Province of British Columbia Ministry of Energy, Mines and Petroleum Resources # ASSESSMENT REPORT TITLE PAGE AND SUMMARY | TYPE OF REPORT/SURVEY(S) | | TOTAL COST | |---|---|--| | Geophysical Surveys: EM-37 and Mise | e-a-la-masse | \$57,341.00 | | AUTHORIS) . C. Dyson | | | | (J. L. LeBel, C. Pawluk) | | | | ATE STATEMENT OF EXPLORATION AND DEVELOPM | ENT FILED | YEAR OF WORK . 1983 | | ROPERTY NAME(S) CAROL S., CAROL S2-S3., T. | ANJA. S., MARJND. S., E | FREM. S., LUCIA. S., JANIA. S2-S4 | | OMMODITIES PRESENT Copper | | •••••• | | | | | | MINING DIVISION Victoria | NTS | 92C/15. & 16. | | IAMES and NUMBERS of all mineral tenures in good standing | g (when work was done) that for
or Certified Mining Lesse ML 12 | m the property [Examples: TAX 1-4, FIRE 2
(claims involved)]: | | CAROL S (20 units) 644; TANIA S (20 | | | | MARINO S (20 units) 647; CAROL S2 (2 | 하면 경기를 가면 되었다. | | | TANIA S2 (15 units) 683; TANIA S3 (| 워킹 (프로마스) 이 (요리 아니라 (요리) | 경기 : 프리지 (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | WNER(s) CAROL S3 (20 units) 686. | F8. PULPEZ, PP75. 10040 | ***. **************************** | | MMEH(2) | | | | , E. & L. Specogna | (2) | | | ************************* | | | | AILING ADDRESS | | | | 1704 Centenary Drive | C C | THEFT | | Nana,imo., B., C | *********************************** | GGICALBRAN | | PERATOR(S) (that is, Company paying for the work) | n 0 3 | MENT PEPO | | Chevron Canada Resources Limited | (2) | | | | ··· ···· / ···· | A | | MAILING ADDRESS | | i de la | | 1900-1055 West Hastings St. | | | | Vancouver, B.C. | 34 | Batter Da Brown | | V6E 2E9 | E | | | UMMARY GEOLOGY (lithology, age, structure, alteration, mi | ineralization, size, and ettitude): | | | Claims underlain by Paleozoic Sicker intruded by a large body of Jurassic | | | | | | | | consisting of quartz-pyrite-chalcopyr | [발문이고 발전되었다] [하다 전][[발문이시아 (하다 전기에 의하는]][[[발문이 | | | the CAROL S. claim. | | | | | | | | | | | | REFERENCES TO PREVIOUS WORK . ASSESSMENT T | eport of geological | -geochemical work completed o | | CAROL S. TANIA S. LUCIA S. MARINO.S. CAROL S3 claims, by Chevron Canada Re- | CAROL. S2. EFREM. S
sources Limited. Jul | TANIA.S2, TANIA.S3, TANIA.S4,
ly 26, 1983, C.V. Dyson, P.Er | #### ASSESSMENT REPORT on EM-37 and Mise-a-la Masse GEOPHYSICAL SURVEYS on the CAROL S (COWICHAN GROUP #1) and TANIA S4 (COWICHAN GROUP #2) claims in the VICTORIA MINING DIVISION N.T.S. 92C/15 and 16 Latitude 48°58'N, Longitude 124°30'W by MPH CONSULTING LIMITED for CHEVRON CANADA RESOURCES LIMITED June 1984, C.V. Dyson, P.Eng. GEOLOGICAL BRANCH ASSESSMENT REPORT 12,445 #### TABLE OF CONTENTS | | Page | |-----------------------------|------| | SUMMARY | 1 , | | STATEMENT OF COSTS | 2 , | | STATEMENT OF QUALIFICATIONS | 3 / | #### FIGURE Fig. 1 Claim Grouping Following Page 1, #### APPENDIX A Report on Geophysical Surveys, Heather Property by MPH Consulting Limited, January 1984, J. L. LeBel, P.Eng., C. Pawluk, B.Sc.1984. #### SUMMARY MPH Consulting Limited were contracted by Chevron Canada Resources Limited in November 1983 to carry out ground geophysical surveys in selected areas of the CAROL S, TANIA S, LUCIA S, MARINO S, EFREM S, CAROL S2, TANIA S2, TANIA S3, TANIA S4, CAROL S3 claims in the Victoria Mining Division, B. C. The survey work was carried out between November 4 and December 15th 1983 by MPH Consulting Limited who sub-contracted the line cutting stage to Bema Industries Ltd. of Vancouver. Both C. V. Dyson, P.Eng. (Senior Geologist) and J. P. Steele, P.Eng. (Senior Geophysicist) of Chevron Canada Resources Limited provided presurvey input and on-site liaison with the contractors. The surveys were carried out in a competent and professional manner by the contractors who submitted a full report on their activities. The report on geophysical surveys is appended as Appendix A and submitted for assessment credits on the COWICHAN #1 (CAROL S, CAROL S2-S3, TANIA S, MARINO S) and COWICHAN #2 (EFREM S, LUCIA S, TANIA S2-S4) claim groupings (Fig. 1). The total cost of the geophysical surveys is \$57,341. as detailed in the accompanying statement of costs. Respectfully submitted C. V. Dyson, P.Eng. Senior Geologist # STATEMENT OF COSTS | FIELD PERSONNEL (Contract) | | |--|-------------| | MPH Consultants: Larry LeBel 10 days @\$450/day | \$ 4,500.00 | | Geophysical Crew: C. Pawluk, J. Ashenhurst, R. Krawinkel,
T. Archibald - 21 days @\$950/day | 19,950.00 | | Bema Industries: Linecutting (18 L km) | 12,826.00 | | SERVICES | | | Food/Accommodation: (21 days x 4 men) 84 man days @\$50/day | 4,200.00 | | Truck Rental: 21 days @\$65.00 | 1,365.00 | | Instrument Rentals: EM-37 21 days @\$500/day | 10,500.00 | | Mob/Demob: | 1,000.00 | | Report Preparation/Interpretation: | 3,000.00 | | | \$57,341.00 | 000 #### STATEMENT OF QUALIFICATIONS I, Colin Dyson, am a member of the Association of Professional Engineers of the Province of British Columbia and have an office at 1900 - 1055 West Hastings Street, Vancouver, B.C. V6E 2E9. I am a graduate of the University of Manchester, England (B.Sc. Hons. 1963). I worked in mineral exploration since 1964 and am a member of the Geological Association of Canada and the Society of Economic Geologists. C. V. Dyson, P.Eng. June 1984 # REPORT ON GEOPHYSICAL SURVEYS HEATHER PROPERTY CAROL S, TANIA S, LUCIA S, MARINO S CAROL S2, EFRAM S, TANIA S2, TANIA 3, TANIA S4, CAROL S3 CLAIMS VICTORIA MINING DIVISION NTS 92 C 15 and 16 Latitude 48°58'N, Longitude 124°30'W for CHEVRON CANADA RESOURCES LIMITED January, 1984 Toronto, Ontario J.L. LeBel, P.Eng. C. Pawluk, B.Sc. MPH Consulting Limited # TABLE OF CONTENTS | | | | PAGE | NO. | • | |-----|------|---------------------------------------|-------|-----|---| | 1.0 | INTR | ODUCTION | 1 | (| | | 2.0 | PROP | ERTY, LOCATION AND ACCESS | 2 | , | | | 3.0 | GEOL | DGY AND MINERALIZATION | 5 | . / | | | | 3.1 | Regional Geology | 5 | | | | | 3.2 | Property Geology | 5 | , | | | | 3.3 | Mineralization | 6 | , | | | 4.0 | PREV | IOUS WORK | 7 | | | | 5.0 | INST | RUMENTATION AND SURVEY PROCEDURES | 8 | 1 | | | | 5.1 | Line Cutting | 8 | 3 , | | | | 5.2 | Transient Electromagnetic Survey | 8 | 3 | | | | 5.3 | Mise-a-la-Masse Survey | 12 | 2 . | | | | 5.4 | Personnel | 13 | 3 | | | 6.0 | PRES | ENTATION OF DATA | 14 | , | | | 7.0 | RESU | LTS AND INTERPRETATION | 15 | · / | | | | 7.1 | Showing Area | 15 | , | | | | | 7.1.1 Transient Electromagnetic Surve | ey 15 | 5 , | | | | | 7.1.2 Mise-a-la-Masse Survey | 15 | , · | | | | 7.2 | Area 1 | 16 | ί, | | | 8.0 | CONC | LUSIONS AND RECOMMENDATIONS | 17 | 1 | | #### 1.0 INTRODUCTION This report presents the results of a program of transient electromagnetic and mise-a-la-masse geophysical surveys conducted on the Chevron Canada Resources Limited, Heather Property located on southern Vancouver Island. The surveys were conducted on two areas designated the Showing Area and Area 1. In the Showing Area, both transient electromagnetic and mise-a-la-masse surveys were conducted. In Area 1 only transient electromagnetic measurements were made. The purpose of the surveys was: - Showing Area identify the geophysical response of and trace the extent of a showing of Au, Cu and Zn mineralization; - (ii) Area 1 locate the cause of weak airborne electromagnetic anomalies and related copper soil geochemical anomalies. The surveys were conducted by MPH Consulting Limited of Toronto, Ontario during the period November 4 to December 15, 1983. The program was under the direction of J.L. LeBel, P.Eng. and C. Pawluk, B.Sc. The survey progressed at a relatively slow pace because of heavy precipitation, including snow, which made movement on the steep terraine particularly treacherous. #
TABLE OF CONTENTS (cont'd.) # PAGE NO. CERTIFICATE APPENDIX I Transient Electromagnetic Survey Data Model for Showing Area, Line 0+00 APPENDIX II APPENDIX III Transient Electromagnetic Modelling Results APPENDIX IV Equipment Specifications LIST OF FIGURES Figure 1 Location Map 3 Figure 2 Claim Map 4 Showing Area, Grid Plan Figure 3 Figure 4 Area 1, Grid Plan 10 Mise-a-la-masse Survey, Showing Area Map 1 backpocket #### 2.0 PROPERTY, LOCATION AND ACCESS The Heather property consists of 10 mineral claims (191 units), the status of which is summarized below. | Claim Name | No. of Units | Record Date | Record No. | |------------|--------------|-----------------|------------| | CAROL S | 20 | August 3, 1982 | 644 | | TANIA S | 20 | August 3, 1982 | 645 | | LUCIA S | 20 | August 3, 1982 | 646 | | MARINO S | 20 | August 3, 1982 | 647 | | CAROL S2 | 20 | August 3, 1982 | 648 | | EFREM S | 20 | August 3, 1982 | 649 | | TANIA S2 | 15 | October 5, 1982 | 683 | | TANIA S3 | 20 | October 5, 1982 | 684 | | TANIA S4 | 16 | October 5, 1982 | 685 | | CAROL S3 | 20 | October 5, 1982 | 686 | The geophysical surveys described herein focussed on the Carol S claim (Showing Area) and the Tania S4 claim (Area 1). The property is located at the west end of Cowichan Lake on the southern end of Vancouver Island, approximatley 20 km west of the town of Youkou, B.C. at latitude 48°38'N, and longitude 124°30'W in the Victoria