .09 .09 .13 .12	6 5	2.94 3.78 1.84 3.20 4.30	.02 .01 .02 .02 .02	.19 .23 .11 .13 .17	2 2 2 2 2 2	5555
BDB-3858 B0B-3859 BDB-3860 BDB-3861 BDB-3862	2 1 2 4 2	53 17 38 18 19	16 11 10 13 11	80 82 76 34 82	1.4 1.3 .3 1.4 .3	31 18 29 17 28	9 7 7 6 10	353 482 559 236 251	3.03 2.29 2.76 2.79 2.62	3 10 7 9 8	222222	ND ND ND ND	4 3 4 2 3	16 13 18 16 14	1 1 1 1 1	2 7 2 2 1 2 1	63 63 64 64 64 63	52 41 49 38 42	.11 .08 .16 .17 .09	.04 .05 .02 .04	9 9 16 14 10	52 39 53 41 48	.97 .60 1.62 .33 .85	182 117 177 73 130	.11 .10 .15 .10 .11	4 4 4	3.05 4.17 3.35 2.73 2.82	.02 .02 .03 .02 .02	.21 .11 .40 .09 .20	2 2 2 2 2 2 2 2	5 10 5 5 5
908-3863 908-3864 808-3865 808-3866 808-3866 808-3867	4 1 1 1	25 27 42 33 20	17 15 8 11 9	47 75 95 88 77	.5 .3 1.0 .7 .4	18 31 19 29 19	5 9 6 7	426 345 228 317 585	2.85 3.36 2.10	4 2 8 3 8	2 2 3 2 2	nd Nd Nd Nd	2 5 7 3	12 12 34 14 3	1 1 1 1	2 4 7 5 4		40 53 41 49 43	.16 .06 .24 .24 .06	.11 .06 .07 .11 .17	10 16 7 8 6	45 53 35 55 46	.45 .90 1.84 1.77 .79	86 115 861 86 74	.08 .13 .18 .09 .12	5 4 3	2.20 2.75 2.51 2.61 3.73	.02 .01 .03 .01 .02	.19 .27 .77 .10 .07	2 2 2 2 2 2 2 2	5 10 5 5
PDB-3868 BDB-3869 BDB-3870 BDB-3871 BDB-3872	1 1 1 1	12 37 27 29 32	9 14 11 15	68 66 97 100 56	.1 .3 .7 .8 .4	17 36 21 24 25	5 9 8 6 7	585 367 712 359 559	1.58 2.48 2.76 2.04 1.68	2 5 6 5 5	2 2 2 2 2 2	ND NG ND ND	2 4 2 2 4	10 14 10 14 12	1 1 1 1	2 2 7 7 2	21222	33 46 43 32	.11 .13 .09 .11 .13	.11 .06 .10 .07 .05	7 11 3 8 27	43 56 39 45 46	1.25 1.31 .97 1.11 1.05	55 126 229 85 109	.06 .10 .08 .10 .07	4 4 7	2.14 2.85 2.37 2.56 1.82	.01 .02 .01 .01 .02	.05 .30 .17 .05 .19	2 2 2 2 2 2	5 5 5 5
808-3873 508-3874 806-3875 906-3875 908-3877	3 1 2 2 2	37 28 34 25 24	13 9 15 12	132 179 108 96 96	1,2 .5 .3 .6	24 26 25 25	6 9 10 8 8	978 841 483 569 290	2.48	8 5 9 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND ND ND ND ND	2 2 3 3 2	10 12 14 9	1 1 1 1	2022	7 7 7 7 7 7	48 45 51 46 46	.04 .11 .13 .06	.11 .12 .07 .05 .04	10 9 10 13 10	49 47 56 43 42	.83 .99 1.20 1.11 .97	120 120 130 135 114	.07 .08 .12 .09	4 6	2.36 2.74 3.30 2.50 2.82	.02 .01 .02 .01 .01	.06 .09 .19 .20	2 2 2 2 2	5 5 5 5 5 5
808-3978 808-3879 808-3880 STD A-1/AU 0.5	1 1 1 1	53 17 17 30	9 10 38	79 84 62 181	.3 .4 .5 .3	30 20 18 36	8 6 4 12	254 273 209 1013	2.34 2.15 1.69 2.79	27 5 4 10	2 2 2 2	ND ND ND ND	3 2 2 2 2	26 10 10	1 1 1	2 2 2 2	~~~~	38 38 28 56	.09 .09 .09 .59	.05 .09 .10 .09	10 8 8 8	40 35 40 73	1.04 .67 .59 .74	93 80 78 282	.06 .07 .06 .08	4 3	2.50 2.11 1.37 2.07	.01 .01 .02 .02	.11 .05 .07 .20	2 2 2 2	5 5 5 510

•

مبر.

FAGE # 7

1

£

(

1

1

1

SAMPLE #	No Ppe	Cu ppe	Pb pps	Zn ppe	Ag ppm	Ni ppm	Co ppe	Mn ppa	Fe X	As ppa	U Ppe	Au ppe	Th pp∎	Sr ppe	Cd ppe	Sb ppm	Bi ppe	V pp≞	Ca X	P X	ia ppe	Cr ppe	Hg Z	Ba ppe	Ti X	B ppe	Al I	Na Z	K I	W ppe	Au t ppb	
JAB-30100 JAB-30101 JAB-30102 JAB-30103 JAB-30103	1 1 1 1	20 42 24 14 17	10 7 7 15 10	147 109 119 132 111	2.6 .4 .3 .6 .5	24 23 27 21 20	5 6 8 7 6	439 419 295 389 508	2.10 2.59 2.53 3.11 2.27	3 2 7 4 7	5 5 2 3 5	nd ND ND ND	2 3 2 3 2 3	9 11 13 13 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	36 51 56 43	.07 .07 .09 .10 .13	.23 .13 .13 .14 .18	4 7 6 4 6	30 44 40 33 30	.60 .92 1.08 .55 .62	130 146 174 162 267	.15 .13 .13 .19 .13	4 4 5 4	4,48 2,71 2,74 3,18 2,43	.02 .01 .01 .02 .02	.04 .12 .16 .09 .09	2 2 2 2 2 2	5 5 5 5 5	
JAB-30105 JAB-30106 JAB-30107 JAB-30108 JAB-30108 JAB-30109	1 2 1 1 1	36 27 31 27 40	11 14 28 10 13	186 110 184 108 122	1.6 .3 .9 .4 .3	41 28 44 27 38	8 9 12 6 8	319 639 370 496 543	2.27 2.67 3.50 1.97 2.26	2 2 8 5 2	3 2 3 3	סא סא סא סא	2 3 3 2 2	19 29 30 18 66	E 1 1 1	2 2 2 2 2	2 2 2 2 2 2	51 56 61 46 49	.13 .28 .19 .20 .32	.13 .06 .15 .11 .11	7 8 8 8	43 51 47	1.40 1.31 1.18 1.72 1.75	120 91 234 95 75	.13 .14 .18 .13 .14	4 8 8 4 4	2.90 3.01 4.06 2.67 3.04	.01 .03 .02 .01 .01	.09 .14 .19 .06 .15	2 2 2 2 2	5 5 5 5 5	
JA8-30110 JA8-30111 JA8-30112 JA8-30113 JA8-30113	1 1 1 1 1	46 21 27 23 26	15 11 14 5 13	244 124 157 123 98	1.3 .2 .3 .3	48 33 29 20 37	12 6 9 6 13	855 869 1081 733 326	3.92 1.89 2.71 2.35 2.97	2 2 4 8	5 2 2 2 3	ND ND ND ND ND	3 2 2 2 4	29 19 27 29 15	1 1 2 1	2 2 3 2 2 2	2 2 2 2 2 2	66 53 56 60 49	.21 .29 .23 .29 .11	.16 .08 .12 .10 .04	7 4 5 8	39	1.49 2.01 1.04 1.60 1.01	252 49 390 201 144	.17 .10 .12 .13 .18	3 6 4	3.32 2.69 2.06 2.29 2.73	.01 .01 .02 .02 .01	. 19 .04 . 16 .07 . 38	2 2 2 2 2 2	222	
JAB-30115 JAB-30116 JAB-30117 JAB-30118 JAB-30119	1 1 4 3 1	18 20 34 20 16	14 10 14 14 9	79 58 108 61 89	.1 .1 .1 .4	22 18 39 55 14	9 7 9 10 6	497 210 291 322 705	2.34 2.19 3.10 2.50 2.11	9 2 9 3	5 4 2 2	ND ND ND ND ND	3 4 3 2	12 7 11 20 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	40 39 56 43 37	.11 .09 .09 .27 .22	.05 .04 .05 .13	7 6 12 9 6	55 53 49 85 28	.72 .77 1.11 .79 .61	195 110 109 154 184	.16 .18 .17 .15 .11	7 4 4 4 4	1.82 1.73 2.53 3.30 1.63	.02 .02 .01 .02 .02	.17 .22 .25 .11 .17	2 2 2 2 7	5 5 5 5	
JAB-30120 JAB-30121 JAB-30122 JAB-30123 JAB-30123 JAB-30124	1 2 1 2	31 23 22 24 14	24 9 13 18 11	81 112 74 100 138	.5 .1 .2 .1 .3	30 25 22 25 13	10 8 8 11 7	560 473 731 1693 750	3.26 2.94 2.46 2.54 2.42	7 4 3 6 2	4 4 2 4 2	ND ND ND ND	3 2 2 2 2	14 14 23 11 17	1 1 1 2 1	2 2 2 3	2 2 2 2 2	57 55 41 41 33	.13 .10 .23 .08 .16	.07 .08 .06 .38	8 7 9 14 5	45 55 53 23	.85 1.07 .67 .70 .39	130 148 161 168 353	.16 .14 .11 .08 .12	6 5 7 6 4	2.85 2.38 2.02 1.97 2.79	.01 .02 .01 .01 .02	.24 .21 .23 .32 .09	2 2 2 2 2	5 5 5 5	
JAB-30125 JAB-30126 JAB-30127 JAB-30127 JAB-30128 USC-33099	4 3 4 3	23 37 26 17 32	15 11 15 9 44	52 77 71 63 65	.3 1.4 .5 .2 .2	21 30 20 16 24	6 9 5 7 13	440 483 557 375 448	2.54 2.80 2.72 2.30 2.44	3 2 2 2 17	2 5 3 2	ND ND ND ND	2 2 2 2 6	24 16 14 21 14	1 1 1 1 1	2 2 2 2 6	2 2 2 2 2	40 52 49 43 23	.24 .07 .08 .29 .12	.17 .08 .18 .03 .04	8 12 9 10 28	49 49 45 34 23	.65 .87 .52 .44 .43	128 141 131 82 52	.11 .10 .10 .11 .01	45464	1.51 2.21 2.66 2.31 1.37	.02 .02 .02 .02 .02	.25 .30 .21 .14 .07	2 2 2 2 2	5 5 5 5	
USB-33100 STD A-1/AU 0.5	2 1	23 29	234 37	259 182	4.3 .3	14 36	21 12	6977 1022	7.31 2.90	2514 9	2 2	Z ND	3 2	31 37	2 1	14 2	2 2	28 57	.05 .58	. 16 . 10	29 7	11 75	.22 .74	240 285	.01 .08	11 8	2.19 2.06	.01 .02	.11 .20	2 2	2150 485	

· ..

 \smile

SAMPLE #	Mo ppe	Cu ppe	Pb pp∎	Zn ppo	Aq ppe	Ni ppm	Co ppe	Mn pps	Fe I	As ppe	U ppm	Au pp.m	Th pp∎	Sir ppe	Cd ppo	Sb ppe	9i pp●	V ppe	Ca I	P X	La ppe	Cr ppe	Mg X	Ba ppe	Ti Z	B ppe	A1 7	Na I	K I	W ppm	Au t opb
201+50N 199+25E 201+25N 199+25E 201N 199+25E 200+75N 199+25E 200+50N 199+25E	2 1 2 1 1	31 28 36 70 55	39 29 28 25 17	154 197 185 638 395	.8 .3 .7 .8 .9	35 25 27 32 33	18 14 16 17 14	459	5.00 4.55 4.48 5.50 4.69	610 247 129 267 270	2 4 2 5	nd Nd Nd Nd	3 3 4 3 3	26 12 11 16 16	2 1 1 4 3	2 2 2 2 2 2	2 7 7 2	50 77 70 109 107	. 32 . 14 . 08 . 24 . 18	.09 .10 .14 .10 .10	10 B 11 8 9	25 35 36 37 51	.39 .73 .60 1.05 1.19	129 105 175 164	.06 .07 .07 .09 .14	9 7 8	1.79 3.02 3.61 3.70 4.23	.02 .01 .02 .02 .02	.11 .10 .10 .19 .25	2 2 2 2 2 2 2	440 40 15 10 13
200+25N 199+25E 199+75N 199+25E 199+50N 199+25E 199+25N 199+25E 199N 199+25E	1 2 5 3	33 83 44 92 85	23 16 22 87 21	621 801 583 955 521	.8 2,2 .7 8.3 3.3	24 47 29 56 47	17 13	879 1254	4,41 3,89	154 19 24 171 31	2 5 2 4 5	ND ND ND ND	2 2 3 2	14 37 16 24 25	4 8 4 5	2 2 2 2 2	2 2 2 2 2 2	100 162 104 91 119	. 16 . 30 . 11 . 23 . 27	.13 .09 .10 .13 .15	6 8 6 11 5	37 71 47 47 49	.97 1.43 .93 .99 1.29	207 335 139 179 285	.17 .14 .12 .07 .10	6 6 9	4.05 4.29 3.45 3.28 4.38	.02 .04 .02 .01 .02	.22 .25 .15 .21 .21	2 2 7 7 2	5 5 250 10
198+75N 199+25E 198+50N 199+25E 201+50N 199+50E 201+25N 199+50E 201N 199+50E	16 4 2 1 1	432 63 36 24 20	17 21 20 18 20	3939 450 166 186 110	3.0 .7 .8 .5 .3	349 43 27 21 13	16 14 11	1875 884 1218 1241 1754	4.24 3.68 4.73	60 18 99 92 75	2 4 2 2 3	ND ND ND ND ND	2 2 3 2	51 46 21 22 18	57 6 2 1 2	4 4 3 2 2	2 2 2 2 2 2	135 139 69 79 40	.58 .41 .23 .18 .17	.21 .14 .06 .13 .06	16 5 6 6	65 71 34 31 16	.89 1.07 .64 .38 .23	295 367 146 136 142	.03 .10 .07 .10 .04	8 7	4.58 3.43 2.41 3.68 .96	.01 .03 .02 .02 .02	.27 .13 .13 .14 .07	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 15 10 25
200+75N 199+50E 200+50N 199+50E 200+25N 199+50E 199+75N 199+50E 199+50N 199+50E	5 1 2 3	45 63 61 50 86	21 23 30 12 22	343 389 655 693 535	1.8 1.5 1.3 1.0 1.0	31 32 32 44 52		2515 1572 749		161 513 335 31 40	4 2 5 3 3	nd Nd Nd Nd	3 2 2 3	14 23 19 31 17	2 3 5 5 4	2 7 7 2 4	2 2 2 2 2	101 88 117 140 131	.13 .26 .27 .29 .10	.10 .13 .10 .09 .12	7 10 9 6 7	52 44 46 65 60	.78 .79 1.31 1.32 1.30	136 290 184 287 201	.05 .11 .12 .14 .13	6 7 8	3,56 3,64 3,83 3,96 4,44	.01 .02 .02 .03 .02	.11 .14 .26 .17 .19	2222	5 50 33 10 23
199+25N 199+50E 199N 199+50E 198+75N 199+50E 198+50N 199+50E 201+50N 199+75E	344 32	52 134 80 86 36	39 25 23 16 31	847 1101 1000 335 254	2.7 2.4 1.0 1.1 .5	42 86 66 34 31	31 21 18		5.58	307 67 25 16 169	2 3 6 3 2	nd ND ND ND	3 2 3 2 3 2 3 2 3	26 39 57 35 28	7 12 10 4 3	2 2 2 2 2	2 2 2 2 2 2	95 137 143 145 70	. 33 . 43 . 32 . 26 . 38	.18 .12 .17 .11 .17	7 9 10 4 13	47 61 69 56 37	.82 1.48 1.29 1.72 .71	228 349 308 305 178	.10 .09 .11 .10 .12	9 13 8	3,53 3,89 3,89 3,74 3,62	.02 .03 .02 .04 .02	.16 .33 .25 .30 .15	2 2 2 2 2	135 10 5 75
201+25N 199+75E 201N 199+75E 200+75K 199+75E 200+50N 199+75E 200+25N 199+75E 200+25N 199+75E	2 2 3 1 4	23 72 60 68 68	20 22 20 27 22	146 309 311 467 742	.3 .5 2.5 .5 2.2	18 39 23 27 46				111 147 151 98 58	2 2 3 6	ND ND ND ND ND	2 2 2 2 2 3	15 23 20 12 18	2 2 4 5	2 2 2 3	2 2 2 2 2	73 123 84 99 237	.14 .24 .21 .12 .21	.09 .13 .10 .12 .10	6 9 10 10 6	28 56 35 41 116	.66 1.50 .79 1.08 1.64	128 187 258 210 385	.13 .12 .11 .15 .15	7 7 8	2.70 3.97 3.60 3.93 3.50	.02 .01 .02 .01 .02	.10 .18 .23 .40	2 2 2 7 7	30 25 5 5 5
199+75N 199+75E 199+25N 199+75E 199N 199+75E 199+75N 199+75E 198+50N 199+75E	3 4 9 4 6	65 69 147 91 82	22 20 38 15 22	537 591 1386 1048 1251	1.3 2.0 16.0 1.2 1.3	38 40 139 77 75	26 22 10	911		34 29 130 26 15	4 3 6 3	ND ND ND ND	3 7 4 3 3	25 45 18 49 37	4 5 11 8 7	5 N 6 N 8	2 2 2 2 2	110 141 67 190 187	.24 .48 .16 .34 .29	.11 .16 .15 .07 .11	7 5 20 7 6	62 51	1.12 1.07 .34 2.38 1.19	237 286 150 272 398	.14 .07 .06 .13 .08	8 8 6	3.51 3.33 3.78 4.57 3.37	.02 .02 .01 .02 .02	.23 .15 .21 .35 .11	2 2 2 2 2	25 5 50 5 5
STD A-1/AU 0.5	1	29	38	130	.3	36	13	1032	2.78	11	2	ND	2	æ	2	2	2	57	. 58	.10	7	73	.74	273	.08	8	2.07	. 02	.21	2	510

· ..

 \smile

FAGE # 8

 \sim

.

SAMPLE #	Xo ppe	Cu ppe	РЬ рре	In p p m	Ag ppm	Ni pp e	Co pp∎	Mn pps	Fe X	As ppa	U ppe	Au pps	Th pp=	Sr ppn	Cd ppa	Sb ppe	Bi ppe	V ppe	C4 1	P T	La ppe	Cr ppe	Mg 1	Ba ppe	Ti 1	8 pps	Al Z	Na Z	K 1	W PPN	Au I ppb
201+50N 200E 201+25N 200E 198+75N 200E 198+50N 200E 201+50N 200+25E	2 3 2 2	33 37 86 81 55	13 25 22 17 21	152 183 1092 533 188	.1 .1 1.2 1.1 .1	22 28 90 51 51	10 17 19 16 16	2138 822	4.03 4.94 4.89 4.58 5.27	99 98 29 9	2 3 7 4	nd Nd Nd Nd	2 2 4 2	22 32 60 50 24	1 2 9 5 2	2 2 2 2 2 2	2 2 2 2 2	69 73 167 161 94	.24 .30 .50 .31 .23	.13 .18 .12 .10 .16	6 10 10 6 11	32 40 76 80 57	.80 .74 1.38 1.22 1.31	114 275 296 307 143	.14 .15 .12 .14 .14	4 4 4	2.72 3.33 4.67 4.83 4.19	.03 .02 .04 .05 .02	.13 .14 .24 .13 .20	2 2 2 2 2	10 130 5 5 40
201+25N 200+25E 199+75N 200+25E 199+50N 200+25E 201+50N 200+50E 201+25N 200+50E	3 7 13 2 2	30 101 125 26 22	15 17 16 15 17	146 651 499 135 112	.4 2.1 1.0 .6 .4	23 45 50 19 20	40 11	1017	7,78 2.74	149 18 29 67 42	4 5 9 2 2	nd ND ND ND	2 2 4 2 3	20 42 30 16 19	2 7 5 1 1	2 2 2 2 2 2	2 2 2 2 2 2	67 199 202 56 46	.16 .33 .13 .15 .16	.10 .15 .35 .09 .08	8 7 7 7 6	41 96 94 29 30	.72 1.29 .98 .50 .63	150 246 355 128 125	.13 .11 .11 .12 .10	4 5 4	2.42 4.86 7.11 2.72 2.09	.03 .04 .02 .04 .03	.11 .15 .19 .08	2 2 2 2 2 2	10 5 5 10 15
201+50N 200+75E 201+25N 200+75E 201+50N 201E 201+25N 201E 201+25N 201E 201+50N 201+25E	1 1 2 3 1	30 33 41 26 41	12 17 27 14 22	143 126 183 221 98	.3 .1 1.1 .5 .7	32 38 31 30 26	16 12 15 13	817 707 2448 607 1066	4.06 3.42 2.24 3.65 3.16	58 159 79 74 128	2 2 2 3 2	nd ND ND ND	3 3 3 3	77 26 39 19 20	1 1 3 2 1	2 2 2 2 2 2	2 2 2 2 2 2	70 66 40 62 46	.10 .24 .55 .18 .35	-16 -05 -08 -10 -06	10 8 14 8 12	48 52 34 37 40	1.13 1.48 .56 .87 1.03	147 121 203 98 131	.13 .13 .05 .14 .11	3 4 4	3.34 3.33 1.98 3.70 2.25	.02 .04 .02 .02 .02	.22 .15 .17 .14 .36	2 2 2 2 2	10 15 5 25 5
201+25N 201+25E 201+50N 201+50E 201+25N 201+50E 201+25N 201+75E 201+25N 201+75E	2 1 2 2 1	56 27 27 12 26	35 21 15 13 9	149 100 109 95 73	1.2 .5 .6 .6 3.2	37 26 23 15 22	20 13 9 7 8	665	3.58 2.96 3.16 2.80 2.67	135 100 46 30 40	2 3 2 3 2	nd Nd Nd Nd	2 4 2 2 3	34 17 12 18 11	3 1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	54 47 54 52 47	.51 .19 .11 .16 .09	.07 .10 .06 .04 .05	29 11 11 7 10	43 45 48 31 36	1.21 1.04 .83 .65 .97	167 175 85 119 82	.09 .15 .11 .17 .14	2 3 4	3.13 2.59 2.31 2.09 1.92	.03 .02 .02 .02 .02	.33 .15 .18 .09 .24	2 2 2 2 2 2	20 10 10 5 5
201+50N 202E 201+25N 202E 201+50N 202+25E 201+25N 202+25E 198+75N 202+25E	2 1 2 1 2	19 48 20 23 57	13 16 19 17 14	105 120 167 179 444	.7 .5 .9 .9 .4	29 32 29 27 40	11 11 10 10 15	550	3, 38 3, 16 3, 23 3, 58 4, 86	18 47 51 39 16	2 2 2 3	nd Nd Nd Nd	2 2 2 2 2 2 2	19 16 16 19 64	1 1 1 4	2 2 2 2 2	2 2 2 2 2 2	55 50 56 77 171	.17 .22 .15 .16 .36	.11 .05 .05 .13	5 11 8 10 5	41 41 33 38 80	.90 1.17 .82 .99 1.49	129 125 137 207 452	.19 .16 .18 .19 .17	3 3 4	4.16 2.85 2.84 3.12 4.56	.05 .03 .02 .02 .05	.13 .20 .08 .11 .17	2 2 2 2 2 2	5 10 5 10 5
198+50N 202+25E 201+50N 202+50E 201+25N 202+50E 2011 202+50E 200+75N 202+50E	2 1 1 2 2	53 23 50 43	14 33 24 18 22	424 130 159 188 160	.5 2.7 .6 .8 .7	36 22 29 33 30	16 7 10 11 12	385	4.29 2.62 3.21 3.66 3.41	21 45 51 42 52	6 2 2 2 2	nd ND ND ND ND	3 4 3 3	35 13 10 28 19	5 1 1 2	2 3 2 2 2	2 2 2 2 2 2	135 42 53 84 65	.22 .11 .10 .31 .26	.10 .07 .07 .09 .09	8 7 13 12 17	51 26 35 43 39	1.26 .55 .98 1.22 1.01	283 107 94 200 147	.17 .15 .14 .13 .10	3 4 4	4.31 3.52 2.49 2.85 2.31	.03 .03 .02 .02 .02	.22 .06 .17 .22 .34	2 2 2 2 2 2	5 50 10 5 5
STD A-1/AU 0.5	1	29	38	178	. 3	33	12	972	2.76	10	2	ND	2	37	1	2	2	57	.57	.10	7	74	.74	277	.09	7	2.07	.02	.21	2	530

- --

ı.

 \boldsymbol{C}

t

ł

(

C

i

ť.

ŝ

Ę

(

(

(

ŧ.

.

ţ

t

Т,

PAGE # 🕈

Hg . SAMPLE # Сu Pb In Aq Na Co Ma Fe As U Αu Th Sr Cd Sb Bi ٧ Ca P Cr Hn. L.a 8a Ti B AL Na x) Aut ppe ppe 904 ppe pp e ppe ppe ppe I ppe ppe ppa рре ppa DOB **DDE** 008 DSE I X 004 00e 1 1 I ppe 3DE Z 7 000 ppb 200+50N 202+50E 31 31 34 2574 4.49 97 2 NED 58 118 -3 33 .12 48 27 .58 ٩. 1.0 я ٦ - 2 2 .11 118 .06 4 1.35 .01 .27 45 200+25N 202+50E 2 48 42 444 2.9 31 13 1410 3.62 2 ND 2 13 91 43 16 2 2 .11 .07 10 .75 140 .07 4 4 2.65 .03 .17 Z -5 199+75N 202+50E 111 31 64 E 59 22 919 5.02 19 5 ND 3 30 140 4 2.0 5 2 2 .23 .11 10 61 1.42 264 .09 4 4.50 .03 .34 2 5 199+50H 202+50E 75 24 728 1.7 29 17 1358 4.68 5 4 ND 3 38 2 172 .35 .08 54 2.11 1 - 5 - 7 6 448 . 19 4 4.49 .04 .49 2 5 199+25N 202+50E 4 -74 29 935 2.9 57 15 941 4.63 20 2 ND 2 27 5 2 2 136 .20 81 1.32 158 .03 .11 10 .08 5 4.40 . 09 7 - 5 199N 202+50E 5 68 20 727 .8 50 14 695 5.10 32 2 ND 3 27 3 2 186 .27 82 1.49 4 .13 7 188 . 12 5 3.48 .03 2 .14 5 198+75H 202+50E 2 71 14 342 41 15 655 4.72 9 ND 2 38 1.2 5 2 2 156 .24 65 1.40 . .13 6 340 .14 4 4.52 .04 . 19 2 5 198+50N 202+50E 2 50 19 474 37 632 4.20 ND 3 30 .03 1.3 16 16 2 5 2 2 130 .21 .14 8 57 1.13 293 .15 4 4,18 . 18 2 -5 201+50N 202+75E 1 19 16 101 Z. 1 29 10 483 2.97 Z3 2 ND 3 13 2 52 .17 1 2 .03 15 39 1.35 146 .17 3 3.35 .02 2 .13 - 5 201+25N 202+75E 3 27 59 17 24 176 3.7 9 457 3.36 2 ND 4 17 50 .22 2 2 2 .04 11 31 .74 148 4 2.84 .02 .15 .13 2 5 201N 202+75E - 34 21 170 .1 37 11 930 3.11 42 NÐ 19 1 7 4 ŧ 4 2 54 .26 .07 13 39 . 96 185 .13 5 2.93 .02 .18 2 -5 200+75N 202+75E 1 22 20 130 1.9 22 12 1507 3.29 24 2 ND 2 23 2 2 2 51 .35 .13 11 28 .57 193 4 2.34 2 .10 .02 .16 5 200+50N 202+75E 3 56 51 228 47 17 1133 4.36 112 2 ND 5 74 .6 26 7 ٦ 2 .41 .10 21 50 1.25 -145 .11 4 2.45 .02 .47 25 200+25N 202+75E 4 97 45 567 50 20 1227 4.61 ND 23 2.4 66 2 4 3 2 2 125 .15 14 63 1.33 .21 173 . 12 4 4,90 .03 .35 2 15 199+75N 202+75E 4 84 74 565 40 17 1163 4.97 17 ND 3 43 2.6 6 5 2 2 145 . 32 .15 10 64 1.38 262 2 .13 6 4.80 .04 . 47 5 199+50N 202+75E 28 28 298 1.5 18 11 1212 3.24 24 1 4 3 ХĒ 2 -5 3 2 83 .72 5 32 .72 254 5 2.48 2 .14 .12 .05 .22 -5 199+25N 202+75E . 41 38 355 1.9 24 797 4.05 2 2 ND 2 28 -2 2 8 2 144 . 20 .09 6 59 1.24 177 .12 4 2.93 .04 .22 2 - 5 199N 202+75E 6 164 128 748 50.2 80 27 1481 5.25 ND 33 23 70 2 2 14 2 128 .32 .13 17 70 1.17 227 .08 .03 6 4.08 .13 2 50 58 34 198+75H 202+75E 2 14 379 17 1029 4.44 ND 35 1.1 4 3 3 5 2 2 154 .25 .10 6 74 1.28 300 .15 5 4.11 .05 .17 2 5 198+50N 202+75E 38 17 23 1 133 1.1 14 666 3.79 4 2 ND 2 31 2 2 136 .23 .10 7 54 1.17 287 5 3.95 4 . 18 .04 .18 2 5 201+50N 203E 1 33 13 106 .3 28 10 343 3.64 30 2 ND 13 -2 2 64 .13 .04 13 42 1.21 128 ,17 5 2.79 2 5 .02 .15 201+25N 203E 2 43 71 20 118 .4 34 12 549 3.67 2 ND 4 13 1 2 2 66 .14 .03 16 43 1.11 121 .15 5 3.01 . 02 .15 2 5 201N 203E 3 31 22 132 .6 72 11 431 3.17 21 2 ND 5 13 1 2 2 59 .15 .05 14 38 .98 112 .14 3 2.59 .02 .17 2 10 200+75N 203E 1 21 19 172 .9 25 10 911 3.15 28 2 ND 3 16 2 5 2 53 .20 .07 13 33 .79 171 5 2.42 .03 .17 2 5 .11 200+50N 203E 2 51 23 381 1.6 33 13 895 4.03 31 2 ND 3 19 2 2 2 93 .17 .11 12 46 1.22 190 .12 5 2.97 . 03 .31 2 - 5 200+25N 203E 3 75 46 Z41 5.6 48 19 887 4.61 132 Mī 27 .29 34 45 1.23 . 12 .43 40 2 - 6 -3 - 2 2 74 . 69 125 4 2.42 .02 2 199+75N 203E 33 3 36 36 475 1.8 15 1134 4.65 13 2 ND 2 47 4 2 2 166 .33 .19 7 66 1.46 446 .13 4 3.87 .04 .41 2 20 199+50N 203E 3 59 43 123 1.7 24 19 2118 4.22 9 2 ND 2 34 5 2 2 164 .22 .08 6 57 1.14 317 .11 4 3.03 .04 .25 2 5 199+25N 203E 4 80 34 500 1.6 39 20 1130 4.74 19 5 ND. 2 38 5 3 2 151 .24 . 11 9 63 1.39 261 4 4.46 .03 .34 10 .14 2 199N 203E 5 42 31 328 2.3 24 9 488 4.67 43 3 ND 2 26 3 ۲ 2 172 .15 .12 7 85 1.06 182 .10 5 2.97 .02 .09 2 5 198+75N 203E 6 105 18 297 29 16 624 4.72 2 -5 ND 2 36 4 2 184 .20 90 1.29 2.6 2 . 18 6 261 .10 4 3.47 .04 .23 2 -5 198+50N 203E 2 29 18 356 26 11 470 4.18 4 ND 3 24 2 126 .17 .5 6 ٦ 2 .12 6 54 1.02 205 . 16 5 4.27 .04 .10 2 5 200N 199+25E 1 28 22 642 30 13 933 4.73 20 2 ND 3 25 107 .9 4 2 .26 .10 7 48 1.11 222 . 18 5 3.79 .02 .22 2 -5 200N 199+50E 3 50 32 477 32 16 1205 4.78 NÐ 2 1.5 16 3 26 5 2 109 .22 8 43 1.16 6 2.92 . 22 - 2 .11 240 .13 . 02 2 5 200N 199+75E 23 2 28 26 457 .5 30 13 950 4.77 4 NŰ 3 27 4 2 2 115 .27 .09 7 46 1.17 249 .21 5 3.41 . 02 .25 2 5 200N 202+50E 3 -51 48 412 2.4 32 12 964 4.56 8 3 NÖ 2 30 2 2 137 .25 70 1.17 5 . 07 7 264 . 10 6 3.46 . 02 . 25 2 200N 202+75E 4 93 60 545 2.1 43 17 1092 5.07 9 NÐ 3 6 21 5 2 2 174 .16 .09 12 81 1.50 229 6 4.63 .03 . 37 .13 2 - 5 200N 203E 2 55 42 ND 2 68 621 3.8 14 1444 4.35 69 2 40 11 2 2 139 . 69 .11 13 67 1.31 389 . 09 5 2.94 .03 . 32 2 20 STD A-1/AU 0.5 1 30 39 181 .3 36 13 1007 2.79 11 2 NÐ 2 36 2 2 59 . 50 8 15 .17 .20

1

· · ·

. 10

277 .09 7 2.06

.02

2 490

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-1992 PAGE # 10

.

