exploration Itd. GEOLOGY · GEOPHYSICS MINING ENGINEERING

183-984-1257

Suite 214-850 WEST HASTINGS STREET, VANCOUVER, B.C TELEPHONE (604) 681-0191 V6C 1E1

GEOLOGICAL AND GEOCHEMICAL

ASSESSMENT REPORT

on the

GOLDEN CACHE PROPERTY

Lillooet Mining Division

Lat. 50° 39' N

Long. 122⁰ 05' W

N.T.S. 92 J/9E

for

ORMONT EXPLORATION LTD.
GEOLOGICAL BRANCH ASSESSMENT REPORT

Lionel

Donald G. Allen, P. Eng.

and

December 31, 1983

Vancouver, B. C.

TABLE OF CONTENTS

SUMMARY		1
CONCLUSION		2
RECOMMENDATION		2
INTRODUCTION		3
LOCATION, ACCESS, PHYSIOGRAPHY		4
CLAIM OWNERSHIP		5
HISTORY		5
REGIONAL GEOLOGY		6
PROPERTY GEOLOGY		7
Sedimentary rocks		7
Intrusive rocks		7
MINERALIZATION		8
Golden Cache Workings		9
Excelsior Workings .		10
Maude Workings		10
GEOCHEMICAL SURVEYS		12
REFERENCES		
CERTIFICATE		
CERTIFICATE .		
•		
TABLES		
Table 1 Rock Description	After page	9
ILLUSTRATIONS		
Figure 1 Location Map 1:10,000,000 Figure 2 Access Map 1:250,000 Figure 7 Claim Man 1:50,000	After page	4
Figure 3 Claim Map 1:50,000 Figure 4 Geology 1:5,000	After page In pocket	5
Figure 5 Gold Geochemistry 1:5,000 Figure 6 Underground Workings 1:500	In pocket After page	9

APPENDICES

Appendix I Analytical Results
Appendix II Affadavit of Expenses

SUMMARY

Ormont Exploration Ltd. holds the Golden Cache property comprising 18 claims and claim units in the Cayoosh Creek area of southwestern British Columbia. The property is situated 10 kilometres southwest of Lillooet and is accessible by road. The property, formerly known as the Golden Cache, Ample, and Bonanza-Cache, was first worked in 1896 and was equipped with a 10 ton per day stamp mill. Production from a quartz vein on the Golden Cache showing between 1897 and 1901 totalled 2789 tonnes of ore containing 22,611 grams of gold.

The property is underlain by Triassic metasedimentary rocks (phyllite, biotite schist, chlorite schist) of the Bridge River Group. Stocks, sills and dikes of porphyritic granite, felsite and quartz-feldspar porphyry outcrop on the western part of the property. Gold-bearing quartz veins (Excelsior, Golden Cache showings and veins on cliff on Surprise claim) strike northwesterly and dip gently at 10 to 30° to the southwest and northeast, parallel to bedding and foliation of the metasediments. The veins carry minor amounts of pyrite and free gold.

During the period October 22 to 31, 1983, the known showings were examined and sampled and geochemical soil sampling undertaken to locate any other possible zones of interest.

CONCLUSION

The geochemical sampling has outlined three low order anomalies in the vicinity of old workings. The mapping, while only partial, identified the chloritic-schist as host rock favourable for development of quartz vein systems. The contact area between intrusive and sedimentary rock is also favourable for development of additional veins.

A detailed study of the structural geology involved in the sediment foldings and the associated quartz veins might help in finding new targets where thick quartz veins and sulphide concentration might occur. Veins might be present in gully covered by rock fragments.

Exploration potential on the known showings appears to be limited. Some further exploration is warranted on the Maude claim.

RECOMMENDATION

No further work is recommended at this time. However, should it be possible to enlarge claim holdings on the south side of Cayoosh Creek, then further work would be warranted in the vicinity of showings on the Maude claim.

INTRODUCTION

Ormont Exploration Ltd. holds title to eighteen claims and claim units in the Cayoosh Creek area near Lillooet, B.C. The property is referred to in various government reports as the Golden Cache, Ample and Bonanza Cache. For the purpose of this report, it will be referred to as the former. The property was first worked in 1896 and was equipped with a ten ton per day stamp mill. Production from 1897 to 1901 totalled 2,789 tonnes of ore containing 22,611 grams of gold (average 0.24 ounces per ton). Some development work and drilling were carried out in 1932-1935 and 1947.

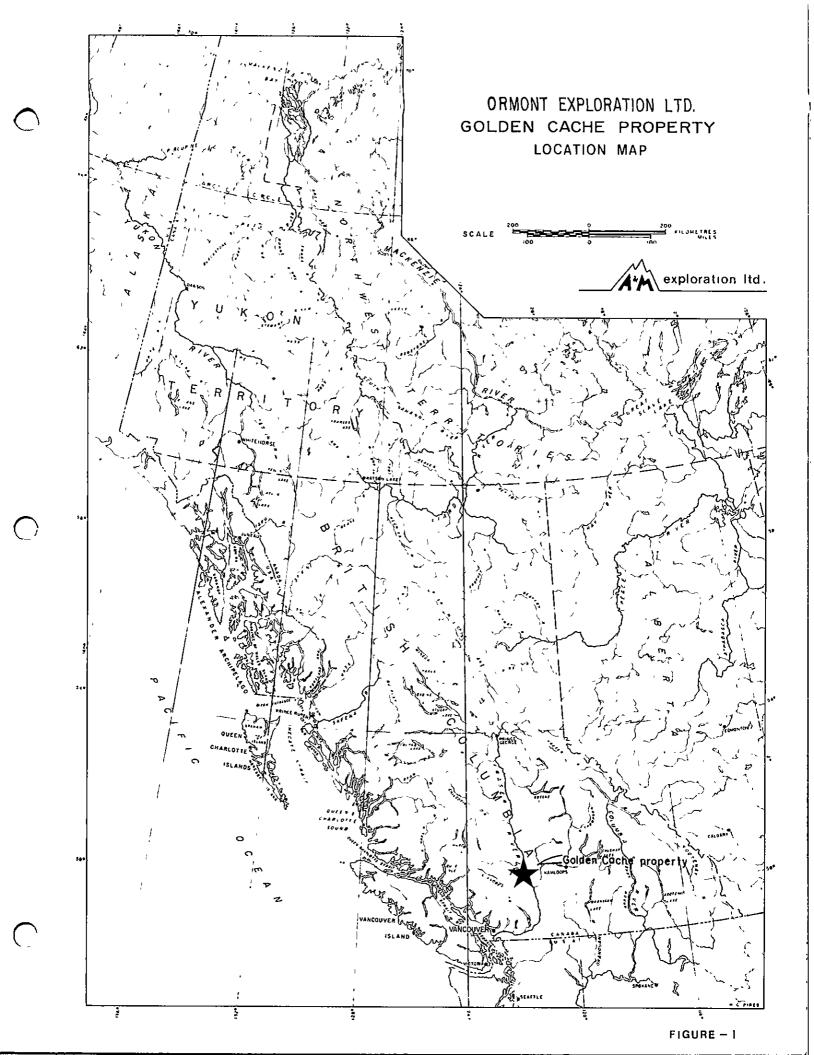
During the period of October 22 to 31, 1983, a program of geochemical sampling and geological mapping was carried out on the property. The work was done by L. Tanguay, S. Travis and J. Travis.