Mining Division-NTS 92 C15 and 16 (Figures 1 and 2). Access to the property is gained from Youbou by either the north or south shore Cowichan Lake roads to the Crown Zellerbach main line. A network of branch logging roads provides access to the immediate areas of the surveys. Road conditions at the time of the survey were poor because of heavy precipitation which caused numerous wash outs and threatened some of the bridges crossing creeks in the survey area. ### 3.0 GEOLOGY AND MINERALIZATION ## 3.1 Regional Geology The region is underlain by the rocks of the Sicker Group. The three major formations of the Sicker Group are the Buttle Lake Formation, Myra Formation and Nitinat Formation. The lowermost Nitinat formation is composed of 8,000 to 10,000 feet of altered basalt flows, breccias and tuffs which are in turn overlain, intercalated and interfingered with greywacke, argillite, felsic tuffs, mafic intrusives and chert of the Myra formation. These are unconformably overlain by up to 2,000 feet of crinoidal and cherty limestone and argillite of the Buttle Lake Formation. # 3.2 Property Geology Although all the Sicker Group formations are present on the property, the Myra formation is of primary interest as it hosts the Westmin Resources deposits at Buttle Lake and at Mount Sicker. Both of the grids used in this survey are located within the boundries of the 1 to 1.5 kilometer wide, northwesterly striking, steeply dipping (45° - 90°) Myra formation. It is composed of a series of well bedded tuffs and tuffaceous sediments (in some cases shaley). The tuffs are rhyodacitic in composition although some rare quartz eyes have been located which may indicate the presence of some rhyolite tuffs. The entire formation is highly contorted suggesting the entire Sicker Group may be highly deformed. A green tuff unit, a maroon tuff unit, and a silty tuff unit comprise the three main units of the Myra Formation. The green tuff appears to be the main volcanic unit and lies above and below the other two units with the maroon tuff overlying the silty tuff. The maroon tuff is very well bedded and locally resembles shale. The silty unit is also well bedded (beds approximately 1-2" thick) and is locally well sheared. Most of the faulting seems to have been in the silty unit. Medium to coarse grained diorite intrudes both the Myra and the Nitinat Formations. One of these diorite intrusions underlies the area covered by Area 1. # 3.3 Mineralization The only significant mineralization recognized on the property consists of stringer to massive sulphides composed of quartz/pyrite/chalcopyrite exposed in a trench centered in the Showing Area. The zone is hosted by an altered (clay, chlorite and sericite) silty tuff centered in a large antiform. Taken by itself, the showing is probably unimportant but it may represent a stringer sulphide zone on the fringe of a massive sulphide body or a faulted remnant of a massive sulphide. ## 4.0 PREVIOUS WORK Previous work conducted on the property consisted of geological mapping, soil geochemical surveys and an Input MVI helicopter airborne electromagnetic survey. The soil geochemical survey detected a good multi-element (Au, Cu and Zn) anomaly in the Showing Area. Moderate Cu soil geochemical anomalies were outlined on either side of Area 1. These anomalies may be linked together with other anomalies in the area to form a semi-continuous, 2 km long zone apparently related to the altered silty tuff horizon of the Myra Formation. The Input airborne electromagnetic survey detected several weak 1 and 2 channel anomalies in the vicinity of Area 1. The anomalies could be attributed to any number of sources such as: - (i) deeply buried massive sulphide body; - (ii) shallow disseminated sulphide body or sulphide body composed principally of sphalerite and galena; - (iii) geological feature such as a contact or fault; - (iv) noise. No Input anomalies were registered over the Showing Area. # 5.0 INSTRUMENTATION AND SURVEY PROCEDURES # 5.1 Line Cutting Two grids to accomodate the survey were cut by Bema Industries Limited. The grids were oriented so that the transmitter loops for the transient electromagnetic survey would be as close to planar as possible. As a consequence, their orientation ignored local geologic trends. In the Showing Area, the grid was centered on the Showing. The baseline extends 400m east and 400m at an azimuth of 090° from the showing. 400m long lines were established at 100m intervals along the base line extept at the center of the grid where lines were established at 25m intervals (Figure 3). In Area 1, the grid consists of a 800m long base line with an azimuth of 000° with 800m long lines located at 100m intervals (Figure 4). # 5.2 Transient Electromagnetic Survey The transient electromagnetic survey was conducted with a Geonics EM-37 system. Specifications of the EM-37 are detailed in Appendix III. The survey was conducted in the Turam Mode with large transmitter loops. One 800 x 400m transmitter loop was established in the Showing Area and two 800 x 300m were set up in Area 1 as indicated in figures 3 and 4. An alternating commutated square wave curent form is impressed into the transmitter loop. The current in the transmitter is turned off abruptly producing a large electromagnetic field in the ground. The repetition rate of the current wave form was set at 30 hz to respect the expected high background resistivities in the area. Components of the secondary field induced by primary field are measured with a mobile receiver loop approximately lm in diameter. In this case, components in the x, y and z directions where x is taken parallel to the line direction, were measured. In order to keep the orientation of the receiver coil as constant as possible, orientations are defined as true directions rather than with respect to the plane of the transmitter. Measurement of all of the components of the secondary fields is essential in determining the size and orientation of cause of any anomalies. Also, it was considered important to measure all of the components because the ultimate strike and dip of any conductors in the area was not precisely known. The EM-37 records the secondary fields across 20 gates spaced at logarithmic intervals after the current in the transmitter is terminated. Readings were taken at 25m and/or 50m intervals inside the transmitter loop. Measuring inside of the transmitter loop assures that the primary field is as uniform as possible and coupled with attempts to keep the transmitter in the plane of the topography reduces topographic effects that otherwise might be present. Unfortunately, with this configuration, a vertical sheet-like conductor located in the middle of the loop will be zero coupled with the primary field and will not generate an anomalous secondary field. To increase the extent of areal coverage in Area 1, a limited amount of coverage was affected outside of the transmitter loops. The data collected were reduced and plotted using the Geonics "GSP37" processing software. The following data was acquired: Showing area: L 2+00W, 1+50N - 1+00S L 1+00W, 1+75N - 1+00S L 0+00, 1+50N - 1+00S L 1+00E, 1+50N - 1+50S Area 1: Loop 1 (west) 2+00N, 0+25W - 2+75W 1+00N, 0+25W - 2+75W 0+00, 0+25W - 2+75W 0+50E - 3+00E 1+00S, 0+25W - 2+75W 2+00S, 0+25W - 4+00W 3+00S, 0+25W - 4+00W Loop 2 (east) 0+00, 0+25E - 3+75E Data was collected on lines 2+00S, 1+00N and 2+00N in Area 1 but not saved because of failure of the data logger attributed to excessively wet conditions. 1+00S, 0+25E - 3+75E # 5.3 Mise-a-la-Masse-Survey The mise-a-la-masse survey was conducted on the Showing Area with a Huntec Mark IV 2.5 kw induced polarization system. Specifications of the Huntec system are detailed in Appendix III. Two separate current electrodes, designated electrode 1 and electrode 2, were installed in the showing on line 0+00 at 0+25N and 0+25S, respectively. Each electrode consisted of 3 stakes wrapped with aluminum foil which were jammed into holes excavated by a portable drill. The infinite current electrode consisted of a sheet of aluminum foil placed in a pit. It was located approximately 1 km south of the centre of the grid. The mobile potential electrode consisted of a steel rod. The infinite potential reference electrode consisted of a sheet of Aluminum foil located approximately 800m north of the centre of the grid. Current was transmitted sequentially through the two current electrodes and primary voltage measurements were made along the survey lines. Currents were in the 200