ί

(

. .

~~~

.

1

(

1

(

PAGE # 11

| SAMPLE #                                                      | Ла<br>рра                  | Cu<br>pp=                  | Pb<br>pps                  | Ze<br>ppe                       | Ag<br>ppa                  | Ni<br>ppe                  | Co<br>pp≇                  | nn<br>pp∎                          | Fe                                   | As<br>ppa                     | U<br>pp#                   | Ац<br>рра                  | Th<br>pps                  | Sr<br>ppn                      | Cd<br>ppe             | Sb.<br>ppe                 | Bi<br>ppe                       | V<br>ppm                          | Ca<br>X                          | P<br>X                          | La<br>ppe                  | Cr<br>ppe                              | Hg<br>T                              | Ba<br>ppe                       | Ti<br>Z                              | B<br>ppa              | Ai<br>I                              | Ha<br>Z                         | X<br>Z                          | N<br>PPR                   | Au s<br>ppb              |
|---------------------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|--------------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|--------------------------------|-----------------------|----------------------------|---------------------------------|-----------------------------------|----------------------------------|---------------------------------|----------------------------|----------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|
| LNS-34164<br>LNS-34169<br>USS-33090<br>USS-33091<br>USS-33092 | 53322                      | 27<br>59<br>40<br>38<br>34 | 16<br>32<br>11<br>18<br>17 | 84<br>297<br>129<br>104<br>173  | .2<br>5.2<br>.2<br>.4      | 34<br>29<br>23<br>27<br>24 | 9<br>11<br>11<br>8<br>7    | 525<br>864<br>682<br>743<br>593    | 2.96<br>4.04<br>3.51<br>2.58<br>2.95 | 8<br>115<br>10<br>11<br>12    | 7<br>2<br>2<br>2<br>2<br>2 | ND<br>XD<br>XD<br>XD       | 4<br>3<br>2<br>2<br>2      | 21<br>44<br>26<br>71<br>27     | 1<br>6<br>2<br>1<br>2 | 2<br>4<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2      | 51<br>86<br>66<br>37<br>58        | .35<br>.63<br>.40<br>.40<br>.43  | .04<br>.10<br>.07<br>.10<br>.09 | 16<br>15<br>9<br>11<br>9   | 40<br>42<br>24<br>29<br>32             | .97<br>1.10<br>1.18<br>1.05<br>1.20  | 122<br>170<br>121<br>83<br>92   | .12<br>.07<br>.07<br>.05             |                       |                                      | .02<br>.04<br>.03<br>.02<br>.03 | .39<br>.35<br>.16<br>.13<br>.15 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>55<br>5<br>5<br>5   |
| uss-33093<br>uss-33094<br>uss-33095<br>uss-33095<br>uss-33097 | 1<br>1<br>1                | 17<br>5<br>4<br>7<br>6     | 6<br>7<br>10<br>10         | 69<br>96<br>101<br>111<br>103   | .1<br>.2<br>.1<br>.2       | 12<br>4<br>3<br>5          | 9<br>6<br>4<br>5<br>4      | 493<br>658<br>664<br>630<br>643    | 3.10<br>3.51<br>2.71<br>2.99<br>2.92 | 5<br>50<br>21<br>27<br>27     | 2<br>16<br>41<br>11<br>28  | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>9<br>16          | 29<br>45<br>38<br>46<br>47     | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 63<br>76<br>45<br>60<br>52        | .40<br>.83<br>.58<br>.55<br>.57  | .09<br>.12<br>.07<br>.08<br>.09 | 8<br>14<br>21<br>25<br>50  | 16<br>22<br>22<br>19<br>17             | .73<br>1.01<br>.67<br>.74<br>.71     | 108<br>150<br>115<br>102<br>100 | .07<br>.27<br>.18<br>.19<br>.17      | 2<br>2<br>2           | 1,27<br>1,84<br>1,42<br>1,73<br>1,65 | .04<br>.03<br>.03<br>.04<br>.04 | .17<br>.33<br>.23<br>.25<br>.24 | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5    |
| USS-33098<br>RK5-32081<br>RK5-32082<br>RK5-32083<br>RK5-32084 | 1<br>2<br>2<br>1           | 4<br>33<br>1B<br>20<br>16  | 17<br>6<br>7<br>10<br>7    | 87<br>82<br>105<br>111<br>83    | .1<br>.1<br>.1<br>.1       | 3<br>72<br>54<br>58<br>43  | 4<br>12<br>10<br>11<br>9   | 670<br>538<br>412<br>461<br>390    | 2.79<br>3.17<br>2.55<br>2.68<br>2.53 | 16<br>7<br>8<br>8<br>6        | 30<br>2<br>3<br>2<br>2     | nd<br>Nd<br>Nd<br>Nd<br>Nd | 28<br>4<br>2<br>2<br>3     | 45<br>107<br>127<br>117<br>112 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 39<br>56<br>59<br>53              | .54<br>.69<br>.82<br>.78<br>.85  | .09<br>.15<br>.22<br>.20<br>.23 | 71<br>18<br>21<br>20<br>24 | 13<br>103<br>71<br>78<br>67            | .64<br>1.80<br>1.34<br>1.43<br>1.09  | 96<br>476<br>384<br>411<br>276  | . 15<br>. 23<br>. 20<br>. 20<br>. 15 | 2<br>2<br>4           | 1.49<br>2.45<br>1.74<br>1.84<br>1.42 | .03<br>.06<br>.06               | .24<br>.62<br>.29<br>.32<br>.24 | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5         |
| RKS-32085<br>RKS-32086<br>RKS-32087<br>RKS-32088<br>RKS-32089 | t<br>2<br>2<br>2<br>1      | 36<br>39<br>31<br>41<br>41 | 9<br>9<br>8<br>9<br>14     | 102<br>103<br>96<br>114<br>114  | .2<br>.4<br>.2<br>.3<br>.1 | 16<br>44<br>14<br>40<br>23 | 10<br>11<br>10<br>11<br>10 | 603<br>531<br>728<br>557<br>624    | 3.61<br>3.24<br>3.78<br>3.29<br>3.79 | 25<br>14<br>25<br>16<br>36    | 4<br>2<br>3<br>2           | nd<br>XD<br>ND<br>ND       | 4<br>3<br>2<br>2<br>4      | 39<br>56<br>45<br>47<br>43     | 1<br>2<br>2<br>2<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 96<br>88<br>108<br>95<br>96       | .63<br>.71<br>.72<br>.63<br>.61  | .14<br>.14<br>.13<br>.12<br>.13 | 16<br>12<br>9<br>9<br>16   | 55<br>70<br>13<br>15<br>15<br>15<br>15 | 1.08<br>1.34<br>1.08<br>1.35<br>1.16 | 163<br>189<br>212<br>207<br>166 | .16<br>.14<br>.17<br>.17<br>.15      | 2<br>3<br>2           | 2.07<br>1.97<br>2.29<br>2.10<br>2.10 | .04<br>.05<br>.04               | ,44<br>,34<br>,43<br>,57<br>,41 | 4<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5    |
| RKS-32090<br>RKS-32091<br>RKS-32092<br>RKS-32093<br>RKS-32094 | 2<br>2<br>2<br>2<br>2<br>2 | 45<br>47<br>40<br>39<br>24 | 21<br>8<br>5<br>8<br>23    | 113<br>137<br>120<br>117<br>135 | .3<br>.3<br>.4<br>.2<br>.6 | 30<br>30<br>35<br>30<br>21 | 10<br>10<br>11<br>9<br>8   | 642<br>406<br>563<br>499<br>1107   | 3.10<br>3.20<br>3.12                 | 16<br>9<br>16<br>13<br>59     | 3<br>3<br>2<br>2<br>2      | nd<br>Nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2<br>2 | 54<br>50<br>47<br>47<br>43     | 3<br>1<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2           | 99<br>108<br>90<br>91<br>30       | 1.30<br>.76<br>.63<br>.61<br>.43 | .13<br>.11<br>.11<br>.12<br>.08 | 6<br>9<br>8<br>12          | 63<br>61<br>56<br>50<br>18             | 1.13<br>1.29<br>1.21<br>1.12<br>.38  | 218<br>247<br>175<br>167<br>70  | . 12<br>. 15<br>. 14<br>. 14<br>. 02 | 2<br>2<br>3           | 1.99<br>2.26<br>1.95<br>1.90<br>1.18 | .03<br>.04<br>.04<br>.05<br>.02 | .34<br>.37<br>.33<br>.32<br>.15 | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5    |
| RKS-32095<br>RKS-32096<br>RKS-32097<br>RKS-32098<br>RKS-32099 | 2<br>4<br>3<br>4<br>5      | 24<br>49<br>19<br>35<br>34 | 26<br>27<br>30<br>24<br>33 | 114<br>162<br>133<br>164<br>167 | .3<br>.7<br>.3<br>.9       | 17<br>28<br>14<br>23<br>22 | 7<br>12<br>7<br>10<br>10   | 914<br>1010<br>917<br>1027<br>1399 | 4.13                                 | 87<br>104<br>95<br>167<br>122 | 2<br>2<br>2<br>2<br>2<br>2 | 10<br>10<br>10<br>10<br>10 | 2<br>2<br>2<br>2<br>2<br>2 | 51<br>42<br>42<br>57<br>44     | 1<br>2<br>1<br>1<br>2 | Z<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 23<br>25<br>16<br>17<br><b>25</b> | .64<br>.49<br>.42<br>.46<br>.41  | .10<br>.10<br>.07<br>.09<br>.10 | 9<br>10<br>15<br>17<br>17  | 14<br>12<br>9<br>12<br>15              | . 35<br>. 40<br>. 22<br>. 24<br>. 32 | 53<br>66<br>63<br>60<br>79      | .02<br>.01<br>.01<br>.01<br>.01      | 4<br>4<br>3<br>4<br>4 | 1.00<br>.74<br>.84                   | .02<br>.01<br>.01<br>.01<br>.02 | .14<br>.12<br>.09<br>.12<br>.14 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>25<br>25<br>10 |
| RK5-32100<br>RK5-32101<br>RK5-32102<br>JA5-30070<br>JAS-30071 | 3<br>1<br>2<br>2<br>1      | 53<br>8<br>20<br>20<br>23  | 22<br>28<br>25<br>16<br>8  | 144<br>88<br>115<br>85<br>53    | .3<br>.2<br>.3<br>.2<br>.1 | 20<br>7<br>13<br>34<br>62  | 10<br>5<br>7<br>8<br>10    | 822<br>1065<br>760<br>600<br>371   | 3.86<br>2.50<br>2.76<br>2.22<br>2.49 | 74<br>94<br>89<br>4<br>10     | 2<br>2<br>2<br>2<br>2<br>2 | nd<br>Kd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>3           | 33<br>36<br>35<br>88<br>78     | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 22<br>16<br>19<br>47<br>49        | .31<br>.37<br>.34<br>.62<br>.54  | .08<br>.07<br>.08<br>.09<br>.13 | 12<br>18<br>14<br>15<br>16 | 11<br>9<br>11<br>51<br>96              | .37<br>.33<br>.35<br>1.04<br>1.45    | 56<br>69<br>67<br>234<br>344    | .01<br>.02<br>.01<br>.12<br>.17      | 4                     | 1.01<br>1.00<br>1.81                 | .01<br>.02<br>.02<br>.04<br>.05 | .14<br>.20<br>.17<br>.22<br>.47 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>35<br>5<br>5<br>5   |
| JAS-30072<br>JAS-30073<br>JAS-30074<br>STD A-1/AU 0.5         | 1<br>2<br>1<br>1           | 29<br>17<br>19<br>30       | 5<br>9<br>9<br>38          | 69<br>97<br>55<br>178           | .1<br>.2<br>.1<br>.3       | 62<br>53<br>54<br>36       | 10<br>10<br>9<br>12        | 442<br>401<br>382<br>1084          | 2.42<br>2.40                         | 9<br>11<br>6<br>10            | 2<br>2<br>3<br>2           | ND<br>ND<br>ND<br>ND       | 3<br>2<br>3<br>2           | 82<br>123<br>75<br>36          | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2           | 2<br>2<br>2<br>2<br>2           | 57<br>53<br>49<br>58              | .53<br>.82<br>.67<br>.59         | .12<br>.22<br>.15<br>.10        | 14<br>22<br>18<br>8        | 68)<br>71<br>71<br>75                  | 1.54<br>1.31<br>1.34<br>.75          | 383<br>381<br>367<br>283        | .20<br>.19<br>.18<br>.09             | 2<br>2                | 2.07<br>1.66<br>1.58<br>2.06         | .05<br>.07<br>.06<br>.02        | .56<br>.30<br>.37<br>.20        | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>495            |

\* \*\*

 $\sim$ 

| SAMPLE #                                                                   | No<br>pp∎                  | Cu<br>pps                  | РЬ<br>рре                  | In<br>ppe                       | Ag<br>ppm                  | Ni<br>ppe                  | Co<br>ppe                | Mn<br>ppe                       | Fe<br>Z                                   | As<br>pps                 | U<br>pp●                    | Au<br>ppe            | Th<br>ppa                  | Sr<br>ppa                  | Cd<br>ppa             | Sb<br>ppm                  | 9i<br>pp∎                  | V<br>ppe                      | Ca<br>1                          | P<br>1                          | La<br>ppn                  | Cr<br>ppe                  | Hg<br>I                              | Ba<br>ppn                       | Ti<br>Z                         | B<br>ppa    | Al<br>I                              | Na<br>X                         | K<br>Z                          | W<br>pp <del>a</del>            | Au I<br>ppb                 |
|----------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|--------------------------|---------------------------------|-------------------------------------------|---------------------------|-----------------------------|----------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|-------------------------------|----------------------------------|---------------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------|
| JAS-30075<br>JAS-30076<br>JAS-30077<br>JAS-30078<br>JAS-30078<br>JAS-30079 | 3<br>3<br>2<br>2           | 37<br>47<br>38<br>41<br>32 | 12<br>10<br>22<br>14<br>11 | 100<br>135<br>109<br>131<br>90  | .3<br>.4<br>.1<br>.2<br>.2 | 16<br>63<br>25<br>29<br>17 | 9<br>14<br>8<br>7<br>7   | 559<br>565<br>672<br>413<br>431 | 3, 54<br>3, 39<br>3, 21<br>2, 99<br>3, 22 | 25<br>12<br>8<br>14<br>22 | 4<br>4<br>2<br>3            | ND<br>ND<br>ND<br>ND | 3<br>2<br>2<br>2<br>2      | 46<br>67<br>49<br>46<br>37 | 1<br>1<br>2<br>1<br>1 | 2<br>2<br>3<br>2<br>3      | 2<br>2<br>2<br>2<br>2      | 98<br>94<br>101<br>102<br>96  | .53<br>.76<br>.85<br>.53<br>.47  | .12<br>.14<br>.11<br>.10<br>.10 | 12<br>12<br>8<br>9         | 38<br>85<br>59<br>65<br>42 | .98<br>1.65<br>1.01<br>1.17<br>.99   | 118<br>233<br>210<br>234<br>173 | .13<br>.17<br>.12<br>.16<br>.15 | 4<br>5      | 1.91<br>2.31<br>1.69<br>2.12<br>1.84 | .05<br>.03<br>.03               | .35<br>.37<br>.35<br>.43<br>.40 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>10<br>5           |
| JAS-30080<br>JAS-30081<br>JAS-30083<br>JAS-30084                           | 2<br>2<br>2<br>2<br>2<br>2 | 43<br>56<br>47<br>43<br>27 | 9<br>12<br>13<br>7<br>12   | 115<br>129<br>128<br>126<br>113 | .5<br>.2<br>.5<br>.3<br>.1 | 43<br>25<br>38<br>33<br>22 | 11<br>10<br>11<br>9<br>7 | 537<br>527<br>565<br>511<br>581 | 3,28<br>3,71<br>3,45<br>3,06<br>3,38      | 12<br>41<br>16<br>8<br>15 | 2<br>2<br>2<br>2<br>2<br>2  | ND<br>ND<br>ND<br>ND | 3<br>2<br>2<br>2<br>2      | 54<br>36<br>53<br>48<br>38 | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>3           | 2<br>2<br>2<br>2<br>2      | 92<br>115<br>104<br>89<br>102 | .68<br>.52<br>.68<br>.65<br>.59  | .13<br>.10<br>.13<br>.11<br>.08 | 13<br>7<br>10<br>9<br>8    | 66<br>52<br>65<br>53<br>55 | 1.34<br>1.14<br>1.35<br>1.16<br>1.05 | 195<br>235<br>211<br>139<br>215 | .15<br>.16<br>.16<br>.14<br>.17 | 5<br>5<br>4 | 2.06<br>2.33<br>2.29<br>1.93<br>1.96 | .04<br>.03<br>.04<br>.05<br>.03 | .37<br>.46<br>.42<br>.33<br>.42 | 6<br>2<br>2<br>2<br>3           | 5<br>5<br>10<br>5           |
| JAS-30085<br>JAS-30084<br>JAS-30087<br>JAS-30088<br>JAS-30089              | 2<br>1<br>1<br>4<br>1      | 43<br>27<br>27<br>44<br>56 | 8<br>14<br>13<br>22<br>22  | 115<br>155<br>154<br>256<br>499 | .3<br>.3<br>.1<br>.2<br>.7 | 24<br>16<br>12<br>26<br>24 | 8<br>9<br>8<br>11<br>14  | 399<br>584<br>546<br>724<br>670 | 2,71<br>3,67<br>3,71<br>4,32<br>4,09      | 13<br>8<br>12<br>18<br>36 | 2<br>2<br>16<br>24          | ND<br>ND<br>ND<br>ND | 2<br>4<br>4<br>3<br>2      | 46<br>53<br>55<br>69<br>?1 | 1<br>1<br>5<br>5      | 2<br>2<br>2<br>3<br>2      | 2<br>2<br>2<br>2<br>7      | 82<br>79<br>91<br>97<br>146   | .57<br>.81<br>.85<br>.95<br>1.10 | .11<br>.18<br>.20<br>.16<br>.14 | 8<br>20<br>20<br>20<br>18  | 42<br>28<br>26<br>41<br>56 | .99<br>1.30<br>1.18<br>1.12<br>1.42  | 121<br>204<br>204<br>241<br>308 | .11<br>.18<br>.18<br>.16<br>.15 | 556         | 1.65<br>2.21<br>2.19<br>2.16<br>3.07 | .05<br>.05<br>.03<br>.08        | .24<br>.45<br>.44<br>.43<br>.45 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 10<br>5<br>15<br>5<br>5     |
| JAS-30090<br>JAS-30091<br>JAS-30092<br>JAS-30093<br>JAS-30094              | 1<br>2<br>2<br>2           | 14<br>20<br>29<br>30<br>31 | 16<br>18<br>9<br>10<br>9   | 98<br>115<br>160<br>177<br>150  | .1<br>.4<br>.2<br>.2<br>.2 | 7<br>8<br>16<br>17<br>13   | 0<br>7<br>9<br>9         | 602<br>762<br>530<br>571<br>457 | 3.86<br>4.31<br>3.37<br>3.82<br>3.82      | 16<br>22<br>9<br>11<br>13 | 3<br>21<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND | 4<br>3<br>3<br>4<br>2      | 63<br>73<br>61<br>90<br>35 | 1<br>1<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 72<br>82<br>87<br>101<br>110  | .95<br>1.13<br>.80<br>.98<br>.69 | .27<br>.31<br>.15<br>.17<br>.11 | 27<br>24<br>16<br>16<br>14 | 17<br>19<br>33<br>37<br>37 | 1.25<br>1.33<br>1.10<br>1.23<br>1.16 | 231<br>232<br>167<br>198<br>178 | .19<br>.19<br>.16<br>.18<br>.19 | 6<br>4<br>5 | 2.39<br>2.80<br>2.14<br>2.56<br>2.18 | .04<br>.04<br>.04<br>.05<br>.03 | .54<br>.56<br>.36<br>.40<br>.46 | 2<br>2<br>2<br>2<br>2<br>2      | 10<br>5<br>5<br>5           |
| JAS-30095<br>JAS-30092<br>JAS-30097<br>JAS-30098<br>JAS-30099              | 1<br>2<br>1<br>1<br>2      | 23<br>23<br>23<br>23       | 13<br>11<br>9<br>9<br>15   | 106<br>177<br>139<br>151<br>170 | .1<br>.2<br>.2<br>.2       | 10<br>17<br>10<br>15<br>18 | 8<br>9<br>9<br>9         | 517<br>595<br>550<br>591<br>721 | 3,54<br>3,65<br>3,86<br>3,87<br>3,77      | 6<br>12<br>10<br>15<br>11 | 2<br>2<br>2<br>2<br>2<br>2  | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2 | 50<br>53<br>48<br>35<br>49 | 2<br>2<br>3<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>4           | 76<br>100<br>84<br>99<br>109  | .78<br>.74<br>.84<br>.59<br>.63  | .21<br>.15<br>.18<br>.14<br>.11 | 18<br>14<br>17<br>15<br>13 | 24<br>39<br>28<br>33<br>41 | 1.16<br>1.17<br>1.22<br>1.14<br>1.21 | 252<br>204<br>263<br>240<br>252 | .19<br>.17<br>.21<br>.20<br>.16 | 5<br>5<br>4 | 2.22<br>2.25<br>2.25<br>2.23<br>2.34 | .04<br>.04<br>.04<br>.03<br>.04 | .51<br>.38<br>.50<br>.57<br>.43 | 2<br>2<br>2<br>2<br>2<br>2      | 20<br>5<br>5<br>5<br>5<br>5 |
| STD A-1                                                                    | 1                          | 30                         | 39                         | 179                             | .3                         | 36                         | 12                       | 1018                            | 2,80                                      | 10                        | 2                           | ND                   | 2                          | 37                         | 1                     | 2                          | 2                          | 57                            | .57                              | .10                             | 8                          | 74                         | .75                                  | 274                             | .09                             | 8           | 2.06                                 | .02                             | . 20                            | 2                               | 220                         |

**~** ...

PAGE # 12

 $\sim$ 

, ,

.

 $\sim$ 

---

,

| 1                                                             |                       |                            |                            |                                 |                                |                            |                            |                                  | 0.014                                     | ~ ~                         |                            |                            |                              | 1 100                      |                       |                                 | 2.01-01-              | Car                           |                                      | +CC                                    | <del>1</del> 0                 | - I -                      | , , <del>,</del> ,              |                               |                                 |              |                                      |                                 |                                 | 17                              | 101                            | <del>14</del> |
|---------------------------------------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|--------------------------------|----------------------------|----------------------------|----------------------------------|-------------------------------------------|-----------------------------|----------------------------|----------------------------|------------------------------|----------------------------|-----------------------|---------------------------------|-----------------------|-------------------------------|--------------------------------------|----------------------------------------|--------------------------------|----------------------------|---------------------------------|-------------------------------|---------------------------------|--------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------|
| SAMPLE + (Jou Con                                             | Мо<br>ррв             | Cu<br>ppe                  | Pb<br>ppm                  | Zn<br>pp∎                       | Ag<br>pp∎                      | Ni<br>ppm                  | Со<br>рре                  | Mn<br>ppm                        | Fe<br>I                                   | As<br>ppe                   | U<br>pp=                   | Au<br>ppa                  | Th<br>ppa                    | Sr<br>ppa                  | Cd<br>ppm             | Sb<br>pp∎                       | Bi<br>pp⊪             | V<br>ppn                      | Ca<br>X                              | P<br>X                                 | La<br>ppe                      | Cr<br>p <b>pa</b>          | Ho<br>I                         | Ba<br>pp#                     | Ti<br>Z                         | Β<br>ρpe     | A)<br>I                              | Na<br>I                         | ¥<br>7                          | W<br>ppe                        | Aut<br>pob                     |               |
| LMP-34155<br>LMP-34156<br>LMP-34157<br>LMP-34160<br>KSP-36066 | 233                   | 33<br>43<br>53<br>36<br>12 | 23<br>24<br>21<br>50<br>14 | 117<br>107<br>120<br>67<br>82   | .7<br>1.3<br>1.2<br>.5<br>.2   | 30<br>34<br>35<br>24<br>42 | 14<br>30<br>29<br>37<br>7  |                                  | 5.09<br>11.24<br>10.95<br>8.89<br>2.45    | 72<br>97<br>113<br>71<br>87 | 2<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 3<br>8<br>7<br>8<br>2        | 31<br>38<br>44<br>52<br>30 | 1<br>1<br>1<br>1<br>1 | 3<br>7<br>11<br>2<br>5          | 3557<br>2             | 69<br>174<br>174<br>141<br>33 | . 48<br>. 60<br>. 69<br>. 81<br>. 38 | .16<br>.19<br>.21<br>.15<br>.10        | 20<br>35<br>41<br>41<br>14     | 34<br>41<br>58<br>34<br>42 | .78<br>.68<br>.70<br>.64<br>.96 | 62<br>82<br>87<br>58<br>112   | .04<br>.06<br>.07<br>.12<br>.06 | 11<br>10     | 1.16<br>1.12<br>1.15<br>1.20<br>1.14 | .02<br>.03<br>.04<br>.05<br>.02 | .16<br>.15<br>.17<br>.16<br>.22 | 2<br>2<br>2<br>2<br>2           | 10<br>90<br>25<br>60<br>5      |               |
| KSP-36068<br>KSP-36069<br>KSP-36070<br>KSP-36071<br>KSP-36096 | 2 2 3 2 1             | 29<br>40<br>50<br>44<br>21 | 20<br>23<br>46<br>34<br>9  | 100<br>124<br>177<br>152<br>58  | .5<br>1.1<br>2.6<br>1.5<br>1.6 | 37<br>37<br>45<br>39<br>27 | 10<br>11<br>17<br>13<br>8  | 527<br>674<br>792<br>727<br>408  | 3, 52<br>3, 98<br>7, 45<br>5, 06<br>2, 90 | 98<br>62<br>134<br>90<br>33 | 2<br>2<br>4<br>2<br>2      | ND<br>ND<br>ND<br>ND       | J<br>2<br>2<br>3<br>2        | 35<br>41<br>40<br>33<br>65 | 1<br>1<br>1<br>1      | 4<br>6<br>17<br>9<br>3          | 3<br>3<br>4<br>2      | 24<br>31<br>38<br>33<br>69    | .43<br>.68<br>.54<br>.49<br>1.02     | .14<br>.14<br>.14<br>.17<br>.17        | 22<br>17<br>16<br>18<br>19     | 23<br>32<br>29<br>29<br>96 | .56<br>.79<br>.84<br>.77<br>.82 | 94<br>109<br>226<br>112<br>88 | .02<br>.02<br>.03<br>.02<br>.12 | 10           | .84<br>1.03<br>1.23<br>1.06<br>1.06  | .02<br>.01<br>.03<br>.01<br>.10 | .18<br>.18<br>.23<br>.16<br>.18 | 2<br>2<br>2<br>48               | 5<br>5<br>15<br>25<br>1680     |               |
| KSP-36097<br>JAP-30056<br>JAP-30057<br>JAP-30056<br>JAP-30060 | 2<br>4<br>2<br>8<br>6 | 32<br>53<br>33<br>57<br>52 | 7<br>54<br>14<br>28<br>19  | 76<br>395<br>149<br>198<br>214  | .4<br>10.9<br>.6<br>3.5<br>.8  | 25<br>33<br>20<br>53<br>40 | 8<br>11<br>9<br>32<br>26   | 436<br>467                       | 3.11<br>5.61<br>4.10<br>13.72<br>10.70    | 20<br>95<br>72<br>48<br>37  | 5<br>2<br>2<br>4<br>3      | ND<br>ND<br>ND<br>ND<br>ND | 5<br>5<br>4<br>5             | 49<br>45<br>37<br>28<br>65 | L<br>5<br>2<br>1<br>1 | 2<br>2<br>4<br>2                | 2<br>2<br>2<br>2<br>3 | 78<br>103<br>82<br>118<br>126 | .85<br>.58<br>.64<br>.42<br>.96      | .14<br>.13<br>.16<br>.11<br>.20        | 20<br>24<br>29<br>21<br>32     | 54<br>56<br>40<br>27<br>63 | .89<br>.95<br>.81<br>.64<br>.72 | 108<br>193<br>99<br>85<br>105 | .13<br>.10<br>.12<br>.08<br>.13 | 8<br>8<br>9  | 1.36<br>1.90<br>1.61<br>1.26<br>1.60 | .08<br>.07<br>.05<br>.04<br>.08 | .25<br>.35<br>.25<br>.14<br>.20 | 46<br>2 3<br>2 2                | 115<br>10<br>5<br>640<br>5     |               |
| JAP-30061<br>JAP-30062<br>RKP-32032<br>RKP-32033<br>RKP-32034 | 2<br>8<br>2<br>2<br>2 | 19<br>54<br>40<br>38<br>38 | 12<br>25<br>24<br>24<br>25 | 77<br>102<br>137<br>135<br>140  | _1<br>1,6<br>_B<br>1.0<br>_7   | 27<br>37<br>34<br>34<br>33 | 18<br>64<br>12<br>11<br>11 | 1478<br>803<br>740<br>686<br>705 | 7.11<br>21.17<br>4.64<br>4.19<br>4.57     | 8<br>38<br>75<br>74<br>74   | 2<br>3<br>2<br>2<br>2      | ND<br>ND<br>ND<br>ND       | 4<br>7<br>3<br>2<br>3        | 30<br>46<br>36<br>33<br>32 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>4<br>5<br>3           | 322222                | 78<br>244<br>41<br>40<br>45   | . 48<br>. 70<br>. 50<br>. 49<br>. 45 | .07<br>.12<br>.15<br>.15<br>.16<br>.13 | 14<br>40<br>17<br>17<br>17     | 36<br>54<br>26<br>32<br>27 | .58<br>.38<br>.84<br>.81<br>.96 | 47<br>54<br>122<br>102<br>119 | .08<br>.11<br>.03<br>.03        | 2<br>9<br>8  | 1.32<br>1.09<br>1.21<br>1.09<br>1.25 | .04<br>.04<br>.02<br>.02<br>.03 | .13<br>.11<br>.22<br>.17<br>.22 | 2<br>9<br>2<br>2<br>2           | 5<br>5<br>5<br>15              |               |
| RKP-32035<br>RKP-32036<br>RKP-32037<br>RKP-32038<br>RKP-32039 | 2<br>2<br>1<br>1      | 41<br>34<br>36<br>5        | 25<br>22<br>23<br>10<br>13 | 140<br>127<br>121<br>71<br>59   | 1.0<br>.7<br>.9<br>.4          | 34<br>30<br>29<br>5<br>4   | 12<br>11<br>13<br>4<br>4   | 682<br>666<br>622<br>451<br>516  | 4.86<br>4.46<br>5.23<br>2.53<br>2.42      | 90<br>75<br>75<br>27<br>18  | 2<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 80<br>22<br>2<br>2<br>2<br>2 | 31<br>29<br>35<br>42<br>35 | 1<br>1<br>1<br>1<br>1 | 6<br>5<br>4<br>2<br>2           | 3<br>2<br>2<br>2<br>2 | 53<br>53<br>74<br>46<br>42    | .48<br>.44<br>.57<br>.80<br>.84      | .17<br>.15<br>.20<br>.16<br>.14        | 18<br>17<br>19<br>108<br>271   | 36<br>26<br>38<br>19<br>24 | .80<br>.79<br>.74<br>.58<br>.47 | 96<br>94<br>87<br>60<br>39    | .03<br>.03<br>.04<br>.13<br>.13 | 9<br>10      | 1,11<br>1,12<br>1,11<br>1,17<br>,98  | .02<br>.02<br>.03<br>.07<br>.08 | .16<br>.17<br>.16<br>.17<br>.16 | 2<br>2<br>2<br>2<br>2<br>2      | 10<br>5<br>5<br>15<br>1380     |               |
| RKP-32040<br>RKP-32041<br>RKP-32042<br>RKF-32043<br>RKF-32043 | <br> <br>1<br>3       | 3<br>5<br>5<br>31          | 12<br>6<br>8<br>10<br>11   | 59<br>37<br>43<br>56<br>111     | .4<br>.1<br>.5<br>1.4<br>1.2   | 4<br>3<br>4<br>4<br>24     | 4<br>3<br>4<br>5<br>14     | 570<br>312<br>369<br>414<br>488  | 2.72<br>1.76<br>1.94<br>2.39<br>4.83      | 20<br>16<br>22<br>24<br>27  | 2<br>2<br>2<br>3           | 2<br>ND<br>ND<br>ND        | 88<br>34<br>43<br>37<br>7    | 40<br>32<br>40<br>33<br>49 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>3      | 42<br>29<br>35<br>37<br>61    | .93<br>.72<br>.98<br>.62<br>.81      | .17<br>.18<br>.25<br>.13<br>.12        | 286<br>128<br>161<br>123<br>25 | 13<br>9<br>24<br>13<br>49  | .52<br>.35<br>.42<br>.49<br>.71 | 47<br>40<br>43<br>60<br>157   | .14<br>.08<br>.10<br>.11<br>.07 | 4<br>5<br>5  | 1.06<br>.70<br>.81<br>.98<br>1.20    | .09<br>.05<br>.07<br>.05<br>.03 | .20<br>.14<br>.14<br>.19<br>.13 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 370<br>10<br>130<br>30<br>6700 |               |
| RKP-32045<br>FKP-32046<br>RKP-32047<br>FKP-32048<br>FKP-32048 | 8<br>5<br>5<br>5<br>4 | 47<br>39<br>62<br>50<br>54 | 16<br>14<br>15<br>18<br>13 | 353<br>155<br>335<br>220<br>155 | .3<br>.6<br>.5<br>.2           | 37<br>30<br>41<br>30<br>27 | 14<br>14<br>13<br>17<br>14 | 565<br>514<br>455<br>527<br>483  | 5.94<br>5.58<br>5.56<br>6.03<br>4.79      | 38<br>40<br>35<br>63<br>42  | 2<br>2<br>2<br>2<br>2      | ND<br>ND<br>ND<br>ND       | 3<br>6<br>3<br>4<br>3        | 37<br>37<br>33<br>43<br>41 | 4<br>2<br>4<br>3<br>2 | 2<br>2<br>2<br>2<br>2           | 4 10 51 (1 10         | 54<br>82<br>53<br>92<br>85    | .48<br>.64<br>.36<br>.67<br>.63      | .10<br>.14<br>.10<br>.16<br>.15        | 15<br>28<br>12<br>22<br>16     | 29<br>59<br>49<br>31<br>33 | .75<br>.73<br>.87<br>.90<br>.87 | 150<br>131<br>106<br>86       | .04<br>.08<br>.06<br>.09<br>.08 | 9<br>8<br>10 | 1.33<br>1.27<br>1.33<br>1.56<br>1.53 | .02<br>.04<br>.01<br>.04<br>.03 | .12<br>.14<br>.10<br>.15<br>.17 | 22232                           | 5<br>10<br>175<br>10<br>5      |               |
| RKP-32050<br>RKP-32051<br>STD A-1/AU 0.5                      | 1<br>3<br>1           | 14<br>20<br>30             | 4<br>8<br>38               | 59<br>107<br>178                | .1<br>.3<br>.3                 | 15<br>21<br>36             | 12<br>16<br>12             | 392<br>457<br>995                | 5.62<br>6.99<br>2.82                      | 22<br>34<br>11              | 2<br>2<br>2                | ND<br>ND<br>ND             | 3<br>4<br>2                  | 50<br>48<br>35             | 1<br>1<br>1           | 2<br>2<br>2                     | 3<br>4<br>2           | 139<br>143<br>58              | .82<br>.79<br>.60                    | .19<br>.19<br>.10                      | 19<br>25<br>7                  | 39<br>30<br>77             | . 50<br>. 64<br>. 75            | 48<br>60<br>283               | .10<br>.09<br>.08               | 9            | 1.05<br>1.12<br>2.05                 | .06<br>.05<br>.02               | . 12<br>. 13<br>. 21            | 2<br>2<br>2                     | 10<br>155<br>530               |               |
|                                                               |                       |                            |                            |                                 |                                |                            |                            |                                  |                                           |                             |                            |                            |                              |                            |                       |                                 |                       |                               |                                      |                                        |                                |                            |                                 |                               |                                 |              |                                      |                                 |                                 |                                 |                                |               |

PAGE # 13

 $\sim$ 

.

| SAMPLE #       | Мо<br>рра | Cu<br>ppe | ₽b<br>øp∎ | ln<br>ppm | Ag<br>ppe  | Ni<br>ppm | Co<br>spa | itn<br>ppa | Fe<br>Z | As<br>ppa | U<br>ppe | Au<br>pps | Th<br>ppe | Sr<br>ppa | Cơ<br>ppe | Sa<br>ppa | Bı<br>ppa | V<br>ppe | Ca<br>Z    | p<br>I | La<br>ppm | Cr<br>ppa | Hg<br>Z    | Ba<br>ppe | ti<br>T | B<br>ppa | Al<br>I | Na<br>Z | K<br>Z | W<br>ppa | Au t<br>upb |
|----------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|------------|---------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|------------|--------|-----------|-----------|------------|-----------|---------|----------|---------|---------|--------|----------|-------------|
| LWR-34165      | 9         | 66        | 8         | 85        | .9         | 27        | 10        |            | 2.68    | 5         | 2        | ND        | 4         | 9         | ì         | 2         | 2         | 48       | .33        | . 09   | 7         | 45        | 1.36       | 256       | .10     |          | 1.44    | . 04    | .94    | 2        | 45          |
| LWR-34166      | 3         | 84        | 11        | 189       | . 7        | 45        | 9         | 404        | 2.27    | 2         |          | ЮN        | 2         | 24        | 2         | 2         | Z         | 71       | . 40       | .13    | 6         | 90        | 1.52       | 150       | . 08    |          | 1.81    | .11     | .97    | 2        | 5           |
| LWR-34167      | 1         | 31        | 10        | 51        | .4         | 6         | 6         | 787        | 2.99    | 5         | 2        | ND        | 2         | 34        | 1         | 2         | 2         | 26       | 2.49       | .11    | 6         | 10        | .76        | 90        | .09     |          | 1.45    | .06     | .78    | 2        | 5           |
| LWR-34168      | 1         | 25        | 9         | 96        | 4          | 7         | 6         | 738        | 3.77    | 29        | 2        | ND        | 2         | 32        | 1         | 2         | 2         | 48       | .64        | .11    | . ?       | 8         | .84        | 165       | .14     |          | 1.61    | .07     | .90    | 2        | 15          |
| LWR-34170      | 2         | 19        |           | 28        | .4         | 9         | 3         | 983        | 2.24    | 31        | 2        | ND        | 2         | 190       | 1         | 2         | 2         | 15       | 5.76       | .03    | 11        | 19        | .97        | 24        | . 02    | 4        | 1,09    | . 02    | .20    | 2        | 5           |
| LWR-34171      | 1         | в         | 8         | 246       | 1.0        | 5         | 1         | 1598       | 3.05    | 31        | 2        | ND        | 2         | 324       | 2         | Z         | 5         | 12       | 25.58      | .07    | 4         | 8         | .56        | 12        | . 02    | 4        | 1.23    | . 01    | . 04   | 2        | 20          |
| LWR-34172      | - 3       | - 64      | 8         | 77        | 1.0        | 29        | 7         | 323        | 3.00    | 6         | 2        | NŰ        | 2         | 51        | 1         | 2         | 2         | 80       | 1.45       | .07    | 2         | 70        | 1.06       | 218       | .11     | 5        | 1.96    | . 12    | . 78   | 2        | 5           |
| LSR-34173      | 38        | 52        | 9         | 294       | .5         | 51        | 8         | 472        | 2.99    | 2         | - 4      | ND        | 2         | 31        | 6         | 2         | 2         | 154      | .89        | . 13   | 6         | - 64      | 1.62       | 291       | . 12    | 4        | 1.87    | . 12    | 1.04   | 2        | 5           |
| USR-81601      | 1         | 17        | 8         | 45        | .3         | 4         | 5         | 658        | 3.26    | 5         | 2        | ND        | 2         | 48        | 1         | 2         | 2         | 51       | .97        | .12    | 3         | 8         | .76        | 217       | .12     | 5        | 1.37    | .06     | .71    | 2        | 5           |
| USR-91801      | 2         | 68        | 17        | 218       | .6         | 93        | 15        | 406        | 5.15    | 204       | 7        | ЯD        | 2         | 47        | 4         | 2         | 2         | 177      | ,45        | .13    | 4         | 727       | 2.68       | 690       | .17     | 6        | 3.28    | .06     | L.40   | 2        | 5           |
| USR-81807      | 1         | 14        | 10        | 45        | .1         | 5         | 6         | 1405       | 4.62    | 10        | 4        | ND        | 4         | 78        | 1         | 2         | 2         | 85       | 2.36       | .24    | 17        | 9         | 1.32       | 315       | . 17    | 8        | 1.75    | . 05    | 1.03   | 2        | 5           |
| USR-82002      | 1         | 27        | 48        | 238       | . 2        | 44        | 32        | 1054       | 6.95    | 3         | 1        | ND        | 2         | 123       | 2         | 2         | Z         | 161      | 1.13       | .14    | 48        | 551       | 3.56       | 105       | . 03    | 7        | 3.75    | .01     | .40    | 2        | 20          |
| USR-82006      | 1         | 14        | 16        | 65        | .7         | 33        | 9         | 1062       | 4.25    | S         | 4        | ND        | Z         | 62        | 1         | 6         | 2         | 39       | . 22       | .05    | 10        | 86        | .16        | 72        | .01     | 5        | . 98    | .04     | .13    | 2        | 125         |
| USR-82007      | 2         | 15        | 21        | 77        | .2         | 17        | 9         | 1135       | 4.20    | 2         | 3        | ND        | 4         | 10        | 1         | 2         | 2         | 64       | .21        | .10    | 23        | 26        | .14        | 65        | .01     | 7        | 1.14    | .01     | . 17   | 2        | 20          |
| USR-82013      | I         | 7         | 5         | 6         | , <b>i</b> | 7         | 2         | 94         | .87     | 3         | 2        | ND        | 2         | 2         | 1         | 2         | 2         | 3        | .01        | .01    | 2         | 10        | .07        | 6         | . 01    | 2        | . 12    | .01     | .03    | 2        | 5           |
| USR-82014      | 1         | 12        | 2         | 12        | .1         | 12        | 6         | 169        | 1.25    | 2         | 2        | ND        | 2         | ۱         | 1         | 2         | 2         | 5        | .01        | .01    | 2         | 11        | . 22       | 11        | .01     | 2        | . 33    | .01     | .02    | 2        | 5           |
| USR-82015      | 1         | 29        | 11        | 77        | .1         | 12        | 7         | 752        | 4.25    | 4         | 2        | ND        | 2         | 16        | i         | 2         | 2         | 81       | .27        | .14    | 3         | 14        | 1.12       | 97        | .02     | 6        | 1.84    | .05     | . 23   | 2        | 5           |
| USR-82203      | 1         | 22        | 8         | 50        | .1         | 25        | B         | 643        | 1.95    | 37        | 2        | ND        | 2         | 305       | 1         | 2         | 2         | 9        | 5.21       | .10    | 11        | 9         | .44        | 65        | .01     | 5        | .77     | .01     | .22    | 2        | 5           |
| USR-82204      | i         | 8         | 59        | 102       | 5.7        | 4         | 4         | 1164       | 2.07    | 1954      | 3        | ND        | 3         | 19        | ţ         | 2         | 2         | 4        | .25        | .07    | 22        | 5         | 04         | 115       | .01     | 6        | .45     | .01     | .29    | 2        | 325         |
| USR-82206      | i         | 10        | 117       | 101       | 1.4        | 5         | i         | 729        | 3.42    | 109       | ž        | ND        | ž         | 12        | i         | Ż         | 2         | 7        | .25<br>.29 | .02    | 6         | 5         | .04<br>.31 | 115<br>58 | .01     | 5        | .96     | .0Z     | .16    | 2        | 40          |
| USR-82208      | 1         | 12        | 11        | 107       | .1         | 5         | 1         | 1101       | 3, 54   | 21        | 2        | ND        | 2         | 121       | 1         | 2         | 2         | 20       | 2.55       | .12    | 14        | 6         | . 66       | 82        | .01     | 6        | 1.40    | .04     | . 21   | 2        | 5           |
| USR-82209      | 1         | 10        | 36        | 181       | .4         | 6         | 7         | 1230       | 3.98    | 9         | 2        | ND        | 2         | 47        | 2         | 2         | 2         | 24       | 1.03       | .13    | 12        | 7         | .89        | 76        | .01     | 6        | 1.55    | .04     | .14    | 2        | 5           |
| USR-82211      | 2         | 5         | 5         | 23        | .2         | 4         | ł         | 970        | 2.23    | 88        | 2        | ND        | 2         | 15        | 1         | 2         | 2         | 4        | 2.25       | .01    | Z         | 7         | .08        | 46        | .01     | 5        | .7      | .01     | .14    | 2        | 5           |
| STD A-1/AU 0.5 | 1         | 30        | 38        | 180       | .3         | 35        | 12        | 102B       | 2.80    | 10        | 2        | ND        | 2         | 32        | 1         | 2         | 2         | 57       | . 58       | . 10   | 7         | 75        | . 78       | 281       | . 07    | 8        | 2.07    | . 02    | .21    | 2        | 510         |

- --

 $\sim$ 

٠

 $\sim$ 

PAGE # 14

۲.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158

### ICP GEOCHEMICAL ANALYSIS

DATE RECEIVED SET 15 1983 DATE REPORTS MAILED Stoff 23/03 ASSAYER ALLED DEAN TOYE, CERTIFIED B.C. ASSAYER

|                                                                             |                       |                            |                          |                                |                            | I                          | .м.                        | WAT                               | SDN                                  | & A9                       | 3500                                    | IAT                  | ES                         | PR                          | OJEC                     | T #                        | NAF                                     | USP                             | F                                    | FILE                            | <b>#</b> E                   | 13-1                          | 2161                 |                                 |                                 |                                              |                      |                                 |                                 | Pí                         | AGE                   | <b>4</b> 1. |
|-----------------------------------------------------------------------------|-----------------------|----------------------------|--------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|----------------------------|-----------------------------------------|----------------------|----------------------------|-----------------------------|--------------------------|----------------------------|-----------------------------------------|---------------------------------|--------------------------------------|---------------------------------|------------------------------|-------------------------------|----------------------|---------------------------------|---------------------------------|----------------------------------------------|----------------------|---------------------------------|---------------------------------|----------------------------|-----------------------|-------------|
| SAMPLE .                                                                    | Mo<br>ppe             | Cu<br>ppe                  | Pb<br>pp∎                | Zn<br>pps                      | Ag<br>pp=                  | Ni<br>ppe                  | Co<br>pp∎                  | Ħn<br>ppæ                         | Fe<br>I                              | As<br>pp <del>a</del>      | U<br>pp∎                                | Au<br>ppe            | Th<br>ppa                  | Sr<br>ppe                   | Cd<br>Pp II              | Sb<br>ppe                  | Bi<br>ppe                               | y<br>ppa                        | Ca<br>1                              | P<br>Z                          | La<br>ppa                    | Cr<br>ppe                     | Ng<br>I              | Ba<br>ppe                       | ti<br>Z                         | 8<br>ppm                                     | Al<br>I              | Na<br>X                         | K<br>I                          | ₩<br>ppe                   | Au t<br>ppb           |             |
| RKB-32284<br>RKB-32285<br>RKB-32286<br>RKB-32287<br>RKB-32287<br>RKB-32288  | 4<br>2<br>!<br>1<br>2 | 71<br>38<br>62<br>46<br>65 | 17<br>13<br>3<br>2<br>13 | 177<br>67<br>104<br>80<br>108  | 1.0<br>.2<br>.1<br>.1      | 42<br>17<br>49<br>26<br>35 | 10<br>14<br>15<br>7<br>16  | 373<br>728<br>434<br>281<br>530   | 3,70<br>3,17<br>3,74<br>3,28<br>3,54 | 56<br>20<br>18<br>7<br>23  | 6<br>2<br>2<br>4                        | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2      | 34<br>25<br>19<br>14<br>26  | 1<br>1<br>1<br>1<br>1    | 3<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2<br>2              | 144<br>94<br>109<br>112<br>116  | .16<br>.14<br>.16<br>.07<br>.24      | .07<br>.07<br>.07<br>.06<br>.07 | 5<br>5<br>3<br>4<br>5        | 86<br>45<br>148<br>128<br>66  | .69<br>1.30<br>1.06  | 203<br>178<br>266<br>327<br>284 | .14<br>.10<br>.16<br>.13<br>.12 |                                              | 2,22                 | .02<br>.03<br>.03               | .55<br>.39<br>.47<br>.44<br>.51 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5      |             |
| RKB-32289<br>RKB-32290<br>RKB-32291<br>PKB-32292<br>RKB-32293               | 1<br>2<br>1<br>2<br>4 | 65<br>97<br>77<br>41<br>39 | 9<br>5<br>5<br>6         | 141<br>121<br>98<br>110<br>174 | .3<br>.6<br>.4<br>.3<br>.3 | 45<br>44<br>45<br>13<br>24 | 13<br>12<br>15<br>6<br>10  | 434<br>403<br>371<br>406<br>580   | 4.40<br>4.51<br>3.41<br>3.63<br>4.31 | 18<br>68<br>28<br>11<br>42 | 44235                                   | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2 | 30<br>26<br>75<br>29<br>25  | 1<br>1<br>1<br>1         | 2<br>2<br>2<br>2<br>2<br>2 | 2 2 2 2 2 2 2                           | 158<br>137<br>103<br>132<br>177 | .14<br>.11<br>.72<br>.15<br>.14      | .05<br>.05<br>.07<br>.04<br>.06 | 3<br>5<br>2<br>3             | 123<br>105<br>102<br>78<br>82 | 1.29<br>1.11<br>1.29 | 242<br>234<br>316<br>421<br>212 | .19<br>.17<br>.12<br>.19<br>.17 | 2 2<br>2 3<br>2 4<br>2 2<br>2 2<br>2 2       | . 38<br>. 16<br>. 55 | .03<br>.02<br>.02<br>.03<br>.04 | .36<br>.53<br>.45<br>.85<br>.25 | 22222                      | 55555                 |             |
| ы:Э- 32294<br>RKB-32295<br>RKB-32296<br>RKB-32297<br>RKB-32297<br>RKB-32298 | 33222                 | 59<br>43<br>79<br>24<br>25 | 1<br>3<br>10<br>8<br>7   | 115<br>116<br>82<br>84<br>188  | .2<br>.1<br>.1<br>.1<br>.2 | 22<br>18<br>38<br>15<br>20 | 7<br>11<br>51<br>8<br>11   | 308<br>445<br>345<br>704<br>1151  | 4.26<br>3.73<br>3.65<br>3.09<br>3.74 | 15<br>B<br>22<br>12<br>12  | 47323                                   | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2      | 18<br>29<br>15<br>32<br>27  | 1<br>1<br>1<br>1         | 2<br>2<br>2<br>2<br>2      | 2222                                    | 175<br>120<br>110<br>53<br>112  | .10<br>.32<br>.13<br>.27<br>.23      | .05<br>.06<br>.07<br>.07<br>.10 | 4<br>7<br>3<br>3             | 117<br>48<br>142<br>51<br>73  | 1.02                 | 360<br>211<br>245<br>152<br>251 | .21<br>.14<br>.18<br>.13<br>.16 | 2 3<br>3 2<br>2 2<br>2 1<br>2 2              | .28<br>.58<br>.50    | .03<br>.03<br>.04<br>.03        | .54<br>.43<br>.36<br>.15<br>.16 | 24 2 14 2 <del>2</del>     | 5<br>5<br>5<br>5<br>5 |             |
| RKB-32299<br>RKB-32300<br>RKB-32301<br>RKB-32302<br>RKB-32303               | 9<br>3<br>1<br>1      | 44<br>33<br>34<br>74<br>30 | 10<br>10<br>6<br>3<br>7  | 104<br>108<br>172<br>98<br>135 | .6<br>.3<br>.7<br>.2<br>.1 | 17<br>17<br>35<br>40<br>27 | 13<br>10<br>12<br>16<br>12 | 2053<br>847<br>476<br>569<br>1755 | 3.86<br>3.14<br>3.43<br>4.03<br>3.67 | 6<br>12<br>21<br>187<br>77 | 2<br>2<br>2<br>5<br>4                   | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2      | 124<br>28<br>27<br>16<br>18 | 6<br>1<br>2<br>1<br>1    | 2 2 3 2 2 2                | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 43<br>96<br>130<br>90           | 1.91<br>.20<br>.23<br>.14<br>.14     | .10<br>.10<br>.16<br>.07<br>.12 | 5<br>4<br>4<br>2<br>3        | 15<br>62<br>68<br>125<br>74   | .63<br>.81<br>.97    | 146<br>167<br>180<br>147<br>207 | .05<br>.12<br>.14<br>.16<br>.13 | 4 2<br>3 1<br>3 3<br>2 2<br>2 2<br>2 2       | . 60<br>. 40<br>. 65 | .23<br>.03<br>.04<br>.02<br>.02 | .14<br>.15<br>.14<br>.53<br>.20 | 2 12 2 2 2 2               | 5555                  |             |
| RKB-32304<br>RKB-32305<br>RKB-32306<br>DMB-39173<br>DMB-39174               | 1<br>1<br>2<br>2<br>2 | 20<br>16<br>27<br>50<br>47 | 6<br>17<br>15<br>8<br>15 | 51<br>60<br>64<br>126<br>102   | .1<br>.1<br>.2<br>1.3      | 12<br>13<br>13<br>33<br>30 | 5<br>5<br>13<br>13         | 310<br>251<br>261<br>587<br>491   | 3.04<br>2.81<br>2.91<br>3.39<br>3.18 | 12<br>16<br>8<br>19<br>17  | 72436                                   | ND<br>ND<br>ND<br>ND | 7<br>7<br>7<br>2<br>2      | 16<br>18<br>15<br>47<br>28  | 1<br>1<br>1<br>2<br>1    | 7<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2<br>2         | 82<br>84<br>81<br>106<br>95     | .09<br>.09<br>.08<br>.51<br>.28      | .03<br>.03<br>.10<br>.12<br>.11 | <b>4</b><br>3<br>8<br>9<br>7 | 30<br>46<br>39<br>76<br>59    | .55<br>.56<br>1.18   | 54<br>65<br>102<br>203<br>192   | .16<br>.15<br>.09<br>.13<br>.12 | 3 1<br>2 1<br>2 1<br>4 2<br>3 2              | . 52<br>. 45<br>. 32 | .03<br>.03<br>.02<br>.05<br>.03 | .13<br>.13<br>.26<br>.52<br>.46 | 2 5 5 5 5 5                | 5<br>5<br>5<br>5<br>5 |             |
| DNB-39175<br>DMB-39176<br>DMB-39177<br>DMB-39178<br>DMB-39179               | 3<br>4<br>2<br>2      | 43<br>22<br>35<br>29<br>21 | 3<br>9<br>8<br>10        | 67<br>43<br>40<br>48<br>84     | .1<br>.5<br>.5<br>.7       | 16<br>12<br>13<br>13<br>12 | 64347                      | 323<br>175<br>154<br>304<br>541   | 2.73<br>2.98<br>3.42<br>2.76<br>3.59 | 17<br>15<br>9<br>4<br>12   | 2<br>2<br>7<br>4<br>3                   | ND<br>ND<br>ND<br>ND | ?<br>2<br>2<br>2<br>2      | 15<br>12<br>8<br>15<br>19   | 1<br>1<br>1<br>1         | 2<br>2<br>2<br>2<br>2<br>2 | 77777                                   | 82<br>88<br>94<br>81<br>104     | .16<br>.06<br>.05<br>.10<br>.11      | .10<br>.06<br>.15<br>.10<br>.07 | 5<br>4<br>3<br>6             | 57<br>35<br>51<br>36<br>48    |                      | 62<br>62<br>70<br>87<br>154     | .06<br>.13<br>.11<br>.09<br>.16 | 2 i<br>2 i<br>2 1<br>2 1<br>2 1<br>2 1       | .21<br>.64<br>.10    | .03<br>.02<br>.01<br>.02<br>.02 | .22<br>.10<br>.09<br>.15<br>.29 | 2<br>2<br>2<br>2<br>2      | 55555                 |             |
| DHB-39187<br>DHB-39187<br>DHB-39187<br>DHB-39187<br>DHB-39189               | 2<br>1<br>2<br>1      | 18<br>22<br>19<br>47<br>43 | 4<br>7<br>10<br>9<br>7   | 4B<br>107<br>44<br>194<br>133  | .7<br>.3<br>.2<br>.6<br>.4 | 9<br>15<br>9<br>30<br>25   | 4<br>9<br>4<br>11<br>11    | 483<br>597<br>333<br>637<br>473   | 2.68<br>3.43<br>2.84<br>3.99<br>3.65 | 10<br>16<br>8<br>7<br>14   | 2 2 4 3                                 | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2 | 31<br>12<br>11<br>29<br>19  | 1<br>1<br>-1 -<br>2<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2                   | 77<br>91<br>78<br>117<br>100    | . 28<br>. 11<br>. 05<br>. 21<br>. 20 | .11<br>.12<br>.07<br>.11<br>.11 | 3<br>6<br>4<br>6             | 29<br>61<br>29<br>63<br>59    |                      | 93<br>115<br>75<br>125<br>99    | .10<br>.13<br>.10<br>.10<br>.10 | 2 1.<br>3 3.<br>2 1.<br>3 3.<br>3 3.<br>3 2. | .44<br>.34<br>.03    | .02<br>.01<br>.03<br>.01<br>.01 | .09<br>.36<br>.10<br>.20<br>.23 | 2<br>2<br>2<br>2           | 55555                 |             |
| DMB-39185<br>DMB-39186<br>STD A-1/AU-0.5                                    | 2<br>1<br>1           | 38<br>31<br>30             | 0<br>9<br>38             | 133<br>105<br>184              | .5<br>.3                   | 23<br>20<br>35             | 11<br>8<br>12              | 856<br>510<br>1002                | 3.69<br>3.15<br>2.88                 | 10<br>7<br>11              | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ND<br>ND<br>ND       | 2<br>7<br>2                | 17<br>16<br>37              | 1<br>1<br>1              | 2<br>2<br>2                | 2 2 2 2                                 | 100<br>85<br>58                 | .14<br>.13<br>.58                    | .10<br>.09<br>.09               | 5<br>4<br>7                  | 58<br>48<br>74                |                      | 92<br>79<br>282                 | .09<br>.08<br>.08               | 3 2.<br>4 2.<br>8 2.                         | . 13                 | .02<br>.02<br>.02               | .16<br>.13<br>.21               | (1) (1) (1) (1)            | 5<br>5<br>510         |             |

TELEX:04-53124

 $\sim$ 

~

|                                                                            |                       |                            |                        |                                 |                             | 1.                         |                           |                                   | 001                                  | с <b>п</b>                 | 2000                  |                            |                                 |                            |                       | , ,                                     |                                         | 0.07                         |                                      |                                 |                        |                            | .01                                |                                 |                                 |                                           |                                      |                                 |                                  |                                         | 10L #             |
|----------------------------------------------------------------------------|-----------------------|----------------------------|------------------------|---------------------------------|-----------------------------|----------------------------|---------------------------|-----------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|---------------------------------|----------------------------|-----------------------|-----------------------------------------|-----------------------------------------|------------------------------|--------------------------------------|---------------------------------|------------------------|----------------------------|------------------------------------|---------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|----------------------------------|-----------------------------------------|-------------------|
| SAMPLE 4                                                                   | No<br>ppe             | Cu<br>ppe                  | Pb<br>ppe              | Zn<br>ppe                       | Ag<br>ppm                   | Ni<br>ppm                  | Co<br>pps                 | Mn<br>ppm                         | Fe<br>Z                              | As<br>ppm                  | U<br>pp <del>o</del>  | Au<br>ppe                  | Th<br>ppe                       | Sr<br>pps                  | Cd<br>ppe             | Sb<br>ppe                               | Bi<br>pp≖                               | V<br>ppe                     | Ca<br>I                              | Р<br>1                          | La<br>ppe              | Cr<br>ppe                  | Mg<br>1                            | Ba<br>ppe                       | Ti<br>X                         | В<br>рре                                  | A1<br>7                              | Na<br>Z                         | K<br>7                           | N<br>ppm                                | Au t<br>pp b      |
| DMB-39187<br>DMB-39188<br>DMB-39189<br>DMB-39190<br>DMB-39191              | 1<br>1<br>1<br>1<br>2 | 77<br>46<br>31<br>38<br>34 | 4<br>5<br>8<br>10      | 137<br>130<br>177<br>217<br>135 | .7<br>.7<br>.9<br>1.0<br>.5 | 30<br>25<br>23<br>27<br>19 | 13<br>11<br>12<br>12<br>8 | 592<br>605<br>656<br>1045<br>739  | 3.75<br>3.55<br>3.63<br>3.91<br>3.13 | 16<br>B<br>6<br>7<br>4     | 2<br>4<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2      | 17<br>16<br>14<br>20<br>17 | 1<br>1<br>2<br>1      | 2<br>4<br>2<br>2<br>2                   | 2<br>2<br>2<br>2<br>2                   | 106<br>101<br>95<br>97<br>86 | .19<br>.14<br>.06<br>.15<br>.14      | .11<br>.10<br>.11<br>.11<br>.08 | 5<br>5<br>6<br>4       | 62<br>53<br>50<br>48<br>43 | 1.05<br>.71<br>.82<br>1.12<br>.53  | 117<br>96<br>115<br>114<br>81   | .11<br>.10<br>.10<br>.13<br>.11 | 2<br>2<br>3<br>2<br>2                     | 3.10<br>2.71<br>3.53<br>3.60<br>2.22 | .01<br>.01<br>.01<br>.01<br>.01 | .26<br>.17<br>.13<br>.29<br>.10  | 2<br>2<br>2<br>2<br>2<br>2              | 5<br>5<br>5<br>5  |
| DHD-39192<br>DHD-39193<br>DHD-39194<br>DHD-39195<br>DHD-39196              | 2<br>1<br>1<br>1      | 36<br>26<br>27<br>31<br>30 | 5<br>5<br>4<br>9<br>3  | 176<br>73<br>185<br>266<br>155  | .6<br>.4<br>1.4<br>.5<br>.5 | 22<br>15<br>23<br>18<br>16 | 9<br>5<br>8<br>11<br>10   | 1072<br>250<br>285<br>496<br>576  | 3.00<br>3.00<br>2.86<br>3.73<br>3.28 | 14<br>10<br>10<br>19<br>11 | 8<br>3<br>4<br>5      | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2      | 12<br>12<br>20<br>16<br>14 | 31232                 | 22222                                   | 2<br>2<br>2<br>2<br>2                   | 90<br>90<br>77<br>112<br>94  | .12<br>.07<br>.15<br>.11<br>.14      | .07<br>.07<br>.11<br>.08<br>.12 | 6<br>4<br>5<br>4       | 48<br>39<br>46<br>48<br>42 | .57<br>.40<br>.72<br>1.00<br>.64   | 83<br>76<br>125<br>297<br>142   | .10<br>.10<br>.10<br>.18<br>.12 | 2<br>2<br>2<br>2<br>2<br>2                | 2.48<br>1.99<br>3.13<br>3.08<br>2.81 | .02<br>.01<br>.01<br>.02<br>.02 | .14<br>.07<br>.10<br>.44<br>.18  | 2<br>2<br>2<br>2<br>2<br>2              | 5<br>5<br>5<br>5  |
| DMB-39197<br>DMB-39199<br>DMB-39199<br>DMB-39200<br>DMB-39201              | 1<br>2<br>1<br>1<br>2 | 29<br>56<br>43<br>36       | 10<br>6<br>4<br>5      | 143<br>131<br>155<br>145<br>132 | .5<br>.5<br>.3<br>.6        | 16<br>22<br>26<br>21<br>17 | 10<br>11<br>13<br>10<br>8 | 531<br>421<br>456<br>429<br>380   | 3.33<br>3.71<br>3.70<br>3.73<br>3.01 | 19<br>21<br>28<br>23<br>9  | 2<br>3<br>2<br>3<br>3 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2      | 16<br>23<br>27<br>27<br>19 | 12223                 | 2<br>2<br>2<br>2<br>2<br>2              | 2<br>2<br>2<br>2<br>2                   | 97<br>106<br>111<br>96<br>71 | .17<br>.32<br>.38<br>.42<br>.16      | .12<br>.17<br>.10<br>.18<br>.05 | 4<br>6<br>8<br>10      | 38<br>42<br>47<br>42<br>40 | .76<br>.98<br>1.06<br>.96<br>.50   | 200<br>169<br>227<br>189<br>103 | .15<br>.12<br>.14<br>.12<br>.12 | 4<br>2<br>2<br>2<br>2                     | 2.67<br>3.14<br>2.99<br>2.76<br>4.33 | .02<br>.01<br>.01<br>.01<br>.02 | .29<br>.43<br>.53<br>.34<br>.13  | 2<br>2<br>7<br>2                        | 5<br>5<br>5<br>5  |
| DHB-39202<br>DHB-39203<br>DHB-39204<br>DHB-39205<br>DHB-39205              | 1<br>1<br>1<br>1<br>i | 64<br>32<br>26<br>32<br>32 | 52533                  | 255<br>135<br>156<br>149<br>150 | .7<br>.2<br>.7<br>.5        | 35<br>24<br>20<br>19<br>72 | 13<br>10<br>9<br>10       | 594<br>348<br>394<br>286<br>347   | 3.63<br>2.91<br>3.24<br>3.45<br>4.36 | 30<br>13<br>9<br>12<br>16  | 3<br>4<br>2<br>3      | ND<br>ND<br>ND<br>ND       | ~~~~                            | 37<br>17<br>15<br>15       | 3<br>1<br>2<br>1<br>2 | 7<br>7<br>7<br>7<br>2                   | 2<br>2<br>2<br>2<br>2                   | 109<br>80<br>81<br>93<br>117 | .41<br>.19<br>.14<br>.12<br>.11      | .06<br>.10<br>.14<br>.07<br>.10 | 10<br>7<br>5<br>4<br>5 | 54<br>40<br>39<br>40<br>59 | 1.16<br>.87<br>.72<br>.77<br>.86   | 142<br>130<br>136<br>161<br>173 | .13<br>.11<br>.11<br>.15<br>.17 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 2.85<br>3.08<br>3.08<br>3.08<br>4.08 | .02<br>.01<br>.01<br>.02<br>.02 | .40<br>.25<br>.14<br>.20<br>.17  | 2<br>2<br>2<br>2<br>2                   | 5<br>5<br>5<br>10 |
| DHB-39207<br>DHB-39208<br>DHB-39209<br>DHB-39210<br>DHB-39211              | 1<br>1<br>2<br>1<br>1 | 70<br>30<br>59<br>23<br>26 | 5<br>5<br>5<br>5<br>5  | 116<br>131<br>216<br>136<br>121 | .7<br>.4<br>.5<br>.3        | 30<br>18<br>43<br>18<br>18 | 15<br>9<br>12<br>10<br>15 | 682<br>454<br>530<br>365<br>402   | 3.58<br>3.22<br>3.45<br>2.96<br>3.72 | 9<br>9<br>3<br>4           | 32322                 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 20<br>21<br>32<br>21<br>18 | 1<br>1<br>2<br>2<br>1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2<br>2<br>2<br>2                   | 79<br>103<br>111<br>81<br>92 | .20<br>.27<br>.31<br>.16<br>.18      | .08<br>.08<br>.11<br>.14<br>.07 | 5<br>5<br>4<br>2       | 45<br>45<br>54<br>31<br>27 | 1.41<br>.85<br>1.47<br>.75<br>.99  | 555<br>145<br>188<br>155<br>187 | .19<br>.12<br>.13<br>.13<br>.13 | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 2.51<br>2.14<br>2.93<br>3.60<br>2.92 | .02<br>.02<br>.03<br>.03<br>.03 | 1.05<br>.20<br>.24<br>.08<br>.14 | 2<br>2<br>2<br>2<br>2                   | 5555              |
| DMB-39212<br>DMB-39213<br>DMB-39214<br>DMB-39215<br>DMB-39215<br>DMB-39216 | 12123                 | 38<br>29<br>25<br>31<br>37 | 1<br>7<br>2<br>1<br>12 | 86<br>109<br>102<br>69<br>155   | .2<br>.5<br>.2<br>.4<br>2.3 | 13<br>37<br>17<br>14<br>28 | 14<br>15<br>13<br>9<br>15 | 978<br>1099<br>439<br>329<br>1102 | 2,73<br>3,38<br>3,19<br>3,19<br>3,27 | 20032 <b>4</b>             | 34787                 | NÐ<br>ND<br>ND<br>ND       | 22222                           | 14<br>19<br>21<br>10<br>56 | 2<br>1<br>1<br>2      | 2<br>2<br>2<br>3<br>2                   | (~ (~ (~ f) f)                          | 65<br>102<br>92<br>100<br>97 | .19<br>.18<br>.20<br>.12<br>.68      | .10<br>.07<br>.07<br>.05<br>.13 | 2<br>3<br>3<br>4       | 18<br>71<br>25<br>22<br>35 | .82<br>1.04<br>.64<br>.81<br>1.05  | 197<br>88<br>124<br>154<br>186  | .11<br>.09<br>.09<br>.11<br>.08 | 2<br>2<br>2<br>3                          | 1.95<br>3.03<br>2.66<br>2.38<br>3.98 | .03<br>.03<br>.03<br>.02<br>.04 | .24<br>.06<br>.05<br>.20<br>.19  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ひらつどう             |
| DHB-39217<br>DHB-39218<br>DHB-39219<br>DHB-39220<br>DHB-39221              | 1<br>2<br>1<br>1<br>2 | 19<br>34<br>20<br>14<br>32 | 5<br>6<br>1<br>5<br>8  | 196<br>140<br>133<br>186<br>114 | .7<br>.5<br>.1<br>.4        | 19<br>27<br>15<br>22<br>19 | 10<br>10<br>13<br>8<br>7  | 727<br>682<br>1121<br>1472<br>581 | 2.86<br>7.96<br>4.50<br>3.11<br>2.82 | 6<br>8<br>11<br>2<br>7     | 0 N O N O             | ND<br>ND<br>ND<br>ND       | 22222                           | 20<br>25<br>20<br>19<br>12 | 2<br>7<br>1<br>1<br>1 | 22222                                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 74<br>83<br>113<br>68<br>72  | . 22<br>. 30<br>. 28<br>. 18<br>. 08 | .14<br>.06<br>.09<br>.08<br>.15 | 3<br>5<br>2<br>4<br>5  | 29<br>46<br>27<br>43<br>40 | .67<br>1.01<br>1.34<br>1.02<br>.66 | 205<br>120<br>263<br>287<br>114 | .13<br>.09<br>.23<br>.14<br>.09 | 32222                                     | 3,37<br>2,45<br>2,95<br>2,52<br>1,73 | .03<br>.02<br>.02<br>.02<br>.02 | .07<br>.15<br>.59<br>.13<br>.18  | 2<br>2<br>2<br>2<br>2                   | ระรร              |
| DMB-39222<br>DHB-39223<br>STD A-1/AU-0.5                                   | 2<br>1<br>1           | 30<br>25<br>30             | 5<br>6<br>37           | 126<br>123<br>188               | .4<br>.6<br>.3              | 44<br>26<br>35             | 7<br>8<br>13              | 454<br>1240<br>1022               |                                      | 2<br>4<br>11               | 2<br>2<br>2           | nd<br>ND<br>ND             | 2<br>2<br>2                     | 13<br>18<br>35             | 1<br>1<br>1           | 2<br>2<br>2                             | 222                                     | 61<br>52<br>59               | .29<br>.18<br>.60                    | .10<br>.07<br>.10               | 6<br>5<br>7            | 82<br>43<br>72             | 1.52<br>.90<br>.73                 | 53<br>168<br>280                | .07<br>.08<br>.08               | 2<br>2<br>8                               | 2,15<br>1,80<br>2,06                 | .02<br>.02<br>.02               | .10<br>.10<br>.21                | 2<br>2<br>2                             | 5<br>5<br>500     |

• - •

I.M. WATSON & ASSOCIATES PROJECT # NAMUSP FILE # 83~2161

 $\checkmark$ 

FAGE # 2

 $\checkmark$ 

| SAMPLE #                                                                   | Mo<br>pp∎             | Cu<br>ppe                  | Pb<br>ppa                  | Zn<br>ppe                       | Ag<br>pç∎                      | Ni<br>pps                  | Co<br>ppa                 | fin<br>ppa                        | Fe<br>Z                              | As<br>ppe                  | U<br>pp∎              | Au<br>ppe                  | Th<br>ppa                               | Sr<br>ppa                  | Cd<br>pp=             | Sb<br>ppe                  | Bi<br>pp∎             | V<br>ppa                       | Ca<br>Z                         | P<br>Z                          | La<br>ppa               | Cr<br>ppe                  | Mg<br>1                             | Ba<br>ppa                       | Ti<br>Z                         | B<br>ppe                   | A1<br>7                              | Na<br>Z                         | K<br>I                               | ¥<br>ppe                        | Au l<br>ppb           |