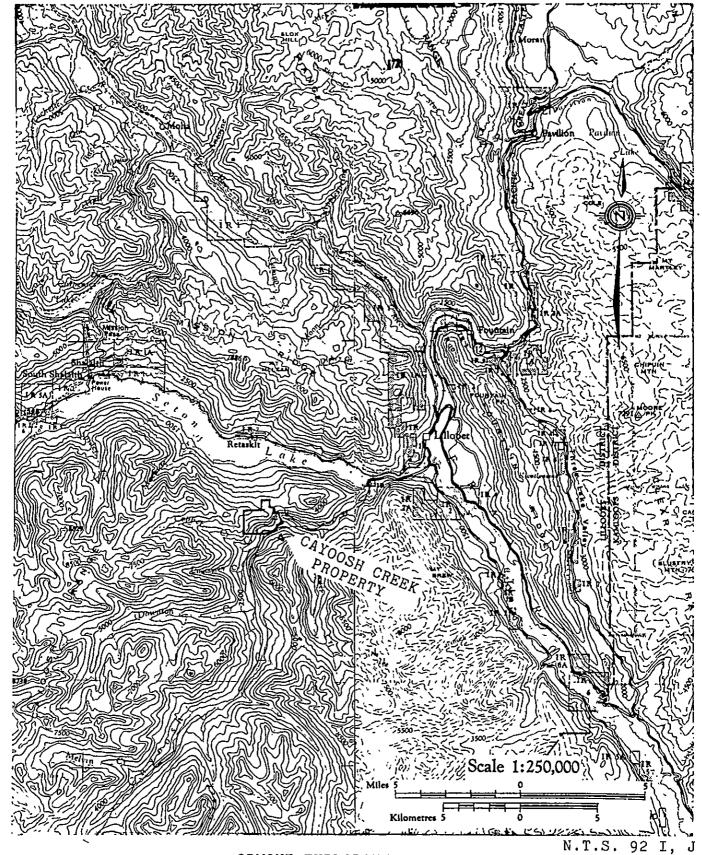
The soil sampling program was carried out over poorly exposed outcrop areas at 100 metre intervals on lines spaced 100 metres apart (Figure 5). Detailed sampling was also carried out locally on 25- and 50- metre centres. A total of 285 soil samples were collected and each was analyzed for gold by standard atomic absorption techniques by Rossbacher Labratory Ltd. Results are tabulated in Appendix I and anomalous values plotted on Figure 5.

A good portion of the exposed bedrock is found on a steep

ridge with a slope ranging from 30° to near vertical. The mapping on these steep hills is perilous and the gully often offers the only access for mapping purposes.

About 50% of the property was mapped and the old workings were visited and sampled. About 120 rock samples were collected and 54 were analyzed for gold. Sample descriptions are presented in Table I.


A fractional claim of wedge slope was staked to cover the property between Lost 370 and 372.


LOCATION, ACCESS, PHYSIOGRAPHY

The Golden Cache property is situated fourteen kilometres southwest of Lillooet, B.C. (Figures 1 and 2). Most of the claims lie on the north side of Cayoosh Creek between elevations 1700 and 5500 feet. Slopes range from extremely steep, locally on the south facing slopes above Cayoosh Creek, to moderate on the ridge on the north side of the claim group.

The property is accessible by good gravel road which passes on the south side of Cayoosh Creek, about a fifteen minute drive from Lillooet. A bridge across the creek near the legal corner post of the Gold Stripe claim provides access to the northern part of the claim group.

Slopes are covered with a light growth of Jack pine, Douglas fir and poplar.

ORMONT EXPLORATION LTD.

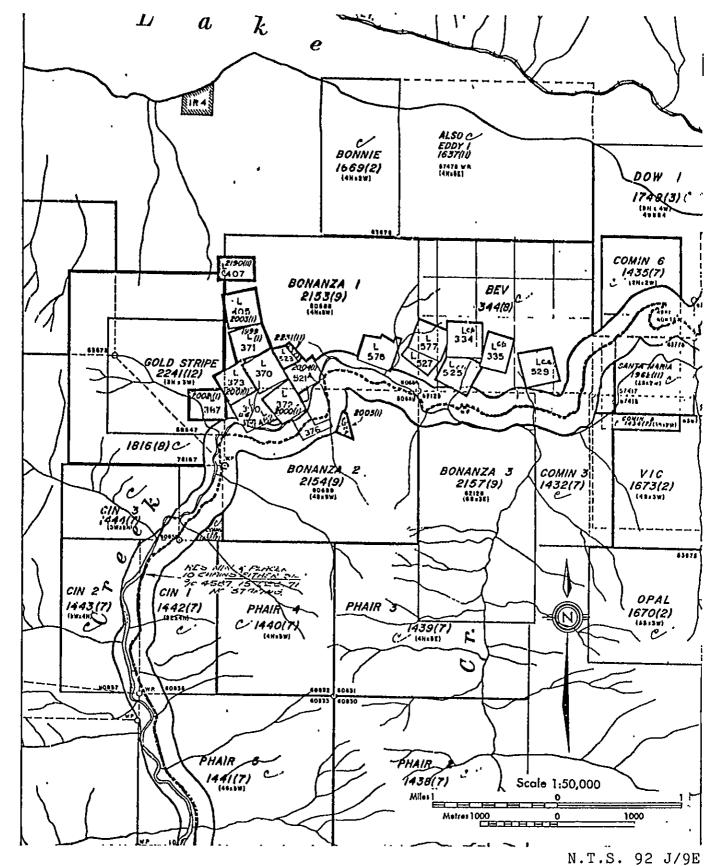
ACCESS MAP

CAYOOSH CREEK PROPERTY

Lillooet Mining District - British Columbia

exploration Itd.

CLAIM OWNERSHIP


The Golden Cache group of claims are held in the name of Ormont Exploration Ltd. Claim data are as follows (Figure 3):

Claim Name		Type		Lot No.	Rec. No.	Expi	cy Da	te*
North Star	Rev.	Crown	Grant	371	1999	Jan.	25,	1987
Ruby	11	11	11	372	2000	11	11	11
Golden Stripe	11	11	11	373	2001	11	11	11
Excelsior	11	11	11	387	2002 .	11	11	11
Blue Pete	11	tt	IT	405	2003	11	11	11
Surprise	11	11	и.	521	2004	11	11	11
Maude	11	H	Ħ	524	2005	ff	п	11
Golden Eagle	Crown	Gran	t	370				
Mineral Point	H	11		390				
Gold Stripe	M.G.S	. (9	units)		2241	Dec.	22,	1986
Cayo Fr.	tt	(1	unit)		2660	Nov.	22,	1987

^{*}After applying work represented by this report.

HISTORY

History of mining in the Cayoosh Creek area dates back to 1886 when placer gold was discovered and worked by Chinese miners. Mineral claims were first staked in 1887. The Golden Cache property, the only known producer in the area, was worked in 1896 and equipped with a 10 ton per day stamp mill. Production amounted to 2789 tonnes. Although grades

ORMONT EXPLORATION LTD.

CLAIM MAP

GOLDEN CACHE PROPERTY

Lillooet Mining Division - British Columbia

exploration Itd.

were low, spectacular specimens of free gold were reported. Underground development was carried out on the Excelsior claim in 1897 on a quartz vein from which assays ranging from trace to \$177 per ton in gold are reported (1987 Ministry of Mines Ann. Rept., p. 556). Sporadic development was continued in the early 1900's and 1930's. Diamond drilling, totalling 1,015 feet in three holes, is reported to have been carried out on the Golden Cache in 1935 and 490 feet in two holes, presumably on the Excelsior, in 1947. Exact locations of holes and results are not known.

REGIONAL GEOLOGY

The Cayoosh Creek area is in the Pemberton map area (92 J, East Half), the geology of which has been described by Roddick and Hutchinson. The area lies off the east flank of the Coast Plutonic Complex. According to Roddick and Hutchinson, oldest rocks in the area are sedimentary rocks of the Bridge River Group, which are exposed in a broad northwest-trending antiform. This antiform is 50 kilometres wide and is bounded on the southwest by a series of granodiorite to quartz plutons, and on the northeast by the Yalakom fault.

