84-4875 - 12619

GEOCHEMICAL AND GEOPHYSICAL REPORT

FLY AND AG CLAIMS

TOOTSEE RIVER AREA

LIARD MINING DIVISION, BRITISH COLUMBIA

LOCATION

NTS: 104-0-15E/16W-LATITUDE:: 59.0 57 1 16.1 15 LONGITUDE:: 1030 31 18 36.1 18

FOR:

REG: RESOURCES CORPORATION &.

TERYL RESOURCES CORPORATION 216-8055 ANDERSON ROAD RICHMOND, BRITTISH COLUMBIA: V6Y 1S2

BY-

PETERS A. CHRISTOPHERS, Ph.D., P.Eng. PETERS CHRISTOPHERS & ASSOCIATES INC. 3707 WEST 34TH AVENUE VANCOUVER, BRITISH COLUMBIA V6N2K9

P. A. Christopher

SEPTEMBER 12, 1984

GEOLOGICAL BRANCH ASSESSMENT REPORT

12,619

TABLE OF CONTETS

			PAGE
)	SUMMARY		1
	INTRODUCTIO) N	2
	LOCATION AN	ID ACCESS	2
,)	PROPERTY DE	EFINITION	2
	HISTORY		3
)	WORK PROGRA	M .	3
	REGIONAL GE	COLOGY	3
	PROPERTY GE	OLOGY:	4.
	MINERAL DE-[POSITS IN THE AREA	4.
	GEOPHYSICAL	SURVEY	5 -
	GEOGHEMICAL	SURVEY	5
	DISCUSSION	OF FLY PROPERTY	6
	CONCLUSIONS	AND RECOMMENDATIONS	6
	COST STATEM	ENT	7
	BIBLIOGRAPH	Y.	8-
	CERTIFICATE	<u>.</u>	9
		LIST OF FIGURES	
	FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4	LOCATION MAP CLAIM MAP REGIONAL GEOLOGY PROPERTY OWNERSHIP MAP	
		LIST OF MAPS	
	MAP 1 MAP 2 MAP 3	STATION LOCATION MAP in pocket GEOCHEMICAL RESULTS in pocket GEOPHYSICAL RESULTS in pocket	
		APPENDICES	
	APPENDIX A APPENDIX B	VLF-EM SECTIONS CERTIFICATES OF ANALYSIS	

FLY PROPERTY

SUMMARY

A geochemical and geophysical program was conducted on August 14-16, 1984 to explore a silver, lead and zinc anomaly found during the 1983 prospecting program. A total of 105 soil and four rock samples were collected along chained and flagged lines. Over 25% of the samples collected were anomalous in silver, lead and zinc with values in soils up to 74ppm silver, 1850ppm lead and 4700ppm zinc. A strong positive correlation exists for the three elements. A northeast trending anomalous zone over 500meters wide and 1000meters long was delineated. Trenching and further geophysical testing of the anomalous zone is required to outline drill targets.

About: 6: killometers: of VLE-EM* and magnetic survey was completed... The magnetic results define the granitic-sedimentary rock contact in the westerm part of the claims area. Several VLE-EM anomalies were detected but insufficient datas was obtained to cornelate between survey lines. A electromagnetic survey should be conducted over the soil geochemical anomaly to define drill targets.