|----------------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|--------------------------------|----------------------------|---------------------------|-----------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|--------------------------------|---------------------------------|---------------------------------|-------------------------|----------------------------|-------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-----------------------|
| 048-39224<br>048-39225<br>048-39226<br>048-39227<br>048-39227<br>048-39228 | L<br>2<br>3           | 28<br>19<br>57<br>26<br>26 | 9<br>13<br>11<br>17<br>12  | 186<br>131<br>206<br>243<br>101 | .25.63.7                       | 33<br>18<br>34<br>16<br>33 | 9<br>15<br>11<br>8        | 887<br>553<br>1098<br>628<br>1063 | 2.73<br>3.31<br>3.79<br>4.20<br>2.17 | 5<br>12<br>9<br>5<br>4     | 22522                 | nd<br>Nd<br>Nd<br>Nd       | 32532<br>2532                           | 15<br>14<br>38<br>21<br>11 | 2<br>1<br>2<br>2<br>1 | 2<br>2<br>2<br>2<br>2      | 22222                 | 60<br>70<br>110<br>122<br>62   | .19<br>.21<br>.52<br>.17<br>.17 | .12<br>.14<br>.13<br>.14<br>.06 | 7<br>5<br>22<br>11<br>9 | 46<br>30<br>50<br>47<br>60 | 1.24<br>.98<br>1.34<br>1.07<br>1.59 | 153<br>95<br>151<br>179<br>48   | .12<br>.17<br>.16<br>.16<br>.07 | 2<br>2<br>2<br>2<br>2<br>2 | 3.17<br>3.09<br>3.55<br>4.31<br>2.45 | .02<br>.02<br>.03<br>.01<br>.01 | .19<br>.23<br>.27<br>.40<br>.08      | 2 2 5 2 5                       | 5<br>5<br>40<br>5     |
| DHB-39229<br>DHB-39230<br>DHB-39231<br>DHB-39232<br>DHB-39233              | 2<br>2<br>2<br>1      | 33<br>30<br>46<br>39<br>23 | 15<br>10<br>14<br>14<br>9  | 355<br>237<br>261<br>251<br>116 | .3<br>.9<br>.8<br>.6           | 37<br>18<br>37<br>37<br>20 | 14<br>9<br>13<br>12<br>10 | 708<br>442<br>486<br>437<br>440   | 4.48<br>2.90<br>3.64<br>3.58<br>3.61 | 16<br>8<br>8<br>17<br>10   | 2<br>7<br>4<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd<br>Nd | 3<br>2 4<br>2<br>2                      | 25<br>11<br>30<br>24<br>10 | 3<br>2<br>1<br>1      | 7<br>2<br>2<br>7<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 123<br>74<br>104<br>89<br>122  | .32<br>.11<br>.35<br>.40<br>.11 | .17<br>.12<br>.11<br>.12<br>.06 | 7<br>7<br>10<br>7<br>4  | 99<br>39<br>57<br>56<br>57 | 1.65<br>.65<br>1.43<br>1.30<br>1.16 | 274<br>75<br>189<br>115<br>198  | .16<br>.12<br>.15<br>.10<br>.17 | 2<br>2<br>2                | 4.17<br>4.85<br>3.56<br>3.44<br>2.51 | .02<br>.02<br>.02<br>.02<br>.02 | .41<br>.12<br>.31<br>.17<br>.33      | 2 7 2 7 2 7 2                   | 5<br>5<br>5<br>5<br>5 |
| DMB-39234<br>DMB-39235<br>DMB-39236<br>BDD-38215<br>BDD-38216              | 4<br>4<br>2<br>1      | 29<br>33<br>35<br>18       | 11<br>18<br>17<br>10       | 169<br>70<br>83<br>70<br>74     | .4<br>.8<br>.7<br>.3<br>.4     | 20<br>17<br>18<br>21<br>11 | 7<br>5<br>4<br>6<br>6     | 697<br>254<br>219<br>434<br>499   | 3.14<br>3.56<br>3.86<br>3.04<br>2.44 | 2<br>16<br>17<br>22<br>10  | 8<br>4<br>2<br>2<br>2 | ND<br>Nd<br>Nd<br>Nd<br>Nd | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9<br>9<br>11<br>14<br>12   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>3      | 79<br>73<br>81<br>86<br>62     | .06<br>.06<br>.06<br>.09<br>.09 | .14<br>.19<br>.23<br>.07        | 4<br>7<br>7<br>4<br>3   | 30<br>37<br>37<br>64<br>32 | .49<br>.46<br>.53<br>.52<br>.34     | 66<br>52<br>56<br>139<br>92     | .08<br>.04<br>.05<br>.13<br>.12 | 2<br>2<br>2                | 1.54<br>1.30<br>1.57<br>1.73<br>1.39 | .02<br>.02<br>.01<br>.02<br>.02 | .09<br>.12<br>.15<br>.19<br>.15      | 2<br>2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5 |
| 808-38217<br>808-38216<br>808-38219<br>808-38220<br>808-38221              | 1<br>1<br>2<br>2      | 26<br>24<br>26<br>36<br>38 | 14<br>9<br>17<br>11<br>6   | 71<br>160<br>79<br>97<br>105    | .3<br>.4<br>.6<br>.7           | 16<br>15<br>17<br>20       | 6<br>10<br>5<br>8<br>8    | 413<br>935<br>628<br>629<br>602   | 3.43<br>3.25<br>2.96<br>3.59<br>3.70 | 29<br>23<br>12<br>23<br>25 | 3<br>2<br>3<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 2 7 7 7 7 7 7 7 7                       | 13<br>33<br>31<br>14<br>14 | 1<br>1<br>1<br>1      | 2 2 2 3 2                  | 22222                 | 95<br>B6<br>B5<br>110<br>113   | .07<br>.36<br>.31<br>.10<br>.10 | .08<br>.16<br>.11<br>.12<br>.13 | 4<br>3<br>4<br>4<br>4   | 47<br>37<br>38<br>53<br>54 | .54<br>.67<br>.41<br>.72<br>.74     | 104<br>225<br>156<br>131<br>131 | .15<br>.13<br>.12<br>.13<br>.12 | 2                          | 1.82<br>2.27<br>1.26<br>2.27<br>2.40 | .02<br>.02<br>.02<br>.01<br>.01 | .23<br>.22<br>.23<br>.31<br>.31      | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5 |
| BD0-38222<br>BD8-38223<br>BDR-38224<br>BD8-38225<br>BD8-38226              | 2<br>1<br>1<br>1<br>2 | 40<br>39<br>26<br>39<br>42 | 13<br>11<br>10<br>16<br>17 | 110<br>125<br>90<br>152<br>161  | .6<br>.5<br>.5<br>.9           | 20<br>22<br>14<br>17<br>17 | 8<br>9<br>7<br>11<br>12   | 554<br>434<br>928<br>1149<br>1302 | 3.69<br>3.24<br>2.66<br>3.39<br>3.57 | 23<br>23<br>12<br>6<br>5   | 24<br>64<br>3         | ND<br>ND<br>ND<br>ND<br>ND | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 14<br>14<br>18<br>22<br>22 | 1<br>1<br>1<br>1<br>1 | 23222                      | 22222                 | 112<br>95<br>77<br>107<br>112  | .11<br>.13<br>.14<br>.17<br>.16 | .13<br>.12<br>.07<br>.12<br>.13 | 5<br>4<br>5<br>6        | 55<br>49<br>33<br>35<br>38 | .76<br>.70<br>.52<br>.82<br>.87     | 132<br>118<br>152<br>184<br>193 | .12<br>.12<br>.11<br>.11<br>.11 | 2<br>2<br>2<br>2           | 2.55<br>2.77<br>1.65<br>2.56<br>2.71 | .01<br>.01<br>.02<br>.01<br>.01 | . 32<br>. 32<br>. 12<br>. 22<br>. 24 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5      |
| BD8-38227<br>BD8-38228<br>BD8-38229<br>BD8-38230<br>BD8-38231              | 2<br>1<br>1<br>1<br>1 | 32<br>21<br>18<br>14<br>12 | 10<br>14<br>12<br>6<br>7   | 126<br>154<br>134<br>33<br>33   | .7<br>.7<br>.6<br>.5<br>.4     | 15<br>21<br>19<br>8<br>8   | 6<br>10<br>9<br>3<br>2    | 423<br>897<br>844<br>244<br>199   | 3,29<br>3,28<br>3,24<br>1,62<br>1,75 | 4<br>21<br>17<br>4<br>3    | 2<br>5<br>2<br>4      | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2                   | 19<br>12<br>11<br>8<br>7   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 222222                | 124<br>93<br>93<br>43<br>47    | .07<br>.07<br>.06<br>.05<br>.05 | .06<br>.06<br>.05<br>.05<br>.05 | 4<br>5<br>3<br>3        | 46<br>43<br>41<br>17<br>18 | .71<br>.65<br>.58<br>.22<br>.22     | 136<br>123<br>109<br>34<br>32   | .13<br>.14<br>.15<br>.07<br>.08 | ?<br>2<br>3<br>2<br>3      | 2.49<br>2.38<br>2.05<br>.80<br>.79   | .02<br>.01<br>.02<br>.02<br>.01 | . 15<br>. 14<br>. 11<br>. 03<br>. 03 | 22222                           | 55555                 |
| 9D9-38232<br>8D9-38233<br>8D9-38234<br>8D9-38235<br>8D9-38235<br>8D9-38236 | 30531                 | 31<br>31<br>30<br>19       | 11<br>12<br>11<br>12<br>11 | 165<br>163<br>131<br>120<br>118 | 1.0<br>1.1<br>1.4<br>1.2<br>.5 | 22<br>23<br>21<br>19<br>15 | 9<br>9<br>7<br>7<br>8     | 550<br>639<br>275<br>255<br>648   | 3,47<br>3,38<br>3,64<br>3,47<br>3,05 | 8<br>10<br>7<br>7<br>2     | 3<br>2<br>6<br>2<br>3 | ND<br>ND<br>ND<br>ND       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 15<br>16<br>15<br>14<br>18 | 2<br>1<br>1<br>1<br>1 | 2<br>4<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 130<br>125<br>137<br>132<br>69 | .07<br>.08<br>.07<br>.07<br>.07 | .08<br>.08<br>.05<br>.04<br>.09 | 5<br>5<br>5<br>4<br>5   | 49<br>46<br>39<br>36<br>38 | .79<br>.76<br>.80<br>.72<br>.85     | 138<br>131<br>89<br>85<br>79    | .14<br>.14<br>.16<br>.15<br>.12 | 2<br>3<br>2<br>2<br>2<br>2 | 2.53<br>2.61<br>2.64<br>2.39<br>2.01 | .02<br>.02<br>.02<br>.02<br>.02 | . 09<br>. 08<br>. 07<br>. 07<br>. 08 | 2<br>2<br>2<br>2<br>2           | 5<br>5<br>5<br>5      |
| 8 <b>00-38</b> 237<br>808-38238<br>STD A-1/AU-0.5                          | 1<br>1<br>1           | 19<br>16<br>30             | 10<br>13<br>39             | 120<br>110<br>101               | .6<br>.7<br>.3                 | 15<br>14<br>35             | 8<br>7<br>12              | 688<br>653<br>9009                | 3.17<br>2.95<br>2.82                 | 3<br>5<br>12               | 2<br>2<br>2<br>2      | ND<br>ND<br>ND             | 2<br>2<br>2                             | 18<br>15<br>36             | 5<br>1<br>1           | 2<br>2<br>2                | 2<br>2<br>2           | 69<br>64<br>59                 | .07<br>.07<br>.61               | .11<br>.10<br>.10               | 5<br>4<br>8             | 41<br>36<br>72             | .62<br>.55<br>.72                   | 84<br>77<br>282                 | .11<br>.11<br>.08               |                            | 2.12<br>1.89<br>2.07                 | .01<br>.01<br>.02               | .07<br>.07<br>.20                    | 2<br>7<br>2                     | 5<br>5<br>520         |

· · ·

PAGE # T

----

<u>```</u>

I.M. WATSON & ASSOCIATES PROJECT # NARUSP FILE # 83-2161

| FAGE | Ħ | 4 |
|------|---|---|
|------|---|---|

.

| SAMPLE #                                                                   | No<br>ppa             | Cu<br>ppe                  | Pb<br>ppe                  | Zn<br>pp=                       | Aç<br>ppe                  | Ni<br>ppm                  | Co<br>ppm              | Min<br>ppe         | Fe<br>Z                              | As<br>ppm                   | U<br>pp≢              | Au<br>ppe                  | Th<br>ppa                               | Sr<br>¢p∎                  | Cd<br>pp n            | So<br>pp m                 | Bı<br>ppe                       | V<br>ppa                     | Ca<br>I                              | P<br>I                          | La<br>ppe              | Cr<br>ppa                  | Hg<br>I                            | Ba<br>ppe                       | ti<br>Z                         | B<br>ppa    | Al<br>I                              | Na<br>Z                                | K<br>I                               | W<br>pps                                | Au I<br>ppb            |
|----------------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|------------------------|--------------------|--------------------------------------|-----------------------------|-----------------------|----------------------------|-----------------------------------------|----------------------------|-----------------------|----------------------------|---------------------------------|------------------------------|--------------------------------------|---------------------------------|------------------------|----------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------|
| 809-38239<br>800-38240<br>800-38241<br>800-38242<br>800-38243              | 2<br>3<br>2<br>2      | 23<br>38<br>30<br>30<br>39 | 14<br>14<br>10<br>11<br>11 | 106<br>173<br>78<br>79<br>130   | .7<br>.7<br>.8<br>.7<br>.8 | 14<br>22<br>14<br>14<br>26 | 5<br>8<br>5<br>10      | 579<br>280<br>301  | 3.61<br>3.03<br>3.19<br>3.19<br>2.77 | 11<br>6<br>15<br>22<br>6    | 3<br>2<br>2<br>2      | nd<br>Nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2<br>2              | 15<br>24<br>13<br>12<br>28 | 1<br>1<br>1<br>2      | 2<br>2<br>2<br>3<br>2      | 2<br>7<br>7<br>7<br>7<br>7<br>7 | 96<br>78<br>91<br>96<br>73   | . 12<br>. 22<br>. 08<br>. 10<br>. 21 | .10<br>.14<br>.05<br>.05        | 4<br>5<br>6<br>4       | 39<br>37<br>34<br>38<br>44 | .50<br>.64<br>.51<br>.55<br>.68    | 96<br>93<br>110<br>118<br>96    | .13<br>.07<br>.14<br>.15<br>.08 | 2<br>2<br>2 | 1.81<br>2.28<br>2.91<br>2.81<br>1.59 | .01<br>.02<br>.02<br>.02<br>.02        | .09<br>.14<br>.17<br>.20<br>.14      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5555                   |
| 908-38244<br>808-38245<br>808-38246<br>808-38246<br>808-38247<br>808-38246 | 2<br>1<br>2<br>3      | 15<br>9<br>20<br>44<br>26  | 12<br>9<br>13<br>6<br>9    | 79<br>103<br>105<br>121<br>135  | .9<br>.4<br>.7<br>.3<br>.1 | 13<br>9<br>23<br>19        | 5<br>5<br>6<br>9<br>9  | 763<br>533<br>446  | 3.34<br>2.32<br>3.57<br>3.17<br>3.52 | 10<br>6<br>9<br>15<br>7     | 7<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>3<br>2                        | 12<br>11<br>12<br>24<br>38 | 1<br>1<br>2<br>1<br>1 | 2 2 7 7 1                  | 7<br>2<br>2<br>2<br>2<br>2      | 106<br>65<br>74<br>88<br>96  | .08<br>.08<br>.13<br>.39<br>.59      | .07<br>.07<br>.12<br>.14<br>.19 | 4<br>5<br>11<br>11     | 28<br>22<br>18<br>40<br>45 | .38<br>.30<br>.32<br>.96<br>1.25   | 96<br>125<br>121<br>186<br>301  | .19<br>.13<br>.18<br>.13<br>.16 | 2<br>7<br>2 | 2.05<br>1.18<br>2.86<br>2.35<br>2.48 | .02<br>.02<br>.03<br>.02<br>.03        | .06<br>.08<br>.10<br>.37<br>.45      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5<br>5<br>5<br>5       |
| 808-38249<br>808-38250<br>808-38251<br>808-38252<br>808-38253              | 2<br>2<br>1<br>2<br>2 | 63<br>24<br>14<br>26<br>28 | 15<br>9<br>8<br>10<br>7    | 231<br>168<br>124<br>202<br>250 | .7<br>.7<br>.4<br>.3<br>.9 | 35<br>17<br>11<br>23<br>21 | 12<br>6<br>9<br>8      | 386                | 3.91<br>3.63<br>2.36<br>2.99<br>2.69 | 13<br>6<br>3<br>6           | 2<br>2<br>2<br>4      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2              | 34<br>22<br>11<br>19<br>17 | 2<br>2<br>1<br>2<br>2 | 3<br>2<br>2<br>2<br>2<br>2 | 2000                            | 117<br>101<br>59<br>81<br>63 | . 39<br>. 25<br>. 07<br>. 19<br>. 22 | .14<br>.14<br>.08<br>.14<br>.12 | 8<br>4<br>5<br>5       | 55<br>36<br>23<br>42<br>32 | 1.35<br>.58<br>.45<br>.91<br>.68   | 258<br>140<br>110<br>148<br>137 | .14<br>.13<br>.11<br>.11        | 2<br>2<br>2 | 2.69<br>2.36<br>1.50<br>3.22<br>3.05 | .02<br>.02<br>.02<br>.01<br>.02        | .34<br>.08<br>.08<br>.16<br>.12      | 2<br>2<br>2<br>2<br>2<br>2              | 55555                  |
| 8D8-38254<br>808-38255<br>808-38255<br>808-38255<br>808-38257<br>808-38258 | N N N N N             | 29<br>20<br>30<br>22<br>34 | 12<br>4<br>8<br>9<br>12    | 193<br>94<br>38<br>65<br>172    | .5<br>.5<br>.3<br>.2       | 20<br>16<br>12<br>11<br>34 | 10<br>5<br>4<br>12     | 251                | 3.68<br>2.38<br>3.10<br>2.87<br>4.80 | 6<br>2<br>4<br>4<br>11      | 2<br>3<br>2<br>2<br>2 | NÐ<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>4                   | 17<br>14<br>14<br>17<br>26 | 3<br>1<br>1<br>1<br>2 | 2<br>2<br>2<br>2<br>2<br>2 |                                 | 89<br>83<br>78<br>73<br>113  | .17<br>.11<br>.10<br>.12<br>.24      | .12<br>.07<br>.11<br>.11<br>.05 | 7<br>4<br>6<br>10      | 37<br>42<br>31<br>30<br>53 | .67<br>.54<br>.29<br>.47<br>1.17   | 166<br>102<br>64<br>85<br>134   | .13<br>.11<br>.12<br>.08<br>.20 | 2<br>2<br>2 | 3.09<br>1.49<br>1.32<br>1.35<br>3.98 | .02<br>.03<br>.01<br>.02<br>.01        | . 16<br>. 08<br>. 08<br>. 19<br>. 49 | 2<br>2<br>2<br>2<br>2<br>2              | 5<br>15<br>5<br>5      |
| BDB-38259<br>BDB-38260<br>BDB-38261<br>BDB-38262<br>BDB-38263              | 2<br>2<br>2<br>2<br>3 | 57<br>70<br>13<br>13<br>13 | 6<br>8<br>10<br>12<br>12   | 201<br>144<br>73<br>72<br>70    | .4<br>.5<br>.5<br>.3       | 24<br>28<br>15<br>16<br>16 | 13<br>14<br>6<br>6     | 702<br>775<br>705  | 4.40<br>3.83<br>2.00<br>2.05<br>1.99 | 4<br>12<br>2<br>2<br>2<br>2 | 2<br>5<br>2<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd       | 2<br>3<br>2<br>2<br>2                   | 14<br>38<br>10<br>14<br>15 | 2<br>5<br>1<br>1<br>1 | 2223                       | 2<br>2<br>2<br>2<br>2<br>2      | 141<br>131<br>37<br>38<br>37 | .11<br>.90<br>.07<br>.08<br>.11      | .08<br>.12<br>.07<br>.07        | 5<br>26<br>5<br>6      | 48<br>51<br>24<br>24<br>24 | .93<br>1.23<br>.46<br>.53<br>.49   | 171<br>282<br>87<br>91<br>91    | .17<br>.16<br>.08<br>.07<br>.08 | 2<br>2<br>2 | 2.64<br>2.61<br>1.17<br>1.27<br>1.21 | .02<br>.02<br>.02<br>.02<br>.02<br>.02 | .31<br>.56<br>.08<br>.09<br>.09      | 2222                                    | 5<br>19<br>5<br>5<br>5 |
| 808-38264<br>808-38265<br>808-38266<br>808-38266<br>808-38267<br>808-38268 | 2<br>3<br>2<br>5<br>1 | 12<br>18<br>17<br>27<br>17 | 7<br>11<br>10<br>11<br>6   | 74<br>53<br>84<br>76<br>48      | .4<br>.2<br>.1<br>.4       | 15<br>19<br>21<br>24<br>14 | 6<br>10<br>6<br>7<br>5 | 488<br>906<br>366  | 2.16<br>2.31<br>2.47<br>3.47<br>1.44 | 5<br>3<br>4<br>5            | 3<br>2<br>2<br>2<br>7 | ND<br>ND<br>ND<br>ND       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 10<br>9<br>24<br>23<br>17  | 1<br>1<br>1<br>1      | 2 2 2 2 2 2                | 2<br>2<br>2<br>2<br>2<br>2      | 40<br>39<br>54<br>56<br>32   | .06<br>.10<br>.18<br>.11<br>.08      | .08<br>.06<br>.06<br>.04<br>.03 | 6<br>11<br>5<br>6<br>3 | 25<br>32<br>41<br>34<br>19 | .53<br>.74<br>1.05<br>.72<br>.37   | 83<br>101<br>141<br>85<br>41    | .08<br>.10<br>.10<br>.07<br>.04 | 2           | 1.33<br>1.61<br>1.92<br>1.92<br>.85  | .02<br>.01<br>.02<br>.02<br>.03        | .09<br>.27<br>.08<br>.08<br>.03      | 22222                                   | 5<br>5<br>5<br>5       |
| 808-38269<br>808-38270<br>808-38271<br>808-38272<br>808-38272<br>808-38275 | 2<br>1<br>5<br>4<br>3 | 24<br>27<br>33<br>23<br>25 | 14<br>11<br>16<br>15<br>11 | 111<br>75<br>138<br>110<br>172  | .8<br>.3<br>.7<br>.3<br>.7 | 20<br>22<br>32<br>19<br>26 | 8<br>7                 | 1013<br>980<br>608 | 2.45<br>1.34<br>2.77<br>2.73<br>2.96 | 7<br>9<br>8<br>3            | 32223                 | ND<br>ND<br>ND<br>ND       | 201212                                  | е<br>23<br>29<br>8<br>18   | 1<br>1<br>1<br>1      | 12524                      | 0 0 0 0 0 0                     | 43<br>30<br>55<br>51<br>60   | .06<br>.40<br>.31<br>.04<br>.18      | .18<br>.05<br>.06<br>.06<br>.10 | 5<br>5<br>10<br>7<br>6 | 38<br>29<br>42<br>35<br>41 | .60<br>1.08<br>1.03<br>.76<br>1.05 | 79<br>92<br>125<br>48<br>140    | .06<br>.04<br>.06<br>.07<br>.07 | 222         | 1.75<br>1.24<br>2.20<br>1.83<br>2.32 | .02<br>.02<br>.02<br>.02<br>.02        | .03<br>.08<br>.06<br>.10<br>.06      | 0 0 0 0 0 0<br>0 0 0 0 0                | 5555                   |
| 808-38276<br>808-38277<br>STD A-1/Au-0.5                                   | 2<br>2<br>1           | i 1<br>20<br>30            | 8<br>15<br>40              | 77<br>49<br>182                 | .3<br>.5<br>.3             | 15<br>29<br>36             | 5<br>4<br>12           | 215<br>222<br>1007 | 2.43<br>2.40<br>2.86                 | 2 6                         | 2<br>2<br>2           | ND<br>ND<br>NO             | 2<br>2<br>2                             | 11<br>7<br>56              | 1<br>1<br>1           | 222                        | 2<br>2<br>2                     | 43<br>49<br>59               | .08<br>.04<br>.60                    | .06<br>.08<br>.10               | б<br>7<br>В            | 30<br>62<br>74             | . 57<br>. 63<br>. 73               | 105<br>73<br>281                | .11<br>.05<br>.08               | 2           | 2.01<br>1.10<br>2.08                 | .01<br>.01<br>.02                      | . 05<br>. 12<br>. 21                 | 2<br>2<br>2                             | 5<br>5<br>510          |

 I.M. WATSON & ASSOCIATES
 PROJECT # NARUSP
 FILE # 83-2161
 PAGE # 5

 Mo
 Cu
 Pb
 Zn
 Ag
 Ni
 Co
 Nn
 Fe
 As
 U
 Au
 Th
 Sr
 Cd
 Sb
 Bi
 V
 Ca
 F
 La
 Cr
 Ng
 Ba
 Ai
 Na
 K
 M
 Aut

 ppa
 pps
 ppa
 ppa
 ppa
 ppa
 V
 Ca
 F
 La
 Cr
 Ng
 Ba
 Ai
 Na
 K
 M
 Aut

 ppa
 <th

| BOB-38280 1<br>BDB-38281 2<br>BDB-38282 2 | 21<br>25<br>26 | 14<br>9<br>10 | 67<br>169<br>175 | .2<br>.6 | 13<br>26<br>27 | 4<br>10 1<br>10 | 1569 2          | 2.32                  | 5        | 2      | ND<br>ND | 2      | 11<br>21<br>20 | 1      | 2      | 2      | 58<br>53 | .04        | .12        | 4       | 30<br>36 | .57<br>.12  | 117<br>275 | .10<br>.08 | 3<br>7 | 1.15         | .02<br>.02 | .28          | 2 2   | 5      |  |
|-------------------------------------------|----------------|---------------|------------------|----------|----------------|-----------------|-----------------|-----------------------|----------|--------|----------|--------|----------------|--------|--------|--------|----------|------------|------------|---------|----------|-------------|------------|------------|--------|--------------|------------|--------------|-------|--------|--|
| BDB-38283 2                               | 15             | B             | 159              | .8<br>.8 | 16             |                 | 1338 2<br>334 2 | 2,46<br>2,58          | 7        | 2      | nd<br>Nd | ź      | 20<br>8        | 2      | ź      | 2      | 54<br>53 | .15<br>.05 | .08        | 5       | 36<br>29 | .74<br>.50  | 272<br>99  | .08<br>.11 | 2      | 1,73<br>3,04 | .02<br>.02 | .15<br>.06   | 2 2   | 5      |  |
| DMS-39237 SILT 2<br>BDS-38273 SILT 2      | 30<br>33       | 15<br>17      | 159<br>167       | .2<br>.3 | 19<br>24       | 9<br>7          | 604 3<br>846 2  | 5. <b>0</b> 0<br>2.22 | 10<br>16 | 2<br>3 | ND<br>ND | 2<br>2 | 50<br>36       | 3<br>4 | 2<br>2 | 2<br>2 | 81<br>54 | .83<br>.73 | .17<br>.07 | 11<br>7 | 33<br>33 | 1.07        | 200<br>155 | .13<br>.08 | 2<br>2 | 1.93<br>1.81 | .03<br>.02 | .40          | ~ ( ) | 5<br>5 |  |
| BDS-38274 SILT 3<br>BDS-38278 SILT 2      | 23<br>32       | 14<br>9       | 64<br>113        | .1       | 16<br>19       | 4               | 731 - 3         | . 84                  | 4<br>11  | 2<br>3 | ND<br>ND | 2<br>2 | 12<br>27       | 1      | 2 4    | 2<br>2 | 43<br>81 | .11<br>.28 | .09<br>.13 | 4       | 27<br>48 | .64<br>1.13 | 155<br>122 | .05<br>.12 |        | 1.17<br>2.23 |            | . 23<br>. 29 | 2     | 5<br>5 |  |
| STD A-1/AU-0.5 1                          | 26             | 28            | 187              | i.       | 25             | 12 0            | 1005 2          | 2.82                  | 10       | 2      | ND       | 2      | 38             | 1      | 2      | 2      | 59       | .58        | .10        | 7       | 71       | .70         | 281        | . 08       | Ģ      | Z.07         | .02        | .21          | 2     | 520    |  |

·· ...

•

SAMPLE 1

BDB-38279

#### ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HAND3 TO H2D AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,AI,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AL DETECTION 3 pps. AUX AMALYSIS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - SPIL - PULVERIZING

DATE RECEIVED SEPT 20 1983 DATE REPORTS MAILED ALT A BASSAYER \_\_ A LUL DEAN TOYE, CERTIFIED B.C. ASSAYER

|                                                                    |                        |                            |                            |                                |                             | I                          | .M.                      | WAT                               | SON                  | & A                     | ssoc                       | IAT                        | ES                              | PR                         | DJEC                  | ст #                       | NAK                             | (USF                          | ۴                                    | ILE                             | <b>#</b> E              | 13-2                        | 236                                 |                                 |                                 |                       |                                      |                                 |                                 | P                                       | AGE                         | H 1 |
|--------------------------------------------------------------------|------------------------|----------------------------|----------------------------|--------------------------------|-----------------------------|----------------------------|--------------------------|-----------------------------------|----------------------|-------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|-----------------------|----------------------------|---------------------------------|-------------------------------|--------------------------------------|---------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------------------|---------------------------------|-----------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------------------------|-----------------------------|-----|
| SAMPLE 0                                                           | No<br>ppa              | Cu<br>pp=                  | Pb<br>ppa                  | In<br>pp <b>e</b>              | Ag<br>ppe                   | Ni<br>ppm                  | Co<br>pp€                | Min<br>ppe                        | Fe<br>Z              | As<br>ppe               | U<br>pp∎                   | Au<br>ppa                  | Th<br>ppm                       | Sr<br>ppn                  | Cd<br>pp e            | Sb<br>ppm                  | Bi<br>ppe                       | V<br>ppe                      | Ca<br>I                              | P<br>Z                          | La<br>ppm               | Cr<br>ppe                   | Hg<br>1                             | Ba<br>ppm                       | Ti<br>I                         | B<br>pp∎              | A1<br>2                              | Na<br>Z                         | K<br>I                          | )<br>И<br>Рре                           | Au‡<br>ppb                  |     |
| 7KB-32319<br>RKB-32320<br>RKB-32322<br>RKB-32325<br>RKB-32326      | 1<br>13<br>5<br>3<br>2 | 21<br>21<br>25<br>18<br>10 | 10<br>12<br>14<br>12<br>20 | 59<br>49<br>74<br>38<br>65     | .1<br>.1<br>.2<br>.1        | 16<br>17<br>25<br>26<br>8  | 7<br>4<br>5<br>3         | 973<br>293<br>575<br>207<br>724   |                      | 7<br>8<br>8<br>5<br>7   | 2<br>2<br>2<br>2<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd       | 2<br>2<br>2<br>2<br>2<br>2      | 15<br>21<br>25<br>25       | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>3<br>3      | 2<br>2<br>2<br>2<br>2<br>2      | 55<br>73<br>69<br>45<br>41    | .10<br>.18<br>.25<br>.23<br>.07      | .08<br>.05<br>.12<br>.19<br>.06 | 3 <b>6</b> 8 5 4        | 25<br>45<br>64<br>89<br>19  | .28<br>.37<br>.70<br>.54<br>.15     | 104<br>89<br>119<br>84<br>59    | .06<br>.11<br>.09<br>.08<br>.08 | 2<br>3<br>2<br>3<br>2 | 1.01<br>.99<br>1.82<br>.91<br>.93    | .02<br>.03<br>.03<br>.04<br>.02 | .08<br>.09<br>.19<br>.10<br>.06 | 2<br>2<br>2<br>2<br>2<br>2              | 55555                       |     |
| RKB-32327<br>RKB-32328<br>RKB-32329<br>RKB-32330<br>RKB-32331      | 2<br>2<br>5<br>2       | 8<br>19<br>37<br>25<br>16  | 10<br>20<br>15<br>20<br>22 | 30<br>49<br>61<br>81<br>69     | .1<br>.5<br>.1<br>1.0<br>.2 | 4<br>9<br>38<br>35<br>17   | 4<br>13<br>6             | 1175<br>262<br>495<br>317<br>1122 | 1.28<br>2.51<br>3.21 | 2<br>3<br>6<br>6        | 2<br>6<br>2<br>3<br>2      | nd<br>Nd<br>Nd<br>Nd       | 2<br>2<br>2<br>2<br>2           | 7<br>11<br>29<br>19<br>15  | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 26<br>22<br>63<br>68<br>48    | .05<br>.06<br>.49<br>.17<br>.23      | .03<br>.06<br>.08<br>.07<br>.06 | 3<br>16<br>7<br>10<br>4 | 10<br>12<br>161<br>93<br>36 | .05<br>.09<br>1.16<br>.86<br>.54    | 45<br>36<br>57<br>62<br>55      | .06<br>.01<br>.07<br>.12<br>.05 | 2 3 2 3 3             | .43<br>.93<br>1.54<br>2.15<br>.95    | .03<br>.02<br>.04<br>.02<br>.02 | .03<br>.03<br>.19<br>.09        | 22222                                   | 5<br>60<br>5<br>5           |     |
| 7KB-32332<br>RKB-32333<br>RKB-32334<br>RKB-32335<br>RKD-32335      | 5<br>1<br>5<br>1<br>2  | 57<br>16<br>29<br>5<br>53  | 13<br>5<br>12<br>17<br>5   | 118<br>57<br>91<br>31<br>32    | .2<br>.2<br>.1<br>.2        | 21<br>1<br>19<br>3<br>7    | 7<br>3<br>7<br>2<br>3    | 290<br>440<br>476<br>1577<br>237  | 2.18                 | 4<br>2<br>3<br>3        | 2<br>3<br>6<br>2<br>3      |                            | 2<br>2<br>2<br>2<br>2           | 17<br>12<br>16<br>6<br>14  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3           | 98<br>63<br>75<br>10<br>44    | . 12<br>. 12<br>. 08<br>. 04<br>. 09 | .06<br>.03<br>.06<br>.04        | 5<br>4<br>7<br>4<br>3   | 67<br>37<br>40<br>7<br>15   | .72<br>.60<br>.54<br>.04<br>.11     | 59<br>67<br>57<br>38<br>76      | .10<br>.11<br>.10<br>.01<br>.10 | 2<br>2<br>2<br>2<br>2 | 2.08<br>1.17<br>2.84<br>.36<br>.48   | .02<br>.02<br>.02<br>.03<br>.03 | .06<br>.15<br>.05<br>.04        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 55555                       |     |
| RKB-32337<br>RKB-32338<br>RKB-32339<br>RKB-32340<br>RKB-32341      | 3<br>3<br>7<br>10      | 17<br>24<br>28<br>46<br>37 | 6<br>10<br>9<br>9<br>18    | 64<br>111<br>176<br>202<br>430 | .4<br>.7<br>.5<br>.2        | 9<br>14<br>17<br>22<br>32  | 9<br>9<br>9<br>2         | 227<br>1204<br>287<br>363<br>249  | 3.06<br>3.25<br>3.97 | 2<br>4<br>5<br>11       | 2<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 12<br>12<br>14<br>17<br>66 | 1<br>1<br>2<br>3      | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2      | 54<br>69<br>112<br>133<br>135 | .08<br>.05<br>.07<br>.11<br>.50      | .05<br>.05<br>.06<br>.06<br>.05 | 4<br>5<br>4<br>4<br>4   | 29<br>37<br>33<br>35<br>49  | .53<br>.73<br>.33<br>.63<br>.50     | 53<br>101<br>56<br>221<br>211   | .06<br>.12<br>.09<br>.09<br>.10 | 2<br>2<br>2           | 1.66<br>1.87<br>2.31<br>1.84<br>4.07 | .01<br>.02<br>.01<br>.01<br>.01 | .12<br>.14<br>.05<br>.11<br>.03 | 2<br>2<br>2<br>2<br>2<br>2<br>2         | 10<br>5<br>5<br>5<br>5      |     |
| RKB-32342<br>RKB-32343<br>RKB-32344<br>RKB-32345<br>RKB-32346      | 6355<br>55             | 66<br>81<br>44<br>26<br>21 | 18<br>17<br>21<br>10<br>11 | 257<br>241<br>283<br>137<br>96 | .7<br>.5<br>.7<br>.5<br>.2  | 30<br>66<br>29<br>15<br>17 | 11<br>13<br>6<br>4<br>7  | 262                               | 4.13<br>3.64         | 5<br>10<br>2<br>2<br>10 | 2<br>2<br>4<br>2<br>2      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>7           | 35<br>34<br>15<br>19<br>15 | 3<br>3<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2           | 139<br>116<br>70<br>82<br>67  | .14<br>.28<br>.07<br>.10<br>.14      | .08<br>.07<br>.07<br>.05<br>.07 | 6<br>5<br>7<br>3<br>5   | 66<br>139<br>41<br>29<br>44 | .50<br>1.10<br>.35<br>.26<br>.93    | 91<br>113<br>39<br>42<br>70     | .06<br>.07<br>.09<br>.04<br>.10 |                       | 3.51<br>4.14<br>5.09<br>1.71<br>1.97 | .01<br>.02<br>.01<br>.02<br>.02 | .04<br>.08<br>.03<br>.03<br>.15 | 2<br>2<br>2<br>2<br>2<br>2<br>2         | 5<br>5<br>5<br>10           |     |
| RKB-32347<br>RKB-32348<br>RKB-32349<br>RKB-32350<br>RKB-32351      | 6<br>1<br>1<br>1<br>1  | 79<br>36<br>16<br>42<br>40 | 14<br>12<br>10<br>11<br>11 | 214<br>89<br>51<br>9L<br>108   | .0<br>.4<br>.1<br>.1<br>.1  | 23<br>27<br>19<br>26<br>41 | 12<br>7<br>5<br>6        | 514<br>269                        | 2.37<br>2.17<br>2.63 | 2<br>9<br>5<br>5<br>5   | 2<br>2<br>2<br>3           | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>4<br>3<br>2           | 42<br>28<br>26<br>17<br>34 | 2<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 165<br>53<br>47<br>60<br>69   | .35<br>.53<br>.42<br>.19<br>.18      | .14<br>.07<br>.05<br>.06<br>.04 | 5<br>7<br>10<br>10<br>7 | 86<br>40<br>32<br>46<br>47  | 1.20<br>1.29<br>.73<br>1.21<br>1.26 | 216<br>164<br>114<br>173<br>235 | .09<br>.12<br>.10<br>.12<br>.16 | 2                     | 4.91<br>1.98<br>1.55<br>2.00<br>2.24 | .03<br>.03<br>.02<br>.02        | .40<br>.41<br>.15<br>.35<br>.15 | 2<br>2<br>2<br>2<br>2<br>2              | 15<br>5<br>5<br>5<br>5<br>5 |     |
| 9KB- 32352<br>RKB- 32353<br>RKB- 32354<br>RKB- 32355<br>RKB- 32356 | 1<br>1<br>2<br>1<br>1  | 37<br>20<br>46<br>40<br>65 | 14<br>13<br>12<br>12<br>10 | 94<br>171<br>157<br>171<br>143 | .2<br>.2<br>.5<br>.3        | 46<br>32<br>51<br>43<br>32 | 15<br>8<br>10<br>12<br>9 | 485<br>477<br>904                 | 2.67<br>2.91<br>2.99 | 12<br>2<br>7<br>10<br>7 | 3<br>2<br>3<br>3<br>2      | ND<br>ND<br>ND<br>ND       | 2 2 2 2 2 2 2                   | 37<br>12<br>18<br>21<br>18 | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2<br>2      | 86<br>55<br>56<br>60<br>65    | .34<br>.12<br>.16<br>.16<br>.16      | .09<br>.11<br>.07<br>.07<br>.12 | 9<br>4<br>5<br>5<br>5   | 55<br>43<br>45<br>52<br>48  | 1.80<br>.93<br>1.05<br>1.05<br>1.11 | 437<br>197<br>200<br>232<br>434 | .27<br>.18<br>.17<br>.16<br>.18 | 2<br>2<br>3<br>2      | 2.81<br>2.66<br>3.50<br>2.42<br>2.38 | .02<br>.02<br>.02<br>.04<br>.02 | .22<br>.08<br>.24<br>.12<br>.41 | 2<br>2<br>2<br>2<br>2<br>2<br>2         | 5555                        |     |
| RKB-32357<br>RKB-32358<br>STD A-1/AU-0.5                           | 1<br>1<br>1            | 48<br>34<br>30             | 17<br>12<br>40             | 192<br>122<br>191              | .5<br>.1<br>.3              | 48<br>50<br>35             | 11<br>8<br>12            | 479                               | 2.58                 | 12<br>3<br>11           | 2<br>2<br>2                | ND<br>ND<br>ND             | 2<br>2<br>2                     | 27<br>20<br>36             | 1<br>1<br>1           | 2 2 2 2                    | 2<br>2<br>2                     | 66<br>59<br>60                | . 27<br>. 24<br>. 60                 | .06<br>.05<br>.10               | 5<br>5<br>8             | 38<br>40<br>72              | 1.38<br>1.25<br>.73                 | 434<br>280<br>281               | .20<br>.17<br>.08               | 2                     | 3.18<br>2.17<br>2.05                 | .02<br>.02<br>.02               | .47<br>.21<br>.19               | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 220<br>2<br>2               |     |

`~\_\_

| SAMPLE I                                                      | Ма<br>ррв             | Cu<br>ppm                        | Fb<br>pp=                  | ln<br>ppe                       | Aq<br>ppa                   | Ni<br>ppe                  | Co<br>ppe                  | Nn<br>ppe                           | Fe<br>%                              | As<br>pp∎                 | U<br>ppm                        | Au<br>pp∎                  | Th<br>ppe                               | Sr<br>ppe                   | Cd<br>ppm             | Sb<br>pp=    | βι<br>pp∎                               | V<br>pp=                   | Ca<br>I                           | P<br>I                          | La<br>ppe                | Cr<br>pp∎                  | Hg<br>Z                              | 8a<br>ppe                       | Ti<br>Z                         | B<br>ppe     | Al<br>I                              | Na<br>I                              | K<br>X                          | ¥<br>opa                                | Au I<br>ppb       |
|---------------------------------------------------------------|-----------------------|----------------------------------|----------------------------|---------------------------------|-----------------------------|----------------------------|----------------------------|-------------------------------------|--------------------------------------|---------------------------|---------------------------------|----------------------------|-----------------------------------------|-----------------------------|-----------------------|--------------|-----------------------------------------|----------------------------|-----------------------------------|---------------------------------|--------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------|--------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------|-------------------|
| RKB-32359<br>RKB-32360<br>RKB-32360<br>RKB-32363<br>RKB-32363 | 2<br>1<br>1<br>1      | 28<br>30<br>34<br>27<br>34       | 9<br>10<br>11<br>7<br>7    | 195<br>191<br>96<br>216<br>119  | .1<br>.4<br>.3<br>.2<br>.2  | 31<br>39<br>26<br>20<br>23 | 9<br>10<br>7<br>7<br>8     | 1316                                | 2.90<br>3.19<br>1.84<br>1.62<br>3.11 | 2<br>5<br>8<br>8          | 2<br>2<br>2<br>2<br>2<br>2      | ND<br>ND<br>ND<br>ND       | 77077                                   | 23<br>32<br>28<br>100<br>32 | 2<br>1<br>1<br>5<br>1 | 2007N        | 222222222222222222222222222222222222222 | 57<br>58<br>42<br>33<br>63 | .21<br>.72<br>.41<br>1.11<br>.27  | .13<br>.12<br>.06<br>.10<br>.06 | 6<br>7<br>5<br>6         | 34<br>46<br>43<br>26<br>38 | .97<br>1.17<br>1.58<br>.65<br>1.31   | 431<br>502<br>157<br>416<br>503 | .19<br>.19<br>.09<br>.05<br>.25 | 2<br>5       | 2.76<br>3.38<br>2.03<br>1.42<br>2.50 | .03<br>.02<br>.02<br>.03<br>.02      | .21<br>.18<br>.13<br>.17<br>.55 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5<br>5<br>5<br>10 |
| RK8-32364<br>RK8-32365<br>RK8-32366<br>RK8-32367<br>RK8-32368 | 1<br>1<br>1<br>1      | 32<br>45<br>35<br>36<br>23       | 10<br>9<br>14<br>16<br>10  | 140<br>144<br>145<br>124<br>160 | .3<br>.1<br>.6<br>1.0       | 26<br>33<br>31<br>35<br>25 | 9<br>11<br>9<br>11<br>9    | 576<br>637<br>1430<br>1687<br>2018  | 3.88<br>3.70<br>2.79<br>2.67<br>2.51 | 11<br>13<br>10<br>9<br>10 | 2<br>2<br>2<br>2<br>2<br>2      | ND<br>ND<br>ND<br>ND       | N 7 7 7 7 7                             | 28<br>28<br>29<br>55<br>34  | 1<br>1<br>2<br>3      |              | 2222                                    | 70<br>72<br>54<br>55<br>52 | .18<br>.26<br>.22<br>.57<br>.27   | .08<br>.09<br>.07<br>.08<br>.07 | 5<br>6<br>7<br>6         | 36<br>29<br>37<br>69<br>42 | 1.49<br>1.20<br>1.07<br>1.24<br>.84  | 628<br>470<br>371<br>338<br>339 | .27<br>.23<br>.15<br>.11        | 335          | 3.02<br>3.06<br>2.29<br>2.04<br>1.89 | .93<br>.02<br>.92<br>.04<br>.02      | . 54<br>. 38<br>. 25<br>. 25    | 222222                                  | 5555              |
| RKB-32369<br>RKB-32370<br>RKB-32371<br>RKB-32372<br>RKB-32372 | 1<br>1<br>1<br>2      | 30<br>24<br>29<br>32<br>27       | 9<br>9<br>17<br>11<br>16   | 116<br>112<br>95<br>144<br>74   | .4<br>.7<br>.3              | 29<br>26<br>26<br>36<br>21 |                            | 1408<br>1158<br>1302<br>962<br>1328 | 2.59<br>2.32<br>2.44<br>2.40<br>2.40 | 7<br>8<br>7<br>7<br>5     | 17 M M M M                      | nd<br>Nd<br>Nd<br>Nd       | 77777                                   | 14<br>36<br>12<br>29<br>12  | 1<br>1<br>1<br>1      | N (4 (9 F1 N | 2222                                    | 56<br>47<br>53<br>49<br>47 | .13<br>.38<br>.09<br>.31<br>.07   | .19<br>.10<br>.06<br>.14<br>.14 | 7<br>5<br>8<br>7<br>9    | 56<br>48<br>56<br>67<br>42 | 1.14<br>.98<br>.98<br>1.47<br>.72    | 167<br>235<br>114<br>264<br>123 | .09<br>.09<br>.11<br>.12<br>.09 | 2<br>6<br>2  | 2.00<br>1.87<br>1.95<br>2.20<br>1.54 | .02<br>.02<br>.02<br>.02<br>.02      | .20<br>.18<br>.14<br>.11        | 212212                                  |                   |
| RKB-32374<br>RKB-32375<br>RKB-32376<br>RKB-32377<br>RKB-32378 | 1<br>1<br>1<br>2      | 27<br>16<br>14<br>31<br>18       | 13<br>7<br>14<br>10        | 133<br>182<br>305<br>119<br>131 | .5<br>1.1<br>.4<br>.5<br>.3 | 31<br>24<br>12<br>27<br>17 | 8<br>7<br>6<br>6           | 568<br>1241<br>3769<br>658<br>844   | 2.44<br>2.37<br>2.08<br>2.37<br>2.45 | 73737                     | 2<br>2<br>7<br>2<br>2<br>2      | ND<br>ND<br>ND<br>ND<br>ND | N 01 N 01 N                             | 24<br>27<br>20<br>44<br>24  | 1<br>2<br>3<br>1<br>1 | M M M M M    | 2 2 2 2 2 2                             | 59<br>47<br>36<br>57<br>55 | .27<br>.27<br>.15<br>.70<br>.26   | .13<br>.17<br>.08<br>.16<br>.05 | 7<br>6<br>9<br>7<br>8    | 51<br>38<br>21<br>47<br>35 | 1.40<br>.99<br>.33<br>1.39<br>.80    | 176<br>316<br>222<br>187<br>176 | .12<br>.12<br>.15<br>.11<br>.14 | 3<br>4       | 2.96<br>2.38<br>2.47<br>2.58<br>2.08 | . 92<br>. 02<br>. 03<br>. 02<br>. 02 | .12<br>.09<br>.08<br>.21<br>.12 | 2222                                    | 2012              |
| RKB-32379<br>RKB-32380<br>DHR-39239<br>DHB-39241<br>DHB-39242 | 1<br>4<br>2<br>5<br>1 | 13<br>26<br>22<br>22<br>22<br>27 | 5<br>16<br>10<br>9<br>14   | 55<br>64<br>5?<br>36<br>106     | .3<br>.1<br>.4<br>.2<br>.5  | 16<br>28<br>29<br>19<br>26 | 559<br>49                  | 184<br>229<br>375<br>179<br>916     | 1.27<br>3.27<br>2.65<br>2.18<br>3.29 | 2<br>11<br>5<br>6         | 2<br>3<br>2<br>2<br>2           | ND<br>ND<br>ND<br>ND       | 22222                                   | 45<br>21<br>44<br>17<br>45  | 1<br>1<br>1<br>1<br>1 | 222782       | 20222                                   | 32<br>71<br>52<br>52<br>64 | .69<br>.19<br>.49<br>.14<br>.41   | .06<br>.05<br>.09<br>.06<br>.07 | 8<br>9<br>8<br>8         | 39<br>60<br>48<br>53<br>47 | .61<br>1.03<br>.75<br>.70<br>1.28    | 156<br>66<br>85<br>80<br>409    | .06<br>.18<br>.11<br>.10<br>.12 | 3<br>5<br>4  | 1.57<br>3.00<br>3.25<br>1.52<br>2.29 | .03<br>.02<br>.04<br>.03<br>.02      | .15<br>.08<br>.11<br>.27<br>.18 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5555              |
| DMB-39243<br>DMB-39244<br>DMB-39246<br>DMB-39247<br>DMB-39248 | 1<br>2<br>2<br>11     | 55<br>10<br>30<br>34<br>43       | 11<br>6<br>3<br>21<br>14   | 114<br>32<br>44<br>58<br>78     | .7<br>.2<br>2.8<br>.2<br>.7 | 44<br>15<br>14<br>48<br>60 | 12<br>3<br>4<br>16<br>17   | 494<br>233<br>260<br>464<br>414     | 2,58<br>1,03<br>1,87<br>3,55<br>3,31 | 2<br>3<br>2<br>10<br>3    | 2<br>2<br>2<br>4                | ND<br>ND<br>ND<br>ND       | 14 54 54 53 EV                          | 49<br>21<br>16<br>38<br>97  | 1<br>1<br>1<br>1      | 77777        | 222222                                  | 76<br>31<br>43<br>65<br>52 | .59<br>.58<br>.24<br>.53<br>1.58  | .08<br>.05<br>.05<br>.05<br>.05 | 8<br>3<br>16<br>15       | 79<br>37<br>34<br>53<br>40 | 1.7?<br>.87<br>.57<br>1.72<br>.91    | 53<br>25<br>82<br>164<br>114    | .08<br>.04<br>.07<br>.19<br>.07 | 335          | 2.35<br>.97<br>.97<br>3.01<br>3.22   | .04<br>.02<br>.02<br>.05<br>.10      | .1)<br>.04<br>.18<br>.48<br>.17 | ~~~                                     | N 17 N 43 W       |
| DK8-39251<br>DK8-39252<br>DK8-39253<br>DK8-39254<br>DK8-39255 | 4<br>5<br>1<br>1<br>1 | 32<br>25<br>41<br>44<br>27       | 12<br>19<br>12<br>11<br>17 | 124<br>148<br>116<br>114<br>87  | .2<br>.4<br>.1<br>.3<br>.6  | 35<br>32<br>47<br>41<br>34 | 14<br>10<br>17<br>10<br>12 | 62B<br>622                          |                                      | 3<br>8<br>10<br>12        | 4<br>2<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 20<br>49<br>208<br>60<br>69 | 1<br>2<br>1<br>1      | 0 0 0 0 0 0  | 0 0 0 0 0 0                             | 72<br>84<br>86<br>72<br>78 | .21<br>.48<br>1.68<br>.59<br>1.11 | .05<br>.09<br>.37<br>.12<br>.15 | 8<br>7<br>51<br>13<br>21 | 63                         | 1.32<br>1.15<br>2.34<br>1.76<br>1.48 | 90<br>165<br>1205<br>321<br>491 | .13<br>.10<br>.15<br>.15<br>.24 | 3<br>6<br>10 | 2.68<br>2.13<br>2.41<br>2.71<br>2.94 | .03<br>.03<br>.04<br>.02<br>.04      | .11<br>.12<br>.71<br>.26<br>.25 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 55555             |
| 9 <b>48-39256</b><br>STD A-1/AU-9.5                           | !<br>1                | 30<br>32                         | 12<br>40                   | 121<br>181                      | .1<br>.3                    | и<br>а                     | 9<br>12                    | 401<br>1002                         | 3.54<br>2.01                         | 14<br>11                  | 2<br>2                          | ND<br>ND                   | 2<br>2                                  | 22<br>38                    | 1<br>1                | 2<br>2       | 2                                       | 73<br>58                   | .71<br>.60                        | .06<br>.10                      | 9<br>8                   | 63<br>74                   | 1.21<br>.72                          | 195<br>279                      | , 17<br>, 08                    |              | 3.03<br>2.07                         | . 02<br>. 02                         | .11<br>.19                      | 2<br>2                                  | 5<br>510          |

.

,

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2236

PAGE # 1

 $\checkmark$ 

SAMPLE 1 Рb Ni Th Sr Sb ۷ P Cr Ba B AL ĸ N Aut Mo Cu ζn Aq Co 50 Fe As U Au Cđ Bı Ca La Mq. Tı Na % z z ppa. 005 ppe. 00 . pp= **pp** ppe 208 ppe. pp. pp≇ op.e 000 00# pp e ppe po e I 006 <u>ope</u> 1 pp at 00**4** 1 Z z pçe pob DMB-39257 15 8 80 17 263 2.64 12 2 ND 20 55 .18 .06 34 .67 213 .17 4 3.9B .92 . 11 2 .4 6 2 á 2 9 875 2.99 DHB-39258 1 50 117 .3 30 11 10 2 NÐ 2 17 í 2 2 66 .25 .06 5 42 1.30 340 . 23 7 2.40 .03 .65 2 5 DHB-39259 29 139 27 9 1081 2.85 ND 2 76 179 4 2.65 1 10 .7 ó 4 2á \$ 7 2 .21 .08 6 60 1.46 . 20 .03 .17 2 5 24 З 2 22 96 188 6 2.29 DMB- 39260 5 10 160 .4 26 19 876 2.91 5 ND 2 -7 .21 .10 5 34 .87 .14 .03 .09 2 5 DH8-39261 60 15 439 .3 56 1 1175 4.95 -17 5 ND 2 44 2 2 165 . 49 .14 7 60 1.47 393 .20 4 3.65 .04 .22 2 5 ć 4 DHB-39262 .3 28 2 2 2 97 3 -30 10 105 ό 296 3.12 7 ND 19 1 .12 .04 8 59 1.11 124 .20 3 2.34 .02 .16 5 DHB-39260 1 40 18 -94 .9 51 11 371 2.97 - 7 2 ND 2 24 1 3 2 56 .20 .2é 10 71 1.14 186 .08 5 4.19 . 92 . 19 2 5 2 2 DHD-37264 14 12 69 .5 18 7 229 2.27 Ь ND 2 15 1 2 51 .10 .07 7 33 . 57 107 .16 4 3.03 .02 .10 2 5 Т 3 DHB-39265 2 32 13 85 .3 -31 9 527 2.73 4 2 ND 32 1 2 66 . 23 .05 10 49 1.32 115 .15 5 2.98 .04 .20 2 5 -31 q 158 .2 17 7 786 2.90 194 5 NÐ 2 27 2 2 2 70 .25 .06 5 2.15 DHB-39266 4 34 1.19 160 .15 . 02 . 23 5 1 DHB-39267 236 2.91 - 13 1 28 11 45 .1 36 9 19 3 NÐ 2 30 2 61 .24 .07 17 42 , 89 118 4 2.28 . 92 , 1 - 7 DHB-39268 27 23 63 72 17 429 3.74 2 ND 55 89 . 29 102 1.97 1 .1 14 -2 ł 2 2 .03 8 160 . 29 6 3.76 .04 .17 5 DMB-39265 1 -11 17 37 .2 19 â 242 2.66 11 2 ND 2 38 1 - 7 2 62 ,45 .12 4 30 . 39 173 .23 5 3.26 . 95 .13 4 DMB-39270 2 - 34 20 69 -2 52 20 596 3.60 10 2 ND 2 39 2 2 74 .26 .05 9 77 1.37 146 .19 4 2,97 . 02 .25 2 5 1 DHS-39271 19 65 2 1 16 .3 27 9 548 2.78 ó NÐ 2 32 73 . 18 .04 10 54 . 89 116 . 19 3 2.30 .03 .19 5 1 2 2 .04 DMB-39272 21 5 2.29 1 12 56 .3 -24 а 546 2.83 5 3 ND 2 -24 1 2 2 61 .15 9 48 .79 101 .17 .02 .15 2 5 DHB-39273 1 -24 12 6B .3 51 10 299 3.21 7 2 ND 3 31 1 2 2 79 .24 .04 10 82 1.39 125 .22 4 2.43 .03 .20 2 5 DHB-39274 1 27 15 89 - 33 10 561 2.61 13 ND 2 30 2 61 . 29 .12 57 1.02 159 5 2.68 .20 .4 3 1 2 3 .14 . 03 2 5 27 454 2.80 809-38284 2 8 86 .1 33 10 9 2 ND 5 49 69 .55 208 .05 5 2 ? .10 16 49 1.13 . 16 5 1.77 1 . 36 2 909-38256 2 29 12 39 .2 496 2.96 S 40 11 ٩Ŋ 53 . 59 . 77 4 5 1 2 2 67 .11 17 52 1.19 235 .17 3 1.78 .05 2 5 BDB-38237 1 18 -7 58 .1 33 6 256 1.99 ć 3 ND 3 39 2 2 58 . 48 ,03 11 50 . 94 193 . 16 3 1.42 .04 . 29 2 5 308-38289 2 27 11 óð 28 ò 477 2.19 5 ND 3 33 2 49 .36 .08 17 . 81 .25 2 .1 δ 1 -2 **4**B 125 .11 4 2,80 .03 15 133 BDB-39291 1 15 13 . 2 17 7 464 2.27 4 2 ND 3 35 58 . 40 42 . 87 5 2.11 1 2 .14 11 184 .15 .03 . 15 2 10 2 808-38293 1 17 57 301 2.37 ND 38 55 .83 . 23 45 9 .3 -24 7 3 1 2 . 50 .04 15 51 131 .15 4 2,85 .04 2 2 17 ND 29 58 808-38294 113 .2 9 654 2.66 9 . 87 5 2.28 .03 .15 5 là. 21 ç 2 1 2 2 .41 .07 44 156 . 16 2 2 2 308-38295 16 11 50 .4 15 5 296 2.61 11 ND 7 44 1 2 2 56 . 97 .03 11 35 . 46 112 .19 5 2.08 .03 .11 2 5 806-39296 151 8 1479 2.44 ND 2 32 52 . 47 5 2.09 1 15 11 .4 20 6 2 1 2 .06 10 40 . 69 182 . lċ .03 .17 2 5 -2 908-38297 3 374 2.60 ND 2 29 53 .45 95 14 10 63 .2 19 5 6 2 1 2 2 .03 11 43 .73 .16 2 2.26 . 03 .15 5 2 806-38299 4 22 10 55 .3 22 5 303 1.41 2 !5 ND 2 64 1 2 2 43 1.35 .0? 13 65 . 66 194 .08 3 1.98 .04 .21 2 5 508-18301 3 -27 9 72 .5 35 10 517 2.50 4 2 ND 2 58 2 2 72 . ?5 .07 8 69 1.22 219 .13 4 2.27 .05 . 29 2 5 1 BDE-38303 2 30 .5 44 616 2.42 2 75 2 67 1.30 71 1.35 254 5 2.12 .05 7 18 35 3 -2 ND 2 2 , 06 - 7 . 51 5 11 -.14 2 13 55 605 4.02 2 198 2 .84 29 590 .22 3 3.00 .05 EDB-18105 48 105 .8 17 13 4 ND ? 104 .18 100 1.61 . 36 2 ٩. .27 BDB-38306 2 44 11 106 .9 46 15 567 3.93 10 1 ЯÇ 2 87 2 2 105 .74 .14 26 84 1.42 513 . 20 2 2.84 . 05 2 5 32 7 2 2 .63 . 20 2 908-38307 2 3 .97 .7 34 11 455 3.52 NÐ 58 2 2 **78** .08 18 62 1.08 374 .18 2 2.32 . 04 5 -2 33 22 .15 .07 .73 140 4 1.77 .03 .14 2 5 808-32309 2 10 106 .5 26 8 710 2.31 7 2 ND 2 2 2 56 6 41 .17 1 8DE-38310 20 2 1.9 5 700 1.26 ND 41 2 -31 .44 25 . 33 200 . 08 4 .84 .04 2 5 1 -51 16 4 2 2 2 .05 - 6 1 808-38311 23 . 2 24 712 2.69 5 ND 2 34 2 65 .53 .06 1.31 154 .16 3 2.37 .02 .14 5 10 115 2 2 7 46 1 a 1 ND 52 . 27 .05 9 93 5 908-38312 24 266 2.08 2 49 . 99 . 12 2 2.25 .03 .14 2 1 20 10 -64 .1 6 12 2 -24 ł 2 12 999 2.63 73 .74 2 530 STD A-1/AU-0.5 30 40 181 .3 36 10 ND 2 36 2 58 . 62 .10 8 283 .09 8 2.09 .02 .20 1 2 1 2

1.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2236

PAGE # 7

 $\sim -$ 

 $\sim$ 

. .

-----

 $\searrow$ 

PAGE # 4

.

| SANFLE #                                                                   | No<br>ppe        | Cu<br>ppe                  | Pt<br>pp∎                  | ∑n<br>pp∎                    | Ag<br>ppe                   | Ni<br>ppe                  | Co<br>9pe                | Rn<br>ppm                         | Fe<br>%                              | As<br>ppe              | U<br>pp=                 | Au<br>ppe            | Th<br>ppm         | Sr<br>ppa                  | Cd<br>ppm             | Sb<br>pp.m                              | Bi<br>⊅p∎ | V<br>Ppm                   | Ca<br>X                              | Р<br>12                         | La<br>ppe                 | Cr<br>ppe                  | Mg<br>I                            | Ba<br>ppm                       | ti<br>Z                         | B<br>ppm    | A)<br>7                              | Na<br>I                              | K<br>Z                               | N<br>ppm    | Au t<br>ppb                |
|----------------------------------------------------------------------------|------------------|----------------------------|----------------------------|------------------------------|-----------------------------|----------------------------|--------------------------|-----------------------------------|--------------------------------------|------------------------|--------------------------|----------------------|-------------------|----------------------------|-----------------------|-----------------------------------------|-----------|----------------------------|--------------------------------------|---------------------------------|---------------------------|----------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------|----------------------------|
| 808-38314<br>808-38315<br>806-38315<br>806-38317<br>806-38317              | 1<br>1<br>1<br>1 | 10<br>20<br>10<br>30<br>14 | 11<br>10<br>12<br>13<br>12 | 147<br>112<br>73<br>91<br>67 | 1.0<br>.3<br>.1<br>.4       | 20<br>27<br>20<br>37<br>15 | 9<br>2<br>9<br>9         | 1724<br>1326<br>372<br>327<br>451 | 1.92<br>2.35<br>1.61<br>2.35<br>2.16 | 6<br>2<br>4<br>10<br>6 | 2<br>7<br>7<br>2<br>2    | ND<br>ND<br>ND<br>ND | 20202             | 39<br>19<br>15<br>37<br>20 | 1<br>1<br>1<br>1<br>1 | 2 2 2 2 2 2                             | 22202     | 42<br>53<br>31<br>59<br>41 | . 37<br>. 18<br>. 37<br>. 38<br>. 22 | .10<br>.06<br>.19<br>.14<br>.22 | 4<br>5<br>7<br>4          | 42<br>50<br>45<br>79<br>33 | .78<br>1.14<br>1.31<br>1.75<br>.64 | 272<br>120<br>40<br>150<br>86   | .08<br>.14<br>.07<br>.14<br>.11 | 2<br>2<br>2 | 2.45<br>2.00<br>2.54                 | .02<br>.02<br>.01<br>.02<br>.02      | .08<br>.13<br>.04<br>.19             | 22222       | 5555                       |
| ED8-38319<br>9D8-38320<br>9D8-38321<br>9D8-38322<br>9D8-38322<br>9D8-38323 |                  | 16<br>12<br>23<br>15       | 11<br>12<br>11<br>10<br>9  | 109<br>71<br>57<br>42<br>38  | 1.1<br>.4<br>.3<br>.8<br>.7 | 21<br>16<br>27<br>17<br>16 | 65577                    | 564<br>505<br>576<br>156<br>136   | 2.17<br>2.36<br>1.73<br>1.99<br>1.87 | 6<br>5<br>4<br>2       | 22022                    | ND<br>ND<br>ND<br>ND | 61 61 61 61 61 FT | 27<br>20<br>24<br>26<br>24 | 1<br>1<br>1<br>1<br>1 | 64 P3 64 64 64                          | 27727     | 46<br>45<br>45<br>52<br>47 | .25<br>.22<br>.37<br>.18<br>.15      | .14<br>.11<br>.13<br>.05<br>.04 | 5<br>4<br>8<br>4          | 43<br>37<br>64<br>44       | .81<br>.67<br>1.76<br>.48<br>.41   | 160<br>85<br>92<br>47<br>47     | .10<br>.10<br>.10<br>.14<br>.13 | 2<br>2<br>3 | 2.70<br>3.90<br>2.23<br>1.22<br>1.27 | .02<br>.02<br>.61<br>.02<br>.91      | .07<br>.06<br>.10<br>.05<br>.05      | 22222       | 55555                      |
| BOB-38324<br>FKS-32321<br>FKS-32323<br>FKS-32324<br>DHS-39240              | 1 0 4 5 7        | 10<br>26<br>29<br>19<br>36 | 10<br>19<br>23<br>12<br>14 | 31<br>113<br>114<br>63<br>73 | .7<br>.7<br>.5<br>.4<br>.5  | 15<br>35<br>23<br>16<br>46 | 3<br>8<br>6<br>4<br>11   | 112<br>654<br>800<br>444<br>764   | 1.60<br>2.63<br>2.26<br>1.95<br>2.71 | 36228                  | 2<br>57<br>37<br>46<br>2 | NČ<br>ND<br>ND<br>ND | 0 14 14 14 19     | 22<br>55<br>58<br>38<br>84 | 1<br>1<br>1<br>1<br>1 | 72222                                   | 20222     | 49<br>67<br>54<br>56<br>66 | .14<br>.88<br>1.03<br>.62<br>.38     | .03<br>.06<br>.07<br>.05<br>.14 | 3<br>60<br>22<br>26<br>13 | 37<br>94<br>68<br>39<br>70 | .35<br>.86<br>.62<br>.41<br>1.94   | 37<br>227<br>175<br>86<br>345   | .14<br>.10<br>.07<br>.06<br>.17 | 23432       | .80<br>2.47<br>1.51<br>.94<br>2.20   | .02<br>.03<br>.03<br>.03             | .04<br>.24<br>.17<br>.12<br>.58      | 2022        | 97 (7) (7) (7) (7)         |
| DHS-39245<br>DHS-39249<br>8DS-38285<br>BD3-38288<br>8D5-38290              | 1                | 44<br>36<br>30<br>11<br>24 | 13<br>15<br>12<br>3        | 84<br>59<br>99<br>15<br>60   | .5<br>.3<br>.1<br>.1        | 71<br>46<br>38<br>6<br>24  | 11<br>11<br>11<br>2<br>8 | 586<br>392<br>496<br>59<br>406    | 2.18<br>2.42<br>3.30<br>.86<br>2.07  | 67322<br>222           | 2<br>3<br>2<br>4         | NÛ<br>ND<br>ND<br>ND | 22422             | 65<br>62<br>46<br>8<br>30  | 1<br>1<br>1<br>1<br>1 | 07272                                   | 22222     | 54<br>50<br>67<br>21<br>46 | .79<br>1.16<br>.51<br>.07<br>.36     | .10<br>.10<br>.11<br>.03<br>.07 | 9<br>11<br>16<br>4<br>16  | 61<br>44<br>50<br>16<br>45 | 2.05<br>1.28<br>1.21<br>.10<br>.74 | 149<br>144<br>236<br>35<br>122  | .10<br>.11<br>.16<br>.05<br>.10 | 43322       | 1.97<br>2.46<br>1.81<br>.36<br>2.39  | . 08<br>. 05<br>. 04<br>. 03<br>. 03 | . 53<br>. 28<br>. 40<br>. 06<br>. 24 | 2 2 2 2 2   | 5<br>5<br>5<br>5           |
| 8DS-38292<br>8DS-38296 -<br>8DS-38300<br>8DS-38302<br>8DS-38304            | 1 2 2 2 2        | 14<br>19<br>22<br>35<br>37 | 10<br>15<br>13<br>12       | 48<br>44<br>54<br>86<br>66   | .1<br>.3<br>.4<br>.2<br>.4  | 19<br>19<br>21<br>84<br>38 | 5<br>5<br>13<br>14       | 287<br>371<br>334<br>420<br>394   | 1.59<br>1.77<br>1.50<br>2.62<br>2.78 | 2<br>4<br>3<br>7       | 2<br>8<br>15<br>2<br>2   | ND<br>ND<br>ND<br>ND | 20202             | 47<br>58<br>69<br>94<br>40 | !<br>1<br>1<br>1      | <u> </u>                                | 22242     | 34<br>38<br>40<br>56<br>69 | .73<br>1.11<br>1.48<br>1.04<br>.69   | .08<br>.08<br>.03<br>.16<br>.07 | 11<br>15<br>11<br>14<br>6 | 38<br>47<br>66<br>93<br>42 | .57<br>.52<br>.67<br>1.92<br>1.21  | 142<br>148<br>193<br>268<br>150 | .10<br>.09<br>.06<br>.16<br>.13 | 222         | 1.28<br>1.90<br>1.86<br>2.10<br>2.16 | .04<br>.04<br>.03<br>.05<br>.04      | . 30<br>. 26<br>. 21<br>. 45<br>. 27 | 22222       | 5<br>5<br>5<br>5<br>5<br>5 |
| BDS-38308<br>BDS-38313<br>STD A-1/AU-0,5                                   | 1<br>1<br>1      | 13<br>25<br>30             | 11<br>14<br>40             | 77<br>66<br>151              | .3<br>.5<br>.7              | 17<br>27<br>36             | 5<br>6<br>12             | 560<br>405<br>1003                | 1.77<br>1.82<br>2.81                 | 8<br>6<br>10           | 2<br>2<br>2              | ND<br>ND<br>ND       | 252               | 20<br>44<br>36             | 1<br>1<br>1           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 222       | 57<br>48<br>59             | .22<br>.89<br>.60                    | .11<br>.05<br>.10               | 4<br>10<br>8              | 34<br>49<br>74             | - 66<br>. 79<br>. 74               | 96<br>121<br>262                | .09<br>.10<br>.09               | 4           | 1.71<br>1.69<br>2.07                 | .02<br>.03<br>.02                    | . 05<br>. 25<br>. 29                 | 2<br>2<br>2 | 5<br>5<br>520              |

 $\checkmark$ 

#### ICP GEOCHEMICAL ANALYSIS

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Ng,AI,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AN DETECTION 3 ppm. AUX AMALYSIS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - SOIL - PULYERIZINS

DEAN TOYE, CERTIFIED B.C. ASSAYER

V

|                                                                                                      |                            |                            |                            |                                 |                              | I                          | . M.                       | WAT                  | SON                                  | & A9                       | soc                   | IATE                             | ES                         | PR                         | JEC                   | т #                   | NAK                        | USP                         | F                               | ILE                             | # 8                        | 3-2                        | 359                                |                                |                                 |             |                                      |                                 |                                 | Pi                              | AGE                          | ∦ 1 |
|------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|------------------------------|----------------------------|----------------------------|----------------------|--------------------------------------|----------------------------|-----------------------|----------------------------------|----------------------------|----------------------------|-----------------------|-----------------------|----------------------------|-----------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------|------------------------------------|--------------------------------|---------------------------------|-------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------|-----|
| SAMPLE 1                                                                                             | Ho<br>pp∎                  | Cu<br>ppm                  | РЬ<br>рра                  | In<br>p <b>pe</b>               | Ag<br>ppa                    | Ni<br>pga                  | Co<br>ppe                  | Ma<br>ppe            | Fe<br>Z                              | As<br>ppe                  | U<br>pp e             | Au<br>ppa                        | Th<br>pp=                  | Sr<br>ppa                  | Cd<br>ppa             | Sb<br>ppm             | Di<br>ppn                  | V<br>ppa                    | Ca<br>1                         | P<br>I                          | La<br>ppe                  | Cr<br>ppe                  | Hg<br>Z                            | Ba<br>ppm                      | Ti<br>I                         | 9<br>ppe    | A]<br>1                              | Na<br>Z                         | K<br>Z                          | W<br>ppm                        | Au t<br>ppb                  |     |
| 90 <del>0-</del> 38355<br>90 <del>0-</del> 38354<br>90 <del>0-</del> 38354<br>90 <del>0-</del> 38359 | 1<br>1<br>2<br>1<br>2      | 11<br>16<br>29<br>13<br>16 | 7<br>13<br>14<br>7<br>9    | 33<br>52<br>195<br>33<br>42     | .2<br>1.4<br>.8<br>.3<br>.8  | 6<br>11<br>18<br>7<br>8    | 4<br>4<br>5<br>4           | 464<br>764<br>453    | 1.14<br>2.02<br>2.69<br>1.50<br>2.22 | 11<br>8<br>11<br>5<br>5    | 2<br>4<br>4<br>2<br>4 | nd<br>Nd<br>Nd<br>Nd             | 2<br>2<br>2<br>2<br>2<br>2 | 15<br>7<br>49<br>6<br>7    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 19<br>29<br>36<br>28<br>33  | .13<br>.04<br>.54<br>.03<br>.03 | .04<br>.06<br>.10<br>.04<br>.05 | 3<br>7<br>12<br>7<br>8     | 6<br>13<br>22<br>9<br>14   | .10<br>.41<br>.54<br>.29<br>.29    | 52<br>68<br>143<br>62<br>71    | .02<br>.02<br>.02<br>.03<br>.03 | 4           | .43<br>1.21<br>2.09<br>.75<br>1.47   | .06<br>.03<br>.02<br>.02<br>.03 | .06<br>.07<br>.08<br>.06<br>.08 | 2<br>2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5             |     |
| 808-38340<br>808-38342<br>808-38343<br>808-38344<br>90 <del>8-</del> 38345                           | 3<br>3<br>2<br>2<br>2<br>2 | 31<br>21<br>49<br>16<br>23 | 12<br>19<br>20<br>14<br>15 | 90<br>57<br>136<br>32<br>86     | .5<br>1.6<br>.7<br>.9<br>1.0 | 19<br>10<br>29<br>7<br>14  | 4<br>3<br>11<br>2<br>4     | 938<br>279           | 3.00<br>3.01<br>3.73<br>2.81<br>2.95 | 16<br>15<br>34<br>9<br>16  | 3<br>2<br>5<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2<br>2 | 7<br>6<br>7<br>4<br>8      | 1<br>1<br>1<br>1<br>1 | 2<br>3<br>2<br>3<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 33<br>34<br>33<br>34<br>37  | .03<br>.02<br>.05<br>.02<br>.04 | .06<br>.10<br>.08<br>.10<br>.06 | 14<br>10<br>13<br>7<br>11  | 19<br>13<br>19<br>10<br>15 | .64<br>.28<br>1.00<br>.16<br>.45   | 101<br>70<br>104<br>44<br>90   | .01<br>.03<br>.02<br>.03<br>.03 | 4           | 1.82<br>2.38<br>2.40<br>1.62<br>1.63 | .01<br>.02<br>.01<br>.02<br>.02 | .13<br>.09<br>.15<br>.05<br>.09 | 2<br>2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5        |     |
| 808-38366<br>808-38367<br>808-38369<br>808-38376<br>808-38371                                        | 4<br>3<br>4<br>1           | 23<br>22<br>30<br>30<br>6  | 19<br>17<br>14<br>17<br>4  | 106<br>84<br>72<br>100<br>23    | 1.2<br>.6<br>.6<br>.9<br>.1  | 15<br>16<br>12<br>18<br>3  | 5<br>5<br>6<br>1           | 397                  | 3.72<br>3.19<br>3.84<br>3.74<br>.88  | 16<br>16<br>9<br>16<br>2   | 7<br>2<br>4<br>7<br>2 | NG<br>NG<br>NG                   | 2<br>2<br>2<br>2<br>2      | 10<br>8<br>5<br>6<br>5     | 2<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 43<br>39<br>34<br>39<br>20  | .07<br>.04<br>.02<br>.03<br>.03 | .05<br>.05<br>.03               | 9<br>11<br>10<br>11<br>2   | 18<br>18<br>10<br>23<br>5  | .45<br>.43<br>.21<br>.80<br>.15    | 91<br>76<br>56<br>86<br>28     | .04<br>.03<br>.03<br>.02<br>.02 | 4           | 2.03<br>2.31<br>2.00<br>2.24<br>.51  | .02<br>.02<br>.02<br>.01<br>.04 | .08<br>.08<br>.07<br>.09<br>.05 | 2<br>2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5             |     |
| BDB-38372<br>BDB-38373<br>BDB-38374<br>BD <del>B</del> -38375<br>BD <del>B</del> -38376              | 7<br>2<br>8<br>6<br>5      | 24<br>12<br>53<br>39<br>48 | 14<br>16<br>33<br>29<br>24 | 100<br>36<br>241<br>140<br>199  | .4<br>.3<br>.6<br>1.6<br>.2  | 12 K<br>21 K<br>21 K       | 6<br>2<br>12<br>7<br>12    | 957                  | 4,36<br>2,09<br>3,74<br>3,54<br>5,00 | 19<br>6<br>14<br>14<br>37  | 5<br>4<br>2<br>6<br>2 | nd<br>ND<br>ND<br>ND             | 2<br>2<br>2<br>2<br>2      | 8<br>6<br>7<br>5<br>6      | 1<br>1<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 61<br>29<br>46<br>49<br>61  | .04<br>.02<br>.03<br>.02<br>.04 | .10<br>.07<br>.14<br>.08<br>.1B | 5<br>9<br>12<br>10<br>7    | 16<br>9<br>17<br>15<br>22  | .50<br>.12<br>.49<br>.45<br>.87    | 51<br>60<br>79<br>96<br>82     | .04<br>.04<br>.01<br>.01        | 3<br>4<br>4 | 2.09<br>.86<br>2.36<br>1.47<br>2.67  | .02<br>.03<br>.01<br>.01<br>.01 | .07<br>.08<br>.09<br>.08<br>.08 | 2<br>2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5        |     |
| BDB-38377<br>B0B-38378<br>B0B-38379<br>BDB-38380<br>BDB-38380<br>BDB-38381                           | 5<br>5<br>3<br>16          | 39<br>45<br>42<br>29<br>97 | 12<br>34<br>17<br>10<br>18 | 167<br>161<br>178<br>106<br>277 | .4<br>.4<br>.3<br>1.1        | 19<br>21<br>23<br>14<br>38 | 13<br>14<br>9<br>11<br>17  | 1452<br>441<br>792   | 4.59<br>5.50<br>4.22<br>4.57<br>5.80 | 24<br>19<br>27<br>18<br>25 | 3<br>2<br>3<br>5<br>6 | nd<br>Nd<br>Nd<br>Nd             | 2<br>2<br>3<br>2<br>2      | 8<br>6<br>7<br>9<br>5      | 2<br>1<br>1<br>1<br>2 | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 73<br>47<br>57<br>112<br>62 | .06<br>.02<br>.06<br>.08<br>.05 | .13<br>.10<br>.09<br>.05<br>.12 | 4<br>6<br>7<br>2<br>10     | 16<br>13<br>16<br>22<br>16 | .73<br>.44<br>.75<br>1.32<br>.87   | 77<br>70<br>65<br>69<br>93     | .04<br>.02<br>.05<br>.12<br>.02 | 5<br>5<br>5 | 2.15<br>2.29<br>2.11<br>3.03<br>2.47 | .02<br>.02<br>.01<br>.03<br>.01 | .09<br>.07<br>.07<br>.06<br>.08 | 2<br>2<br>2<br>2<br>2           | 275<br>10<br>5<br>5<br>5     |     |
| 80 <del>0-</del> 38382<br>80 <del>0-</del> 38383<br>808- 38384<br>808- 38385<br>808- 38385           | 5<br>3<br>2<br>2<br>2      | 51<br>27<br>44<br>50<br>36 | 12<br>10<br>10<br>15<br>14 | 251<br>125<br>155<br>164<br>128 | .4<br>.4<br>.4<br>.3         | 26<br>14<br>18<br>19<br>15 | 23<br>10<br>14<br>23<br>19 | 1579<br>1013<br>1833 | 4.30<br>3.50<br>4.71<br>5.51<br>4.20 | 39<br>17<br>9<br>19<br>5   | 2<br>3<br>2<br>2<br>2 | 2999<br>2999                     | 2<br>2<br>2<br>2<br>2      | 27<br>18<br>10<br>16<br>10 | 3<br>1<br>1<br>2<br>1 | 2<br>5<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 64<br>70<br>91<br>98<br>87  | .60<br>.18<br>.11<br>.21<br>.12 | .11<br>.09<br>.09<br>.12<br>.10 | 2<br>2<br>2<br>2<br>2<br>7 | 18                         | .91<br>.76<br>1.16<br>1.41<br>1.00 | 119<br>107<br>82<br>108<br>113 | .02<br>.05<br>.11<br>.04<br>.04 | 4<br>5<br>5 | 2.29<br>2.02<br>3.26<br>3.16<br>2.73 | .02<br>.03<br>.02<br>.02<br>.02 | .13<br>.07<br>.09<br>.11        | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5             |     |