PROPERTY GEOLOGY

Sedimentary rocks

The Golden Cache property is underlain mainly by metasedimentary rocks of the Bridge River Group of Middle Triassic and possibly older age (Figure 4). Regionally the group consists of thick sequence of thin bedded chert, cherty argillite and argillite, intercalated with altered basaltic flows and minor limestone that have been metamorphosed to pumpellyite-prehnite facies.

On the property, higher grade metamorphics were observed. The sedimentary rocks, phyllite and schist, were identified by their composition or degree of metamorphism. The original rocks were probably rhyolitic, basaltic, and andesitic volcanic rocks which have been converted to chloritic, chloritic-talc and graphitic schists.

The general strike on the property is northwesterly and dips northeast or southwest conforming to the local folding.

Intrusive rocks

Extensive outcrops of quartz-feldspar porphyry occur along the west part of the property. Numerous dikes and sills of felsite and quartz porphyry are common in the north part. Presumably, they are offshoots of porphyritic granite occurring to the south of the Gold Stripe claim. They may also be

of regional extent in that they are found many kilometres to the north in the Lillooet area and to the south along upper Cayoosh Creek. The intrusive rocks are locally fractured and sheared.

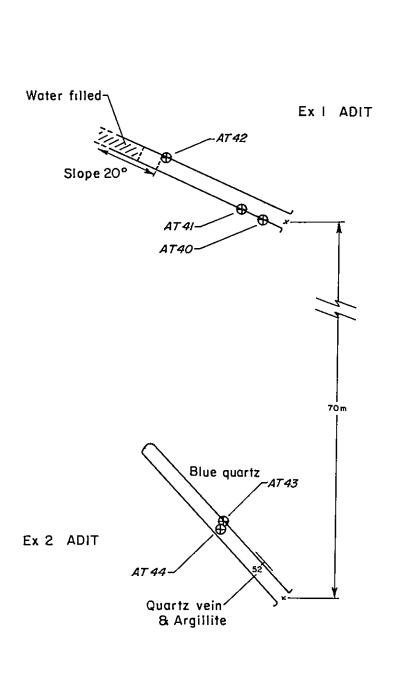
MINERALIZATION

The mineralization found on the property is associated with quartz veins. The quartz veins are irregularly distributed and are conformable with schistosity. They are most abundant in the eastern part of the property where higher grade metamorphic rocks varying from chlorite to chlorite-talc schist are present. The three known showings (Golden Cache, Excelsior and Bonanza-Cache) occur in this type of host rock.

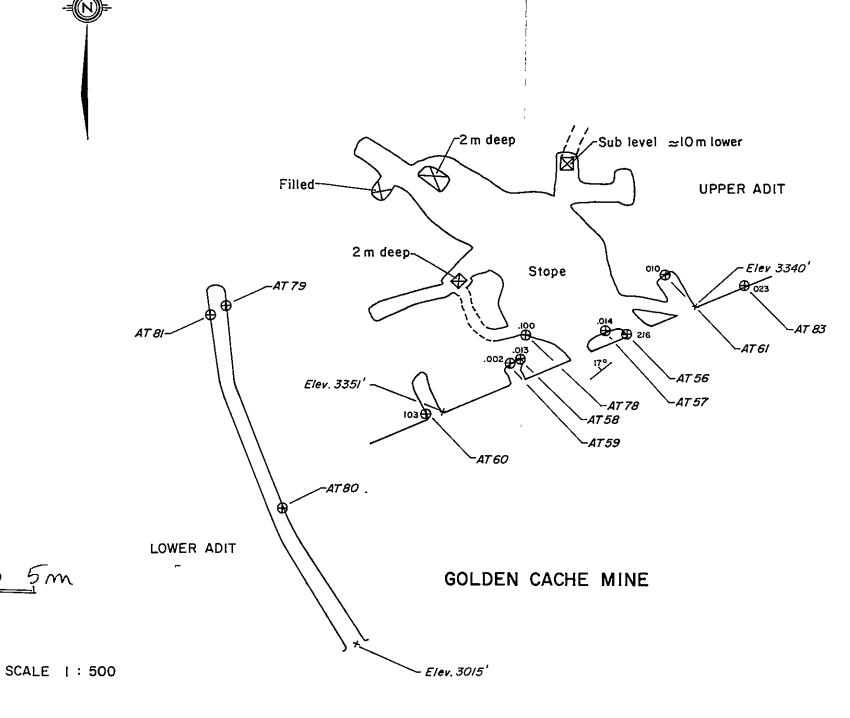
The quartz veins are lens-shaped and usually limited to a few centimetres wide by a few metres long. The veins usually consist of parallel veinlets mixed with the host rock in variable proportion. The quartz is milky white, locally coloured by iron oxide and locally contains disseminated pyrite and arsenopyrite. Visible gold has been reported but none was seen by the writer.

Some quartz veins were found close to intrusive-schist contact and the best assay returned 50 ppb (AT 66).

Golden Cache Workings


The Golden Cache workings consist of five adits driven into the face of a perpendicular cliff (Figure 6). The adits were sunk through a lens body of quartz being up to three metres in thickness and narrowing down along strike to narrow quartz stringers. The stringers can be followed for about 70 metres.

The main quartz body has a northwest general direction and dips 17° east. The first three adits are joined together and a stope was developed. The main body was mined out but a 60 cm vein still remains on the back.


The quartz material is iron-stained and usually barren. It locally contains minor amounts of disseminated pyrite and arsenopyrite. The host rock, chlorite-talc schist, shows at one location disseminated pyrite. Seven channel samples and one grab sample were collected and the assays found to range from 50 to 6900 ppb Au (0.21 oz./ton).

At the base of the cliff, 200 feet below the stope, a 52-metre long adit was driven in a chlorite schist. Very few quartz stringers are visible and no mineralization was observed Three samples of quartz veins returned assays from 10 to 20 ppb.

About 100 metres southeast from the lower adit at the base of a cliff, a two-metre deep adit was sunk in well-folded chloritic schist. It contains numerous small quartz lenses and stringers along the schistosity. The quartz is barren and iron-stained. A channel sample shows only 10 ppb gold.

EXCELSIOR MINE

<u>LEGEND</u>

Rock sample site, sample number oz/ton Au

NOTE : Only gold values ≥ .002 oz/ton plotted.

ORMONT EXPLORATION LTD
GOLDEN CACHE PROPERTY

SKETCHMAP OF UNDERGROUND WORKINGS
AND SAMPLE SITES

Nov. 17, 1983

Figure 6

Table 1

SAN	IPLE NO.	ROCK DESCRIPTION	Au ppb
AT	1	Rhyolitic schist cut by very fine quartz veinlets.	
AT	2	Silicified gray-black rhyolitic schist.	
AT	3	Sheared silicified black rhyolitic schist. Malachite stain.	
ΑT	4	Quartz lens mineralized with 4-10; fine dissemin- ated and globular pyrite. The host rock is a well sheared graphitic schist.	10
AT	5	Grayish-green diorite dike, 13 metres wide. 2t phlogopite. Iron stained on fractures.	
AT	6	Quartz-feldspar porphyry.	
AT	7	Felsite intrusion, oxidized on surface.	
AT	8	Rhyolitic phyllite.	
AT	9	Rhyolitic schist.	
AT	10	Yellow-white diorite sill.	
AT	11	Brown diorite, 1-3\$ fine disseminated pyrite.	10
AT	12	Quartz feldspar porphyry.	
TA	13	Green quartz feldspar porphyry.	
AT	14	Green quartz feldspar porphyry mineralized with 11 disseminated pyrite.	
AT	15	Quartz-feldspar porphyry.	