INTRODUCTION

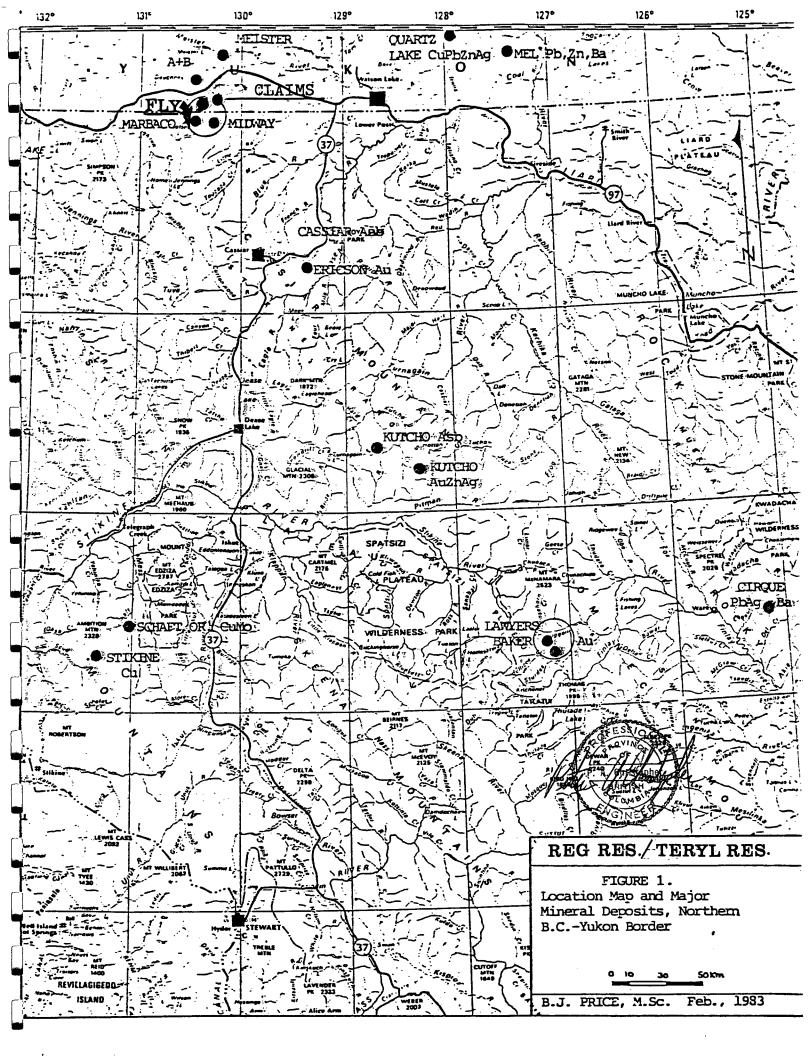
The Fly and Ag claims were explored with a geochemical and geophysical program conducted between August 14 and August 16, 1984. Peter Christopher & Associates Inc. was retained by Mr. John Robertson president of Reg Resources Corporation and director of Teryl Resources Corporation to conduct the program. Mobilization for the project occurred from Vancouver, British Columbia on August 13, 1984. The writer was assisted during the program by Mr. Gerry Hayne. A Northern Mountain Helicopters Inc. jet ranger stationed at the Midway camp was used to mobilize and demobilize a fly camp. The camp location is shown on Map 1.

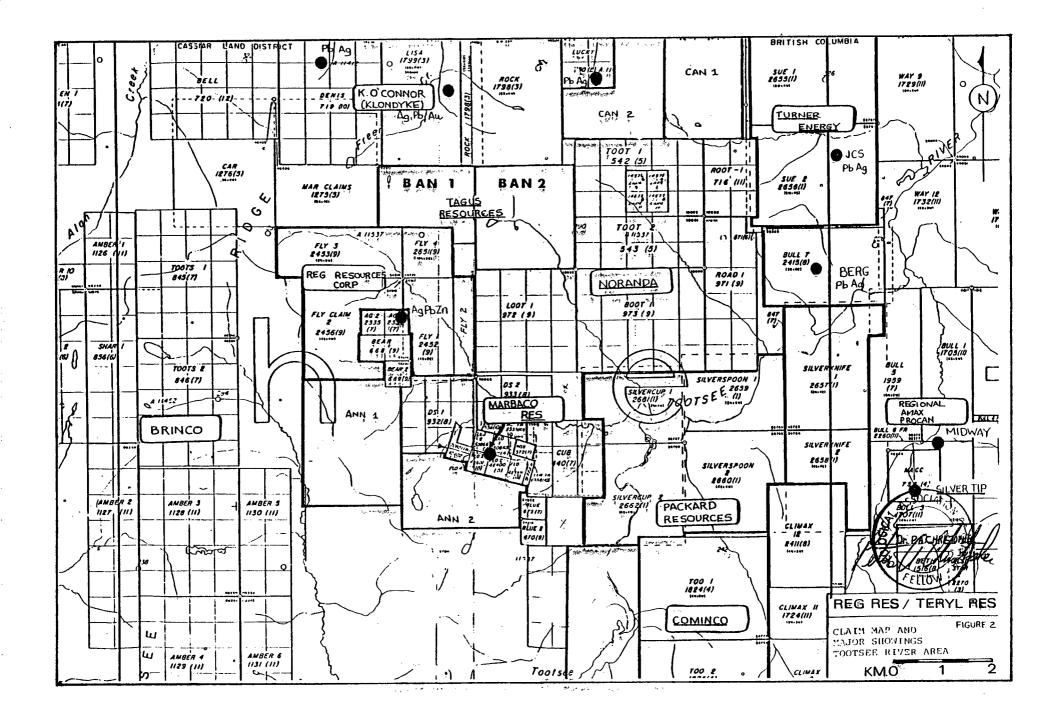
This report summarizes the geochemical and geophysical results of the exploration program and provides recommendations for follow up of amomalous results.