to 300 ma range with the transmitter voltage set at 2,200 volts. Measurements were not taken along line 0+00 because most of the stations were located on an abandoned logging road where the potential electrode could not be driven into the ground. # 5.4 Personnel The MPH Consulting Limited personnel involved in the survey were: - L. LeBel, Senior Geophysical Consultant - C. Pawluk, Geophysicist - J. Ashenhurst, Technician - R. Krawinkel, Technician - T. Archibald, Technician #### 6.0 PRESENTATION OF DATA The results of the transient electromagnetic survey are presented in Appendix I. Plots of the components of the secondary fields (dB/dt) in NV/Am² versus position are given for all 20 channels on each line. Modelling results attempted for the results from the Showing Area using the "MODLSU" program of the GSP37 software are presented in Appendix II. The field data is shown as a dotted line, while the theoretical data is indicated by a solid line. Appendix III contains a suite of models to illustrate the response of some typical conductors. The model adopted consists of a 300m by 100m plate with a conductance of 10 siemens (mho). A conductance of 10 may be low for a massive sulphide body but is considered adequately representative of a vein stringer disseminated type sulphide body. The plate is positioned in the center of an 800m by 400m transmitter loop with a strike parallel to the long dimension of the transmitter. Other strike directions would result in similarly shaped anomalies with appropriately reduced amplitudes. Results were calculated for various dips of the plate at depths of 50m and 150m. The model results assume that the transmitter loop lies in the xy-plane. In the survey areas this condition was not necessarily maintained because the x-direction was defined as true vertical and the transmitter was positioned on the land surface which, in places, sloped at up to 45°. The results of the mise-a-la-masse survey for each current electrode position are illustrated on Map 1. The maps show the primary voltage normalized by the current in units volts/amp. Contours are at semi logarithmic intervals ... 1.0, 1.5, 2.0, 3.0, 5.0, 7.5, 10.0 ... #### 7.0 RESULTS AND INTERPRETATION ## 7.1 Showing Area # 7.1.1 Transient Electromagnetic Survey A weak 'cross-over' anomaly in the Z (vertical) component was recorded by the early channels at about station 1+00N on line 0+00. The observed response is consistent with the response expected at the north edge of a flat lying sheet with a conductance of 2 seimens and located at a depth of 50m as shown by the model modelling results in Appendix II. No response that would serve to indicate the southern edge of the sheet was recorded on the southern end of line 0+00. Note, however, that data was not collected south of the station 1+00S because of a culvert located at 1+50S. It is also possible that the edge of the sheet occurs outside of loop beyond the limits of the survey. No anomalous responses were recorded on line 1+00W. A pseudo cross-over response observed at 0+75S on line 1+00E could not be satisfactorily modelled when considered in light of the anomaly observed on line 0+00. This response may be a topographic effect caused by a steep slope between 1+00S and the end of line 1+00E at 2+00S, Elsewhere on the grid, no anomalies similar to the modelled responses for some typical examples shown in Appendix III were recorded. # 7.1.2 Mise-a-la-Masse Survey The contoured primary voltages of the mise-a-la-masse survey produce ellipses of low eccentricity. The highest eccentricity (ratio of major axes of the ellipse to the minor axes of the ellipse) of approximately 2 occurs in a 100m x 50m area centered on electrode 2. The ellipses are elongated in a northwest/southeast direction parallel to the geological trend. Considered separately, the results from each current electrode are consistent with the presence of a 75m x 30m conductor underneath each electrode. When the results are compared, however, it can be seen that the electrodes produce ellipses that are independent of each other. This implies that if a conductor is present it has extremely low, laterally varying conductivity. The results may also be explained by a northwest trending zone of high resistivity flanked by low resistivities. This explanation concurs with the transient electromagnetic survey which did not detect a discrete conductive body. # 7.2 Area 1 No transient electromagnetic anomalies similar to those illustrated by the modelling results in Appendix III were recorded in Area 1. By way of general comments that pertain to both survey areas, it can be seen that the secondary field components decay to essentially zero amplitude by channel 10. This situation is a consequence of the high resistivities in the area which, according to the results of the mise-a-la-masse survey fall in the range of 2,000 ohm-m to 4,000 ohm-m. ## 8.0 CONCLUSIONS AND RECOMMENDATIONS A poor, partially defined transient electromagnetic anomaly detected in the Showing Area may be explained by a small, shallow, low conductance flat lying sheet. The mise-a-la-masse survey results may also indicate a poor areally limited conductor but the results can also be explained by geological circumstances. The size of the conductor, if present, is too small to be of economic interest. Nothing of interest was detected in Area 1. The surveys covered only a small part of the Heather property. Economic potential for the property appears to be at depth. To completely evaluate the property additional coverage with a deep penetrating high resolution geophysical method like the transient electromagnetic method is recommended. The modelling done indicates that a hypothetical, 300m by 100m, 10 siemen sulphide body should be detectable to a depth of at least 150m. Respectedity J.L. Lebe Ling Eng C. Pawluk, Geophysicist MPH CONSULTING LIMITED #### CERTIFICATE - I, J.L. LeBel of Vancouver, British Columbia hereby certify that: - I hold a Bachelor of Science degree in Geological Engineering from Queen's University, Ontario, and a Master of Science degree in Geophysics from the University of Manitoba, Manitoba. I have practiced my profession in exploration geophysics continuously since graduation in 1972. - 2) I am a Professional Engineer registered with the Association of Professional Engineers of British Columbia. - I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience in geophysical methods and interpretation and on the results of the field work conducted on the property. - 4) I hold no interest, directly or indirectly in this property other than professional fees, nor do I expect to receive any interest in the property or in Chevron Canada Resources Limited or in any of its subsiduary companies. J.L. LeBel, P.Eng. Toronto, Ontario, January, 1984 # APPENDIX I Transient Electromagnetic Data Showing Area Area 1 (west transmitter loop) Area 1 (east transmitter loop) Data file 1854P LinE 828 - I Component 652/dT ind Amin TOFF corrected | 1.5 | 4 | 1000 00 | |-----|----|---------| | 10 | • | 300 00 | | 10 | 3 | 100 00 | | 1.0 | 5 | 30 00 | | 1.0 | 7 | 10.00 | | 10 | 3 | 3.00 | | 10 | 20 | : 00 | Data File ZUSHR LINE 02N - S Component dBS/dT FnM Ame F TOFF corrected | 10000_
05000_
05000_
05000_
05000_
05000_ | 10000_
05000_
05000_
05000_
05000_ | Channels | | 9 ca 1 | 2 | | | |--|--|----------|-------|------------------------|----------------------------|----------------------------|-------------------------| | | | - MANAGE | 10 | 1
4
6
8
20 | 100
50
30
10
2 | 99
99
99
90
90 | | | | | 1ega | 95.03 | 0000_ | 8588_ | 1000 | 15011 | | | | - | 1 | _ | | <i>_</i> | ~
—1 | | | | _ | | | = | | `, | | | | | | | | | — ⁴
′∕
— 5
— 3 | | | | = | | | | ^
 | ;
;
; | | | | | | | | | | Deta vile IwinF LINE JEW V Component dB's dI +nV Ame : TOFF corrected | | anne | | Scal | | | |------------------|----------------|----------------|-------------------------------|--|---| | ₩-156 to Galtore | 10 10 10 10 10 | e longation | 1000
100
30
15
10 | 00
00
00
00
00
00
00 | | | 1005 | 0505_ | 9000_ | 65011 | 10011 | 15011 | | | | -, | | | 1 | | | | | === | ,, | <u>~</u> 3 | | _ | | | | , | | | | | | | - | 3 | | | | \(\sigma\) | | V
S | —3
=1
=5 | | = | 1 | | | | | | | 6 7 89 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | 5 7 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | 6 7 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | 5 7 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Data +:le INSHR LINE 01W - Z Component dBZ/dT (nW-Am2); TOFF corrected | Channel | 7 | Scale | • | |--------------------------------------|------------------------|------------------------------|----------------------------| | 1 to
2 to
4 to
5 to
8 to | 1
3
4
7
20 | 1000
100
30
10
1 | 00
00
00
00
00 | | 1005_ | 10000 | 05011_ | 150H_ | | <u> </u> | | | 1 2 | | | | | 7. | | | | | 5 6 7 | | | | | 8
9
10 | | | | | 112 12 13 14 15 | | | | | 16
17
18
19 | | , | | | 20 | Osta +:le 1WSHF LINE 01W X Component dBX/dT (nV/Am²); TOFF corrected | Channel | s | Scale | • | | |---|----------|-------------------------------------|--|--------------------------------------| | 1 to
2 to
3 to
4 to
5 to
8 to
10 to | 12341-96 | 1000
300
100
30
10
3 | .00
.00
.00
.00
.00
.00 | | | 1005 | 0000_ | 950H_ | 1258_ | 1 | | | ~ | | | -1 | | | | <u> </u>
| <u> </u> | - 3
- 4 | | | | <u>~</u> | | - 5
- 6
- 7 | | 2 | _ | | _
==================================== | -8
=9 | | | | | | - 10
- 11
- 12
- 13 | | | | | | = 14
- 15
= 16
= 17
= 18 | | | | | === | = 20 | Osts tile IMSHP LINE OIM - Y Component dBY/dT :nW/Hm+2: TOFF corrected Scale Channels | -010 4 5 0 | to to to | 107376570 | | 500.00
100.00
