84-#485\_#12430 6125

#### GEOCHEMICAL REPORT

#### ON THE

STAR 1,2,3,4,5,6,7,8, 9A,10,11,12,13

AND VON MINERAL CLAIMS,

ATLIN MINING DIVISION. 1045454W

WORK COMPLETED MAY 25 to JUNE 12,1984.

BY:T.E.LISLE AND ASSOCIATES LIMITED.

FOR

UNITED CAMBRIDGE MINES LIMITED.

BY

GEOLOCICAL BRANCH ASSESSMENT REPORT

T.E.LISLE, P.ENG

JULY 6,1984.



|                      | CONTENTS. |       |
|----------------------|-----------|-------|
|                      |           | PAGE. |
| INTRODUCTION.        |           | 1     |
| PROPERTY.            |           | 1     |
| LOCATION AND ACCESS. |           | 2     |
| HISTORY.             |           | 2     |
| WORK PROGRAM.        |           | 3     |
| GEOLOGY.             |           | 3     |
| GEOCHEMICAL SURVEY.  |           | 4     |
| SAMPLE RESULTS.      |           | 6     |
| CONCLUSIONS.         |           | 8     |

MAPS.

| LOCATION  | MAP    |         |         |           | FIGURE | 1 |
|-----------|--------|---------|---------|-----------|--------|---|
| CLAIN MAL | P      |         |         |           |        | 2 |
| GEOLOGY,  | 0.F.   | 707.    |         |           |        | 3 |
| SILVER GI | EOCHEM | ISTRY   | STAR    | CLAIMS.   |        | 4 |
| GOLD      |        |         |         |           |        | 5 |
| LEAD      |        |         | "       | "         | "      | 6 |
| ZINC      | "      |         | "       |           | "      | 7 |
| GOLD      |        |         | VON     |           | "      | 8 |
| SILVER    | "      |         | VON     |           |        | 9 |
| APPENDIX  | 1      | ITEMIZE | D COST  | STATEMENT |        |   |
| APPENDIX  | 2      | ASSAY R | EPORTS. |           |        |   |

AIFENDIX 3 CERTIFICATION.

#### INTRODUCTION.

During the period May 25 to June 12, 1984, United Cambridge Mines Limited carried out a geochemical survey on the Star and Von mineral claims located near Sheslay in the Atlin Mining Division.

A number of exploration programs carried out in the same area since 1969 had included geochemical surveys, however this work had been directed to copper and molybdenum with lesser emphasis on lead and zinc.

Because soil pulps from the earlier surveys had been discarded, it was deemed appropriate to resample existing grids with a view to determining whether gold and silver mineralization is present, either associated with known areas of economic interest or elsewhere.

#### PROPERTY.

The property is comprised of 13 Star and the Von mineral claims involving 104 units: Name Units Record Recorded. Star 1 20 98(7) July 5/76 15 Star 2 99(7).. Star 3 100(7) . 2 Star 4 101(7 Star 5 2 102(7) 96 Star 6 141(9)Sept.30/76 Star 7 142(9)1 143(9)Star 8 9 Star 9A 1192(10)Oct 27/80 4 145(9) Star 10 Sept.30/76 146(9) 6 Star 11 . Star 12 8 147(9)... Star 13 4 148(9)Von 12 1971(7)July 22/83

#### LOCATION AND ACCESS.

The Star mineral claims are located about 48 kilometers west-northwest of Telegraph Creek in the Atlin Mining Division. Approximate co-ordinates Lat. 58°13'N, Long. 131°43', NTS, 104J4.

The claims are astride the Hackett River mainly between elevations 600 and 1200 meters above sea-level. The topography is · of moderate relief however a number of steep precipetous cliffs are present, particularly near the main tributary creeks.

The Telegraph trail passes through the Hackett River valley. Present access is by helicopter from Dease Lake or Telegraph Creek, or by fixed wing aircraft to a rough strip located at Sheslay near the northwest boundary of the claims. Local access is by a number of old bulldozer trails.

#### HISTORY.

Copper mineralization was discovered at Copper Creek in 1937. It was partly tested by four short drill holes aggregating 149 meters in 1956 by Bricon Explorations.

Skyline Explorations Limited drilled a further six holes and carried out extensive geological, geochemical and geophysical surveys on the Copper Creek and Polar Creek zones between 1969 and 1971. The Polar Creek zone was drilled by Newconnex in 1972. Nost claims in the area expired in 1975 and 1976.

United Cambridge Mines Limited restaked the Copper Creek prospect in 1976, and discovered the Dick Creek porphyry copper prospect.



ni oli na suma com

United Cambridge Mines Limited continued trenching in 1977 and carried out extensive linecutting, geochemical and geophysical surveys at Copper and Dick Creeks. The Polar Creek prospect was staked in 1983.

#### WORK PROGRAM.

The current program was carried out by a four man crew, including the author, between May 25 and June 12, 1984. For the most part, grid lines are still well marked. Where difficulty was encountered, lines were re-chained with a belt chain. Soil samples were collected at most grid points, and pickets flagged with station and sample number.

814 soil samples were collected from the Dick Creek-Copper Creek grid and analyzed for gold and silver. 289 of the samples were analyzed also for Lead and zinc. Four rock chip samples were collected and analyzed for gold and silver.

Three test lines, oriented at 350° and 122 meters apart to co-incide with an earlier grid, were flagged and sampled at the Polar Creek prospect. 77 soil samples were collected. The location of the lines is as shown on Figures 6 and 7.

#### GEOLOGY.

The Star claim group is underlain by an assemblage of volcanic and related sedimentary rocks of the Stuhini Group, and by Triassic intrusive rocks related to the Kaketsa Stock. Variations in the form, texture and composition, suggest several stages of intrusion.



Figure 3 of this report, adapted from Geological Survey of Canada Open File 707, shows that most of the mineral occurrences in the Sheslay area occur within intrusive rocks of the Kaketsa Stock, or in volcanic and related sedimentary rocks of the Stuhini Formation, adjacent to the southern contact of the Level Mountain volcanic complex.

Much of the past exploration in the Sheslay area has been directed to the search for porphyry-type copper deposits in the older Triassic aged rocks. The rationale for this is the widespread scattering of occurrences in both volcanic and intrusive rocks that are often marked by a strong geochemical signature.

The porphyry deposit remains a valid exploration target in the area, however preliminary data indicates that some of the mineral occurrences in the vicinity of Copper Creek may be also related to altered volcanic-sedimentary stratigraphy and breccia zones.

Another point of importance is the presence of well banded calcite veins and the reported presence nearby of chalcedony, perhaps implying a much younger mineralizing episode. All of the occurrences require further study to define geologic perspective.

#### GEOCHEMICAL SURVEY.

The Sheslay area has been glaciated and thick accumulations of brown soil are present on the main valley slopes, and are particularly prominent on the flanks of Copper and Dick

creeks. Thicknesses in excess of five meters are indicated on the lower northwesterly flanks of the creeks, and sharp changes in thickness are evident in the vicinity of numerous faults around the Dick Creek porphyry prospect.

The soil is commonly medium brown, but ranges from very dark to red and pale yellow limonitic varieties. The texture is fine to coarse, locally sandy or clayey, and rounded to angular rock fragments are commonly present. The brown soil is locally overlain by a black surface organic layer that varies to about 10 cm. in thickness, but in muskeg areas may be in excess of 40 centimeters.

All samples were collected with soil mattocks from depths ranging up to 45 centimeters. Details of depth, colour, texture and other features were noted, and sample numbers marked on picket flags.

Samples were packaged in kraft soil envelopes and shipped to Acme Analytical Laboratories in Vancouver for processing.

806 soils were collected from the Star claims from the Copper-Dick creek grid. All were analyzed for gold and silver, and 289 were analyzed for lead and zinc to complete coverage for those two elements. 4 rock chip samples were collected from the Dick Creek area. 77 soil samples were collected from the VON claim (Polar Creek Prospect), and analyzed for gold and silver.

#### SAMPLE RESULTS.

#### ( Copper Creek-Dick Creek Grids).

Previous geochemical surveys revealed strong copper responses around the Dick Creek prospect and around the Copper Creek zone. A few scattered highs were also revealed on lines DC 2000 SE to 4000 SE northeast of the baseline.

Fartial coverage for lead and zinc showed scattered high responses a) around Copper Creek partly coincident with high copper zones; b) Near a small creek south of Copper Creek and c) High zinc assays northeast of the baseline, 2800 SE to 4000 SE on the Dick Creek grid.

Extended coverage of the Dick Creek grid during 1984 indicated high zinc responses in the latter area to 2000 SE. Elsewhere, zinc and lead high assays are scattered but slightly more prevalent northeast of the baseline near DC 1600 NW.

1984 coverage showed a range of 0.1 to 5.1 PPM silver with the highest assay from an area adjacent to the main mineralized outcrop in Copper Creek. Other samples from the Creek also reflect this mineralization. Seven samples from lines 1200 SE and 1600 SE on the Copper Creek grid southwest of the baseline ranged from 1.3 to 3.9 PPM silver. These samples are coincident with high levels of lead and zinc that appear related to disseminated galena noted in. this area.

Two select samples from the Dick Creek prospect containing abundant malachite, azurite and tenorite(?). assayed 1.9 and 2.7 PFM silver. Elsewhere assays are comparatively low and around 1PFM or less. Gold content of the soils is commonly around 5 PPB but ranges to 490 PPB. Higher levels are present around the mineralization in Copper Creek. ( A 4.5 foot section of drill hole G-2 assayed 0.13 oz/ton gold,0.2 oz/ton silver and 2.60% copper).

Higher levels are also present in an erratic pattern around the Dick Creek prospect with assays from 5 to 245 PPB gold. Two select samples of fines with abundant secondary copper minerals from trenches in this area yielded 190 and 820 PPB gold. The erratic nature of assays may be partly attributed the type of material sampled. Two samples collected from 00-BL. yielded 5 and 215 PPB. The lower assay was from a sample of brown glacial soil. Three rock chip samples assayed 15 to 145 PPB gold.

A clustering of higher assays is also evident northcast of the baseline between lines 1600 SE and 3200 SE. Assays range to 490 PPB gold, and this area is partly coincident with zones of high zinc and copper. Both of the above areas display high chargeability features on the Induced Polarization data.

( Von claim--Polar Creek Prospect ).

Data from the three test lines surveyed on the Von claim revealed a range of 5 to 580 FPB gold and 0.1 to 4.0 PPM silver. High silver correlates only locally with high gold assays.