ΑT	16	Rhyolitic schist.	
ΑT	17	Silicified rhyolitic schist. Graphite develop- ment along shearing.	
АT	18	Blue quartz lens mineralized with very fine pyrite. 20 cm x 2-4 cm wide.	50
AT	19	Quartz veinlets sampled. Host rock is a rhyo- litic schist. Numerous slip planes.	
AT	20	Blue quartz lens in a rhyolitic phyllite. 2-31 fine disseminated pyrite.	10
AT	21	Altered quartz feldspar porphyry. Composed of 301 quartz, 301 feldspar.	
AT	22	Quartz-feldspar porphyry.	
ΑT	23	Well sheared rhyolitic phyllite.	
AT	24	Andesitic to rhyolitic schist.	
ΑT	25	Greenish blue quartz porphyry, 35; quartz.	
AT	26	Quartz porphyry.	
ΑT	27	Quartz porphyry.	
AT	28	White felsite.	
AT	29	Andesitic schist.	
AT	30	Sheared and silicified rhyolitic schist.	
ΑT	31	Small lenses of massive pyrite found in quartz veinlets at the contact between a felsite intrusion and andesitic phyllite.	50
AT	32	Rhyolitic schist.	
AT	33	Sheared chloritic schist. Presence of quartz lenses.	
TA	34	Felsite dike, 3 metres high and 10 metres wide.	

AT 35

Andesitic schist.

- AT	~36\ ·	Altered quartz posphysy.	
AT	37	Milky white quartz veins in chlorite schist Veins range from 10 to 40 cm. wide. Sample taken 15 metres north of northeast Excelsior adit.	
ΑT	38	Grab sample of a quartz vein close to the adit.	
AT	39	Iron stained quartz vein, 5 metres northeast of adit EX:1	10
AT	40	Channel sample across 1.2 metres wide quartz vein, 3 metres into adit.	10
AT	41	Channel sample across 60 cm. wide quartz vein, 6 metres into adit.	10
AT	42	Channel sample across 1.3 metres wide quartz- veined chlorite schist - 50% quartz. Some disseminated pyrite.	10
AT	43	Channel sample across 60 cm, wide quartz- veined chlorite schist - 601 quartz, 13 metres into adit,	10
AT	44	Chip sample across 20 cm wide quartz vein from the ceiling, 13 metres into adit.	10
TA	45	Chlorite talc schist.	
AT	47	Quartz vein sample from a 1 metre x 50 cm. irregular quartz vein. Specks of granular pyrite seen.	10
AT	48	Large quartz-sericite boulder, 2 metros x 1.5 metres close to the old mill.	
ΑT	49	Chlorite schist and quartz lenses. Oxidized on surface. Pyrite in the seams.	
AT	50	Quartz sample from Golden Cache dump. Dis- seminated pyrite and arsenopyrite.	
ΑT	51	Felsite dike, 10 metres wide.	
AT	52	Altered felsite dike,	
ΤA	53	Felsite dike.	
ΑT	54	Felsite dike, 5 metres wide x 10 metres.	
AT	S 5	Float of iron-stained quartz material. Quartz lens and veinlet occur sporadically in the chlorite-talc schist.	
AT	56	Channel sample across 60 cm quartz vein near the portal.	6900
AT	57	Channel sample across 1.3 metres quartz vein.	450
AT	58	Channel sample across 1.2 metres quartz vein. White and blue quartz.	420
AT	59	Sample of blue quartz from same vein as AT 58 location.	50
ΑT	60	Channel sample across 1.1 metres, quartz veined chlorite schist. 401 quartz 1 metre into adit.	3300
ΤA	61	Channel sample across 1.0 metres, quartz veined chlorite schist - 301 quartz. At the end of adit quartz veinlets are 0.5-15 cm wide.	330
TA	63	Rhyolite schist.	
AT	64	Quartz porphyry dike. Outcrop over 5 x 10 metres. Quartz grains to 4 mm.	
TA	65	Fine felsic intrusion, 6 metres wide.	
AT	66	Small quartz veinlets ranging from 1-2 cm. over 1.5 metres wide.	30
AT	67	Rhyolitic schist, siliceous and graphitic.	
AT	68	Sheared quartz porphyry in contact with a rhyolitic schist. Contact dips 75° West. Graphite developed on slip plane.	
ΑT	69	Chip sample across 3 metres of quartz veined rhyolitic schist at the contact with quartz porphyry - 151 quartz.	10

ΑT	70	Basaltic schist. Altered on surface - gives white colouration.	
ΑT	71A	Small 5 cm quartz veinlet amoung basaltic schist. Presence of arsenopyrite along seams. The quartz veinlets occur over a width of 10 metres. Chip sample includes vein material only.	10
AT	71B	Grab sample of quartz veinlet mineralized with arsenopyrite.	20
TA	72	50 cm quartz veins with arsenopyrite along seams. 151 basaltic schist.	10
AT	73	Chip sample across 1 meter of a quartz lens with a length of 6 m \times 40 cm wide average.	10
AT	74	Chip sample of irregular 50 cm quartz vein.	10
AT	75	Quartz lens 50 cm wide.	
AT	76	Chip sample of a 1.5 m irregular quartz.vein.	10
AT	77	Slightly silicified chloritic schist.	
AT	78	Channel sample across 1.08 m of a quartz-talc schist. The sample was taken along the wall, 2 metres above the ground. Contains disseminated crystallized pyrite in the quartz and in the schist.	3200
AT	79	1.26 metres wide chip sample across quartz- veined chlorite schist - 20; quartz.	20
AT	50	1.2 meter wide chip sample across quartz- veined chlorite schist - 25% quartz.	10
AT	81	Siliceous concretions running through the	10
AT	83	80 cm. chip sample across quartz-veined chlor- ite schists - 65% quartz.	720
AT	84	Rhyolitic schist well folded.	
ΑT	85	Feldspar porphyry - 15% quartz.	
AT	86	Cherty-feldspar porphyry,	
AT	89	Graphitic schist, well folded.	
AT	90 A	Quartz porphyry. Maximum quartz size is 2 cm.	
AT	90B	Chloritic schist with 1-21 disseminated pyrite. Malachite alteration.	100
ΑT	92	Chip sample of a well folded chlorite schist containing 10-15; quartz stringers (1-5 cm), 1 meter into adit.	10
ΑT	97	Chip sample across 90 cm of quartz-veined chlorite schist - 501 quartz. Quartz vein-lets vary from 2-15 cm. Disseminated pyrite.	10
AT	98	Chlorite schist well folded. Numerous quartz veinlet amoung the rock.	10
ΑT	99	Chip sample across 0.5 metres of quartz-veined chlorite schist - 301 quartz. The quartz veins vary from 5-50 cm.	10
AT	100	Chip sample across 1.5 metres of an irregular quartz veined chlorite schist - 601 quartz.	20
AT	101	Chip sample across 50 cm. of a quartz vein.	10
AT	102	Channel sample across 1 meter wide quartz vein, one meter into the adit.	2180
AT	103	Quartz vein materials from dump.	1260
AT	104	Host rock - chloritic schist,	
AT	105	Channel sample across 60 cm wide quartz vein,	50
ΑT	106	Channel sample across 40 cm wide quartz vein, Some disseminated pyrite.	10
ΤA	107	Silicified talc schist channel sample across a one metre shear zone between diorite and chlorite schist.	10

AT 108	Green diorite - 17% disseminated pyrite.	
AT 109	Green diorite talc alteration.	10
AT 110	Channel sample across 1.6 meters of quartz- veined chlorite schist - 401 quartz,	1200

٠

•

 \bigcirc

Excelsior Workings

The Excelsior showing occurs in chlorite to chloritetalc schist. Quartz veins and stringers, however, seen through the whole formation are concentrated in numbers and thicknesses at the portal of the north adit.