50.00
10.00
3.00 | | |-------------------|-----------|-----------|-----------------|--|------------------------------------| | 1005_ | 0505_ | 0255_ | 025H_ | 875H_ | 15811_ | | / | <u> </u> | | / | | 1 | | | <u> </u> | | <u> </u> | | 2 3 | | | | | <u> </u> | | 4
5
6 | | _ | <i>/=</i> | | , ^^ | 7 | <u></u> | | | | | 3 | | 3
9
10
11
12 | | | | | | | 13
=== 14
==== 15
==== 16 | | = | | | | | 17
18
19
20 | Data *:1e 0005HP LINE 000 I Component dBZ/dT (nV/Am²): TOFF corrected | Ch | anne | is | Scale | | | |-----------|----------------------------|----------------------|-----------------------------------|--|-------------------| | 401040100 | to
to
to
to
to | 1235670 | 500
100
30
15
5
31 | 00
00
00
00
00
00
00 | | | 1005 | 0508_ | 0005_
0255_ | 050N_
025H_ | 12 | 1504 | | / | | | \ | _ | → 1 | | 1 / | | - | 7 | $\frac{1}{2}$ | \
\
\
-3 | | | | | <u></u> | | ∵⁴
—5 | |] / | | | | | 6 | | = | ~~~
==== | | | | | | = | | $\overline{\otimes}$ | | Ξ | = 13
= 13 | | = | | | | = | = 14
= 15 | LINE 000 Component dBX/dT inv Am2+, TOFF corrected | | anne | | | | ca | | | | | | |-------|----------|--------|-------|----------|----------------------|----------|----------------------|-----|---|-----------| | 12358 | 10 | 241.00 | | | 100
30
10
3 | 0 1 | 96
99
99
99 | | | | | 1085_ | 0508_ | 0255_ | -2000 | 925H_ | 050H_ | | | === | 1000 | 195 | | on. | | === | = | | == | -5- | - | - | 7 | 1 | | - | - | == | - | - | _ | \sim | - | - | - | 2 | | - | | | | | | | | | | | | | <u>\</u> | = | | = | <u>~</u> | <u> </u> | - | | | 3 4 | | | | = | | <u>-</u> | <u></u> | | | | /= - | 3 4 | | / | | | | | | | <u>-</u> | | | 7 | | | | | | | | | | | = | 6 | | | | | | | | | - | | == | 67 | | | | | - | | | | | | ======================================= | 67 | | | | | | | | | | | = = = = = = = = = = = = = = = = = = = | 89 | | | | | | | | | | | | 67 | | | | | | | | | | | | 67 | | | | | | | | | | | | 67 | | | | | | | | | | | | 67 | | | | | | | | | | | | 67 89 | | | | | | | | | | | | 67 89 | | | | | | | | | | | | 67 | | | | | | | | | | | | 1 1 1 1 1 | Data *:1e 0003HP LINE 000 - Y Component dBY:dT (nV:Am2); TOFF corrected | cn | annei | 5 | | Sea | le | | |-------|-------|---------------------|-------|---------------|--------------------------------------|---------------| | 12341 | 10 | 1
23
20
20 | | 50
10
1 | 0.00
0.00
0.00
0.00
1.00 | | | 1008_ | 0505_ | 0255_ | -3000 | 02511_ | 959H_ | Tine. | | 1 1 | | | | - · · | | | | | | | | | J _A | 7,3 | | | | | _ | | 7 | ≥5
>6 | | = | | = | _ | | | | | = | | | = | = | = | = 10
== 11 | | | | | | | | - 12
- 13 | | == | _ | _ | | | - doing | = 14 | | | | | - | | _ | = 15 | | - | | | | | | 16
17 | | - | | - | | - | | == 1 3 | | | _ | | _ | | | = 19
= 20 | | | | | | | | | Sets tile 1ESHF LINE 01E - Z Component aBZ:dT inv:Am2:: TOFF corrected | Channe | 18 | | sle | | | |--|--------------|-------|--|-----------------------|---------------------------------------| | 1 to
2 to
3 to
4 to
6 to
7 to | E Consister | 3 | 00.00
00.00
30.00
10.00
3.00 | a
a
a
a
a | | | 1908 | 858 <u>-</u> | 0000_ | 05011 | -tour- | 150H | | | | | 1 | | -2 | | 7 | F | | | 7 | 7 | | # | | _
 | | | 7 3 9 | | | | | | | 10
-11
-12
-13
-14
-15 | | | | | | | = 16
= 17
= 13
= 19
= 20 | Data *ile 155HP LINE 01E - % Component dBazdT (nU/Am²); TOFF corrected | Ch | annel | ı E | Scale | | | |-----------|----------------------------|-----------------|--|----------------------------------|---------------------| | 103346810 | 10
10
10
10
10 | 500 - 1 G GTO - | 1000
300
100
30
10
3
1 | 00
00
00
00
00
00 | | | 1508_ | 1085 | 0505_ | 0000 | 05011 | 1001 | | | | _ | | | - 11. | | | | | | 1 | ×. | | | | | | - , | — ²
~ | | _ | | | | | — 3
 | | <u></u> | | | | | 4
5 | | _
> | | | === | _ | — 6.
— 7 | | = | | | == | === | —3
₹3 | | _ | | | | | 10
11 | | | 100 | | | | $= \frac{12}{13}$ | | = | | | | | | | = | | | | | | | | | | | | 1 4
1 5 | | | | | | | 1 5
1 5
1 6 | | | | | | | 1 5
1 5
1 6 | | | | | | | 1 5
1 5
1 6 | Cars tile 185mF Line 01E - 7 Component SB: dT inv Am2 : TOFF corrected | Cr. | anne | ls | Boale | | | |--------------|---------|-------------------|-----------------------------|----------------------------|--------| | to tollation | 10 | 50 00 00 to 10 00 | 300
100
30
10
3 | 98
98
99
99
99 | | | 1505 | 1905_ (| 05,05 | | 050K | 19011 | | | | _ | | | 1
2 | | / | 1 | | | | 3
4 | | | | - | _~ | | | | / / | | | | | | | / / | Data file OdUHIR LINE GOA - Z Component dB2/dF (nV/Am2): 10FF corrected Data file 00WAIF LINE 000 X Component dBA/dT (nV/Am2), TOFF corrected Data +11e 00WA1F LINE 000 - Y Component dB)/dT 'nW/Am='; IOFF corrected Scale Channels | | annei | 5 | Scale | | | | |-----------|-------------|----------|--|-----------------------------|-----------------------|--| | 123458106 | to to to to | 12347.95 | 3000 00
1000 00
300 00
20 00
10 00
3 00
1 00 | | | | | 0506 | 1996_ | 150E_ | 200E_ | 250E_ | 350E_ | | | _ | | | | 7 | <u></u> | | | == | | | - | $\stackrel{\diamond}{\sim}$ | <u></u> 3 | | | = | | | | ~~ | <u>_</u> , | | | | | | | | | | | = | | | | \cong | 5
6
7 | | | | | | | | 5
5
7
2
9 | == 16 == 17 == 19 == 13 | 1234500
16 050E | | 1
2
3
4
9
15
20 | 36 | 900 0
900 0
200 0
15 0
3 0
1 0 | e
e
e
e | | |--------------------|----------|-----------------------------------|-----------------|---|------------------|---| | 050 | | | | .5 | 9 | | | , Í' | 100E_ | 150E_ | 2005 | 250E_ | 350E_
325E_ | t | | | | <u> </u> | == . | $\overline{\nabla}$ | Δ= | 1 | | | | | <u></u> | | ~~
 | : 2 | | = | | | <u></u> | . | / | - 4 | | | * | | | Ž | | 5 6 7 8 9 | | 11/1/// | \ | | | | | 1 | | | - | | | <u> </u> | | - 1 5 | | | | | | \cong | | 18 | | 1 to
2 to
3 to
4 to
8 to
11 to
14 to | 1
2
3
7
10
13
20 | 1 | 000 0
100 0
30 0
10 0
3 0
1 0 | 0
0
0
0
0 | | |--|------------------------------------|----------|--|-----------------------|--------------------| | 050E | 1586 | 200E_ | 2506_ | 350E | ı | | >=== | | | <u>^</u> | ~ | - 1 | | | | | | | . 3 | | | | <u> </u> | | /
 | 4 | | | | _ | | === | - 6
- 7 | | \leq | | | <u> </u> | | - 3
- 9
= 10 | | \equiv | | | | | 1,1 | | | | | | | 14
15
16 | | | | | | | 18 | Dara *:le ISAIEP LINE 019 — I Component gBZ dT (nV/Am2); TOFF corrected | Channels | | | Scale | | | |----------|----|--------|------------------------|--|--| | 1247.0 | 10 | 1769.6 | 3000
300
10
3 | | | | - 3 | | - | - | N | (2) | 61 61 | |-----|-----|---|-----|-----|------|---------| | | Ji. | 3 | CA. | 420 | 1.75 | to UT | | 3 | 7 | 2 | 9 | 9 | 9 | 0.0 | | 3 | 77 | m | ITT | m | m | (m) (m) | | | | | 1 | 1 | 1 | 1 1 . | | | | | | | | 1 1 1 | =13 Data file ISAIEP LINE DIS () Component dBX/dT (nV/Ami); TOFF corrected | Ch | annel | Ŧ | S | cale | | | |-----------------------|----------------|--------------|----------|--------------------------------------|------------------|----------------------| | 1
2
3
4
8 | to
to
to | - 16H21-0 | 1 | 000.0
100.0
30.0
3.0
1.0 | e
0
0
0 | | | 050E | 1005_ | 150E_ | 200E | 250E_ | 325E | 7505 | | 本 | <u></u> | | | \mathcal{A} | | \
_1
-2 | | \overline{C} | | - | <u>~</u> | | V | - 3
->
 | | | | $\frac{1}{}$ | | | | 5
5
7 | | | | | | | | <pre></pre> | | = | | = | = | | ~ | = 13
= 14 | | | | THE IS | | | | - 15
- 16
- 17 | | | \equiv | | | | | = 18
= 19 | | | | | | | | -20 | Data +:le 1881ER LINE 015 / Component dBY-dT -nW-8m2+, TOFF corrected | ch | anne | 13 | 15 | Scale | | | |---------|----------------------|-----------|-------------|--------------------------------------|----------------------------|--------------------------| | 1034810 | to
to
to
to | 1007.00 | | 300 (
100 (
50 (
2 (
1 (| 10
10
10
10
10 | | | 050E | TeeE_ | 1505 | 2005 | 250E_ < | 325E_ | ı | | <u></u> | <u></u> | | | ノ \
<u> </u> | 1 | -1
-2 | | | <u> </u> | ====
= | | ~
\$= | | = 3
- 4
- 5 | | 7 | <u> </u> | | | | | 8
- 7
- 8
- 9 | | | <i>,</i> — | | > | | * | 410
=11
-12
-13 | | | | | | ~ | | = 14
= 15
- 16 | | Ξ | | | | | | -17
-18
-19
-20 | Data *11e ENAIME LINE 02H _ Z Component dBZ/dT -nV/Am21) TOFF corrected Data tile ENAINR LINE 02N X Commonent dBXxdT (nVxAm2); TOFF corrected Scale Channels Data tile 2NAIWR LINE 02N - Y Component dBY.dT inv/Amil. TOFF corrected Scale
Channels | 123457 | 10 | 1013460 | 5 | 00 00
00 00
30 00
10 00
3 00
1 00 | | |--------|------|---------|-------------|--|-------| | 2754 | 2504 | 2004_ | 1504 | 1000 | 025W_ | | _ | | | \triangle | - | 1 | | 1 to 1 700.00
2 to 2 100.00
3 to 3 30.00
4 to 5 10.00
5 to 7 3.00
8 to 20 1.00
2 7 3.00
8 to 20 1.00 | | 500 | | | (| | | |---|--|--------|----------------|-------|---|----------------------------------|------------| | | | 147945 | to
to
to | 12357 | 3 | 00.00
00.00
30.00
10.00 | | | | | | | | | | | | | | ٦ | Ē | Ē | Ē | Ē | ĔĔ | | | | / | 1 | | / | | /. | | | | / | _ | | | | ري <u></u> | | | | 1 | | | | | ==3 | | | | | | | | = | === | | | | 7 | > | _ | | | =76 | | | | 7 | X. | | | `` | ₹; | | | | 1 | | | | | 1 | | | | - | | | = | -/ | | | | | | | | | | | | 123459 | to to to to | 1 2 3 4 8 9 | 3 | 00 00
00 00
30 00
10 00
3 00
1 00 | | |--------|-------------|-------------|---------|--|--------------------------| | 275W_ | 250W_ | 2004_ | 150W_ | 1001 | 025H | | 1 | <u></u> | \ <u></u> | <u></u> | | <u>√</u> .