#### CONCLUSIONS:

Geologic and geochemical data indicates that lowgrade gold and silver is present and related to copper mineralization at the Copper Creek, Dick Creek and Polar Creek prospects of United Cambridge Mines Limited.

Copper mineralization at Dick Creek occurs within and peripheral to a large dioritic intrusion that is exposed where volcanic rocks changes northward to an assemblage of tuffaceous and cherty sedimentary rocks and porphyritic volcanic rocks that are locally well pyritized.

Intrusive rocks southeast towards Copper Creek are small and dyke or sill-like and may range in composition from diorite to syenite. Zones of outcrop and geochemical interest in this area appear to be broadly related to the same transition zone that is identified by fragmental horizons, thin cream to pink chert layers, or chert breccia zones that display strong epidote/k-Spar alteration.

Mineralization at Polar Creek occurs in fractures, disseminations and in veins and shear zones adjacent to the main contact of the Kaketsa stock. The gold and silver content of the soils in this area is comparable to zones at Copper and Dick Creeks. This content is sufficiently interesting to warrant a further search for economic concentrations.

> Respectfully submitted, T.E.Lisle and Associates Limited.

T.E.Lisle, P.Eng.



FIG. 8



í

APPENDIX 1

# T.E. LISLE & ASSOCIATES LTD.

**TELEPHONE: OFFICE 682-1927** 

\$2,625.00

| - | GEOLOGISTS |                  | 422 - 470 GRANVILLE STREET, VANCOUV                | VER, B.C. V6C 1V5 |
|---|------------|------------------|----------------------------------------------------|-------------------|
|   | ITEMIZED   | COST STATEMENT,  | , STAR AND VON MINERAL CLAIMS, A                   | TLIN M.D.         |
|   | WAGES: T   | .E.LISLE, P.Eng. | May 24,25,28,29,<br>June 1,2, $(1/2x3)$ ,5,7,9,10. | \$2 625 0         |
|   | 1          | Jack.            | May 28 to 31; June 1-7, 9.                         | •,02,10           |

900.00 12 at \$75.00 12 at \$75.00 May 28-June 9 900.00 B.Jack 34.5 days at \$25.00/day 862.50 CAMP COSTS: TRANSPORTATION: Helicopter Charter May 29, June 6, 8, 9, 1984 Aurora Air. Atlin-Sheslay 2,259.10 353.40 341.88 B.C.Yukon Air. Desse-Sheslay 536.00 June 9/84. Telair, Cesna 206. C.P Air/T.P.A. Vancouver-Dease 455.90 Vancouver. 364.75 Misc. travel. Deakin Equipt. Acme Analytical. 347.85 SUPPLIES: 3111.80. 228.00. \$116.95; \$51.65 508.40 FREIGHT:

| GEOCHEMICAL ANALYSES:    | Star Claims:                     |          |
|--------------------------|----------------------------------|----------|
|                          | 806 soils for Au. and Ag. @ 6.60 | 5,326.20 |
|                          | 289 " " Pb. and Zn. @ 2.75       | 794.75   |
|                          | 4 rocks " Au. and Ag. # 8.75     | 35.00    |
|                          | VON Claims:                      |          |
|                          | 77 soils for Au. and Ag. @ 6.60  | 508.20   |
| RADIOTELEPHONE:          | Rental.                          | 100.00   |
| TELEPHONE :              | \$100.59, +\$30.56               | 131.15   |
| DRAFTING AND REPRODUCTIO | DN:                              | 100.03   |

REPORT:

Total:

\$18,000.11

550.00

ull

T.E.Lisle, P.Eng.

July 10,1984

APPENDIX 2

### ASSAY DATA.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253-3158 COMPUTER LINE:251-1011 DATE RECEIVED JUNE-16-84

DATE REPORTS MAILED

#### GEOCHEMICAL ASSAY CERTIFICATE

A .50 6M SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL:HN03:H20 AT 90 DEG. C. FOR 1 HDUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : A6 AU SAMPLE TYPE : SOIL - DRIED AT 60 DEG C. , -B0 MESH.

AUF - 10 6M, IGNITED, HOT ADUA REGIA LEACHED, MIBK EXTRACTION, AA ANALYSIS.

ASSAYER \_\_\_\_\_ DEAN TOYE, CERTIFIED B.C. ASSAYER

T.LISLE FILE# 84-1131

PAGE# 1

| SAMPLE | AG<br>PPM | AU*<br>PPB |
|--------|-----------|------------|
| DC-1   | . 4       | 5          |
| DC-3   | . 4       | 5          |
| DC-4   |           | -          |
| DC-5   |           | 5          |
| DC-6   | .2        | 25         |
| DC-7   | .3        | 10         |
| DC-8   | .3        | 25         |
| DC-9   | 9         | 15         |
| DC-10  | .5        | 5          |
| DC-11  | .3        | 15         |
| DC-12  | .2        | 10         |
| DC-13  | .2        | 50         |
| DC-14  | . 6       | 5          |
| DC-15  | .2        | 5          |
| DC-16  | . 1       | 5          |
| DC-17  | .1        | 5          |
| DC-18  | . 1       | 5          |
| DC-19  | .2        | 5          |
| DC-20  | . 1       | 5          |
| DC-21  | .1        | 10         |
| DC-22  | . 1       | 5          |
| DC-23  | .1        | 5          |
| DC-24  | .2        | 5          |
| DC-25  | .7        | 45         |
| DC-26  | .8        | 5          |
| DC-27  | .5        | 5          |
| DC-28  | 1.0       | 5          |
| DC-29  | .5        | 25         |
| DC-30  | .6        | 10         |
| DC-31  | .8        | 40         |
| DC-32  | . 4       | 10         |
| DC-33  | .7        | 5          |
| DC-34  | .8        | 5          |
| DC-35  | 1.1       | 10         |
| DC-36  | .6        | 25         |
| DC-37  | .6        | 5          |
| DC38   | .2        | 5          |
|        |           |            |

.

•

ille.

1

| SAMPLE | AG  | AU* |  |
|--------|-----|-----|--|
|        | PPM | FPB |  |
|        |     |     |  |
| DC-39  | .1  | 5   |  |
| DC-42  | .2  | 5   |  |
| DC-43  | .3  | 10  |  |
| DC-44  | . 1 | 5   |  |
| DC-45  | .3  | 5   |  |
| DC-46  | .9  | 15  |  |
| DC-47  | .4  | 210 |  |
| DC-48  | . 4 | 5   |  |
| DC-49  | .6  | 50  |  |
| DC-50  | .2  | 5   |  |
| DC-51  | .6  | 120 |  |
| DC-52  | . 4 | 245 |  |
| DC-53  | .2  | 5   |  |
| DC-54  | .3  | 15  |  |
| DC-55  | .5  | 5   |  |
| DC-56  | . 4 | 5   |  |
| DC-57  | .2  | 5   |  |
| DC-58  | .5  | 10  |  |
| DC-59  | .3  | 5   |  |
| DC-60  | . 4 | 5   |  |
| DC-61  | .1  | 5   |  |
| DC-62  | . 1 | 5   |  |
| DC-63  | . 6 | 20  |  |
| DC-64  | . 4 | 5   |  |
| DC65   | .2  | 45  |  |
| DC-66  | . 4 | 5   |  |
| DC-67  | . 1 | 5   |  |
| DC-68  | . 1 | 5   |  |
| DC-69  | .3  | 5   |  |
| DC-70  | .5  | 5   |  |
| DC-71  | .3  | 10  |  |
| DC-72  | .3  | 5   |  |
| DC-73  | .1  | 5   |  |
| DC-74  | .5  | 60  |  |
| DC-75  | .7  | 5   |  |
| DC-76  | . 4 | 5   |  |
| DC-77  | . 4 | 15  |  |
|        |     |     |  |

~

. .

14

÷

.

PAGE# 3

..

.

| SAMPLE | AG  | AU* |
|--------|-----|-----|
|        | PPM | PPB |
| DC-78  | .3  | 5   |
| DC-79  | . 4 | 5   |
| DC-80  | .5  | 10  |
| DC-81  | .3  | 105 |
| DC-82  | .5  | 5   |
| DC-83  | .3  | 5   |
| DC-84  | . 4 | 5   |
| DC-85  | . 4 | 10  |
| DC-86  | .5  | 15  |
| DC-67  | .2  | 5   |
| DC-88  | .5  | 10  |
| DC-89  | . 4 | 5   |
| DC-90  | .8  | 5   |
| DC-91  | 1.1 | 15  |
| DC-92  | .3  | 5   |
| DC-93  | . 1 | 35  |
| DC94   | .2  | 5   |
| DC-95  | .2  | 15  |
| DC-96  | .5  | 5   |
| DC-97  | .8  | 10  |
| DC98   | .9  | 5   |
| DC-102 | .6  | 5   |
| DC-103 | .8  | 5   |
| DC-104 | .5  | 5   |
| DC-105 | .5  | 5   |
| DC-106 | .5  | 5   |
| DC-107 | . 1 | 5   |
| DC-108 | .2  | 5   |
| DC-109 | .2  | 10  |
| DC-110 | .2  | 5   |
| DC-111 | .8  | 5   |
| DC-112 | . 4 | 5   |
| DC-113 | .5  | 5   |
| DC-114 | .7  | 5   |
| DC-115 | .4  | 65  |
| DC-116 | .6  | 30  |
| DC-117 | . 4 | 5   |

PAGE# 4

.

٠

14.1

٠

| SOMPLE     |       |            |
|------------|-------|------------|
| arm - c.e. | AG    | AU*        |
|            | PPM   | PPB        |
| DC-118     | . 3   | 60         |
| DC-119     | .2    | 5          |
| DC-120     | .2    |            |
| DC-121     |       | -          |
| DC-122     | • • • | 0          |
|            | . 3   | 5          |
| DC-123     | .8    | 5          |
| DC-124     | .7    | 5          |
| DC-125     | 1.5   | 5          |
| DC-126     | .9    | 5          |
| DC-127     | .5    | 20         |
| DC-128     | .7    | 20         |
| DC-129     | 9     | 5          |
| DC-130     | . 7   | 30         |
| DC-131     |       | 50         |
| DC-132     |       | 140        |
|            | • /   | 140        |
| DC-133     | .6    | 10         |
| DC-134     | 1.2   | 5          |
| DC-135     | . 4   | 35         |
| DC-137     | .6    | 5          |
| DC-138     | .3    | 5          |
| DC-139     | . 4   | 42         |
| DC-140     | . 4   |            |
| DC-141     |       |            |
| DC-142     | . 7   | 0          |
| DC-143     | . 4   | 5          |
| 56 145     | • /   | 9          |
| DC-144     | .5    | 35         |
| DC-145     | .4    | 10         |
| DC-146     | .5    | 15         |
| DC-147     | .6    | 15         |
| DC-148     | .7    | 25         |
| DC-149     | .3    | 5          |
| DC-150     | .3    | 5          |
| DC-151     | . 4   | 20         |
| DC-152     |       | 5          |
| DC-153     |       |            |
|            |       | <u>ل</u> ه |
| DC-154     | . 4   | 5          |
| DC-155     | .2    | 10         |

.