| 809-38387<br>809-38388<br>809-38389<br>DH9-39298<br>DH9-39299                                        | 2<br>3<br>1<br>2<br>5      | 51<br>54<br>24<br>41<br>25 | 8<br>17<br>14<br>15<br>31  | 112<br>172<br>87<br>151<br>97   | .3<br>.1<br>.3<br>.3         | 19<br>24<br>15<br>33<br>24 | 17<br>18<br>15<br>9<br>14  | 1774<br>1044<br>783  | 4.63<br>4.62<br>4.01<br>3.63<br>2.28 | 20<br>26<br>16<br>14<br>29 | 2<br>6<br>2<br>3<br>3 | ND<br>ND<br>ND<br>ND             | 2<br>2<br>2<br>2<br>2      | 10<br>12<br>9<br>11<br>21  | i<br>1<br>1<br>2      | 2<br>2<br>2<br>2<br>3 | 2<br>2<br>2<br>2<br>2      | 114<br>87<br>99<br>38<br>21 | .15<br>.11<br>.10<br>.07<br>.22 | .07<br>.11<br>.05<br>.15<br>.08 | 5<br>4<br>3<br>12<br>12    | 23<br>18<br>20<br>20<br>14 | 1.27<br>1.22<br>.87<br>.85<br>.16  | 70<br>127<br>90<br>108<br>353  | .12<br>.07<br>.08<br>.03<br>.01 | 5 4         | 3.55<br>3.06<br>2.22<br>2.26<br>.87  | .02<br>.02<br>.02<br>.01<br>.02 | .06<br>.09<br>.06<br>.11<br>.11 | 2<br>2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5        |     |
| 1119-39300<br>1119-39301<br>1119-39302<br>STD A-1/AU 0.5                                             | 2<br>3<br>3<br>1           | 21<br>24<br>20<br>30       | 29<br>26<br>26<br>38       | 100<br>92<br>98<br>164          | .1<br>.3<br>.2<br>.3         | 15<br>21<br>19<br>35       | 15<br>15<br>9<br>12        | 1583                 | 1.67<br>2.33<br>3.17<br>2.83         | 7<br>15<br>15<br>11        | 2<br>2<br>2<br>2      | ND<br>ND<br>ND                   | 2<br>2<br>2<br>2           | 24<br>23<br>8<br>35        | 2<br>1<br>1<br>1      | 3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 15<br>16<br>18<br>57        | .33<br>.28<br>.07<br>.61        | .12<br>.13<br>.15<br>.10        | 11<br>13<br>14<br>8        | 6<br>10<br>9<br>72         | .72<br>.28<br>.38<br>.71           | 214<br>209<br>98<br>279        | .01<br>.01<br>.01<br>.08        | 4           | .90<br>1.03<br>1.11<br>2.08          | .02<br>.01<br>.01<br>.02        | . 10<br>. 17<br>. 11<br>. 21    | 2<br>2<br>2<br>2<br>2           | 5<br>5<br>\$<br><b>\$</b> 90 |     |

SAMPLE # Pb No Cu la 🛛 Aq Ni Co Mn -F# As u Au Th Sr. 64 Sb Bi v Ca Ρ La ۲3 Kq. Ba Ti B A1 Na ĸ H Aut 000 00. ₽**D**€ ž I z Ż 1 1 DDe 008 008 208 00.8 ppe. DDa DDA 008 ppe 00\* DDA ppe ppe ppa ppe ppe ppe 1 ĩ ppa ppb 049-39303 4 23 25 117 . 3 20 10 1365 3.40 20 2 NB 10 .09 .40 4 1.36 2 4 2 22 .23 9 12 86 .01 .01 .08 2 -5 - 1 DH9-39304 1 25 15 78 .3 15 7 555 2.67 7 2 10D 2 5 2 2 24 .03 .08 7 10 .45 76 .02 .08 2 1 .01 3 1.18 10 048-39305 3 -24 19 87 15 728 2.94 2 10 1.0 7 20 2 ND 1 3 2 30 .08 .11 8 13 . 39 77 .01 4 1.53 .01 .08 2 5 DHD-39306 3 27 18 152 .5 994 2.88 ND 2 58 22 .71 97 20 9 216 4 2 3 2 .10 9 9 . 37 .01 3 1.15 .02 .10 2 5 21 71 ND 2 32 28 0408-39307 3 16 12 5 1304 2.05 17 2 . 57 84 1.1 1 2 2 .11 9 11 .28 .03 4 2.50 .03 .05 2 5 DHB-39308 3 25 17 176 987 3.05 ND 9 2 . 5 16 8 -14 3 2 2 43 .07 .09 9 19 .58 87 .03 4 2.49 .02 .07 2 -5 1 30 15 DHB-39309 4 13 67 .5 12 7 572 3.07 2 NÖ 2 1 2 42 .04 . 06 .45 73 .03 3 1.92 .02 .07 1 7 A 16 2 -5 DH8-39310 5 -68 19 148 .7 23 23 1705 5.09 46 £ ND 2 8 2 3 2 59 .06 .12 8 15 .82 79 .02 4 2.73 .02 .08 2 5 DH8-39311 2 26 13 12 .7 8 11 730 3.39 17 3 ND 2 67 . 58 57 Ь 3 .06 .08 5 12 .05 .06 1 2 4 2.85 .02 2 5 DH9-39312 4 31 14 119 .3 12 15 1271 3.06 10 ЫÐ 45 .08 .07 3 2 A Z 2 2 4 10 . 40 -64 .03 4 1.28 .03 .05 2 5 DMD-39313 2 -21 15 69 . 2 11 11 1274 2.64 -14 4 ND 2 9 7 2 2 44 .11 .11 3 21 . 14 54 . 02 3 1.43 . 03 .07 2 -5 DH8-39314 24 82 22 1 16 .2 49 18 1604 3.44 2 ND 2 12 2 2 2 84 .20 .09 3 122 1.24 97 .05 4 2.04 .03 .15 2 5 DHB-39315 3 15 12 72 .7 â 5 595 1.80 á 2 ND 2 35 5 2 2 .05 .10 13 . 36 34 .02 3 1.53 .03 .05 2 1 4 -5 48 DHB-39316 12 21 187 .5 22 12 851 4.61 14 ND 2 2 5 2 2 2 41 . 02 . 09 6 14 . 30 64 .02 4 2.02 .05 2 10 .01 DHB-39317 7 43 126 22 NÐ 44 . ò 11 736 4.01 2 14 3 5 2 7 2 47 .03 . 08 6 13 . SZ 60 .01 4 2.21 .02 .06 2 5 3 DM8-39318 27 15 103 . 2 10 13 1082 4.29 11 2 ND 2 ę. 3 2 98 .08 .07 . 84 100 .07 4 2.81 .02 .07 2 - 2 3 16 - 5 DMB-39319 14 -61 27 210 . 9 25 21 1138 5.91 11 ND 57 .49 4 2 6 2 2 2 .05 .11 7 9 54 .02 6 2.56 , 02 .05 2 5 DHB-39320 13 45 18 174 .7 23 11 706 5.00 21 3 ND 2 5 2 2 50 .03 .12 7 .45 58 1 11 .03 4 1.62 .02 .05 2 -5 DHB-39321 5 47 21 186 .2 20 15 977 5.23 15 2 ND 1 97 2 2 2 .07 .14 4 18 . 96 93 .07 1 .05 5 2.74 . 02 2 10 54 DHB-39322 4 14 182 .4 21 17 1314 4.99 20 ND 2 2 7 2 2 2 75 .05 . 12 4 12 . 92 97 .04 4 2.72 10. 30. 2 5 DHB-39323 ĥ. 36 17 236 .2 20 17 2000 4.09 11 5 ND 2 17 2 -2 2 <u>62</u> 167 . 02 . 09 2 .14 .13 10 . 62 5 1.91 . 02 5 4 22 2679 5.78 DHB-39324 27 79 30 508 1.1 45 13 2 ND 2 .03 2 60 .14 12 13 . 38 97 6 - 3 2 .01 5 2.01 .01 .06 2 -5 7 DHD-39325 51 15 234 23 21 1964 4.81 -14 8 ND 7 .2 2 2 51 .70 78 6 -7 2 .06 .13 12 .02 4 2.38 .01 .05 2 5 DH6-39326 25 107 22 960 . 9 69 28 1888 7.83 7 ND 5 3 8 9 2 2 53 .11 .16 17 8 . 47 68 .01 5 1.80 .01 .06 2 15 DHB-39327 50 -7 15 207 .2 30 30 3100 6.00 20 5 ND 2 12 2 2 58 8 .77 86 .03 2 - 3 .14 .11 11 .01 5 2.28 .01 5 25 1750 5.13 DH8-39328 5 47 13 197 24 21 ND .2 2 2 71 15 11 3 2 2 .16 .10 -5 . 98 88 .03 4 2.16 .01 .05 2 5 RKB-32387 4 - 39 27 126 22 9 817 4.04 76 NĎ 2 12 .2 3 30 ş 1 8 2 .06 . 14 10 .19 121 .01 4 1.09 .01 .07 2 5 RK8-32388 2 23 25 90 38 ND .2 13 12 901 5.20 3 2 13 1 2 2 46 .08 .09 13 9 . 20 95 .03 4 1.91 .02 .06 2 5 28 32 RK8-32389 2 18 84 1.9 17 7 1149 3.34 3 ND 2 8 i 5 2 25 .03 .12 8 9 .12 85 . 02 4 1.45 .07 2 5 .01 22 RK8-32390 4 46 96 .4 21 7 446 5.07 40 2 ND 2 9 2 2 32 .07 .20 7 65 .07 1 11 .11 .07 5 1.32 .01 2 10 RKB-32391 57 5 19 153 .3 -31 16 1697 5.53 57 2 ND 2 12 2 2 2 32 .03 .19 6 11 .12 92 .01 6 1.46 .01 . 06 2 10 RK8-32392 15 130 36 337 2.0 51 29 2941 6.69 58 7 NÐ 2 15 3 12 2 39 .04 .18 -7 9 .10 95 .01 5 1.43 .01 .08 2 15 RKB-32393 15 62 121 9 59 2 .4 5 1544 2.59 2 NÐ 2 16 1 2 2 19 .09 .11 11 5 .08 73 .01 4 .97 .02 .07 2 20 RK8-32394 2 13 137 165 .5 9 7 3766 2.62 139 2 ND 26 2 2 5 2 20 .15 13 .14 6 .14 180 .01 5 1.58 . 02 .12 2 10 RKB-32395 12 54 131 .2 6 1522 3.13 135 2 NĎ 1 11 2 24 1 7 2 28 .15 .08 13 9 .22 123 .02 5 1.60 . 02 .14 2 105 RK8-32396 17 69 124 .5 11 10 2300 3.28 132 2 29 114 1 ND 2 2 2 36 . 29 . 12 16 12 . 45 . 02 5 2.22 .01 . 21 2 20 1 RKB-32397 13 70 110 10 4861 3.12 1 .1 9 112 2 ND 2 38 1 4 2 22 .42 .15 22 8 .21 174 .01 5 1.76 2 10 . 01 .11 13 1023 2.79 STD A-L/AU 0.5 30 38 190 1 .3 32 9 2 ND 2 33 1 2 2 60 .60 .10 8 71 .72 279 .08 8 2.10 .02 . 20 2 520

<u>`\_`</u>

PROJECT # NAKUSP

FILE # 83-2359

PAGE # 2

I.M. WATSON & ASSOCIATES

L.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2359

ر

FAGE # 3

~

| SAMPLE #       | Mo<br>ppe | Cu<br>ppe | Pb<br>pp∎ | Zn<br>pp∎ | Ag<br>ppe | Nı<br>ppm | Co<br>ppe | Mn<br>pps | Fe<br>Z | As<br>ppe | U<br>ppe | Au<br>pps | Th<br>ppe | Sr<br>ppæ | Cd<br>pp∎ | Sb<br>ppe | Bi<br>pp∎ | V<br>ppe | Ca<br>1 | P<br>2 | La<br>ppe | Cr<br>ppo | Ng<br>X | Ba<br>pps | Ti<br>Z | B<br>pp∎ | A]<br>Z | Na<br>Z | K<br>Z | N<br>ppe | Au 1<br>ppb |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|---------|----------|---------|---------|--------|----------|-------------|
| RK9-32379      | 1         | 12        | 60        | 116       | .1        | 10        | 7         | 4306      | 2.69    | 41        | 3        | ND        | 2         | 23        | t         | 2         | 2         | 26       | . 28    | .12    | 15        | 8         | . 21    | 174       | .02     | 5        | 1.57    | . 02    | .11    | 2        | 5           |
| RKB-32400      | 1         | 9         | 34        | 50        | .2        | 9         | 5         | 1062      | 2.74    | 52        | 2        | ND        | 2         | 17        | 1         | 5         | 2         | 25       | . 19    | .07    | 15        | 8         | .14     | 65        | .05     |          | 3.32    | .03     | . 05   | 2        | 5           |
| RK8-32401      | i         | 10        | 42        | 121       | .4        | 12        | 6         | 856       | 3.78    | 22        | 2        | ND        | 2         | 22        | 1         | 6         | 2         | 40       | . 19    | . 06   | 15        | 12        | . 38    | 107       | .06     |          | 2.79    | .02     | . 12   | 2        | 5           |
| RKB-32402      | 1         | 13        | 56        | 87        | .1        | 9         | 7         | 21 33     | 2.56    | 61        | 2        | ND        | 2         | 29        | 1         | 2         | 2         | 22       | .33     | .14    | 18        | 9         | .25     | 140       | .02     | 5        | 7.02    | . 02    | .14    | 2        | 5           |
| RKB-32403      | 2         | 10        | 76        | 105       | .1        | 11        | 9         | 3679      | 3.44    | 53        | 4        | ND        | 2         | 11        | ŧ         | 2         | 2         | 27       | .07     | .10    | 21        | 9         | .24     | 126       | .02     |          | 1.79    | .02     | .11    | Z        | 5           |
| RKB-32404      | 1         | 14        | 79        | 94        | .3        | 10        | 8         | 254B      | 3.44    | 96        | 2        | ND        | z         | 19        | 1         | 2         | 2         | 29       | . 17    | .09    | 17        | 13        | π.      | 124       | .02     | 5        | 2.17    | . 02    | . 19   | 2        | 5           |
| RKB-32405      | 1         | 9         | 40        | 82        | .1        | 6         | 5         | 2088      | 1.89    | 39        | 2        | ND        | 2         | 25        | i         | 2         | 2         | 22       | . 27    | .11    | 8         | 5         | .19     | 150       | .01     |          | 1.18    | .02     | .12    | 2        | 5           |
| RKB-32406      | 1         | 9         | 24        | 74        | .2        | 7         | 5         | 1161      | 2.47    | 62        | 2        | ND        | 2         | 15        | ł         | 2         | 2         | 25       | .08     | .08    | 13        | 8         | .27     | 90        | . 02    |          | 1.73    | . 02    | . 19   | 2        | ŝ           |
| RKB-32407      | 1         | 14        | 19        | 57        | .2        | 7         | 4         | 295       | 1.67    | 12        | 2        | ND        | 2         | 9         | 1         | 2         | 2         | 25       | .06     | .13    | 9         | - n       | . 18    | 62        | .01     |          | 1.42    | .03     | .09    | 2        | 5           |
| RKB-32408      | 2         | 46        | 20        | 113       | .4        | 20        | 15        | 1675      | 3.70    | 74        | 4        | ND        | 2         | 12        | i         | 3         | 2         | 22       | .05     | .16    | 12        | 8         | .13     | 75        | .01     |          | 1.54    | .01     | .09    | 2        | 5           |
| RKB-32409      | 4         | 42        | 21        | 123       | .6        | 21        | 8         | 622       | 4.67    | 75        | 3        | ND        | 2         | 9         | t         | 2         | 2         | 27       | . 02    | . 11   | 11        | 9         | .14     | 48        | .01     | 4        | 1.44    | .01     | .07    | 2        | 5           |
| RKB-32410      | 1         | 17        | 71        | 109       | .1        | 8         | 13        | 4401      | 3. 36   | 199       | 6        | ND        | 2         | 19        | i         | 3         | 2         | 27       | .18     | .11    | 13        | 10        | .26     | 171       | .01     |          | 1.80    | .02     | .12    | 2        | 50          |
| RKB-32411      | 3         | 37        | 22        | 138       | .7        | 21        | 10        | 1043      | 3.72    | 95        | 3        | ND        | 2         | 22        | 1         | 2         | ž         | 28       | .07     | .13    | 12        | 9         | .13     | 131       | .01     | -        | 1.19    | .02     | .11    | 2        | 10          |
| RKB-32412      | 1         | 17        | 112       | 164       | 2.1       | 11        | 13        | 4461      | 4.94    | 1317      | 5        | ND        | 2         | 14        | 1         | Ā         | 2         | 27       | .04     | .15    | 22        | B         | .18     | 133       | .01     |          | 2.52    | .02     | .12    | 2        | 430         |
| RKB-32413      | 1         | 20        | 70        | 138       | .1        | 10        | 14        | 3788      | 4.34    | 260       | 6        | ND        | 2         | 12        | i         | 2         | 2         | 38       | .07     | .17    | 20        | 10        | .44     | 122       | .03     |          | 2.63    | .01     | . 19   | 2        | 60          |
| RKB-32414      | 1         | 28        | 121       | 204       | .4        | 13        | 19        | 4683      | 5.14    | 263       | 2        | ND        | 3         | 16        | 2         | 2         | 2         | 43       | .12     | . 15   | 23        | 9         | .56     | 153       | .04     | 6        | 2.83    | . 02    | . 19   | 2        | <b>95</b>   |
| RK9-32415      | 1         | 16        | 44        | 110       | .1        | 8         | 12        | 2917      | 3.30    | 175       | 2        | ND        | 2         | 24        | 1         | 2         | 2         | 20       | . 18    | .11    | 15        | 8         | .40     | 177       | .03     |          | 2.13    | .02     | .21    | 2        | 30          |
| BD5-38361      | 3         | 31        | 26        | 146       | .4        | 25        | 9         | 761       | 2.79    | 141       | 2        | ND        | 2         | 38        | 2         | 2         | 2         | 22       | .47     | .10    | 12        | 13        | .57     | 105       | .01     |          | 1.13    | , 02    | .14    | 2        | 5           |
| BDS3836B       | 3         | 24        | 23        | 139       | .4        | 21        | 8         | 743       | 2.71    | 21        | 2        | ND        | 2         | 24        | 2         | 2         | 2         | 33       | . 35    | .08    | 10        | 14        | .72     | 83        | .02     | Š        | 1.56    | .01     | .09    | 2        | 5           |
| STD A-1/AU 0.5 | 1         | 30        | 40        | 183       | .3        | 36        | 13        | 1035      | 2.79    | ii        | 2        | ND        | 2         | 33        | ī         | 2         | 2         | 59       | . 60    | .10    | 8         | 73        | .73     | 280       | . 08    | 7        | 2.08    | .02     | . 20   | 2        | 490         |

 $\sim$ 

-

------

### ICP GEOCHEMICAL ANALYSIS

. :

.

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 70 DEE.C. FOR I HOLR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca, P, Mg, AL, Ti, La, Na, K, H, Ba, Si, Sr. Cr. AND B. AN DETECTION 3 pps.

|      |                                                                            |                       |                            |                            |                                 | AA FR                      |                            |                            |                                 | SAM                                  | LE TYP                     |                       |                            |                                          |                            |                       | tumi s p                          | •                   | Δ                             | ^                                    |                                 |                            |                |                                      |                                 |                                 |             |                                      |                                      |                                        |                            |                                            |   |
|------|----------------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|------------------------------------------|----------------------------|-----------------------|-----------------------------------|---------------------|-------------------------------|--------------------------------------|---------------------------------|----------------------------|----------------|--------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------|--------------------------------------------|---|
| DATE | RECEIVED                                                                   | AU <b>S</b>           | 19 19                      | 3                          | DA                              | TEI                        | REPI                       | DRT                        | s M                             | AIL                                  | ED                         | Aug                   | 2Z!                        | 83_                                      | A                          | 5 <b>5</b> A'         | YER                               |                     | 1)<br>                        | key.                                 | 4                               | DEAI                       | N T            | OYE                                  | <b>,</b> CI                     | ERT                             | IFI         | ED                                   | в.с.                                 | . A                                    | SSA                        | ER                                         |   |
|      |                                                                            |                       |                            |                            |                                 |                            | I                          | .м.                        | WAT                             | SON                                  | & A5                       | ssoc                  | тат                        | ES                                       | PR                         | JJEC                  | т н                               | NAK                 | USP                           | F                                    | ILE                             | <b>#</b> 8                 | 13-1           | 740                                  |                                 |                                 |             |                                      |                                      |                                        | Pŕ                         | GE # :                                     | : |
|      | SAMPLE I                                                                   | flo<br>ppe            | Cu<br>ppa                  | P5<br>208                  | Zn<br>ppe                       | Ag<br>ppa                  | Ni<br>ppe                  | Co<br>ppe                  | Mi<br>ppa                       | Fe<br>Z                              | As<br>ppe                  | U<br>Ppe              | Au<br>pc <del>a</del>      | th<br>pp#                                | 3r<br>ppe                  | Cd<br>920             | Sb<br>ppa                         | Bi<br>ppa           | V<br>ppm                      | Ca<br>2                              | P<br>Z                          | La<br>ppe                  | Cr<br>ppe      | Ng<br>I                              | 61<br>ppa                       | Ti<br>I                         | 8<br>ppe    | Al<br>I                              | Na<br>I                              | K<br>Z                                 | ¥<br>ppe                   | iu#<br>ppb                                 |   |
|      | 7KS-32044<br>RKS-32045<br>RKS-32046<br>RKS-32047<br>PKS-32048              | 3<br>8<br>4<br>5      | 42<br>52<br>39<br>69       | 11<br>16<br>12<br>23<br>28 | 1£5<br>457<br>187<br>389<br>302 | .4<br>.7<br>.3<br>.6<br>.3 | 24<br>39<br>26<br>44<br>30 | 12<br>14<br>10<br>14<br>13 |                                 | 3.32<br>3.83<br>3.20<br>3.52<br>4.15 | 21<br>31<br>30<br>59       | 52272                 | ND<br>ND<br>ND<br>ND<br>ND | аныр                                     | 58<br>47<br>45<br>55       | 14 6-14 6-14<br>17    | 4<br>2<br>4<br>2                  | 222222              | 63<br>44<br>61<br>49<br>97    | .30<br>1.14<br>.59<br>.71<br>.89     | .11<br>.09<br>.12<br>.10<br>.13 | 14<br>15<br>19<br>15<br>18 | 21<br>31<br>35 | 1.00<br>.70<br>.82<br>.92<br>1.05    | 99<br>126<br>80<br>146<br>87    | .07<br>.03<br>.04<br>.04        | 6<br>4<br>6 | 1.67<br>1.49<br>1.45<br>1.59<br>2.05 | .02<br>.01<br>.03<br>.02<br>.04      | .17<br>.14<br>.15<br>.15<br>.16        | 1<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>15                          |   |
|      | 8KS-32049<br>8KS-32050<br>8KS-32051<br>8KS-32052<br>8KS-32053              | 4 2 3 1 2             | 56<br>21<br>27<br>29<br>26 | 14<br>11<br>7<br>7         | 196<br>106<br>147<br>107<br>101 | .1<br>.1<br>.2<br>.1       | 29<br>25<br>21<br>19<br>17 | 14<br>8<br>9<br>10<br>9    | 802<br>715<br>701<br>613<br>646 | 4.07<br>3.04<br>2.99<br>3.55<br>3.38 | 47<br>28<br>21<br>16<br>4  | (Y .0 C1 (Y P)        | NÐ<br>NÐ<br>NG<br>ND       | 61 (1 1) (1                              | 75<br>70<br>5E<br>46<br>56 | 2<br>1<br>3<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2        | (*) (*) (*) (*) (*) | 95<br>78<br>66<br>77<br>74    | . 74<br>. 79<br>. 64<br>. 68<br>. 75 | .12<br>.11<br>.10<br>.15<br>.16 | 17<br>14<br>15<br>16<br>15 | 26<br>22       | 1.04<br>.90<br>.70<br>1.00<br>.96    | 118<br>89<br>76<br>115<br>112   | .09<br>.09<br>.06<br>.09<br>.10 | 6<br>5<br>4 | 2.12<br>1.79<br>1.32<br>1.66<br>1.73 | .05<br>.04<br>.03<br>.05<br>.05      | .72<br>.16<br>.12<br>.20<br>.72        | 7<br>7<br>7<br>2<br>2      | 10<br>5<br>70<br>5                         |   |
|      | 8KS-32054<br>RKS-32055<br>RKS-32056<br>RKS-32057<br>RKS-32057<br>RKS-32058 | 72477                 | 34<br>37<br>50<br>13<br>29 | 10<br>10<br>11<br>11<br>9  | 112<br>152<br>182<br>76<br>108  | .3<br>.1<br>.2<br>.1<br>.3 | 24<br>23<br>29<br>9<br>21  | 10<br>13<br>17<br>8        | 710                             | 2.50<br>3.82<br>4.15<br>3.93<br>2.69 | 17<br>46<br>39<br>39<br>24 | 3<br>7<br>2<br>2<br>2 | GR<br>Gr<br>Dr<br>ND       | 22222                                    | 44<br>42<br>40<br>54<br>40 | 2021                  | <b>7</b><br>7<br>7<br>7<br>7<br>7 | 2<br>2<br>2<br>2    | 58<br>102<br>109<br>105<br>52 | .54<br>.70<br>.58<br>.99<br>.49      | .10<br>.13<br>.12<br>.14<br>.09 | 15<br>14<br>14<br>16<br>16 | 28<br>34<br>17 | 1.07<br>1.03<br>1.04<br>.81<br>5.11  | 124<br>134<br>145<br>82<br>137  | .07<br>.10<br>.10<br>.13<br>.07 | 4 5 5       | 1.70<br>1.87<br>2.21<br>1.82<br>1.87 | .05<br>.06<br>.04<br>.07<br>.04      | .17<br>.21<br>.21<br>.21<br>.21<br>.21 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>10<br>15<br>5<br>50                   |   |
|      | RKS-32059<br>RKS-32060<br>RKS-32061<br>RKS-32062<br>RKS-32063              | 3 4 7 1 2             | 55<br>27<br>37<br>30<br>27 | 12<br>19<br>16<br>14<br>13 | 213<br>122<br>131<br>85<br>102  | .3<br>.4<br>.5<br>.1       | 40<br>30<br>24<br>19       | 14<br>8<br>8<br>7<br>3     | 713<br>720<br>817<br>623<br>680 | 3.68<br>2.63<br>2.46<br>1.77<br>2.40 | 52<br>69<br>44<br>17<br>25 | 2                     | ND<br>ND<br>ND<br>ND       | рнана                                    | 43<br>39<br>44<br>75<br>37 |                       | 1-1 (-1 (-1 )-1 (-1               | Pi (1 (1 (1 /)      | 84<br>31<br>35<br>43          | .57<br>.41<br>.60<br>.42<br>.42      | .10<br>.09<br>.11<br>.07<br>.08 | 13<br>20<br>19<br>17<br>16 | 22<br>12<br>30 | 1.22<br>.90<br>1.41<br>1.17<br>1.03  | 172<br>134<br>118<br>115<br>127 | .09<br>.03<br>.04<br>.05<br>.04 | 6<br>6<br>3 | 2.07<br>1.71<br>1.78<br>1.75<br>1.77 | .04<br>.02<br>.02<br>.02<br>.03      | .26<br>.18<br>.22<br>.19<br>.20        | 2 7 7 7 7 7 7              | 22<br>5<br>380<br>5<br>10                  |   |
|      | RKS-32064<br>RKS-32065<br>RKS-32066<br>RKS-32067<br>RKS-32068              | 24655                 | 36<br>49<br>65<br>70<br>30 | 13<br>12<br>16<br>10<br>19 | 112<br>278<br>364<br>232<br>113 | .2<br>.2<br>.4<br>.2<br>.4 | 25<br>31<br>51<br>50<br>25 | 8<br>14<br>20<br>19<br>9   | 741<br>949<br>907<br>856<br>900 | 2,53<br>3,76<br>4,95<br>4,45<br>2,70 | 27<br>29<br>101<br>78<br>4 | 2<br>4<br>2<br>10     | ND<br>ND<br>ND<br>ND       | 54885                                    | 41<br>47<br>61<br>55<br>52 | 1<br>5<br>- 4<br>1    | 01 P P P P                        | ****                | 42<br>97<br>121<br>105<br>51  | .50<br>.61<br>.84<br>.73<br>.70      | .09<br>.09<br>.12<br>.12<br>.05 | 18<br>11<br>14<br>15<br>20 | 32<br>56<br>49 | 1.34<br>1.24<br>1.54<br>1.45<br>1.09 | 164<br>165<br>210<br>216<br>160 | .06<br>.07<br>.09<br>.10<br>.08 | 3           | 1.97<br>2.14<br>2.70<br>2.55<br>2.24 | . 93<br>. 04<br>. 05<br>. 06<br>. 04 | .25<br>.20<br>.30<br>.31<br>.31        | NNCIPH                     | 5<br>10<br>15<br>15<br>5                   |   |
|      | RKS-32069<br>RKS-32070<br>RKS-32071<br>RKS-32072<br>RKS-32073              | J<br>7<br>7<br>1<br>2 | 43<br>25 29<br>54<br>29    | 21<br>?<br>?<br>6<br>7     | 123<br>84<br>73<br>140<br>89    | .3<br>.1<br>.4<br>.4<br>.2 | 38<br>17<br>26<br>22<br>19 | 12<br>8<br>7<br>11<br>10   | 727<br>551<br>467<br>516<br>536 | 3.22<br>2.66<br>2.02<br>3.19<br>3.27 | 4<br>10<br>4<br>5<br>6     | 619515                | ND<br>ND<br>ND<br>ND<br>ND | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 4223422                    |                       | (*) (*) (*) (*)                   | 0 14 14 14 14       | 56<br>51<br>45<br>65<br>61    | .51<br>.33<br>.35<br>.72<br>.45      | .0£<br>.07<br>.07<br>.08<br>.10 | 21<br>17<br>17<br>11<br>16 | 272<br>40      | 1.42<br>.85<br>1.32<br>1.71<br>.93   | 163<br>198<br>122<br>223<br>173 | .10<br>.07<br>.10<br>.12<br>.09 | 435         | 2.42<br>1.57<br>1.81<br>1.51<br>1.53 | .05<br>.04<br>.02<br>.04<br>.04      | .38<br>.19<br>.11<br>.41<br>.25        | 201220                     | 815 81 81 81 81 81 81 81 81 81 81 81 81 81 |   |
|      | RK5-32074<br>RK5-32075<br>RK5-32076<br>RK5-32077<br>RK5-32078              | 1<br>2<br>1<br>2      | 29<br>29<br>27<br>28<br>29 | 14<br>11<br>10<br>14       | 68<br>24<br>85<br>93<br>58      | .2<br>.2<br>.2<br>.5<br>.1 | 23<br>23<br>19<br>20<br>20 | 7<br>8<br>7<br>9           | 570<br>516<br>494<br>576<br>546 | 1.96<br>2.33<br>2.46<br>2.36<br>2.68 | 4<br>5<br>7<br>12          | 7777                  | NÛ<br>ND<br>NJ<br>ND       | 4433                                     | 16<br>31<br>34<br>34<br>34 | 1<br>1<br>1<br>1      | [·] [ ] [ ] [ ] [ ] [ ] [ ]       | 1922                | 41<br>50<br>43<br>44<br>50    | .41<br>.40<br>.40<br>.69<br>.45      | .07<br>.08<br>.03<br>.09        | 16<br>15<br>14<br>14<br>16 | 38<br>71       | 1.15<br>1.25<br>.93<br>1.02<br>.79   | 122<br>139<br>117<br>154<br>119 | .09<br>.10<br>.08<br>.07<br>.09 |             | 1.31<br>1.84<br>1.57<br>1.63<br>1.64 | .02<br>.03<br>.04<br>.04<br>.04      | .30<br>.34<br>.24<br>.30<br>.23        |                            |                                            |   |
|      | RKS-32079<br>RKS-32080<br>STD A-1/AU 0.5                                   | 2<br>2<br>1           | 29<br>25<br>30             | 10<br>11<br>38             | 89<br>92<br>185                 | ain.                       | 20<br>20<br>32             | 9<br>9<br>13               | 542<br>505<br>1096              | 2.85<br>2.79<br>2.81                 | 11<br>4<br>10              | 6<br>3<br>2           | ND<br>ND<br>ND             | 3<br>4<br>7                              | 计<br>40<br>注               | 1<br>1<br>1           |                                   | ** * * * *          | 53<br>53<br>57                | .45<br>.50<br>.50                    | .10<br>.10<br>.10               | 14<br>16<br>9              | 26<br>30<br>77 | .98<br>1.03<br>.76                   | 122<br>125<br>279               | .07<br>.07<br>.09               | 4           | 1.65<br>1.62<br>2.09                 | .04<br>.04<br>.02                    | .24<br>.24<br>.21                      | 2                          | 20<br>5<br>480                             |   |

I.M. WATSON & ASSOCIATES - PROJECT # NAKUSE FILE # 82-1740

SAMPLE I 32 Cu P1 In 42 Mi Co. 55 Ft As U Th 5-24 35 8: 7 C4 . Cr. Me 34 Ti. 2 A1 Na. T. \* As1 Au La -۰. -228 208 204 204 208 203 208 00.8 : 204 204 203 204 208 004 221 293 208 • 228 201 .... τ. 208 -208 20 222 2.55 KSS-36091 5¢ ų 150 60 15 580 2.47 1 7 NC 74 101 . 30 .17 14 37 1.70 .1ċ 4 .0± .43 .5 125 2.54 1 1 1.58 135-16(47 12 .5 24 8 405 10 4 ND 4 46 ---. 51 .11 17 40 .29 128 .12 .0± .24 2.19 12 13 18 59 3 1.43 153-34092 4 1 5. 5 446 2 ND 1 1 54 .74 .11 12 47 .75 108 .14 .07 .17 7 .1 3 57 .52 XSS-36099 71 59 11 178 2.65 2 ND 4 85 .52 .12 18 \$2 1.47 751 .19 2.08 .05 .1 ٠ 12 122 33 .24 2 KSS-36100 1 15 .3 24 6 580 2.34 6 2 ND 1 1 50 .54 .02 15 54 1.16 114 .12 Z.06 .07 53 23 52 1.16 53 .91 1015-12101 1 12 215 10 506 7.30 10 5 ND 50 115 .54 .03 11 147 .14 2.15 .03 .31 - 1 2 12 35 12 KSS-75102 ÷. 97 .1 17 7 466 2.55 3 2 ND 1 1 74 .45 .03 157 .13 1.74 .67 .74 11 25 56 125-36103 8 125 ... 14 7 504 1.03 . 2 ND é 1 25 .34 .14 10 1.09 178 .15 3 2.04 .05 .75 25 14 15 . 548 1.64 9 2 ND 5 59 . 95 29 1.32 217 1 2.33 KSS-36104 1 161 .2 61 .1è .18 30. .46 ÷ 155-36105 15 ٠ 41 73 ÷ 352 1.94 5 5 ND 4 45 46 .43 .07 14 15 .71 177 .:2 4 1.27 .05 .27 .1 1 12 2 K22-36106 10 104 77 5 492 2.58 4 ND 4 40 .52 18 51 1.73 4 2.04 . 45 .1 Ł 64 .45 171 .15 .42 -54 77 2 55 2 \$7 1.97 KSE-36107 ۰. 13 .1 5 416 2.33 5 NG 1 1 1÷ .67 .12 17 155 .13 5 1.46 .05 . 32 74 7 44 47 K35-36108 + 15 15 47 ... ÷ 195 1.75 2 ND. - 4 1 2 41 .41 . 92 18 .83 152 .12 4 1.23 .04 .25 XSS-76105 5 11 17 101 .4 37 11 1221 3.21 2 2 ND 5 47 2 41 .44 18 54 1.04 217 .12 4 2.36 .05 .34 5 1 .06 1 1 KSS-Je116 2 74 18 244 561 2.37 2 ND 40 52 .53 52 1.18 \$ 2.5: 2 .4 36 8 ٠ 17 .04 .46 . 2 2 .6è 171 .13 1 = ٩. 155-16111 37 17 562 4.59 ā 2 ND 7è 87 17 20 \$ 1.57 .05 1 .1 15 - 4 1 .43 .10 .62 115 .06 .20 20 135-36112 15 157 21 345 3.42 55 72 -.25 22 25 10 12 4 4 2 .47 14 . 17 100 .06 2 1.79 .04 .14 2 25 . 1:55-18111 77 17 7 447 2.50 4 2 NG 2 44 1 51 .07 11 .84 10-6 .07 4 1.56 .05 .18 2 5 10 .... 1'99-36114 42 21 111 38 11 575 1.33 2 82 40 58 2 .1 2 .47 17 60 1.47 157 2 2.26 .35 ٠ 5 1 2 . 96 . 10 .07 725-26115 2 21 12 34 174 2.32 ND 14 10 . 29 2 5 47 .5 17 .07 4 4 . . 4: .^4 46 . 66 101 .09 1 1.99 KSS-36118 1 42 20 140 54 14 785 3.65 2 2 鯂 5 20 2 -----107 27 82 1.75 231 5 2.66 .10 .53 .÷ . ōĉ 36. .14 KSS-76117 5 17 54 2 2 258 .74 2 2 ND 1 62 .02 . 17 42 5 .59 .05 .06 5 . 14 .1à .21 .02 ž KSS-31118 15 17 124 27 ż 22 .4 â 599 2.04 4 NØ. 2 2 2 4 37 .21 79 37 .15 114 4 1.14 . 26 .07 .04 .14 .7 15 ..... 29 17 75 11 155-36119 12 529 2.91 3 2 ND 7 21 1 50. .... 6 1.20 122 4 1.21 ۲ 1 • .04 .13 .02 .43 2 -K35-76120 40 20 17 292 .4 11 724 3.56 5 2 ND 2 42 2 2 40 1.37 247 5 5 .a] .11 .12 4 2.05 .05 . 37 121-12121 15 14 143 15 . 512 2.89 2 2 NØ. 35 57 172 .44 .42 . 22 11 53 1.25 .12 4 2.24 ..... -1 . .94 7 .7 27 KSS-34177 22 11 91 24 ć. 559 2.33 2 82 2 35 .51 .05 17 .34 104 : 1.62 .07 .27 4 4: .10 e K\$5-36127 2 . 33 76 .... 15 30 .5 5 447 1.89 3 2 ND. 2 4 74 .45 12 25 .75 120 3 1.38 .24 .08 .03 ۲ + 52 34 . 17 2 KS3-35124 74 112 1.82 2 5 33 17 3 1.16 .25 1 11 .1 á 4 ND. 3 1 .07 44 .87 121 .10 .01 ٠ 155-16125 15 7 5ê .2 .3 5 179 2.05 2 2 ND 3 39 2 ¢ 43 .37 .05 15 19 .94 2 1.30 .05 .23 2 1 1 140 .11 KSS-36126 17 2 1 1 67 35 2.13 .1 4 403 2 2 МØ 44 47 .44 .07 15 52 .95 144 .11 3 1.31 .45 .28 1 ÷ KSS-16127 55 14 177 2.02 2 2 1 15 .1 5 ND 3 45 1 42 .41 .07 15 18 .72 140 .12 4 1.32 .05 .22 2 X53-14128 1 12 ε 74 38 7 410 2.29 4 2 NS. 4 50 1 2 3 47 .54 .02 15 29 1.12 158 .17 4 1.55 .05 .12 -2 125-16129 50 7à . .... 15 . ...? 376 2.15 2 ND. 41 42 .44 .07 14 47 . 22 124 .10 5 1.22 .05 ٠ ŝ 5 4 : 11 -0 .23 2 :: K83-76170 42 14 117 10 1.15 52 25 .47 17 29 1.15 :31 £ 1.50 517 10 2 . 10 .05 .02 -35-Ja171 47 .23 :4 121 24 16 544 2.13 11 2 ND 3 41 78 .56 .15 :2 23 1.14 128 .05 5 1.49 .92 . 1 \*\*\*\*\* - 2 . 22 12 122 .: .07 .12 . KES-36111 15 10 621 1.74 12 2 ND 3 30 41 .45 .04 17 25 1.18 119 .05 4 1.55 ٠ KES-16111 1 43 17 147 .7 35 2 32 25 11 655 7.58 19 ND 3 1 45 .47 17 26 1.21 :01 . 25 4 1.53 .02 .17 .10 15 185 319 A-1/AC 0.5 1 25 13 1041 2.79 2 2 .20 5:5 74 . ND. 2 37 1 2 58 .55 .10 1 73 .75 279 .09 £ 2.08 .02

\*36E # 2

PROJECT # NAKUSP L.M. WATSON & ASSOCIATES FILE # 83-1740 PAGE N 3 SAMPLE ! Pb No. CL. In Aq Ni: Co 36 Fe As 2 Au Th 31 Cđ 32 £i. ٧ Ca 2 La. Cr 1 Sa . Ti A1 Na ж. Aut 8 E, 208 203 224 228 22.8 208 228 224 1 20.5 208 201 ppe 204 ppa 204 203 204 3 3 205 ppa 228 τ 1 228 I 1 208 200 KSS-36134 4 41 16 150 111 25 12 701 17 82 24 -45 .35 .09 .75 75 2 1.45 2 5 \*\*\*\*\* -----T. C. C. C. C. C. 10 17 .04 .0: -.12 3.73 155-16135 5 76 15 181 24 11 \$77 14 30 18 13 .24 2 .07 . . 77 39 .02 2 1.56 .09 5 16 .01 12 2: US5-33084 1 8 46 ÷ 4 393 1.24 5 NO 50 2 .27 .0: .41 49 2 .90 .1 1 18 17 .04 .02 .10 2 5 76 USS-33087 2 30 .5 :0 511 3.09 3 5 NS ----40 4 .44 .08 11 25 1.01 140 .06 2 1.66 2 5 1 .04 .21 5 USS-33088 1 4 10 53 .1 12 757 1.94 5 NČ 62 2 18 .26 .07 19 .28 44 .02 2 .01 .07 2 5 1 11 . 58 15 \*\*\* 155-33069 2 39 583 2 ND 21 45 15 5 5 4 3 1.15 ~~~~ -1 . 30 .38 53 .04 2 .1 1 .93 8 .71 .03 .13 71 21 JAG-30058 17 175 2.85 а 36 11 26 21 111 7 NP .07 13 25 1.08 93 .05 2 1 1.73 .02 .14 5 1.74 1.00 2.4\* 17 15 2 JAS-10057 ND 18 107 . 9 107 . 42 .07 21 .75 . ..... 30 .04 2 1.54 .02 .13 2 5 12: 10 20 JAS-30060 4 504 4 NC 1 46 .54 .67 20 1.07 117 .0é 2 1.59 .01 .18 2 20 3 2 JA5-30061 11 .... 2 472 ND 2 42 . 16 .04 17 39 1.97 :03 .09 2 1.94 2 5 1 .03 .29 24 2.75 2.57 2.01 JAS-30067 36 17 10 435 1 90 29 1 -2 1011 2 49 . 71 \*\*\*\*\*\*\*\*\* 1 \*\*\*\*\*\*\*\*\* . 67 14 21 .33 97 .06 2 1.37 .0] .21 2 5 11 12 14 .^6 JAS-30063 16 24 24 173 ND 47 . 11 2 1 3 2 33 1.10 177 1 15 .10 2 1.70 .01 .34 5 \*\*\*\*\*\* 17 14 4 12 JAS-30064 := 37 12 151 sē . 57 27 125 132 94 ê 4 1 2 11 .72 2 1.35 .07 2 1 .0é .16 .4 1 .60 .74 JAS-30065 15 50 21 7 541 2.24 2 ND 2 .66 32 .12 ŝ ŝ 11 .06 2 1.61 2 .01 .25 JA3-30058 19 :4 57 17 5 18." 1.75 82 28 2 1.13 1 . 1 4 2 .65 1: .77 1 24 2 \$ .0é .02 .20 .51 145-30967 2 20 14 72 17 \$22 1.75 2 2 NÇ 34 2 .1 4 ......... 1 -----37 47 43 57 .08 10 24 . 24 105 .0é 2 1.31 .01 .29 12 8 477 2.5/ 7 503 2.33 13 1057 2.85 112 25 71 .07 JAS-3006E 2 12 82 .2 17 : 32 24 22 72 4 1 \*\*\*\*\* . 51 115 . 36 13 1.44 .04 .21 70 .4 -JAS-1006? . 26 . 50 19 NĒ ÷ ā .71 103 .06 2 1.44 .03 .21 5 510 A-1/AU 0.5 30 75 124 .2 35 . 10 .74 1

274 .02 6 2.05

.20 .01

## I.M. WATSON & ASSOCIATES PROJECT # MARUSE FILE # SC-1740

FRGE 4 4

.

|           |     |     |      |     |      | 1   | . M. | MAT  | \$004 | 1 A  | 515 CM | 147   | 13          | 主要   | 0750 | т. н | 1444 | U35 | S 3    | IL.E | н з  | 7-1 | 7.90 |           |      |      |       |     |      | 3        | ing E      |
|-----------|-----|-----|------|-----|------|-----|------|------|-------|------|--------|-------|-------------|------|------|------|------|-----|--------|------|------|-----|------|-----------|------|------|-------|-----|------|----------|------------|
| SAMPLE I  | Mo  | Cu  | Fb   | In  | Ag.  | Ni  | Co   | 5n   | 11    | iis. | 2      | Às:   | Th          | 97   | 28   | 56   | Fi   | ۷   | 64     | P    | La . | Cr  | *2   | 54<br>228 | ц    | 1    | A1    | 54  | *    | 1<br>207 | iu)<br>111 |
|           | 004 | 306 | 224  | 22ª | 201  | 224 | spa  | bba  | :     | 204  | 224    | 20s   | 20 <b>8</b> | 591  | 20.  | 224  | 028  | 394 | •      |      | 224  | ppe | •    | ***       | ~    | 204  |       |     |      | 494      |            |
| 158-80112 | 1   | 49  | 13   | 45  | .4   | 177 | 30   | 704  | 7.47  |      | 1      | ND    | 4           | 150  | 1    |      | 2    | 46  | 4.47   | .97  | 15   | 77  | 2.46 | 177       | .0:- | 2    | . 47  |     | .17  | :        | :          |
| 10016-81  | 1.1 | 4   | 12   | 20  | .1   | 2   | 1    | 250  | . 47  | 5    | 2      | NO    | 2           | 24   | 1    | 4    | 2    | 1   | .77    | .07  |      | 4   | .07  | 27        | . 21 | - 23 | . 21  | 115 | .97  | 2        | 1          |
| \$591202  | 1   | 15  | 13   | 10  | .1   |     |      |      | 1.54  |      | -      | ND    |             | ::   |      | 5    | 2    | 8   | .18    | .02  | 3    | â   | .10  | 63        | .01  | 2    | . 72  | .63 | .::  |          | 1          |
| SR-81304  | 1   | 12  | 15   | 25  | · •  | ÷.  |      | 105  | 1.17  | - 2  | - 2    | ST    | 1           |      | 1    |      | 2    | :4  | .07    | .02  | *    | 12  | .25  | 64        | .07  | 4    | .44   | .01 | .27  |          | 5          |
| SR-91307  | - 2 | 30  | 17   | 56  | .4   | 21  | 5    | 998  | 2.92  |      | - 1    | ND    | 4           | 347  | 1    | 5    | 2    | 12  | 7.65   | .01  | 17   | 21  | 2.14 | 74        | . 21 | 2    | . 1 = | .6: | .02  |          | 1          |
|           |     |     |      |     |      |     | 100  | 0.00 |       |      |        | 0.070 | 27.         | 1210 | 107  | 200  |      | 02  | 002050 |      |      |     |      |           |      |      |       |     |      |          |            |
| 58-81308  | 4   | 4   | 27   | 24  | 4.0  | 3   | 2    | 120  | 2.12  | 77   | 2      | ND    | 5           | 46   | 1    | 12   | 2    | 13  | .13    | .07  | 1    | 3   | 50.  | 57        | .01  | - 31 | .46   | .02 | .17  | - 2      | 1550       |
| 58-91307  |     | 15  | 790  | 325 | 10.1 | 4   | 5    |      | 5.44  | 337  | -      | ND.   | 5           | 17   |      | -    |      | 10  | .05    | .04  |      | 1   | .05  | 74        | . 21 | 2    | .17   | .01 | .47  | - 2      | 50         |
| ISR-81501 | 1   | 15  |      |     | .;   | 10  | - 3  | 88   | .75   |      | - 4    | ND    |             | 14   | 1    |      | 2    | 5   | .11    | .01  |      | 2   | .10  |           | .01  | 2    |       | .61 | .0:  | 1        | 10         |
| SR-51506  | ÷.  | 41  | 18   | 21  |      | 15  |      | 106  | 1.74  | -    | 1      | ND    |             | 4    | 1    | 4    |      | 10  | .17    | .02  | à    | . 4 | .17  | 46        | .03  | - 2  | . 55  | .61 | .18  | 2        | 5          |
| NR-34161  | 2   |     |      | 21  |      |     | n    | 235  | 1. 22 |      |        | ND    |             | 1    |      |      | -    |     | .19    | .05  |      | 12  | 1.31 | 242       | .12  | - 2  | 1.57  | .04 | 1.15 | 2        | 5          |
|           |     | 1.1 | - 20 |     |      |     | **   |      |       | ÷.   |        | 200   | 1.1         |      |      | - 27 |      | **  |        |      |      |     |      |           |      | •    |       |     |      | - 3      |            |
| ¥-14152   | ÷3  | 20  |      | 5   | .2   | *   | 10   | 38   | 1.01  |      | 2      | 39    |             | 12   | - 11 | 2    | 2    | 5   | .77    | .02  |      | 4   | .08  | - 25      | .01  | 20   | .18   | 15  | .04  | 2        | 3          |
| 48-34152  |     | 29  | 10   | 47  |      | 77  | 1    | 154  |       |      |        | ND    | - 5         | 23   | 1    |      |      | 47  | .00    | .05  | 22   | 55  | 1.47 | 477       | .0è  |      | 1.52  | .41 | . 94 | - 6      | 12         |
| STO A-1   |     | 10  | .79  | 185 |      | 26  | 17   |      | 2.52  | 10   | :      | ND    |             |      | 1    |      | -    | 58  | . 61   | .16  |      | 74  | .11  | 287       | .08  | - 2  | :. 10 |     |      | - 2      |            |

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. FH: 253-3158 TELEX:04-53124

## ICP GEOCHEMICAL ANALYSIS

·- •

- --

A .500 GRAM SAMPLE IS DIGESTED WITH 3 KL OF 3:1:3 HOL TO HNO3 TO H2O AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,A1,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AU DETECTION 3 pps. AUX AMALYSIS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - SOIL & ROCK

DEAN TOYE, CERTIFIED B.C. ASSAYER B3 DATE REPORTS MAILED Deles DATE RECEIVED SEPT 14 1963 ASSAYER

|                                                                            | I.M. WAT              |                            |                           |                                 |                            |                            |                           |                                   |                                      |                           |                                 | FI                   | _E #                                    | 83                         | -215                  | 1                                       | PRD                        | JEC                             | T #                             | NAK                             | USP                   |                            |                                    |                                 |                                 |                                         |                                           |                                 |                                      | P                                      | 46E                   | 41 1 |
|----------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|---------------------------|-----------------------------------|--------------------------------------|---------------------------|---------------------------------|----------------------|-----------------------------------------|----------------------------|-----------------------|-----------------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------|----------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------|-----------------------|------|
| SPAFLE 1                                                                   | No<br>pp#             | Си<br>рре                  | РЬ<br>ррв                 | ∑n<br>ppe                       | Ag<br>ppe                  | Ni<br>pp=                  | Co<br>pp∎                 | Mn<br>ppe                         | Fe<br>I                              | As<br>ppe                 | U<br>pp∎                        | Au<br>ppe            | Th<br>ppa                               | Sr<br>ppe                  | Cd<br>ppa             | Sb<br>ppm                               | Bi<br>ppe                  | V<br>ppm                        | Ca<br>I                         | P<br>I                          | La<br>ppe             | Cr<br>ppa                  | Mg<br>I                            | B₁<br>ppm                       | Ti<br>1                         | 8<br>ppm                                | A)<br>Z                                   | Na<br>I                         | K<br>Z                               | ¥<br>ppe                               | Au 1<br>ppb           |      |
| <b>50</b> 8-36021<br>BD8-38062<br>BD8-38063<br>BD8-38084<br>BD5-38035      | 1<br>1<br>2<br>2<br>2 | 41<br>52<br>34<br>49<br>32 | 9<br>5<br>8<br>11<br>10   | 88<br>103<br>108<br>144<br>136  | .3<br>.2<br>.4<br>.2<br>.3 | 22<br>22<br>19<br>26<br>21 | 9<br>8<br>11<br>9         | 420<br>432<br>525<br>476<br>849   | 2.77<br>2.90<br>3.30<br>3.72<br>5.35 | 5<br>10<br>11<br>16<br>17 | 2022                            | ND<br>ND<br>ND<br>ND | 7<br>2<br>2<br>2<br>2                   | 44<br>42<br>22<br>27<br>27 | i<br>1<br>2<br>3      | 7 7 7 7<br>7 7 7<br>7                   | 2222                       | 90<br>89<br>104<br>104<br>98    | .51<br>.55<br>.17<br>.24<br>.28 | .09<br>.10<br>.07<br>.10<br>.11 | 5<br>6<br>5<br>7<br>6 | 44<br>44<br>39<br>50<br>51 | .97<br>.96<br>.80<br>.91<br>.76    | 145<br>157<br>156<br>189<br>170 | .07<br>.10<br>.14<br>.14<br>.12 | 4<br>2<br>3<br>22<br>2                  | 2.31<br>3.33                              | .04<br>.04<br>.03<br>.02<br>.02 | . 40<br>. 39<br>. 29<br>. 35<br>. 33 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2   | 5<br>5<br>5<br>5<br>5 |      |
| 808-38086<br>808-38067<br>808-38088<br>808-38089<br>808-38090              | 1<br>1<br>2<br>2<br>2 | 38<br>37<br>41<br>38<br>54 | 11<br>10<br>12<br>9<br>11 | 103<br>60<br>178<br>101<br>131  | .6<br>.7<br>.4<br>.4<br>.4 | 15<br>17<br>18<br>15<br>23 | 8<br>5<br>12<br>6<br>10   | 642<br>404<br>1251<br>516<br>617  | 3.60<br>3.26<br>3.54<br>3.77<br>3.42 | 8<br>14<br>12<br>5<br>11  | N CI CI N CI                    | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2                   | 11<br>13<br>17<br>14<br>35 | 2<br>1<br>3<br>7<br>2 | 2<br>4<br>2<br>2<br>2                   | 2<br>2<br>2<br>2<br>2      | 87<br>87<br>91<br>110<br>110    | .07<br>.05<br>.10<br>.08<br>.48 | .15<br>.13<br>.14<br>.16<br>.10 | 8<br>5<br>6<br>5      | 47<br>48<br>48<br>49<br>48 | .47<br>.51<br>.56<br>.44<br>.99    | 91<br>86<br>126<br>90<br>170    | .14<br>.10<br>.12<br>.10<br>.11 | 2<br>2<br>2                             | 4,34<br>2,26<br>4,23<br>3,40<br>2,13      | .02<br>.02<br>.02<br>.02<br>.03 | .20<br>.22<br>.25<br>.15<br>.41      | ~~~~                                   | 5<br>5<br>5<br>5<br>5 |      |
| BDB-38091<br>BDB-38093<br>BDB-38094<br>BDB-38095                           | 4<br>3<br>3<br>2      | 72<br>69<br>51<br>73<br>40 | 7<br>7<br>11<br>11        | 205<br>86<br>85<br>157<br>217   | .5<br>.1<br>.1<br>.2       | 31<br>17<br>18<br>27<br>21 | 19<br>8<br>7<br>12<br>11  | 1085<br>541<br>430<br>771<br>761  | 4.70<br>3.53<br>4.21<br>4.14<br>3.57 | 11<br>8<br>3<br>14<br>12  | 4<br>3<br>5<br>3<br>4           | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2                   | 26<br>17<br>17<br>21<br>19 | 2<br>1<br>1<br>2<br>2 | 2222                                    | 2<br>2<br>2<br>2<br>2<br>2 | 154<br>102<br>126<br>122<br>132 | .23<br>.10<br>.13<br>.17<br>.14 | .11<br>.12<br>.16<br>.11<br>.13 | 7<br>5<br>6<br>6<br>6 | 76<br>60<br>57<br>60<br>55 | 1.37<br>.59<br>.62<br>.79<br>1.07  | 146<br>87<br>110<br>127<br>204  | .14<br>.12<br>.12<br>.13<br>.14 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3, 39<br>4, 69<br>3, 27<br>3, 48<br>3, 43 | .02<br>.03<br>.02<br>.02<br>.02 | . 42<br>. 25<br>. 25<br>. 39<br>. 44 | 12 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5<br>5<br>5<br>5<br>5 |      |
| 808-38096<br>808-38097<br>808-38098<br>808-38099<br>808-38099<br>808-38100 | 2<br>2<br>3<br>2<br>1 | 37<br>41<br>56<br>74<br>45 | 12<br>11<br>9<br>9        | 111<br>179<br>223<br>171<br>156 | .4<br>.3<br>.2<br>.8<br>.1 | 15<br>21<br>33<br>28<br>23 | 7<br>10<br>14<br>13<br>13 | 631<br>913<br>662<br>704<br>633   | 3.41<br>3.47<br>4.28<br>4.06<br>4.00 | 5<br>6<br>18<br>26<br>14  | 4<br>4<br>2<br>2<br>2           | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2                   | 11<br>14<br>30<br>23<br>27 | 1<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2                   | 2<br>2<br>2<br>2<br>2<br>2 | 90<br>95<br>114<br>119<br>112   | .06<br>.07<br>.34<br>.21<br>.40 | .11<br>.11<br>.16<br>.10<br>.14 | 6<br>7<br>6<br>7<br>7 | 44<br>46<br>50<br>52<br>49 | .43<br>.67<br>1.12<br>1.04<br>1.19 | 70<br>114<br>183<br>177<br>144  | .11<br>.12<br>.13<br>.14<br>.13 | 2 2 2 2                                 | 4,20<br>3,52<br>3,87<br>1,42<br>2,82      | .02<br>.02<br>.02<br>.02<br>.02 | .11<br>.20<br>.29<br>.41<br>.44      | 2222                                   | 5<br>5<br>10<br>5     |      |
| EDB-38101<br>EDB-38102<br>EDB-38103<br>EDB-38104<br>EDB-38104<br>EOB-38105 | 2<br>3<br>1<br>2      | 43<br>57<br>26<br>24<br>25 | 11<br>9<br>12<br>4<br>10  | 131<br>124<br>148<br>67<br>167  | .4<br>.4<br>.3<br>.5       | 21<br>20<br>16<br>8<br>13  | 12<br>10<br>9<br>5<br>7   | 689<br>609<br>714<br>335<br>440   | 4,38<br>3,74<br>3,59<br>2,63<br>3,69 | 13<br>10<br>10<br>7       | 2<br>2<br>2<br>2<br>2<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2                   | 24<br>20<br>16<br>10<br>14 | 2<br>2<br>1<br>2      | 3<br>2<br>2<br>2<br>2                   | 2<br>2<br>2<br>2<br>2<br>2 | 116<br>104<br>91<br>56<br>87    | .26<br>.18<br>.16<br>.06<br>.10 | .25<br>.12<br>.22<br>.12<br>.33 | 6<br>7<br>7<br>8      | 45<br>46<br>43<br>26<br>39 | .97<br>.78<br>.68<br>.19<br>.70    | 151<br>135<br>103<br>65<br>144  | .10<br>.11<br>.11<br>.07<br>.10 | 2                                       | 2,73<br>2,89<br>3,86<br>5,51<br>4,34      | .02<br>.02<br>.02<br>.02<br>.02 | .34<br>.26<br>.16<br>.07<br>.15      | 2 P 2 P 1                              | ちょうちょう                |      |
| 808-38104<br>808-38107<br>808-38108<br>808-38109<br>808-38109<br>808-38110 | 1<br>1<br>2<br>3<br>3 | 24<br>33<br>48<br>35<br>54 | 10<br>6<br>13<br>10       | 145<br>216<br>114<br>77<br>111  | .1<br>.1<br>.4<br>.2<br>.3 | 13<br>17<br>19<br>13<br>17 | 7<br>10<br>8<br>5<br>7    | 508<br>562<br>412<br>435<br>527   | 3.19<br>3.66<br>3.68<br>3.57<br>4.03 | 9<br>10<br>2              | 2<br>3<br>3<br>2<br>2<br>2      | nd<br>Nd<br>Nd<br>Nd | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 23<br>23<br>17<br>15<br>20 | 2<br>2<br>1<br>2      | 2<br>2<br>2<br>2<br>2<br>2              | 2<br>2<br>2<br>2<br>2<br>2 | 80<br>108<br>94<br>100<br>119   | .30<br>.34<br>.14<br>.08<br>.15 | .17<br>.25<br>.25<br>.14<br>.17 | 7<br>8<br>7<br>7<br>8 | 33<br>43<br>39<br>42<br>43 | .78<br>1.03<br>.56<br>.63<br>.81   | 161<br>209<br>128<br>114<br>152 | .11<br>.13<br>.10<br>.06<br>.10 |                                         | 3,85<br>3,37<br>3,45<br>2,26<br>2,95      | .02<br>.02<br>.01<br>.01<br>.01 | .18<br>.34<br>.21<br>.29<br>.41      | 2022                                   | 5<br>5<br>5<br>10     |      |
| BD9-38111<br>838-38112<br>BD6-38113<br>BD8-38113<br>BD6-38113              | 2004                  | 41<br>31<br>35<br>36<br>50 | 11<br>8<br>10<br>17       | 132<br>103<br>174<br>165<br>353 | .2<br>.2<br>.1<br>.6       | 17<br>16<br>17<br>16<br>41 | 8<br>6<br>11<br>13<br>12  | 516<br>487<br>1243<br>773<br>1214 | 4.57<br>3.65<br>3.87<br>4.76<br>3.32 | 7<br>2<br>7<br>10<br>9    | 72775                           | nd<br>ND<br>ND<br>ND | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 28<br>35<br>37<br>29       | 2<br>2<br>3<br>2<br>6 | 2<br>2<br>2<br>2                        | 2<br>2<br>2<br>2<br>2<br>2 | 132<br>100<br>101<br>120<br>75  | .29<br>.33<br>.36<br>.58<br>.27 | .13<br>.20<br>.13<br>.20<br>.11 | 5<br>11<br>9<br>13    | 48<br>36<br>40<br>42<br>42 | .73<br>.68<br>.93<br>1.11<br>.89   | 116<br>137<br>219<br>206<br>173 | .12<br>.08<br>.11<br>.15<br>.12 | 3                                       | 3,72<br>2,15<br>2,63<br>3,44<br>4,25      | .07<br>.01<br>.02<br>.02<br>.03 | .25<br>.27<br>.38<br>.40<br>.22      | 1777<br>777<br>7                       | 5<br>5<br>5<br>5<br>5 |      |
| 808-38116<br>808-38117<br>STD A-1/AU 0.5                                   | 3                     | 37<br>23<br>31             | 8<br>7<br>38              | 177<br>74<br>181                | .4<br>.3<br>.3             | 20<br>8<br>35              | 9<br>5<br>12              | 658<br>370<br>1030                | 2.63<br>3.56<br>2.82                 | 2<br>5<br>9               | 7                               | ND<br>ND<br>ND       | 7                                       | 24<br>24<br>36             | 2<br>2<br>1           | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4114                       | 59<br>110<br>58                 | . 17<br>. 51<br>. 58            | .12<br>.10<br>.05               | 7<br>4<br>7           | 33<br>26<br>73             | .43<br>1.25<br>.75                 | 107<br>235<br>280               | .09<br>.19<br>.08               |                                         | 5,44<br>2,08<br>2,06                      | .02<br>.03<br>.02               | .15<br>.51<br>.21                    | ?                                      | 5<br>5<br>540         |      |

## I.M. WATSON FILE # 83-2151 FROJECT # NAKUSP

----

| SAMPLE #                                                                   | Ha<br>ppe              | Cu<br>pps                   | РЬ<br>рра                 | ∑n<br>pp∎                       | Ag<br>p⊉∎                  | Ni<br>PP <del>o</del>      | Со<br>рре                 | Min<br>Pp e                        | Fe<br>I                              | As<br>ppm                  | U<br>ppm                   | Au<br>pp =                 | Th<br>pp●                               | Sr<br>ppe                  | Cd<br>pp=             | Sb<br>ppe                  | Bi<br>pp∎                  | V<br>PP®                       | Ca<br>I                         | P<br>I                          | La<br>ppm                | Cr<br>ppe                  | Mg<br>I                              | Ba<br>ppe                       | Ti<br>Z                         | B<br>pp∎    | Al<br>I                              | Ka<br>Z                         | к<br>7                           | W<br>pp=                             | Au t<br>ppb                 |
|----------------------------------------------------------------------------|------------------------|-----------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|---------------------------|------------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------------|----------------------------|-----------------------|----------------------------|----------------------------|--------------------------------|---------------------------------|---------------------------------|--------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|---------------------------------|----------------------------------|--------------------------------------|-----------------------------|
| BDB-38118<br>BD9-36119<br>BDB-38120<br>BDR-38121<br>BDB-38122              | 3<br>1<br>2<br>7<br>2  | 35<br>27<br>30<br>31<br>28  | 10<br>7<br>8<br>5<br>12   | 281<br>212<br>125<br>233<br>247 | .9<br>.7<br>.5<br>.8       | 23<br>26<br>15<br>21<br>24 | 12<br>11<br>9<br>16<br>10 | 1626<br>598<br>2494<br>1002<br>458 | 3.05<br>3.30<br>3.34<br>3.93<br>3.38 | 13<br>14<br>8<br>9<br>14   | 5<br>2<br>5<br>3           | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2              | 30<br>22<br>11<br>22<br>21 | 3<br>2<br>2<br>3<br>2 | 2<br>2<br>2<br>7<br>4      | 2<br>2<br>3<br>7<br>2      | 79<br>84<br>70<br>103<br>96    | .47<br>.19<br>.11<br>.24<br>.17 | .13<br>.10<br>.35<br>.15<br>.10 | 8<br>6<br>9<br>6         | 37<br>47<br>49<br>36<br>43 | .78<br>1.22<br>.87<br>1.12<br>1.11   | 127<br>139<br>216<br>171<br>170 | .07<br>.11<br>.11<br>.10<br>.11 | 2<br>2<br>2 | 4.91<br>3.97<br>4.22<br>4.70<br>3.77 | .03<br>.02<br>.07<br>.03<br>.02 | . 13<br>.25<br>.34<br>.26<br>.22 | 2 2 2 2 2 2 2                        | 55555                       |
| 808-38123<br>808-38124<br>808-38125<br>808-38126<br>608-38126              | 2<br>2<br>3<br>3       | 54<br>46<br>45<br>59<br>38  | 11<br>16<br>14<br>B<br>10 | 289<br>199<br>208<br>176<br>226 | .9<br>1.0<br>.7<br>.3      | 26<br>26<br>30<br>34<br>30 | 13                        | 574<br>1039<br>854                 | 4.13<br>3.30<br>3.48<br>3.60<br>3.42 | 10<br>13<br>18<br>11       | 5<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 21<br>26<br>18<br>30<br>24 | 2<br>2<br>3<br>2<br>3 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 130<br>91<br>85<br>94<br>81    | .13<br>.22<br>.18<br>.45<br>.28 | .11<br>.15<br>.12<br>.11<br>.11 | 6<br>8<br>10<br>8        | 40<br>47<br>50             | 1.15<br>.91<br>1.19<br>1.40<br>1.00  | 269<br>203<br>194<br>239<br>179 | .13<br>.12<br>.09<br>.14<br>.09 | 2 4 2       | 2.97<br>4.44<br>2.94<br>2.88<br>2.82 | .07<br>.03<br>.02<br>.03<br>.02 | .49<br>.31<br>.24<br>.49<br>.22  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 5<br>10<br>5<br>5           |
| 808-38128<br>808-38129<br>808-38130<br>808-38131<br>808-38132              | 2<br>1<br>5<br>2<br>3  | 47<br>41<br>24<br>51<br>41  | 8<br>9<br>11<br>15<br>14  | 163<br>165<br>130<br>172<br>126 | .4<br>.3<br>.3<br>.5       | 32<br>26<br>16<br>26<br>18 | 14<br>14<br>7<br>9<br>6   | 622                                | 3.42<br>3.95<br>4.09<br>4.05<br>3.62 | 17<br>14<br>8<br>18<br>21  | 2<br>2<br>2<br>6<br>3      | ND<br>ND<br>ND<br>ND       | 3<br>2<br>2<br>2<br>2<br>2              | 27<br>21<br>14<br>22<br>27 | 1<br>2<br>1<br>2<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 83<br>124<br>99<br>106<br>102  | .39<br>.35<br>.07<br>.28<br>.27 | .23<br>.13<br>.10<br>.17<br>.24 | 11<br>9<br>7<br>11<br>10 | 41<br>44<br>38<br>45<br>37 | 1.10<br>1.40<br>.77<br>1.15<br>.97   | 150<br>258<br>76<br>157<br>160  | .11<br>.17<br>.14<br>.15<br>.10 | 2<br>4<br>3 | 3.67<br>3.37<br>1.89<br>4.08<br>2.37 | .02<br>.02<br>.02<br>.02<br>.02 | .29<br>.51<br>.18<br>.49<br>.29  | 2<br>2<br>2<br>2<br>2                | 5<br>5<br>5<br>5            |
| 808-38133<br>808-38134<br>808-38135                                        | 4<br>3<br>4<br>2<br>15 | 44<br>52<br>46<br>16<br>27  | 25<br>12<br>11<br>9<br>13 | 134<br>182<br>186<br>76<br>123  | .5<br>.9<br>.7<br>.9<br>.8 | 13<br>22<br>24<br>8<br>15  | 13<br>11<br>9<br>5<br>14  |                                    | 4.67<br>3.56<br>3.78<br>2.43<br>3.48 | 17<br>11<br>15<br>8<br>10  | 3<br>3<br>3<br>3           | ND<br>ND<br>ND<br>ND       | 7<br>2<br>2<br>2<br>2<br>2              | 32<br>23<br>18<br>14<br>11 | 2<br>2<br>2<br>1<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2      | 121<br>93<br>114<br>49<br>79   | .35<br>.21<br>.13<br>.13<br>.10 | .17<br>.15<br>.10<br>.20<br>.12 | 10<br>9<br>7<br>6<br>6   | 44<br>38<br>42<br>19<br>34 | 1.11<br>1.00<br>.75<br>.26<br>.53    | 112<br>145<br>148<br>80<br>69   | .11<br>.11<br>.12<br>.11<br>.12 | 3<br>5<br>3 | 4.01<br>2.79<br>2.70<br>3.86<br>5.09 | .04<br>.02<br>.02<br>.02<br>.02 | .29<br>.33<br>.29<br>.07<br>.14  | 7<br>7<br>7<br>7<br>7                | 5<br>15<br>10<br>5          |
| BDB-38138<br>BDB-38139<br>BDB-38140<br>BDB-38141<br>BDB-38142              | 32433                  | 42<br>20<br>43<br>63        | 27<br>23<br>16<br>15<br>7 | 230<br>232<br>128<br>345<br>115 | .4<br>.5<br>.6<br>.8<br>.5 | 25<br>16<br>15<br>33<br>18 | 14<br>11<br>6<br>15<br>9  | 959<br>530<br>1140                 | 4.80<br>4.27<br>3.76<br>4.27<br>3.99 | 31<br>21<br>13<br>20<br>10 | 2<br>2<br>3<br>4           | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2              | 39<br>28<br>16<br>46<br>23 | 2<br>2<br>1<br>3<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 111<br>99<br>102<br>120<br>137 | .50<br>.26<br>.11<br>.65<br>.12 | .19<br>.11<br>.13<br>.13<br>.13 | 12<br>9<br>8<br>11<br>5  | 37<br>32<br>37<br>48<br>55 | 1.43<br>1.13<br>.80<br>1.45<br>1.08  | 241<br>157<br>121<br>259<br>216 | .17<br>.18<br>.11<br>.13<br>.12 | 3           | 4.01<br>3.39<br>2.48<br>2.97<br>2.78 | .02<br>.02<br>.02<br>.03<br>.02 | .55<br>.35<br>.25<br>.40<br>.50  | 2<br>2<br>2<br>2<br>2                | 145 -<br>15<br>5<br>25<br>5 |
| BDB-38143<br>BDB-38144<br>BDB-38145<br>BDB-38145<br>BDB-38146<br>BDB-38147 | 4<br>4<br>1<br>3<br>1  | 49<br>58<br>49<br>57<br>48  | 12<br>9<br>4<br>10<br>5   | 115<br>102<br>46<br>101<br>75   | -6<br>.4<br>.3<br>.4<br>.3 | 17<br>17<br>11<br>21<br>15 | B<br>7<br>4<br>8          | 442<br>276<br>505                  | 5.88<br>4.17<br>2.49<br>4.13<br>2.61 | 11<br>5<br>7<br>8<br>13    | 3<br>7<br>7<br>2           | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2              | 28<br>30<br>17<br>22<br>17 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 7<br>2<br>2<br>2<br>2<br>2 | 129<br>147<br>67<br>138<br>78  | .13<br>.10<br>.09<br>.10<br>.10 | .16<br>.11<br>.11<br>.12<br>.06 | 5<br>6<br>5<br>5         | 44<br>49<br>29<br>59<br>40 | . 87<br>. 86<br>. 41<br>. 84<br>. 58 | 197<br>189<br>89<br>164<br>104  | .09<br>.12<br>.11<br>.12<br>.12 | 3<br>2<br>3 | 2.76<br>3.11<br>4.49<br>2.66<br>3.70 | .03<br>.02<br>.03<br>.02<br>.04 | .44<br>.37<br>.18<br>.34<br>.20  | 22222                                | 5<br>10<br>5<br>10<br>5     |
| BDB-38148<br>BDB-38149<br>BDB-38150<br>BDB-38151<br>BDB-38151<br>BDB-38152 | 1<br>1<br>1<br>1<br>1  | 43<br>41<br>107<br>35<br>81 | 13<br>12<br>10<br>10<br>7 | 136<br>63<br>183<br>59<br>59    | .4<br>.3<br>.3<br>.3       | 19<br>16<br>40<br>14<br>22 | 15<br>7<br>21<br>7<br>10  | 627<br>1052<br>662                 | 3.40<br>3.56<br>5.38<br>3.54<br>4.29 | 10<br>8<br>24<br>10<br>11  | 2<br>2<br>3<br>4<br>2      | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2                   | 20<br>13<br>19<br>10<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 96<br>98<br>157<br>76<br>142   | .15<br>.10<br>.21<br>.09<br>.12 | .12<br>.09<br>.13<br>.12<br>.12 | 5<br>4<br>5<br>5         | 51<br>52<br>83<br>46<br>75 | .79<br>.61<br>1.42<br>.35<br>.88     | 149<br>122<br>185<br>70<br>161  | .13<br>.11<br>.10<br>.14<br>.13 | 3<br>2<br>4 | 4.07<br>2.99<br>4.12<br>5.13<br>2.51 | .02<br>.02<br>.02<br>.02<br>.02 | .31<br>.22<br>.44<br>.13<br>.40  | 2<br>2<br>2<br>2<br>2<br>2           | 5<br>5<br>5<br>5<br>5       |
| 908-38153<br>908-38154<br>STD A-1/AU 0.5                                   | 1<br>1<br>1            | 70<br>59<br>30              | 6<br>5<br>37              | 69<br>118<br>180                | .2<br>.2<br>.3             | 22<br>19<br>12             | 10<br>15<br>12            |                                    | 4.96<br>4.55<br>2.81                 | 17<br>14<br>11             | 6<br>5<br>2                | ND<br>ND<br>ND             | 2<br>2<br>2                             | 18<br>19<br>37             | 1<br>1<br>1           | 2<br>7<br>2                | 2<br>2<br>2                | 164<br>139<br>59               | . 20<br>. 18<br>. 57            | .11<br>.11<br>.07               | 3<br>5<br>7              | 36<br>35<br>73             | .84<br>1.12<br>.73                   | 158<br>205<br>279               | . 15<br>. 14<br>. 08            | 2           | 3.67<br>3.17<br>2.07                 | .02<br>.02<br>.02               | .40<br>.39<br>.21                | 2222                                 | 5<br>5<br>520               |

PAGE # 2

1

 $\smile$ 

## I.M. WATSON FILE # 83+2151 PROJECT # NAKUSP

-----

| SAMPLE #                                                                                           | Mo<br>ppa              | Cu<br>ppe                     | Pb<br>pp=                  | Zn<br>ppm                       | Ag<br>ppe                    | N1<br>ppe                   | Co<br>ppe                 | Mn<br>ppa                         | Fe<br>2                                   | As<br>ppa               | U<br>ppa                   | Au<br>ppe            | Th<br>pps                  | Sr<br>ppa                   | Cđ<br>ppe             | 56<br>ppo                  | Bi<br>ppa                  | ¥<br>pp∎                        | Ca<br>1                          | F<br>I                          | La<br>ppe                | Cr<br>pp=                   | Hg<br>I                              | Ba<br>ppa                      | Ti<br>I                              | 9<br>ppm         | A)<br>Z                                   | Na<br>Z                         | K<br>Z                               | W<br>ppe                   | Aut<br>ppb             |
|----------------------------------------------------------------------------------------------------|------------------------|-------------------------------|----------------------------|---------------------------------|------------------------------|-----------------------------|---------------------------|-----------------------------------|-------------------------------------------|-------------------------|----------------------------|----------------------|----------------------------|-----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|---------------------------------|--------------------------|-----------------------------|--------------------------------------|--------------------------------|--------------------------------------|------------------|-------------------------------------------|---------------------------------|--------------------------------------|----------------------------|------------------------|
| 80 <del>0</del> -38755<br>808-38756<br>808-38757<br>808-38758<br>808-38758<br>808-38759            | 2<br>2<br>3<br>4<br>6  | 58<br>101<br>64<br>109<br>101 | 5<br>17<br>8<br>9<br>14    | 178<br>75<br>103<br>184<br>110  | .5<br>.6<br>.7<br>.3<br>.7   | 21<br>13<br>19<br>36<br>33  | 13<br>5<br>12<br>15<br>13 | 711<br>456<br>522<br>647<br>622   | 3.81<br>4.78<br>4.71<br>4.74<br>4.56      | 3<br>6<br>12<br>2       | 2<br>4<br>2<br>3<br>2      | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2      | 36<br>19<br>21<br>30<br>52  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>5           | 116<br>139<br>151<br>138<br>117 | .25<br>.14<br>.39<br>.25<br>.36  | .09<br>.17<br>.09<br>.18<br>.11 | 7<br>7<br>5<br>8<br>7    | 48<br>49<br>52<br>59<br>50  | .95<br>.85<br>1.16<br>1.03<br>.77    | 153<br>123<br>171<br>105<br>79 | .14<br>.12<br>.15<br>.11<br>.12      | 4<br>3<br>4      | 4.64<br>3.61<br>3.64<br>4.00<br>3.69      | .03<br>.02<br>.02<br>.02<br>.02 | .27<br>.48<br>.48<br>.25<br>.25      | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5       |