<u>√</u> . | | | | <u></u> | | | | | 7 7 7 | | | | | 5 7 8 | | 11111 | = | | | | 9
10
211
112 | | TRVATI | | | | | 13
 | | Ξ | | | | | 19 | | | 1 | |----|----| | | - | | | 2 | | 7 | | | 1 | | | 11 | 3 | | 1 | / | | 11 | | | K | 4 | | | 1 | | 1 | | | + | 5 | | 1 | | | // | | | 1 | | | | 8 | | 1 | | | 7 | 19 | | | 11 | | | 12 | | | 13 | | | 14 | | - | 15 | | | 16 | | | 17 | | | 18 | | | 19 | | | 20 | Da's 'ile INGIF LINE 01N - Z Component dBZ-dT 'nV/Am²); TOFF corrected | | to
to | | 30 | ale
00 00
00 00 | | |----------------------------------|-------------|----------------|------|---------------------------------------|-------------| | 1
2
3
4
5
8
11 | 10 | 12341-99 | | 60 00
30 00
3 00
1 00
.50 | • | | 275W | У
Я
В | 2004_ | 1454 | 1001 | 050W_ | | | | : - | | | == ' | Data +:le 1NA1R LINE 01N X Component dBX/dT (nV/Am²), TOFF corrected | 20 14 10 025 W
20 14 10 025 W
20 14 10 025 W
20 25 W
20 W
20 W
20 W
20 W
20 W
20 W
20 | 25 20 145 H | 2500H 250H 2 | Channels | | | | ale | | |---|-------------|--------------|------------|--------|------|------|---------------------------------------|---| | | | | 1 2 3 7 10 | 3 to 6 | | 3 | 00.00
00.00
10.00
3.00
50 | | | | | | 275W | 25.55 | 2004 | 1451 | 1001 | 025W | | | | | / | | | | _ | | | | | | | | | | | ~ . | 7 6 8 8 8 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 | Data file INFIR LINE 814 Y Commonent GBY/dT (nu/Am2); TOFF corrected | Ch | anne | 15 | | Scal | ė | | |------------------------------|----------------------|------------------------------|------------|----------------------|---------------------------------|------------------------------| | 1
2
4
8
10
14 | to
to
to
to | 1
3
7
9
13
20 | | 100
20
10
3 | .00
.00
.00
.00
.50 | | | 250W_ | 2004 | 3. | 145W_ | THOU! | , | 025N_ | | _ | <u></u> | / | = | _/ | 1 | <u></u> _1 | | _ | ~ | == | | \leq | _ | | | | | | >>>
>>> | | | = 4
 -5
 -6
 -7 | | = | | | | <u></u> | <u>-</u> | ≂ 8 | | | | | / | | | — 10
— 11
— 12
— 13 | | | | = | | | | — 14
— 15
— 16
— 17 | | _ | | | | | | — 18
— 19
— 20 | Data file 800A1R LINE 890 Z Component dBZ/dT ·nV/Am²); TOFF corrected | Ch | Channels | | | ale | | |-----------|----------------------|----------|------|--|-------------------------------| | 1234789 | to
to
to
to | 123679.0 | 16 | 90 .00
90 .00
30 .00
5 .00
1 .00 | | | 275W | N
9
E | 2004_ | 1201 | 1001 | 025W_ | | 1 | / / | | | | | | ニメデス | | | - | | 3
5
6 | | = | _ | - | | - | | | 4 | | | | | # 8
9 | | 1/1/1/1/1 | | | | | 10
11
12
13
14 | | | | | | | 213
16
217
18
218 | Data +:le 000A:R LINE 000 X Component dBX/dT (nV/Am²); TOFF corrected Scale Channels | Gri | arire | | | 316 | | | |-----------------------------|--|---------------|-------------|---|---|--| | 1
2
3
4
8
11 | 1 to 1
2 to 2
3 to 3
4 to 7
8 to 10
1 to 20 | | 10 | 1000.00
100.00
30.00
10.00
3.00
1.00 | | | | 275W_ | 250W | 2001 | 1504 | 1004_ | 025W_
050W_ | | | _ | | - | | _ | —— i | | | _ | / | | | | 2 | | | _ | - | | - | <u></u> | 3 | | | 7 | | >
Z | | | | | | | | | | | 4
5
5
7 | | | | | | | | 55,77 | | | | | | | | 55.7 | | | | | | | | 55.67 | | | | | | | | \$ 55 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | 55
56
77
11
11
11
11
11 | | Data file 000AIR LINE 000 Y Component dBY/dT (nV/Rm2); TOFF corrected Scale inannels | 100 | -27 | 107 | | | | |-------|----------------------|------------------------|------------------|----------------------|------------------------------| | 12459 | to
to
to
to | 1
3
4
8
20 | 300
100
10 | 00
00
00
00 | | | 2751 | 2504 | 2004_ | 1594 | 1694_ | 959W_ | | | | <i>-</i> | | | ∠ı
 | | = | | | <u>-</u> | <u></u> | - 3 | | X | *** | | | | | | | | | | | ≥9
=10
=11
=12 | | | | | | === | = 13
= 14
= 15
= 16 | | | | | | | — 17
— 18
— 19
— 20 | Ecale Channels | LINE OF | 161 | X CO | mponer | 1 1 | |---------|-------|--------|--------|-----------| | dBX/dT | (nV-A | m- / , | TOFF | corrected | | | | | | | | LINE | 000 | Y Commonent | |-------|--------|----------------------| | dBY - | IT Int | Amas. Thee corrected | Scale | 12346811 | 1000000 | 10
20
20 | 1 | 999
399
199
30
19
19 | 00
00
00
00
00
00
00 | | |----------|---------|----------------|---------------|-------------------------------------|--|------------| | 1) | 27.27 | 100E_ | 150E | 2005_ | 250E | 3005 | | | | 3 | - | * | | <u>_1</u> | | | | | - | | | — 3
— 3 | | | | | | | | <u>=</u> 5 | | | | | | | - | = ' | | | | | | | | | | 1 10 1 200 60 100 00 100 20 100 00 100 00 100 00 100 00 100 00 100 00 | | | | | | Scale | | | |---|----|-----------|------|------------------------|-------|------------------------|----------------------------|--| | 250E_ 200E_ | | 12349 | 10 | 1
2
3
8
20 | | 300
100
30
10 | 00
00
00
00
00 | | | | | ı 1 | 950E | 100E_ | 150E_ | 200E_ | 250E_ | 300E_ | | | | 1/ | | | | <u> </u> | يمييه | <u>—</u> 1 | | | | | | === | - | | | 2 | | | | - | - | | | | | | | 6 | | - | | · | | === | | < 3 | | | | | = | | _ | == | |

 4
 5 | | 9 | | ー | | | | | | | | | 7 | ー | | | | | | | | | | | | | | | | ≥9
≥11 | | 1: | 1: | | | | | | | ≥9
≥11
=11 | | 1 | 1 | ー だえ こをなり | | | | | | ≥9
-1
-1
-1: | | | | 一 | | | | | | ≥9
-1
-1
-1:
-1: | | | | | | | | | |
≥9
-1
-1
-1:
-1: | | | | | | | | | | ≥9
-1
-1
-1:
-1: | | 1 | | | | | | | | 29
21
21
21
21
21
21
21 | | 1 2 4 8 1 1 | 10 | | 137.00 | | 500
100
10
3 | 00
00
00
00
00 | | |--|------|-------------|--------|----------|-----------------------|----------------------------|---| | 1: | 10 | . 2 | 9 | | 1 | . 00 | | | . 1 | 050F | 1906_ | 1(0) | 150E_ | 200E_ | 250E_ | 300E_ | | _ | = | _ | | <u> </u> | · | | ∠1 | | = | _ | == | | ~~ | | | === 2
=== 3 | | | - | - | - | | | | | | <u> </u> | | <u> </u> | _ | | | _ | 4 | | -
-
-
-
-
-
-
-
-
-
-
-
-
- | | <u></u> | | | | | | | 1 // // // | | →
≥
÷ | = 4
= 5
= 6
= 7
= 2
= 19 | | | | | | | | | = 4
= 5
= 6
- 7
- 7 | - 4
- 5
- 6
- 7
- 9
- 19
- 11
- 12
- 13
- 14 | | | | | | | | | - 4
- 5
- 6
- 7
- 19
- 112
- 133
- 14
- 15 | | | | | | | | | 11 1 2 1 3 1 1 5 1 5 6 1 1 6 1 6 1 6 1 6 1 6 1 6 1 | | | | | | | | | - 4
- 5
- 6
- 7
- 19
- 112
- 13
- 14
- 15
- 17 | | | | | | | | | 11 1 2 1 3 1 1 5 1 5 6 1 1 6 1 6 1 6 1 6 1 6 1 6 1 | Usis file ISAIWR LINE 015 - I Component dBZ/dT (nV/Am²); TOFF corrected | Ċ | hanre | 15 | Sc | ale | | | | |-------|-------|------------------------|-------|---|-------|-------|--| | 12359 | 10 | 1
2
4
3
20 | 1 | 00.00
20.00
10.00
3.00
1.00 | • | | | | 275W_ | 250W | 2001 | 150W_ | 1994 | 950N_ | 025N_ | | Data (1)e 1SAIWR LINE 01S - X Component dBX/dT (nV/Ami); TOFF corrected | 1 4 7 10 | to
to
to | 3
6
9
20 | | 00.00
10.00
3.00
1.90 | | |----------|----------------|-------------------|-------|--------------------------------|--------------------------| | 275W_ | 250W | 2004_ | 1504_ | 1001 | 025H_ | | | | | | | | | - | - | | | | | | | | | | | | | | 1 | | | | ——3 ——4 ——5 ——6 | | | 1 | | | | - 3
- 5
- 6
- 6 | | | | | | | | Data file 1SA1WF LINE 01S Y Component d8y-dT (nV/Am²): TOFF corrected Scale | 1
4
7
10 | to
to
to | 369.0 | 1 | 00 00
10 00
3 00
1 00 | | |-------------------|----------------|-------|-------|--------------------------------|----------------------------------| | 275W_ | 250H | 200W_ | 150W_ | 1004_ | 925W | | 7年 | | | | | 1
2
3 | | 7 | - | | | | 4
 | | 1 | 1 | | | | 7 9 | | MI | | 4 | | | 10
11
12 | | | <u>-</u> | | | | 14
=== 15
=== 16
=== 17 | | 11/ | | | | | 18
19
20 | Deta *ile I:AIER LINE 035 I Component dEZxdT inV/Am21, TOFF corrected | Channel | F | | aie | | | | |---|--------|--------------|-----------------------------|----------------------------------|-----------|----------------------------| | 1 to
2 to
3 to
4 to
7 to
10 to | 123699 | 30
5
1 | 00 0
00 0
10 0
1 0 | 90
90
90
90
90
90 | | | | 1000 | 250W_ | 20011 | 1504_ | 1001 | 0504 | | | | | == | | | <u>-/</u> | 1 | | | K | | | | <u> </u> | 3 4 5 | | | | | | | | 6 789 | | | | | | = | <i>Z</i> | 10
11
12
13 | | | | | | | | 15
16
17
18
19 | Dara *:10 28A1ER LINE 028 X Component dBX/dT *nv Am2>, TOFF corrected | Channels | Scale | | |--|---|---------------------| | 1 to 1
2 to 2
3 to 3