۰.

+

.

PAGE# 5

٠

4

.

| SAMPLE | AG  | AU* |
|--------|-----|-----|
|        | PPM | PPB |
| DC-156 |     | 127 |
| DC-157 | •   | 0   |
| DC-159 |     | 5   |
| 00-150 | - 1 | 5   |
| DC-140 | .1  | 5   |
| 00-100 | .1  | 5   |
| DC-161 | .3  | 5   |
| DC-162 | .3  | 5   |
| DC-163 | . 4 | 10  |
| DC-164 | .8  | 15  |
| DC-165 | .7  | 5   |
| DC-166 | . 6 | 10  |
| DC-167 | . 6 | 5   |
| DC-168 | . 7 | 5   |
| DC-169 | 5   | 5   |
| DC-170 | .4  | 5   |
| DC-171 | .2  | 20  |
| DC-172 | . 4 |     |
| DC-173 | .2  | 5   |
| DC-174 | . 1 | 40  |
| DC-175 | .3  | 10  |
| DC-176 | .1  | 15  |
| DC-177 | . 6 | 5   |
| DC-178 | .0  | 145 |
| DC-179 |     | 67. |
| DC-180 | :3  | 5   |
| DC-181 | -   | 5   |
| DC-182 | . 1 | -   |
| DC-183 |     | -   |
| DC-184 |     | 5   |
| DC-185 | . 4 | 5   |
| DC-186 | . 5 | 10  |
| DC-187 | . 1 | 15  |
| DC-188 |     | 5   |
| DC-189 |     | 5   |
| DC-190 | .3  | 5   |
| DC-191 | -1  | 5   |
| DC-192 | .3  | 5   |
|        |     |     |

-

PAGE# 6

2

.

.

.

| DC-193   .4   5     DC-194   .2   5     DC-195   .3   5     DC-208   .3   5     DC-209   .7   15     DC-209   .7   15     DC-300   .5   5     DC-300   .5   5     DC-301   .3   5     DC-303   .8   150     DC-304   .4   5     DC-305   .3   5     DC-306   .4   5     DC-307   .6   5     DC-308   .3   5     DC-310   .2   5     DC-311   .8   5     DC-312   .5   10     DC-313   .2   5     DC-314   .4   5     DC-317   .5   5     DC-318   .3   5     DC-320   .2   5     DC-322   .3   5     DC-323   .2   5 | SAMPLE | 45  | ALLA |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | PPM | PPB  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |     |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-193 | . 4 | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-194 | .2  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-195 | .3  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-208 | .3  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-209 | .7  | 15   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-210 | .6  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-300 | . 5 | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-301 | .3  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-302 | .4  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-303 | .8  | 150  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-304 | .6  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-305 | .3  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-306 | . 4 | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-307 | .6  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-308 | .3  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-309 | . 1 | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-310 | .2  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-311 | .8  | 5    |
| DC-313 .2 5   DC-314 .4 5   DC-315 .3 5   DC-316 .1 5   DC-317 .5 5   DC-318 .3 5   DC-319 .1 5   DC-320 .2 5   DC-321 .3 5   DC-322 .3 5   DC-323 .2 5   DC-324 .1 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-320 .5 5                                                                                                                                                                                                                                                            | DC-312 | .5  | 10   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-313 | .2  | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-314 | . 4 | 5    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-315 | .3  | 5    |
| DC-317 .5 5   DC-318 .3 5   DC-319 .1 5   DC-320 .2 5   DC-321 .3 5   DC-322 .3 5   DC-323 .2 5   DC-323 .2 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                    | DC-316 | - 1 | 5    |
| DC-318 .3 5   DC-319 .1 5   DC-320 .2 5   DC-321 .3 5   DC-322 .3 5   DC-323 .2 5   DC-323 .2 5   DC-325 .2 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                    | DC-317 | .5  | 5    |
| DC-319 .1 5   DC-320 .2 5   DC-321 .3 5   DC-322 .3 5   DC-323 .2 5   DC-323 .2 5   DC-325 .2 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                                  | DC-318 | .3  | 5    |
| DC-320 .2 5   DC-321 .3 5   DC-322 .3 5   DC-323 .2 5   DC-324 .1 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                              | DC-319 | . 1 | 5    |
| DC-321 .3 5   DC-322 .3 5   DC-323 .2 5   DC-324 .1 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                            | DC-320 | .2  | 5    |
| DC-322 .3 5   DC-323 .2 5   DC-324 .1 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                                          | DC-321 | .3  | 5    |
| DC-323 .2 5   DC-324 .1 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                                                        | DC-322 | .3  | 5    |
| DC-324 .1 5   DC-325 .2 5   DC-326 .3 5   DC-327 .3 5   DC-328 .4 5   DC-329 .3 5   DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                                                                      | DC-323 | .2  | 5    |
| DC-325 .2 5<br>DC-326 .3 5<br>DC-327 .3 5<br>DC-328 .4 5<br>DC-329 .3 5<br>DC-329 .3 5<br>DC-329 .3 5                                                                                                                                                                                                                                                                                                                                                                                                                | DC-324 | . 1 | 5    |
| DC-326   .3   5     DC-327   .3   5     DC-328   .4   5     DC-329   .3   5     DC-330   .5   5                                                                                                                                                                                                                                                                                                                                                                                                                      | DC-325 | .2  | 5    |
| DC-327 .3 5<br>DC-328 .4 5<br>DC-329 .3 5<br>DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DC-326 | .3  | 5    |
| DC-328 .4 5<br>DC-329 .3 5<br>DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DC-327 | .3  | 5    |
| DC-329 .3 5<br>DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DC328  | .4  | 5    |
| DC-330 .5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DC-329 | .3  | 5    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC-330 | .5  | 5    |

-

1.4

+

PAGE# 7

.

| SAMPLE  | AG  | AU* |
|---------|-----|-----|
|         | PPM | PPB |
| 00-331  |     | *** |
| 00-332  | • 6 | 20  |
| 00-332  | • / | 5   |
| DC-335  |     | 5   |
| DC-334  | . 6 | 5   |
| DC-3.55 | .5  | 5   |
| DC-337  | .3  | 5   |
| DC-338  | .2  | 5   |
| DC-339  | .3  | 5   |
| DC-340  | . 5 | 5   |
| DC-341  | . 4 | 25  |
| DC-342  |     | 5   |
| DC-343  | .0  | 10  |
| DC-344  | • U |     |
| 00-344  |     | 0   |
| DC-348  | • 2 | 0   |
| DC347   | .5  | 5   |
| DC-348  | .3  | 5   |
| DC-349  | .2  | 5   |
| DC-350  | .3  | 5   |
| DC-351  | .3  | 5   |
| DC-352  | .1  | 5   |
| DC-353  | 1   | 145 |
| DC-354  |     | 5   |
| DC-355  |     | 5   |
| DC-358  | .2. | 5   |
| 00-350  |     |     |
| 00-007  | .4  | 3   |
| DC-364  | 1.1 | 5   |
| DC-365  | 1.0 | 5   |
| DC-366  | . 1 | 5   |
| DC-367  | . 1 | 5   |
| DC-368  | .8  | 5   |
| DC-369  | .5  | 5   |
| DC-370  | .9  | 5   |
| DC-372  | 5   | 50  |
| DC-373  |     | 50  |
| DC-374  | .0  |     |
| 00-07-1 | • / | 5   |
| DC-375  | . 4 | 25  |
| DC-376  | .2  | 30  |
|         |     |     |

-

PAGE# 8

٠

| SAMPLE | AG  | AU* |
|--------|-----|-----|
|        | PPM | PPB |
| DC-377 | .2  | 5   |
| DC-378 |     | 15  |
| DC-379 | .7  | 20  |
| DC-380 | .3  | 5   |
| DC381  | .2  | 5   |
| DC-382 | .1  | 5   |
| DC-383 | .1  | 5   |
| DC-384 | .3  | 5   |
| DC-385 | .1  | 5   |
| DC-386 | .3  | 5   |
| DC-387 | .2  | 5   |
| DC-388 | . 1 | 50  |
| DC-389 | .2  | 5   |
| DC-390 | .2  | 5   |
| DC-391 | . 1 | 20  |
| DC-392 | .2  | 5   |
| DC-393 | .2  | 5   |
| DC-394 | .2  | 5   |
| DC-395 | .3  | 5   |
| DC-396 | .5  | 5   |
| DC-397 | .4  | 5   |
| DC-398 | .3  | 5   |
| DC-399 | .5  | 5   |
| DC-400 | .3  | 5   |
| DC-401 | .2  | 15  |
| DC-402 | .2  | 5   |
| DC-403 | . 4 | 10  |
| DC-404 | .2  | 5   |
| DC-405 | . 1 | 10  |
| DC-406 | .1  | 5   |
| DC-407 | .1  | 5   |
| DC-410 | .2  | 5   |
| DC-411 | .3  | 50  |
| DC-412 | .2  | 5   |
| DC-413 | .5  | 5   |
| DC-414 | .5  | 5   |
| DC-415 | .2  | 5   |

Ξŧ.

PAGE# 9

.

| SAMPLE | AG  | AU* |
|--------|-----|-----|
|        | PPM | PPB |
| DC-416 | . 9 | -   |
| DC-417 | .8  | 5   |
| DC-418 | .7  | 10  |
| DC-419 | .5  | 5   |
| DC-420 | .7  | 5   |
| DC-421 | .8  | 10  |
| DC-422 | .2  | 5   |
| DC-423 | .3  | 5   |
| DC-424 | .8  | 5   |
| DC-425 | 1.0 | 5   |
| DC-426 | .7  | 5   |
| DC-427 | .4  | 5   |
| DC-428 | .5  | 5   |
| DC-429 | . 4 | 5   |
| DC-430 | .6  | 5   |
| DC-431 | .5  | 5   |
| DC-432 | .5  | 5   |
| DC-434 | .3  | 15  |
| DC-435 | . 4 | 5   |
| DC-436 | . 4 | 5   |
| DC-437 | .6  | 45  |
| DC-438 | .5  | 40  |
| DC-439 | . 9 | 30  |
| DC-440 | .5  | 20  |
| DC-441 | . 4 | 35  |
| DC-442 | .5  | 55  |
| DC-443 | . 4 | 5   |
| DC-444 | .5  | 5   |
| DC-445 | .3  | 5   |
| DC-446 | .3  | 25  |
| DC-447 | .3  | 5   |
| DC-448 | .2  | 5   |
| DC449  | .2  | 20  |
| DC-600 | . 4 | 15  |
| DC-601 | . 6 | 10  |
| DC-602 | .5  | 15  |
| DC603  | . 5 | 45  |

-

.