The north adit runs horizontal for the first 19 metres then dips 20° or more (Figure 6). The extent of the underground development could not be determined due to flooding. The adit is reported to be 50 metres in total length. Quartz veins and stringers are lens shaped and contain trace amounts of pyrite. The thicknesses of the veins are up to 1.5 metres, being conformable with the schistosity of the host rock in accordance with the folding. The general trend of the formation is to the northwest. The west wall of the adit shows, at the portal, a flat lying 40 to 120 cm thick lens (dipping horizontally). Two channel samples of the vein returned 10 ppb. Other veins seen on the roof dip 30° south.

A second adit 70 metres south from the preceding is 27 metres long. It exposes the same host rock but only scattered irregular quartz veins are visible. Blue quartz and iron stains were observed but no sulphide. No gold values were obtained from two collected samples.

Maude Workings

The property formerly named Bonanza-Cache is located on

the south side of Cayoosh Creek and consist of one claim staked over a ridge.

The rock is well exposed and is composed of chlorite schist and diorite. The schist shows a well developed northwesterly-trending schistosity, and numerous quartz veins and lenses occur conformable to schistosity.

Old underground workings are present at the top of the ridge about 300 metres above the road. A 15-metre shaft joined to a five-metre long adit, five metres below the collar, connect to the surface. The shaft was sunk on the widest section of a quartz lens dipping 80° southwest on surface but changing to 30° west in the adit due to local folding.

The vein strikes northwesterly and can be traced on surface for 25 metres where it pinches out to a few centimetres. The host rock is a chlorite schist. The vein material consists of milky white to yellowish quartz mineralized with rare disseminated pyrite. A one-metre channel sample of the vein in the adit on a grab sample from the dump assayed respectively 2180 and 1260 ppb Au (0.065 and 0.039 oz/ton).

A short adit, two metres long, trending west, lies 100 metres lower in elevation from the shaft. The adit exposes a 1.6 metre wide quartz-veined schist (40% quartz).

GEOCHEMICAL SURVEY

Geochemical soil and rock sampling was undertaken to cover most of the accessible parts of the Golden Cache property. Soil material consisted mainly of talus fines taken at depths of up to 25 centimetres (B Horizon). Soil was placed in paper sample bags and shipped to Rossbacher Laboratory Ltd. for gold analyses by standard atomic absorption techniques. Rock samples were taken from fresh outcrops along roads and from old pits and underground workings and also analyzed for gold by atomic absorption methods.

Sample sites are plotted on Figure 5 and all gold values above 20 parts per billion are plotted.

The geochemical sampling program determined the presence of three significant anomalies. They are all located in the vicinity of old workings.

The Excelsior anomaly trends north-south and lies down-hill from the two adits. The source of the anomaly could be the quartz veins uphill from the sample. At 100 metres down-hill and perpendicular to the ridge, a weaker trend is observed. It might represent the downhill dispersion of the material dumped from the adits. But gold mineralized veins could be present and more prospecting and geochemical sampling is warranted.

A second anomaly was found on the hill southeast of Golden Cache adits. The anomalous area is about 200 metres

in diameter and will merit more prospecting.

Along the steep face of this hill, at about 100 feet above the Cayoosh Creek, a series of flat lying quartz veins were observed. The thickness of the veins ranges from about 60 to 100 centimetres and extend for 100 to 200 metres.

Access for sampling is impossible.

A large geochemical anomaly was found on the Maude claim. Very high values, up to 860 ppb, were obtained and more detailed prospecting and soil sampling is also warranted.

Rock geochemical anomalies are mainly restricted to the old workings. However, a chlorite schist southwest of Golden Cache mineralized with 1-2% pyrite and malachite stain assayed 100 ppb. The sample is close to sample site AS 06 (180 ppb) which is about 30 metres downhill from an unaccessible quartz vein observed on a cliff face.

Lionel Tanguay

Donald G. Allen

REFERENCES

- B. C. Minister of Mines Annual Reports. 1896, p. 547; 1898, p. 556; 1898, p. 1100; 1900, p. 909; 1904, p. 240; 1910, p. 134; 1929, p. 235; 1930, p. 202; 1932, p. 211; 1933, p. 262; 1935, p. F6-9; 1947, p. A136.
- Roddick, J. A. and Hutchinson, W. W. (1973). Pemberton (East Half) Map Area, Geol. Survey Canada Paper 73-17.

CERTIFICATE

I, Lionel Tanguay, certify that:

- I am a Consulting Geologist, resident at #302 - 4926 48th Avenue, Ladner, British Columbia.
- I am a graduate of Laval University with a degree in Geology (B.A.Sc., 1978).
- I have been practising my profession since 3. 1978.
- I am a member of the Quebec Geologists 4. Association.
- This report is based mainly on information listed under References and fieldwork carried 5. out on the property during the period of October 22 to October 31, 1983.
- I hold no interest, nor do I expect to receive any, in Ormont Exploration Ltd.

Lionel Tanguay

Geologist

Ladner, B. C.

CERTIFICATE

I, Donald G. Allen certify that:

- 1. I am a Consulting Geological Engineer, resident at 4570 Hoskins Road, North Vancouver, B.C.
- I am a graduate of the University of British Columbia with degrees in Geological Engineering. (B.A.Sc., 1964; M.A.Sc., 1966)
- 3. I have been practising my profession since 1964.
- 4. I am a member in good standing of the Association of Professional Engineers of British Columbia.
- 5. This report is based on an examination of the property carried out personally on May 14, 1981 and April 29, 1983 and on information from government reports.
- 6. I hold no interest, nor do I expect to receive any, in the Golden Cache group of claims or in Ormont Exploration Ltd.
- 7. I consent to the use of this report in a Statement of Material Facts or in a Prospectus by Ormont Exploration Ltd.

North Vancouver, B.C. May 14, 1983

Donald G. Allen, P. Eng. (B.C.)

APPĖNDIX I ANALYTICAL RESULTS

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

CERTIFICATE NO. 83539-/

BURNABY, B. C.

TELEPHONE: 299-6910

DATE ANALYSED 83/11/09

		T T	·· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , 	PROJECT	00.	200
No.	Sample	рН	Au				_
01	AT - 40		10				0
02	41		10				0
03	42		10				0
04	43		10				0
05	44		ا و ا				0
06	56		6900	0.220% 02/	7.		0
07	5-7		450				0
08	5-8		420				0
09	5-9		50				0
10	AT-60		3300				1
11	6/		330				1
12	66		30				1
13	69		10				1
14	7/A		10				1
15	718		20				1
16	72		10	•			1
17			13				1
18	74		13				1
19	76		10				1
20	AT-78		3200				2
21	79		20				2
22	80 81		10				2
23	8/		10				2
24	¥ 3 4 o B		720				2
25	<u> 90B</u>		100				2
26	92		10				2
27	97		/3				2
28	98		10				2
29 30	100 AT-101		20				2
31			10				3
32	102		2180				3
33		_	/260				3:
34	105		50				3:
35	106	- 	10				3.
36	107	 -	· 				3:
37	AT-110		1200				34
38	111-110		/200				3
39						 	3
40					 	7	7) 3
70							Back 4

A & M EXPLORATION LTD.

TO:

CERTIFICATE OF ANALYSIS

TELEPHONE: 299-6910

BURNABY, B.C.