| 808-38760<br>808-38761<br>808-38762<br>808-38763<br>808-38764                                      | 2<br>5<br>6<br>2<br>13 | 54<br>60<br>86<br>67<br>131   | 7<br>11<br>12<br>14<br>17  | 94<br>169<br>417<br>95<br>800   | .4<br>.5<br>.9<br>.4<br>1.2  | 18<br>33<br>45<br>20<br>127 | 7<br>9<br>15<br>11<br>16  | 593<br>516<br>724<br>470<br>357   | 4.33<br>3.92<br>4.54<br>4.49<br>3.95      | 5<br>7<br>5<br>5<br>5   | 2<br>2<br>2<br>2<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2      | 22<br>31<br>42<br>17<br>137 | 1<br>2<br>1<br>19     | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>5<br>2<br>2<br>2      | 120<br>113<br>121<br>61<br>67   | .14<br>.25<br>.32<br>.22<br>1.47 | .10<br>.10<br>.13<br>.08<br>.11 | 5<br>6<br>7<br>5<br>6    | 44<br>64<br>51<br>29<br>9   | .57<br>1.08<br>1.03<br>.83<br>.08    | 122<br>125<br>104<br>67<br>33  | .13<br>.13<br>.08<br>.09<br>.06      | 2<br>4<br>3      | 3.92<br>5.16<br>4.54<br>2.63<br>2.96      | .02<br>.02<br>.02<br>.03<br>.16 | .17<br>.29<br>.21<br>.38<br>.04      | 2<br>2<br>2<br>2<br>2<br>2 | \$<br>5<br>5<br>5<br>5 |
| BDB-38765<br>BDB-38766<br>BDB-38767<br>BDB-38768<br>BDB-38768<br>BDB-38769                         | 10<br>7<br>6<br>7<br>6 | 67<br>95<br>89<br>57<br>98    | 17<br>18<br>13<br>12<br>15 | 551<br>238<br>370<br>444<br>442 | 1.0<br>.ċ<br>.7<br>.3<br>.5  | 51<br>23<br>40<br>38<br>53  | 9<br>20<br>15<br>13<br>16 | 384<br>1372<br>562<br>609<br>641  | 3,70<br>4,95<br>5,26<br>4,56<br>5,01      | 4<br>7<br>9<br>8<br>10  | 22224                      | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2 | 58<br>23<br>22<br>32<br>32  | 3<br>2<br>3<br>2<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 97<br>125<br>134<br>134<br>143  | .40<br>.17<br>.27<br>.28<br>.25  | .12<br>.15<br>.15<br>.10<br>.11 | 8<br>10<br>5<br>8        | 37<br>56<br>87<br>65<br>66  | .52<br>.64<br>.90<br>1.13<br>1.08    | 65<br>82<br>69<br>92<br>112    | .06<br>.12<br>.08<br>.12<br>.12      | 3<br>4<br>6      | 5.26<br>5.50<br>6.14<br>4.15<br>4.28      | .02<br>.02<br>.01<br>.03<br>.02 | .08<br>.05<br>.16<br>.1E             | 7<br>2<br>2<br>7<br>7      | 5<br>10<br>5<br>5<br>5 |
| 808-38170<br>BDB-38171<br>BDB-38172<br>BDB-38173<br>BD6-38173<br>BD6-38174                         | 6<br>5<br>9<br>2<br>8  | 85<br>54<br>66<br>54<br>46    | 15<br>12<br>15<br>8<br>8   | 380<br>284<br>252<br>159<br>152 | .3<br>.4<br>1.0<br>.5<br>1.4 | 36<br>22<br>24<br>61<br>37  | 14<br>8<br>8<br>20<br>17  | 592<br>540<br>418<br>478<br>610   | 4.53<br>4.09<br>4.00<br>4.94<br>3.46      | 13<br>4<br>2<br>10<br>6 | 3<br>2<br>4<br>3<br>2      | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2      | 29<br>20<br>21<br>36<br>39  | 2<br>2<br>1<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 136<br>108<br>111<br>120<br>68  | .22<br>.13<br>.15<br>.32<br>.41  | .10<br>.11<br>.0?<br>.15<br>.07 | 8<br>7<br>6<br>7<br>10   | 51<br>46<br>37<br>163<br>39 | .94<br>.62<br>.68<br>2.04<br>1.01    | 116<br>89<br>79<br>145<br>76   | .12<br>.08<br>.09<br>.14<br>.09      | 4<br>4<br>3      | 4.04<br>5.78<br>3.45<br>3.88<br>5.56      | .00<br>.01<br>.02<br>.05<br>.01 | .16<br>.10<br>.12<br>.26<br>.16      | 22222                      | 5<br>5<br>5<br>5       |
| BDB - 38 ; 75<br>BDB - 38 ; 75<br>BDR - 38 ; 77<br>BDB - 38 ; 78<br>BCB - 38 ; 79<br>BCB - 38 ; 79 | 4<br>2<br>8<br>6<br>2  | 25<br>34<br>34<br>60<br>39    | 29<br>9<br>18<br>13<br>10  | 222<br>162<br>190<br>211<br>100 | 1.2<br>.3<br>.2<br>.3<br>.2  | 40<br>26<br>35<br>32<br>27  | 21<br>9<br>10<br>11<br>11 | 3715<br>553<br>650<br>494<br>441  | 1.96<br>3.02<br>3.97<br>3.10<br>2.84      | 2<br>13<br>5<br>5<br>5  | 22322                      | ND<br>ND<br>ND<br>ND | 3<br>2<br>2<br>2<br>2<br>2 | 56<br>19<br>23<br>30<br>24  | 5<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>?<br>2<br>?           | 13<br>76<br>110<br>107<br>71    | .42<br>.16<br>.20<br>.26<br>.35  | .16<br>.08<br>.21<br>.12<br>.11 | 12<br>9<br>8<br>9<br>9   | B<br>39<br>46<br>49<br>45   | . 22<br>. 84<br>. 74<br>. 87<br>. 94 | 85<br>70<br>64<br>61<br>55     | .03<br>.10<br>.07<br>.08<br>.10      | 2<br>2<br>2<br>2 | 5.74<br>3.19<br>3.19<br>4.06<br>2.29      | .01<br>.02<br>.02<br>.03<br>.02 | .03<br>.17<br>.09<br>.17<br>.25      | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5       |
| 808-38180<br>808-38181<br>808-38182<br>908-38183<br>808-38184                                      | 3<br>2<br>1<br>4<br>2  | 53<br>30<br>54<br>28<br>43    | 9<br>11<br>13<br>13        | 116<br>112<br>79<br>120<br>150  | .4<br>.6<br>.8<br>.5<br>.4   | 38<br>35<br>42<br>26<br>36  | 12<br>13<br>9<br>14<br>12 | 439<br>1130<br>544<br>1007<br>666 | 2, 99<br>2, 61<br>2, 61<br>3, 46<br>3, 41 | 2<br>2<br>8<br>9        | 2<br>2<br>3<br>2<br>2      | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>3<br>2<br>2      | 22<br>58<br>32<br>25<br>20  | 1<br>2<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 70<br>36<br>61<br>47<br>93      | .32<br>.63<br>.52<br>.22<br>.31  | .15<br>.17<br>.09<br>.16<br>.15 | 8<br>11<br>8<br>8        | 47<br>20<br>51<br>28<br>58  | .76<br>.62<br>1.02<br>.46<br>.1.13   | 40<br>78<br>33<br>40<br>50     | .07<br>.06<br>.08<br>.05<br>.10      | 3<br>2<br>4      | 3.14<br>2.17<br>2.04<br>3.51<br>3.19      | .02<br>.02<br>.03<br>.02<br>.02 | . 13<br>. 09<br>. 13<br>. 09<br>. 17 | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5       |
| 808 - 38   85<br>808 - 38   86<br>808 - 38   87<br>808 - 38   88<br>808 - 38   89                  | 2<br>4<br>5<br>3<br>3  | 41<br>34<br>36<br>22<br>35    | 13<br>25<br>30<br>14<br>20 | 152<br>74<br>58<br>115<br>79    | .4<br>.4<br>.4<br>.4         | 24<br>23<br>15<br>16<br>66  | 9<br>7<br>4<br>6<br>11    | 558<br>1171<br>527<br>552<br>735  | 3,30<br>3,84<br>4,79<br>2,95<br>4,59      | 9<br>6<br>8<br>7<br>11  | 3<br>3<br>6<br>7<br>2      | nd<br>Nd<br>Nd<br>Nd | 2<br>3<br>4<br>4<br>2      | 18<br>15<br>13<br>17<br>52  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 84<br>72<br>98<br>58<br>90      | .18<br>.11<br>.10<br>.18<br>.47  | .09<br>.42<br>.25<br>.14<br>.23 | B<br>9<br>15<br>23<br>10 | 48<br>59<br>49<br>37<br>190 | .92<br>.55<br>.34<br>.67<br>1.55     | 74<br>81<br>47<br>70<br>105    | . 12<br>. 08<br>. 13<br>. 08<br>. 14 | 4                | 3, 39<br>3, 68<br>3, 62<br>3, 51<br>3, 44 | .02<br>.02<br>.03<br>.02<br>.06 | .18<br>.14<br>.69<br>.13<br>.13      | 2<br>2<br>2<br>2<br>2<br>2 | 30<br>5<br>5<br>5<br>5 |
| 809-38190<br>809-38191<br>STD A-1/AU 0.5                                                           | 5<br>6<br>1            | 28<br>23<br>30                | 22<br>18<br>39             | 59<br>60<br>182                 | .4<br>.4<br>.3               | 20<br>11<br>36              | 4<br>3<br>12              | 368<br>445<br>1031                | 4.33<br>3.30<br>2.84                      | 2<br>3<br>11            | 4<br>4<br>2                | ND<br>ND<br>ND       | 3                          | 21<br>31<br>37              | <br>1<br>1            | 2<br>2<br>2                | 2<br>2<br>2                | 85<br>96<br>58                  | .14<br>.27<br>.59                | .16<br>.12<br>.09               | 19<br>7<br>7             | 89<br>34<br>72              | .30<br>.20<br>.73                    | 74<br>91<br>278                | .10<br>.08<br>.08                    | 5                | 4.31<br>1.78<br>2.05                      | . 03<br>. 02<br>. 02            | .08<br>.09<br>.21                    | 2<br>2<br>2                | 5<br>5<br>520          |

PAGE # 🖸

.

 $\checkmark$ 

 $\sim$ 

## I.M. WATSON FILE # 83-2151 PROJECT # NAKUSP

·- •

| SAMPLE #                                                                        | Мо<br>ррв             | Cu<br>pp∎                  | РЪ<br>ррв                  | Zn<br>ppm                    | Ag<br>pp#                  | Ni<br>pp <del>o</del>      | Co<br>ppe                 | Mn<br>ppa                        | Fe<br>Z                              | As<br>ppm              | U<br>Ppm                   | Au<br>ppe                  | ĩh<br>pp∎                       | Sr<br>9pe                  | Cd<br>ppe             | Sb<br>pp.s                 | Bi<br>ppa                               | V<br>ppe                    | Ca<br>I                         | P<br>I                          | La<br>ppa                 | Cr<br>ppe                  | Ħq<br>Z                              | Ba<br>ppe                       | Ti<br>X                         | 8<br>ppe    | A]<br>I                              | Na<br>I                         | K<br>I                          | W<br>pps                                | Au t<br>ppb            |
|---------------------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|------------------------------|----------------------------|----------------------------|---------------------------|----------------------------------|--------------------------------------|------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|-----------------------|----------------------------|-----------------------------------------|-----------------------------|---------------------------------|---------------------------------|---------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------------------------|------------------------|
| BDB-38192<br>BDB-38193<br>BDB-38194<br>BDB-38194<br>BDB-38195<br>BDB-38196      | 8<br>7<br>1<br>9<br>2 | 31<br>15<br>31<br>26<br>17 | 18<br>7<br>22<br>21<br>21  | 69<br>37<br>59<br>67<br>46   | .3<br>.2<br>.2<br>.2       | 12<br>9<br>27<br>32<br>16  | 6<br>4<br>10<br>10<br>7   | 1000<br>456<br>722<br>330<br>534 | 4.61<br>2.34<br>2.99<br>3.39<br>2.65 | 5<br>8<br>2<br>7<br>7  | 9<br>8<br>5<br>2           | ND<br>ND<br>ND<br>ND       | 3<br>2<br>2<br>3<br>3           | 12<br>17<br>10<br>15<br>9  | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2              | 138<br>52<br>58<br>62<br>45 | .08<br>.13<br>.07<br>.07<br>.05 | .22<br>.06<br>.07<br>.05<br>.02 | 9<br>7<br>9<br>15<br>8    | 55<br>34<br>50<br>43<br>26 | .29<br>.25<br>.81<br>.88<br>.41      | 54<br>56<br>82<br>88<br>80      | .10<br>.08<br>.05<br>.09<br>.07 | 3           | 4.10<br>2.10<br>1.93<br>2.16<br>1.45 | .02<br>.02<br>.02<br>.02<br>.02 | .09<br>.07<br>.10<br>.13<br>.13 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5<br>5<br>5<br>5       |
| BD <del>D</del> - 38197<br>DDB- 38198<br>BDB- 38199<br>BDB- 38200<br>BDB- 38201 | 2<br>2<br>1<br>1      | 1B<br>12<br>24<br>22<br>1B | 48<br>18<br>29<br>14<br>17 | 62<br>56<br>68<br>72         | .1<br>.2<br>.1<br>.2<br>.1 | 18<br>20<br>27<br>25<br>23 | 6<br>10<br>8<br>7         | 438<br>541<br>507<br>229<br>206  | 2.72<br>2.75<br>2.94<br>3.10<br>3.19 | 9<br>4<br>9<br>10      | 7<br>2<br>3<br>7           | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>3<br>3                | 9<br>8<br>17<br>14<br>15   | 1<br>1<br>1<br>1      | 4<br>2<br>5<br>2<br>2      | 2<br>2<br>2<br>2<br>2                   | 44<br>53<br>58<br>51<br>53  | .06<br>.04<br>.08<br>.09<br>.05 | .11<br>.04<br>.07<br>.04<br>.08 | 1  <br>B<br>9<br>14<br>12 | 27<br>36<br>47<br>36<br>37 | .52<br>.62<br>1.06<br>.06<br>.73     | 64<br>120<br>146<br>98<br>95    | .07<br>.11<br>.15<br>.14<br>.15 | 4<br>2<br>3 | 1.59<br>1.48<br>2.27<br>2.60<br>1.99 | .02<br>.01<br>.02<br>.01<br>.02 | .10<br>.10<br>.36<br>.21<br>.14 | 22222                                   | 5<br>5<br>5<br>5       |
| BDB-38202<br>BDB-38203<br>BDB-38204<br>BDB-38205<br>BDB-38206                   | 2<br>7<br>16<br>1     | 18<br>14<br>21<br>15<br>7  | 16<br>14<br>27<br>17<br>13 | 56<br>81<br>72<br>75<br>24   | .1<br>.1<br>.2<br>.2<br>.1 | 19<br>14<br>27<br>20<br>9  | 6<br>7<br>6<br>9<br>2     | 338<br>1255<br>493<br>576<br>235 | 2.08<br>2.49<br>3.03<br>2.78<br>1.72 | 7<br>3<br>8<br>5<br>2  | 2<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>3<br>2<br>3<br>2 | 11<br>6<br>16<br>9<br>7    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2                   | 39<br>42<br>65<br>49<br>40  | .07<br>.04<br>.04<br>.05<br>.03 | .08<br>.05<br>.07<br>.04<br>.04 | 9<br>8<br>7<br>6          | 25<br>24<br>24<br>30<br>13 | ,48<br>,48<br>,44<br>,56<br>,21      | 64<br>89<br>70<br>74<br>52      | .07<br>.12<br>.10<br>.15<br>.12 | 3<br>2      | 1.38<br>1.55<br>1.29<br>2.29<br>.75  | .02<br>.01<br>.02<br>.02<br>.02 | .17<br>.14<br>.13<br>.16<br>.07 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5<br>10<br>5<br>5<br>5 |
| BDR - 38 207<br>BDB - 38 208<br>BDB - 38209<br>BDB - 38210<br>BDB - 36211       | 1<br>20<br>3<br>1     | 10<br>21<br>16<br>10<br>28 | 15<br>14<br>23<br>15<br>21 | 43<br>103<br>100<br>47<br>90 | .2<br>.1<br>.1<br>.1<br>.1 | 12<br>23<br>23<br>15<br>33 | 3<br>5<br>10<br>5         | 144<br>234<br>313<br>196<br>321  | 2.91<br>3.33<br>3.37<br>2.24<br>3.52 | 4<br>6<br>7<br>5<br>7  | 2<br>3<br>2<br>2           | ND<br>ND<br>ND<br>ND       | 2<br>4<br>4<br>2<br>4           | 6<br>10<br>6<br>8<br>8     | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2      | 7 7 7 7 7                               | 57<br>75<br>60<br>39<br>52  | .02<br>.05<br>.05<br>.04<br>.06 | .03<br>.09<br>.15<br>.03<br>.06 | 8<br>9<br>8<br>7<br>10    | 22<br>35<br>47<br>22<br>38 | . 23<br>. 69<br>. 62<br>. 43<br>. 98 | 46<br>80<br>101<br>52<br>96     | .15<br>.13<br>.14<br>.13<br>.18 | 3           | 1.37<br>2.29<br>2.89<br>1.25<br>2.67 | .01<br>.02<br>.02<br>.01<br>.01 | .08<br>.13<br>.12<br>.16<br>.31 | ~~~~                                    | 55555                  |
| 000-38212<br>000-38213<br>000-38214<br>RKB-32175<br>RKB-32176                   | 2<br>2<br>2<br>2<br>2 | 22<br>18<br>20<br>44<br>36 | 19<br>11<br>15<br>11<br>11 | 82<br>78<br>85<br>91<br>71   | .2<br>.1<br>.1<br>.4<br>.4 | 21<br>55<br>28<br>38<br>32 | 11<br>10<br>9<br>8        | 1577<br>382<br>516<br>290<br>552 | 3.01<br>2.60<br>2.85<br>2.35<br>2.24 | 4<br>9<br>5<br>3<br>4  | 5<br>5<br>2<br>4           | ND<br>ND<br>ND<br>ND       | 32423                           | 10<br>9<br>20<br>32        | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>1           | 2<br>2<br>2<br>2<br>2                   | 52<br>50<br>43<br>49<br>58  | .07<br>.07<br>.07<br>.18<br>.60 | .05<br>.04<br>.09<br>.07<br>.09 | 6<br>7<br>9<br>7<br>11    | 39<br>94<br>37<br>32<br>50 | .70<br>.96<br>.68<br>1.15<br>1.69    | 61<br>102<br>91<br>100<br>106   | .16<br>.15<br>.13<br>.11<br>.12 | 4<br>3<br>7 | 2.42<br>2.27<br>2.11<br>2.25<br>2.46 | .02<br>.02<br>.01<br>.02<br>.03 | .14<br>.21<br>.18<br>.17<br>.26 | 2<br>2<br>2<br>2<br>2<br>2<br>2         | 5<br>5<br>5<br>5<br>5  |
| ROB-32177<br>Rob-32178<br>Rob-32179<br>Rob-32180<br>Rob-32180<br>Rob-32181      | 1<br>1<br>1<br>2<br>4 | 36<br>35<br>31             | 13<br>14<br>16<br>15<br>12 | 81<br>99<br>73<br>104<br>89  | .3<br>.4<br>.4<br>.3       | 35<br>33<br>42<br>37<br>33 | 11<br>10<br>11<br>10<br>9 | 416                              | 3.20<br>3.03<br>2.98<br>2.89<br>2.60 | 11<br>5<br>4<br>5<br>2 | 5<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND       | 3<br>3<br>2<br>2                | 36<br>35<br>35<br>21<br>17 | 1<br>1<br>1<br>1      | 7<br>2<br>2<br>2           | 2<br>7<br>2<br>2<br>2                   | 61<br>66<br>59<br>62<br>56  | .42<br>.34<br>.41<br>.23<br>.15 | .05<br>.12<br>.05<br>.08        | 10<br>12<br>10            |                            | 1.31<br>1.40<br>1.15<br>1.20<br>1.00 | 187<br>256<br>147<br>101<br>165 | .18<br>.15<br>.16<br>.13<br>.12 | 235         | 4.00<br>2.88<br>4.34<br>3.25<br>2.83 | .07<br>.02<br>.05<br>.02<br>.03 | .47<br>.35<br>.26<br>.27<br>.21 | 6222<br>222<br>2                        | 10<br>5<br>10<br>5     |
| RKB-32182<br>RXB-32183<br>RXB-32184<br>RXB-32184<br>RXB-32185<br>RKB-32186      | 1<br>1<br>5<br>4      | 31<br>20<br>24<br>23<br>22 | 8<br>7<br>12<br>10<br>12   | 116<br>35<br>172<br>72<br>54 | .6<br>.2<br>.4<br>.2<br>.3 | 28<br>15<br>29<br>19       | 8<br>7<br>8<br>8          | 742<br>168<br>392<br>394<br>432  | 2.25<br>1.76<br>2.52<br>2.35<br>2.20 | 4 3 5 7 6              | 7<br>7<br>2<br>2           | ND<br>ND<br>ND<br>ND       | 2<br>2<br>3<br>2                | 22<br>8<br>22<br>20<br>19  | 2<br>1<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 45<br>34<br>61<br>50<br>45  | .28<br>.05<br>.27<br>.72<br>.14 | .17<br>.14<br>.07<br>.05<br>.13 | 7<br>6<br>7<br>10<br>7    | 37<br>29<br>50<br>44<br>36 | 1.21<br>.48<br>1.52<br>.97<br>.61    | 178<br>60<br>158<br>113<br>108  | .09<br>.07<br>.12<br>.11<br>.07 | 2<br>3<br>5 | 2.69<br>.99<br>2.42<br>1.85<br>1.50  | .02<br>.02<br>.02<br>.03<br>.03 | .22<br>.13<br>.29<br>.35<br>.25 | 202222                                  | 5<br>5<br>5<br>5<br>5  |
| RKB-32187<br>RKB-32188<br>STD A-1/AU 0.5                                        | 4<br>1<br>1           | 22<br>18<br>30             | 15<br>5<br>37              | 58<br>194<br>179             | .2<br>.1<br>.3             | 23<br>20<br>36             | 7<br>8<br>12              | 446<br>467<br>1033               | 2, 14<br>2, 51<br>2, 83              | 6<br>7<br>10           | 2<br>2<br>2                | ND<br>ND<br>ND             | 2 2 2                           | 23<br>21<br>36             | 1<br>1<br>1           | 7<br>2<br>2                | 2<br>2<br>2                             | 44<br>52<br>58              | . 32<br>. 31<br>. 59            | .08<br>.14<br>.10               | 8<br>8<br>7               | 37<br>35<br>74             | .73<br>.95<br>.74                    | 103<br>155<br>277               | .08<br>.11<br>.08               | 5           | 1.57<br>2.43<br>2.05                 | .02<br>.02<br>.02               | . 27<br>. 31<br>. 21            | 427                                     | 5<br>5<br>490          |

F'AGE # 4

-

 $\sim$  ·

.

 $\smile$ 

## I.M. WATSON FILE # 83-2151 PROJECT # NAMUSP

-- --

· \_ ·

| SAMPLE I                                                                   | Mo<br>994              | Cu<br>ppo                  | РЬ<br>998                  | Zn<br>ppa                       | Ag<br>ppa                    | Ni<br>ppm                  | Co<br>ppe                 | Xn<br>ppe                          | Fe<br>1                              | As<br>ppe               | U<br>PP=              | Au<br>ppa            | Th<br>ppa             | Sr<br>ppa                  | Cđ<br>ppe             | Sb<br>ppa                               | Bi<br>gpa                       | ¥<br>ppe                      | Ca<br>Z                          | P<br>I                          | La<br>ppe                 | Cr<br>ppn                   | Mg<br>I                              | Ba<br>ppa                       | Ti<br>I                         | B<br>ppa    | 41<br>1                              | Nu<br>T                         | K<br>Z                          | N<br>ppe                                | Au 1<br>ppb           |
|----------------------------------------------------------------------------|------------------------|----------------------------|----------------------------|---------------------------------|------------------------------|----------------------------|---------------------------|------------------------------------|--------------------------------------|-------------------------|-----------------------|----------------------|-----------------------|----------------------------|-----------------------|-----------------------------------------|---------------------------------|-------------------------------|----------------------------------|---------------------------------|---------------------------|-----------------------------|--------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------------------------|-----------------------|
| RKB-32189<br>RKB-32190<br>RKB-32191<br>RKB-32192<br>RKB-32192<br>RKB-32193 | 4<br>2<br>5<br>3<br>4  | 20<br>24<br>25<br>25<br>38 | B<br>10<br>5<br>10<br>10   | 80<br>82<br>107<br>55<br>66     | .7<br>.3<br>.4<br>.3<br>.7   | 28<br>27<br>52<br>26<br>29 | 9<br>9<br>11<br>5<br>7    | 348<br>407<br>379<br>295<br>801    | 3.15<br>2.69<br>3.22<br>2.27<br>3.04 | 5<br>7<br>8<br>2<br>5   | 3<br>2<br>3<br>4<br>2 | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2 | 41<br>31<br>57<br>22<br>29 | 1<br>1<br>1<br>1      | 77777                                   | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 73<br>60<br>70<br>61<br>70    | .55<br>.41<br>.48<br>.17<br>.20  | .06<br>.10<br>.07<br>.07<br>.27 | 11<br>11<br>16<br>8<br>10 | 60<br>46<br>69<br>55<br>68  | 1.26<br>1.08<br>1.57<br>1.00<br>1.15 | 121<br>111<br>198<br>96<br>169  | .17<br>.13<br>.16<br>.11<br>.10 | 3<br>4<br>7 | 3.54<br>2.66<br>3.46<br>1.72<br>2.26 | .07<br>.04<br>.04<br>.03<br>.02 | .38<br>.41<br>.28<br>.14<br>.25 | 2<br>2<br>2<br>2<br>2                   | 5<br>5<br>5<br>5<br>5 |
| R138-32194<br>R138-32195<br>R138-32196<br>R138-32197<br>R138-32198         | 2<br>1<br>1<br>2<br>3  | 35<br>48<br>40<br>47<br>20 | 17<br>13<br>14<br>10<br>12 | 112<br>91<br>92<br>130<br>50    | .8<br>.6<br>.2<br>.3         | 46<br>62<br>47<br>24<br>24 | 12<br>13<br>10<br>13<br>7 | 1185<br>855<br>792<br>1388<br>371  | 3.03<br>2.81<br>2.84<br>3.45<br>2.09 | 8<br>8<br>7<br>5        | 4333                  | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2 | 67<br>41<br>27<br>13<br>16 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2              | 2<br>7<br>2<br>2<br>2           | 74<br>67<br>67<br>78<br>40    | .72<br>.40<br>.28<br>.16<br>.17  | .13<br>.10<br>.10<br>.15<br>.10 | 12<br>12<br>10<br>8<br>8  | 67<br>76<br>69<br>58<br>33  | 2.01<br>1.96<br>1.80<br>1.15<br>.83  | 298<br>120<br>102<br>108<br>79  | .15<br>.13<br>.12<br>.13<br>.09 | 4<br>3<br>4 | 2.58<br>3.26<br>2.89<br>3.00<br>1.55 | .04<br>.03<br>.03<br>.02<br>.03 | .31<br>.22<br>.23<br>.26<br>.19 | 22222                                   | 5<br>5<br>5<br>5<br>5 |
| 8038-32199<br>8458-32200<br>8458-32201<br>8458-32202<br>8038-32203         | 1<br>2<br>7<br>3       | 39<br>23<br>34<br>19<br>29 | 9<br>11<br>9<br>11         | B1<br>72<br>92<br>219<br>160    | .4<br>.2<br>.4<br>.4         | 38<br>27<br>24<br>25<br>35 | 9<br>6<br>8<br>11<br>11   | 657<br>1543<br>1101<br>1406<br>647 | 2.59<br>2.03<br>2.50<br>2.96<br>3.06 | 7<br>2<br>6<br>8<br>3   | 2<br>2<br>4<br>6      | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2 | 38<br>15<br>31<br>25       | 1<br>1<br>1<br>1      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>2<br>2<br>2<br>2           | 57<br>46<br>54<br>72<br>73    | .55<br>.25<br>.12<br>.28<br>.24  | .11<br>.15<br>.09<br>.45<br>.09 | 10<br>6<br>8<br>7<br>8    | 48<br>37<br>41<br>50<br>54  | 1.39<br>1.20<br>1.06<br>1.20<br>1.64 | 122<br>69<br>72<br>211<br>155   | .12<br>.07<br>.12<br>.10<br>.15 | 6<br>4<br>4 | 2.36<br>2.47<br>3.30<br>3.14<br>3.18 | .04<br>.01<br>.02<br>.02<br>.02 | .19<br>.07<br>.08<br>.17<br>.29 | 22222                                   | 5<br>5<br>5<br>5<br>5 |
| RKB-32204<br>RKB-32205<br>RKB-32206<br>RKB-32207<br>RKB-32208              | 1<br>1<br>2<br>1<br>1  | 32<br>29<br>17<br>24<br>24 | 13<br>12<br>6<br>8<br>6    | 152<br>142<br>140<br>110<br>122 |                              | 37<br>31<br>21<br>28<br>30 | 10<br>12<br>10<br>10      | 933<br>749<br>404                  | 2.78<br>3.36<br>3.43<br>3.08<br>3.24 | 7<br>14<br>5<br>10<br>5 | 3<br>4<br>2<br>4<br>4 | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2 | 22<br>25<br>18<br>22<br>24 | 1<br>1<br>1<br>1<br>1 | 2<br>7<br>2<br>2<br>2                   | 27772                           | 72<br>72<br>69<br>65<br>65    | .22<br>.15<br>.14<br>.15<br>.20  | .07<br>.08<br>.07<br>.05<br>.07 | 10<br>9<br>8<br>9<br>8    | 59<br>48<br>41<br>54<br>52  | 1.73<br>1.18<br>.83<br>1.11<br>1.15  | 130<br>276<br>212<br>208<br>274 | .15<br>.18<br>.18<br>.17<br>.20 | 4<br>4<br>3 | 2.93<br>3.36<br>3.46<br>3.24<br>3.57 | .02<br>.02<br>.02<br>.03<br>.04 | .18<br>.25<br>.18<br>.19<br>.22 | 2<br>2<br>2<br>2<br>2<br>2              | 5<br>5<br>5<br>5<br>5 |
| RKB-32209<br>RKB-32210<br>RKB-32211<br>RKB-32212<br>RKB-32213              | 5<br>13<br>4<br>5<br>4 | 35<br>20<br>29<br>27<br>20 | 16<br>19<br>9<br>20<br>21  | 138<br>49<br>57<br>53<br>31     | .3<br>.5<br>.6<br>1.0<br>.2  | 13<br>72<br>9<br>11<br>12  | 9<br>8<br>5<br>3<br>2     | 524<br>1111<br>780<br>466<br>201   | 4.37<br>4.71<br>2.48<br>3.09<br>2.24 | 5<br>10<br>2<br>4<br>5  | 5<br>7<br>6<br>9<br>2 | ND<br>ND<br>ND<br>ND | 4<br>2<br>3<br>2      | 26<br>46<br>16<br>12<br>11 | 2<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2                   | 22222                           | 116<br>92<br>40<br>67<br>56   | .17<br>.44<br>.13<br>.08<br>.07  | .12<br>.08<br>.09<br>.21<br>.17 | 11<br>17<br>17<br>13<br>7 | 60<br>92<br>19<br>36<br>24  | . 67<br>. 45<br>. 17<br>. 25<br>. 12 | 114<br>76<br>56<br>49<br>44     | .12<br>.16<br>.11<br>.07<br>.10 | 6<br>5<br>4 | 3.94<br>2.45<br>4.66<br>2.58<br>1.15 | .02<br>.04<br>.04<br>.02<br>.02 | .14<br>.11<br>.05<br>.10<br>.06 | 2<br>2<br>2<br>2<br>2<br>2              | 5<br>5<br>5<br>5      |
| RxB-32214<br>RxB-32215<br>RxD-32216<br>RxCD-32217<br>RxCD-32218            | 3<br>4<br>2<br>3<br>3  | 36<br>37<br>26<br>38<br>53 | 11<br>17<br>20<br>10<br>16 | 1 30<br>39<br>37<br>39<br>1 38  | 1.0<br>.4<br>1.3<br>.3<br>.2 | 20<br>16<br>13<br>13<br>30 | 11<br>5<br>5<br>12        | 1040<br>654<br>616<br>605<br>538   | 3.22<br>3.52<br>2.93<br>3.40<br>3.86 | 3<br>2<br>3<br>4<br>6   | 2<br>4<br>5<br>2<br>4 | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2 | 15<br>20<br>12<br>13<br>23 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2              | 2<br>2<br>2<br>2<br>2           | 78<br>60<br>60<br>70<br>98    | .15<br>.21<br>.08<br>.08<br>.31  | .10<br>.56<br>.33<br>.20<br>.23 | 9<br>9<br>9<br>11<br>8    | 53<br>43<br>38<br>37<br>45  | . 74<br>. 21<br>. 30<br>. 26<br>. 81 | 79<br>67<br>45<br>42<br>81      | .12<br>.09<br>.09<br>.09<br>.09 | 4<br>5<br>4 | 3.38<br>4.00<br>3.01<br>4.89<br>3.87 | .02<br>.02<br>.02<br>.02<br>.02 | .17<br>.07<br>.06<br>.06<br>.17 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5<br>5<br>5<br>5<br>5 |
| RKB-32219<br>RKB-32220<br>RKB-32221<br>RKB-32222<br>RKB-32222<br>RKB-32223 | 3<br>1<br>3<br>4<br>4  | 31<br>53<br>29<br>2        | 11<br>9<br>12<br>13<br>14  | 164<br>158<br>154<br>299<br>186 | .2<br>.4<br>.5<br>.5<br>.2   | 19<br>79<br>22<br>22<br>20 | 10<br>23<br>12<br>10<br>9 | 497<br>769<br>641<br>659<br>715    | 3.54<br>3.92<br>3.73<br>3.47<br>4.02 | 5<br>8<br>4<br>3        | 5<br>4<br>6<br>6      | ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2 | 21<br>68<br>21<br>25<br>19 | 1<br>1<br>1<br>2      | 2<br>7<br>2<br>2<br>2                   | 2<br>2<br>2<br>2<br>2           | 103<br>85<br>95<br>117<br>111 | .21<br>1.01<br>.22<br>.15<br>.10 | .12<br>.13<br>.15<br>.08<br>.13 | 9<br>11<br>11<br>9<br>9   | 55<br>197<br>60<br>48<br>48 | .86<br>1.96<br>.87<br>.87<br>.90     | 88<br>102<br>64<br>93<br>90     | .12<br>.13<br>.10<br>.13<br>.11 | ]<br>4<br>5 | 3.51<br>2.67<br>4.27<br>3.17<br>3.46 | .02<br>.07<br>.02<br>.03<br>.02 | .14<br>.16<br>.16<br>.10<br>.17 | 2<br>2<br>2<br>2<br>2<br>2              | 5<br>5<br>5<br>5<br>5 |
| RKB-32224<br>RKB-32225<br>STD A-1/AU 0.5                                   | 3<br>5<br>1            | 31<br>59<br>30             | 28<br>8<br>10              | 1 39<br>280<br>1 78             | .4<br>.2<br>.3               | 19<br>30<br>36             | 8<br>10<br>12             | 791<br>386<br>1052                 | 4.22<br>3.60<br>2.82                 | 3<br>12<br>11           | 4<br>6<br>2           | ND<br>ND<br>ND       | 2<br>7<br>2           | 16<br>21<br>37             | 1<br>2<br>1           | 2<br>2<br>2                             | 2<br>2<br>2                     | 102<br>105<br>58              | . 13<br>. 22<br>. 59             | . 16<br>. 15<br>. 10            | 9<br>9<br>7               | 44<br>46<br>73              | . 59<br>. 88<br>. 75                 | 72<br>99<br>281                 | .12<br>.09<br>.08               | 4           | 3.80<br>4.83<br>2.05                 | .02<br>.02<br>.02               | .07<br>.17<br>.19               | 2<br>7<br>2                             | 5<br>5<br>510         |

PAGE # S

 $\smile$ 

----

I.M. WATSON FILE # 83-2151 PROJECT # NAKUSP

- -

| SAMPLE #                                                                   | Ho<br>ppe             | Си<br>ррв                  | РЪ<br>рра                 | 2n<br>ppa                      | Aq<br>pp=                  | Ni<br>Ppa                     | Ca<br>Ppe                  | Kn<br>ppa                       | Fe<br>I                              | As<br>ppm               | U<br>ppe                   | Au<br>ppe                  | Th<br>ppe             | Sr<br>pp#                   | Cđ<br>ppe             | Sb<br>ppe                  | Bi<br>ppe                       | V<br>ppe                    | Ca<br>I                         | P<br>Z                          | La<br>ppe                 | Cr<br>ppe                     | Mg<br>Z                            | Ba<br>pp∎                       | Ti<br>X                         | 8<br>pp∎    | A1<br>2                              | Na<br>Z                         | K<br>I                          | ¥<br>pps                   | Au1<br>ppb       |
|----------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|--------------------------------|----------------------------|-------------------------------|----------------------------|---------------------------------|--------------------------------------|-------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|-----------------------|----------------------------|---------------------------------|-----------------------------|---------------------------------|---------------------------------|---------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------|------------------|
| RKB-32226<br>RKB-32227<br>RKB-32228<br>RKB-32229<br>RKB-32229<br>RKB-52230 | 4<br>3<br>1<br>3<br>1 | 4B<br>52<br>30<br>39<br>12 | 11<br>9<br>7<br>14<br>8   | 224<br>145<br>115<br>120<br>54 | .6<br>.2<br>.3<br>.4<br>.3 | 25<br>28<br>96<br>24<br>20    | 8<br>16<br>17<br>8<br>6    | 322<br>507<br>414<br>627<br>317 | 3,22<br>3,97<br>3,34<br>3,81<br>2,35 | 12<br>7<br>7<br>17<br>2 | 2<br>3<br>2<br>2<br>2      | nd<br>Nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>3      | 20<br>21<br>26<br>22<br>29  | 1<br>2<br>1<br>2<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2           | 95<br>114<br>71<br>96<br>37 | .17<br>.28<br>.26<br>.12<br>.23 | .15<br>.11<br>.12<br>.17<br>.07 | 8<br>7<br>9<br>6<br>19    | 43<br>58<br>144<br>46<br>31   | .82<br>1.17<br>2.48<br>.80<br>.56  | 83<br>106<br>142<br>142<br>142  | .08<br>.12<br>.14<br>.11<br>.09 | 3<br>2<br>2 | 4,20<br>4,58<br>3,39<br>2,69<br>2,74 | .02<br>.02<br>.02<br>.02<br>.02 | .10<br>.21<br>.44<br>.18<br>.16 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5 |
| RKB-32231<br>RKB-32232<br>RKB-32233<br>RKB-32234<br>RKB-32235              | 1<br>1<br>1<br>1      | 14<br>9<br>7<br>8          | 9<br>5<br>4<br>7<br>10    | 93<br>60<br>41<br>82<br>38     | .1<br>.1<br>.1<br>.3       | 22<br>18<br>15<br>20<br>12    | 10<br>5<br>5<br>5<br>2     | 494<br>285<br>201<br>275<br>119 | 3.01<br>2.41<br>2.02<br>2.33<br>1.98 | 5<br>4<br>5<br>3        | 2<br>2<br>2<br>2<br>2      | nd<br>ND<br>ND<br>ND       | 3<br>2<br>3<br>2<br>3 | 101<br>24<br>30<br>19<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2      | 53<br>41<br>35<br>43<br>32  | .33<br>.17<br>.17<br>.12<br>.05 | .14<br>.06<br>.09<br>.04<br>.07 | 21<br>13<br>14<br>11<br>7 | 35<br>29<br>27<br>33<br>17    | .82<br>.55<br>.41<br>.63<br>.20    | 167<br>118<br>100<br>160<br>69  | .15<br>.12<br>.07<br>.15<br>.15 | 2<br>3<br>5 | 2,44<br>2,45<br>3,23<br>1,86<br>4,29 | .02<br>.02<br>.02<br>.02<br>.03 | .18<br>.10<br>.08<br>.12<br>.05 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5 |
| NXB-32236<br>NXB-32238<br>NXB-32239<br>NXB-32240<br>NXB-32241              | 1<br>1<br>1<br>1      | 9<br>34<br>17<br>33<br>13  | 15<br>12<br>6<br>12<br>11 | 128<br>73<br>92<br>62<br>97    | .1<br>.3<br>.2<br>.4<br>.1 | 16<br>170<br>113<br>151<br>26 | 5<br>26<br>16<br>23<br>6   | 246<br>487<br>410<br>639<br>461 | 2.76<br>4.19<br>3.52<br>3.86<br>2.99 | 5<br>11<br>6<br>8<br>4  | 2<br>2<br>2<br>2<br>2<br>2 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>2<br>3      | 18<br>97<br>46<br>51<br>18  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 43<br>92<br>61<br>69<br>45  | .09<br>.69<br>.32<br>.50<br>.13 | .05<br>.26<br>.20<br>.23<br>.13 | 9<br>17<br>11<br>11<br>10 | 24<br>207<br>137<br>149<br>34 | .40<br>3.43<br>2.23<br>2.61<br>.67 | 137<br>567<br>298<br>286<br>122 | .10<br>.20<br>.18<br>.16        | 2222        | 2.51<br>3.15<br>3.19<br>3.17<br>2.84 | .02<br>.02<br>.02<br>.02<br>.02 | .08<br>.70<br>.23<br>.29<br>.14 | 2222222                    | 5<br>5<br>5<br>5 |
| RKB-32242<br>RKB-32243<br>RKB-32244<br>RKB-32245<br>RKB-32245<br>RKB-32246 | 1<br>1<br>1<br>1      | 10<br>12<br>11<br>14       | 3<br>6<br>12<br>10<br>11  | 30<br>30<br>101<br>156<br>45   | .8<br>.1<br>.7<br>.3       | 8<br>7<br>14<br>21<br>11      | 2<br>2<br>2<br>2<br>3<br>3 | 219<br>205<br>538<br>781<br>793 | 2.26<br>1.29<br>3.41<br>3.15<br>3.38 | 5<br>6<br>4<br>10       | 2<br>7<br>2<br>10          | ND<br>ND<br>ND<br>ND       | 3<br>2<br>3<br>4<br>4 | 9<br>11<br>16<br>24<br>13   | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 23<br>71<br>39<br>46<br>37  | .05<br>.06<br>.10<br>.14<br>.05 | .13<br>.09<br>.12<br>.13<br>.12 | 8<br>28<br>11<br>24       | 12<br>10<br>18<br>36<br>18    | .12<br>.14<br>.38<br>.62<br>.14    | 60<br>36<br>87<br>105<br>59     | .11<br>.10<br>.13<br>.16<br>.15 | 3<br>7<br>4 | 6.26<br>4.20<br>5.19<br>3.26<br>4.63 | .02<br>.04<br>.02<br>.03<br>.03 | .04<br>.04<br>.16<br>.21<br>.04 | 2<br>2<br>2<br>2<br>2      | 55555            |
| R/B-32247<br>RKB-32248<br>RKB-32249                                        | 1<br>2<br>1           | 18<br>10<br>15             | 11<br>24<br>15            | 92<br>54<br>96                 | .5<br>.4<br>.6             | 14<br>13<br>18                | 2<br>1<br>2                | 884<br>1241<br>1840             | 2.08<br>4.02<br>2.64                 | 7<br>3<br>4             | 6<br>5<br>19               | NÐ<br>2<br>ND              | 3<br>4<br>4           | 17<br>18<br>17              | 1<br>5<br>1           | 2<br>2<br>2<br>2           | 2<br>2<br>2                     | 29<br>50<br>38              | .10<br>.06<br>.06               | . 15<br>. 09<br>. 14            | 16<br>13<br>13            | 24<br>23<br>28                | .28<br>.17<br>.34                  | 66<br>67<br>76                  | .12<br>.15<br>.10               | 2           | 4.54<br>3.51<br>3.53                 | .03<br>.02<br>.03               | .07<br>.07<br>.13               | 2<br>2<br>2                | 5<br>5<br>5      |

FAGE # 6

•

 $\sim$ 

 $\sim$ 

| •••• | •• |  |
|------|----|--|

# I.M. WATSON FILE # 83-2151 PROJECT # NAKUSP

| PAGE | 剌 | 7 |  |
|------|---|---|--|
|------|---|---|--|

| SAMPLE #                                                                     | Ma<br>pp∎             | Cu<br>pp#                        | РЪ<br>рря                | Zn<br>ppa                       | Ag<br>pp <del>a</del>       | Ni<br>ppm                        | Со<br>ррв                 | Mn<br>ppa          | Fe<br>1                              | As<br>ppe              | U<br>ppe                   | Au<br>ppe                  | Th<br>ppa                  | Sr<br>ppa                   | Cd<br>ppa        | Sb<br>ppe                  | B1<br>ppe                               | V<br>ppa                    | Ca<br>1                         | P<br>Z                          | La<br>pps                | Cr<br>ppe                  | Ng<br>1                             | Sa<br>ppa                       | τι<br>2                         | 9<br>ppa    | A)<br>2                                   | Ka<br>I                              | K<br>Z                               | ¥<br>ppm                                | Au‡<br>ppb                 |
|------------------------------------------------------------------------------|-----------------------|----------------------------------|--------------------------|---------------------------------|-----------------------------|----------------------------------|---------------------------|--------------------|--------------------------------------|------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|------------------|----------------------------|-----------------------------------------|-----------------------------|---------------------------------|---------------------------------|--------------------------|----------------------------|-------------------------------------|---------------------------------|---------------------------------|-------------|-------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|----------------------------|
|                                                                              |                       |                                  |                          |                                 |                             |                                  |                           |                    |                                      |                        |                            |                            |                            |                             |                  |                            |                                         |                             |                                 |                                 |                          |                            |                                     |                                 |                                 |             |                                           |                                      |                                      |                                         |                            |
| DHB-39011<br>DHB-39073<br>DHB-39074<br>DHB-39075                             | 1<br>1<br>3<br>2      | 16<br>15<br>36<br>20             | 12<br>7<br>5<br>3        | 77<br>103<br>129<br>123         | .4<br>1.6<br>.3<br>.5       | 14<br>17<br>28<br>20             | 5<br>8<br>11<br>6         |                    | 3.00<br>2.47<br>2.83<br>2.79         | 10<br>3<br>5<br>3      | 3<br>6<br>2<br>2           | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2           | 10<br>14<br>19<br>12        | 1<br>1<br>7<br>1 | 2<br>2<br>2<br>2           | 2<br>2<br>2<br>2                        | 49<br>43<br>63<br>66        | .07<br>.13<br>.17<br>.09        | .06<br>.09<br>.28<br>.05        | 5<br>5<br>5<br>5         | 22<br>23<br>23<br>25       | . 37<br>. 48<br>. 67<br>. 68        | 66<br>152<br>168<br>132         | .12<br>.15<br>.11<br>.16        | 2<br>2      | 3.68<br>4.18<br>4.00<br>2.47              | .02<br>.03<br>.03<br>.03             | .05<br>.08<br>.12<br>.09             | 2<br>2<br>2<br>2                        | 5<br>5<br>5<br>5           |
| 048-39078<br>048-39077<br>048-39078<br>048-39079<br>048-39080                | 2<br>4<br>3<br>1<br>1 | 33<br>71<br>78<br>49<br>27       | 9<br>4<br>5<br>5<br>10   | 133<br>151<br>243<br>102<br>125 | .4<br>.5<br>.4<br>.3<br>.7  | 54<br>71<br>49<br>71<br>22       | 10<br>16<br>15<br>18<br>7 |                    | 2.84<br>4.14<br>3.80<br>3.32<br>2.82 | 10<br>9<br>5<br>8<br>7 | 4<br>5<br>5<br>4<br>2      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>2<br>2<br>2      | 19<br>27<br>26<br>39<br>104 | 1<br>1<br>2<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2                   | 68<br>98<br>107<br>69<br>65 | .18<br>.28<br>.27<br>.40<br>.78 | .07<br>.09<br>.08<br>.10<br>.15 | 8<br>9<br>7<br>9<br>5    | 45<br>75<br>50<br>71<br>40 | 1.08<br>1.65<br>1.47<br>1.89<br>.73 | 184<br>250<br>257<br>165<br>651 | .16<br>.16<br>.15<br>.13<br>.14 | 2<br>2<br>3 | 2.94<br>3.19<br>3.47<br>4.00<br>1.82      | .02<br>.03<br>.03<br>.04<br>.93      | .22<br>.47<br>.42<br>.25<br>.18      | 2<br>2<br>2<br>2<br>2<br>2              | 5<br>5<br>5<br>5<br>5      |
| DKB-39081<br>DKB-39082<br>DKB-39083<br>DKB-39084<br>DKB-39085                | 1<br>2<br>1<br>1<br>1 | 51<br>22<br>17<br>13<br>26       | 9<br>9<br>9              | 139<br>138<br>122<br>51<br>87   | .7<br>.6<br>.3<br>.5<br>.2  | 50<br>23<br>20<br>11<br>25       | 14<br>30<br>9<br>5<br>9   | 1036<br>573<br>315 | 3.42<br>3.66<br>2.86<br>2.16<br>2.93 | 6<br>4<br>8<br>3<br>7  | 3<br>7<br>5<br>3<br>3      | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2 | 41<br>26<br>17<br>16<br>18  | 2<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2              | 76<br>90<br>56<br>58        | .35<br>.16<br>.11<br>.08<br>.10 | .12<br>.06<br>.08<br>.09<br>.06 | 9<br>7<br>5<br>4<br>7    | 63<br>45<br>32<br>20<br>39 | 1.33<br>1.06<br>.76<br>.32<br>.92   | 266<br>194<br>143<br>87<br>152  | .13<br>.18<br>.14<br>.11<br>.13 | 2<br>3      | 3. 39<br>3. 05<br>3. 22<br>4. 79<br>2. 43 | .03<br>.02<br>.02<br>.03<br>.03      | . 30<br>. 20<br>. 21<br>. 07<br>. 25 | 2 2 2 2 2 2 2                           | 5<br>5<br>5<br>5<br>5      |
| DHB-39085<br>DHB-39087<br>DHB-39088<br>DHB-39089<br>DHB-39090                | 1<br>2<br>1<br>1<br>2 | 26<br>30<br>44<br>24<br>39       | 4<br>2<br>4<br>11<br>7   | 92<br>59<br>85<br>58<br>102     | .4<br>.5<br>.3              | 28<br>27<br>36<br>21<br>27       | 11<br>9<br>10<br>8<br>12  | 332<br>352<br>751  | 3.15<br>2.59<br>3.54<br>3.19<br>2.97 | 6<br>3                 | 7<br>4<br>5<br>6<br>3      | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2 | 28<br>23<br>34<br>22<br>16  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2                   | 63<br>52<br>67<br>62<br>57  | .22<br>.18<br>.27<br>.12<br>.10 | .08<br>.11<br>.14<br>.08<br>.13 | 9<br>11<br>10<br>7<br>12 | 42<br>48<br>56<br>45<br>58 | 1.07<br>.87<br>1.17<br>.65<br>.78   | 207<br>123<br>228<br>128<br>124 | .15<br>.10<br>.11<br>.14<br>.12 | 2<br>2<br>2 | 3.54<br>4.96<br>5.52<br>2.86<br>4.36      | .03<br>.02<br>.02<br>.02<br>.02      | . 29<br>. 25<br>. 30<br>. 20<br>. 26 | 2222                                    | 5<br>5<br>5<br>25<br>5     |
| DKB-39091<br>DKB-39092<br>DKB-39093<br>DKB-39094<br>DKB-39095                | 2<br>2<br>2<br>1<br>1 | 20<br>27<br>20<br>26<br>32       | 9<br>10<br>11<br>7<br>9  | 37<br>63<br>62<br>121<br>115    | .2<br>.4<br>.3<br>.2<br>.4  | 17<br>20<br>14<br>32<br>32       | 5<br>7<br>6<br>10<br>10   | 878<br>775<br>524  | 2.21<br>2.51<br>2.70<br>2.78<br>2.88 | 6<br>2<br>6<br>8<br>4  | 2<br>2<br>3<br>4           | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2 | 13<br>13<br>16<br>21<br>22  | 1<br>1<br>1<br>1 | 2<br>7<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2              | 45<br>56<br>49<br>64        | .08<br>.08<br>.12<br>.19<br>.22 | .11<br>.08<br>.14<br>.07<br>.13 | 6<br>7<br>7<br>8<br>10   | 37<br>40<br>36<br>53<br>61 | .46<br>.62<br>.49<br>1.26<br>1.44   | 68<br>82<br>78<br>113<br>105    | .08<br>.10<br>.09<br>.13<br>.12 | 2<br>2<br>2 | 1.22<br>2.24<br>2.92<br>3.39<br>3.59      | . 03<br>. 02<br>. 02<br>. 02<br>. 02 | .18<br>.14<br>.10<br>.23<br>.27      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5<br>5<br>5<br>5<br>5<br>5 |
| DHB - 39 096<br>DHB - 39 097<br>DHB - 39 098<br>DHB - 39 099<br>DHB - 39 100 | 1<br>1<br>2<br>1<br>1 | 27<br>24<br>37<br>33<br>23<br>22 | 13<br>11<br>8<br>11<br>7 | 89<br>51<br>73<br>71<br>152     | .4<br>1.1<br>.5<br>.5<br>.3 | 98<br>20<br>21<br>21<br>21<br>21 | 8<br>5<br>9<br>8          | 304<br>807<br>765  | 2.11<br>3.26<br>3.09<br>3.03<br>2.34 | 6<br>2<br>6<br>8<br>6  | 2<br>2<br>2<br>2<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd       | 2<br>2<br>2<br>2<br>2<br>2 | 29<br>11<br>16<br>18<br>18  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 45<br>70<br>71<br>67<br>53  | .42<br>.07<br>.11<br>.12<br>.18 | .18<br>.23<br>.24<br>.18<br>.11 | 9<br>11<br>9<br>8        |                            | 1.03<br>.62<br>1.09<br>1.15<br>1.25 | 148<br>74<br>147<br>141<br>93   | .09<br>.10<br>.11<br>.11<br>.12 | 4<br>3<br>2 | 2.04<br>2.08<br>3.03<br>2.68<br>2.82      | .02<br>.02<br>.02<br>.02<br>.02      | . 22<br>. 17<br>. 34<br>. 32<br>. 16 | 222222222222222222222222222222222222222 | 5<br>5<br>5<br>5           |
| DHD-37101<br>DHD-37102<br>STD A-1/AU 0.5                                     | 1<br>1<br>1           | 17<br>20<br>30                   | 12<br>9<br>38            | 65<br>92<br>181                 | .3<br>.5<br>.3              | 13<br>22<br>35                   | 6                         |                    | 2.44<br>1.73<br>2.81                 | 4<br>5<br>11           | 2<br>2<br>2<br>2           | ND<br>ND<br>ND             | 2<br>2<br>2                | 11<br>19<br>35              | 1<br>1<br>1      | 2<br>2<br>2                | 2<br>2<br>2                             | 43<br>42<br>58              | .08<br>.26<br>.58               | .32<br>.11<br>.09               | ז<br>ד<br>ד              | 39<br>43<br>74             | .59<br>1.49<br>.75                  | 80<br>59<br>780                 | . 08<br>. 09<br>. 98            | 2           | 2.89<br>3.06<br>2.06                      | . 02<br>. 02<br>. 02                 | .07<br>.09<br>.21                    | 2<br>2<br>2                             | 5<br>5<br>500              |

| SAMPLE 4                                                                   | Mo<br>pp∎             | Cu<br>pp≢                  | РЬ<br>рре                 | Zn<br>ppe                      | Ag<br>ppe                   | Ni<br>Pp m                 | Co<br>ppe              | Kn<br>ppe                           | Fe<br>Z                              | As<br>ppe                | U<br>ppa                                  | Au<br>ppe                  | Tk<br>pp∎                                 | Sr<br>pp a                 | Cd<br>ppe        | St<br>ppo                               | Bi<br>ppe                               | V<br>ppe                   | Ca<br>Z                              | F                               | La<br>ppe                 | Cr<br>ppe                  | Mg<br>I                               | 8a<br>ppe                       | Ti<br>I                         | 8<br>pp=    | Al<br>I                              | Ka<br>Z                              | К<br>7                          | ¥<br>ppe                                | Aut<br>ppb         |
|----------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|--------------------------------|-----------------------------|----------------------------|------------------------|-------------------------------------|--------------------------------------|--------------------------|-------------------------------------------|----------------------------|-------------------------------------------|----------------------------|------------------|-----------------------------------------|-----------------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------|----------------------------|---------------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------|--------------------|
| DMB-39103<br>DMB-39104<br>DMB-39105<br>DMB-39106<br>DMB-39107              | 1<br>1<br>1<br>1      | 12<br>18<br>17<br>15<br>24 | 12<br>13<br>8<br>14<br>11 | 43<br>41<br>93<br>100          | .4<br>.5<br>.6<br>.4<br>.7  | 10<br>12<br>14<br>15<br>25 | 3<br>4<br>5<br>6<br>7  | 414<br>675<br>790<br>701<br>406     | 1.92<br>2.50<br>1.45<br>2.39<br>2.45 | 5<br>7<br>4<br>9<br>10   | 14 24 24 24 24 24 24 24 24 24 24 24 24 24 | nd<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>3                     | 6<br>11<br>15<br>18<br>20  | 1<br>1<br>1<br>1 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 7272<br>7272<br>7                       | 36<br>49<br>31<br>48<br>55 | .05<br>.10<br>.29<br>.20<br>.25      | .09<br>.30<br>.14<br>.12<br>.12 | 5<br>5<br>5<br>5<br>5     | 30<br>40<br>32<br>44<br>48 | . 31<br>. 38<br>. 67<br>. 86<br>1. 12 | 40<br>71<br>52<br>62<br>114     | .08<br>.08<br>.06<br>.08<br>.11 |             | 2,49<br>3,11<br>2,07<br>2,56<br>3,03 | .02<br>.01<br>.02<br>.01<br>.02      | .07<br>.08<br>.05<br>.08<br>.22 |                                         | 5<br>5<br>15<br>5  |
| DMB-39109<br>DMB-39109<br>DMB-39110<br>DMB-39111<br>DMB-39112              | 1<br>1<br>1<br>2      | 22<br>20<br>35<br>25<br>48 | 14<br>9<br>11<br>7<br>7   | 144<br>84<br>125<br>177<br>164 | .2<br>.3<br>1.3<br>.4<br>.3 | 29<br>20<br>24<br>26<br>30 | 8<br>8<br>11<br>16     | 506<br>313<br>645<br>546<br>670     | 2.59<br>2.34<br>2.65<br>3.24<br>3.53 | 11<br>10<br>7<br>10<br>8 | 2<br>7<br>2<br>3                          | nd<br>Nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 22<br>22<br>29<br>27<br>31 | 1<br>2<br>1<br>3 | 2000                                    | 22222                                   | 67<br>52<br>67<br>93<br>88 | .32<br>.27<br>.54<br>.45<br>.45      | .13<br>.14<br>.09<br>.09<br>.15 | 6<br>5<br>14<br>7<br>10   | 62<br>43<br>55<br>57<br>39 | 1.53<br>.78<br>1.09<br>1.09<br>.76    | 97<br>108<br>135<br>154<br>178  | .09<br>.05<br>.11<br>.13<br>.11 |             | 3.10<br>2.61<br>3.19<br>3.54<br>5.97 | .02<br>.02<br>.03<br>.02<br>.04      | .12<br>.13<br>.18<br>.12<br>.27 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 55555              |
| DKB-39113<br>DKB-39114<br>DKB-39115<br>DKB-39116<br>DKB-39117              | 1                     | 16<br>15<br>31<br>31<br>25 | 12<br>15<br>13<br>11      | 65<br>128<br>76<br>98<br>70    | .1<br>.2<br>.5<br>.4        | 20<br>19<br>26<br>38<br>30 | 7<br>8<br>6<br>11<br>5 | 566<br>816<br>555<br>677<br>448     | 2.31<br>2.60<br>2.66<br>2.72<br>2.80 | 7<br>8<br>4<br>6         | 2012                                      | nd<br>Nd<br>Nd<br>Nd<br>Nd | N 2 2 2 3                                 | 23<br>18<br>16<br>24<br>23 | 1<br>1<br>1<br>1 | 61 M 11 M                               | 12722                                   | 45<br>57<br>60<br>66<br>66 | .29<br>.15<br>.13<br>.28<br>.25      | .20<br>.06<br>.16<br>.07<br>.06 | 12<br>10<br>8<br>13<br>14 | 44<br>45<br>47<br>68<br>61 | 1.07<br>.79<br>.69<br>1.12<br>1.09    | 127<br>114<br>179<br>132<br>131 | .09<br>.12<br>.09<br>.12<br>.12 | 4<br>3<br>3 | 2.47<br>3.05<br>2.02<br>3.27<br>2.62 | .03<br>.02<br>.02<br>.03<br>.03      | . 18<br>. 12<br>. 17<br>. 25    | 14 F1 64 F1 F1                          | 5555               |
| DMB-39118<br>DMB-39120<br>DMB-39121<br>DMB-39121                           | 1<br>1<br>2<br>1      | 11<br>25<br>17<br>24<br>17 | 13<br>B<br>14<br>11       | 25<br>101<br>52<br>51<br>47    | .4<br>.2<br>.4<br>.2        | 7<br>26<br>19<br>11<br>30  | 2<br>5<br>4<br>8       | 166<br>478<br>239<br>856<br>450     | 1.50<br>2.79<br>2.63<br>2.20<br>1.85 | 6<br>11<br>9<br>6<br>5   | 22732                                     | nd<br>Nd<br>Nd<br>Nd<br>Nd | 23222                                     | 24<br>32<br>31<br>12<br>58 | 1<br>1<br>1<br>1 | 54 F4 54 F4 F4                          | 2<br>2<br>2<br>2<br>2                   | 21<br>55<br>42<br>43<br>40 | . 33<br>. 41<br>. 43<br>. 08<br>. 53 | .09<br>.05<br>.07<br>.11<br>.07 | 6<br>11<br>12<br>E<br>10  | 18<br>48<br>37<br>35<br>48 | .15<br>.96<br>.63<br>.32<br>.75       | 52<br>144<br>102<br>92<br>161   | .09<br>.12<br>.09<br>.12<br>.09 | 3<br>2<br>3 | 4.75<br>2.45<br>2.92<br>2.66<br>1.29 | .03<br>.03<br>.02<br>.03<br>.04      | .04<br>.16<br>.14<br>.10<br>.14 | EN PN P                                 | 5555               |
| DHB-39123<br>DHB-39125<br>DHB-39126<br>DHB-39127<br>DHB-39128              | 1<br>1<br>1<br>1      | 23<br>14<br>12<br>15<br>9  | 16<br>9<br>9<br>12<br>7   | 68<br>52<br>66<br>87<br>63     | .2<br>.1<br>.3<br>.4<br>.1  | 63<br>17<br>15<br>27<br>14 | 12<br>5<br>4<br>7<br>4 | 448<br>477<br>211<br>304<br>260     | 2.74<br>2.41<br>2.34<br>2.79<br>1.80 | 13<br>B<br>5<br>4        | 2<br>7<br>2<br>2<br>2<br>2                | ND<br>ND<br>ND<br>ND       | 3<br>3<br>3<br>3                          | 87<br>19<br>14<br>21<br>17 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 55<br>44<br>48<br>32       | .59<br>.16<br>.11<br>.19<br>.14      | .14<br>.27<br>.10<br>.12<br>.06 | 19<br>10<br>10<br>9<br>12 | 82<br>37<br>34<br>49<br>34 | 1.55<br>.55<br>.48<br>.76<br>.45      | 323<br>79<br>68<br>102<br>65    | .16<br>.07<br>.10<br>.09<br>.09 | 2 4 3       | 2.03<br>2.58<br>3.62<br>2.99<br>1.46 | .05<br>.02<br>.02<br>.02<br>.03      | .38<br>.09<br>.08<br>.10<br>.10 | 22171                                   | 55555              |
| DNB-26122<br>DNB-26125<br>DNB-26121<br>DNB-26121<br>DNB-26120<br>DNB-26126 | 1<br>7<br>1<br>7<br>3 | 11<br>17<br>15<br>15<br>23 | 9<br>13<br>12<br>16<br>18 | 68<br>39<br>51<br>70<br>75     | .3<br>.7<br>.4<br>.5<br>1.2 | 11<br>19<br>12<br>11<br>13 | 55457                  | 287<br>446<br>465<br>922<br>812     | 7.10<br>3.01<br>2.25<br>2.55<br>2.68 | 6<br>7<br>10<br>10       | 2<br>3<br>2<br>4<br>21                    | nd<br>Nd<br>Nd<br>Nd       | 2<br>2<br>3<br>2                          | 19<br>25<br>14<br>17<br>37 | 1<br>1<br>1<br>1 | 7<br>7<br>7<br>7<br>7                   | 2<br>2<br>2<br>2<br>2                   | 36<br>32<br>37<br>39<br>41 | .12<br>.16<br>.10<br>.10<br>.24      | .08<br>.06<br>.09<br>.05<br>.06 | 9<br>11<br>17<br>14<br>32 | 27<br>52<br>24<br>30<br>72 | .34<br>.31<br>.30<br>.33<br>.32       | 93<br>98<br>80<br>78<br>106     | .10<br>.11<br>.10<br>.11<br>.19 | 4<br>4<br>2 | 2,09<br>4,12<br>3,54<br>3,64<br>4,13 | . 02<br>. 02<br>. 03<br>. 03<br>. 03 | .09<br>.02<br>.07<br>.09<br>.12 | 2000                                    | 5 5 5              |
| DMB-39134<br>DMB-39137<br>DMB-39136<br>DMB-39139<br>STD A-1/AU 0.5         | 5<br>3<br>1<br>1      | 16<br>21<br>17<br>12<br>30 | 16<br>73<br>9<br>12<br>39 | 87<br>58<br>74<br>97<br>180    | - 6<br>- 5<br>- 1<br>- 3    | 13<br>20<br>15<br>17<br>35 | 7<br>6<br>5<br>12      | 1329<br>1371<br>1695<br>733<br>1040 | 2.77<br>3.58<br>2.63<br>2.88<br>2.81 | 7<br>7<br>6<br>3<br>11   | 31<br>10<br>26<br>2<br>2                  | ND<br>ND<br>ND<br>ND       | 25252                                     | 46<br>22<br>23<br>22<br>35 | <br> <br> <br>   | 2 2 2 2 2 2 2                           | 777777777777                            | 46<br>57<br>35<br>41<br>55 | .32<br>.13<br>.15<br>.16<br>.56      | .07<br>.06<br>.19<br>.07        | 24<br>15<br>64<br>16<br>7 | 56<br>50<br>39<br>73       | .41<br>.33<br>.25<br>.52<br>.74       | 130<br>52<br>83<br>93<br>280    | .10<br>.13<br>.08<br>.11<br>.05 | 4 3 3       | 2.94<br>1.83<br>5.23<br>2.82<br>2.06 | .03<br>.02<br>.02<br>.02<br>.02      | .14<br>.10<br>.08<br>.16<br>.21 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 5<br>5<br>5<br>500 |

PAGE # 8

.

 $\sim$ 

 $\sim$ 

•••••

 $\smile$ 

·· •

| SAIPLE #                                                                   | fic<br>ppa            | Cu<br>ppe                  | РЬ<br>рра                  | Za<br>ppe                   | Ag<br>ppe                       | XL<br>PP#                  | Co<br>ppe              | Kn<br>ppe           | Fe<br>1                              | As<br>ppe              | U<br>ppe                                | Au<br>ppe            | Th<br>ppæ             | Sr<br>ppm                  | Cd<br>ppo        | Sb<br>ppe                               | Ði<br>ppm                               | V<br>pp=                   | Ca<br>7                         | F<br>I                          | La<br>ppe                 | Cr<br>ppe                   | Ng<br>I                           | Ba<br>ppe                     | Tı<br>X                              | 6<br>ppe    | Al<br>Z                              | Na<br>T                         | K<br>I                          | N<br>Po e      | Au f<br>ppb        |
|----------------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|-----------------------------|---------------------------------|----------------------------|------------------------|---------------------|--------------------------------------|------------------------|-----------------------------------------|----------------------|-----------------------|----------------------------|------------------|-----------------------------------------|-----------------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------|-----------------------------|-----------------------------------|-------------------------------|--------------------------------------|-------------|--------------------------------------|---------------------------------|---------------------------------|----------------|--------------------|
| DMB-39141<br>DMB-39142<br>DMD-39143<br>DMD-39144<br>DMD-39144              | 1<br>2<br>1<br>2<br>2 | 9<br>19<br>15<br>15<br>14  | 5<br>15<br>15<br>9<br>15   | 35<br>81<br>86<br>19<br>66  | .2<br>.1<br>.2<br>.1<br>.2      | 7<br>15<br>27<br>8<br>25   | 2<br>6<br>10<br>2<br>7 | 1247<br>852<br>122  | 1.82<br>3.64<br>2.76<br>2.00<br>2.75 | 4<br>3<br>2<br>3       | 2<br>4<br>11<br>18<br>7                 | ND<br>ND<br>ND<br>ND | 3<br>6<br>5<br>5      | 16<br>20<br>34<br>12<br>36 |                  | 2<br>2<br>3<br>2                        | 2<br>2<br>2<br>2<br>2                   | 29<br>58<br>42<br>35<br>45 | .08<br>.13<br>.26<br>.08<br>.23 | .05<br>.30<br>.10<br>.07<br>.10 | 7<br>14<br>20<br>11<br>15 | 16<br>45<br>41<br>35<br>56  | .14<br>.41<br>.68<br>.12<br>.72   | 44<br>62<br>80<br>33<br>89    | .10<br>.11<br>.11<br>.10<br>.11      | 322         | 2.61<br>3.48<br>2.83<br>3.65<br>1.67 | .03<br>.02<br>.02<br>.03<br>.04 | .06<br>.13<br>.14<br>.05<br>.16 | ** ** ** **    | 55555              |
| 048-39148<br>048-39149<br>048-39150<br>048-39151<br>048-39151<br>048-39152 | 1<br>1<br>2<br>3<br>7 | 16<br>15<br>12<br>40<br>11 | 14<br>14<br>17<br>16<br>11 | 47<br>52<br>55<br>100<br>65 | .1<br>.1<br>.2<br>.2            | 14<br>22<br>26<br>42<br>14 | 5<br>9<br>9<br>12<br>4 | 728<br>409<br>412   | 2,14<br>2,12<br>2,93<br>3,44<br>2,53 | 2<br>9<br>8<br>10<br>5 | 5722                                    | ND<br>ND<br>ND<br>ND | 4<br>2<br>4<br>3      | 14<br>11<br>59<br>22<br>9  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 32<br>33<br>56<br>69       | .12<br>.17<br>.32<br>.16<br>.06 | .24<br>.04<br>.13<br>.08<br>.07 | 11<br>8<br>16<br>11<br>5  | 39<br>33<br>49<br>51<br>35  | .31<br>.71<br>1.06<br>1.30<br>.41 | 50<br>110<br>278<br>133<br>67 | .10<br>.10<br>.19<br>.15<br>.12      | 3<br>2<br>3 | 3.97<br>1.65<br>1.84<br>3.35<br>2.38 | .04<br>.02<br>.05<br>.07<br>.03 | .07<br>.14<br>.14<br>.27<br>.97 | 1 4 4 4 4 F    | 5<br>5<br>10<br>5  |
| DNB-39153<br>DNB-39154<br>DNB-39155<br>BMB-39155<br>DNB-39155<br>DNB-39157 | 9 61 61 A 12          | 17<br>9<br>15<br>24<br>17  | 15<br>12<br>12<br>11<br>11 | 76<br>30<br>32<br>54<br>76  | .1<br>.7<br>.4<br>.7            | 20<br>9<br>13<br>19<br>18  | 6<br>3<br>4<br>5<br>8  | 99<br>126<br>266    | 3.07<br>2.02<br>2.55<br>2.41<br>3.08 | 8<br>4<br>3<br>5<br>6  | 2<br>2<br>2<br>2<br>2<br>2              | nd<br>Nd<br>Nd<br>Nd | 4<br>2<br>2<br>2<br>2 | 8<br>9<br>8<br>19<br>20    | 1<br>1<br>1<br>1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2<br>7<br>7<br>7                        | 72<br>58<br>48<br>50<br>84 | .07<br>.05<br>.03<br>.11<br>.24 | .05<br>.02<br>.04<br>.04<br>.04 | 10<br>7<br>5<br>4         | 46<br>28<br>32<br>38<br>32  | .79<br>.32<br>.39<br>.49<br>.87   | 113<br>42<br>62<br>129<br>51  | .20<br>.12<br>.11<br>.11<br>.11      | Z<br>3      | 2.00<br>1.13<br>1.43<br>1.91<br>2.21 | .03<br>.03<br>.03<br>.03        | .37<br>.10<br>.19<br>.13<br>.24 | 12 12 12 12 12 | 5555               |
| DMB-39158<br>DMB-39159<br>DMB-39160<br>DMB-39161<br>DMB-39162              | 1<br>1<br>1<br>5      | 15<br>22<br>15<br>17<br>34 | 12<br>12<br>10<br>9        | 69<br>67<br>93<br>72<br>69  | - i<br>- 7<br>- 8<br>- 1<br>- 7 | 21<br>20<br>18<br>15<br>58 | 6<br>5<br>5<br>16      | 648<br>397<br>408   | 2.90<br>1.97<br>1.87<br>2.81<br>4.42 | 5<br>2<br>3<br>5<br>7  | 2<br>2<br>3<br>7<br>2                   | nd<br>Nd<br>Nd<br>Nd | 2<br>7<br>7<br>7<br>2 | 17<br>30<br>16<br>15<br>84 | 1<br>1<br>1<br>2 | 2<br>2<br>2<br>2<br>2                   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 53<br>43<br>41<br>48<br>92 | .17<br>.46<br>.20<br>.09<br>.59 | .07<br>.07<br>.11<br>.05<br>.09 | 6<br>7<br>6<br>21         | 46<br>46<br>42<br>24<br>150 | .76<br>.86<br>.93<br>1.00<br>1.95 | 93<br>78<br>81<br>152<br>282  | .14<br>.06<br>.09<br>.17<br>.24      | c1 1-1 C4   | 2.08<br>1.75<br>1.98<br>2.05<br>3.01 | .03<br>.04<br>.03<br>.04<br>.09 | .14<br>.11<br>.07<br>.09<br>.25 | 2 1 7 7 7 7    | 5<br>5<br>5<br>10  |
| DMB-39163<br>DMB-39164<br>DMB-39165<br>DMB-39166<br>DMB-39167              | 1<br>2<br>4<br>2<br>1 | 20<br>12<br>14<br>19<br>10 | 15<br>15<br>15<br>13<br>11 | 51<br>42<br>74<br>49<br>19  | .6<br>.1<br>.1<br>.1<br>.1      | 17<br>11<br>19<br>15<br>5  | 6<br>4<br>7<br>2       | 187<br>725          | 3.29<br>1.94<br>2.06<br>2.34<br>.98  | 6<br>6<br>2<br>2       | 777777777777777777777777777777777777777 | ND<br>ND<br>ND<br>ND | 3<br>7<br>2<br>2<br>7 | 15<br>20<br>16<br>21<br>6  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2                   |                                         | 57<br>43<br>41<br>41<br>22 | .09<br>.08<br>.12<br>.12<br>.05 | .04<br>.04<br>.03<br>.05<br>.03 | 7<br>7<br>8<br>4          | 34<br>21<br>28<br>27<br>15  | .47<br>.27<br>.48<br>.39<br>.13   | 98<br>61<br>81<br>75<br>21    | . 19<br>. 09<br>. 11<br>. 09<br>. 04 | 4           | 3.65<br>1.13<br>1.69<br>1.57<br>.81  | .04<br>.03<br>.04<br>.94        | .10<br>.09<br>.10<br>.13<br>.05 | 77777          | 5<br>5<br>5<br>5   |
| DMB-39168<br>DKB-39169<br>DKB-39170<br>DMB-39171<br>DKB-39171              | 1<br>2<br>2<br>1      | 16<br>19<br>23<br>25<br>29 | 19<br>15<br>13<br>12       | 48<br>45<br>76<br>130<br>90 | .2<br>.1<br>.7<br>.5            | 13<br>12<br>19<br>24<br>36 | 6<br>4<br>12<br>8<br>6 | 188<br>1911<br>2398 | 2.21<br>2.03<br>2.29<br>2.34<br>1.69 | 4<br>2<br>3<br>2<br>3  | 2<br>2<br>2<br>2<br>2<br>2              | nd<br>ND<br>ND<br>ND | 7<br>7<br>7<br>3      | 17<br>16<br>15<br>28<br>24 | 1<br>1<br>2<br>1 | 7<br>2<br>2<br>2<br>2<br>2              | 747777                                  | 41<br>33<br>40<br>47<br>52 | .10<br>.11<br>.13<br>.23<br>.57 | .04<br>.04<br>.05<br>.09<br>.12 | 6<br>7<br>6<br>10         | 22<br>19<br>31<br>35<br>68  | .34<br>.27<br>.57<br>.71<br>1.84  | 56<br>96<br>145<br>323<br>90  | . 09<br>. 06<br>. 10<br>. 07<br>. 07 | 332         | 1.60<br>.95<br>2.05<br>1.74<br>2.06  | .03<br>.03<br>.03<br>.03        | .10<br>.10<br>.13<br>.0°        |                | 15<br>10<br>5<br>5 |

FAGE # 9

.

 $\sim$ 

~\_\_\_\_/

--- -

| •···· ••                                                                   |                  | Cu<br>9pe                  |                          | Zn<br>ppm                  | Aq<br>ppe            | Ni<br>ppe                  | Co<br>ppe               | Hin<br>ppill | Fe<br>Z | As<br>ppm             | U<br>ppæ              | Au<br>pp e           | ĩh<br>ppa        | Sr<br>ppm                  | Cđ<br>pps             | Sb<br>pp m                 | Bı<br>ppe             | V<br>ppe                   | Ca<br>I                         | Р<br>1                          | La<br>ppe               | Cr<br>ppm                  | Hg<br>I | Ba<br>ppm                       | Ti<br>X                         | B<br>ppm   | A1<br>2                              | Na<br>Z              | K<br>Z                          | N<br>PP=                   | Aut<br>ppb       |
|----------------------------------------------------------------------------|------------------|----------------------------|--------------------------|----------------------------|----------------------|----------------------------|-------------------------|--------------|---------|-----------------------|-----------------------|----------------------|------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|-------------------------|----------------------------|---------|---------------------------------|---------------------------------|------------|--------------------------------------|----------------------|---------------------------------|----------------------------|------------------|
| RKS-32250<br>RKS-32251<br>RKS-32252<br>RKS-32253<br>RKS-32253<br>RKS-32254 | 1<br>1<br>1<br>1 | 40<br>19<br>21<br>46<br>24 | 10<br>7<br>10<br>13<br>8 | 94<br>53<br>55<br>92<br>63 | .2<br>.2<br>.3<br>.1 | 63<br>28<br>31<br>75<br>34 | 12<br>7<br>7<br>13<br>8 | 391          | 3.12    | B<br>7<br>6<br>3<br>7 | 2<br>2<br>2<br>2<br>2 | nd<br>Nd<br>Nd<br>Nd | 2<br>2<br>3<br>2 | 89<br>50<br>52<br>10<br>51 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 60<br>50<br>49<br>61<br>52 | .75<br>.64<br>.64<br>.87<br>.62 | .13<br>.12<br>.13<br>.14<br>.12 | 10<br>8<br>9<br>11<br>8 | 83<br>43<br>57<br>82<br>58 | . 99    | 267<br>130<br>142<br>283<br>166 | .14<br>.10<br>.10<br>.14<br>.12 | 2222222222 | 2.41<br>1.45<br>1.52<br>2.67<br>1.74 | . 06<br>. 05<br>. 06 | .43<br>.26<br>.28<br>.49<br>.32 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5 |

PAGE # 19