٠

÷

| PAGE# 1 | 0 |
|---------|---|
|---------|---|

.

.

12

.

| SAMPLE | 05  | 011* |
|--------|-----|------|
|        | PPM | PPB  |
|        |     |      |
| DC-604 | .3  | 5    |
| DC-605 | .7  | 5    |
| DC-606 | .6  | 5    |
| DC-607 | .1  | 5    |
| DC608  | . 9 | 10   |
| DC-609 | .9  | 5    |
| DC-610 | 1.2 | 10   |
| DC-611 | .7  | 15   |
| DC-612 | 1.0 | 5    |
| DC-613 | .3  | 5    |
| DC-614 | .5  | 10   |
| DC-615 | .5  | 5    |
| DC-616 | .3  | 5    |
| DC-617 | .5  | 15   |
| DC-618 | .5  | 5    |
| DC-619 | .4  | 15   |
| DC-620 | .6  | 10   |
| DC-621 | .6  | 5    |
| DC-622 | .4  | 5    |
| DC-623 | .3  | 5    |
| DC-624 | .3  | 5    |
| DC-625 | .4  | 5    |
| DC-626 | .4  | 5    |
| DC-627 | .3  | 5    |
| DC-628 | • 2 | 5    |
| DC-629 | .2  | 5    |
| DC-630 | .5  | 10   |
| DC-631 | .8  | 5    |
| DC-632 | . 5 | 5    |
| DC-633 | . 4 | 15   |
| DC-634 | .3  | 200  |
| DC-635 | 1.1 | 190  |
| DC-636 | .8  | 40   |
| DC-637 | 1.0 | 45   |
| DC-438 | .9  | 55   |
| DC-639 | .3  | 5    |
| DC-640 | . 6 | 10   |
|        |     |      |

PAGE# 11

06 L Š

÷

| SAMPLE | 05    | ALIX |
|--------|-------|------|
|        | DDM   | DDD  |
|        | FFN   | FFB  |
| DC-641 | .5    | 5    |
| DC-642 | .9    | 5    |
| DC-643 | . 4   | 5    |
| DC-644 | 5     | 5    |
| DC-645 |       | 5    |
|        |       |      |
| DC-646 | .7    | 5    |
| DC-647 | .7    | 5    |
| DC-648 | 1.2   | 5    |
| DC-649 | 1.1   | 215  |
| DC-650 | .7    | 20   |
| DC-651 | .6    | 5    |
| DC-652 | . 6   | 5    |
| DC-653 | .7    | 10   |
| DC-654 | . 4   | 5    |
| DC-655 |       | 5    |
|        |       |      |
| DC-656 | . 4   | 5    |
| DC-657 | .3    | 5    |
| DC-658 | . 4   | 5    |
| DC-659 | . 4   | 5    |
| DC-660 | .5    | 5    |
| DC-661 | 7     | -    |
| 00-662 |       | 5    |
| DC-663 | .0    | 5    |
| 00-664 | .7    | 75   |
| DC-664 |       | 35   |
|        |       | 5    |
| DC-666 | . 1   | 5    |
| DC-667 | .5    | 5    |
| DC-668 | . 5   | 30   |
| DC-669 | .4    | 5    |
| DC-670 | .5    | 5    |
| DC-671 | .4    | 10   |
| DC-672 | . 4   | 25   |
| DC-673 | . 4   | 10   |
| DC-674 |       | =    |
| DC-675 |       | 20   |
|        | • • • | 4.V  |
| DC-676 | . 4   | 5    |
| DC-677 | .5    | 5    |

-

 $\rightarrow$ 

1.

PAGE# 12

| SAMPLE   | AG  | AU* |
|----------|-----|-----|
|          | PPM | PPB |
| DC-682   | .4  | 5   |
| DC-683   | .6  | 15  |
| DC-684   | .8  | 15  |
| DC-685   | .6  | 5   |
| DC-686   | .5  | 5   |
| DC-687   | .5  | 5   |
| DC-688   | .7  | 5   |
| DC-689   | .5  | 5   |
| DC-690   | .6  | 5   |
| DC-691   | .3  | 5   |
| DC-692   | 1.4 | 15  |
| DC-693   | 1.0 | 5   |
| DC694    | .8  | 5   |
| DC-695   | .6  | 5   |
| DC-696   | .6  | 5   |
| DC-697   | .8  | 5   |
| DC-698   | .7  | 5   |
| DC-699   | .8  | 5   |
| DC-700   | .3  | 5   |
| DC-701   | .3  | 5   |
| DC-702   | .3  | 30  |
| DC-703   | .2  | 5   |
| DC-704   | - 4 | 5   |
| DC-705   | .2  | 5   |
| DC-706 · | .3  | 5   |
| DC-707   | .2  | 5   |
| DC-708   | .2  | 5   |
| DC-709   | . 4 | 5   |
| DC-710   | .2  | 5   |
| DC-711   | .3  | 5   |
| DC-712   | .2  | 5   |
| DC-713   | . 4 | 5   |
| DC-714   | .3  | 5   |
| DC-715   | .5  | 5   |
| DC-716   | .8  | 5   |
| DC-717   | 1.1 | 25  |
| DC-718   | . 6 | 45  |

+

•

|     | - | - |    | a contra |
|-----|---|---|----|----------|
|     | - | - | ** | 1 3      |
| 1 1 | 5 | - | TT | 1 -      |

.

| SAMPL F          | 06  | AL14  |
|------------------|-----|-------|
| ter it it testes | PO  | FILLA |
|                  | FFM | PPB   |
| DC-719           | .3  | 5     |
| DC-720           | .8  | 5     |
| DC-721           | .2  | 5     |
| DC-722           | . 6 | 5     |
| DC-723           | .2  | 5     |
| DC-724           | .3  | 10    |
| DC-725           | .3  | 5     |
| DC-726           | .6  | 5     |
| DC-727           | .3  | 5     |
| DC-728           | .9  | 490   |
| DC-729           | .6  | 25    |
| DC-730           | 1.0 | 470   |
| DC-731           | . 4 | 45    |
| DC-732           | .8  | 5     |
| DC-733           | .8  | 20    |
| DC-734           | . 4 | 40    |
| DC-735           | 1.0 | 45    |
| DC-736           | .5  | 5     |
| DC-737           | .7  | 5     |
| DC-738           | .3  | 5     |
| DC-739           | .8  | 5     |
| DC-740           | .3  | 5     |
| DC-741           | . 5 | 5     |
| DC-742           | . 4 | 5     |
| DC-743           | .3  | 5     |
| DC-744           | . 4 | 5     |
| DC-745           | .3  | 5     |
| DC-746           | .5  | 5     |
| DC-747           | 1.8 | 5     |
| DC-748           | .8  | 5     |
| DC-749           | .7  | 5     |
| DC-750           | . 6 | 5     |
| DC-751           | . 5 | 25    |
| DC-752           | .3  | 5     |
| DC-753           | .4  | 5     |
| DC-754           | . 4 | 5     |
| DC-755           | . 4 | 5     |

PAGE#, 14

٠.

٠

÷.

• •

| SAMPL F   | 05   | A114 |
|-----------|------|------|
|           | HG   | AUX. |
|           | PPM  | PPB  |
| DC-756    | .2   | 1.55 |
| DC-757    | . 4  | 30   |
| DC-758    | 5    | 742  |
| DC-759    |      | 15   |
| DC-750    | . 4  | 15   |
|           | .0   | 5    |
| DC-761    | .6   | 5    |
| CC-1      | - 3  | 5    |
| CC-2      | .5   | 5    |
| CC-3      | . 5  | -    |
| CC-4      | .6   | 5    |
| <b>**</b> | 11.5 |      |
| 00 /      | .3   | 5    |
| CC-8      | .5   | 25   |
| CC-7      | .1   | 15   |
| CC-8      | . 4  | 15   |
| CC-9      | .3   | 5    |
| CC-10     | 4    | 10   |
| CC-11     |      | 10   |
| CC-12     | • 3  | 5    |
| CC-13     | •    | 5    |
| 00 14     | - 4  | 5    |
| LL-14     | .3   | 10   |
| CC-15     | .3   | 1.5  |
| CC-16     |      | 5    |
| CC-17     | 4    | 10   |
| CC-20     |      |      |
| CC-21     | . 4  | 5    |
|           |      |      |
| CC-22     | .8   | 15   |
| CC-23     | .9   | 5    |
| CC-24     | .7   | 5    |
| CC-25     | .6   | 5    |
| CC-26     | .5   | 35   |
| CC-27     | . 5  | 20   |
| CC-29     |      | 15   |
| CC-30     |      | 10   |
| 00-31     |      | 10   |
| CC-322    | • 4  | 10   |
| 66-02     | .5   | 10   |
| CC-33     | .3   | 5    |
| CC-34     | . 4  | 10   |
|           |      |      |

-

.

٩,

PAGE# 15

.

4

٠

.