CERTIFICATE NO. 8354

DATE ANALYSED 83/11/09

		· · · · · · · · · · · · · · · · · · ·						PROJECT	20	O		
. 40 mad	No.	Sample	рΗ	_	Au					-	1	No.
,	01	TS - 0/		7	10						- 0	01
	02	0,2			10							02
	03	03			10							03
	04	04			10							04
	05	05			10)5
	06	06			10							06
	07	07	-		10							07
,	08	08			10							08
	09	09			10							09
	10	TS - 10			10							10
	11	11			10							11
	12	12			10							12
	13	13			10							13
	14	14			15							14
	15	15			10							15
	16	16			10	·						16
	17	17			10							17
()	18	18			/0							18
	19	19			10							19
	20	TS - 20			10							20
	21	21			10							21
	22	22			10							22
	23	23			10							23
	24	24			10							24
	25	25			10							25
	26	26			10						2	26
	27	27			/2						2	27
	28	28 29									2	28
	29	29			/5						2	29
	30	75 - 30 31			/0						3	30
	31	31			10						3	31
	32	32 <i>A</i>			10						3	32
	33	32B			10							33
]	34	32 A 32 B 33	[10							34
ļ	35	34			10							35
_ ا	36	35			15							36
✓	37	36			[2						1 3	37
\	38	37			10							18
	39	75 - 38			/>						3	19
` {	40].	<u></u>				171	2	1	// 4	10

VALUES IN PPM, UNLESS NOTED OTHERWISE.

1. Morsback Certified by

GEOCHEMICAL ANALYSTS & ASSAYERS

A & M EXPLORATION LTD.

CERTIFICATE OF ANALYSIS

BURNABY, B.C.

TELEPHONE: 299-6910

CERTIFICATE NO. 83542 -2 INVOICE NO. 4006

DATE ANALYSED 83/11/08

			183	 	PROJECT	20	
No.	Sample	pН	Au	{			1
01	TS - 39		10				
02	40		10 .				
03	41		10				C
04	42		10				
05	43		IA	 - 			
06	44		10				
07	45		10				
08	46		10				C
09	47		10				0
10	TS- 48		10				1
11	49 50		0				1
12	50		10				1
13	5-1		10				1
14	5-2		0				1
15	<u>53</u>		10				1
16	54		(0				1
17	55		10				1
18	56 57		10				1
19	<u>57</u>		10				1
20	75- 58		10				2
21	59		[3]				2
22	60		(2)				2
23	61		30				2
24	62		10				2
25	63		10				2
26	64		10				2
27	65						2
28	66		(2)	<u> </u>			2
29	67		10				2
30	75- 68		10				3
31	69		20				3
32	70	.	20	<u> </u>			3
33	7/		10				3
34	72		10				3
35	73		[3]				3
36	74						3
37	75		(0)	···			
38	76		10				_ 3
39	75 - 77		10				1
10		Ì			<i>//</i> /	//	book

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

BURNABY, B.C.

TELEPHONE: 299-6910

CERTIFICATE NO. 83542 -3
INVOICE NO. 4006

DATE ANALYSED 83/11/08

A & M EXPLORATION ITD

	 			PROJECT	ं २००
No.	Sample	рН	Au Au		No
01	TS- 78		10		01
02	79		10		02
03	80		10		03
04	81		10		04
05	82	·	10		05
06	83		10		06
07	84		20		07
08	84 85		10		08
09	86		170		09
10	75- 87		20		10
11	88 89		50		11
12	89		30		12
13	90		10		13
14	91		10		14
15	92		10		15
16	93		10		16
17	94		10		17
18	95		30		18
19	96		10		19
	TS- 97		20		20
21	98 99		/5		21
22	99		/5		22
23	100		50		23
24	/0/		40		24
25	102		13		25
26	103		20		26
27	104		2.5		27
28	105		20		28
29	75 - 107		40		29
30			10		30
32	109		30		31
33	110		/ 5		32
34	111		20		33
35	117		20		34
36	112 113 114	-		 	35
37	112		30		36
38	117		10		37
	115		70		38
40	<u> </u>				39

VALUES IN PPM, UNLESS NOTED OTHERWISE.

CERTIFICATE OF ANALYSIS

A & M EXPLORATION LTD.

BURNABY, B. C.

TELEPHONE: 299-6910

CERTIFICATE NO. 835-42-4
INVOICE NO. 4006
DATE ANALYSED 83/11/08

PROJECT	200

			ovQ	PROJECT	$\alpha c c c c$
No.	Sample	ρΗ	Au		No.
01	TS - 117		20		01
02	118		10		02
03	119		10		03
04	120		10		04
05	121		10		05
06	122		80		06
07	123		50		07
08	124		600		08
09	125		70		09
10	75-126		860		10
11	127		2/0		11
12	129		3 0		12
13	130		10		13
14	131		10		14
15	/32		10		15
16	/33		10		16
17	134 135		10		17
18	/35		12		18
19	136		10		19
20	75- 137		10		20
21	٠ ا	I	1 1 1		1 21

Rossbacher Laboratory Ltd.

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

A & M EXPLORATION LTD.

2225 S. SPRINGER AVE., BURNABY, B. C.

TELEPHONE: 299-6910

CERTIFICATE NO. 83639-4

INVOICE NO.

DATE ANALYSED 83/11/09

92 com

,									PROJECT	T	03-8	100	
Sample	рΗ				PPB								No.
200TT 128					i							 	01
			Ī								1	1	02
							1	-				 	03
	_			<u> </u>	1			<u> </u>			<u> </u>	†	04
		-		1			 			1		 	05
										1		1	06
- 													07
				<u> </u>							1		08
•		•						-	7	. 34	,	,	09
											-		10
								_		7.			11
													12
													13
	200TT /28	200TT 128 10	200TT 128 10	200TT 128	Sample PH PA	Sample pH PB PAU SOUTT 128 10 10 10 10 10 10 10 10 10 10 10 10 10	Sample pH	Sample pH	Sample pH				

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

A & M EXPLORATION LTD.

BURNABY, B. C.

TELEPHONE: 299-6910

CERTIFICATE NO. 83542-5

INVOICE NO.

DATE ANALYSED 83/11/04

PROJECT	200
---------	-----

		· · ·		,,		PROJEC	T α/00	<u> </u>
No.	Sample	рН	Мо	Cu	PPB Au			N
01	20055235		·		10			0
02	236				10		 	0:
03	236 237 238				10	···	1	0:
04	238				10		 	0
05	239 240 241 242				10		 	0.
06	240				10			
07	241				10			0
08	242				10			0
09	243 2005S 244				10			0
10	20055 244				10			10
11	21/5				10			1
12	246				10			1:
13	247				10			1:
14	248				10			14
15	248 248 251				10			1.
16	250				10			10
17	251				10			1:
18	252				50			1:
19	213				10			19
	2005S 254				10			20
21	2r5 256				/0			2
22	256				10			2:
23	257 258 259				10			2:
24	258				10			24
25	259				10			2:
26	260				/0			20
27	261				10			2
28	262				10			28
29	263							25
30 K	20055264				/0			30
31	265				10			3
32	266				/0			32
33	267	 }-			10		<u> </u>	33
34	268				/0		ļ <u>.</u>	34
35	269				/0		<u> </u>	35
36	270						\longrightarrow	36
37	271				10		 	37
38	222				/0		 	38
<u>"</u> 7	boss 273				10		<u> </u>	39
(0	<u> </u>						12	// 40

VALUES IN PPM, UNLESS NOTED OTHERWISE.

Certified by U. Mossback

GEOCHEMICAL ANALYSTS & ASSAYERS

A & M EXPLORATION LTD.