4 to 7
8 to 9
10 to 20 | 1000.00
300.00
30.00
10.00
3.00 | 3 | | 300M 350M | 150W_ | 050H_ | | | | 1 | | | | <u></u> | | | | 5
6
7 | | | | ⇒°. | | | | $=$ $\frac{10}{12}$ | | | | 14 | | | | = 19 | Data file 25A1EF LINE 025 - Y Component dEV/dT inv/Am# is TOFF corrected Scale | 191541-0 | to
to
to
to | # 010,01-0
0 | 106 | 90 .01
90 0.
90 0.
10 .01
3 01 | 3 | | | |------------------|----------------------|-----------------|------|--|---------|--------------------------------------|---| | 4000 | 3504_ | 3004 | 2001 | 1504_ | 1664 | 950H_ | | | <u></u> | | V | | | | =1
=2 | | | \
\
\
\ | | | _ | | <u></u> | | | | = 7 | | | | | _ | -5
-6
-7 | | | | | | | | | = 8
≤ 9
≤ 16
= 13
= 13 | | | | | | | | | = 14
= 15
- 16
- 17
= 18 | | | = | | - == | = | = | = | = 19
= 20 | , | Deta 1.10 3SA1EF LINE 93S I Component dBIrdT (nV-Ams), TOFF corrected | Channe | Channels | | | | | |---|--|------------------------------|----------------------------------|-------------|----------------------| | 1 to
2 to
3 to
4 to
5 to
11 to | 1
233 4 9 9
1 9 9 | 1000
300
30
10
1 | 00
00
00
00
00
00 | | | | 350H_ | 250N_
275N_ | 150W_ | 1001 | 059W_ | | | | / | | | 1 | | | | <u></u> | | | | 1 | | \times | | | | | 3 | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 4 | | \leq | 4 | | $\geq $ | | _ | <u> </u> | 4 | 5
5 | | | 经 | | | | 7
8
9
10 | | $\overline{\Delta}$ | <u> </u> | \ | = | | 1 1 | | | | | | | 12
13
14
15 | | | | | | | 16
17
18 | | | | == | - | = | 19
20, | Data file 3SRIER LINE 039 X Component dBX/dT 'nW/Rm2), TOFF corrected | Chann | e1 s | | ale | | | | |--|-----------------------------|-------|---------------------|----------------------------|---------------------|----| | 1 to
2 to
3 te
4 to
6 to
8 to | 1
2
3
5
7
20 | 3 | 90
30
10
3 | 00
00
00
00
00 | | | | 359W | 250W_
275W_ | 2004_ | 150W_ | 100M_ | 050W | | | | 7 | | \
\
\
\ | 1 | 4 | | | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 7 | - | 1 | -/ | ナ ³
ド | | | 产 | * | | 7 | ∀
✓ | | | | | | | | | | 23 | | | | | | | | 16 | Data +:1e 35A1E4 LINE 038 // Component dBYxdT :nW:fm+1, TOFF corrected Scale | 1
2
3
4
6 | to
to
to
to | 10355 | 1 | 10
10
1. | 00
00
00
00 | | |-----------------------|--|-------|---|----------------|----------------------|----------------------| | 40001 | 350W_ | 2504_ | 20011 | 1504_ | _M881 | 050N_ | | 1 | _ | _ | 7 | _ | <u> </u> | ∵ ¹ | | | | 7 | 1 | _ | ->_ | √²
3 | | | X = \(\tag{ \ta} \tag{ \} \} \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ \tag{ | V | 7 | | 7 | → ; | | | | | *************************************** | | | 6789 | | | | | | | | 11213 | | | | | | | | 16
17
18
19 | APPENDIX II Model for Showing Area Line 0+00 44444 Flate # 1 44444 STRike DIP -9 FLUnge 0 LENgth 240 DEPth 300 POSition 50 -50 -50 CONduct*thick 1.1 TK-F1 M(DH) T(ms) -197.45 .035784 Model T Plate # 1 *1/ 0+00 Z cpt. Gain, TXC= 7 11 Model U Plate # 1 x1/ 0+00 Z cst. Gain, TXC= 7 11 44 att 1 144 STRike -9 DIF PLUnge Ø LENgth 150 DEPth 300 P031110n 50 -50 -50 CONduct*thick 1.6 Tx-pl M(µH) T(ms) -138.17 .036098 Model X Plate # 1 *1/ 0+00 Z cpt. Gain, TXC= 7 11 Model Y Plate # 1 *1/ 0+00 Z cpt. Gain, TXC= 7 11 Model Z Plate # 1 *1/ 0+00 Z cpt. Gain.TXC= 7 11 # APPENDIX III Transient Electromagnetic Modelling Results late approx'n; 1 late approx'n; 2 late approx'n; 3 44444 Plate # 1 44444 STRike 45 DIP FLUnge 300 LENath 100 DEPth POSition -36 0 -14 10 CONduct*thick T(ms) TX-F1 M(PH) .15775 -44.88 Model C HHS R =2000/Plate # 1 *1/ 0+00 Z cpt. Gain, TXC= 6 20 | late approx'n; 1 | | |--------------------------------------|---------| | late approxin; 2 | | | late approx'n; 2
late approx'n; 3 | | | 44444 Flate # 1 44444 | | | STRike | 0 | | DIP | 80 | | PLUnge | 0 | | LENath | 300 | | DEPth | 100 | | POSition -8.6 08 |
| | CONduct*thick | 10 | | Tx-pl M(pH) | T(ms) | | -10.711 | . 15775 | Model D HHS R =2000/Plate # 1 *1/ 0+00 Z cpt. Gain, TXC= 6 20 late approx'n; 1 late approx'n; 2 late approx'n; 3 44444 Plate # 1 44444 STRIKE DIP FLUnge LEMath 300 DEFth 100 POSition -50 0 -50 CONduct*thick 10 TX-P1 M(VH) T(ms) -65.055 .15775 Model A HHS R =2000/Plate # 1 *1/ 0+00 Z cpt. Gain, TXC= 6 20 | 44444 Plate # 1 | 44444 | |-----------------|---------| | STRike | Ø | | DIP | 30 | | PLUnge | Ø | | LENath | 300 | | DEPth | 100 | | POSition -42.5 | 0 -25.5 | | CONduct*thick | 10 | | TX-P1 M(VH) | τ(ms) | | -55.437 | . 15775 | Model B Flate # 1 *1/ 0+00 Z cpt. Gain, TXC= 6 20 late approx'n; 1 late approx'n; 2 late approx'n; 3 STRike DIP 80 PLUnge 0 LENath 300 DEPth 100 FOSition -8.6 0 - 150.8CONduct*thick 10 TX-P1 M(VH) T(ms) -6.0925 .15775 Model D HHS R =2000/Plate # 1 *1/ 0+00 Z cpt. Gain, TXC= 6 20 | 5 5 | 30 | 40 | 25 | |------------------|-----|----|----------| | STH | | | 20E1-Wid | | STHS | | | | | sтич | | | | | _
_STИ¶∰
- | D 4 | | | | | | | | late approx'n; 1 late approx'n; 2 late approx'n; 3 44444 Plate # 1 44444 STRike DIP 30 Fillinge 0 LENgth 300 DEPth 100 POSition -42.5 0 -125.5 CONduct*thick TX-P1 M(DH) T(ms) -37.922.15775 Model B HHS R =2000/Plate # 1 *1/ 0+00 Z cpt. Gain,TXC= 6 20 late approx'n; 1 late approx'n; 2 late approx'n; 3 44444 Plate # 1 44444 STRike DIP 45 PLUnse 0 LENath 300 DEPth 100 POSition -36 9 -114 CONduct*thick .10 Tx-pl M(pH) T(ms) -31.423. 15775 Model C HHS R =2000/Plate # 1 *1/ 0+00 Z cpt. Gain,TXC= 6 20 HSSHOW HHS OVER SHOWING ON HE ATHER PROPERTY TXX,TXY,TXA= 400,800,0 TX P=0 0 0 t/ σ min,max,density= . 9001,1,3 LINES: 0+00 MAX # GATES = 11 MAX # PLATES = 5 0+00 Index Stn STN1 -200 STN2 -175 23456709 -150 0 STN3 STN4 -125 STN5 -100 STN6 -75 0 STN7 -50-25 STNS STN9 9 19 STN10 25 STN11 50 11 12 STN12 75 13 STN13 100 STN14 125 14 STN15 150 15 STN16 175 16 STN17 200 17 late approx'n; 1 late approx'n; 2 late approx'n; 3 44444 Plate # 1 44444 STRike DIP PLUnge Ø LENath 300 DEFth 100 POSition -50 0 -150 CONduct*thick 10 Tx -pl $\mathsf{M}(\mathsf{vH})$ 7(ms) -43.724 .15775 Model H HHS R =2000/Plate # 1 *1/ 0+00 Z cpt. Gain,TXC= 6 20 APPENDIX IV Equipment Specifications ## GEONICS LIMITED # EM37 Ground Transient Electromagnetic System Technical Specifications | | | Transmitter | |--------------------------------|----------|---| | Current Wavef
Repetition ra | 4 | See Fig. 1 3Hz or 30Hz in countries using 60Hz power line frequency; 2.5Hz or 25Hz in countries using 50Hz power line frequency; all four base frequencies are switch selectable. | | Turn-off time | (Δt) - | fast linear turn-off of maximum 300 $\mu sec.$ at 20 amps into 300x600m loop. Decreases proportionally with current and (loop area) to minimum of 20 $\mu sec.$ Actual value of Δt read on front panel meter. | | Transmitter 1 | .oop - | any dimensions from 40x40m to 300x600m maximum at 20 amps. Larger dimensions at reduced current. Transmitter output voltage switch adjustable for smaller loops. Value of loop resistance read from front panel meter; resistance must be greater than 1 ohm on lowest voltage setting to prevent overload. | | Transmitter protection | - | circuit breaker protection against input over-
voltage; instantaneous solid state protection
against output short circuit; automatically resets
on removal of short circuit. Input voltage,
output voltage and current indicated on front
panel meter. | | Transmitter o voltage | output - | 150 volts (zero to peak) maximum;