.

| SAMPLE | AG<br>PPM | AU*<br>PPB |
|--------|-----------|------------|
| CC-35  | . *       | -          |
| CC-36  |           | 5          |
| CC-37  | .4        | - S        |
| CC-38  |           | 5          |
| CC-39  | .6        | 5          |
| CC-40  | .5        | 5          |
| CC-41  | . 6       | 5          |
| CC-42  | .5        | 5          |
| CC-43  | . 6       | 5          |
| CC-44  | .3        | 5          |
| CC-45  | . 4       | 5          |
| CC-46  | .3        | 5          |
| CC-47  | . 6       | 5          |
| CC-48  | .2        | 5          |
| CC-49  | . 4       | 5          |
| CC-50  | .5        | 25         |
| CC-51  | .6        | 35         |
| CC-52  | .5        | 5          |
| CC-53  | .5        | 45         |
| CC-54  | .4        | 30         |
| CC-56  | .3        | 5          |
| CC-57  | .5        | 5          |
| CC-58  | .4        | 5          |
| CC-59  | .3        | 5          |
| CC60   | .4        | 5          |
| CC-62  | .2        | 5          |
| CC63   | . 4       | 5          |
| CC-64  | .5        | 5          |
| CC65   | . 6       | 5          |
| CC-66  | . 4       | 5          |
| CC-67  | .4        | 5          |
| CC-68  | .5        | 5          |
| CC69   | .4        | 5          |
| CC-70  | .3        | 5          |
| CC-71  | . 4       | 5          |
| CC-72  | .2        | 5          |
| CC-73  | .3        | 5          |

~

 $\tilde{R} = -1$ 

-

PAGE# 16

.

| SAMPLE | AG  | AUX |
|--------|-----|-----|
|        | PPM | PPB |
| CC-75  | . 6 | 50  |
| CC-76  | . 4 | 5   |
| CC-77  | 1.0 |     |
| CC-78  | . 4 | 5   |
| CC-79  | . 6 | 5   |
| CC-80  | .5  | 5   |
| CC-81  | .7  | 10  |
| CC-83  | .6  | 5   |
| CC-84  | 1.3 | 5   |
| CC-85  | .6  | 5   |
| CC-86  | .3  | 5   |
| CC-87  | .8  | 5   |
| CC-88  | .9  | 5   |
| CC-89  | .8  | 5   |
| CC91   | 1.5 | 5   |
| CC-92  | 1.6 | 5   |
| CC-93  | .6  | 15  |
| 00-94  | .6  | 10  |
| 00-95  | .7  | 5   |
| CC-96  | 1.0 | 5   |
| CC-97  | .3  | 5   |
| CC-98  | .2  | 5   |
| CC99   | .2  | 5   |
| CC-102 | . 6 | 5   |
| CC-103 | .4  | 5   |
| CC-104 | . 4 | 5   |
| CC-105 | .5  | 5   |
| CC-107 | . 1 | 15  |
| 00-108 | .2  | 10  |
| 00-109 | . 4 | 5.  |
| CC-110 | .5  | 5   |
| 00 112 | .3  | 5   |
| CC-113 | .6  | 5   |
| CC-114 | . 4 | 5   |
| CC-115 | .5  | 5   |
| CC-116 | . 4 | 5   |
| CC-117 | .5  | 5   |

PAGE# 17

| SAMPLE | 05  | 0114 |
|--------|-----|------|
|        | PPM | PPB  |
| CC-118 | ~** |      |
| CC-119 | ./  | 5    |
| 66-100 | .8  | 10   |
| 00 101 | . 3 | 5    |
| CC-121 | .2  | 10   |
| CC-124 | . 1 | 5    |
| CC-125 | .5  | 5    |
| CC-126 | .3  | 5    |
| CC-127 | .4  | 5    |
| CC-128 | .5  | 5    |
| CC-129 | .6  | 5    |
| CC-130 | .8  | 5    |
| CC-131 | .8  | 25   |
| CC-132 | .6  | 30   |
| CC-133 | .6  | 5    |
| CC-134 | .7  | 5    |
| CC-135 | 1.0 | 15   |
| CC-136 | .9  | 10   |
| CC-137 | . 4 | 5    |
| CC-138 | 5   | 10;  |
| CC-139 | .6  | 5    |
| CC-140 | .8  | 5    |
| CC-300 | .7  | 5    |
| CC-301 | 1.0 | 10   |
| CC-302 | .7  | 10   |
| CC-303 | .6  | 5    |
| CC-304 | .5  | 5    |
| CC-306 | . 6 | 15   |
| CC-307 | .5  | 5    |
| CC-308 |     | 5    |
| CC-309 | .7  | 5    |
| CC+310 |     | 5    |
| CC-311 |     |      |
| CC-313 |     |      |
| CC-314 |     | 5    |
| CC314  | • ' | 3    |
| -910   | .0  | 5    |
| CC-317 | 1.2 | 5    |
| CC319  | 1.1 | 5    |

PAGE# 18

| SAMPLE           | AG  | AU*  |
|------------------|-----|------|
|                  | PPM | PPB  |
| CC-319           | c   | er.  |
| CC-320           | 1.0 |      |
| CC-321           | 1.0 | 2    |
| 00-300           | •/  | 5    |
| 00-322           | .0  | 5    |
| CC-323           | 1.3 | 5    |
| CC-324           | 1.2 | 5    |
| CC-325           | 1.0 | 5    |
| CC-326           | .9  | 5    |
| CC-327           | .5  | 5    |
| CC-329           | .7  | 5    |
| CC330            | . 6 | 5    |
| CC-331           | 9   | . 82 |
| CC-332           | .7  | 35   |
| CC-333           | . 4 | 5    |
| CC-334           |     |      |
| Not for the form |     | 5    |
| CC-335           | .2  | 5    |
| CC-336           | .3  | 5    |
| CC-337           | . 4 | 5    |
| CC-338           | .4  | 12   |
| CC-339           | .5  | 5    |
|                  |     |      |
| CC-340           | . 7 | 5    |
| CC-341           | .6  | 30   |
| CC-342           | . 4 | 15   |
| CC-343           | . 4 | 5    |
| CC-344           | .8  | 5    |
| CC-347           | . 4 | 5    |
| CC-348           | . 4 | 5    |
| BCC349           | .1  | 150  |
| CC-350           | 4   | 100  |
| CC-351           | .5  | 5    |
|                  |     |      |
| CC-352           | .5  | 5    |
| CC-353           | .3  | 5    |
| CC-354           | . 4 | 5    |
| CC-355           | .8  | 5    |
| CC-356           | 1.2 | 5    |
| CC-357           | 4   | 5    |
| CC-359           | .0  | 0    |
| 00-000           | 1.0 | 5    |

PAGE# 19

| SAMPLE | AG  | AU* |
|--------|-----|-----|
|        | PPM | PPB |
|        |     |     |
| CC-359 | .5  | 5   |
| CC-360 | .3  | 10  |
| CC-361 | .2  | 15  |
| CC-362 | .3  | 5   |
| CC-363 | .7  | 5   |
| CC-364 | .2  | 5   |
| CC-365 | .2  | 5   |
| CC-366 | . 4 | 5   |
| CC-368 | .5  | 5   |
| CC-369 | .2  | 5   |
| CC-370 | .4  | 5   |
| CC-371 | .3  | 25  |
| CC-373 | .3  | 5   |
| CC-374 | .6  | 25  |
| CC-375 | .4  | 5   |
| CC-376 | .5  | 5   |
| CC-377 | .3  | 5   |
| CC-378 | .4  | 5   |
| CC-379 | .3  | 5   |
| CC-380 | 1.1 | 15  |
| CC-381 | .9  | 5   |
| CC-382 | 1.1 | 5   |
| CC-383 | .3  | 10  |
| CC-384 | .4  | 15  |
| CC-385 | .3  | 5   |
| CC-386 | . 4 | 5   |
| CC-387 | .4  | 10  |
| CC-388 | .7  | 15  |
| CC-389 | .4  | 20  |
| CC-390 | .5  | 5   |
| CC-391 | 1.2 | 5   |
| CC-392 | .7  | 10  |
| CC-393 | 1.0 | 10  |
| CC-394 | . 4 | 10  |
| CC-395 | .3  | 35  |
| CC-396 | . 4 | 5   |
| CC-397 | .3  | 5   |
|        |     |     |

~

PAGE# 20

| 17 A   |        |        |
|--------|--------|--------|
| SAMPLE | AG     | AU*    |
|        | PPM    | PPB    |
| CC398  | . 4    | 5      |
| CC-399 | .9     | 5      |
| CC-400 | .9     | 5      |
| CC-401 | 1.0    | 5      |
| CC-402 | .9     | 5      |
| CC-403 | .3     | 5      |
| CC-404 | .8     | 5      |
| CC-405 | 1.2    | 5      |
| CC-406 | 1.5    | 5      |
| CC-407 | 1.1    | 5      |
| CC-408 | .6     | 5      |
| CC-409 | .5     | 5      |
| CC-411 | .7     | 5      |
| CC-412 | .8     | 35     |
| CC-413 | .8     | 5      |
| CC-415 | .7     | 5      |
| CC-416 | .8     | 5      |
| CC-417 | .7     | 5      |
| CC-418 | .6     | 5      |
| CC-419 | . 6    | 5      |
| CC-420 | .8     | 5      |
| CC-421 | .7     | 5      |
| CC-422 | .7     | 5      |
| CC-423 | . 4    | 5      |
| CC-424 | .6     | 55     |
| CC-425 | .6     | 220    |
| CC-426 | . 4    | 35     |
| CC-601 | .5     | 5      |
| CC-602 | 1.1    | 15     |
| CC-603 | .5     | 5      |
| CC-604 | 1.1    | 5      |
| CC-605 | 1.0    | 5      |
| CC-606 | .8     | 5      |
| CC-607 | 1.2    | 5      |
| CC-608 | .6     | 5      |
| CC-609 | 1.0    | 5      |
| CC-610 | . 4    | 25     |
|        | -51650 | 000000 |

-

PAGE# 21

.

| SAMPLE                                                                                                          | AG  | AU* |
|-----------------------------------------------------------------------------------------------------------------|-----|-----|
|                                                                                                                 | PPM | PPB |
| CC-611                                                                                                          | . 4 | 5   |
| CC-612                                                                                                          |     | 5   |
| CC-613                                                                                                          | . 4 | 5   |
| CC-614                                                                                                          | 5   | 5   |
| CC-615                                                                                                          |     | 142 |
|                                                                                                                 | .,  |     |
| CC-616                                                                                                          | .2  | 5   |
| CC-617                                                                                                          | 1.3 | 5   |
| CC-618                                                                                                          | .2  | 5   |
| CC-619                                                                                                          | 1.2 | 5   |
| CC-620                                                                                                          | .9  | 5   |
| CC-621                                                                                                          | .8  | 5   |
| CC-622                                                                                                          | 3.9 | 5   |
| CC-623                                                                                                          | 1.8 | 5   |
| CC-624                                                                                                          | 2.9 | 5   |
| CC-625                                                                                                          | 1.5 | 5   |
| CC-626                                                                                                          | .8  | 5   |
| CC-627                                                                                                          | 1.0 | 5   |
| CC-628                                                                                                          | .6  | 5   |
| CC-629                                                                                                          | 1.1 | 5   |
| CC-630                                                                                                          | .9  | 5   |
| CC-631                                                                                                          | . 4 | 5   |
| CC-632                                                                                                          | . 4 | 5   |
| CC-633                                                                                                          | .5  | 15  |
| CC-634                                                                                                          |     | 5   |
| CC-635                                                                                                          | .4  | 5   |
| 00 171                                                                                                          |     |     |
| LL-836                                                                                                          | .6  | 5   |
| LC-637                                                                                                          | .5  | 5   |
| CC-638                                                                                                          | . 4 | 5   |
| CC-639                                                                                                          | 1.8 | 5   |
| CC-640                                                                                                          | 1.3 | 5   |
| CC-641                                                                                                          | 1.9 | 10  |
| CC-642                                                                                                          | .5  | 5   |
| CC-643                                                                                                          | .3  | 15  |
| CC-644                                                                                                          | . 4 | 5   |
| CC-645                                                                                                          | .8  | 5   |
| CC-647                                                                                                          | .7  | 110 |
| CC-648                                                                                                          | .8  | 5   |
| Contraction of the second s |     |     |