LOCATION AND ACCESS (FIGURES 1 & 2)

The Fily Claim Group is situated at the headwaters of a north branch of Tootsee River in northern British Columbia, 100 kilometres west of Watson Lake, Yukon Territory, and four kilometers south of the B.C. - Yukon border and 10 kilometers south of Rancheria, Yukon Territory. The claims are centered at Latitude 59°57'16" and Longitude 130°31'36" in N.T.S. Topographic and Mineral Claim Shets 104-0-15E & 16W.

Roads along Freer Creek and the Tootsee River are within about a kilometre of the claim bondary and a cut baselines from near the Marbaco (Amy Deposit) Camp extend across the Fly proerty. Baseline BLY was used as a survey line during the program.


At present, easiest access is by helicopter from Rancheria or via helicopter stationed at Regional Resources Midway Camp. A Northern Mountains Helicopters Inc. jet ranger piloted by Richard Gilchrist was used for mobilization and demobilization of a fly camp.


PROPERTY DEFINITION

The property consists of the Fly I through 4 and Fly 2A modified grid. claims totalling 50 units and the AGI and AG2 two post claims which are internal to the Fly I and 2 claims. The Bear an Bear 2 claims are not part of the proeprty and reduce the 1250 hectare area of the proeprty by about 3 units or 75 hectares. Figure 2 shows the claim distribution and Table I gives pertinent claim data.

Table I. Pertinent Calim Data.

Name	Record No.	Units/ Distribution	Staker	Record	<u>Date</u>
Fly l	2452 (9)	8/(4S,2E)	Jake Melnychuk	Sept. 2	/82
F1y 2	2456 (9)	16/(4S,4W)	Skip Melnychuk	Sept. 7	
Fly 3	2453 (9)	10/(2N,5W)	Jean Legare	Sept. 2	/82
Fly 4	2651 (9)	4/(2N,3E)	George Řudzk	Sept. 2	/82
Fly 2A	2699 (2)	12/(4S,3E)	T. Cameron Scott	Feb. 2	/83
AG 1	2334 (7)	1 claim	D. Schellenberg	July 2	9/82
AG 2	2335 (7)	l claim	D. Schellenberg	July 2	9/82