20 volts (zero to peak) minimum | | Transmitter o | output - | 2.8 kw maximum | | | | | # ____ Transmitter wire supplied 1800m. #10 copper wire PVC insulated with nylon jacket; transmitter wire contained on 6 reels (supplied); 2 reel winders supplied. # Transmitter motor generator 5 HP Honda gasoline engine coupled to 120 volt, 3 phase, 400Hz alternator. Approximately 8 hours continuous operation from full (built-in) fuel tank. ## Receiver - Measured quantity time rate of decay of magnetic flux along 3 axes. - Sensor air-cored coil of bandwidth 40 kHz; 100cm dia. by 7x5cm cross-section. Coil holder supplied to facilitate measurement along 3 axes. - Time channels 20 time channels with locations and widths as shown in Fig. 2. Successive operation at 30Hz, then 3Hz, effectively gives 30 channels covering range from 80 usec. to 80 msec. - Output display 4 digit plus sign LED display; display also shows channel number and gain. - Integration time 2ⁿ cycles at 30Hz; n=4,6,8,10,12,14 (switch selectable); similar integration times at other base frequencies. - Receiver output noise referred to input typically 1.5x10⁻¹⁰ volt/m² at last gate at 30Hz with integration time of 34 seconds. Noise will be higher during intense local spherics activity. - Output connector all 20 channels in analogue format and housekeeping functions in digital format available from output connector. - Synchronization to any of the following (switch selectable) Tx - (1) reference cable - (2) primary pulse - (3) 27 MHz radio link (40 channels) - (4) high stability (oven controlled) quartz crystals. - Noise rejection Selective clipping of atmospheric noise pulses circuitry at all times. Audio output of Rx coil (trans-mitter pulse blanked out) is available on built-in loud speaker for ready identification of interference. - Receiver batteries 12 volt rechargeable Gel-cell; 9 hours continuous operating time at 17°C. Two batteries and a battery charger supplied to permit charging of second battery from transmitter motor-generator during survey. Transmitter Current Waveform FIG. 1 Gate Location and Widths (30 and 3Hz) FIG. 2 # GEONICS LIMITED # DAS 40 Data Acquisition Unit Technical Specifications special low-temperature Philips-type Storage medium cassette 212 kilobytes Maximum storage - 2 channel NRZI Data format - two (sealed); one for header information, · Keyboard one for numerals. - 16 character alphanumeric LCD · Display Temperature range - -30°C to +60°C (operating) power taken from EM37 receiver console Power source Dimensions 16x23x21 cm 2 kg Weight # GEONICS LIMITED # Datel LPR 16 Tape Reader Technical Specifications | GENERAL | | |---|--| | Function | Read Only | | Media | Standard Philips type certified digital | | | tape cassette | | Number of Tracks | Two | | Tape Motion | One direction, capstan stepper motor | | | drive | | Tape Speed | | | Reading Format | | | Reading Density | | | Bit Rate | | | Bit Capacity | 2.2 million bits per cassette lincluding | | | all gapsi | | Word Length | . 8, 12 or 16 bits | | Record, Word or | The state of | | Intercharacter Gap | | | File gap | | | (1. TOTAL STORT IN THE STORT STORT STORT STORT IN THE STORT | . Any (Standard is 64 words per file) | | Power Required | 100, 115 or 230 VAC, 47 to 63 Hz, | | | 60 Watts max. | | LOGIC OUTPUT CHARACT | ERISTICS (Computer Interface) | | Logic Levels | TTL compatible | | | "0" - ILO) • 0 to • 0.4 Volts | | | "1" - (HII - +2.4V to +5.0 Volts | | Output Loading | Optional Open Collector | | Corpus Coronia | 7406 TTL Hea driver or with 1K! | | | pullup to +5V | | | or with 330:1 pullup to +5V and 470:1 | | | pulldown to ground | | Output Coding | Selectable positive or negative true | | | coding using Level Control Inputs. | | LOGIC OUTPUTS (Computer | : : [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] | | 시민이었다. 1800년에 가장된 사람이 되었다면 1910년에 1 | positive or negative true unless | | otherwise noted.) | positive or negative true unless | | | 16 lines: Normally 12 A/D lines and 4 | | Data Pormat | | | | address lines. However a
16 bit digital word can also be used. | | | | | Word Sync Output | | | 일하다 하고요하다 전 학교 등이 하늘 생기를 하는데 하다 하다. | 1 line, normally flags every 64 words. | | Rewind Status Output | | | Busy Status Output | 1 line | | Load Forward Status | | | Output | 1 line | | Cassette-in Place Status | | | Output | | | Head Down Status Output | | | EOT/BOT Status Output | | | Shift Clock Output | | | Tape Clock Output | | | Serial Data Output | 1 line, positive true, NRZI coding | | | | | Lane Laurele | | TTL Con | natible | |------------------------------|---------------|--|--| | Codic ravers | ****** | | 0) = 0 to +0 8 volts | | | | 2,700 10,000 | 1) = +2.0V to +5.0 valts | | | March Colores | | one TTL load, or 1 TTL | | Input Loadir | | The second secon | 1K!L pullup to +5V. at | | | | | ed with 330!! pullup to +5V | | | | | pull down to ground. | | | | | pan down to provide. | | | | uter Interfacel | seletine Perio | | Start Input | | 1 line, p | postive true | | Start Input | | | ganite inde | | OUTPUT I | EVEL | | The output Level | | CONTROL | | OUTPUT | Control Inputs control | | 1 | 2 | CODING | the coding of most | | 1 | 1 | POS. TRUE | outputs as shown in | | 1 | 0 | NEG TRUE | the chart - see the | | 0 | 1 | Jammed LO | listing of autputs. | | 0 | 0 | ONE'S' | *With both Output | | 0 | - | O.T. U | Level Control Inputs at | | collector dev
may be mult | ices sharing | the same data to
to these lines. | state, external open
ouss lines as the LPR-16 | | CONTROLS | | | | | Power On/O
Switch) | II (Pushbul | Turns po | wer on and off. Illuminates
wer is on. | | EOT/BOT II | ED indica | tor) Illuminat | es when on clear leader | | Load Forwar | d (Pushbu | ton beginning | of tape or at clear end of tape. | | Switch) | | Depresse | d to cause tape to load | | | | forward | rom clear leader to oxide | | | | portion o | I tape. (EOT/BOT lamp | | | | will extin | guish over oxidel. | | Rewind (Pus | hbutton sw | itch! . Depresse | d to cause tape to rewind to | | | | the begin | ning of tape clear leader. | | Busy (LED I | ndicator). | tlluminst | et when the tape is in motion. | | | | | es while tope is rewinding. | | | | witch! When in | "RUN", tape will contin- | | | | The second secon | A MIR. TOTALISMUM | Start [Pushbutton Switch] . . When in standby mode, this switch will depressed. Size 19"W x 5.25"H x 19"D (16.25" chassis width) Connector Type Dual 25/pin PC Brd type, 0.1" Cen- cluded with unit) LOGIC INPUT CHARACTERISTICS (Computer Interface) uously read. When in "STANDBY" tape will read one file each time the START switch is depressed. cause one file to be read each time it is ters, Viking 3VH25/1JN-5 (1 In- # - M-4 Induced Polarization Receiver #### DESCRIPTION The Huntec M-4 is a microprocessor based receiver for time and frequency domain IP and complex resistivity measurement. It is Easy to operate. One switch starts a measurement, of up to 29 quantities simultaneously. The optional Cassette DataLogger records them all in seconds, Calibration, gain setting and SP buckout are all automatic. Reliable. Using advanced digital signal processing techniques, the M-4 delivers consistently accurate data even in noisy, highly conductive areas. For mechanical reliability it is packaged in a rugged aluminum case for backpack or hand carrying. Versatile. The operator may adjust delay and integration times, operating frequency and other measurement parameters, to adapt to a wide range of survey conditions and requirements. An independent reference channel facilitates drillhole and underground work, and guarantees transmitter-receiver synchronization in high-noise conditions. Highly accurate. With a frequency bandwidth of 100 Hz and noise-cancelling digital signal stacking, the M-4 delivers very precise results. The details are summarized in a table overleaf. Sensitive. The same features that make the M-4 accurate allow detection of very weak signals. The Huntec receiver requires lower transmitter power than any other, for a given set of operating conditions. Automatic correction for drifts in self-potential and gain allow long stacking times for significant signal-to-noise improvements. Intelligent. Under the control of a powerful 16-bit microprocessor, the M-4 calibrates and tests itself between measurements. Coded error messages, flashed onto the display, inform the operator of any malfunction. The M-4 Receiver is complemented by Huntec's new M-4 transmitters, which offer precisely timed constant-current output and both time and frequency domain waveforms, compati- ble with the receiver's accuracy and multi-mode measurement capabilities. The RL-2 Reference Isolator connects