PAGE# 22

| SAMPLE     | 0.5  |     |  |
|------------|------|-----|--|
|            | AG   | AU* |  |
|            | PPM  | PPB |  |
| CC-649     | . 8  | 15  |  |
| CC-650     |      | 30  |  |
| CC-651     |      | 50  |  |
| CC-652     |      | 0   |  |
| CC-653     |      | 5   |  |
|            | • ** | 9   |  |
| CC-654     | А    |     |  |
| CC-655     | .4   | 5   |  |
| CC-656     | • 4  | 3   |  |
| CC-657     | • 0  | 0   |  |
| CC-658     | • 4  | 3   |  |
|            | • •  | 35  |  |
| CC659      | . 4  | 45  |  |
| CC-660     | .5   | 100 |  |
| CC-661     | .5   | 25  |  |
| CC-662     | .7   | 95  |  |
| CC-663     | .3   | 250 |  |
| CC-664     |      | -   |  |
| CC-665     | • 4  | 5   |  |
| CC-666     | .2   | 5   |  |
| CC-667     | .5   | 75  |  |
| CC-6670    | . 5  | 5   |  |
| 00-00/H    | ./   | 50  |  |
| CC-668     | 1.2  | 75  |  |
| CC-669     | .8   | 50  |  |
| CC-670     | 2.4  | 150 |  |
| CC-671     |      | 35  |  |
| CC-672     | 5.1  | 405 |  |
| CC-673     | 2    |     |  |
| CC-674     | . 4  | 55  |  |
| CC-475     | 1.5  | 20  |  |
| CC BL 28MM | .8   | 80  |  |
|            | • 4  | 5   |  |
| CC ZONW SP | .6   | 10  |  |

з.

ACME ANALYTICAL LABORATORIES LTD. 852 C. HASTINGS, VANCOUVER B.C. DATE REPORTS MAILED July PH: (604) 253-3158 COMPUTER LINE: 251-1011

DATE RECEIVED JUNE 26 1984

#### GEOCHEMICAL ASSAY CERTIFICATE

A .50 5M SAMPLE IS DISESTED WITH 3 ML OF 3:1:3 HCL:HN03:H20 AT 90 DEG. C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : PB ZN SAMPLE TYPE : PULP

1\_\_\_ DEAN TOYE, CERTIFIED B.C. ASSAYER ASSAYER

T. LISLE FILE# 84-1131 (RE)

PAGE# 1

| SAMPLE | PB  | ZN   |
|--------|-----|------|
|        | PPM | PPM  |
| DC-1   | 30  | 140  |
| DC-3   | 14  | 98   |
| DC-4   | 22  | 120  |
| DC-5   | 17  | 86   |
| DC6    | 21  | 240  |
| DC-7   | 22  | 220  |
| DC8    | 33  | 235  |
| DC-9   | 28  | 560  |
| DC-10  | 15  | 21'5 |
| DC-11  | 14  | 96   |
| DC-12  | 22  | 124  |
| DC-13  | 14  | 156  |
| DC-14  | 13  | 124  |
| DC-15  | 21  | 200  |
| DC-16  | 16  | 215  |
| DC-17  | 27  | 172  |
| DC-18  | 14  | 158  |
| DC-19  | 15  | 176  |
| DC-20  | 22  | 315  |
| DC-21  | 25  | 192  |
| DC-22  | 17  | 190  |
| DC-23  | 18  | 205  |
| DC-24  | 21  | 108  |
| DC-25  | 14  | 142  |
| DC-26  | 19  | 295  |
| DC-27  | 23  | 152  |
| DC-28  | 25  | 320  |
| DC-29  | 7   | 50   |
| DC-30  | 18  | 124  |
| DC-31  | 9   | 54   |
| DC-32  | 20  | 110  |
| DC-33  | 22  | 196  |
| DC-34  | 18  | 182  |
| DC-35  | 42  | 485  |
| DC-36  | 15  | 146  |
| 00-37  | 21  | 192  |

18

166

DC-38

PAGE#

÷

٠

| SAMPLE         | PR   | 7N   |
|----------------|------|------|
|                | PPM  | PPM  |
| 0070           | og   |      |
| 00-42          | 20   | 1/6  |
| DC-42<br>DC-42 | 24   | 118  |
| DC-44          | 14   | 10.4 |
| DC-45          | 27   | 146  |
|                |      | 110  |
| DC-46          | 21   | 605  |
| DC-47          | 18   | 96   |
| DC-48          | 24   | 140  |
| DC-49          | 18   | 178  |
| DC-50          | 12   | 320  |
| DC51           | 14   | 108  |
| DC-52          | 24   | 112  |
| DC-53          | 29   | 132  |
| DC-54          | 25   | 134  |
| DC55           | 28   | 740  |
|                |      | 100  |
| DC-56          | 31   | 315  |
| DC-57          | - 26 | 154  |
| DC-58          | 14   | 110  |
| DC-59          | 27   | 210  |
| DC-20          | 23   | 106  |
| 00-61          | 25   | 270  |
| 00-67          | 20   | 270  |
| DC-62          | 37   | 200  |
| DC-63          | 24   | 100  |
| DC-64          | 17   | 215  |
| 00-00          | 17   | 128  |
| DC-66          | 14   | 136  |
| DC-67          | 16   | 124  |
| DC-68          | 14   | 160  |
| DC-69          | 58   | 255  |
| DC-70          | 25   | 440  |
| DC-71          | 27   | 150  |
| DC-72          | 26   | 150  |
| DC-73          | 19   | 190  |
| DC-74          | 39   | 460  |
| DC-75          | 20   | 360  |
| DC 7/          |      |      |
| DC-76          | 17   | 136  |
| DC-//          | 18   | 152  |

1

1

-

4

•

×.

.

| SAMPLE | PB  | ZN  |
|--------|-----|-----|
|        | PPM | PPM |
| DC-78  | 28  | 126 |
| DC-79  | 24  | 124 |
| DC-80  | 20  | 106 |
| DC-81  | 25  | 295 |
| DC-82  | 38  | 140 |
| DC-83  | 40  | 134 |
| DC-84  | 58  | 215 |
| DC-85  | 32  | 240 |
| DC-86  | 25  | 170 |
| DC-87  | 19  | 220 |
| DC-88  | 21  | 166 |
| DC-89  | 23  | 116 |
| DC90   | 26  | 120 |
| DC-91  | 25  | 198 |
| DC-92  | 30  | 136 |
| DC-93  | 21  | 670 |
| DC-94  | 23  | 255 |
| DC-95  | 17  | 120 |
| DC-96  | 29  | 130 |
| DC-97  | 32  | 260 |
| DC-98  | 32  | 174 |
| DC-102 | 31  | 285 |
| DC-103 | 21  | 142 |
| DC-104 | 37  | 295 |
| DC-105 | 17  | 142 |
| DC-106 | 15  | 114 |
| DC-107 | 13  | 126 |
| DC-108 | 11  | 138 |
| DC-109 | 14  | 186 |
| DC-110 | 12  | 255 |
| DC-111 | 14  | 225 |
| DC-112 | 15  | 100 |
| DC-113 | 14  | 96  |
| DC-114 | 20  | 215 |
| DC-115 | 39  | 168 |
| DC-116 | 32  | 162 |
| DC-117 | :39 | 138 |
| DC-118 | 24  | 114 |
| DC-119 | 10  | 50  |
| DC-120 | 40  | 132 |

PAGE# 3

٠

.

61.1

1.4

.

PAGE# /

•

| SAMPLE | PB  | ZN   |
|--------|-----|------|
|        | PPM | PPB  |
| DC-121 | 30  | 166  |
| DC-137 | 23  | 128  |
| DC-138 | 40  | 425  |
| DC-139 | 32  | 185  |
| DC-140 | 20  | 130  |
| DC-141 | 29  | 200  |
| DC-142 | 16  | 160  |
| DC-143 | 21  | 305  |
| DC-144 | 20  | 290  |
| DC-145 | 25  | 1440 |
| DC-146 | 26  | 1700 |
| DC-147 | 24  | 670  |
| DC-148 | 24  | 640  |
| DC-300 | 30  | 130  |
| DC-301 | 27  | 102  |
| DC-302 | 29  | 184  |
| DC-303 | 16  | 62   |
| DC-304 | 27  | 178  |
| DC-305 | 30  | 104  |
| DC-306 | 27  | 94   |
| DC-307 | 28  | 136  |
| DC-308 | 34  | 96   |
| DC-309 | 31  | 94   |
| DC-310 | 20  | 86   |
| DC-311 | 24  | 188  |
| DC-312 | 25  | 114  |
| DC-313 | 17  | 102  |
| DC-314 | 25  | 200  |
| DC-315 | 18  | 88   |
| DC-316 | 19  | 186  |
| DC-317 | 15  | 205  |
| DC-318 | 29  | 146  |
| DC-319 | 20  | 162  |
| DC-320 | 15  | 132  |
| DC-321 | 16  | 134  |
| DC-322 | 17  | 125  |
| DC-323 | 15  | 60   |
|        |     |      |