~~~

 \sim

SAMPLE #	Мо рре	Cu ppe	РЬ рра	Zn pp e	Ag ppa	Ni ppe	Co ppa	Hin ppe	Fe Z	As ppa	U ppe	Au ppe	Th ppm	Sr ppe	Cd ppm	Sb pp m	Bi ppe	V ppe	Ca X	P Z	La pps	Cr ppe	Mg I	Ba ppm	Ti Z	8 ppm	A] Z	Na Z	K Z	W ppm	Au t ppb
Jap-30063 Jap-30068 Jap-30069 Jap-30071 Jap-30072	59311	46 45 43 17 17	16 18 14 5 8	57 53 73 33 35	2.3 2.2 1.7 .3 .7	50 41 34 38 46	37 43 67 14 15	1087 274 797	15.08 29.32 10.98 9.34 11.06	13 33 31 7 10	2 2 2 2 2	nd Nd Nd Nd Nd	5 5 4 18 21	51 57 22 114 110	1 1 2 1 2	? 20 5 2 2	222222	134 364 87 130 146	.61 .87 .60 1.13 1.17	.12 .21 .26 .27 .27	20 32 14 98 111	36 39 12 93 94	.38 .29 .15 .60 .68	53 49 33 82 97	. 96 . 14 . 02 . 12 . 14	2 4 3	1.59 1.11 .40 .86 .94	.03 .04 .91 .05 .06	.09 .10 .92 .14 .15	20 17 18 32 32	5 5 10 5 5
Jap-30073 Jap-30075 Jap-30076 Jap-30080 Jap-30081	1 1 2 2	8 15 17 20 29	1 2 2 1 2	42 45 45 52 52	.3 .4 2.2 .6 .2	32 10 35 24 18	7 8 9 7 8	300 494 517 446 1547	2.12 2.39 2.07 2.54 4.19	2 12 20 20 20	2 2 2 2 2	nd Nd Nd Nd Nd	6 8 3 4 10	175 39 44 61 41	1 1 1 1	7 7 7 7 7 7	2 2 5 2 2 2	51 58 44 69 87	1.41 1.06 .78 1.01 1.50	.28 .20 .15 .16 .24	50 40 15 21 46	74 18 63 59 52	.83 .46 .73 .81 .69	113 32 53 90 59	.11 .13 .07 .12 .12	8 2 2 2 2	.95 .82 .74 1.23 1.39	.08 .06 .05 .10 .10	.14 .11 .10 .21 .15	2 126 114 106 213	5 20 65 40 5
Jap-30085 Jap-30086 Jap-30087 Jap-30093	2 1 1 2	46 17 16 21 35	1 19 5 2 6	66 78 79 84 130	.6 .7 .5 .4 .5	34 11 8 11 20	11 10 8 6 8	737 475 449 377 474	2.93 3.33 2.84 2.52 3.44	127 25 8 13 16	2 2 2 3	ND ND ND ND	10 15 11 9 5	47 65 61 51 78	1 1 1 1	32227	22222	62 61 61 62 85	1.16 2.04 1.77 1.09 1.56	.24 .49 .41 .24 .32	46 99 70 47 34	56 19 17 25 33	.69 .B0 .77 .74 .94	63 91 88 94 126	.09 .07 .09 .11 .14	4	.93 1.26 1.28 1.32 1.78	.06 .08 .08 .06 .10	. 13 . 24 . 23 . 22 . 28	359 43 10 2 2	45 15 10 5 200
Jap-30076 Jap-30079 NKP-32052 RKP-32053 RKP-32054	2 1 1 1 2	22 26 27 25 28	2 2 8 7 6	63 91 72 62 91	13.2 .4 .5 .4 .5	13 13 20 16 24	8 6 19 20 14	627 502 391 362 395	6.27 5.41	105 15 27 29 38	2 2 2 2 4	18 ND ND ND	15 5 4 3	106 67 37 36 36	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 2 C 2 C	79 77 105 81 98	3.25 1.07 .64 .62 .56	.80 .19 .17 .17 .14	129 27 18 16 14	37 36 25 17 27	.93 .88 .65 .56 .90	100 187 71 61 104	.05 .13 .06 .05 .05	7	1.45 1.71 1.10 .98 1.30	.13 .12 .04 .03 .03	.21 .31 .14 .13 .16	134 6 2 2 2	8720 5 560 5 40
RCP-32055 RCP-32056 RCP-32057 RCP-32056 RCP-32059	3 2 2 4	38 32 28 24 53	8 7 5 9 7	104 90 56 98 199	1.0 .2 .7 .5 .8	20 19 16 21 38	20 16 24 19 14	433 376 611 436 464	6.08 5.60 9.13 3.39 5.30	56 51 56 20 60	2 2 3 2 2	ND ND ND ND ND	2 2 4 3 2	35 30 41 36 39	2 1 2 1 3	32222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	115 126 221 54 94	.60 .61 1.25 .44 .50	. 12 . 16 . 21 . 09 . 12	11 12 26 15 11	24 27 27 27 27 39	.77 .59 .75 1.08 1.02	98 70 57 132 148	.08 .06 .15 .05 .06	4 3 4	1.41 1.18 1.36 1.67 1.66	.06 .04 .13 .05 .04	.17 .13 .20 .24 .24	6 8 14 2 2	105 10 30 5 20
RCP-32060 RCP-32061 RCP-32063 RCP-32064 RCP-32065	2 2 3 3	29 36 24 37 37	139 11 8 12 4	102 102 87 114 209	2.3 1.4 _9 1.2 _5	27 33 23 34 26	11 12 9 11 11	388 405 422 396 499	4.40	71 47 28 159 21	7 2 2 2 2 2 2	nd Nd Nd Nd Nd	3 3 3 2 2	29 32 34 29 34	1 1 1 3	4 8 2 6 3	22222	33 34 47 39 95	. 33 . 38 . 43 . 34 . 46	.10 .10 .10 .09 .10	12 12 14 13 9	21 27 26 27 32	.87 1.12 .95 1.11 1.21	120 249 118 161 138	.02 .03 .05 .03	2 2 2	1.48 1.44 1.52 1.50 1.83	.03 .02 .04 .02 .04	.20 .23 .21 .21 .21	2 2 2 2 2	275 5 5 20 5
RGP32066 RGP32067 RGP32069 RGP32070 RSP32071	5 4 2 3 5	58 50 26 38	10 8 11 8 16	258 191 63 66 53	.8 .8 .4 1.2 1.2	43 40 28 27 46	14 14 10 43 26		5.24	67 61 2 1B 10	3 2 2 2 2	ND ND ND ND ND	2 2 4 5 4	36 44 24 35 31	4 3 1 1 1	3 4 2 8 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	96 103 38 140 78	.50 .58 .35 .52 .44	.11 .11 .05 .14 .10	11 10 11 22 17	40 44 42 21 34	1.20 1.16 .85 .46 .59	160 163 84 60 80	20. 80. 80. 80. 80.		1.81 1.83 1.59 .99 1.10	.04 .06 .03 .03	.23 .28 .23 .10 .18	2 2 2 5	10 10 5 5 5
RCP-32072 RCP-32073 STB A-1/AU 0.5	2 3 1	35 40 30	13 15 39	66 65 183	.9 1.2 .3	28 30 36	25 43 12	574	8.77 12.34 2.82	12 26 9	2 2 2	nd ND ND	352	46 40 37	1 1 1	2 8 2	222	123 151 57	. 68 . 66 . 57	.14 .18 .09	16 24 7	28 22 72	.57 .43 .75	121 59 282	.07 .07 .08	2	1.19 1.00 2.07	.04 .03 .02	.22 .11 .21	522	5 4250 540

FAGE # 20

SAMPLE .	No ppe	Cu ppe	РЬ рра	Zn ppm	Ag ppa	Ni pp a	Co ppe	Min ppe	Fe 1	As ppm	U pps	Au ppa	Th ppa	Sr ppa	Cd ppa	Sb ppm	Pi ppe	V ppm	Ca 2	P Z	La ppa	Cr pps	Mg Z	Ba ppe	Ti Z	B ppe	A) Z	Na Z	K Z	¥ ppa	Au I pob
RCP-32074 RCP-32075 RCP-32076 RCP-32078 RCP-32078	2 3 5 4 3	26 39 43 37 34	27 13 17 11 14	49 61 74 68 69	.7 1.4 1.6 1.9 1.5	31 26 32 29 28	21 42 44 39 33	669 618	5.17 12.00 14.76 12.81 11.05	5 29 37 27 27	2 3 4 5 2	ND ND ND ND	2 2 2	16 31 52 39 42	1 1 2 2	2 2 2 2	3 2 4 2	45 150 178 157 133	.24 .49 .89 .69 .67	.06 .11 .22 .19 .14	9 19 30 22 21	25 23 24 22 22	.47 .43 .40 .36 .47	64 76 57 58 72	.04 .07 .10 .07 .08	2 2 2 2 2	.89 .99 1.06 .95 1.20	.02 .04 .05 .04 .05	.14 .14 .11 .11 .14	15 16 10 14 19	5 5 5 5 5
8xP-32080 8xP-32081 8xP-32083 5x 8xP-32083 5x 8xP-32084	3 1 1 1 1	31 15 6 1 8	10 5 8 4 7	70 37 40 12 35	1.0 .3 .5 .2 .3	27 41 25 7 20	24 8 6 2 12	496 288 478 74 229	6.76 1.98 5.03 2.22 5.77	23 3 8 2 9	2 2 2 5	ND ND ND ND	5 5 16 3 22	32 92 175 26 63	2 1 1 1	2 2 2 2 2 2	2 2 14 2 2	80 38 93 83 83	.50 .80 1.69 .38 .90	. 12 . 17 . 31 . 15 . 35	18 29 66 13 39	19 64 77 55 54	.52 .85 .71 .04 .21	69 142 59 5 21	.05 .10 .11 .02 .03	2 2 2 2 2 2	1.02 .%6 .83 .08 .30	.03 .05 .08 .01 .01	.13 .23 .09 .01 .03	4 13 9 18 13	5 5 110 5 10
HYP-32085 HYP-32085 HYP-32088 RHP-32092 RHP-32093	2 1 1 1 1	27 30 14 20 24	3 5 11 5 4	49 34 29 41 43	.9 3.1 1.1 1.0 1.9	11 21 15 16 22	10 12 6 7 12	678 159 137 163 185	3.44 2.67 1.62 1.67 2.45	124 99 39 48 62	2 2 2 2 2	ND 4 26 ND ND	16 3 2 4	41 39 26 25 28	1 1 1 1	2222	12 12 2 2 2 2 2	75 47 35 37 42	1.55 .98 .70 .73 1.04	.31 .37 .26 .28 .41	73 16 14 12 19	19 53 37 33 39	.59 .31 .26 .33 .29	50 24 29 43 35	.11 .02 .02 .03 .03	32223	1, 13 , 42 , 37 , 50 , 36	.09 .01 .01 .02 .01	.18 .06 .06 .07		440 1920 26200 860 5
RIP-32096 RIP-32099 RIP-32100 RIP-32101 RIP-32102	19 11 9 1 5	168 93 67 7 50	47 80 44 21 37	447 259 250 70 178	6.9 8.8 3.6 .5 2.5	91 62 41 9 34	53 54 27 6 24		2.53	449 479 225 87 235	2 5 2 2 2	ND ND ND ND	34333	33 27 33 25 20	2 1 2 1 1	9 2 3 4	2 2 2 2 2 2 2	41 35 43 17 24	.30 .29 .24 .18 .25	.15 .14 .07 .05 .11	9 10 13 15 10	17 14 19 9 10	. 26 . 21 . 32 . 30 . 30	52 49 116 94 29	.01 .01 .02 .02 .01		.72 .61 1.21 1.05 .69	.01 .01 .05 .05 .01	.02 .05 .25 .31 .06	2 9 7 4 2	20 60 750 170 10
K2b-39103 K2b-39100 K2b-39046 K2b-29048	1 1 5 1	5 11 42 16	4 7 10 6	27 33 180 59	.3 .7 .4	8 35 38 9	3 11 12 5	257 478 398 335	1.69 6.41 4.09 2.17	5 13 28 9	2 2 3 2	nd Nd Nd	9 18 6 9	61 73 36 45	1 1 3 1	2 2 2 2	2 3 2 2	58 90 82 54	1.45 .84 .86 1.26	. 26 .20 .21 .33	29 71 30 52	33 60 40 21	. 44 . 56 . 66 . 64	38 53 78 91	.15 .10 .11 .09		.66 .63 1.20 1.10	.07 .04 .05 .07	.09 .11 .15 .21	29 50 17 12	5 5 5 1140
KSP-36104 KSP-36105 KSP-36106 KSP-36107 KSP-36108	1 1 2 1 1	21 15 24 16 16	11 8 7 9 7	77 37 44 40 40	.5 .4 .4 .4 .4	9 28 53 21 27	7 6 17 8 8	407 359 478 789 698	2.54 2.70 3.56 3.86 9.81	13 7 9 7 16	3 2 7 7 2	ND ND ND ND	4 9 4 20	61 47 57 122 73	1 1 1 2	2 2 2 2 2	2 2 2 2 2 2	59 47 49 91 152	1.83 .52 .68 1.92 .95	.49 .07 .09 .30 .15	41 19 48 29 86	17 49 57 90 82	.79 .69 .81 .71 .43	108 87 78 69 70	.07 .08 .11 .12 .19	2 2 3 2	1.30 .89 .96 1.44 .91	.08 .06 .08	.25 .18 .18 .20 .15	2 2 15 52 12	5 5 5 5
KSP-36110 KSP-36111 KSP-36112 KSP-36113 KSP-36114	1 3 2 5	22 39 32 36 47	12 10 11 13 24	76 50 101 65 77	.4 1.4 .7 1.4 2.1	32 24 23 26 41	10 48 14 36 20	513 467	4.93 17.86 6.14 11.13 6.84	11 31 18 73 15	2 2 2 4 2	ND ND ND ND	4 5 5 5 4	40 39 44 64 28	1 1 2 2 2	2 2 2 2 2 2	2 2 2 2 2 2	67 242 96 150 60	.52 .74 .51 1.15 .55	.05 .20 .08 .29 .06	20 27 19 27 15	71 24 31 21 52	.58 .29 .75 .37 .61	65 41 138 51 50	.10 .08 .08 .10 .07	2 2 2 2 2 2	1.01 .81 1.60 .94 1.52	.07 .04 .09 .05 .05	.13 .08 .23 .10 .13	2 6 2 5 9	5 320 5 60 5
KSP-36116 STD A-1/AU 0.5	2 1	21 30	11 40	59 186	.4	27 33	9 12	1470 999	3.62 2.87	9 11	4 2	ND ND	3 2	26 35	1 1	2 2	2 2	36 57	. 45 . 56	.04	11 7	46 72	.80 .75	82 283	.06 .08		1.54 2.07	.05 .02	.21	2 2	5 510

......

PAGE # 21

•

 \sim

SAMPLE 4	No ppe	Cu ppe	P6 pp#	Zn ppe	Ag ppe	Ni ppe	Co ppe	Min Fe ppa Z	As pp=	U ppe	Au ppa	Th ppe	Sr ppe	Cd ppe	Sb pp=	Bi ppe	V ppe	Ca X	P I	La ppm	Cr ppe	Hç I	Ba ppa	Ti Z	B pp∎	A) I	Na Z	K Z	¥ ppa	Auli ppb
			••						-	•		•			•				••				••				••			
KSP-36117		32	46	79	4,6	55	53	182 14.82		4	ND		50			1	64	. 35	.16		63	.11	22	.02	4	. 36	.01	.01	27	5
KSP-36118	4	32	22	84	3.0	48	72	309 9.58	12	4	ND	5	67	2	2	2	89	. 39	.09	13	38	. 38	48	.06	2	. 60	.04	.08	- 2	10
KSP-36119	- 4	32	10	39	.2	36	12	417 3.10	5	2	ND	- 4	19	1	2	2	32	. 26	.05	21	29	.46	67	. 05	- 2	. 89	.03	.23	2	5
KSP-36120	3	35	6	173	.7	31	11	444 3.9B	1B	2	ND	7	47	- 4	2	2	67	1.03	.24	40	27	.77	134	.11	4	1.31	.07	.24	2	5
KSP-36121	5	11	4	32	.1	20	6	451 2.29	2	2	ND	3	23	1	2	2	24	.31	.06	9	23	.40	39	. 05	2	. 66	.03	.10	2	5
K99-36124	1	11	9	25	.3	22	15	278 5.98	3	8	ND	37	31	1	2	2	93	.79	.31	79	54	. 16	14	.04	2	. 27	.01	.02	7	5
KSP-36125	1	12	5	27	.1	27	9	480 4.33	6	2	ND	17	53	1	2	2	72	. 82	. 18	59	54	.45	36	. 11	3	. 57	. 03	.07	i.	5
K5P-36126	ŝ	19	Ĩ	54	.6	29	13	1190 29.91	10	ŝ	ND	28	48	i	2	,	404	. 93	.21	112	112	. 16	22	.30	2	. 68	. 02		69	? 5
KSP-36127	,	11		23		16	10	277 7.35	ŝ	15	ND	21	19	;	5	-	117	.55	. 22	42	50	.08	10	.03	÷	. 22	.01	.01		.5
	1		- 2		- 4		10		2	23				1	-						29				2				11	1
KSP-36128	1	14	4	21	.5	17	1	194 3.21	2	13	ND	12	26	,	1	4	52	.53	.20	20	27	.25	29	.03	2	. 36	.01	.06	2	45
KSP-36129	1	9	7	25	,1	16	11	274 7.61	2	11	ND	15	17	1	2	2	120	. 44	. 18	32	39	.10	10	.03	2	. 21	. 01	.01	10	15
KSP-36130	3	39	16	94	1.3	32	14	372 4.01	20	2	ND	3	30	1	2	2	37	.45	.11	12	- 24	. 69	111	.04	2	1.03	. 03	.16	2	40
KSP-36131	14	134	59	177	13.9	163	94	612 26.96	117	2	ND	3	49	1	2	2	78	. 64	. 15	17	29	.35	41	.07	2	. 94	.03	.10	2?	20
KSP-36132	17	177	84	261	15.3	156	100	464 22.17	165	2	ND	3	31	3	2	12	53	. 55	.27	6	19	. 22	74	.01	2	. 55	. 01	.02	7	45
KSP-36133 51		15	13	31	.9	16	8	72 1.57	13	5	ND	2		1	5		R	. 11	.04		7	.08		.01	5	.13		.01	5	20
1.3r-30133 JX	•		15	51	• '	10	v	12 1.01		•		•	Ŭ	•	•	•	Ū	•••		-	'		•		•				•	
KPS-36134 51	1	10	1	25	1.3	5	5	75 1.18	11	2	ND	2	4	1	2	2	8	. 09	.03	2	6	. 09	9	.01	2	. 14	. 01	.01	2	10
KPS-36135 5X	2	12	2	49	.3	10	5	85 1.22	13	2	ND	2	3	1	2	2	12	.06	.03	2	6	. 11	9	.01	3	. 20	.01	.01	2	30
STD A-1/AU 0.5	1	30	39	185	Ť	33	13	1009 2.77	11		ND		37	i			58	. 59	.09	7	73	.73	277	.08	8	2.06	. 02	. 21		490
JID H 1/HD VIJ	•	<i>3</i> ~	2.1			~			••	-		-	• •	•	-	-				•					•			•	-	

.....

FAGE # 22

 \smile

~

 \smile

``

 \sim

SAMPLE 1	No	Cu	Pb	Zn	Ag	Ni	Co	Hin	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	F	La	Cr	Kg	Ba	Ti	8	A1	Na	K	¥	Au‡
	ppe	pp∎	pp=	ppa	ppe	ppa	pp=	ppm	Z	ppa	ppa	ppm	pp=	ppe	ppa	ppa	ppm	pp a	Z	I	ppa	ppa	I	ppe	Z	ppe	1	Z	Z	ppa	ppb
USR-82501 USR-82601 USR-82602 USR-82603 USR-82603 USR-82604	1 3 1 1 1	10 18 45 69 16	7 9 12 9 14	29 34 34 61 42	.2 .5 .6 .5	6 3 10 40 5	4 2 5 17 4	608 339 267 305 514	3.34 2.99 6.30 4.25 3.28	10 16 34 5 123	2 2 2 2 2 2	nd Nd Nd Nd	2 2 6 4 3	27 29 19 15 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	48 41 44 33 21	.70 .44 .12 .23 .41	.09 .10 .05 .06 .09	9 9 15 10 11	8 6 30 35 4	.73 .67 .86 1.48 .44		.13 .12 .20 .12 .05	3 2 3 3 3	1.42 1.24 1.47 2.53 .97	.04	. 62 . 78 . 82 . 67 . 38	2 2 2 2 2 2	15 50 5 10 10

PAGE # 23

ACME ANALYTICAL LABORATORIES LTD. 832 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124

ICP GEOCHEMICAL ANALYSIS

.

A .500 GRAM SAMPLE IS DIGESTED WITH 3 HL OF 3:1:3 HCL TO HNO3 TO H20 AT 90 DEG.C. FOR I HOUR. THE SAMPLE IS DILUTED TO 10 HLS WITH MATER. THIS LEACH IS PARTIAL FOR: Ca,P,Mg,AI,TI,La,Ma,K,W,Ba,SI,Sr,Cr AND B. AN DETECTION 3 ppm. ANN ANALYSIS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - SOIL - MULVERIZING

DATE RECEIVED WI & 1983 DATE REPORTS MAILED OCT 1862 ASSAYER New DEAN TOYE, CERTIFIED B.C. ASSAYER

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 33-2468

PAGE # 1

SAMPLE 1	No pp a	Cu ppe	РЬ рре	Zn ppe	Ag ppa	Ni ppa	Co ppe	Mn ppa	Fe	As ppa	U ppa	Au ppa	Th pp=	Sr ppe	Cd ppe	Sb ppa	Bi ppm	V ppe	Ca Z	P Z	La ppe	Cr pp=	Hg Z	Ba ppe	Ti Z	B ppa	Al I	Na Z	K 1	W ppa	Aus ppb
809-32307 RKB-32308 RKB-32309 RKB-32310 RKB-32311	4 5 3 2	50 70 58 53 35	11 14 9 12 16	139 225 109 111 99	1.1 .9 1.0 .6 .4	30 37 22 29 15	8 7 10 9	524 567 435 485 558	4.35 4.69 3.98 4.43 3.53	243 40 18 24 10	3 6 5 4 4	ND ND ND ND	2 2 2 2 2	34 42 25 26 18	1 2 1 1 1	22322	2 2 2 2 2 2	135 150 129 119 119	.24 .34 .10 .15 .15	.18 .09 .09	4 5 8 6	73 72 66 70 44	.90 .95 .84 1.31 1.01	255 364 260 125 257	.13 .14 .14 .16 .18	4 4 4 4	2.52 2.89 2.76 2.53 2.40	.02 .02 .02 .03 .02	.33 .49 .36 .42 .50	2 2 2 2 2 2	5 5 5 5 5
RKB-32312 RKB-32313 RKB-32315 RKB-32316 RKB-32316 RKB-32317	3 5 4 1	62 55 43 69 34	11 13 8 16 10	99 67 51 87 86	.9 1.1 1.4 3.5 .4	31 18 13 19	7 5 4 7 7	376 315 198 451 524	4.62 4.29 3.19 3.84 3.48	65 42 32 68 7	4 3 2 2	ND ND ND ND ND	2 2 2 2 2 2	23 19 16 33 25	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	147 131 98 104 68	.08 .06 .08 .19 .20	.07 .12 .11 .18 .20	5 5 3 7 4	105 61 44 48 27	1.27 .71 .45 .84 .56	167 132 72 166 87	.16 .10 .09 .10 .09	4	2.67 1.88 1.39 4.10 2.01	.02 .02 .03 .02 .02	.51 .31 .19 .31 .14	2 2 2 2 2 2	5 5 25 5
RCB-32318 RCB-32572 RCB-32573 RCB-32574 RCB-32575	2 1 1 1 1	24 29 7 17 8	15 9 5 6 12	52 98 50 82 79	.5 .6 .5 .6	11 21 5 13 7	2 2 2 2 2 2	550 489 175 281 537	2.78 3.53 2.08 3.07 2.88	2 26 27 25 22	2 3 2 2 2	nd Nd Nd Nd	2 3 2 2 2	26 34 16 16 19	1 1 1 1	2 3 2 2 2	2 2 2 2 2	55 81 53 66 58	.11 .30 .14 .15 .13	.14 .07 .05 .13 .22	3 12 5 3	23 34 13 19 14	.40 .92 .19 .54 .18	71 119 65 82 91	.07 .09 .05 .09 .12	5 5 4	1.47 2.32 .97 2.53 4.43	.02 .03 .03	.13 .13 .06 .07 .04	2 2 2 2 2 2	5 5 5 5
RKB-32576 RKB-32577 RKB-32578 RKB-32579 RKB-32580	1 3 1 1	9 10 24 15 8	9 10 10 13	68 52 146 106 67	.4 .3 .6 .4	7 8 18 15 7	4 5 10 8 4	790 1020 521 441 223	2.73 3.61 3.64 4.38 2.91	14 13 41 35 10	2 2 2 2 2	ND ND ND ND	2 2 2 2 2	11 18 17 19 14	1 1 1 1	2 2 3 2	2 2 2 2 2	59 79 78 94 70	.11 .16 .13 .18 .11	.21 .36 .16 .30 .10	4 5 8 6 5	13 16 27 24 13	.27 .33 .60 .57 .23	70 104 111 114 80	.09 .06 .06 .06 .10	5 4 5	1.83 1.61 2.77 3.06 1.68	.03 .03 .02 .02 .04	.06 .06 .07 .07 .06	2 2 2 2 2 2	5 5 5 5 5
RKB-32581 RKB-32582 RKB-32583 RKB-32584 RKB-32585	2 2 1 1 1	12 17 11 13 9	10 B 9 9 8	74 54 67 77 46	.3 .4 .4 .5	10 13 8 10 7	8 7 6 7 4	618 368 338 427 196	3.67 3.41 3.39 3.51 3.04	30 48 16 30 17	2 2 3 2 2	ND ND ND ND ND	2 2 2 2 2	21 57 15 22 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	77 94 76 76 65	.18 .58 .19 .34 .12	.21 .06 .17 .16 .14	7 8 5 6 4	16 22 14 15 14	.47 .55 .39 .52 .29	103 56 78 111 83	.04 .07 .06 .05 .05	5 4 5	2.71 1.69 2.49 2.12 1.83	. 03 . 03 . 03 . 03 . 02	.07 .07 .06 .08 .04	2 2 2 2 2 2	5 5 5 5
AKB-32584 RKB-32587 RKB-32588 RKB-32589 RKB-32590	4 3 9 2 3	11 11 15 15 12	14 8 12 13 12	67 64 75 73	.8 .4 1.9 .7 .7	8 10 13 10	5 6 8 8	375 231 305 362 400	3.54 3.02 2.99 3.61 4.00	28 18 32 25 24	3 2 2 2 2	ND ND ND ND	2 2 2 2 2 2	15 21 38 24 27	1 1 1 1	2 2 2 2 2	2 2 2 2 2	68 67 56 78 75	.12 .73 .36 .25 .26	.07 .11 .10 .15 .14	5 5 11 8 8	16 15 19 18 18	.34 .44 .44 .50 .42	78 59 99 111 85	.06 .05 .10 .06 .07	5 5 5	2.54 2.18 4.73 2.47 2.52	.02 .03 .03 .02 .02	.06 .06 .07 .08	2 2 2 2 2	5 5 10 5 10
RCB-32591 RCB-32592 RCB-32593 RCB-32594 RCB-32594	1 2 1 2 3	11 15 25 12 18	11 9 4 7 10	50 107 55 110 149	1.0 .7 .5 .6	4 12 12 14 14	6 9 5 11	264 366 477 195 652	3.02 3.96 3.40 2.79 3.43	15 17 24 16 14	2 2 2 2 3	nd Nd Nd Nd	2 2 2 2 2	25 37 24 13 19	1 1 1 1	2 2 2 2 2 2	2 2 2 3 2	41 84 77 65 74	.20 .36 .41 .11 .19	.20 .22 .14 .06 .10	4 B 10 5 6	9 18 17 34 25	.07 .56 .64 .38 .52	124 141 80 80 110	.17 .06 .06 .09 .07	6 6 5	6.23 3.01 1.83 2.70 2.89	.03 .03 .03	.03 .08 .11 .06 .07	2 2 2 2 2 2	5 5 5 5 5
RKB-32596 RKB-32597 STD A-1/AU-0.5	1 3 1	23 35 30	8 7 38	106 170 182	.8 1.1 .3	19 27 36	8 9 12	262 264 1016	2.86 3.46 2.90	19 18 10	2 2 2	10 10 10	2 2 2	24 15 36	1~ 1 1	2 2 2	2 2 2	61 90 58	. 22 .13 .69	.10 .07 .11	6 7 8	21 36 74	.47 .78 .73	106 103 284	.09 .07 .09	5	3.03 2.86 2.06	.04 .02 .02	.07 .07 .19	2 2 2	5 5 525

 \checkmark

					I	.M.	WAT	SON	& A9	5500	IAT	ES	PR	OJEC	T #	NAK	USP	F	ILE	# E	13-2	468							PI	AGE	1
				•																		•				Al T					
2	64	12	282	.3	48	19	661	4.24	15	2	ND	2	28	2	2	2	104	. 22	.14	7	55	1.28	185	.10	6	4.15	.05	.09	2	5	
2	24	8	218	.1	18	12	465	3.54	14	2	ND	2	15	1	2	2	89	.15	. 09	5	23	.72	149	.10	5	2.75	. 02	.09	2	5	
5	47	13	204	.3	34	18	532	4.48	18	3	ND	2	25	1	2	2	113	. 24	.13	7	38	1.06	131	.10	6	3.47	.03	.07	2	5	
2	21	12	130	.6	18	9	393	3.15	14	2	ND	2	23	1	2	2	Π	. 15	.08	5	26	. 48	123	.09	5	2.51	.02	.05	2	5	
2	24	15	214	.3	23	11	506	3.76	19	2	ND	2	21	2	2	2	91	. 16	.11	8	32	.74	135	.10	6	3.62	.02	.08	2	5	

2 2

2 2 .11

8

7

8

5

85

12

13

8

9

10 38

1.16

40 1.02

18 1.80

. 38 127

. 88 137 .05

. 27 127 .03

.81 136

40

30 .74

20 33 13

39 .71 180 .05

148 . 08

125

27 .61 156 .10

192 .08

464 .04

.10

.11

.07

5 2.05

4 3.08

6 3.21

4 4.19

6 1.94

5 4.58

6 3.61

5 3.29

6 3.01

5 3.11 .01

.03 .25

.02 .05

.02 .10

. 02 .05

.01 .74

.03

.01 .09

.01 .05

.01 . 09

.07

.10

2 101 . 36

2 89 .13 .11

 \sim

3 25 9 166 .3 19 10 432 3.77 17 2 ND 2 18 1 2 2 96 .17 .15 3 22 11 189 .4 27 13 452 3.73 22 2 ND 2 31 2 2 86 . 30 1 . 18 B 642 2.50 3 27 11 244 1.0 23 3 2 ND 2 22 3 2 48 . 18 2 .10 19 212 .5 22 11 ND 2 1 34 14 839 5.06 2 2 1078 1 2 102 1.88 .67 15 1 22 13 182 .8 7 845 2.59 11 2 ND 2 25 2 2 2 43 . 18 .15 2 4 43 17 15 577 4.59 3 243 .6 28 26 2 ND 24 2 2 89 .17 .14 5 19 14 195 1.0 14 681 2.98 11 2 ND 2 38 6 16 2 2 2 . 20 .18 7 53 18 236 .6 25 10 692 5.05 21 3 ND 2 22 2 2 2 104 .23 .51

2 ND

2

ND

28

15

2 28

2 17

15 695 4.02

9 481 3.84

13 293

12 232

3 45

3 27

.1 31

.6 21

 $\sim >$

SAMPLE .

RKB-32598

RKB-32599

RK8-32600

RKB-32601

RKB-32602

RKB-32603

RKB-32604

RKB-32605

RKB-32606

RKB-32607

RKB-32608

RKB-32609

RKB-32610

RKB-32611

RKB-32612

E # 2

90

5 2

5

5

2

2 5

2 5

2

2

2 5

2 5

2 5

SAMPLE #	Ko	Cu	Ръ	ln	Ag	Ni	Co	Kn	Fe	As	U	Au	Th	Sr	63	Sb	Bi	۷	Ca	P X	La	Cr	Ng	Ba	Ti	B	AL	Xa	ĸ	N	Aut	
	ppa	ppa	pps	ppa	ppa	ppe	ppe	ppe	4	ppe	pp s	ppa	ppe	ppe	ppe	ppe	ppa	ppe	1	4	ppe	ppe	ĩ	ppe	I	ppa	1	z	1	<u>ppa</u>	ppb	
					-	•				-	-		•			-							-			-			••		-	
rkd-32657 rkd-32658	1	8 63	14 59	94 182	.3 1.2	8 26	5		2.30 4.89	144	2 2	ND ND	2 2	15 11	1	2 2	2	48 57	.13 .06	.13 .29	7 12	16 40	.33 .59	130 57	.07 .03	5	1.32	.02 .01	.04	2	5 15	
RKB-32659	2	56	28	283	2.6	30	13	1233	4.15	158	2	NÐ	2	48	5	2	2	52	. 39	. 28	11	Ζ	.77	116	.04	7	2.21	. 01	.18	2	20	
RKD-32660	2	63	59	238	.6	25	Ÿ	1295	4.00	152	2	ND	2	16	5	2	2	58	.09	.17	16	30	.32	130	.04	6	1.07	.01	.13	2	z	
RK9-32661	1	68	40	209	1.2	32	20			317	2	ND	3	32	2	2	2	84	.29	.19	15		1.18	128	.13		3.08	. 01	.31	2	20	
RKB-32662 RKB-32663	4	93 65	42 33	893 893	.9 2.8	67 50		1292 1059	5.12	290 85	2	ND ND	3 2	28 13	8 7	3 2	2	67 74	.25 .13	.13 .17	9 33		1.32	136 B4	.06 .06		2.10 2.84	.02 .01	.21 .07	2	33 35	
RKD-32664	5	68	22	333	.9	46	19	1345	5.26	125	2	ND	2	11	5	2	2	57	.07	.17	10	29	.73	152	.03	7	2.17	.01	.08	2	5	
RKB-32665	2	52	31	465	.9	54	23	1731	5.28	90	2	ND	2	25	6	2	2	64	.24	. 24	12	26	.71	155	. 09	7	3.34	.02	.07	2	5	
RKB-32666	2	57	31	522	1.5	22		1855		51	2	ND	2	60	6	2	2	42	.57	. 35	9	20	.44	262	.10		2.32	.02	.07	2	5	
RKB-32667 RKB-32668	12 2	91 37	54 67	1213 588	1.2 2.8	80 29	21	1274 1798	5.47 3.42	101 73	4	ND ND	2 2	35 53	5 11	4	2	56 36	.29 .37	.21 .25	11 12	25 15	.45 .24	168 367	.07 .06	9 7	2.79 1.99	.01 .02	.13 .08	2	80 25	
RKB-32669	1	30	85	572	2.1	31	12	4872	3.83	41	2	ND	4	24	4	2	2	22	. 15	.19	19	20	. 35	192	. 07	8	2.98	. 02	.08	2	10	
RKB-32670	1	20	97	323	1.3	27	15	3412	4.84	47	2	ND	4	27	1	2	2	42	.17	.29	14	π	. 40	223	.06	9	2.26	. 01	.06	2	5	
RKB-32671	ı	11	23	420	.2	20		2543		23	2	ND	2	80	5	2	2	27	.54	.86	21	16	. 24	529	. 12	7	3.44	.02	.08	2	5	
RKD-32672 STD A-1/AU-0.5	1	27 29	30 40	139 183	.1 .3	21 36		1032 1019		57 10	2	ND ND	3 2	ม ม	1	2 2	2 2	48 56	.24 .61	.12	15 B	29 73	.79 .72	145 283	.10 .08		2.29	.02 .01	.23	2	15 530	
310 M-1/MO-V.3	4	41	77	102			14	1017	2.00	10	4	~	4	30	•	•	4		.01	4	6	13	• • •	49 4	. va	,	2.04		. 14	4	200	

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

,

PAGE # 3

 \smile

•

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

Hn Fe As U Au Th Sr Cd So Bi V Ca P La Cr Ng Ba Ti B Al Na x W Aut SAMPLE & Mo Cu Ph Zn Ag Ni Co ppe ppe ppe ppe ĩ z ppe ppa Ž pps I **DD** I I 1 ppa I pps pob 0De 006 ppe pps 004 **DOB** pps pos pps pps ppe 008 103 .84 32 .69 253 .07 7 1.61 RKB-32673 34 180 .1 31 9 2071 3.65 21 2 ND 3 2 2 2 37 . 14 14 . 02 .24 2 5 1 19 62 10 3384 3.71 31 2 ND 3 18 2 2 2 30 .14 .14 16 20 .27 179 .06 7 1.79 . 02 .10 2 5 RKB-32674 1 16 280 1.4 18 8 1655 3.52 119 ND 32 2 2 2 35 .29 . 22 12 17 .46 265 .11 8 2.37 .03 .19 18 2 4 2 5 RKB-32675 1 18 41 234 .1 53 3357 5.13 89 ND 2 32 3 41 .36 .28 9 29 α. 147 9 1.89 .02 2 2 4 2 .03 .05 5 RKB-32676 7 127 82 313 2.8 44 . 38 .07 52 20 1505 4.52 122 2 ND 2 36 8 2 2 49 . 35 . 20 11 22 227 8 2.30 . 02 .12 2 15 72 RKB-32677 2 104 548 1.0 . 23 RKB-32678 1 36 20 771 .3 49 14 1578 2.62 22 2 NÐ 2 29 11 2 2 47 . 16 6 34 .56 256 . 09 7 2.02 .03 .07 2 5 64 25 2 .20 15 34 .57 8 2.12 RK8-32679 5 118 38 1349 1.2 78 19 1105 4.62 4 ND 2 21 2 54 .14 164 .08 . 01 .10 2 10 22 34 13 1612 3.31 179 ND 2 2 65 .22 .17 8 22 150 .07 7 1.92 .01 RKB-32680 22 485 .8 38 4 5 2 . 61 .10 2 5 1 15 18 1235 5.01 630 XD 2 3 2 83 .19 10 27 175 .10 9 3.22 .02 RKB-32681 72 34 340 1.0 36 4 2 .16 .81 .14 2 10 1 16 1144 5.19 294 ND 3 27 2 2 74 . 28 89 1.23 226 8 3.54 2 RKB-32682 1 32 28 353 .1 61 2 2 .14 10 .14 . 01 . 20 5 RKB-32683 3 83 29 .4 26 12 1645 4.46 191 4 ND 3 21 3 2 2 62 .24 .13 11 32 .97 166 .12 7 3.22 .02 .19 2 20 363 .22 .15 RKB-32684 2 134 25 192 .5 26 13 667 5.52 191 2 ND 4 20 1 2 2 63 11 28 1.12 121 .10 9 3.78 .01 .14 2 25 9 1421 3.26 87 2 ND 2 48 2 2 2 42 .53 .10 11 22 .59 160 .07 7 2.01 .01 .14 2 5 1 24 26 169 .1 19 RK8-32685

PAGE # 4

\smile

 \smile

	ppe	ppa	pps	ppa	ppe	ppa	ppa	ppe	1	ppe	ppa	ppa	ppa	ppa	ppa	ppa	ppa	ppa	ĩ	Z	pps	ppe	1	ppe	Z	ppe	1	ï	ĩ	ppe	ppb	
BD D- 38538 BD D- 38539 BD D- 38540 BDB- 38542	1 1 1 3	67 22 26 30	15 68 16 16	218 198 145 155	.7 .8 1.3 2.0	152 16 19 27				73 28 29 92	2 3 2 2	nd Nd Nd	2 2 2 2	37 12 18 22	1 3 4 1	2 2 2 2 2	2 2 2 2	95 32 38	.24 .08 .12 .14	.09 .23 .16 .15	10 5 6 9	108 14 11 17	1.61 .34 .13 .35	324 156 202 174	.14 .06 .02 .03	2 2	3.01 2.25 1.33 1.99	.02 .03 .02 .02	. 12 . 05 . 06 . 08	2 2 2 2	5 5 5 5	
BOB-38543 BDB-38544 BDB-38545 BDB-38546 BDB-38546 BDB-38547	1 1 1 3 4	11 11 8 23 64	12 18 6 16 26	75 92 70 319 205	1.1 1.0 1.0 2.0 .7	12 15 7 26 29	5 5 11	1187 1278 1026 1177 1246	2.13 1.02 3.86	15 61 15 149 64	3 2 2 2 2	nd ND ND ND	2 2 2 2 2 2	12 16 15 18 22	1 1 5 1	2 2 2 2 2 2	2 2 2 2 2 2	25 26 16 32 34	.09 .15 .16 .12 .33	.08 .26 .14 .21 .08	6 5 7	13 12 6 12 12	.12 .10 .07 .20 .38	130 244 107 184 92	.04 .10 .05 .04 .01	4 3 7	1.62 3.10 1.22 2.20 1.32	.02 .02 .04 .02 .03	.05 .06 .03 .09	2 2 2 2 2 2	5 5 20 5	
808-38548 808-38549 STD A-1/AU 0.5	14 6 1	100 50 30	47 24 38	288 244 181	3.2 1.7 .3	43 29 36	14	1043 758 1015	4.15	96 51 12	2 2 2	ND ND ND	2 2 2	92 30 36	1 2 2	2 2 2	2 2 2	28 22 22	1.46 .51 .60	.09 .07 .09	7 7 8	9 14 72	.46 .63 .72	147 61 277	.01 .01 .08	7	1.26 1.16 2.06	.01 .01 .02	.13 .07 .21	2 2 2	10 5 505	

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

SAMPLE 8 No Cu Po Zn Ag Ni Co Mn Fe As U Au Th Sr Cd So Bi V Ca P La Cr Mg Ba Ti B Al Na K M Auß

PAGE # 5

 \sim

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

SAMPLE #	No ppe	Cu ppa	Pb ppe	2n ppa	Ag pp a	Ni ppa	Co ppe	Ma ppe	Fe I	As ppa	U ppe	Au ppe	Th pps	Sr ppe	Cd ppe	Sb pp=	Bi ppm	V ppe	Ca X	P Z	La ppa	Cr ppa	Ng I	Ba pp.m	Ti X	B ppa	Al Y	Na I	K I	W ppe	Au 1 ppb
808-38550 B08-38551 B08-38552 B08-38553 B08-38554	4 2 1 1 1	185 37 28 12 25	26 12 14 14 13	284 108 91 134 134	2.5 1.3 .9 4.5 1.4	53 26 24 16 44	37 8 6 4 10	1507 431 904 1471 501	8.90 2.81 1.89 1.88 2.34	80 31 24 12 34	2 2 2 2 2 2	ND ND ND ND	3 2 2 2 2	42 19 26 14 18	5 1 1 1 1	2 2 2 2 2	2 2 2 2 2	26 33 21 24 25	.64 .19 .18 .13 .15	.17 .07 .08 .39 .13	13 8 5 8	7 20 10 11 21	.28 .49 .16 .10 .17	78 69 141 129 111	.01 .02 .02 .07 .05	11 6 3 4 4	.97 1.53 1.02 3.29 2.36	.01 .01 .02 .02 .02	.07 .08 .07 .04 .07	2 2 2 2 2 2	15 5 5 5 5
80 0- 38555 80 9- 38556 80 9- 38558 80 9- 38558 80 9- 38559	1 2 1 1 2	20 26 46 18 41	13 17 57 33 25	100 133 183 133	1.4 1.0 .9 1.1 1.6	34 25 39 14 31	8 7 13 7 10		2. 37 2.80 2.82 1.30 2.94	51 29 25 13 23	2 2 3 2 2	nd ND ND ND	2 2 2 2 2	21 27 56 83 26	1 1 5 9 1	2 2 4 2	2 2 2 2 2 2	23 19 36 15 26	.17 .31 .32 1.17 .23	.09 .15 .25 .13 .13	10 9 10 4 10	20 12 24 7 14	.15 .19 .20 .14 .27	187 126 578 406 151	.03 .01 .04 .02 .01	4 5 5 6 5	1.49 1.45 1.61 .95 1.31	.01 .01 .02 .02 .01	.07 .09 .10 .06 .08	2 2 2 2 2 2	5 5 5 5 5
9D 9- 38560 BD9-38562 BD9-38563 BD9-38564 BD 9 -38565	2 2 1 1 1	41 88 38 6 9	15 21 14 4	150 152 84 39 73	1.0 1.0 1.4 .1 1.1	35 48 29 10 12	9 14 7 2 4	1107 866 853 157 353	3.19 3.76 2.46 .79 1.82	14 6 2 2 2	2 2 6 2 2	nd Nd Nd Nd Nd	2 3 2 2 2	17 17 25 7 10	5 2 1 1 1	2 2 2 2 2	2 2 2 2 2	35 44 43 15 27	.16 .23 .30 .10 .07	.07 .08 .07 .04 .07	9 18 12 5 6	21 35 35 22 13	.42 1.43 1.10 .85 .30	113 178 139 28 88	.03 .06 .06 .04 .07	4 2 2 2 6	1.13 2.06 2.12 .98 1.40	.01 .01 .01 .01 .02	.09 .29 .16 .03 .06	2 2 2 2 2 2	5 5 5 5 5
800-38566 808-38567 809-38568 808-38569 809-38589	7 1 1 1 3	22 34 67 34 17	11 11 7 35 13	108 108 205 200 73	.6 .2 .4 1.2 .1	15 27 53 32 9	5 5 10 7 7	1788 1260 775 1318 519	1.84 2.01 2.48 1.71 4.54	2 3 2 3 9	6 2 3 2 2	nd Nd Nd Nd	2 3 2 2 2	29 30 28 72 16	2 1 2 6 1	2 2 2 2 2	2 2 2 2 2	32 50 74 44 97	.47 .42 .28 .72 .16	.10 .10 .08 .07 .14	11 6 6 4 7	35 40 51 34 18	.51 1.82 1.95 1.12 .40	107 238 227 592 86	.02 .11 .13 .08 .14	4	1.66 2.44 3.14 1.69 2.78	.01 .02 .02 .02 .03	.06 .14 .26 .09 .09	2 2 2 2 2 2 2	5 5 5 15
808-38590 808-38591 808-38592 808-38593 809-38593	3 2 1 1 2	14 17 91 154 28	10 14 12 14 10	58 108 88 134 105	.4 .3 .1 .1	8 11 20 44 29	7 8 16 34 12	316 353 509 1094 404	3.51 3.74 5.43 6.73 4.45	13 12 6 96 19	3 2 3 5	nd Nd Nd Nd Nd	2 2 3 2	12 15 19 23 17	1 1 1 2 1	2 2 2 2 2	2 2 2 2 2 2	76 85 170 195 106	.16 .16 .34 .38 .21	.11 .12 .12 .10 .11	8 6 9 11 9	15 22 54 95 39	.39 .52 1.74 2.01 1.05	82 140 448 396 160	.08 .11 .26 .23 .05	5 5 5 6	2.96 3.62 4.07 3.89 3.44	.02 .03 .03 .02 .03	.06 .07 .47 .86 .12	2 2 2 2 2 2	10 5 5 5 5
80 0- 38595 809-38594 809-38597 809-38598 809-38600	2 1 1 6 1	24 13 22 101 15	10 11 9 18 7	137 125 155 524 94	.2 .3 .5 .6	21 11 12 77 9	10 6 10 22 6	679 353 338 939 237	3.64 2.74 3.45 5.72 2.98	16 13 64 4	3 2 5 5	nd ND ND ND ND	2 2 3 2	20 14 15 38 19	1 1 6 1	4 4 2 5 2	2 2 2 2 2	87 53 71 113 60	.19 .11 .15 .54 .12	.09 .08 .14 .12 .09	6 6 14 6	30 21 29 50 17	.70 .30 .52 1.51 .35	133 108 125 197 71	.08 .11 .11 .07 .11	5	3.15 3.56 4.58 2.53 4.66	.03 .03 .03 .03	.08 .05 .06 .34 .04	2 2 2 2 2	5 5 20 5
808-38405 808-38403 808-38403	4 3 1 1 2	33 37 20 39 33	15 15 7 13 8	218 238 98 276 182	.5 .3 .6 .6	24 34 12 27 25	10 15 6 12 12	312 475 225 546 412	3.91 5.00 2.03 3.41 3.59	27 36 11 10 18	2 4 2 2 3	nd Nd Nd Nd	2 2 2 2 2 2	11 23 15 24 22	2 2 1 3 2	2 2 2 2	2 2 2 2 2 2	88 123 44 85 77	.11 .25 .13 .27 .29	.10 .11 .10 .14 .31	6 9 6 7 6	28 33 19 33 30	.62 1.08 .29 .85 .63	110 168 63 157 124	.07 .09 .08 .09 .06	7 3	4.71 3.74 4.05 3.63 3.22	.03 .03 .04 .04 .02	.06 .11 .06 .10 .07	2 2 2 2 2 2	15 60 5 5
BDB- 38606 BDB-38607 STD A-1/AU 0.5	2 4 1	24 63 30	12 13 37	227 238 182	.2 .2 .8	21 37 35	10 15 12	396 642 997	3.27 4.60 2.81	17 39 10	3 3 2	nd No No	2 2 2	16 21 36	2 2 1	2 2 2	2 2 2	66 105 59	. 15 . 26 . 61	.11 .13 .10	7 10 8	27 38 74	.53 1.17 .71	117 158 279	.10 .08 .09	4 6 8	3.93 3.21 2.06	.03 .03 .02	.07 .15 .19	2 2 2	5 10 535

1

PAGE # 6

•

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

SAMPLE I	No pp=	Cu ppe	Pb ppm	Zn pps	Ag ppa	Ni ppe	Co ppa	Mn ppa	Fe I	As ppe	U pps	Ац ррв	Th pp=	Sr ppe	Cd ppa	Sb ppa	Bi ppe	V ppe	Ca I	P I	La ppe	Cr ppe	Ng Z	Ba ppe	Ti Z	9 ppe	A1 2	Na X	K Z	¥ ppe	Au‡ ppb
		••			••																									_	_
BD8-38608	3	55	13	283	.3	41	17	624	4.73	45	2	10	2	- 24	- 3	2	2	102	.26	. 18	7	- 38	1.19	211	.05	6	3.41	. 02	-14	2	5
808-38609	5	69	14	314	.2	53	17	451	5.07	48	8	ND	2	23	3	2	2	108	.23	.12	8	- 48	1.37	185	.05	6	3.71	.02	.14	2	5
BDB-38610	2	26	11	193	.7	20	8	357	3.36	16	2	10	2	21	2	2	2	65	. 18	.12	7	25	.53	148	.09	5	3.98	. 02	.07	2	5
BDB-38611	2	40	10	299	1.3	32	9	494	3.73	23	3	ND	2	22	3	2	2	71	.25	. 26	7	40	.81	161	. 07	5	3.66	. 02	.10	2	5
BDB-38612	2	44	11	420	.8	41	16	745	4.70	38	7	ND	2	22	4	2	2	102	. 16	.13	10	50	1.11	207	. 08	6	3.61	. 02	.17	2	5
808-38613	1	22	9	67	1.9	10	5	282	1.68	4	3	ND	2	14	2	2	2	24	.09	.12	8	12	. 15	78	.10	4	4.42	. 03	.03	2	5
BDB-38614	2	49	10	132	.4	19	7	562	3.61	37	3	KD.	2	10	2	2	2	72	.07	.11	11	33	. 46	106	.09	5	3.80	. 02	.08	2	5
BDB-38615	2	34	12	265	.4	24	13	582	4.45	38	7	ND	2	15	2	2	2	91	.11	.14	8	- 44	. 95	169	. 09	6	4.31	. 02	.08	2	5
BDB-38616	2	22	11	210	1.3	29	11	579	4.04	24	4	ND	2	15	1	2	2	86	.13	.06	8	52	1.24	146	.07	5	3.84	.01	. 13	2	5
BD8-38617	2	53	8	134	.3	20	13	988	3.55	21	2	ND	3	24	2	2	2	70	.26	. 08	14	23	1.08	114	.06	4	2.44	.02	.14	2	5

 \smile

PAGE # 7

-

	I.M. WATSON & ASSOCI												ES	PR	OJEC	т #	NAK	USP	F	ILE	# 8	3-2	468							F	AGE	#8
SAMPLE 1	No ppa	Cu ppa	Ph ppm	Zn ppe	Ag ppa	Ri ppe	Co ppe	Mn pps	Fe I	As pp=	U pp=	Au ppe	Th ppm	Sr ppa	Cd pps	Sb pp.m	Bi ppa	V ppe	Ca X	P Z	La ppe	Cr pps	Ng I	Ba ppe	Ti Z	8 ppe	Al Z	Na Z	K	¥ рра	Au t ppb	
																														<i>m</i> -		
							,																									
BDB-38667 BDB-38668	1	39 32	27 23	167 186	.9 .8	15 19	9 9	917 735		112 69	3	ND ND	3	14 15	1	2 2	2 2	41 49	.11 .13	.10	9 9	20 19	.53 .61	99	.09		2.48 3.61	. 01	.13	2	25 50	
BDB-38669 BDB-38670	1 1	25 53	18 29	533 136	.6 .8	14 10		1092		179 307	3 2	ND ND	3	13 19 9	32	2 2 2	2 2	43	.13 .20 .09	.07 .08 .08	7 10	17 15 8	.57 .15	129 73 100	.11 .12 .04	6	3.20 1.39	.02 .01 .02	.12 .11 .06	2 2 2	10 30	
BDB~38671 BDB-38672	1 1	40 23	29 16	221 177	1.4	15 13		2036 1310	4.20	247 157	2 2	ND ND	2 2	28 18	2	2 2	2 2	32 40	. 28 . 17	.16 .07	15 9	10 15	.27 .45	213 155	.05 .09		2.24	.01	.08 .22	2 2	55 10	
BDB-38673 BDB-38674	1	18 27	22 35	305 509	.6	11 9	9	1926	3.42 2.04	199 101	2 2	ND ND	2 2	22 38	9 2	2 2	2 2	30 20	. 29 . 46	.07 .08	8 14	10 B	.27 .19	159 332	.05	5	1.44	.01 .02 .03	.08 .08	2 2 2	560 15	
BDB-38675 BDB-38676	1	30	29 70	457 706	1.0	22 18	11	1560 5489	4.24	214 159	2	ND ND	2	29	2	2	2	47	. 20	.05	8	26	.54	245	.04		2.25	. 01	.16	2	630	
BDB-38677 BDB-38678	1 1 1	22 37 30	34 65	396 314	.5 2.1 .6	8 10	5	1014	1.98	82 184	2 2 2	ND ND	4 2 2	39 11 17	7 2 3	2 2 2	2 2 2	40 24 25	.42 .10 .21	.24 .07 .04	11 5 6	18 6 8	.46 .16 .17	400 80 140	.07 .06 .05	2	2.36 1.39 1.07	.02 .02 .03	.13 .04 .06	2 2 2	60 15 105	
80 0 -38679 808-38680	2 4	61 74	80 84	563 1034	.9 1.8	18 20	9 7		3.73 3.87	154 60	4 2	ND ND	3 2	17 17	2 2	2 2	2 2	32 40	.17 .24	.15 .16	9 7	11 25	.27 .53	327 202	.10 .11	6	2.29 2.78	. 02 . 01	.08	2 2	135 85	
BD9-38681 BD9-38682	1	37 29	۳ تر	224 200	1.5	18 22	10 9	1943 1404		176 97	2 2	ND ND	2 2	26 21	2	2	2 2	19 28	. 37 . 22	.07 .15	9 10	8 12	.14 .30	240 235	.02 .03		.71 1.66	.01 .02	. 13 . 08	2 2	40 110	
STD A-1/AU 0.5	i	30	38	183	.3	Z		1040		ü	2	ND	2	36	1	2	2	58	. 59	.09	8	71	.70	283	.08		2.05	.02	.19	2	520	

 \sim

I.M. WATSON & ASSOCIATES	PROJECT # NAKUSP	FILE # 83-2468	
--------------------------	------------------	----------------	--

·----

SAMPLE #	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn.	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Hg	Ba	Ti	9	Al	Na	K	¥	Au‡
	ppe	pp≡	ppm	pp#	ppe	ppa	ppa	ppm	I	ppe	ppa	ppe	ppa	ppa	pps	ppa	ppm	ppe	1	I	ppa	ppe	I	ppe	Z	ppa	I	Z	Z	ppa	ppb
BD D- 38683 BDB- 38684 BD D- 38685 BDB- 38686 BDB- 38687	1 1 1 1	30 23 26 17 13	25 42 37 31 31	96 86 177 105 235	.9 .7 .5 .8	31 22 22 18 17	9 9 9 7 11	1552 1986 2022 1347 1956	3.25 2.58 3.11 2.84 3.94	63 47 145 276 255	5 2 3 2 2	ND ND ND ND	2 2 2 2 2	20 57 10 75 24	1 2 1 1	3 4 3 2 2	2 2 2 2 2	32 30 27 25 39	.20 .77 .10 1.00 .20	.09 .04 .06 .08 .13	12 12 21 16 24	18 16 23 15 18	.52 .45 .50 .34 .41	231 281 114 82 117	.04 .04 .04 .02 .03	4	2.17 1.57 1.90 1.66 2.48	.02 .02 .01 .01 .01	.09 .09 .09 .10 .16	2 2 2 2 2 2	505 20 15 10 50
BDB-38663 BDB-38661 BDB-38664 BDB-38684 BDB-38688	1 1 1 1 1	13 9 5 20 10	21 19 20 158 32	91 70 71 598 194	.3 .8 .4 .5 .5	19 12 8 40 15	6 4 9 7	328 389 795 1161 3955	2.78 2.66 1.90 3.03 2.37	60 57 36 50	2 5 4	ND ND ND ND	2 3 2 3 2	13 15 12 11 16	1 1 1 1	2 2 4 2 2	2 2 2 2 2 2	35 31 29 37 30	.09 .13 .10 .07 .13	.04 .13 .06 .09 .06	11 5 5 9 8	20 12 11 20 12	.48 .20 .17 .45 .25	89 113 155 152 270	.04 .16 .06 .08	6 4	2.11 5.52 1.29 2.97 1.66	.01 .03 .03 .02 .02	.10 .07 .06 .09 .08	2 2 2 2 2 2	130 5 5 15 5
808-38693	1	19	43	212	.6	18	9	2112	2, 80	122	4	ND	3	20	2	2	2	30	.15	.10	15	14	. 30	165	.06	5	2.49	. 02	.09	2	5
808-38694	1	9	76	125	.4	7	8	4063	3, 14	91	3	ND	2	33	1	2	2	24	.37	.12	17	5	. 30	119	.01		1.71	. 01	.16	2	5
808-38695	1	13	65	115	.4	13	7	1804	3, 28	40	2	ND	3	23	1	2	2	35	.18	.04	15	13	. 37	106	.06		2.30	. 02	.10	2	5