CERTIFICATE OF ANALYSIS

BURNABY, B. C. CANADA

TELEPHONE: 299-6910

CERTIFICATE NO. 83542-6
INVOICE NO. 4006
DATE ANALYSED 83/11/05

			100	· · · · · · · · · · · · · · · · · · ·	PROJECT	<u> </u>	200	
No.	Sample	рΗ	Au	1 1				N
01 2	20-55-276		10			1		0
02	277		10			1		0:
03	278		10					0:
04	279		10			-		0
05	280		10			 		0.
06	281		(0	-		 		0.
07	282		(0			1		0
08	283 283		/0					0:
09	284 200–55–285		(0					09
مُ 10	200-55-285		(5		-	<u> </u>		10
11	286		/3			 		11
12	281		/3					12
13	288		10					13
14	289		[2					14
15	290		10					15
16	291		10			1		16
17	292		12			· · · · · · ·		17
18	293		10					18
19	294		(5)					19
20 6	200-55-295		10					20
21	296		(0					21
22	297		(2)					22
23	298 299		/0				-	23
24	299		10					24
25	300		jo					25
26	30/		/0					20
27	302		4/					27
28	303		[0]					28
29	304		10					29
30 Z	304 02-55-305		10	1				30
31	306		10					31
32	307		10					32
33	307 308		(4)					33
34	309		10					34
35	310		10					35
36	3//		10					36
37	312		/2					37
38	313		10					38
39. St	0-55 314		[5]					//39
40						7	stor	

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

BURNABY, B. C. CANADA

TELEPHONE: 299-6910

CERTIFICATE NO. 8542-

	A & M EX				PROJECT 200						
lo.	Sample	pН	Au								
01 5		 		- -				0			
02	20- <u>55-315</u> 316		10		- -	- -	 	0			
03	317	 	10				 -	- 0			
04		 	10			 	+	- O			
05	318 319	 	10			-	 	. 0			
06	320	<u> </u>	10		· · · · · · · · · · ·	1	 	0			
07	321		10				1	0			
08	322		10					0			
09	323		10			<u> </u>		0			
10	100-55-324		10					1			
11	325		10					1			
12	326		[2]					1			
13	327		10					1			
14	328		10					1			
15	329		70					1			
16	330	<u> </u>	10	•				1.			
17	331		10					1			
18	332		10					1			
19	333		10				 	1			
20 6	332 333 200-55-334 335		130			<u> </u>		2			
21	335		10				 	2			
22	336 337		10			<u> </u>	 -	2			
23	35/		10				 	2			
24	338 339	 	30			-	 	2			
25	359		<u> </u>				 	2			
26 27	340 341		30				 	2 2			
28						 	 -	2			
29	342 343		250				 	2			
	100-55-344		1			-	+	3			
31	345		10				+	3			
32	346		/2				 	3			
33	347		12			- 	 	3			
34	348		10	- - -		+	 	3			
35	349		13				 	3			
36	350		10			1		3			
37	35-1		10			 		3			
38	35-1 35-2 20055 35-3		10					3			
ع وا	0055 353		10					//s			
10						7					
	- · · · · · · · · · · · · · · · · · · ·		<u> </u>			1//	sbor	c 14			

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

A & M EXPLORATION LTD.

BURNABY, B. C. CANADA

TELEPHONE: 299-6910

CERTIFICATE NO. 83 542-8

INVOICE NO.

DATE ANALYSED 83/11/06

	······································	 -				PROJECT	200	
No.	Sample	рН	Au	Ì				No
01	200-4-354		10		1 -			01
02	355		10		1			02
03	356		10					03
04	357		10					04
05	358		10		<u> </u>		 	05
06	359		10					06
07	360		10					07
08	361		10		-			08
	· ————							09
11	\$10 <u>-55-3 63</u> 364							10
12		- 	10					11
13	265 266		10		 			12
14	367		10					13
15	368		10		 			14
16	369		80	- 				15
	0055.370		<u> </u>	_	1		 	16
18	00 32.3 10		3 8		 			17
••					 -		- 	18

Rossbacher Laboratory Ltd.

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

A & M EXPLORATION LTD.

2225 S. SPRINGER AVE.,

TELEPHONE: 299-6910

CERTIFICATE NO. 83539_ 3

INVOICE NO.

DATE ANALYSED 83/11/09

_									1	PROJECT	83	3-20	20	
No.	Sample	ρН				PA								No.
01	200 ST 371					4300				 	 - 			01
02	ST 372]	10								02
03	57373					10		·		 	†·			03
04	57 374					10				<u> </u>	 			04
05											·			05
06				<u> </u>							1			06
07					ļ	ļ		i						07
08				<u></u>										08
10				 	_	ļ		·						Ő9
\longrightarrow					ļ		'							10
-11			· · · · ·			<u> </u>				-, -			-,, ,	11
12	n													12
13					<u> </u>	<u> </u>				<u> </u>	<u> </u>			13
15										ļ				14
10														15

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

A & M EXPLORATION LTD.

CERTIFICATE NO. 83539-2

INVOICE NO.

DATE ANALYSED 83/11/09

No.	Sample	рН	36		No
01	200TR-1		10		01
02	TN.2		/5		02
03	TR.3		10		03
04	TR-4		10		04
1	, , , , , , , , , , , , , , , , , , , ,	1		 - 1	

Rossbacher Laboratory Ltd.

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

A & M EXPLORATION LTD.

TO:

2225 S. SPRINGER AVE., BURNABY, B. C.

TELEPHONE: 299-6910

CERTIFICATE NO. 83542-9

INVOICE NO.

DATE ANALYSED 83/11/09

				,		PROJECT	200
No.	Sample	рΗ	Мо	Cu	PPB		No.
01	200 AS- 1				10		01
02	PS-2				10		02
03	PS - 51	9			30		03
04	A5-6		-		180		04
05	AL-5				10		05
06							- 06

Rossbacher Laboratory Ltd.

GEOCHEMICAL ANALYSTS & ASSAYERS

CERTIFICATE OF ANALYSIS

2225 S. SPRINGER AVE., BURNABY, B. C.

TELEPHONE: 299-6910

CERTIFICATE NO. \$3550

INVOICE NO.

DATE ANALYSED 83/11/09

A R. M. EYBLADATION LTM

	A N M 5	A1 40-14	* 660 ~ 3	39 (**3	PPB		 P	ROJECT	200	
No.	Sample -	рΗ	146	96	Au					No
01	AT - 4				10		1			01
02	11	-			10					02
03	18				50					03
04	20				10					04
05	31				50					05
06	3-9-			, ,	10	V				- 06
-07-	47				10					07
08	AT - 99				10					08
09	-									09
10									·	10
11										11
12	·• •									12
13										13