PAGE# 5

| SAMPLE | PB  | ZN  |
|--------|-----|-----|
|        | PPM | PPM |
| DC-324 | 13  | 102 |
| DC-325 | 12  | 78  |
| DC-326 | 14  | 126 |
| 00-327 | 41  | 108 |
| DC-328 | 34  | 205 |
| DC-329 | 29  | 150 |
| DC-330 | 22  | 260 |
| DC-331 | 24  | 165 |
| DC-332 | 21  | 110 |
| DC-333 | 20  | 108 |
| DC-334 | 15  | 106 |
| DC-335 | 22  | 112 |
| DC-337 | 18  | 120 |
| DC-338 | 20  | 124 |
| DC-339 | 30  | 220 |
| DC-340 | 34  | 200 |
| DC-341 | 35  | 192 |
| DC-342 | 35  | 126 |
| DC-343 | 34  | 174 |
| DC-344 | 32  | 136 |
| DC-346 | 32  | 112 |
| DC-347 | 31  | 126 |
| DC-348 | 33  | 114 |
| DC-349 | 39  | 120 |
| DC-350 | 40  | 122 |
| DC-351 | 16  | 84  |
| DC-352 | 19  | 94  |
| DC-353 | 16  | 160 |
| DC-354 | 17  | 158 |
| DC-355 | 15  | 102 |
| DC-358 | 13  | 108 |
| DC-359 | 40  | 205 |
| DC364  | 28  | 350 |
| DC-365 | 27  | 335 |
| DC-366 | 25  | 96  |
| DC-367 | 23  | 98  |
| DC-368 | 30  | 210 |

PAGE# 6

| SOMPLE            | PB  | 751        |
|-------------------|-----|------------|
| Carrier In Sector | PPM | PPM        |
|                   |     |            |
| DC-369            | 24  | 102        |
| DC-370            | 27  | 200        |
| DC-372            | 28  | 124        |
| DC-373            | 20  | 205        |
| DC-370            | 21  | 170        |
| 00-074            | -21 | 172        |
| DC-375            | 26  | 148        |
| DC-376            | 25  | 1.9        |
| DC-377            | 23  | 705        |
| DC-378            | 35  | 520        |
| DC-379            | 44  | 895        |
|                   |     | 0.0        |
| DC-600            | 19  | 195        |
| DC-601            | 15  | 315        |
| DC-602            | 20  | 120        |
| DC-603            | 24  | 94         |
| DC-604            | 17  | 150        |
|                   |     |            |
| DC-605            | 156 | 1100       |
| DC-606            | 21  | 215        |
| DC-607            | 22  | 870        |
| DC-608            | 32  | 305        |
| DC-609            | 21  | 430        |
|                   |     |            |
| DC-610            | 98  | 915        |
| DC-611            | 22  | 400        |
| DC-612            | 14  | 350        |
| DC-613            | 18  | 98         |
| DC-614            | 33  | 156        |
|                   |     | 120000-000 |
| DC-615            | 28  | 320        |
| DC-616            | 29  | 196        |
| DC-617            | 25  | 305        |
| DC-618            | 27  | 305        |
| DC-619            | 24  | 158        |
|                   |     |            |
| DC620             | 30  | 140        |
| DC-621            | 24  | 240        |
| DC-622            | 24  | 142        |
| DC-623            | 16  | 110        |
| DC-624            | 15  | 104        |
| 00 (05            | 07  | 1.47       |
| 00-825            | 20  | 146        |
| 06-626            | 24  | 102        |

•

-

| SAMPLE | PB  | ZN   |
|--------|-----|------|
|        | PPM | PPM  |
| DC-627 | 22  | 72   |
| DC-628 | 11  | 40   |
| DC-629 | 21  | 120  |
| 00-630 | 20  | 280  |
| DC631  | 25  | 615  |
| DC-632 | 28  | 164  |
| DC-633 | 33  | 205  |
| DC-634 | 29  | 110  |
| DC-635 | 13  | 142  |
| DC-636 | 12  | 84   |
| DC-637 | 19  | 78   |
| DC-638 | 52  | 106  |
| DC-639 | 27  | 132  |
| DC-640 | 31  | 114  |
| DC-641 | 35  | 240  |
| DC-642 | 25  | 275  |
| DC-643 | 24  | 88   |
| DC-644 | 23  | 105  |
| DC-645 | 19  | 118  |
| DC-646 | 27  | 115  |
| DC647  | 22  | 164  |
| DC-648 | 30  | 1180 |
| DC-649 | 12  | 176  |
| DC-650 | 25  | 103  |
| DC651  | 26  | 128  |
| DC-652 | 15  | 146  |
| DC653  | 25  | 205  |
| DC-654 | 3   | 138  |
| DC-655 | 24  | 144  |
| DC-656 | 22  | 156  |
| DC657  | 21  | 150  |
| DC-658 | 20  | 140  |
| DC-659 | 10  | 105  |
| DC-660 | 24  | 118  |
| DC-661 | 20  | 124  |
| DC-662 | 23  | 160  |
| DC-663 | 15  | 72   |
|        |     |      |

PAGE# 7

.

.

-

.

1.14

•

| SAMPLE          | PB   | 71  |
|-----------------|------|-----|
| ter to to he he | PPM  | DDM |
|                 | rrn. | ren |
| DC-664          | 21   | 134 |
| DC-665          | 27   | 172 |
| DC-666          | 31   | 215 |
| DC-667          | 28   | 176 |
| DC-668          | 30   | 158 |
| DC-669          | 25   | 192 |
| DC-670          | 24   | 196 |
| DC-671          | 16   | 205 |
| DC672           | 26   | 130 |
| DC-673          | 34   | 112 |
| DC-674          | '27  | 99  |
| DC-675          | 32   | 105 |
| DC-676          | 32   | 114 |
| DC-677          | 25   | 172 |
| DC-682          | 33   | 134 |
| 00-683          | 26   | 122 |
| 00-684          | 20   | 150 |
| DC-685          | 27   | 144 |
| DC-686          | 37   | 122 |
| DC-687          | 30   | 140 |
| 00-400          | 20   |     |
| DC-666          | 28   | 144 |
| 00-667          | 27   | 00  |
| DC-690          | 24   | 110 |
| DC-691          | 24   | 118 |
| DG-072          | 20   | 663 |
| DC-693          | 29   | 235 |
| DC-694          | 35   | 220 |

PAGE# 8

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604)253-3158 COMPUTER LINE:251-1011

11

DATE RECEIVED JUNE 20 1984

DATE REPORTS MAILED

#### GEOCHEMICAL ASSAY CERTIFICATE

A .50 6M SAMPLE IS DIGESTED WITH 3 ML OF 3:1:3 HCL:HN03:H20 AT 90 DE5. C. FOR 1 HOUR. THE SAMPLE IS DILUTED TO 10 MLS WITH WATER. ELEMENTS ANALYSED BY AA : AG AU SAMPLE TYPE : P1-4 SOIL P5-6 ROCY.

AUT - 10 GM, IGNITED, HDT AQUA REGIA LEACHED, MIBK EXTRACTION, AA ANALYSIS.

| ASSAYER | N Leger | DEAN | TOYE, | CERTIFIED | B.C. | ASSAYER |
|---------|---------|------|-------|-----------|------|---------|
|         | /       |      |       |           |      |         |

T.LISLE' FILE# 84-1190

PAGE# 1

| SAMPLE | AG  | AU* |
|--------|-----|-----|
|        | PPM | PPB |
| VB-1   | . 4 | 420 |
| VB-2   | 1.7 | 10  |
| VB-3   | .7  | 50  |
| VB-4   | .7  | 15  |
| VB-5   | .8  | 5   |
| VB-6   | 1.0 | 5   |
| VB-7   | .8  | 5   |
| VB-8   | .6  | 50  |
| VB-9   | 3.7 | 580 |
| VB-10  | 4.0 | 55  |
| VB-11  | .5  | 5   |
| VB-12  | . 4 | 10  |
| VB-13  | . 4 | 5   |
| VB-14  | .5  | 5   |
| VB-15  | .2  | 5   |
| VB-16  | .3  | 10  |
| VB-17  | . 5 | 5   |
| VB-18  | .5  | 15  |
| VB-19  | . 6 | 35  |
| VB-20  | . 4 | 25  |
| VB-21  | .4  | 20  |
| VB-22  | . 4 | 5   |
| VB-23  | .3  | 5   |
| VB-24  | .2  | 5   |
| VB-25  | .4  | 5   |
| VB-26  | .3  | 5   |
| VB-27  | .3  | 5   |
| VB-28  | .3  | 10  |
| VB-29  | . 4 | 5   |
| VT-70  | 2.6 | 360 |
| VT-71  | .5  | 10  |
| VT-72  | 1.0 | 10  |
| VT-73  | 3.0 | 20  |
| VT-74  | . 6 | 5   |
| VT-75  | . 1 | 5   |
| VT-76  | 1.0 | 10  |
| VT-77  | . 7 | 15  |
|        |     |     |

| SAMPLE                                    | 45                     | AUX  |
|-------------------------------------------|------------------------|------|
|                                           | PPM                    | PPB  |
| 1. A. |                        |      |
| VT78                                      | .7                     | 20   |
| VT-79                                     | .4                     | 5    |
| VT-80                                     | .2                     | 5    |
| VT-81                                     | .3                     | 90   |
| VT-82                                     | .4                     | 35   |
| VT-83                                     | .3                     | 120  |
| VT-84                                     | .2                     | 10   |
| VT-85                                     | .2                     | 95   |
| VT-86                                     | .1                     | 5    |
| VT-87                                     | . 1                    | 30   |
| VT-BB                                     | 1                      | 20   |
| VT-89                                     | . 1                    | 35   |
| VT-90                                     | 5                      | 1 55 |
| VT-91                                     | • ••<br>• <del>•</del> | 25   |
| UT-92                                     |                        | 75   |
| VI 72                                     | • •                    | 0.0  |
| VT-93                                     | . 1                    | 25   |
| VT-94                                     | .1                     | 40   |
| VT-95                                     | .3                     | 5    |
| VM-31                                     | -1                     | 5    |
| VM-32                                     | . 1                    | 10   |
| VM-33                                     | . 1                    | 5    |
| VM-34                                     | .2                     | 5    |
| VM-35                                     | . 6                    | 10   |
| VM-36                                     |                        | 40   |
| VM-37                                     | . 1                    | 70   |
| VM-38                                     | 2                      | 5    |
| UM-30                                     |                        | 10   |
| VM-40                                     |                        | 5    |
| UM-41                                     |                        | 10   |
| VM-42                                     | . 1                    | 5    |
| UM-43                                     | 7                      | 102  |
| UM-AA                                     |                        | AF   |
| UM-AS                                     | • 4                    | 45   |
| VM-44                                     |                        | 10   |
| UM-40                                     | • 2                    | 10   |
| Aldard V                                  | .1                     | 5    |
| 9M-49                                     | .3                     | 5    |
| VM50                                      | .2                     | 15   |

| SAMPLE | AG  | AU* |
|--------|-----|-----|
|        | PPM | PPB |
| VM-51  | .3  | 5   |
| VM-53  | 1.0 | 485 |
| DC-678 | .5  | 25  |
| DC-679 | 1.4 | 60  |
| DC680  | 2.7 | 820 |
| DC-681 | 1.9 | 190 |
|        |     |     |

# T.E. LISLE & ASSOCIATES LTD.

TELEPHONE: OFFICE 682-1927

GEOLOGISTS

422 - 470 GRANVILLE STREET, VANCOUVER, B.C. V6C 1V5

APPENDIX 3 CERTIFICATION

I, Thomas E. Lisle, of 145 West Rockland Road, North Vancouver, British Columbia, do hereby certify as follows:

- That I am a geologist with Business address at 422, 470 Granville Street, Vancouver, B.C.
- 2) I graduated from the University of British Columbia with a Bachelor of Science in 1964 and have practiced my profession continuously since that time.
- 3) I am a member in good standing of the Geological Association of Canada, Canadian Institute of Mining and Metallurgy, Association of Professional Engineers of B.C.