PAGE # 9

	MATCON	•.	ASSOCIATES	800.15

NC	S c	ASSOCIATES	PROJECT	¥	NAKUSP	FILE	#	83-2468	

PAGE	Ħ	10	
------	---	----	--

SAMPLE 1	Ho	Cu	Pb	Zn	Ag	Ni	Co	ħ	Fe	As	U	Au	Th	Sr	Ce	Sb	Bi	۷	Ca	P	La	Cr	Ng	Ba	Ti	B	A1	Ka	ĸ	X	Aut
	ppe	ppe	ppe	ppe	, ppa	9pa	ppe	ppa	1	ppe	ppm	ppa	ppa	ppe	ppa	ppa	ppm	ppe	1	I	ppe	ppa	ž	ppa	z	рра	z	I	I	ppa	ppb

90 9- 38751 809-38752 90 9- 38753 90 9- 38754	1	39 54 50 60	11 12 22 28	87 140 83 853	.5 1.1 .2 1.6	28 27 20 63	11 16 8 15	761 841 468 879	3.02 4.83 5.49 4.95	14 16 25 119	2 2 6 2	nd Nd Nd Nd	2 2 2 2	30 11 9 15	2 2 1 4	3 2 2 6	2 2 2 2 2	97 160 181 94	.40 .12 .05 .21	.05 .09 .37 .09	3 2 3 12	67 70 69 52	.86 1.07 1.20 .84	307 188 137 85	. 11	5 1.73 7 2.82 8 2.79 7 3.18	.04 .02 .02 .02	.15	2 2 2 2	5 5 30
808-38755 809-38756 STD A-1/AU 0.5	•	71 67 30	25 12 37	776 154 178	1.5 .2 .3	57 49 33	22 17 12	2604 753 998		61 26 11	3 8 2	nd Nd Nd	2 2 2	42 16 36	12 2 1	2 3 2	2 3 2	111 175 58	. 68 . 17 . 60	.13 .05 .09	6 3 7		1.10 1.75 .72	384 229 276	.09 .19 .08	7 2.47 7 2.99 8 2.03	. 02	.25 .25 .20	2 2 2	5 5 530

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

SAMPLE #	No ppe	Cu pp∎	РЪ рре	In ppm	Ag ppa	Ni ppe	Co ppa	Mn ppe	F# 1	As ppa	U ppe	Au ppe	Th pp=	Sr ppe	Cđ ppa	Sa ppa	Bi pp=	V ppa	Ca I	P Z	La ppe	Cr ppe	Hg Z	Ba ppe	Ti X	B ppe	Al Z	Na X	K 1	¥ ppe	Aut ppb
809-38757 809-38758 809-38759 809-38759 809-38760 909-38761	1 1 2 1 1	30 52 84 50 15	14 14 34 21 10	114 148 294 265 32	.6 2.7 2.0 .1 .4	35 54 31 7	14 17 24 21 4	591 952 1985 1574 293	4.17 4.05 4.91 5.05 .94	20 65 210 44 12	2 6 4 3 2	ND ND ND ND	2 2 2 2 2	16 36 11 31 11	2 2 3 5 1	2 2 2 2 2	2 2 2 2 2	147 147 111 165 20	.17 .69 .14 .47 .16	.06 .04 .11 .14 .02	2 10 2 2	104 142 37 48 3	1.03 1.54 1.15 1.55 .06	174 188 272 868 80	.22 .14 .13 .22 .03	6	2.15 2.53 3.41 2.91 .38	.02 .02 .01 .02 .04	.05 .16 .27 .34 .03	2 2 2 2 2	5 5 5 5
808-38762 808-38763 808-38764 808-38765 808-38765 808-38766	3 4 3 1 1	24 50 24 26 18	40 36 23 15	142 252 193 122 110	1.5 2.1 .8 .5 .8	21 34 26 21 21	14	1470 2094 1403 2333 302	3.40 3.63 3.49 3.30 2.41	87 75 150 77 11	2 3 2 2 2	ND ND ND ND	2 2 2 2 2 2	15 44 29 23 10	2 4 2 1 1	2 2 2 2 2	2 2 2 2 2 2	30 37 42 37 30	.17 .54 .47 .34 .12	.11 .11 .13 .09 .16	13 15 10 15 9	12 19 16 16 22	.18 .51 .49 .48 .43	125 228 150 119 90	.03 .04 .07 .01 .03	7 5 6	1.12 2.14 2.63 1.81 1.78	.02 .02 .02 .02 .01	.07 .10 .08 .09 .05	2 2 2 2 2 2	10 5 5 5 5
809–39767 809–38768 909–38769 809–38770 808–38771	3 2 8 14 2	49 39 127 74 75	21 12 109 35 31	176 141 380 264 214	.8 1.8 12.8 4.7 2.6	55 27 77 60 77	17 11 29 16 21	1870 1463 2110 985 1365	3.53 3.52 7.00 4.14 4.84	25 9 226 53 33	2 4 2 4 2	ND ND ND ND	2 2 2 2 2	18 9 25 21 26	2 1 4 3 2	2 2 2 2 2	2 2 2 2 2	50 54 33 47 36	.15 .08 .26 .32 .55	.13 .08 .16 .10 .12	12 9 25 21 37	28 33 12 34 35	.47 .92 .38 .88 1.02	164 103 141 148 159	.04 .08 .01 .08 .08	6 11 8	1.23 2.58 1.31 2.30 2.23	.01 .01 .01 .02 .01	.10 .09 .11 .11 .13	2 2 2 2 2 2 2	5 5 65 20 5
BDB-38772 BDB-38773 BDB-38774 BDB-38775 BDB-38776	1 1 2 7	25 32 20 22 27	14 32 33 19 20	92 111 120 141 127	.3 .6 .8 1.0 .4	20 19 16 17 29		2 858 2707	2.62 3.35 2.63 3.07 2.60	8 45 86 176 55	2 5 3 2 2	nd ND ND ND	2 2 2 3	16 26 11 41 14	1 1 4 2	2 2 2 2 2	2 3 2 3	36 46 39 34 47	.27 .36 .13 .92 .20	.04 .07 .21 .07	10 12 9 14 7	21 16 16 9 23	.86 .43 .39 .37 .69	252 131 130 207 161	.10 .08 .06 .07 .12	6 5	1.65 1.70 1.38 2.60 2.14	.03 .01 .02 .02 .03	.18 .14 .08 .11 .07	2 2 2 2 2	5 5 15 5
808-38777 808-38778 808-38779 808-38789 808-38780 808-38781	1 2 1 2 1	30 20 31	13 18 14 10 11	86 97 81 73	.6 .2 .4 .6 .3	27 10 11 10 26	11 7 7 5 7	355 1483 1461 642 469	2.95 2.72 2.69 2.65 2.32	32 14 13 11 5	2 2 2 4 2	nd Nd Nd Nd	3 2 2 2 4	11 11 12 10 12	1 1 2 1 1	2 2 2 2 2	2 2 2 2 3	50 79 78 74 44	.13 .08 .11 .05 .15	.02 .19 .18 .26 .08	12 4 4 4 14	34 28 29 25 31	1.27 .40 .39 .32 1.04	132 115 122 94 133	.14 .08 .08 .07 .10	6	2.63 1.38 1.36 1.42 2.16	.01 .02 .02 .01 .01	.15 .18 .18 .15 .27	2 2 2 2 2 2	25 5 5 5 5
BDB-38782 BDB-38784 BDB-38785 BDB-38786 BDB-38786 BDB-38787	1 1 2 1 2	31 30 31 38 32	11 15 34 14 26	79 78 69 99 71	.1 .2 .5 .2 .5	27 27 29 33 31	8 7 9 9 8	390 383 3982 419 2528	2.33 2.30 3.81 2.84 2.94	2 7 10 10	2 2 6 2	ND ND ND ND	3 7 3 5	13 12 21 15 21	1 1 2 1 1	2 2 2 2 2 2	2 2 2 2 2 2	45 45 59 57 49	.16 .16 .35 .17 .33	.11 .11 .17 .07 .14	11 11 20 12 18	33 33 24 42 37	1.07 1.05 .91 1.37 1.14	130 128 222 175 165	.10 .10 .12 .13 .10	5 7 5	2.20 2.21 3.13 2.82 2.86	.01 .01 .01 .02 .01	.25 .25 .31 .30 .21	2 2 2 2 2	5 5 5 5 5
808-38788 808-38789 808-38790 808-38791 808-38791 808-38792	2 2 2 2 2 2	23 20 23 27 23	12 13 17 13 14	87 79 73 77 100	.7 .8 .8 .8	12 10 10 11 12	5 5 5 6	790 795 600 456 941	2.87 2.55 2.52 2.68 3.16	8 9 11 9 13	2 4 2 5 2	nd ND ND ND	2 2 2 2 2	12 11 12 12 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	81 72 70 72 95	.07 .06 .07 .06 .08	.12 .12 .20 .27 .16	4 4 4 4	32 36 27 25 34	.40 .36 .36 .34 .45	97 92 117 115 110	.10 .09 .08 .08 .10	5 6	1.58 1.33 1.22 1.40 1.42	.02 .02 .02 .02 .02	.16 .15 .18 .17 .20	2 2 2 2 2	5 5 5 5
BD9-38793 BD9-38794 STD A-1/AU 0.5	2 1 1	23 20 30	16 16 39	107 78 184	.4 .5 .3	12 11 36	7 5 13	1001 752 1037	3.30 2.58 2.82	11 10 10	5 2 2	ND ND	2 2 2	12 13 37	1 1 1	2 2 2	2 2 2	100 81 59	.07 .08 .61	.16 .12 .11	4 4 8	36 29 74	.49 .57 .72	113 108 280	.10 .09 .09	5	1.50 1.10 2.08	.02 .02 .02	. 22 . 18 . 20	2 2 2	5 5 510

PAGE # 11

•

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

 \smile

SAMPLE #	No ppe	Cu ppe	P6 ppe	Zn ppe	Ag ppa	Ni pp a	Co ppa	lin ppe	Fe 1	As ppn	U ppe	Au ppa	Th pp a	Sr ppe	Cd ppe	Sb ppa	Bi ppm	V ppe	Ca 7	P I	La ppe	Cr ppe	Hg Z	Ba ppa	Ti Z	B ppa	Al Z	Na Z	K Z	¥ ppa	Aut ppb
80838795 808-38796 808-38797 808-38798 808-38798 808-38800	1 1 1 1	20 16 32 62 64	27 11 13 19 20	80 72 82 143 143	1.2 .5 .3 1.1 .9	10 10 30 53 54	6 4 9 10 10	1384 1114 747 573 640	2, 33 2,00 2,78 3,15 3,21	13 7 5 26 27	3 2 3 5	ND ND ND ND	2 2 4 4	16 11 17 21 24	1 1 1 1	7 4 2 2 2	2 2 2 2 2	68 61 62 63 64	.13 .07 .23 .18 .20	.13 .09 .09 .10 .11	5 10 13 13	23 25 36 57 61	.34 .32 1.46 1.51 1.52	149 98 159 167 184	.07 .06 .13 .07 .07		1.01 .87 2.85 2.13 2.14	.02 .02 .01 .01 .02	.18 .16 .35 .27 .28	2 2 2 2 2 2	5 5 5 5 5
808-38801 808-38803 908-38803 908-38803 908-38803	1 1 1 1	59 44 57 28 9	18 12 6 12 40	135 137 124 148 100	1.3 .9 .8 .2	48 40 39 29 12	9 7 7 6 5	675 309 310 550 560	3.02 2.07 2.04 2.07 3.10	22 7 5 4 16	3 4 3 4 2	ND ND ND ND ND	3 3 2 2	23 13 14 11 26	1 1 1 1	2 2 3 2 3	2 2 2 2 2 2	59 53 46 41	.20 .13 .14 .09 .15	.10 .07 .06 .15 .05	12 6 8 5 7	51 45 47 40 13	1.54 1.57 1.81 1.08 .68	185 129 138 112 88	.07 .10 .10 .10	4 3 5	2.09 2.64 2.63 2.81 2.24	.02 .01 .02 .02 .02	.27 .15 .20 .07 .17	2 2 2 2 2 2	5 5 5
DHB-39444 DHB-39445 DHB-39446 DHB-39447 DHB-39448	1 1 1 1	6 17 12 13 10	12 39 32 27 23	28 229 158 83 128	.1 .6 .2 .3 .1	6 22 14 10 10	2 8 5	373 2533 2098 429 4434	1.07 2.95 3.00 2.42 2.07	6 25 14 15 12	3 2 2 4 2	ND ND ND ND	2 2 2 2 2 2	9 38 19 15 27	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	19 38 39 31 28	.07 .31 .11 .11 .12	.02 .26 .09 .12 .07	4 9 7 6 8	8 28 15 9 11	.16 .34 .33 .22 .24	38 331 218 87 328	.03 .09 .12 .14 .06	5 5	.71 2.90 2.72 3.93 1.71	.03 .02 .03 .03 .02	.05 .15 .14 .08 .10	2 2 2 2 2	5 5 10 5 5
DKB-39449 DKB-39450 DKB-39451 DKB-39452 DKB-39453	1 1 1 1	11 B 10 12 10	51 17 22 19 14	132 67 77 120 74	.2 .1 .9 .6	10 6 9 9 9	6 4 5 5 5		2.37 1.40 1.89 2.30 1.61	14 7 19 20 27	2 4 2 2 2	ND D ND ND ND	2 2 2 2 2	23 18 21 16 14	1 1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	31 24 26 25 22	.20 .16 .16 .14 .13	.14 .05 .03 .15 .17	8 5 7 8 4	12 8 10 10 7	.23 .13 .37 .26 .17	201 145 97 111 110	.07 .05 .02 .07 .06	3 4 4	2.16 1.36 1.04 2.68 2.40	.03 .03 .02 .02 .02	.09 .07 .08 .09 .06	2 2 2 2 2 2	5 5 5 5 5
DHB-39454 DHB-39455 DHB-39456 DHB-39457 DHB-39458	2 1 1 1 1	25 24 12 16 20	14 17 14 16 26	246 189 110 190 131	1.5 .8 .8 2.0 .9	23 22 10 19 19	9 13 7 6 7	627 1058 1823 324 1027	3. 37 3.65 1.74 2.62 2.45	51 23 16 16 27	3 2 2 2 2	ND ND ND ND	2 2 3 2	11 19 26 14 60	2 2 3 2 1	4 2 2 2 4	2 2 2 2 2	36 50 25 24 25	.05 .11 .25 .13 .56	.19 .11 .10 .17 .11	8 8 6 9	16 52 10 10	.45 .74 .17 .13 .22	106 113 164 104 142	.02 .04 .05 .11 .03	6 3 5	1.84 2.03 1.20 4.60 1.31	.01 .03 .03 .02 .02	.08 .08 .07 .05 .09	2 2 2 2 2	5 5 5 5
DNB-39459 DHB-39460 DHB-39461 DHB-39462 DHB-39463	1 2 15 2 14	26 27 87 23 149	22 18 18 18	130 168 447 138 564	1.8 .4 1.5 .6 .9	19 19 48 8 55	9 18 24 4 16	1475 2403 776 663 471	2.84 3.98 4.71 .87 6.07	117 78 64 19 87	3 2 2 2 3	nd Nd Nd Nd	2 2 2 2 2 2	40 16 123 222 32	2 2 5 2 6	6 4 2 2 2	2 2 2 2 2 2	27 37 30 7 41	.30 .20 9.16 9.54 .48	. 15 .23 .08 .09 .12	10 5 4 2 8	27 11 9 3 11	.24 .35 .41 .26 .15	104 175 63 67 111	.03 .03 .01 .01	6	1.78 2.23 1.01 .31 .84	.02 .02 .01 .01 .01	.09 .09 .12 .03 .11	2 2 2 2 2 2	5 5 5 15
DMB-39464 DMB-39465 DMB-39466 DMB-39467 DMB-39468	1 1 1 1	25 25 19 24 28	17 9 8 11 9	133 80 177 119 65	1.0 .4 2.0 .8 .4	22 14 40 32 25	9 8 5 6	860 699 500 600 580	2.63 2.31 1.59 1.79 1.79	28 13 9 12 7	2 2 2 3	ND ND ND ND ND	2 2 2 2 2	29 25 17 16 15	2 1 1 1 1	2 2 3 2	2 2 2 2 2 2	28 36 22 21 29	. 24 . 18 . 13 . 16 . 20	.11 .07 .15 .13 .06	8 4 5 8 12	13 15 15 19 28	.28 .47 .50 .66 .82	158 138 109 93 75	.06 .04 .07 .05	4	2.47 1.10 2.10 1.67 1.28	.02 .03 .02 .01 .02	.06 .12 .06 .07 .15	2 2 2 2 2 2	5 20 5 5 5
DMB-39469 DMB-39470 STD A-1/AU 0.5	1 1 1	28 10 30	12 8 38	93 47 182	.5 .4 .3	25 14 36	6 3 13	1023 295 1029	1.83 1.15 2.82	6 5 11	2 4 2	ND ND ND	2 2 2	23 14 37	1 1 1	2 2 2	2 2 2	28 21 58	. 33 . 14 . 61	.08 .04 .10	10 5 8	26 14 73	.79 .43 .73	111 82 277	.04 .06 .08	2	1.25 .86 2.06	. 01 . 02 . 02	.12 .07 .21	2 2 2	5 5 540

......

PAGE # 12

•

 \sim

SAIPLE #	Mo ppe	Cu ppe	Pb ppe	Zn pp=	Ag ppa	Ni ppm	Co ppe	Xin ppa	Fe Z	As ppa	U ppe	Au pps	Th pps	Sr ppe	Cd ppa	Sb pp=	Bi ppn	V pps	Ca X	P I	La ppe	Cr ppe	Ng X	Ba pps	Ti I	B ppa	Al Z	Na Z	K I	¥ ppe	Au 1 ppb
048-39471 049-39472 049-39473 049-39473 049-39474 949-39475	1 1 1 1 1	22 11 15 11 13	7 10 8 8 15	78 85 158 45 54	.1 .9 .4 .2 .3	23 15 20 6 7	6 5 7 5 5	484 518 668 347 350	1.69 1.98 2.16 3.43 3.06	2 7 8 2 9	2 2 2 2 2 2	nd Nd Nd Nd Nd	2 2 2 2 2 2	19 15 21 9 10	1 1 2 1 1	2 2 2 2 2	2 2 2 2 2	41 32 39 95 74	.24 .13 .21 .17 .10	.04 .12 .13 .12 .08	9 4 3 5	45 17 20 12 15	1.69 .28 .52 .35 .37	116 93 172 53 50	.07 .10 .10 .10	556	2.12 4.13 2.97 1.68 2.06	.01 .02 .02 .03 .02	.09 .03 .07 .07	2 2 2 2 2 2	5 5 5 5
1949-39476 DH9-39477 DH9-39478 DH9-39479 DH9-39480	1 1 1 1	10 65 30 6 6	12 12 12 5 11	48 105 92 20 25	.5 .3 .4 .1	6 23 13 3 4	4 17 12 2 2	594 529 136	2.59 4.96 4.17 1.49 2.08	12 29 30 2 4	2 3 2 2 2	nd Nd Nd Nd Nd	2 2 2 2 2 2	7 16 15 11 17	1 1 1 1	2 2 2 2 2	2 2 2 2 2	64 142 105 48 50	.07 .22 .20 .08 .15	.06 .10 .13 .03 .07	4 10 7 3 3	12 49 27 8 9	.25 1.47 .70 .13 .14	59 266 152 34 61	.10 .21 .12 .05 .06	8 7 4	1.75 3.58 3.64 .87 1.53	.02 .02 .02 .03 .02	.07 .37 .14 .03 .03	2 2 2 2 2	5 5 5 5 5
DND-39481 DND-39482 DND-39483 DND-39484 DND-39484 DND-39485	1 1 1 1	5 11 9 9 10	11 13 11 13	18 39 48 38 45	.1 .2 .2 .2 .2	2 6 5 7	2 4 4 3 4	141 222 953 311 369	1.67 3.19 2.33 3.06 3.32	5 13 3 9 11	2 2 2 2 2 2	nd Nd Nd Nd	2 2 2 2 2	9 21 14 15 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	50 B1 60 70 65	.05 .16 .11 .11 .13	.05 .15 .07 .19 .19	3 3 3 4	7 12 10 11 12	.10 .27 .26 .22 .24	38 53 63 59 52	.07 .08 .04 .07 .06	6	.80 1.50 1.21 1.33 2.37	.03 .02 .02 .02 .02	.02 .07 .06 .05 .06	2 2 2 2 2 2	5 5 10 5 5
DMD-39486 DMD-39487 DMD-39488 DMD-39488 DMD-39489 DMD-39490	1 1 1 1 1	8 11 14 8 7	13 13 11 11 7	38 76 74 37 38	.3 .5 .3 .3	6 9 10 6 7	3 6 8 4 4	175 319 426 177 205	3, 36 3,72 3,90 2,79 3,57	7 11 25 7 8	2 2 4 2 2	nd Nd Nd Nd	2 2 2 2 2 2	16 17 17 10 17	i 1 1 1	2 2 2 2 2 2	2 2 2 2 2	58 73 86 58 88	.09 .21 .31 .13 .17	.09 .13 .20 .13 .07	4 5 7 4 4	14 21 17 14 15	.15 .41 .60 .23 .34	59 62 71 52 45	.08 .05 .04 .06 .05	7 7 6	4.18 3.53 2.09 2.41 1.58	.02 .02 .02 .02 .02	.02 .06 .07 .03 .05	2 2 2 2 2 2	5 5 5 5 5
DNB-39491 DNB-39492 DNB-39493 DNB-39494 DNB-39494 DND-39495	1 12 3 3	38 27 69 93 32	11 8 17 14 11	87 115 1003 370 341	.3 .4 .9 1.8 1.4	18 27 71 41 24	16 10 17 13 11	1005 422 504 341 314	4.87 4.25 6.47 4.94 3.69	305 33 58 16 16	5 2 6 2	nd Nd Nd Nd	3 2 3 2 2	51 13 34 66 22	1 4 3 2	2 2 3 2 2	2 2 2 2 2	140 103 94 106 95	.89 .22 .14 .20 .11	.14 .18 .12 .16 .12	13 6 9 7 5	48 34 34 39 45	1.27 .92 .66 .64 .64	132 92 111 185 168	.14 .13 .07 .09 .13	8 10 9	2.68 3.23 4.20 4.05 4.05	.03 .02 .02 .02	.28 .12 .07 .14 .07	2 2 2 2 2	5 10 5 5 5
048-39496 048-39497 048-39498 048-39499 048-39499 048-39500	2 2 5 3 2	24 43 66 33 24	9 10 12 13 13	227 378 283 259 227	1.0 .6 .7 .6	19 31 49 52 29	10 14 18 15 11	295 580 444 981 1455	3.72 4.39 4.82 3.95 3.49	15 26 33 22 24	4 8 2 3 2	nd Nd Nd Nd Nd	2 2 2 2 2 2	14 21 21 29 15	2 3 2 2 2	2 2 2 2 2 2	2 2 2 2 2	87 131 126 84 78	.10 .17 .20 .17 .11	.17 .06 .15 .13 .10	6 7 6 8	53 65 58 40	.65 1.17 1.32 1.10 .85	140 164 194 208 183	.13 .16 .10 .09 .07	7 8 7	3.87 4.11 3.95 3.05 2.57	.02 .03 .02 .02 .02	.07 .09 .16 .08 .09	2 2 2 2 2	5 5 5 5
8#8-39501 8#8-39502 8#8-39503 8#8-39504 8#8-39504	13 6 4 3 1	90 65 52 45 21	20 17 15 13 10	899 507 390 287 33	1.4 1.2 .8 1.6 1.1	121 63 47 30 7	26 17 15 14 5	448 625 368 765 217	6.38 5.01 4.34 4.18 1.88	44 41 40 33 10	2 2 2 2 2 2	nd Nd Nd Nd Nd	3 2 2 2 2 2	26 29 21 14 7	6 4 3 1	3 2 2 2 2 2	2 2 2 2 2	92 89 96 89 31	.13 .14 .14 .09 .04	.10 .10 .15 .14 .07	7 7 8 8	74 47 45 41 15	.86 .92 .91 .66 .13	120 250 198 206 34	.05 .06 .08 .12 .10	8 8	4.01 3.54 3.83 3.99 5.06	.01 .02 .02 .02 .03	.07 .14 .09 .08 .02	2 2 2 2 2 2	5 10 5 5
BMB-34506 DMB-34507 STD A-1/AU 0.5	4 1 1	78 23 30	14 11 37	344 120 182	1.3 1.1 .3	41 18 35	11 7 12	1496 275 1023	3.06 2.57 2.79	24 12 10	5 2 2	9 9 9 9	2 2 2	22 9 37	9 1 1	2 2 2	2 2 2	54 44 57	.25 .08 .60	.07 .10 .09	19 4 8	37 26 74	.64 .54 .72	136 102 279	.08 .06 .06	5	4.60 3.52 2.07	.03 .02 .02	.06 .05 .21	2 2 2	5 5 545

I.M. WATSON & ASSOCIATES FROJECT # NAKUSP FILE # 83-2468

PAGE # 13

.

 \sim

						I.M. WATSON & ASSOCIATES								PR	DJEC	т #	NAK	USP	F	ILE	# 8	3-24	468					PAGE # 15				
SAMPLE 1	No ppa	Cu ppa	Pb ppe	Zn ppm	Ag ppe	Ni ppm	Со ррв	Hn ppa	Fe Z	As ppa	U ppe	Au pps	Th ppa	Sr ppa	Cd pp=	Sb ppe	Bi ppa	V ppe	Ca Z	P I	La ppe	Cr ppe	Ng I	Ba ppn	Ti Z	B ppa	A] I	Na Z	K I	W ppe	Ael ppb	
																												-				
DMD-37555 DMD-37556 DMD-37557 DMD-37558 DMD-37559	2 2 1 1 1	47 97 29 61 34	76 73 26 25 21	315 693 207 173 285	1.7 1.0 1.5 .6 .4	45 24 23 18 16	15 19 8 9 8	3944 658		260 243 171 145 133	2 2 2 2 2	nd Nd Nd Nd	2 2 2 2 2	41 64 29 20 19	4 12 2 1 2	2 2 2 2 2	2 2 2 2 2	50 36 37 45 44	.66 .87 .23 .19 .16	.14 .12 .11 .05 .10	22 30 9 11 7	55 19 19 24 21	.99 .51 .47 .80 .58	118 197 120 108 180	.04 .05 .09 .10 .11	7 6 6	1.95 2.74 2.98 2.07 2.30	.01 .01 .02 .02 .02	.16 .19 .14 .29 .14	2 2 2 2 2 2	25 25 45 50 20	
949-39560 DH9-39561 DH9-39563 DH9-39563 DH9-39564	1 1 1 1 3	47 48 25 42 185	26 36 14 33 70	351 320 250 273 619	.5 1.1 .4 .6	24 22 26 20 24	11 9 13 10 11	653 1589 1265	4.20	132 441 70 75 110	2 2 2 2 2	nd Nd Nd Nd Nd	3 4 2 3 2	20 20 34 31 26	2 2 2 2 3	2 2 3 2	2 2 2 2 2	61 43 67 48 49	.19 .27 .35 .38 .33	.06 .18 .11 .09 .15	8 12 4 8 6	31 22 40 20 24	.92 .70 1.24 .75 .76	141 152 164 268 215	.15 .12 .22 .11 .11	7 6 6	3.29 3.73 2.95 2.91 2.68	.02 .02 .02 .02 .02	.21 .26 .19 .15 .15	2 2 2 2 2	15 175 5 35 60	
DMB-39565 DMB-39566 DMB-39568 DMB-39569	1 1 1 1	107 20 20 26 25	56 111 36 35 25	533 482 245 680 304	.5 .4 .6 1.0 1.8	32 13 22 31 28	10 4 7 7 9	895 816 2033 591 814	1.72 1.92 3.08	55 24 16 31 178	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nd ND ND ND ND	2 2 2 2 3	22 22 21 15 18	2 2 2 2 1	2 5 2 2 2	2 2 2 2 2	60 29 25 31 34	.18 .92 .33 .17 .18	.11 .05 .12 .04 .25	6 7 7 12 10	34 25 18 30 19	.85 .45 .42 1.01 .41	271 100 265 175 366	.11 .06 .06 .12 .07	18 5 6	2.99 1.19 1.32 2.47 3.24	.02 .02 .03 .01 .02	.11 .06 .07 .14 .07	2 2 2 2 2	20 30 5 5 5	
DHB-39570 DHB-39571 DHB-39572 DHB-39573 DHB-39574	2 1 1 2 3	68 35 30 29 31	44 26 24 63 46	271 195 253 238 173	1.7 .9 1.5 .7 1.3	39 27 31 22 26		489 653 1411 2110 2100	3, 52 3, 43 3, 06 5, 03 3, 64	223 118 133 611 189	3 2 2 2 2	nd ND ND ND	2 2 2 2 2 2	15 12 22 19 27	1 1 1 2 2	2 2 3 2 5	2 2 2 2 2	23 37 34 41 31	.18 .07 .24 .20 .38	.06 .07 .14 .20 .14	18 11 11 17 17	17 23 21 18 23	.41 .57 .51 .65 .49	125 157 177 116 123	.01 .04 .07 .06 .01	6 6 7	1.46 1.88 2.52 2.95 1.55	.01 .01 .02 .01 .02	.10 .09 .11 .16	2 2 2 2 2 2	15 10 205 5 20	
DHB-37576 DHB-37577 DHB-37578 DHB-37579 DHB-37581	1 1 2 2	13 11 22 36 41	26 33 27 39 35	205 271 209 353 133	.3 .5 .4 .4	17 21 24 134 26	9 10 6 21 10	1810 1395 1132	2.07 4.65	154 100 35 143 49	6 2 2 2 2	ND ND ND ND	2 2 2 2 3	24 27 12 28 20	1 1 2 2 1	2 3 2 4 2	2 2 2 2 2 2	43 47 24 89 57	.20 .27 .08 .29 .11	.04 .12 .05 .03 .05	8 8 7 10 16	18 20 16 246 31	.49 .41 .19 2.50 .90	133 183 123 150 91	.12 .12 .04 .20 .09	7 5 7	2.92 2.45 1.01 4.59 3.06	.02 .02 .03 .01 .01	.10 .11 .06 .09 .17	2 2 2 2 2 2 2	5 15 65 375 45	
STD A-1/AU 0.5	1	29	39	183	.3	36	13	1034	2.90	10	2	ND	2	37	1	2	2	58	. 60	.10	8	73	.73	281	.09	8	2.05	.02	.20	2	510	

 \sim

.

						I	.M.	WAT	SON	& A!	ssoc	IAT	ES	PR	DJEC	;T #	NAK	USP	F	TLE	# E	3-2	468				AGE #	ļ				
SAMPLE #									Fe I			Ан рра					Bi pp=										A1 1		-	N Ppa		
DMD-39582 DMD-39583 DMD-39584	1 1 1	16 17 6	105	393	.2 .4 .2	21	8	1296	2.98 2.97 1.58	- 14	6	ND	3	15	1	3	2 2 2	40	.10	.06	8	23	.49	163	. 09	- 4	2.88	.02	.09 .11 .07	2 2 2	5 5 5	

.....

16

.

.

 \smile

 \smile

SAMPLE #	No ppe	Cu ppa	Pb ppe	Zn ppa	Ag ppe	Ni ppa	Co pps	Hin Ppe	Fe I	As ppa	U ppa	Au pp=	Th ppe	Sr ppa	Cd ppe	Sb pp=	Bi ppm	V ppa	Ca I	P 1	La ppe	Cr ppa	Ng I	Ba ppa	Ti I	B ppa	A1 X	Na Z	K I	W ppa	Au I ppb
			•											~			_	-			-					_				ī	:
DKB-39643 DKB-39644 DKB-39645	1 1 1	18 19 20	21 18 24	99 168 111	.1 .1 .1	11 14 14	14	3236	4.20	70 143 59	2	nd Nd Nd	2 2 3	29 24 21	1 2 1	2 2 2	2 2 2	50 57 69	.40 .31 .32	.10 .07 .06	12 8 8	13 12 17	.64 .57 .83	115 158 161	.03 .07 .14	В	1.96 2.37 2.87	.02 .02 .02	.14 .11 .21	2 2 2	5 5 5
DNB-39647 DNB-39649 DNB-39650	1 2 1	19 32 24	21 23 17	159 371 111	.1 .4 .1	13 35 16	15	2533 1414 1140	4.18	293 67 32	2 2 2	ND ND ND	2 2 2	17 21 22	1 2 1	2 3 2	2 2 2	59 96 69	. 19 . 40 . 35	.16 .08 .12	5 9 5	10 62 21	.77 1.06 .84	158 157 168	.15 .09 .09	8	2.60 2.49 2.20	.02 .02 .02	.16 .25 .09	2 2 2	230 5 5
DMD-39651 DMD-39652	1 1	7	22 34	47 69	.1 .3	6 7	5 7	441 986	3.12 2.81	27 65	4 2	ND ND	2 2	11 7	1	32	2	40 36	.09 .06	.05	2 3	6 7	.23	61 34	.06	6 8	.92 1.16	.02	.06 .07	2	5 5
DKB-39654 DHB-39655 DHB-39656	1 1 1	8 19 14	21 21 23	106 95 157	.2 .3 .3	21 54 12		2208 1438		36 90 59	2 2 2	ND ND ND	2 2 2 2	12 14 24	1 1 1	2 2 2	2 2 2	61 60 48	.12 .15 .37	.07 .08 .07	5 6 4	36 41 12	.64 .96 .64	66 100 106	.09 .11 .10	10 9	2.19 2.40 2.43	.01 .02 .02	.07 .06 .12	2 2 2	5 5 10
DMD-39660 DMD-39662	1 1	42 36	104 18	624 126	1.5 .5	9 18	9 14		3.65 3.61	57 87	2 2	nd ND	2	60 20	6 2	2 2	2 2	57	1.25	.09 .09	10 6	8 22	.76 .86	92 132	.08 .14	6	1.89	.01 .02	.11 52.	2 2	65 10
DMB-39663 DMB-39664 STD A-1/AU 0.5	1 1 1	31 59 30	29 425 39	225 618 181	.4 7.1 .3	28 11 36	11 7 12	646 1113 1018	5.39	108 2263 9	4 2 2	nd Nd Nd	2 2 2	9 11 36	1 3 1	2 8 2	2 3 2	67 18 59	.13 .20 .60	.05 .15 .09	5 13 7	48 7 73	1.05 .17 .74	82 79 283	.14 .02 .08	9	2.36 .79 2.08	.02 .01 .02	. 27 . 09 . 20	2 2 2 2	5 270 530

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

PAGE # 17

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

 \sim

~_/

SAMPLE 0	No ppe	Cu pp∎	Pb ppe	In ppa	Ag ppe	Ni ppe	Co pp=	Nn ppa	Fe I	As ppe	U ppe	Au ppa	Th ppe	Sr ppe	Cd ppe	Sb pp=	Bi pp≉	V ppm	Ca Z	P I	La ppe	Cr ppa	Mg Z	Ba ppe	Ti Z	B ppe	A) I	Na Z	K Z	W ppe	Au1 ppb
DNB-39665 DNB-39666 DNB-39667 DNB-39670 DNB-39671	2 2 3 2 2	58 60 71 35 47	28 26 41 23 47	193 193 269 102 201	1.6 1.7 1.4 2.6 1.0	55 34 51 24 36	17 15 18 9 14	1787 2572 1099	4.85 4.79 4.88 3.95 4.07	54 331 158 28 73	2 2 2 2 2	ND ND ND ND	3 2 2 2 2 2	24 18 33 9 27	1 3 1 3	4 3 2 2 2	2 2 2 2 2	24 49 46 54 37	.33 .22 .53 .07 .4	.07 .08 .12 .10 .07	27 22 23 17 14	17 28 37 35 23	.56 .91 .95 .78 .68	125 207 212 94 164	.03 .07 .05 .08 .05	8 12 7	1.39 2.23 1.90 3.21 1.87	.01 .02 .02 .02 .01	.19 .22 .21 .15 .14	2 2 2 2 2 2	85 285 40 5 30
DNB-39673 DNB-39674 DNB-39675 DNB-39676 DNB-39677	1 1 2 2	22 20 22 23 24 72	21 16 13 15 10	149 141 86 82 81	.9 1.0 .5	54 48 27 28 29	11 9 7 7 8		3.40 3.11 2.51 2.42 2.58	23 15 2 6 4	6 2 2 2 5	nd Nd Nd Nd Nd	4 3 4 4	22 18 16 16 17	2 1 1 1 1	2 2 2 2 2	2 2 2 2 2	58 58 49 46 49	.27 .22 .18 .22 .20	.11 .11 .06 .10 .07	15 14 15 15 15	50 49 36 52 34	1.59 1.60 1.20 1.24 1.09	179 167 142 131 139	.07 .07 .12 .11 .11	5 5 5	2.14 2.34 2.46 2.53 2.43	.02 .02 .02 .02 .02	.27 .24 .32 .28 .33	2 2 2 2 2	5 5 5 5 5
DHB-3967B DHB-39679 DHB-39680 DHB-39681 DHB-39682	1 2 1 1 1	35 32 27 17 115	13 13 12 14 17	83 83 73 41 183	.6 .5 .6 1.6	30 28 25 10 67	8 8 3 12	310 367 348 161 912	2.55 2.47 2.31 1.82 2.89	6 5 10 6	2 4 2 4 2	ND ND ND ND ND	4 5 2 3	15 15 14 12 14	1 1 1 2	2 2 2 2 2	2 2 2 2 2	49 49 46 57 64	- 16 - 19 - 19 - 19 - 08 - 18	.06 .07 .06 .07 .08	15 15 13 4 16	38 37 34 21 51	1.12 1.17 1.16 .22 1.98	152 147 131 72 148	.12 .12 .10 .08 .10	6 5 7	2.52 2.61 2.32 .68 2.54	.02 .02 .02 .03 .02	.22 .12 .21 .22	2 2 2 2 2 2	5 5 5 5
DMB-39683 DMB-39684 DMB-39685 DMB-39686 DMB-39687	1 1 1 1 1	88 85 92 115 70	14 15 13 14 13	128 160 139 137 128	1.5 1.5 1.6 2.0 1.4	54 54 54 61 45	9 10 10 12 9	1821 700 458 396 534	2.37 2.55 2.87 3.30 2.67	2 3 5 7 6	5 2 4 2	nd Nd Nd Nd	3 3 3 3 3	22 17 16 15 21	1 1 1 1 1	4 2 2 6 3	2 2 2 2 2 2	22 24 22 22 22	. 30 . 21 . 16 . 15 . 20	.08 .08 .08 .07 .10	16 10 10 12 12	49 50	2.36 2.00 2.10 2.05 1.74	238 171 203 163 168	.12 .12 .11 .08 .11	5 6 6	2.66 2.86 2.91 2.80 2.65	.01 .02 .02 .01 .02	.44 .25 .32 .26 .26	2 2 2 2 2 2	5 15 5 5
DMD-39688 DMD-39691 DMD-39692 DMD-39693	1 1 1 2 1	63 22 18 18 19	20 9 13 13 14	150 52 49 48 50	.9 .7 .9 .7	54 11 12 11 12	10 4 3 3 3	631 288 246 264 277	3.35 2.32 2.37 2.31 2.47	22 13 11 11 13	8 2 2 2 2 2 2	ND ND ND ND	4 2 2 2 2	22 11 12 11 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	67 71 71 70 75	.24 .08 .08 .06 .07	.12 .08 .10 .10 .10	17 4 5 5	58 28 27 26 31	1.63 .34 .29 .27 .27	184 69 68 71 77	.07 .10 .10 .10 .11	7 6 5 5 6	2.34 1.09 .97 .91 1.01	.02 .03 .02 .03 .02	.27 .13 .13 .13 .14	2 2 2 2 2 2	5 5 5 5 5
DKB-39694 DKB-39695	2 1	22 15	13 11	65 41	.9 .8	13 10	2 2	466 257	3.11 1.77	20 15	6 7	ND ND	2 2	13 12	1 1	3 2	2 2	88 55	.07 .07	.15 .06	5 5	34 19	.36 .22	87 76	.10 .06	7 5	1.27	.02 .03	.15 .12	2 2	5 5

PAGE # 18

 \sim

						I.	м.	WAT	SON	& A9	ssoc	IAT	ES	PRI	DJEC	т #	NAK	USP	F	ILE	# E	83-2	468							P	AGE 4	¥ 20
sample I	No ppe	Cu ppe		Zn ppa	Ag ppa	Ni ppa	Co poe	Mn ppa	Fe I	As ppa	U ppe	Au ppa	Th ppa	Sr ppa	Cd ppa	Sb ppa	Bi ppa	V ppm	Ca Z	P I	La ppe	Cr ppa	Hg Z	Ba ppa	Ti Z	B ppa	Al Z	Na Z	K I	¥ ppe		
USD-33126	12	81	17	654	.8	66	17	455	6.17	9	10	ND	2	22	4	2	2	187	. 15	.06	7	58	1.06	86	.11	7	4.45	.01	.07	2	5	

						I	.M.	WAT	SON	& A	ssoc	TAT	ES	PR	OJEC	:т #	NAF	USP	F	FILE	# 8	3-2	468							P	AGE	# 21
SAIPLE 1	No ppe	Cu ppa	Ръ рря	Zn pps	Ag ppe	Ni ppe	Co pps	lin ppe	Fe	As ppe	U ppe	Au ppa	Th ppe	Sr pps	Cd ppm	Sb ppa	Bi ppa	V pps	Ca I	P I	La pp n	Cr ppa	Hg I	Ba ppa	Ti I	B ppa	Al Z	Ka Z	K Z	N ppa	Au\$ ppb	
201+37.5N 199+12 201±25N 199+12.	2 <i>4</i> E 1 1	50 25	28 24	174 193	.5	45 28	28 16	1252 964	4.97 3.95	517 298	3 2	ND Di	4	15 14	1 1	2 2	2 2	86 71	.13 .12	. 13 . 14	15 6	74 48	1.00 .57	91 137	.07 .11		2.52 4.15	.01 .03	. 13 . 09	2 2	125 20	
201+12.5N 199+1 201N 199+12.5E 200+87.5N 199+1 200+75N 199+12. 200+62.5N 199+1	1 1 1 1	27 30 29 64 41	18 23 9 25 21	106 225 160 683 312	.7 .7 .1 .9 1.3	19 32 15 21 21	12 14 12 15 12	1023	4.09 2.66 5.22	98 195 46 112 250	2 2 3 2	nd Nd Nd Nd	2 4 2 2 3	13 15 7 15 18	2 2 1 3 2	4 2 2 4 2	2 2 2 2 2 2	44 65 71 105 105	.14 .15 .07 .22 .22	.11 .11 .06 .12 .15	6 9 4 5 7	30 31 20 32 30	.34 .70 .49 1.10 .80	115 119 98 176 148	.05 .10 .06 .08 .12	5 4 5	1.50 3.52 1.54 3.12 3.36	.03 .01 .03 .02 .02	.06 .13 .06 .11 .22	2 2 2 2 2	5 25 5 5 5	
199+37.5N 199+1 199+25N 199+12,2 199+12.5N 199+12 201+37.5N 199+25 201+12.5N 199+2	55 2	60 62 78 13 19	23 24 25 16 23	684 609 696 81 115	1.1 1.8 4.1 .3	47 46 54 12 15	16 19 22 8 7	829 1046 761	4,58 4,03 5,24 2,34 3,33	53 45 36 110 87	8 2 4 2 3	ND ND ND ND	3 2 2 2 2	31 22 42 14 10	5 4 9 1 1	2 3 2 2 3	2 2 2 2 2	117 94 156 53 74	.33 .20 .49 .15 .08	.14 .10 .10 .04 .11	6 7 7 7 9	52 45 67 17 26	.98 .89 1.37 .23 .36	173 167 324 91 73	.11 .07 .10 .06 .06	6 6 4	3.81 2.47 4.10 1.12 1.41	.02 .03 .03 .03 .02	.12 .12 .13 .05 .07	2 2 2 2 2	15 20 35 615 25	
200+87.5N 199+2 200+62.5N 199+2 199+37.5N 199+2 199+12.5N 199+2 201+37.5N 199+3		40 63 127 57 44	27 27 26 22 22	362 443 822 642 209	.6 1.0 3.2 1.6 .5	33 31 64 42 40		762 1465 1168	4.97 5.69 4.68	252 191 51 42 345	2 6 2 2 2	ND ND ND ND	3 4 2 2 3	13 18 42 37 16	3 2 19 7 2	4 2 3 2 3	2 2 2 2 2 2	87 127 153 136 82	.12 .18 .61 .44 .19	.12 .10 .11 .11 .08	11 8 11 5 11	72 57	.95 1.13 1.43 1.14 1.01	215 170 421 217 104	.08 .16 .10 .08 .09	6 4 6	3.25 4.74 3.31 4.25 3.41	.01 .02 .04 .02 .01	.11 .26 .53 .13 .14	2 2 2 2 2	15 10 20 15 105	
201+25N 199+37. 201+12.5N 199+3 201N 199+37.5E 200+87.5N 199+3 200+75N 199+37.	1 2 3 3	17 28 33 35 48	30 31 28 24 21	201 257 270 170 324	.5 .8 .4 .8 .2	20 27 33 17 23	14 13 17 9 14	624 778	4.42 4.64 4.51	138 206 144 172 105	2 2 4 2 4	nd Nd Nd Nd Nd	4 3 4 3 2	25 15 15 13 15	2 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2	94 84 73 80 112	.30 .12 .14 .10 .15	.12 .12 .18 .13 .11	8 9 13 13 8	28 40 36 28 30	.76 .78 .83 .55 .81	140 130 110 105 130	.11 .10 .07 .07	7 5 6	2.63 3.80 3.69 2.64 2.34	.02 .02 .02 .01 .02	.14 .11 .13 .11 .09	2 2 2 2 2 2	20 10 5 5 5	
200+62.5N 199+3 199+37.5N 199+3 STD A-1/AU-0.5	1 2 1 2	62 74 30	25 21 37	425 662 190	1.4 1.7 .3	и И И И	15 19 12	683 634 1016	5.16	324 87 9	2 5 2	ND ND ND	5 2 3	21 28 37	2 4 1	2 2 2 2	2 2 2	139 132 58	.23 .23 .60	.14 .10 .09	7 7 8		1.17 1.17 .70	164 248 290	.13 .12 .07	5	4.71 4.01 2.07	.01 .02 .01	.16 .18 .20	2 2 2	20 15 510	

.

 \sim

I.M. WATSONS & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

PAGE # 22

•

-

SAMPLE (No ppe	Cu ppe	Ph ppe	Zn pp=	Ag ppe	Ni pps	Co ppe	Min ppe	Fe I	As ppa	U ppe	Au ppa	Th ppa	Sr ppe	Cd pps	Sb pp a	Bi ppa	V ppe	Ca X	P I	La ppe	Cr ppa	Ng X	Ba ppa	Ti I	B ppe	A] 7	Na Z	K I	W ppe	Au t ppb
199+25N 199+375E 2 199+12.5N 199+375E 4 201+37.5N 199+575E 1 201+12.5N 199+5 2 200+87.5N 199+5 3	29 94 72 71 40	12 35 19 19 21	272 1002 157 256 287	1.0 1.5 .7 .9	19 68 21 23 28	8 29 12 15 17		5.43 4.11 4.65	18 42 193 223 182	4 8 4 3 4	nd Nd Nd Nd Nd	2 2 3 3	22 37 26 23 15	3 16 1 2 2	2 4 2 2 3	2 2 2 2 2	89 144 76 76 91	.36 .40 .26 .26 .22	.06 .19 .08 .15 .21	9 9 8 10	25 57 24 29 57	.84 1.25 .65 .64 1.01	120 333 103 137 109	.07 .06 .10 .09 .08	6 6	2.02 3.70 2.45 4.01 3.57	.03 .02 .03 .02 .01	.26 .15 .14 .09 .15	2 2 2 2 2 2	5 15 25 20 10
200+62.5N 199+5 2 199+37.5N 199+5 2 199+12.5N 199+5 3 201+37.5N 199+81.5č 3 201+37.5N 199+81.5č 2 201+25N 199+87. 2	31 36 77 31 30	21 20 22 18 19	325 633 324 175 192	1.2 .6 5.5 .3 .4	28 30 40 23 31		1055 1081 937 907 1896	4.85 4.10 5.45	139 45 16 68	10 2 3 2	ND ND ND ND ND	3 2 2 4 4	18 25 27 18 23	2 4 8 1	3 2 3 3 3	2 2 2 2 2	113 145 117 91 76	.15 .27 .28 .22 .22	.14 .08 .10 .10 .08	12 7 7 8 10	44 47 71 29 39	.82 .95 .74 .89 .85	198 160 275 115 169	.11 .13 .07 .14 .12	7 6 7	2.97 2.63 1.97 3.18 3.14	.02 .03 .03 .02 .02	.12 .15 .21 .16 .10	2 2 2 2 2 2	10 5 30 15
201+12.5N 199+8 2 201N 199+87.5E 1 200+87.5N 199+8 2 200+75N 199+87. 3 200+62.5N 199+87.5E 1	38 22 31 46 27	19 14 19 29 14	234 159 194 368 201	.7 .7 .8 1.5 .5	32 16 19 27 22			4.05 3.94 4.87	95 158 167 544 199	2 2 2 2 3	nd Nd Nd Nd	4 3 2 3 3	39 18 19 21 14	1 1 1 2 1	2 2 5 2	2 2 2 2 2	97 63 83 96 69	.25 .22 .23 .27 .17	.09 .25 .09 .06 .09	10 6 9 12 9	40 22 28 34 19	.94 .43 .67 .93 .74	159 143 124 117 115	.11 .13 .10 .09 .10	6 7	3.44 4.40 2.15 2.78 2.74	.02 .03 .03 .02 .02	.12 .07 .11 .13 .25	2 2 2 2 2 2	15 10 5 70 10
201+37,5H 200E 4 201+12,5H 200E 4 200+87,5H 200E 2 200+62,5H 200E 2 201+37,5H 200+12 经 4	65 40 42 52 38	18 20 18 25 19	165 174 259 371 205	.4 .5 1.0 .6 .4	43 31 28 29 30	18 20 13 13 15			81 124 267 138 55	7 3 5 8 2	ND ND ND ND	4 3 4 4	29 31 19 19 21	1 2 2 2 1	2 2 2 2 2	2 2 2 2 2 2	98 81 87 102 96	.36 .33 .22 .29 .21	.12 .25 .17 .14 .11	11 12 9 15 8	32 32	1.29 .71 .79 1.15 .92	149 143 133 137 129	.14 .08 .11 .12 .15	6 7 7	3.34 2.96 4.22 3.58 3.67	.02 .02 .02 .02 .02	.20 .12 .09 .35 .13	2 2 2 2 2 2 2 2	20 55 15 15 35
201+25H 200+12. 2 201+12.5H 200+1 2 201H 200+12.5E 4 200+87.5H 200+1 4 200+75H 200+12. 1	20 66 48 40 30	10 18 20 15 18	88 207 260 246 309	.4 .7 .5 .6	17 41 23 29 29	7 18 19 15 11	397 1458 1365 726 507	5.10 6.04 5.64	62 197 181 245 296	3 5 3 2	ND ND ND ND	2 4 3 5 3	13 21 17 15 15	1 2 2 1 1	2 2 2 2 2 2	2 2 2 2 2	54 89 79 56	.11 .25 .20 .15 .11	.08 .12 .21 .15 .04	6 12 10 11 17	17 36 27 36 45	.39 .94 .96 1.02 1.20	89 150 148 124 91	.10 .12 .11 .10 .07	7 8 7	1.81 3.70 3.66 3.09 2.12	.04 .02 .02 .01 .01	.08 .16 .16 .16 .09	2 2 2 2 2 2	10 55 60 15 10
200+62.5N 200+125€ i 201+12.5N 201+87.5E i 201N 201+87.5E 2 200+87.5N 201+87.5E 2 200+87.5N 201+87.5E i	28 26 51 38 22	22 21 26 16 13	349 125 184 213 84	1.2 2.1 2.8 1.6 3.2	25 27 38 29 17	11 12 14 11 7	966 778 953 1213 1030	3.25 4.01	139 62 105 79 39	3 2 2 2 2	nd Kd Nd Nd	4 3 5 4 2	21 17 15 13 15	2 1 1 2 1	2 2 2 2 2 2	2 2 2 2 2 2	93 54 67 65 35	.27 .25 .17 .23 .17	.09 .08 .09 .08 .05	15 11 19 21 9	29 35 40 40 18	.92 .80 1.01 1.05 .47	166 126 104 101 82	.12 .11 .09 .09 .06	4 5 5	3.46 1.99 2.70 2.32 1.23	.02 .02 .01 .02 .03	.24 .22 .36 .32 .12	2 2 2 2 2 2	15 20 30 10 5
200+67.5N 202E 2 201+12.5N 202+1152 1 201N 202+12.5E 2 5TD A-1/AU-0.5 1	51 29 36 30	24 17 14 38	256 177 188 181	2.6 2.6 3.3 .3	35 30 29 36			3.43 3.77	107 56 57 9	2 2 3 2	nd Nd Nd Nd	2 3 4 2	34 23 25 36	4 1 1 1	2 2 3 2	2 2 2 2 2	67 60 66 60	.74 .30 .46 .65	.08 .08 .11 .09	30 12 14 8	39 35 30 70	.97 .87 .97 .71	139 177 168 246	.07 .12 .13 .07	6 6	2.16 2.86 2.98 1.87	.03 .02 .01 .01	.29 .14 .35 .21	2 2 2 2	15 10 15 520

 \sim

 \smile

I.M. WATSONS & ASSOCIATES PROJECT # NAKUSP FILE # 83-2468

SAIPLE 8 Ho pps	Cu ppa	Pb ppm	In ppm	Ag ppe	Ni ppa	Co ppe	fin ppa	Fe	As ppe	U ppm	Au ppa	Th ppe	Sr ppe	Cd ppa	Sb ppe	Bi ppe	V ppe	Ca I	P Z	La ppa	Cr ppe	rig I	Ba ppe	Ti I	B ppa	Al I	Na Z	K Z	¥ ppe	Au‡ ppb
200+87.5N 202+12.5C 2 200+75N 202+12. 2 200+62.5N 202+12. 4 200+62.5N 202+12. 3 200+50N 202+12. 3 200+37.5N 202+1	68 71	19 27 27 27 27	137 250 422 516 822	2.7 1.1 .9 4.4 2.7	28 45 39 44 60	10 15 11 16 20	690 625 904	2.94 4.28 5.05 4.64 4.90	58 84 91 72 59	2 7 2 6 5	nd ND ND ND	2 5 3 3 3	22 26 16 19 33	2 2 3 8	2 4 2 4 2	2 2 2 2 2	56 89 129 115 135	.30 .25 .12 .14 .42	.10 .11 .08 .10 .08	11 16 10 11 14	31 42 61 53 67	.83 1.09 1.09 1.01 1.33	115 124 146 166 228	.08 .10 .08 .09 .09	5 6 6	2,20 3,68 2,88 3,63 3,62	.02 .01 .01 .01 .02	.28 .39 .22 .24 .30	2 2 2 2 2 2	5 35 15 25 15
201+12.5N 202+255 200+87.5N 202+2 200+62.5N 202+2 200+62.5N 202+2 200+37.5N 202+2 201+12.5N 202+3751	69	17 17 18 28 18	133 141 169 488 128	1.2 3.0 .7 1.7 .9	33 24 26 40 30	10 9 11 15 10	1529 768 954	3.04 2.80 3.39 4.41 3.23	40 38 55 30	4 2 5 2	nd Nd Nd Nd Nd	4 3 2 3	13 15 21 21 19	1 2 4 1	2 2 3 4	2 2 2 2 2 2	53 47 78 118 60	.12 .22 .28 .13 .20	.04 .09 .08 .10 .03	11 11 13 9 12	32 26 37 52 35	.92 .65 1.03 .99 1.07	107 115 103 171 158	.12 .08 .07 .12	4 4 7	2.70 2.83 2.20 3.02 2.53	.02 .01 .03 .01 .02	.20 .15 .29 .26 .16	2 2 2 2 2 2	5 5 5 5 5
2011 202+37.5E 200+87.5N 202+3 200+75N 202+37. 200+62.5N 202+3 200+50N 202+37.	26 22 31 50 63	17 17 17 21 38	128 134 156 168 678	_4 14.9 1.7 1.7 3.6	27 21 27 30 48	10 12	1363 685	3.24 3.53	36 26 40 65 142	2 2 2 2 6	ND ND ND ND	2 2 2 2 2 2 2	18 29 20 20 34	1 2 1 2 9	2 2 3 2	2 2 2 2 2	48 41 61 80 100	. 13 . 35 . 26 . 30 . 58	.07 .08 .10 .10 .09	10 10 11 29 16	27 22 32 41 47	.73 .52 .77 1.17 .98	158 312 103 127 214	.09 .09 .08 .11 .07	4 4 4	1.98 1.42 2.65 2.51 2.39	.01 .02 .02 .02 .02	.12 .21 .19 .35 .32	2 2 2 2 2 2	5 30 5 20 875
	5 54 43 47 1 124 5 43	32 13 13 114 46	403 191 194 865 151	1.7 2.8 1.3 4.2 1.2	36 27 24 59 17	7	1854 614 2308	3.36	87 24 49 140 26	4 2 4 5	nd Nd Nd Nd	2 2 7 3 2	20 33 32 26 11	4 3 6 1	4 2 4 3 3	2 2 2 2 2	96 37 85 150 109	.20 .36 .65 .35 .07	.11 .11 .17 .10 .15	12 9 26 14 7	42 15 48 90 47	.89 .39 1.11 1.54 .65	134 208 180 321 166	.07 .05 .14 .07 .07	4 4 6	3.12 1.32 2.03 3.55 1.68	. 02 . 03 . 04 . 01 . 01	.29 .15 .38 .46 .27	2 2 2 2 2	5 5 5 10
199+75N 202+87. 199+42.5N 202+8 200+37.5N 203E	5 67 2 49 5 59 2 37 1 77	36 38 48 22 29	370 450 805 219 343	5.0 1.6 1.5 .9 2.5	27 27 36 28 34	14 11	845 1392 889 800 1340	3.91 3.36	24 14 21 32 53	2 4 2 7	ND ND ND ND ND ND ND	2 2 2 2 2 2	26 28 38 35 16	4 5 2 2	4 2 2 2 2	2 2 2 2 2	130 124 142 70 102	. 24 . 18 . 27 . 44 . 15	.12 .08 .13 .07 .18	7 7 7 10 12	51 45 56 32 44	1.00 .90 1.05 .84 .84	233 251 220 134 119	.09 .09 .07 .07 .05	5 5 6	3.42 2.89 3.96 2.07 2.49	.02 .03 .03 .01 .03	.29 .22 .18 .23 .23	2 2 2 2 2 2	5 5 5 5 5
199+62.5N 203E 200+37.5N 203+125 200+25N 203+12.	3 64 5 49 1 32 1 35 2 29	19 21	297 473 197 129 103	2.1 1.8 .9 1.6 1.4	27 24 25 26 22		1275	3.20 3.12	20 13 35 55	2 2 3 2	10 10 10 10 10	2 2 3 3	22 34 53 21 12	3 5 1 1	2 2 3 3	2 2 2 2 2	112 128 69 59 54	.22 .28 .72 .23 .11	.14 .07 .10 .05 .06	6 5 9 11 13	43 45 32 29 28	.83 .87 .81 .82 .65	215 278 200 118 52	.08 .09 .08 .08 .08	4 5 4	2.55 3.15 1.99 1.80 1.73	.03 .04 .01 .01 .02	.27 .24 .20 .32 .18	2 2 2 2 2 2	5 5 5 5 5
200N 203+12.5E 199+87.5N 203+1 199+75N 203+12. 199+62.5N 203+1 5TD A-1/AU-0.5	2 91 2 42 4 52 3 45 1 29	27 27	344 202 261 333 180	1.5 1.2 2.1 3.0 .3	38 20 33 19 36	7 9 9	622 810	3.94 3.41 3.38	B1 42 44 9 10	6 4 2 3	ND N	4 2 3 2 2	27 9 17 26 36	3 1 2 4 1	2 3 2 2 2	2 2 2 2 2 2	147 124 80 116 58	. 31 . 06 . 18 . 17 . 61	.09 .09 .15 .13 .09	24 7 11 5 8	69 54 39 42 73	1.50 .88 .74 .77 .71	246 228 116 237 278	.13 .09 .06 .07 .08	4	3.47 2.04 2.93 3.53 1.97	.03 .02 .01 .02 .01	.44 .31 .25 .22 .20	2 2 2 2 2 2	5 5 5 490

.