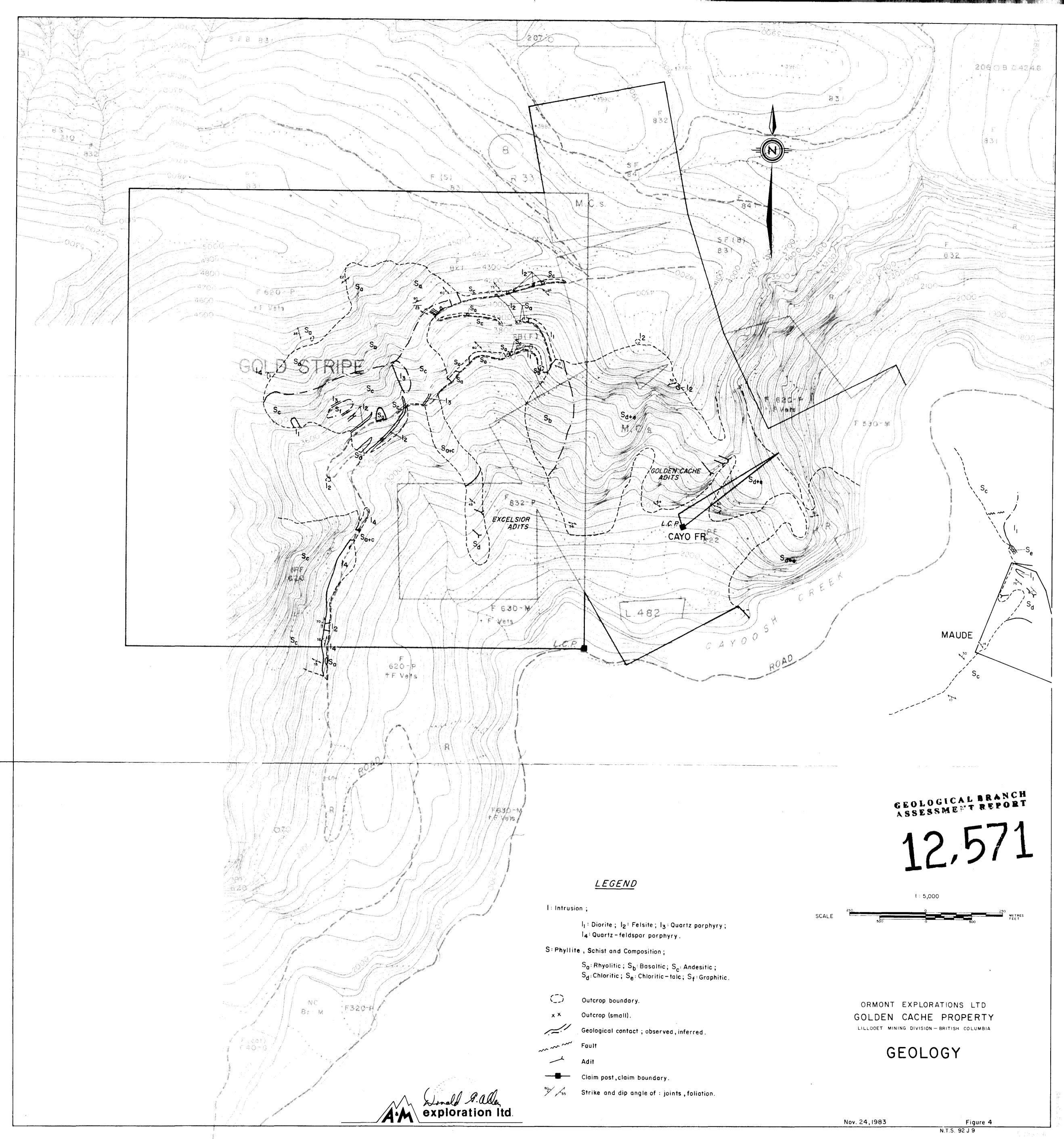
APPENDIX II AFFIDAVIT OF EXPENSES

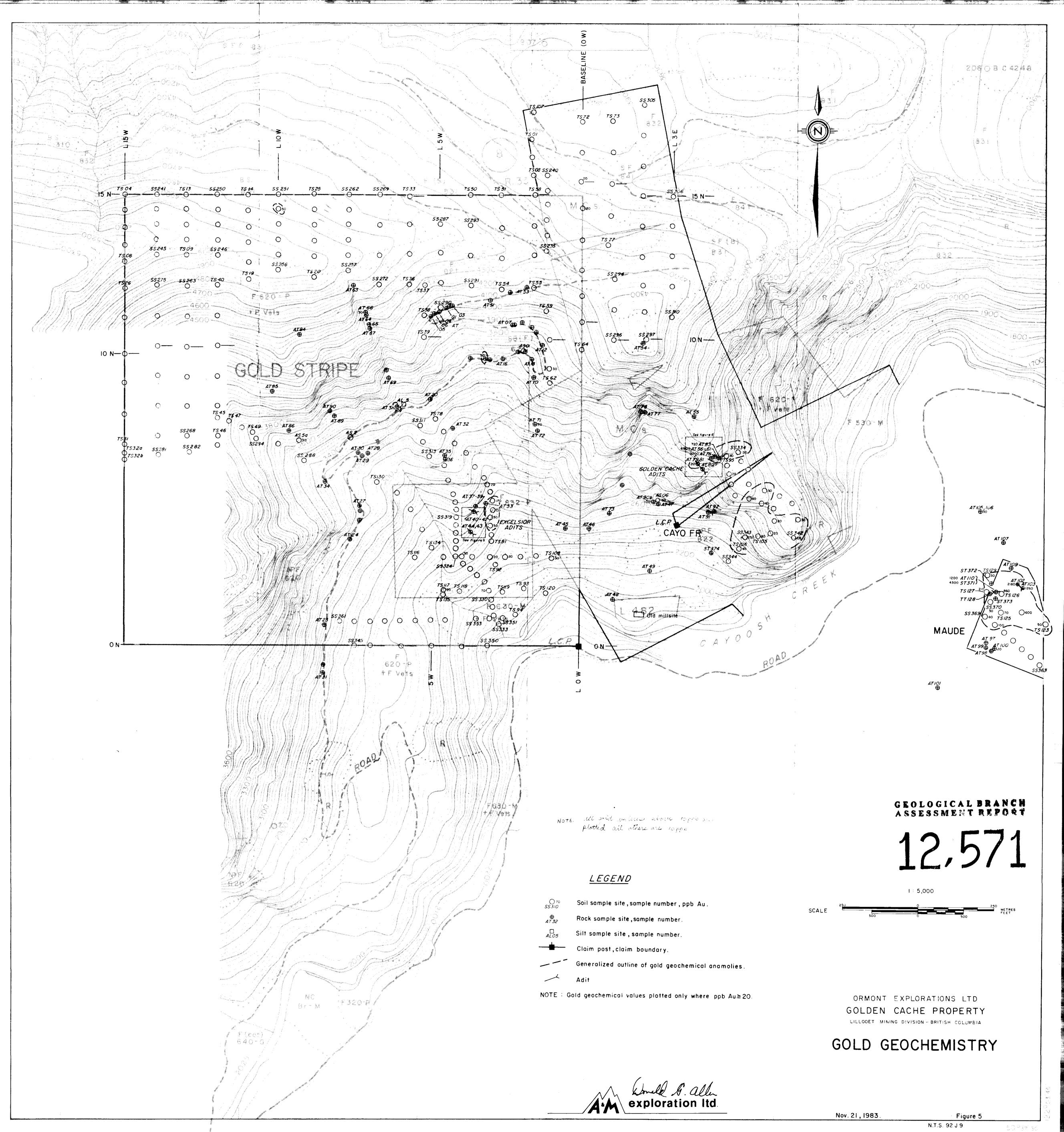
AFFIDAVIT OF EXPENSES

This will certify that geochemcial surveys and geological mapping were carried out during the period October 22 to 31, 1983, on the Cayoosh Creek property of Ormont Exploration Ltd., in the Lillooet Mining Division, British Columbia, to the value of the following:

MOBILIZATION AND FIELDWORK

Salaries


L. Tanguay S. Travis J. Travis	12 days @ \$200 12 days @ \$100 12 days @ \$100	\$ 2,400.00 1,200.00 1,200.00
Room and board		1,425.25
Vehicle rental an	556.50	
Geochemical analy	1,450.35	
Telephone		16.25
	subtotal	\$ 8,248.35


REPORT PREPARATION AND DRAUGHTING

Salaries

L. Tanguay S. Travis D.G. Allen	4 days @ \$2 13.4 days @ \$1 .5 days @ \$3	00	\$ 800.00 1,340.00 175.00
Maps, photocopyi	.ng		120.20
Typing, compilat	ion 16 hours @	\$15	240.00
		subtotal	\$ 2,675.20
		TOTAL	\$10,923.55

Donald G. allen.