HISTORY

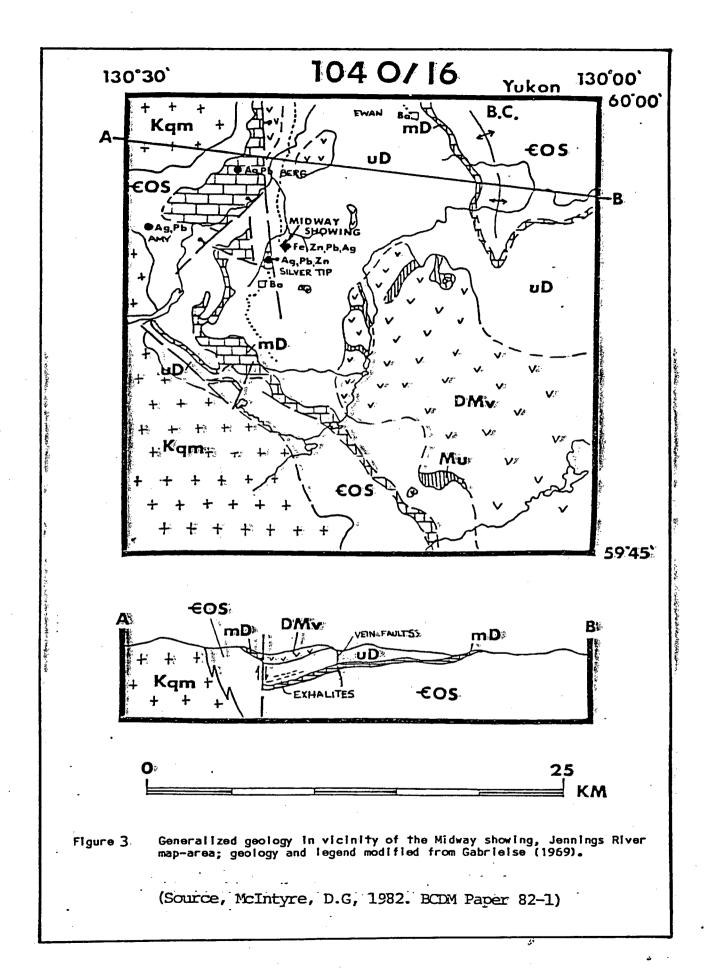
The present area of the Fly claims was previously owned by D. Schellenberg, and in 1979 was explored by DuPont of Canada Exploration Ltd. with soil sampling, trenching and rock assaying for tungsten. A small scheelite-bearing skarn was located near the center line of the Fly 1 and Fly 2 claims. Lead, zinc and silver values also showed a strong response.

In 1982 ground surrounding the AG claims was allowed to lapse, and it was restaked by J. Robertson for Reg Resources Corp. The AG l and AG 2 claims were purchased from Schellenberg. A brief exploration program was conducted by Peter Christopher & Associates Inc. and filed for assessment in 1983.

Extensive staking activity was generated in 1983 when Regional Resources announced results that indicated an excellent potential for a silver-lead-zinc orebody on the Midway property, 10 kilometers to the east. Regional Resources has released reserves of 6.7 million tons grading 13.12 oz. silver, 11.12% zinc, 8.84% lead (Northern Miner August 9, 1984).

WORK PROGRAMS

The work program on the Fly property consisted of soil sampling at 50% meter intervals. A total of 105% soils and four rock samples were collected and shipped to Chemex Labs Ltd. in North Vancouver, B.C. for lead, zinc and silver analyses. A total of 5.65 kilometers of line was chained with stations flagged at 25 meter intervals. Magnetometer and VLF-EM readings were collected at 25 meter intervals along lines. Sample and line locations are shown on Map 1 with geochemical and geophysical results plotted on Map 2 and Map 3 respectively. VLF-EM sections are presented in Appendix A and Certificates of analysis are presented in Appendix B.


REGIONAL GEOLOGY (FIGURE 3)

The F1y property is situated on the east flank of the Cassiar batholith which extends for over 300 kilometers from the Wolf Lake map sheet in the Yukon Territory to the Kechika map area in British Columbia. In the Jennings River and Cassiar-McDame map areas the eastern flank is underlain by Paleozoic rocks from Cambrian to Carboniferous age and separable into two or more contrasting assemblages, some of which have moved into place along flat lying faults.

Rock units are described in detail by Gabrielse (GSC Paper 68-55, 1968); brief descriptions of the mapped units are summarized below:

Good Hope and Atan Groups: (Unit 1)

Rocks of these units are probably Hadrynian and Lower Cambrian age with outcrops only near the contact with the Cassiar batholith. The igneous body has produced contact metamorphic effects with clastic rocks converted to hornfels and quartzies and limestones converted to skarn and marble.