any IP transmitter to the receiver's reference channel. The GeoDataBase field computer reads, stores and processes data from M-4 cassettes. Contact Huntec for more information on the benefits offered by the M-4 product line. #### **FEATURES** - Time and Frequency domain IP and Complex Resistivity operation - Simultaneous Time domain and Complex Resistivity measurement - Automatic calibration gain setting SP cancellation fault diagnosis filter tuning - Independent reference channel for drillhole and underground work - 33 quantities, displayable on large 3½ digit low-temperature liquid-crystal readout - Analogue meter for source resistance measurement - 10° ohms differential input resistance - 8 hours continuous operation with replaceable, rechargeable nickel-cadmium battery pack (2 supplied) - Optional Cassette DataLogger fits inside case, has read-afterwrite error checking. Up to 350 stations per tape. - Conveniently packaged for backpacking or hand carrying - 100 Hz bandwidth, fine time-resolution - Advanced digital signal stacking - Delivers reliable, accurate data in noisy, highly conductive areas. Signal Channel Range: 5 x 10⁻⁴ to 10 volts. Automatic ranging. Overload indication Resistance: Greater than 10° ohms differential Bandwidth: 100 Hz SP Cancellation: -5 to +5 volts (automatic) Protection: Low-leakage diode clamps, gas discharge surge arrestors, replaceable fuses. Reference Channel Level: 500 mV minimum, 10 volts peak max- imum, overload indication Resistance: 2 x 10° ohms differential Controls and Functions Operating Controls 16 keys, calculator format, function associated with each key. Reference Keypad: Registers: Keypad may be used to store up to ten 31/2 digit numeric values with floating decimal point, to represent station number, line number, operator, time, date, weather, transmitter current, etc. for recording on cassette. Programming Controls Sub-panel: All programming controls are on a covered sub-panel, not accessible during normal operation. Thumbwheel Switches: Select delay time to in milliseconds, chargeability window to in milliseconds; operating frequency; PFE frequency ratio. Displayable Quantities Time domain: Primary voltage; self-potential; chargeability (total or each of 10 windows of equal width); phases of odd harmonics 3 to 15; amplitudes of odd harmonics 1 to 15; cycle count; repeating display of polarization potential and chargeability. Freq.domain: Primary amplitude; Percent Frequency Effect; self-potential; cycle count. Complex Resistivity: Phases of odd harmonics 3 to 15; amplitudes of odd harmonics 1 to 15; fundamental phase (with ref. input); cycle count. Any mode: Battery voltage, Frequency error. Outputs Displays Digital Display: 31/2 digit, low-temperature liquid crystal display. Indicates measurement results and diagnostic error messages. Analogue Meter: Ohms scale for source resistance; also gives qualitative indication of signal-to- noise ratio. Cassette DataLogger (Optional) Description: Accommodated within M-4 chassis, If not acquired with receiver, may be retrofitted by user at any time. Two recording modes: Partial: All sub-panel settings, measurement results, and contents of reference
registers are recorded (2 seconds recording time). Full: As in partial mode, but also recorded is one cycle of averaged signal waveform (28 seconds recording time). If external recording time). Extra memory and software available to average and store the reference waveform for advanced offline resistivity computation. Format: ANSI/ECMA/ISO standard for saturation recording: 80 bytes/record, all data re- corded in ASCII code. Verification: Read-after-write data verification (automatic) Mechanical M-4 Receiver with battery pack: 45 cm x 33 cm x 14 cm, 10.0 kg M-4 Receiver with battery pack and Cassette DataLogger: Replaceable Dimensions as above, 11.0 kg Battery pack: 33 cm x 11 cm x 4.5 cm, 3 kg Environmental Temperature: Operation: -20°C to +55°C Storage: -40°C to +70°C Humidity: Altitude: Moisture-proof, operable in light drizzle. -1,525 m to +4,775 m Shock, Vibration: Suitable for transport in bush vehicles. ### **OUTPUT ACCURACY AND SENSITIVITY** | | Bearing of March 1968 | | | | | | | |-----|-------------------------|-----------------------|-----------|------------------------|--------------------------|-----------------------|--| | 100 | milliradians | volts | volta | volts | seconds | | | | | 2 milli-
radiansi () | 1% 40Hz
2% to 80Hz | ±1% | =1% | 0.15(2) | 0.1%(3)
full scale | | | | 0.01
milliradians | 10" volts | 10" volts | 10 ⁻¹ volts | 10 ⁻¹ seconds | 0 noise | | 1) Frequency domain mode: at harmonic frequencies up to 15 Hz, increases to not more than 5 milliradians at 80 Hz. > Time domain mode: at harmonic frequencies up to 7.5 Hz, increases to not more than 5 milliradians at 30 Hz. 2) of total OFF time 3) Full scale defined as 100% PFE. Cassette Data: recorded in ASCII, 9 digits with decimal point fixed for four decimal digits. Display Data: 31/2 digits, floating decimal point Resolution of averaged waveform limited by A/D converter to one part or 4096 x (square root of cycle count). Resolution of reference waveform (not averaged) limited by available memory to one part in 256. Additional memory and averaging software available as option. #### CHARGEABILITY WINDOWS M-4 SERIES # Induced Polarization/ Resistivity 2.5 kW **Transmitter** ## Mark-4 2.5 kW Transmitter DESCRIPTION The HUNTEC M-4 2.5 kW Induced Polarization transmitter is designed for time domain, frequency domain (PFE) and complex resistivity applications. The unit converts primary 400 Hz ac power from an engine-alternator set to a regulated dc output current, set by the operator. Current regulation eliminates output waveform distortion due to electrode polarization effects. It is achieved in the transmitter by varying the alternator field currents. The transmitter is equipped with dummy loads to smooth out generator load variations. # **FEATURES** - Solid-state switching for long life and precise timing. - Open circuit during the "off" time ensures no counter current flow. - Resistance measurement for load matching. - Precision crystal controlled timing. - Failsafe operation protects against short-circuit and overvoltage. - Automatic regulation of output current eliminates errors due to changing polarization potential and load resistance. 96 - 144 V line to line 3 phase 400 Hz A) Power input: (from Huntec generator set) B) Output: Voltage: 150 — 2200 V dc in 8 steps Current: 0.2 — 7 A regulated •• C) Current regulation: Less than ±0.1% change for ±10% load change D) Output frequency: 0.0625 Hz to 1 Hz (time domain, complex resistivity) 0.0625 Hz to 4 Hz (frequency domain) selectable from front panel An additional range of frequencies between 0.78 and 5.0 Hz is available and can be selected by an internal switch. E) Frequency accuracy: ±50 ppm -30°C to + 60°C F) Output duty cycle: Ton/(Ton+Toff) 0.5 to 0.9375 in increments of 0.0625 (time domain) 0.9375 (complex resistivity) 0.75 (frequency domain) G) Output current meter: Two ranges: 0-5 A and 0-10 A H) Ground resistance meter: Two ranges: 0-10 kQ and 0-100 kQ Input voltage meter: 0-150 V J) Dummy load: Two levels: 500 W and 1.75 kW K) Temperature range: -34°C to + 50°C L) Size: 53 cm x 43 cm x 29 cm M) Weight: **Smaller currents are obtainable, but outside the current regulation range the transmitter voltage is regulated, not the current. 25 HOWDEN ROAD, SCARBOROUGH, ONTARIO, CANADA MIR SAG ## **SPECIFICATIONS** # M-4 2.5 kW Engine Driven Alternator Output: 120 V ac 400 Hz 3.5 kVA maximum Engine: 6 kW air cooled, single cylinder four cycle piston engine with manual start Regular grade gasoline, tank capacity 3.8 L to give 4 h duration Fuel: Delta connected heavy duty automobile type, belt driven, air cooled Alternator: Tubular protective carrying frame with resiliently mounted engine and alternator Construction: Size: 51 cm x 48 cm x 76 cm Weight (dry): 61 kg