PAGE # 23

•

 \smile

						I.1	1. 4	ATS	ONS	& A9	ssoc	IAT	ES	PR	JJEC	T #	NAK	USP	F	ILE	# E	3-2	468							Pi	AGE #	
sample 1	No ppe	Cu ppe	Pb ppa	Zn . ppm	Ag ppa	Ni ppe	Co ppa	lin ppa	Fe L	As ppe	U ppe	Au ppe	Th ppa	Sr ppe	Cd ppe	Sb ppa	Bi ppa	V ppa	Ca I	P Z	La ppe	Cr ppa	Hg I	Ba ppa	ti 2	B ppm	Al I	Na Z	K Z	N Ppa	Au I ppb	
RCS-32314 RCS-32565 RCS-32566 RCS-32567 RCS-32568	3 1 1 1 2	101 7 8 15 17	30 32 28 40 23	282 89 82 256 118	.7 .2 .3 .7 .4	68 7 8 26 18	23 5 5 9 9	686 954 914 1401 866	5.34 2.54 2.55 3.30 3.30	60 105 152 119 86	11 2 2 3 2	nd Nd Nd Nd	2 2 2 2 2	63 31 25 43 21	3 1 1 1	2 2 5 4	2 2 2 2 2	167 17 17 30 20	.67 .27 .18 .51 .26	.09 .06 .05 .09 .08	9 18 19 15	113 4 2 24 11	1.82 .30 .29 .59 .46	155 62 56 92 55	.21 .02 .02 .04 .01	6 6 7	3.32 .96 .88 1.58 1.04	.05 .02 .01 .02 .01	.62 .18 .18 .20 .12	2 2 2 2 2 2	5 260 10 40 5	
RCS-32570 RCS-32571	1 1	19 21	23 11	122 99	.4 .4	19 15	8 6	786 564	3.12 3.01	107 23	2 4	ND ND	2 2	22 57	1 1	4 2	2 2	20 74	.26 .79	.08	14 15	14 26	.46 .68	66 102	. 02 . 06		1.00 1.68	.01 .03	.12 .10	2 2	20 5	
805-38541 805-38561 805-38570 805-38588	6 2 1 3	52 36 11 17	16 19 9 7	207 115 42 61	.8 .9 .5 .5	8 20 22	13 8 4 9	758 658 187 877	4.38 2.83 3.12 3.75	70 6 44 49	2 4 2 6	nd Nd Nd Nd	2 2 2 2	31 35 16 60	2 1 1 1	2 2 2 2	2 2 2 2	34 43 91 102	.48 .56 .12 .93	.09 .07 .06 .11	10 13 6 12	13 34 8 15	.48 1.10 .30 .61	60 137 82 67	.01 .07 .02 .08	5	1,19 1,65 1,50 1,76	.01 .02 .02 .04	.10 .23 .06 .14	2 2 2 2	10 5 20 5	
805-38599 805-38634 805-3871 <u>9</u> 805-38783 805-38799	1 4 1 1	17 39 18 35 72	6 28 14 10 10	49 188 81 160 120	.1 1.2 .3 1.1 .5	9 27 11 34 40	9 8 7 7 7	654 820 665 403 359	2.56 2.77 2.69 2.39 2.24	20 7 2 7 5	4 7 11 6 7	nd Nd Nd Nd Nd	2 2 2 3	30 63 46 15 16	1 5 1 1 1	2 2 3 3	2 2 2 2 2	60 76 77 55 61	.60 1.13 .75 .15 .20	.15 .08 .09 .17 .06	11 30 8 7 10	8 38 21 46 54	.54 .89 .77 1.35 2.23	77 82 51 128 159	.08 .07 .08 .12 .12	6 7 5	1.01 2.03 1.43 3.28 2.83	.05 .02 .03 .03 .02	.15 .10 .12 .08 .30	2 2 2 2 2 2	5 5 5 5 5	
DMS-39689 DMS-39696	1 1	90 103	20 19	172 156	1.8 1.7	59 48		2568 3224	2.76 2.45	4 3	23	nd Nd	2 2	26 28	2 2	2 2	2 2	57 52	. 49 . 56	.11 .14	15 13	46 40	2.45 2.43	192 217	.11 .11		2.37 2.31	.01 .01	. 40 . 38	2 2	5 5	
JAS-30153 JAS-30154 JAS-30155 JAS-30156 JAS-30156	5 4 3 5 4	37 37 55 39 37	12 11 19 20 20	247 211 233 357 282	.5 .4 .4 .5 .7	38 29 37 37 23	8 9 12 12 9	671 665 943 965 659	3.21 3.22 3.87 5.15 3.89	7 46 37 56 66	5 2 4 4 4	nd ND ND ND	2 2 2 2 2 2	56 67 71 50 45	4 3 4 5	2 2 2 2 2	2 2 2 2 2	69 89 86 111 98	.78 .01 1.13 .64 .65	.08 .09 .12 .11 .11	11 10 13 17 11	35 31 30 23	1.01 .85 1.11 1.11 .92	113 79 153 73 56	.04 .06 .06 .08 .06	7 9 8	1.81 1.99 1.93 2.06 1.70	.04 .04 .03 .04	.18 .10 .24 .16 .10	2 2 2 2 2 2	5 5 5 5	
JAS-30158 JAS-30230 JAS-30231 JAS-30232 JAS-30233	3 8 7 4 4	41 57 53 21 29	14 36 26 22 19	131 506 297 176 153	.5 .4 .2 .3	32 42 36 21 28	10 15 13 7 9	734 2504 769 408 804	3. 19 4. 37 4. 61 2. 89 3. 33	14 487 391 156 100	2 5 3 3	ND ND ND ND	2 2 2 2 2 2	57 28 35 28 27	1 12 3 2 2	2 2 4 2 2	2 2 2 2 2 2	41 30 24 23 22	.62 .24 .19 .23 .24	.10 .10 .08 .09 .06	13 8 12 11 17	22 19 7 6 13	1.06 .33 .22 .29 .57	112 85 74 67 86	.05 .01 .01 .01 .01	6 8 6	1.45 1.07 .84 1.11 1.12	.02 .01 .01 .01 .01	. 18 . 08 . 09 . 08 . 11	2 2 2 2 2 2	5 5 5 5	
JAS-30234 STD A-1/AU-0.5	5 1	20 22	25 38	225 182	.4 .3	22 30	11 12	701 1001	3.83 2.84	263 10	5 2	ND ND	2 2	29 22	2 1	3 2	2 2	23 58	. 23 . 60	.07 .10	15 8	י דז	.44 .74	73 280	.01 .08		1.04 2.07	.01 .02	. 07 . 20	2 2	5 510	

`

24

•

						I.	M. 4	IATS	ONS	& A	ssoc	IAT	ES	PRI	DJEC	2T #	NAK	USP	F	FILE	₩ E	33-2	468							P	AGE	Ħ
SAMPLE #	No ppe	Cu ppa	РЬ рра	Zn ppe	Ag ppa	Ni ppe	Co ppe	fin ppe	fe I	As ppe	U ppe	Ац ррв	Th ppe	Sr ppa	Cd ppe	Sb ppa	Bi ppm	V ppm	Ca Z	P Z	La ppm	Cr ppa	Ng L	Ba ppe	Ti Z	8 ppm	A) I	Na Z	K Z	W ppa	Aut ppb	
JAS-30235	3	31	18	171	.6	27	9	701	3.55	133	2	ND	2	27	2	5	2	28	.27	. 08	14	14	. 86	93	.02	6	1.39	. 01	.12	2	5	
JAS-30236	2	28	18	140	.5	26	8	532	3.06	80	2	ND	2	24	1	2	2	24	. 28	. 09	15	13	.85	93	. 02		1.34	.01	.14	2	5	
JAS-30237	2	27	19	130	.5	26	8	669	3.08	70	2	ND	2	31	1	3	2	27	. 36	.09	14	15	. 73	105	.03	6	1.57	.02	.17	2	5	
JAS-30238	2	26	19	125	.5	26	8	695	3.18	67	2	ND	2	27	1	2	2	20	.32	.08	14	20	.93	100	.03	6		.02	.17	Ž	5	
											-		-				_					_										
809-38571	1	11		43	••	4	2	236	3.14	39	2	ND	4	14	1	4	2	80	.13	.07	5		. 37	78	.02		1.45	.02	.06	2	5	
809-38 572	1	13	15	46	- 6	7	5	239	3.19	43	2	ND	2	17	1	2	2	81	.14	.07	5	B	. 35	100	.02	6		.02	. 06	2	5	
BDB-38 573	1	12	8	55	.6	8	7	441	4.47	46	2	ND	2	14	1	2	2	99	.14	.10	6	8	. 47	87	.02	8	1.98	.02	.07	2	5	
808-38574	1	14	10	61	.5	9	8	601	4.89	51	3	ND	2	16	1	2	2	113	. 17	.11	8	9	.56	73	.02	8	2.22	. 02	.07	2	5	
B0 0 -38575	1	11	10	48	.5	7	6	638	3.68	39	3	ND	2	13	1	2	2	86	. 11	.07	6	7	. 35	80	.02	7	1.75	.03	.05	2	5	
BD9-38576	1	11	10	50	- 4	7	6	417	3.90	48	5	ND	2	13	1	2	2	87	.14	.09	5	6	. 43	71	.02	7	1.76	. 02	.06	2	5	
BDB-38577	2	11	8	40	.4	- 4	5	175	2.34	59	2	ND	2	10	1	2	2	22	.09	.06	4	1	. 05	70	.01	7	.59	.02	.06	2	5	
808-38578	1	15	7	73	.5	9	9	797	5. 37	65	2	ND	2	13	1	2	2	109	.13	.10	6	9	. 55	91	.01	8	2.70	.02	.06	2	5	
BDB-38579	i	14	9	73	.5	8	8	898	5.02	46	2	ND	2	13	1	2	z	102	.12	.09	6	12	. 49	96	. 02	8	2.59	. 02	.06	2	5	
808-38580	2	23	12	73	.3	9	11	322	5.89	127	2	ND	2	11	1	2	2	63	.08	.14	8	3	. 16	63	. 01		1.69	. 01	.09	2	10	
808-38581	1	12	7	100	.5	12	8	686	4.10	21	2	ND	2	14	1	2	2	86	. 19	. 23	7	14	.43	105	.07	7	3.23	.02	. 06	2	5	
BDB-38582	1	9	10	36	.5	5	3	183	3.10	13	2	ND	2	15	1	2	2	88	.24	.16	5	8	.17	62	.09	5	1.29	.04	.06	2	15	
BDB-38583	1	12	10	68	.5	9	5	339	4.36	22	4	KD	2	15	1	2	2	103	.24	.23	4	12	. 38	65	.11	7	2.47	.03	.07	2	5	
BD D -38584	1	10	5	17	.2	2	1	64	.84	8	2	ND	2	8	1	2	2	21	.07	.04	2	1	.05	31	.04	4	. 56	.05	.03	2	5	
808-38585	2	13	6	62	.4	10	7	357	3.79	16	5	ND	2	19	1	3	2	86	.25	. 19	7	n	.47	72	.12	7	3.04	.04	.07	2	5	
BDB-38586	1	9	11	53	.3	В	5	678	2.91	15	2	ND	2	12	ī	2	2	61	.15	.33	4	11	.26	80	.10	, b	2.92	.03	.05	ž	5	
BD8-38587	2	14	10	121	.5	12	9	409	4.04	13	2	ND	2	28	1	2	2	88	.35	.17	9	14	.59	105	.08	7	2.79	.03	.09	5	š	
STD A-1/AU-0.5	1	30	38	181	.3	36	12	999	2.84	10	2	ND	2	35	i	2	2	58	. 60	.10	8	71	,73	283	.08	8	2.07	.02	.20	2	500	
														-	-	-	-				-	• •				-				-		

25

•

						I.I	ч. w	IATS	ONS	& A9	soc	IATE	ES	PR	DJEC	T #	NAK	USP	F	ILE	# 8	13-2	468							PI	AGE	# 26
sample # Rack	Ko ppe	Cu ppe	РЪ рра	Zn ppe	Ag pps	Ni ppe	Co pps	lin ppa	Fe Z	As ppe	U ppa	Au ppa	Th ppn	Sr ppa	Cd ppe	Sla ppa	Bi ppa	V ppa	Ca I	P I	La ppa	Cr ppe	Ng Z	Ba ppa	Ti Z	B ppe	A1 Z	Na Z	K Z	W ppe	Au I ppb	
USR-90801 USR-92402 USR-92403 USR-92404 USR-92404 USR-92405	13 5 1 28	64 89 41 86 56	13 9 5 7	320 62 85 51 101	2.4 .6 .5 .9 .4	57 23 27 39 27	15 10 6 9 9	458 429 275	3.13 3.66 2.98 2.24 3.63	77 8 12 2 2	6 4 2 2	nd Nd Nd Nd Nd	4 4 2 2 3	45 19 17 8 103	4 1 1 2	9 3 2 2 2	2 21 2 2 2	276 71 74 123 123	. 32 . 20 . 31 . 21 . 96	.08 .05 .11 .10 .12	21 8 5 3	117 39 58 106 37	1.12 .88 1.13 .85 1.54	122 188 302 247 76	.01 .15 .17 .14 .10	3 4	2.48 1.74 1.73 1.31 2.97	.01 .07 .08 .06 .21	.20 .84 1.04 .74 .29	2 2 2 2 2 2	5 405 5 5 5	
USR-92407 USR-92408 USR-92409 USR-92503 USR-92505	4 9 24 2 1	17 78 88 90 78	4 3 3 9	30 32 269 43 60	.2 .2 .3 .2 .3	13 17 19 25 35	5 6 8 17 19	249 138 303 294 447	1.78 8.84 5.23 3.59 4.66	2 8 4 9 201	2 2 6 2 2	ND ND ND ND	4 2 2 2 2 2	13 41 20 38 75	1 11 1 1	3 2 2 2 2 2	2 2 2 2 2 2	22 87 164 117 112	.16 .44 .37 .92 .96	.03 .11 .08 .15 .15	10 4 6 3	25 25 43 68 69	.51 .43 1.35 1.02 1.11	95 139 149 189 141	.07 .12 .15 .16 .13	4	.99 1.17 1.81 1.46 2.20	.04 .07 .06 .07 .16	.40 .40 .79 .72 .81	2 2 2 2 2 2	5 5 5 5 5	
USR-100201 USR-100202 USR-100203 USR-100204	1 2 2 2	6 2 4 4	4 8 8 20	56 33 27 56	.2 .1 .2 .1	2 2 2 2 2	4 2 3 1	992 642 431 367	1.81 1.19 1.63 1.08	3 29 196 239	2 2 3 2	ND ND ND ND	5 2 2 2	20 6 7 2	1 1 1	2 2 2 4	2 2 2 2	7 4 6 3	.43 .07 .06 .01	.11 .03 .01	28 8 7 2	3 8 10 12	.04 .02 .05 .01	81 49 64 20	.01 .01 .01 .01	7 4 5 6	.68 .30 .45 .12	.03 .01 .02 .01	.35 .18 .20 .05	2 2 2 2	5 5 90 35	
USR-100205 USR-100206 USR-100207 USR-100208 USR-100209	1 3 2 2 1	11 2 3 2 3	20 6 8 35 47	50 3 13 17 157	.2 .1 .2 .1 .2	5 3 3 4 4	5 1 3	785 217 591 304 663	2.31 .81 1.24 .87 2.24	641 72 306 24 6	2 2 3 2	ND ND ND ND	3 2 2 2 4	15 3 5 4 9	1 1 1 1	3 2 3 4 2	2 2 2 2 2 2	11 2 3 2 5	.22 .01 .04 .02 .09	.06 .01 .01 .01 .06	14 2 3 2 24	5 11 12 10 4	.22 .01 .01 .01 .03	67 13 23 11 66	.01 .01 .01 .01 .01	6 4 11 6 5	.85 .07 .16 .07 .69	.04 .01 .01 .01 .01	.26 .03 .08 .02 .22	2 2 2 2 2 2 2	33 35 255 50 5	

 $\overline{}$

·.___/

.

ACHE ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: 253-3158 TELEX:04-33124

ICP GEOCHEMICAL ANALYSIS

.

 \sim

A .500 GRAM SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL TO HNOJ TO H20 AT 90 DEG.C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 HLS WITH WATER. THIS LEACH IS PARTIAL FOR: Ca,F,Mg,AL,Ti,La,Na,K,W,Ba,Si,Sr,Cr AND B. AL DETECTION 3 pps. AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. SAMPLE TYPE - SDIL_SILT, PAN COME + ROCK.

DATE RECEIVED 351 28 1983 DATE REPORTS MAILED ______ ASSAYER______ DEAN TOYE, CERTIFIED B.C. ASSAYER

						I	.м.	WAT	SON	8 A9	ssoc	IAT	ES	PR	DJEC	T #	NAE	USF	F	ILE	4 E	83-2	358							F	AGE	1 1 <u>1</u>
SAMPLE #	Мо рра	Сц рра	Pb ppe	în pp∎	Ag pp∎	Nı ppe	Co ppa	Min pps	Fæ 1	As ppa	U pp∎	Au ppe	Th ppe	Sr ppe	Cd ppe	S6 pp=	Bi pp∎	V ppe	Ca Z	F I	La PDA	Cr ppe	Ng I	Ва рр:	Ti I	B ppe	AL I	Na X	K Z	¥ ppe	Aul ppb	
2419-39276 DHB-39277 DHB-39278 DHB-39279 2418-39280		15 23 29 41 54	14 12 17 12 22	188 128 158 342 556	.? .6 .1 .5	15 21 27 42 37	9 9 17 22	968 661 704 748 1931	3,43 3,14 3,31 4,34 4,96	10 9 10 10 38	5.555	ND ND ND ND	77757	48 12 9 22 34	i 1 1 2 5	2 2 2 2 2 2	14 14 14 14 14	86 63 68 136 142	.68 .10 .08 .25 .41	.11 .06 .09 .10 .16	4 6 7 7	29 37 52 63 45	.76 .83 .98 1.51 1.16	232 217 145 183 313	.13 .14 .10 .11 .08	5 6	1.86 2.40 2.61 3.74 3.07	.03 .02 .02 .03 .03	.20 .24 .23 .14 .15	2 2 2 2 2	5 5 10 5	
DMB-39281 DMB-39282 DMB-39283 DMB-39284 DMB-39285	3 7 6 1 1	97 76 30 10 18	15 20 12 12 14	760 973 172 78 292	1.9 1.0 2.1 .2 .3	55 59 19 7 18	26 24 5 3 13	2919 1394 144 195 639	5,28 5,56 2,69 2,18 4,25	177 79 9 18	3 5 7 6 6	ND ND ND ND	2 2 2 2 2	33 19 8 14 19	7 6 1 1 2	N G M G G	N (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	174 91 48 51 101	.37 .18 .04 .13 .24	.11 .12 .04 .05 .11	7 7 5 4 6	58 29 15 11 38	1.25 .69 .20 .19 .93	344 175 48 110 172	.12 .08 .05 .13 .13	9 5 4	3.69 3.78 1.05 1.16 3.09	.04 .03 .04 .04 .02	.21 .07 .04 .06 .15	2 2 2 2 2	55555	
048-79286 DHB-39287 DHB-39288 DHB-39289 DHB-39289 DHB-39290	1 1 1 1	11 17 31 16 15	13 15 15 17 11	122 174 106 178 74	.3 .1 .3 .1	9 13 16 12 11	5 7 8 10 8	288 462 307 1562 965	3.56 3.86	27 15 12 13 6	2 5 7 2 2	ND ND ND ND ND	2 2 2 2 2	20 23 15 29 25	1 1 1 1	7 2 2 2 2 2	2 1 2 1 2 1 5	41 73 115 67 56	.22 .16 .09 .52 .26	.08 .06 .05 .13	4 5 6 5	14 20 33 20 17	.26 .53 .59 .74 .46	139 90 79 156 107	.13 .13 .14 .19 .13	7	4.31 2.05 1.80 3.55 1.92	.04 .03 .03	.06 .12 .14 .26 .15	2 2 2 2 2 2	5 15 5 5 5	
DMB-39291 DMB-39292 DMB-39293 DMB-39294 DMB-39295	1 1 1 1	14 15 13 16 7	18 21 17 28 15	104 206 82 148 125	.1 .1 .2 1.0 .2	12 7 11 14 6	12 8 9	1073 3339 1758 1361 1706	3.82 3.24 4.10	11 2 6 5 6	25151	nd ND ND ND ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36 35 34 34 12	1 1 1 1	32272	35427	55 49 47 59 29	. 38 . 46 . 38 . 16	.08 .10 .06 .09 .05	6 6 11 12 4	18 10 17 21 10	.52 .53 .39 .52 .18	92 153 120 59	.13 .11 .06 .11 .04	5 6	3.05 2.07 2.99 4.98 1.35	.03 .04 .04 .02 .02	.16 .17 .11 .14 .0 ⁻	2 2 2 2 2 2		
0HB-39296 DHB-39297	L 1	10 15	34 194	62 91	.1 .3	7 7	5	530 1407	7.64 1.87	4 3	3	ND ND	2	25 26	1	7 2	6 7	48 33	. 22 . 44	.04 .05	4 5	14 12	.25 .24	80 68	. 06 . 03		1,68 1,22	.04 .04	.06 .09	2 2	5 3	

· · ·

						* •		MH I		or Ho		THIC		FRL		1.4	14645.	USF	r.	ILE	* 0	1.5-2	ခုပ်ရ							E1	HUE.	Ħ .
	No ppe	Cu ppa	Pb pp=	In ppm	Ag ppe	Ni ppa	Co pp=	Mn ppe	Fe l	As ppe	U ppe	Ац ррв	Th pps	Sr ppe	Cd pp=	Sb pp=	Bi pps	V ppe	Ca I	Р 1	La ppe	Cr ppn	Ng Z	Ba ppe	Ті Т	8 ppe	A) 1	Na X	K Z	¥ pps	Au I pob	
80 0- 38325	i	21	14	69	. 6	12	8	938	2. 31	19	7	ND.	2	77	1	2	2	37	÷7	.10	5	16	.40	170		ĸ	• ++	.02	.05	2	5	
BDB-38324	i	30	14	172	.4	35	8	673	2.47	7	2	ND ND	2	22 15	1	3	2	58	.22 .20	.07	6	61	1.17	90	.08	5	2.66 2.52	.02	.08	2	5	
808-38327 808-38328 808-38329 808-38331 808-38333	2 3 8 3 3	22 29 99 113 55	14 14 21 16 12	173 216 338 1185 340	.7 .6 .2 2.2 .8	19 20 51 83 50	8 9 20 13	605	2, 26 2, 93 8, 89 4, 57 3, 12	24 10 17 11 13	2 2 2 3	ND ND ND ND	2 2 2 2 2	52 14 52 51 28	7 2 3 9 3	2 2 7 2 2	2 2 3 2 2	51 82 44 153 92	1.07 .11 .78 .39 .27	.06 .07 .09 .15 .07	7 5 7 7 4	24 30 22 41 62	.37 .51 .88 1.26 .79	115 109 85 119 167	.11 .11 .03 .10 .10	6 13 9	3.06 2.46 1.52 3.98 2.79	.02 .02 .02 .03 .03	.06 .08 .31 .16	2 2 30 2 2 2	5 5 5 5 5	
808-38333 808-38334 STD A-1/AU 0.5	3 2 1	53 75 30	9 6 40	331 352 184	.0 .5 .1	48 35 35	13 16 12	1122 90 8 999	2,95 3,77 2,81	9 15 10	3 5 7	ND ND ND	2 2 2	25 21 35	3 2 1	2 2 2	2 2 2	87 142 59	. 22 . 25 .61	.07 .04 .10	4 4 7	58 42 74	.75 1.14 .72	154 291 283	.10 .13 .08	7	2.74 2.37 2.09	.02 .02 .02	. 15 . 25 . 21	2 7 2	5 5 500	

~ ..

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2358 PAGE # 7

I.M. WATSON & ASSOCIATES PROJECT # NAKUSP FILE # 83-2358

FAGE # 8

SAMPLE 1	No ppe	Cu ppe	P6 ppe	Zn pps	Ag ppa	Ki pp a	Co pp∎	Nin pp m	Fe Z	As pp a	U P₽■	Au pp s	Th ppm	Sr ppe	Cđ pp e	Sb pp a	Bi ppm	V ppe	Ca X	P I	La ppe	Cr ppa	Hq X	Ba ppe	Ti I	B ppe	A1 1	Na I	K 1	W ppm	Aut ppb
BDB-38335 BDB-38335 BDB-38337 BDB-38337	2 2 4 2 1	26 33 27 39 34	12 15 17 27 9	119 237 198 102 130	.4 .6 .8 .4 .1	15 25 22 26 34	5 7 9 7 7	422 844 401 174 526	2.34 2.55 4.12 4.54 2.59	11 17 14 40 16	6 2 4 2 3	ND ND ND ND ND	2 2 2 2 2	10 24 11 10 11	1 2 7 1	2 2 2 2 3	2 2 2 2 2 2	64 61 119 49 56	.05 .31 .10 .06 .12	.07 .15 .06 .05 .05	2 4 5	26 34 36 20 44	.55 .82 .85 .41 1.43	92 197 103 91 112	.07 .08 .14 .04 .10		1.46 1.83 2.94 1.33 2.39	.02 .02 .01 .01 .01	.15 .14 .03 .03 .21	2 2 2 2 2 2	5 5 5 5
BD D- 38340 BDB- 38341 BDB- 38343 BDB- 38343 BD D- 38344	2 2 3 4	23 16 28 27 36	13 10 12 11 13	85 115 117 82 195	.3 .4 .1 .5	18 15 18 12 17	4 9 8 4 14	472 922 375 319 1659	2.65 2.62 5.42 3.03 3.45	14 12 7 6 23	2 2 3 8	ND NO ND ND	7 7 2 2 2 2	7 20 7 10 18	1 2 7 1 2	2 2 2 2 2	2 2 2 2 2 2	40 74 180 78 96	.08 .30 .05 .05 .24	.15 .05 .04 .12 .17	5 4 5 5 11	31 23 37 26 34	.78 .55 1.08 .43 .96	98 173 172 63 90	.05 .07 .17 .08 .07		1.38 1.27 3.07 1.24 2.22	.01 .02 .01 .02 .03	.20 .97 .18 .10 .17	2 2 2 2 2	5 5 5 5
BDB-38345 BDB-38347 BDB-38349 BDB-38349 BDB-38350	1 1 1 1	15 17 17 14 14	14 13 12 12 10	39 202 134 125 120	.4 .3 .6	6 9 12 14 12	3 9 8 7 7	331 4511 1102 654 712	1.65 2.80 3.14 3.47 3.32	5 10 28 14 16	6 2 3 2 2 2	nd Nd Nd Nd Nd	2 2 2 2 2 2	15 14 19 12 16	1 2 1 1 1	2 2 2 2 2 2	2 2 2 2 2	44 53 71 86 62	.16 .13 .24 .10 .21	.04 .11 .10 .05 .10	5 4 5 4 5	8 15 25 36 20	.15 .33 .70 .80 .65	104 231 191 135 144	.12 .09 .11 .14 .14	2 4 4 3 3	.69 1.68 1.88 2.24 3.43	.02 .02 .02 .02 .02	.07 .08 .16 .11	2 2 2 2 2 2	5 5 5 5
BD8-38351 BD8-38352 BD8-38353 BD8-38354	1 1 1	12 9 14 16	8 12 13 15	110 83 86 99	.5 .3 .1 .2	11 10 10 11	7 6 7 8	664 331 363 449	3.04 3.07 4.21 4.48	14 12 17 18	2 4 5 3	ND ND ND ND	2 2 2 2	15 10 10 14	1 1 1 1	2 2 2 2 2	2 2 2 2	57 59 75 72	.19 .09 .08 .10	.07 .05 .05 .05	5 4 5 5	17 17 14 17	.59 .40 .49 .55	133 90 90	.13 .15 .16 .15		3.16 3.26 2.32 2.99	.02 .02 .02 .02	.15 .06 .07 .07	2 2 2 2	5 5 5

- -.

 \sim

 $\overline{}$

Sample 4 H					Ag	I. Ni ppe	. №. Co	WATS Mr. pps	Fe	s AS As pps	SSOC U PP®	Au	SS Th pps	FR Sr ppa	ũđ	Sb	B 1	NUSP V pps	Ca	P	La		N,	3 B			ß	A1 Z	Na Z	K I	P°# W ppt	Aut	# 17
P	ipa p	pp∎	pp∎	ppe	ppa	9 0-			-	<i>w</i> -																							
																														-			
																								-4	82	.02		2.37	.01	. 09	;	2 1	0
USB-33114 USB-33115 USB-33116	1 1 1	14 15 14	81	114	3	. 1	B 1	7 2134 4 4844 1 3291	4.06	61	7	5 N 2 N 2 N	D D D	2 2		1 1 1		:	27 . 26 .	18 . 06 .	.13 .13 .11	11 16 13	6	.37 .31	168 102	.02 .01	6 6	2, 33 2, 31	.01	.15 .17		2 10	
USB-33117 USB-33118 STD A-17AU 0.5	1 1 1	15	1,19	123	.5	5 1	91	3 394 3 438 2 101	9 5,45	B 1	1 4 9	2 N 2 N 7 N	D	4	11 9 36	1	202	:	18.	03	.15 .13 .09	16 17 8	12 6 74	.33 .14 .70	94 11.6 280	.01 .01 .08	6	1.90 1.54 2.08	.01			2 5	70

~---

 \sim

						I	.м.	WATS	50N 8	& A9	soc	IAT	ES.	PR(JEC.	т #	NAK	USP	F	ILE	# 8	3-23	58							٩	AGE	# 1	8
SAMPLE 0	Ma ppe	Cu ppe	P6 ppe	Zn ppe	Ag ppe	Ni ppe	Co ppo	Me ppa	Fe I	As ppa	U ppm	Au ppe	Th pp=	Sr pp=	Cat pp∎	Sb pp e	₿i ¢Pe	V Ppa	[4]	P 1	La ppe	Cr ppe	Mg I	Ba ppe	Ti I	B pp=	Al I	Na Z	K I		Aut ppb		
DHS-39275	8	22	.18	206	.5	29	B	512	3.28	81	4	ND	2	29	2	2	2	72	.48	.10	10	22	1.08	160	. 08	4	1.78	.02	.32	2	5		
							I.M.	WA	TSON	2e 6	asso	DIA	res	PF	OJE	ст н	I NA	RUSF	· 1	FILE	: #	83-	2358	ł							PAG	E #	19
SAMPLE 1	Ma	Cu	Pb	In	Ag	Ni	مآ	ħn	Fe	As	ឋ	Au	Th	Sr ppe	Cđ ppa	Sb ppe	Bi ppe	V ppe	Ca 7	P Z	La ppr		Hq Z	Ba Sol	T1 1 2		A1	Na Z			i Au		
	pp∎	994	99	a pp	• • • •	e 9p	e pp	L ppl		99 e	99e	6 64			77-			,,-	-	-		- 77											
																	_		_						_	•	,			a		,	
BDS-38330		9	6 7	26 27	ο.	8 5	9 1	0 75	5 9.06	23	s 2	X	0 3	3 25	2	6	2	37	.17	.08		71	9. 9	0 8	0.0	Z	6 1.3	NI .0	n .u		40	5	

· · ·

 \sim

PROJECT # NAMUSE I.M. WATSON & ASSOCIATES FILE # 83-2358 FAGE SAMPLE # No Eu Ph Zn Ni Co Aq Min Fe As U Au Th Sr Cđ Sb Bi V Ca P La Cr Ng. Ba Ti B A1 Na ĸ W Aut 000 000 ppe **pps** ppe ppa pps **p**p∎ I ppe pp a pp e pp= ppe ppe ppe z z ppe ppe ppa ppa Ť. ppe 1 ppe Z I 1 ppa ppb RAP-32250 14 746 3.66 1 20 6 43 .2 36 7 ND 6 -113 4 1 2 2 80 1.66 . 22 39 81 .86 63 .13 3 1.26 .13 . 16 12 5 RAP-32251 .7 15 1208 4.29 1 23 8 39 32 NÐ 3 2 7 105 88 1.79 1 2 2 . 29 42 71 . BO 50 .12 4 1.34 .12 .15 5 9 RAP-32252 1 20 8 40 . 2 22 17 1630 4.74 5 ND 7 103 3 1 2 2 92 1.80 . 28 42 75 .76 45 . 12 6 1.41 .11 .14 24 5 RAP-32253 1 15 В 36 .2 .2 31 12 1090 3.70 8 2 ND 116 6 1 2 2 85 1.88 . 27 41 75 .83 53 .13 6 1.40 .13 .17 5 τ. RAP-32254 1 19 10 41 22 17 1649 6.48 3 3 ND B 101 2 2 2 120 1.75 .34 46 151 . 62 42 .11 6 1.28 .09 .12 83 80 RAP-32381 2 22 20 123 4.7 13 7 502 3.81 23 2 8 16 -74 2 2 2 88 1.49 .21 83 28 1.07 139 . 18 7 1.89 .19 .31 2 14880 RAP-32382 1 19 12 103 12 624 3.82 39 .6 10 2 ND 27 76 2 2 2 B1 1.52 .22 132 21 . 90 143 . 19 7 1.63 .17 .26 24 40 RAP-32383 2 30 15 138 6.7 35 9 569 4.06 52 ND 2 26 36 2 - 2 2 42 .97 156 60 .83 .14 131 .13 7 1.63 .11 .31 26 310 RAP-32384 2 78 1769 1197 79.2 34 12 469 4.32 409 2 ND 7 32 27 45 Z 97 .74 .13 37 78 1.17 221 .14 5 1.59 .10 .32 2 630 RAP-32385 3 41 22 166 .6 43 14 575 5.04 97 2 ХD 4 51 2 2 2 .71 .11 80 27 78 1.40 236 7 2.02 .11 .33 .14 15 - 5 RAP-32386 2 44 19 131 .7 47 14 540 5.00 82 2 ND _ 2 _ 26 2 4 2 81 .71 .11 17 99 1.26 210 .15 8 1.70 .10 .30 ė. - 5

÷ ...

~ '

					I	. M.	мат	50N	8 AS	ssoc	IAT	ES	PRI	DJEC	:T #	NAK	USP	F	ILE	¥ 6	17-2	358				
ŀ																Bi ppe										A
505	17	4	43	.5	3	2	164	1.90	2	2	ND	5	11	1	2	2	7	.07	.04	11	7	.14	45	.01	4	

 $\sim ...$

SAMPLE . AL Na I ĸ W Aut 2 ĩ ppa ppb 4 .59 6 1.77 10 .54 .03 .17 USR-91505 2 15 . 14 .01 .04 11 45 314 4.58 584 3.07 73 32 .12 .95 45 1.15 10 .20 8 2 22 205 13 224 65 83 ND 2 17 3 USR-91507 67 8 98 26 .8 40 7 6 1 3 2 .10 .11 2 -5 USR-91601 58 10 5 7 1.4 31 .07 5 .02 .02 .18 2 5450 1 35 333 3.97 USR-91602 1 49 .4 12 9 11 2 ND 2 2 2 2 44 .02 .01 2 9 .64 54 . 06 6 1.37 .01 . 31 2 80 6 ł 416 4.16 2 HD 19 USR~91603 2 52 7 85 13 11 5 2 2 2 158 . 30 .15 8 31 1.36 233 5 2.06 .05 .4 1 .12 .56 2 5 175 13 96 1.99 ND . 26 8 .77 .03 USR-91703 7 9 2 Z 4 18 2 2 9 .12 3 .05 107 2 1 9 .4 2 1 11 .10 . 39 5 2 .2 .3 511 1.40 ND 3 USR-91704 1 7 12 30 3 4 14 1 2 2 5 . 39 .06 17 3 .02 65 .01 6 .44 .03 .25 2 5 USR-91705 8 50 3 266 1.53 155 ND 2 10 2 2 B .09 . 05 7 57 4 3 1 10 .17 .01 .03 2 1 ó .64 .18 -5 4 553 1.67 44 4 407 2.49 343 3 649 1.73 1140 5 865 2.13 356 2 2 2 2 2 2 3 USR-91706 3 8 40 2 ND 3 9 5 . 10 .05 17 3 .07 76 .01 7 . 68 .07 .28 2 -5 1 .1 1 2 2 2 2 2 2 ND ND 23 2 160 USR-91707 1 3 20 51 .4 4 5 1 4 .02 .03 10 6 .02 44 . 01 10 .34 .01 .21 552 54 12 USR-91708 1 51 .5 3 12 1 6 .12 .05 ę 6 .11 45 . 01 6.48 .02 .19 2 155 ND USR-91709 1 67 .5 4 4 16 1 2 5 .36 .09 24 3 .04 93 . 01 7 .61 .02 .29 2 120

.

- --

PAGE # 21

						3	.н.	WAT	50N	5 A5	SDC	TAT	ES	FR	DJEC	т #	NAL	USP	F	1LE	# ē	D-1-	48.							۴ı	AGE	# 4
SAMPLE 4	Ma ppe	Cu ppe	Pb ppa	2n pp=	Aq ppa	Ks ppe	Ca 9po	80 990	Fe 2	As pp#	U ppe	Au ppe	th ppa	Sr pp∎	Cd ppo	Sb ppa	22 23	V ppe	Ca X	P I	La ppe	Cr ppo	Kg 1	8a ppe	11 2	B ppe	A) I	Na I	K Z	ррв Уррв	Au I ppb	
201N 200E 200+75N 200E 200+50N 200E	5 4 3	38	14 105 24	123 455 391	.1 .2 1.8	15 17 19		3326 1530		90 960 80	2 2 2	ND	2 3 2	15 28 16	2 2 1	2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	65 64 71	.16 .54 .16 .27	. 09 . 12 . 16	6 9 8 11	26 30 31	.62 1.13 .65 1.05	115 135 143 131	.08 .10 .11 .13	5 3	1.86 2.38 3.20 3.76	.02 .01 .02 .01	.08 .13 .08 .16	2 2 2 2	5 135 5 5	
200+25H 209E 199+75H 200E 199+50H 200E	2		23 22 19	600 1885 719	1.6 2.1 .7	36 124 44	18 20 12	1398	4.19 4.84 5.40	161 42 38	7 3 4	ND ND ND	5 3 5	23 27 20	4 8 4	2 2 2	2 2 2	108 120 115	. 24	.11 .24 .12	7 9		1.20 1.31	125 157	.09	3	3.96 4.04	.02	. 11	2	5 10	
199+25N 200E 199N 200E 201N 200+25E	2 2 3	22 41	20 20 25	428 335 526	4. 1.0	20 23 47	11	1088 1814	3.05 3.60	18 113 29	2 2 2	ND ND	2 3 2	19 12 43	4 2 9	2 2 2	3 4 2	76 65 138	.12 .12 .40	.70 .06 .18	4 15 6	34 38 51	.53 1.00 1.33	185 153 299	.12 .09 .06	6	2,32 2,53 3,93	.02 .01 .02	.06 .11 .26	2 2 2 2	5 10 5	
200+75# 200+25E 200+56# 200+25E 199+75# 200+25E 199+56# 200+25E 199+55# 200+25E	3 1 2 6 2	36 54 110	12 13 19 25 21	133 444 566 1139 528	.3 .1 .9 1.7 1.4	13 14 32 97 36	12 11 16 23 14	1400 661	4.01 6.07 4.62 5.19 4.77	148 73 41 30 38	2 2 3 3 2	ND	2 4 3 4 2	13 21 20 24 23	1 5 6 3	2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	53 104 103 143 127	. 37	.12 .15 .13 .10 .12	15 10 12 6	100	.64 1.46 1.12 1.64 1.10	75 102 215 145 191	.10 .14 .14 .12 .12	3 7 6	2.56 3.64 2.89 4.36 3.28	.01 .01 .02 .01 .01	.09 .45 .33 .13 .10	27772	25 5 36 5 15	
1998 200+25E 2018 200+50E 200+758 200+50E 200+508 200+50E	1 1 2 2	3e 32 20 31	35 14 15 22	393 174 192 574	2.2 .3 .7 .9	24 15 18 29	14 9 11 14	964 515 468 1264	4.74 4.20	149 166 59	322	ND ND	2 3 3	18 12 14 17 26	1	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	76 64 109	.13 .16 .17	.11	8 6 10	42 28 24 52 45	.77 .64 .75 !.08 .89	136 87 117 230 206	.09 .10 .11 .14 .07	5 4 3	3.12 2.59 3.12 4.03 3.18	.02 .01 .01 .01 .01	. 10 . 08 . 09 . 13 . 11	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 5 5 20	I
260+25N 200+50E 51D A-1/AU 0.5	4 1	64 30	44 40	66, 182	4.4	43			2.60	163 9	2	ND		36	,	2	2			.11	8	78	.76	282	.08		2.06		. 18	2		

 \sim

4

I.M. WATSON & ASSOCIATES PROJECT # NAMOSE FILE # 80-1483

SAMPLE I	No ppa	Cu ppe	P6 ppe	ln ppe	Ag ppm	Ki ppm	Co pp∎	Kn ppe	fe 1	As ppa	U PP=	Au PP#	ĭh ₽₽≢	Sr ppa	Cd 9pe	Sd pp=	Bi pp∎	V ppa	Ca I	ዮ ኒ	La ppe	Cr ppe	Xq Z	Ba ppe	11 1	8 ppe	A] 2	Ka Z	r 1	W PPB	Au I ppd
200N 200+50E 199+75N 200+50E 199+50N 200+50E 199+23N 200+50E 199N 200+50E	4 3 5 2 3	96 52 88 29 62	32 23 25 24 22	917 751 377	1.5 2.1 2.9 .2 1.6	49 45 53 24 40	22 21 21 12 16	1046 2021 916 583 1016	4.75 5.11 4.43	64 35 33 36 68	5 4 3 2 2	ND ND ND ND	4 3 4 3	31 26 41 23 33	5 7 8 2 4	2 4 2 2	2 2 2 2 2 2	164 105 116 129 153	.27 .26 .31 .17 .23	.20 .20 .14 .17 .15	7 8 9 5 9	69 55 63 46 65	1.64 .94 1.02 .87 1.27	300 274 261 191 317	.14 .12 .13 .16 .14	3 6 4	4.40 3.04 4.07 3.35 4.93	.02 .02 .03 .02 .03	.23 .14 .13 .10 .15	2 2 2 2 2	5 5 5 5 5
201N 200+75E 200+75N 200+75E 200+50N 200+75E 200+25N 200+75E 200N 200+75E	1 2 2 6	24 34 84 74 104	29 32 45 24 43	454 632	.4 .6 1.4 1.4 3.5	22 30 36 47 67	14 19 18	1119 798 1286 1019 1564	4,73 8,26 4,84	70 88 567 44 54	2 4 11 5 7	nd Nd Nd Nd Nd	4 3 5 3 4	26 17 15 30 38	2 2 5 7	2 2 2 3	2 2 2 2 2 2	89 100 185 123 151	.26 .14 .17 .31 .36	.21 .20 .13 .12 .26	6 8 16 8 9	59 71	.90 1.06 2.20 1.38 1.28	163 167 289 211 225	.15 .14 .27 .12 .10	5	3.49 3.42 4.68 3.68 3.62	.03 .02 .01 .03 .03	.14 .15 .51 .17 .18	2 2 2 2 2 2	10 15 5 5
199+75N 200+75E 199+50N 200+75E 199+25N 200+75E 199N 200+75E 201N 201E	3 5 2 1	99 111 58	21 29 26 18 16	632 405 524	1.7 3.9 1.5 .8 _6	32 72 68 40 29	12 22 29 18 15	653 1032 654	3.87 5.96 5.76 4.68 3.73	21 62 29 22 70	4 5 3 2	ND ND ND ND	3 4 2 3 4	17 27 36 39 17	3 3 5 1	2 3 3 2 2	2 2 2 2 2 2	92 142 151 130 66	.12 .20 .32 .29 .15	.14 .14 .16 .16 .17	5 8 6 5 7	46 78 143 58 35	.61 1.43 1.85 1.30 .82	129 225 322 380 123	. 13 . 12 . 13 . 13 . 15	4 6 8	3,54 4,08 4,61 4,00 4,78	.02 .03 .03 .04 .02	.05 .12 .18 .27 .12	2 2 2 2 2 2	65 15 10 5 15
200+75N 201E 200+50N 201E 200+25N 201E 200N 201E 199+75N 201E	2 2 3 3 5	56 40 82 53 64	22 34 26 18 21	580 469 968 518 867	1.8 3.3 1.1 .6 1.7	36 28 56 38 55	14 19	1038 1207 1123 1094 749	4.88 5.64 3.86	119 128 85 30 27	3 2 3 3	ND ND ND ND	4 3 4 4	20 17 24 26 29	8 2 2	2 2 2 2 2	2 2 2 2 2	108 99 140 105 131	.20 .14 .24 .24 .24	.11 .12 .15 .15 .14	9 9 8 7 6	48 70 49	1.29 .86 1.52 1.08 1.07	241 191 265 242 207	.13 .11 .12 .11 .13	3 5 2	4.52 2.95 4.12 3.01 5.00	.03 .02 .02 .02 .03	.17 .11 .17 .17 .09	2 2 2 2 2	20 15 10 10 5
199+50N 201E 199+25K 201E 199N 201E 201N 201+25E 200+75N 201+25E	3	54 54 76 58 104	17 21 18 25 36	331 661 399	1.2 .5 1.2 1.0 2.7	41 23 59 37 49		524		27 35 24 72 113	4 5 2 3	ND ND ND ND	3 2 4 5 5	26 44 44 25 31	5 2 4 2 3	2 2 2 4	2 2 2 2 2 2	146 180 200 96 114	. 20 . 29 . 35 . 30 . 35	.12 .15 .12 .10 .18	6 5 13 12	70 86	1.26 1.35 1.56 1.29 1.57	772 396 330 201 244	.16 .16 .15 .13 .11	3 4 6	4,58 3.34 4.26 3.86 3.82	.02 .04 .04 .02 .01	.13 .27 .17 .26 .29	2 2 2 2 2	5 5 5 10
200+50H 201+25E 200+25H 201+25E 200H 20H+25E 199+75H 201+25E 199+50H 201+25E	1 2 7	43 56 61	23 20 24 16 21	583 871	2.6 2.2 .9 1.0 2.0	32 30 34 61 112		428 1060 1211		37 29 36 24 48	5 3 4 7 4	ND ND ND ND ND	3 3 3 4	19 18 28 25 27	5 8 4 7 9	2 2 3 4	2 2 2 2 2	98 94 149 123 149	.18 .20 .24 .17 .22	.18 .11 .19 .12 .11	7 8 7 7 9	69	.89 .97 1.43 1.17 1.55	248 202 259 181 189	.13 .14 .14 .11 .11	4	3.71 4.07 4.07 3.41 4.58	.07 .03 .03 .03	.13 .14 .16 .08 .12	2 7 2	5 5 10 5
199+25N 201+25E 199N 201+25E 201N 201+50E 200+75N 201+50E 200+75N 201+50E 200+50N 201+50E	3 3 2 3 3 3	56 68 40 57 81	22 17 24 26 25	609	1.7 1.0 .4 1.5 1.7	45 50 34 42 50	17 22 15 17 18	664 806	4,71 5,63 4,87 5,01 5,17	44 26 133 85 31	3 3 3 2 3 2	ND ND ND ND	4 4 2 2	25 40 14 21 27	4 4 1 3 11	3 2 2 2 2 2	2 2 2 2 2 2	143 182 92 105 123	.19 .30 .12 .19 .28	.11 .12 .06 .13 .16	6 11 10 11	82 49 51	1,24 1,58 1,21 1,19 1,35	267 318 121 223 320	.14 .16 .12 .11 .13	3 9 3	4.36 4.95 3.19 3.92 4.22	.03 .04 .02 .02 .02	.13 .12 .22 .20 .25	2 2 2 2 2 2	5 75 15 20
200+25N 201+50E STD A-1/AU 0.5	2 1	76 30	26 37		1.4	50 36		1105 1030		44 11	3 2	ND KD	3 2	21 37	6 :	2 2	2 2	134 57	. 25 . 59	.13 .10	8 6	56 77	1.40 .78	315 281	.12 .08		3,42 2,08	.02 .02	. 22 . 22	2 2	1 U 4 B (:

- -.

1

PAGE # 5

.

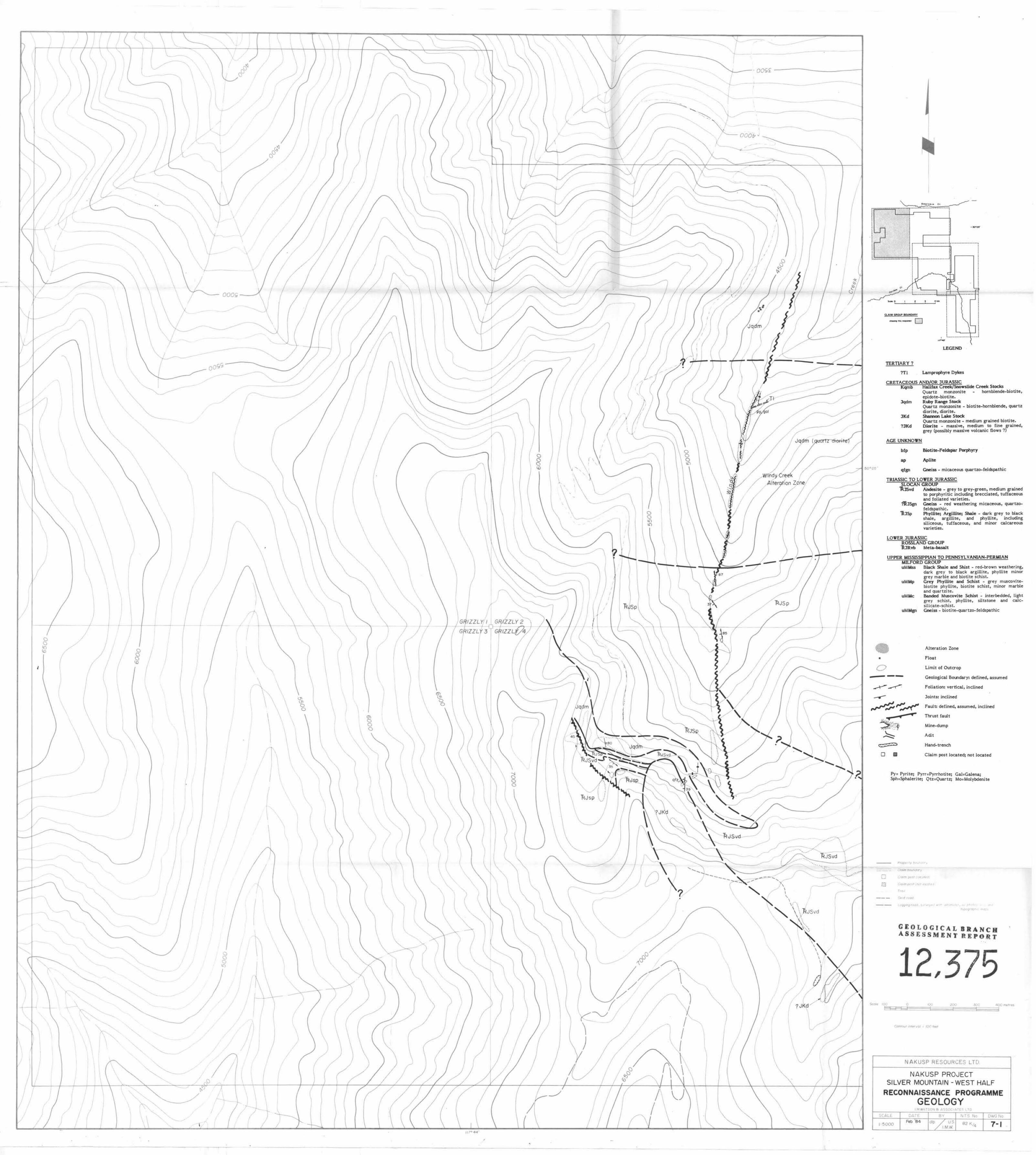
 \mathcal{I}

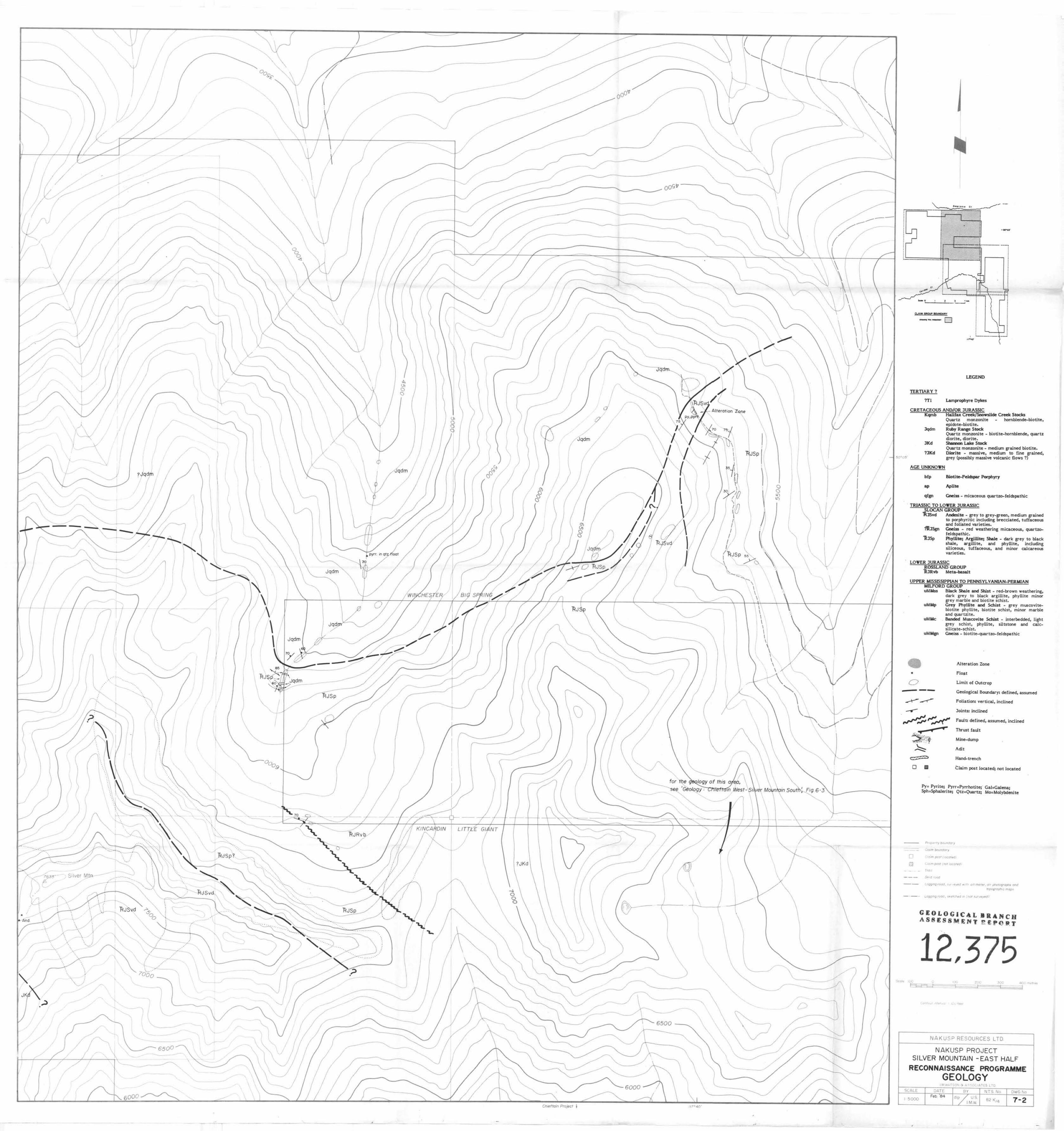
(.M. WATSON & ASSOCIATES PROJECT # NAMEUSP FILE # 80-1480

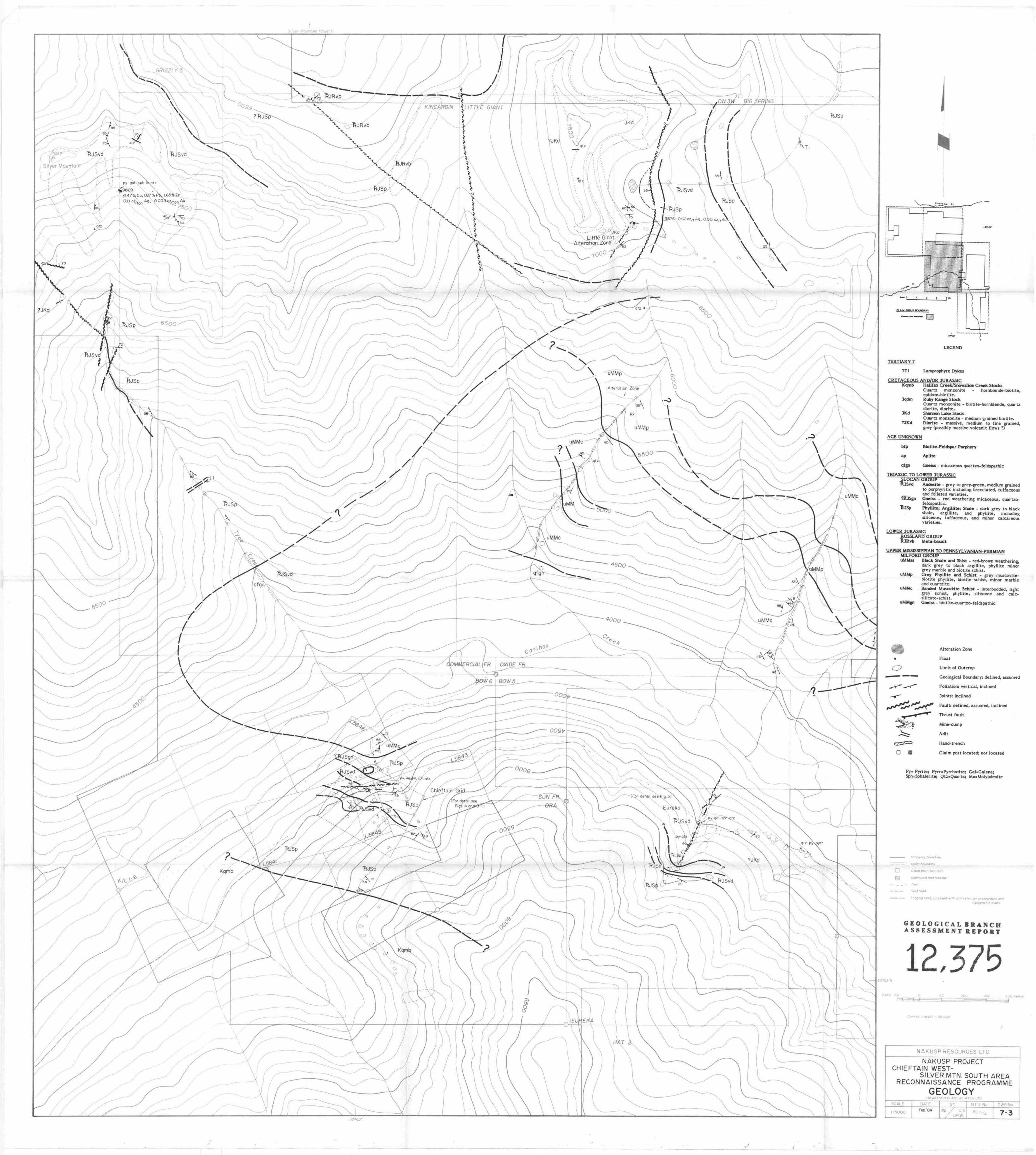
SAMPLE #	fic ppo	Сы ррв	Pb ppe	2n ppm	Ag pp=	XI pp=	Co pp#	Na ppe	Fe I	As pp=	U pp=	Au pps	ī⊾ pp∎	Sr pp#	Cd ppe	Sb ppe	8⊥ pp#	V ppe	Ca I	P Z	La ppa	Cr ppe	Hg I	Ba ppe	Тз Х	B ppe	Al I	Na 2	Y. Z	W pps	Au I ppt	
200N 201+50E 199+75N 201+50E 199+50N 201+50E 199+25N 201+50E	2 4 5 3	31 53 129 87	24 22 31 26	459 51B 479 467	.1 .6 2.0 .9	18 37 60 41	15 25	1253 1016 972 1155	3.67 5.19	90 17 15 26	2 2 2 2 2	ND ND ND ND	7 2 2 2 3	23 49 40 37	3 5 5 5	2 2 2 2 2	2	118 144 144 153	.19 .37 .26 .27	.16 .10 .18 .09	7 5 4 7	97	1.09	247 233 295 367	.14 .10 .07 .13	4	3.01 2.79 3.73 3.93	.02 .02 .03 .04	. 19 . 10 . 21 . 19	2 2 2 2 2	5555	
199N 201+50E	4	50	22	586	.4	40	14		3.84	22	Z	MD	3	27	4	2	2	159	. 21	.07	4	60		214	.14		3.67	.03	.08	2	5	
201N 201+75E 200+75N 201+75E	2 2	41 27	33 22	132 436	.5 .6	22 18		1241 1230		77 17	2 2	ND ND	6 2	7 23	1	2 2	2	57 114	.11 .19	.10 .18	21 4	37 42	1.12	117 274	.11		2.12	.01	.50	2	5	
200+50N 201+75E	3	79	33	515	1.3	36		1269		39	2	ND	3	26	4	2	2	135	. 22	. 09	B	60	1.32	287	.11	-	3.42	.07	. 28	2	5	
200+25N 201+75E 200N 201+75E	1	51 49	22 28	277 532	1.0 - 1.2	22 31	11	1045 855		18 18	2 2	ND ND	2 2	20 48	7	2 2	2	86 120	.22 .39	.08 .11	4 6	P3 29	.73 .98	213 334	.08 .11		2.10 3.94	.02 .03	.17 .15	2 2	5	
199+75N 201+75E 199+50N 201+75E	6 3	201 36	34 21	546 493	4.7	67 27	41 13	1857	5.97 3.51	11 20	5 2	ND ND	2 3	67 26	10 4	2	2	177 104	.50 .23	.19	5 5	109 42	1.56	443 226	.09 .13		3.63 3.48	. 04 . 02	.35	2	5	
199+25W 201+75E	4	79	30	598	1.3	54	20	-	4.15	15	5	NÐ	3	31	5	2	2	146	. 25	.09	6			248	.11		3.88	.07	.10	2	Ś	
199N 201+75E	5	64	23	907	.2	51	17		4,44	21	2	ND	2	25	5	3	2	148	. 1 B	.12	6	54	1.20	228	.14		3.45	. 9Z	. 15	2	5	
201N 202E	2	47	40	154	5,0	32	12	798	3.33	122	2	ND	6	16	1	2	2	40	. 24	.01	21	28	.14	129	.07	2	1.57	.01	. 28	2	265	
200+75N 202E	2	52	27	228	1.7	20		1097		51	2	MD	2	16	2	2	2	75	.14	.07	9	41	. 78	161	. 08		2.29	.02	. 20	2	5	
200+508 202E 200+258 202E	3	104 137	33 42	714 710	.5 2.2	64 70	19	1298	4.71	44	2	ND ND	4	28 47	5 9	2 2	4	125 146	.21 ,38	.09 .10	10 13	66 77	1.40	248 339	.17		4.0B 3.64	.02	.39 .58	Z	5	
200420R 202E	2	66	35	943	2.1 .B	37		1161		32	2	ND	2	37	5	2	ł	148	, 30 , 43	.12	13			457	.12		3.43	.03 .02	. 38	2	3	
199+75N 202E	i	100	32		1.1	43		2140		38	5	ND	?	54	10	2	:	146	.53	.17	7	53		381	.09		3.13	.03	.35	2	5	
199+50N 202E	3	51	28	Bol	1.0	49	16		4.22	15	5	ND	3	31	7	2	3	139	. 23	.11	5	67	1.21	235	.11	_	3.97	.02	.09	3	5	
199+25N 202E 199N 202E	4	90 67	34 27	672 438	1.5	49 30	18 14		4.35	19 26	2	ND ND	4	32 32	; 2	2	2	150 176	.27 .27	.08 .13	9 5		1.24	244 198	.12 .11		4.36 3.82	.03 .04	.09	ž	5 5	
201W 202+25E	í	25	20	125	1.3	22	-	1047		29	2	ND	4	16	i	2	- 2	55	.17	.05	10	28	.67	123	.11		1.76	.02	.14	2	J K	
200+758 202+25E	2	50	31	162	1.7	37	13			103	2	ND	6	20	1	2	2	74	. 21	. 08	19	43	1.07	126	. 10		2.54	.01	.40	2	15	
200+50N 202+25E	3	60	4C	422	4.0	33		1613		120	2	ND	3	17	3	2	2	9:	.10	. 15	14	53	, 91	165	.07		3.27	. 91	. 28	2	70	
200+25N 202+25E	3	87	33	441	1.0	34		1085		23	2	ND	2	23	4	Ż	•	120	.21	.09	8	67	1.15	219	. 09		3.18	.07	. 21	÷.	5	
200N 202+255	5	127	50	B01	2.3	50		1292 1823		32	2	ND ND	4	52	Q A	3	?	157	. 36	.10	9	67	1.50	383	. 12		3.96	.02	.52	2	5	
199+75N 202+25E 199+50N 202+25E	4	26 61	24 33	304 788	.5 .6	14 45	11		5.20 4.78	15 25	2	ND ND	2 4	23 41	4	2 2	2	82 154	.14 .30	.08 .11	6 6	23 57	.4? 1.29	239 275	.10		2.10 3.71	.62 .02	. 13 . 16	2	5 5	
1 99+25W 202+25E	3	6?	27	795	.6	49		1171		23	2	ND	3	31	ه	2	2	145	.24	.19	5	67	1.21	302	.09		3.26	.03	.08	2	\$	
199N 202+25E	3	37	22	383	-?	28				15	4	ND	3	18	2	2	?	112	.14	.13	5	49	. 91	186	. 12		3.04	.02	.09	2	5	
\$10 A-1/AU 0.5	1	31	38	188	.3	35	12	1044	2.76	10	2	NĿ	2	38	1	2	2	58	. 50	.10	8	74	.75	281	. 08	7	2.05	.02	- 21	î	\$1 9	

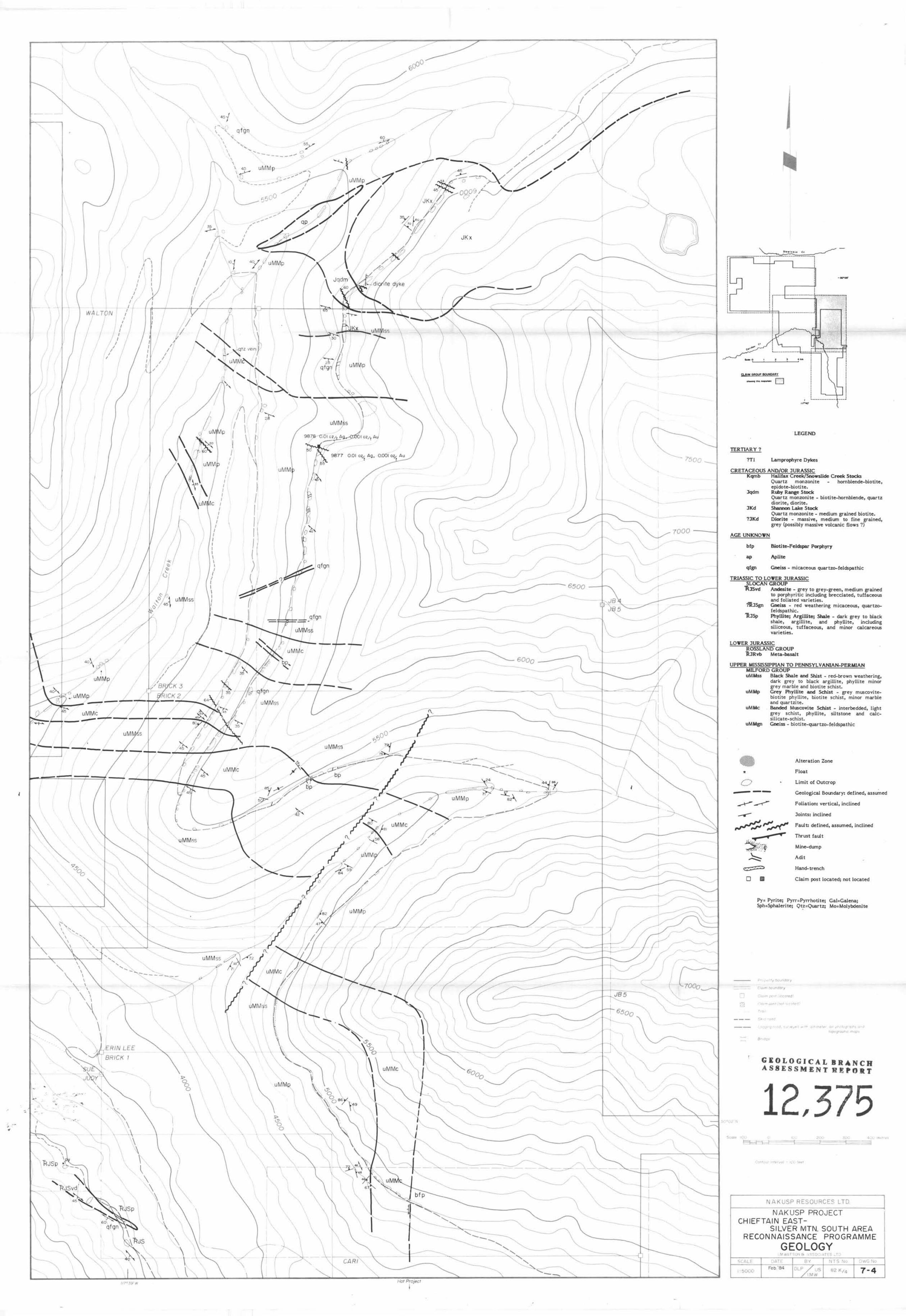
· · · ·

F白豆E 井 占


.


~


•


Ĵ

						L	м.	WAT	SÜN	& AS	ssoc	IAT	25	FiRe	JJEC	н т	NAF	USP	F	1L.E	# 8	31	483							۴ı	AGE	# 7
Sahfle t	ћа рре	îu pp∎	P6 908	Zn ppe	Aç ppa	Kı ppe	Ca pp≠	Mn pps	Fe 1	As ppa	U PP•	Au ppe	Th ppo	Sr ppe	Cď ppa	56 ppe	Bı ppo	V PP®	Ca I	Р 1	La ppm	Cr ppm	Mg 2	B2 pp=	lı Z	B ppe	A) 7	Ka I	r 1	y Pb#	Aut ppb	
LWS-34146 LWS-34147 LWS-34148	1	9 16 40	53 53 106	316 346 671	.6 .8 1.2	8 15 65	11		5.48 5.13 4.21	238 221 133	2 2 2	ND ND ND	5 5 3	46 67 62	2 2 6	2 2 2	2 2 2	59 54 34	.89 .82 .65	.18 .15 .11	44 44 22	9 28 27		48 104 123	.05 .06 .02	5	2.44 2.70 1.54	.01 .01 .01	.08 .52 .18	2 2 2	5 5 5	
LWS-34149 LWS-34150 LWS-34151 LWS-34152 LWS-34153	1 1 1 2 1	33 16 27 56 27	54 59 70 68 39	263 193 396 312 218	.4 .4 1.1 1.2 .4	79 25 46 50 36	8 10 15	911 1096 1531	4.06 2.84 3.21 4.61 2.95	110 121 161 118 71	2 2 2 2 2	ND ND ND ND ND	4 3 2 3	57 32 34 33 32	2 4 2 2	2 2 5 2 2	2 2 2 2 2 2	34 24 29 29 23	.52 .43 .44 .47 .35	.12 .09 .11 .11 .10	19 16 17 24 16	43 31 49 28 25	.81 1.31 .67	160 68 155 125 97	.03 .07 .02 .01 .02	4 8 3	1.30 1.31 1.49 1.39 1.05	.01 .01 .01 .01 .01	.22 .14 .11 .14	2 2 2 2 2 2	10 5 5 5 10	
LWS-34154 6PS-37044 6PS-37045 6PS-37046 6PS-37047	l 1 2 1	24 10 52 26 32	33 33 41 33 99	190 163 224 220 226	.5 .3 .8 .4	27 16 61 33 54	14 9	1094 1181 914	2.89 2.72 4.53 3.02 3.60	111 71 84 66 90	2 2 2 2 3	ND ND ND ND	3 3 4 2	28 22 47 29 39	1 1 2 2	2 2 4 2 2	2 2 2 2 2	22 25 24 21 36	.33 .25 .48 .31 .56	.07 .07 .12 .10 .12	14 15 17 17 17	19 14 22 24 36	.43	90 78 130 109 130	.02 .02 .02 .01 .01	5 5 5	1.04 1.03 .91 1.03 1.66	.01 .01 .01 .01	.14 .22 .21 .18	2 2 2 2 2	15 5 5 70	
6PS-37048	1	25	37	209	. 3	20	9	924	3.02	75	2	KD	2	21	2	2	2	23	. 37	. 10	15	25	.63	89	.01	4	1.09	.01	.14	2	10	
																	_						(1	61	07		1.47		.21	2	5	
1 #5-38007	1		70		.5				3.57 2.91	141 72	4	ND ND	4	21	4	2	2	30 28		. 10 . U9	22	12		83 82	. 02		5 1.35	.02		2		
1 85-38008 155-36055 155-36056 155-36057	1 6 1 3	70 16	44 14 42 28		.2	12 38 11 21	14	636 1100	4,63	157	6 4 5	ND	2 2 2	38	; 5 3	2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	109	. 52	.11 .09 .10	10 15	45 11	1.24	146	. 07 . 02 . 05	4	2.09 1.35 1.76		. 72	2 2 2		
KSS-36058 KSS-36059 KSS-36060 KSS-36061 KSS-36062	2 11 4 10 5	42 34 33	40 21 28 18 25	257 241 160	.3 .6 .2 .5 .4	25 22 22	10 10 11	714 920 554	3.97 4.07 3.66 3.68 2.66	99	3 8 8 5	ND ND ND ND	2 2 5 2 2 2	29 41 35 48 65	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2	93	. 50	.11	17 14 12	41 25 33	.86 .86 .95	119 109 85	.06 .04 .07		1.71 1.76 1.76 1.50 1.53 1.53	.03 .02 .02	.22 .22 .17	2 2 2 2 2 2 2 2	5 5 10	
ST8 4-1/AU 0.5	ſ	30	38	183	. 3	35	13	1036	8 2. B 0	٩	2	ND	2	36	t	2	3	56	. 60	. 11	8	75	.11	276	. 08		7 2.07	. 02	. 20	2	490	