TABLE Legend for Figure 3

CRETACEOUS							
	CASSIAR: BATHOLITH						
Kqm	Quartz monzonite, granodiorite						
MISSISSIPPI	AN AND LATER						
Mu	Serpentinite, dunite, peridotite						
UPPER DEVON	HAN-TO-MISSISSIPPIÀN-						
	SYLVESTER# GROUP (UPPER) >						
DMv:	Greenstone;, agg.lomenate;; dacitic: tuff;; minor. chemt,, metadiorite:						
MIDDLE: TO AL	IPPER® DEVONIAN®						
	SYLVESTER® GROUP (LOWER) #						
u D ≫	Slate, anglikkite, chemi, sikitshone, chemi-amenkie, greywacke, chemi- pebble conglomerate, minor limestone						
MIDDLE DEVO	DNIAN						
	McDAME GROUP						
mO	Dolamite, fossiliferous limestone						
CAMBRIAN; (DRDOVICIAN; AND ASILURIAN &						
eos:	Dolomite, dolomitic: sandstone: and: siltstone, graptolitic: black: shale; platy: siltstone; calcareous: phyllite; phyllitic://imestone:skarn; hornfels; // limestone; quartzite:						
	S ÿmboʻt s ≆						
High-angle fault; ball on downthrown block. Antiform. Contact: defined; assumed Road Stratabound barite Stratabound massive sulphide Mineral occurrence in carbonate rocks Exhalite horizon							

KECHIKA GROUP: (UNITS 2 & 3)

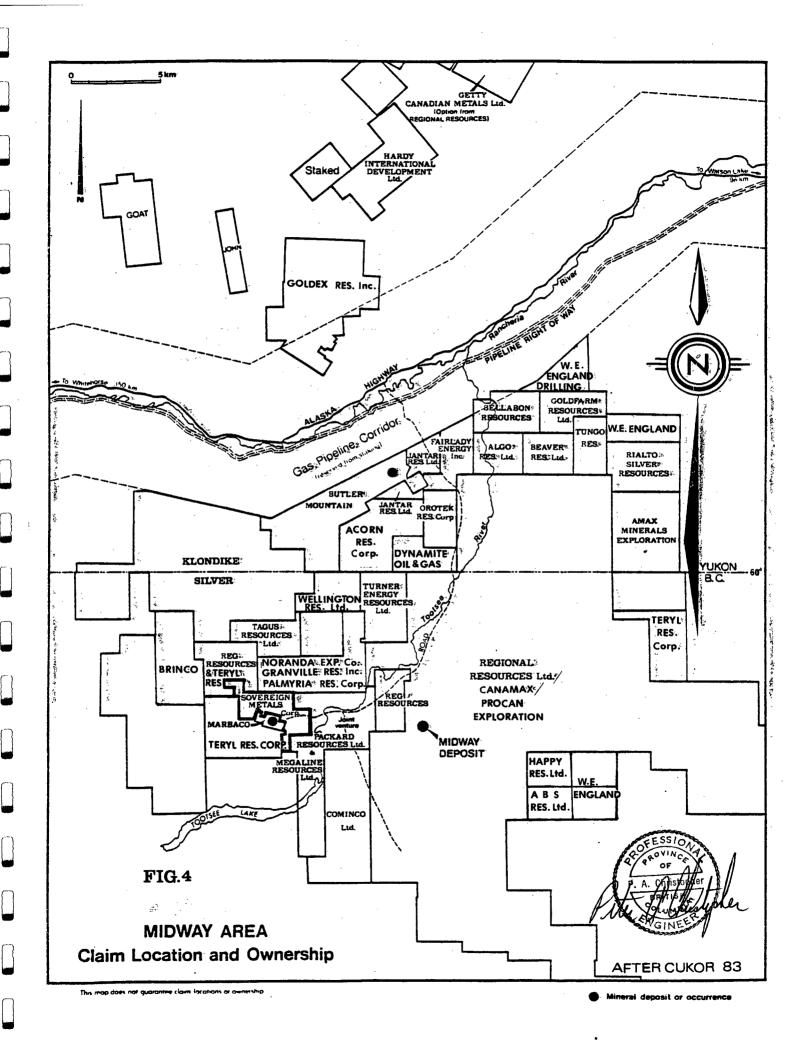
The Kechika Group includes rocks of Upper Cambrian to Silurian age. These are strongly hornfelsed shales and siltstones and calcareous phyllites. Shales in the lower part of Unit 3 carry graptolite fossils. Unit 2 may be as thick as 1000 feet (300m.) but unit 3 is thin, from 100 to 200 feet (30 to 60 meters).