. • . DICK CREEK GRID COPPER CREEK GRID | 800SE 1600 NV 400 NN l 1200 1 4005 800 | 4000 S | 2400 | 1200 | 1600 00 1 2800 1 2 000 2800 N 13200 | 3600 4400 | 5600 2000 1 2400 6 000 1600 CAMP 650 ..8 600 1.0 .7 .2 1.2 1.3 1.8 ..8 5 550 \_.7 .4 L. / Ŀə ., .2 .6 .6 .3 .0 .7 .9 500 \_1.2 ·3 .3 .2 <u>|</u>.2 .7 .5 <u>.</u>3 •4 N.S. .2 - 1.6 N.S. .7 / 1.0 •9 l\_•6 .4 وب •1 .5 - 1.5 1.1 •4 .4 1.0 · 8 ..5 @ & · · 8 1.2 •4 .7 .5 .7 •6 <u>.</u>4 350 .7 .4 .7 -•9 .9 [·9 •5 W 11 '4 .6 .3 . 6 .5 1.4 300 •6 .5 <u>.</u>6 .7 -.5 .4 ..7 .3 .4 .5 .7 250 .7 / .7 •2 .5 •2 1.6 ۍ. • 6 ·2 .3 1.2 1.5 L-3 NS. .5 R.Ø • 2 <u>200</u> L:3 .3 •6 1.6 و. .3 •4 •4 •4 •4 · N.S. \_N.S .9 150 .5 .3 1.4 .5 .4 N.S. 1.5 1.3 •7 .5 1.1 NS 100 <u>.</u>.5 . .3 · 8 .3 .. 7 .5 .4 LIO .4 1.2 1 '8 1.9 <u>50</u> .6 .5 • 4 • / .6 •2 + 15 <u>'-'8</u> 1.0 .6 1.0 .5 \_\_\_\_ 1.5 •5 1.2 <u>i</u>4\_\_\_\_ <u>50 SW</u> N.S 5 .3 <u>·</u>3 <u>-5</u> 1.0 .8 1.5 .4 1.9 .6 •6 .3 .2 100 \_.3 4 1./ 1.9 .9 -4 1.8 •8 .5 .3 .1 150 1.1 1.6 1.5 <u>.</u>5 •7 L·3 1.3 1.1 1.0 200 1.7 1.0 业 ,-1.4 <u>•</u>5 -2 -8 1.8 .5 1.3 STAR 250 •4 \_.4 .5 N.S / 1.1 .3 •4 Ŀ1 . • 6 5. 1.6777 300 •3 • 3 .2 <u>:</u>6 46 .6 .3 ·8 .5 1.8 1 -1 .3 .4 2.4 N.S. 350 ·2 \_-.3 <u>:</u>6 .4 •4 . 8 .5 •3 · \_\_\_\_\_ .5 \_ 1.2 .2 1.2 .2 400 1.9 .6 1.3 .9 [·3 <sup>·</sup> NS. <u>.</u>4 .5 • 3 .7 <u>.</u>5 •3 .2 .3 11.2 .4/ 1./ <u>·</u> 4 1.3 1.2 1 450 1.3 .2 1.5 .4 .5 \_3 NS 12-21 .3 .5 1 -1 •4 1.5 •4 •3 1.2 •2 .3 N.S. + Course Talus. -1 500 <u>·2</u> .2 .3 N.S ./ .4 <u>.</u>:4 ..2 1.5 .4 ਾ 3 - 2 \_.2 \_\_\_\_ .1 ·2 .4 <u>\_·3</u> 1.1 // 550 ..5 .4 <u>[:2</u> .5 •1 \_.4 -2 .3 .8 1.2 .3 .3 \_ .3 1.5 600 <u>·</u>2 •/ ·2 .3 <u>•</u>3 •3 1.1 .2 ..2 .2 .2 •2 \_ <u>|</u>.2 •2 <u>650</u> .3 Ŀ/ <u>·2</u> L.e L.6 <u>·</u>3 •/ 1.7 .2 •4 <u>.</u>2 .4 1.5 1.3 NS. SEEX .3 .3 0 LEGEND ---- ROADS, TRENCHES . ----- CUT GRID LINES ---- FLAGGED GRID LINES. CREEKS - DRILL HOLES 1970 - 1.2 1.2 PPM. AG. ·. 🛇 R ROCK CHIP • SELECT SOIL OR ROCK FINES.  $\otimes$ ;

• -•





.

FIG.5.



1 1600 NW MN 007 | | &00 SE 1 400 0 S E | 400 SE 1 1200 12000 800 1 1600 2800 1 1200 | 5400 00 13600 1 4400 \$200 \_\_\_\_  $\Diamond$ STARI / STAR star 2 NE CAMP Ŀ **五**(1) <u>65</u>0 1 r<sup>98</sup> -220 r''8 г *295* \_1180 -220 r/02 1-895 F 120 600 Ø \_350 144 <u>ب</u>د : 235 - 164 - 106 -255 - 1 14 . 124 520 \_(A0 550 \_400 124 .665 - 100 .176 - 188 115 -120 \_610 \_ 105 670 500 ど \_915 126 \_146 166 -86 \_118 118 -136 - 18 - 1700 450 \_430 152 .98 605 - 192 -94 105 .148 -198 1440 (12 <u>400</u> 305 +,700 <u>94</u> lee - 136 - 96 -96 - 146 172 -120 . 290 350 . 485 -116 -870 \_140 186 \_144 -360 275 205 -108 305 300 \_215 460 \_178 - 182 -94 \_140 240 \_110 - 166 124 / 160 250 L196 122 1100 104\_ \_ 190 \_320 -114 -765 \_220 -~5 200 200 260 \_ 150 \_ 150 178 108 .110 \_1/66 - 132 \_200 \_ 170 130 150 .94 -150 \_150 - 112/ 158 \_54 5 \_106 62 240 - 102 .185 100 .120 . 440 <u>/132</u> -2/05 \_184 -2/5 . 124 -122 18 . 210 -425 -136 <u>50</u> \_315 \_102 255 \_134 84 1-108 50 -134 -98 - 128 760 125 350 140 130 142 172 156 130 140 96 176 114\_\_\_\_ <u>50 S</u>W 200 \_/10 -315 -98 \_152 103 -105 \_320 260 200 -335 166 100 -88/ 154 28 128 \_205/ 174 295 \_196 \_98 \_192 350 -132 1/2 150 -186 \_164 110 \_120 \_146 - 142 \_112 \_305 - 1 - 50/ -12d

| 200                                              | ່າ   | 205      | 210   | .86   | -108  | _205 | 139 _615                 | _305                    | 174                              |            | ¥       |             |          |        |   |   |
|--------------------------------------------------|------|----------|-------|-------|-------|------|--------------------------|-------------------------|----------------------------------|------------|---------|-------------|----------|--------|---|---|
| <u>250</u>                                       | STAR | -146     | 106   | 240   | 205   | _138 | 205 _280                 | D _158                  | 136 ¥                            | <u></u>    |         | 138         | -        |        |   | ī |
| 300                                              |      | -162     | _270  | 220   | .190  | 144  | 196 _124                 | 4 _140                  | 1 ×                              |            | 1 285   | -162        | _        |        |   |   |
| 350                                              |      | -132     | 205   | _235  | 192   | 156/ | 60                       | o <u>2</u> 40           | -172                             | 205        | _ 142   | _ 168       | <b>_</b> |        | _ |   |
| <u>400</u>                                       |      | _134     | _160  | -560  | -305  | _150 | _158 _                   | _142_                   | 126                              | _108       | 295     | -215        | -        |        | _ |   |
| 450                                              |      | _125     | 215   | _215  | _176  | _140 | 176 _7                   | 2 _                     | - 114                            | -          | 142     | _96         | -        | _      |   |   |
| 500                                              |      | 80       | 128   | _96   | -158  | 106  | 215 _[0                  | 02                      | -120                             | _          | 114     | _/00        |          | -      | _ |   |
| 550                                              |      | _ 102    | _136  | _ 124 | - 172 | _118 | 172 14                   |                         | - 122                            | _102       | 126     | _225        |          | -      | - |   |
| 600                                              | }    | - 78     | .124  | 156   | _215  | 124  | _134 _10                 | 04 _ /                  | _ 84                             | _158       | 138     | _255        |          | _      |   |   |
| <u>650</u>                                       | Į    | 126      | . 160 | _124  | _200  | 160  | -78 -1                   | 10 _ /                  | _94                              | _160       |         | 186         | · . [    | [      |   |   |
| GEOLOGICAL BRANCH<br>ASSESSMENT REPORT<br>12,430 |      |          |       |       |       |      |                          |                         |                                  |            |         |             |          |        |   |   |
|                                                  |      | <u></u>  |       |       |       |      |                          |                         | UNITED CAMBRIDGE MINES LIMITED.  |            |         |             |          |        |   |   |
|                                                  | RC   | ADS, TRE | NCHES |       |       |      |                          | 51A                     | STAR MINERAL LLAIMS - AILIN M.D. |            |         |             |          |        |   |   |
| CUT GRID LINES<br>                               |      |          |       |       |       |      | GEOCHEMICAL SURVEY ZINC. |                         |                                  |            |         |             |          |        |   |   |
| DRILL HOLES 1970                                 |      |          |       |       |       |      | Sco                      | Scale 1: 5000 JULY / 84 |                                  |            |         |             |          |        |   |   |
| F 123                                            | 123  | PPM ZINC |       |       |       |      |                          |                         | 0                                | 50 100 150 | 200 250 | 300 350 400 | 450 500  | METERS |   |   |