UNIT 4:

Two formations described by Gabrielse as Units 4a and 4b are distinctive light-grey weathering resistant dolomites, sandy dolomites and dolomitic sandstones with conspicuous bedding. The units are believed to be Silurian and Lower Devonian age.

McDAME GROUP: (UNIT 5)

The McDame Group consisting of dark, fetid dolomites and limestones with abundant fossil debris forms a distinctive marker unit. Dolomite (intraformational?) breccia is common and white vuggy dolomite may represent reefold accumulations of fossils that formed as shows in a shallow platform environment. Fossil evidence indicates that the McDame Group is Middle Devonian age.


PROPERTY GEOLOGY

No attempt was made to grid or detail map the Fly property but during the 1983 and 1984 field program mapping has indicated that the geological contact between Cassiar batholith rocks and sediments occurs in the western part of Fly 2 claim. The presence of skarn zone to the east on the AG and Bear claims suggests that the granitic contact may be at shallow depth or dip to the east. Sediments generally dip southerly but have variable strikes which require complexs faulting and/or folding. Detailed property mapping is necessary for better understanding of the property geology and structure.

MINERAL DEPOSITS IN THE AREA (FIGURE 4)

The most significant development in mineral exploration in the southern Yukon Territory and northern British Columbia in the last few years is the discovery of stratiform silver-lead-zinc mineralization within "exhalite" massive sulphide and silica barite horizons in the lower portion of the Mississippian-Devonian Sylvester Group. The discovery by Regional Resources Ltd. and partners Canamax and Procan caused reevaluation of geological data concerning mineral showings adjacent to Regional's "Midway" property.

Several silver-lead-zinc+gold deposits in Cambrian to Middle Devonian strata (Amy, YP, A+B, Sue) and in high grade veins within the Cassiar Batholith (Klondike Silver). Stratiform barite has been found on the Midway property and skarn tungsten-molybdenum mineralization has been found on the Hot and Fly claims and on the Fiddler and Sue prospects. Tin mineralization has been noted at the Midway deposits and Fiddler prospect.

The Midway deposits of Regional Resources contain the most significant reserves in the area. The Midway deposits have reserves of 6.7 million tons grading 13.12 oz. silver, 11.12% zinc, and 8.84% lead (Northern Miner August 9, 1984).

GEOPHYSICAL SURVEY

a) Methodology

Magnetometer and VLF-EM readings were collected along flagged and chained lines at 25 meter intervals with readings collected at all soil sample sites and at intermediate stations. Geophysical survey stations are shown on Map 1 with a total of about 226 stations or 5.65 kilometers were surveyed. A Scintrex model MP2 magnetometer was employed with the detector in the pack mount. A base station was established about 50 meters west of the camp and read at the start and completion of traverses. Values were corrected for diurnal variation by assuming linear variation. A Geonics Ltd. EM16 was used for the VLF-EM work. Readings were taken at two frequencies with Seattle, Hawaii, and Cutler (Maine) used (except when both Seattle and Cutler were not broadcasting). VLF-EM plots are presented in Appendix A with anomalies shown on Map 3...

b) Results

Magnetic readings varied from 58,456 gammas to 58,676 gammas with a magnetic relief of 220 gammas detected during the survey. The highest value was at station 450W, 50N and is situated within a strong geochemical response. The lowest values are at the western part of the survey area and suggest a sedimentary and granitic rock contact at about 700W.

Several VLF-EM crossovers were detected along survey lines but insufficient data was acquired to aid with structural interpretation. Anomalies at 400E and 600E on lines 00 and 100S appear to correlate but additional lines are required. An anomaly at 50W on line 700SE is at the eastern edge of the strong geochemical response. Further survey lines should be run over the zone of anomalous geochemical results.

GEOCHEMICAL SURVEY

a) <u>Methodology</u>

Soil samples were collected from the B-horizon and put in kraft soil sample bags. The bags were labeled corresponding with the number written on flagging at the sample location. A total of 105 soil samples were collected at 50 meter intervals along chained and flagged lines. Four samples were collected for rock geochemical analysis. Samples were sent to Chemex Labs Ltd., North Vancouver, for lead, zinc and silver analyses. The results of the geochemical analysis are presented in Appendix 2 and plotted on Map 2.

b) Results

Background and anomalous limits for geochemical results were based on results obtained from several surveys conducted in the Tootsee River area. Background, moderately anomalous and anomalous levels are summarized in Table 2. The survey results show strong anomalous

TABLE 2. SUMMARY OF GEOCHEMICAL VALUES IN PPM.

ELEMENT	BACKGROUND	MODERATELY ANOMALOUS	ANOMALOUS	RANGE
SILVER	0.1-0.5	0.6-2.0	OVER 2.0	0.1-74
LEAD	6-39	40-79	OVER 79	6-1850
ZINC	28-149	150-250	OVER 250	28-4700

values for silver, lead and zinc. Reviews of the geochemical results for separate elements follow.

Silver values range from the detection limit of 0.1ppm to 74ppm with values over 0.5ppm considered anomalous. A total of 78 of 105 soils have anomalous values with 30 soils or 29% over 2.0ppm silver. Silver results show strong positive correlation with lead and zinc values that define an anomalous area over 500 meters by 1000 meters.

Lead values range from 6ppm to 1850ppm with values over 39ppm considered anomalous. At total of 66 of 105 soils have anomalous values with 41 soils or 39% over 79ppm lead.

Zinc: values range from 28ppm to 4700ppm with values over 149ppm considered anomalous. Attotal of 65 of 105 soils have anomalous zinc with 51 soils or 49% over 250ppm zinc.

DISCUSSION OF FLY PROPERTY

The FTy claims are situated in an area of active base and precious metal exploration with the favourable nature of the geological setting of the Fly claims confirmed by the location of silver, lead and zinc showings. Selected samples from a previously trenched showing assayed 28.00 oz./ton silver (Price, 1983). A chip sample of a mineralized argillite had 55.0ppm silver and an altered piece of float had 72.0ppm silver. Geochemical results for soils indicate a strong coincident geochemical anomaly for silver, lead and zinc that is over 500 meters wide and 1000 meters long with possible northeast extension. The southwest end of the anomalous area is near bedrock and can be explored by trenching but the northeast end is in an overburden covered valley which will require geophysical investigation to locate drill targets.

CONCLUSIONS AND RECOMMENDATIONS

The large soil geochemical anomaly for silver, lead and zinc explains the silt anomaly obtained during the 1983 program. The area of strong soil geochemical response is over 500 meters wide and 1000 meters long. Trenching of the southwestern part of the anomaly is strongly recommended with an electromagnetic survey and drilling required in the valley area. A road should be constructed from either the Marbaco camp or by extending the Freer Creek road.

COST STATEMENT

PERSONNEL							
3707 W. 34th A	PETER CHRISTOPHER PhD., 3 days @ \$350 3707 W. 34th Avenue August 14-16/84 Vancouver, B.C. V6N2K9						
20891 44th Ave	GERRY HAYNE B.Sc. 3 days @ \$150 20891 44th Avenue August 14-16/84 Langley, B.C. V3A5A8						
MOB/DEMOB			850				
ROOM & BOARD	6 MAN DAY	S @ \$50	300				
TRANSPORTATION: 4 X 4 TRUCK 3 DAYS @ \$120EA. HELICOPTERS							
GEOCHEMISTRY ANALYSES SHIPPING							
RADIO RENTAL & TELEPHONE							
GEOPHYSICAL EQUIPMENT RENTAL							
MAPS & AIR PHOTOS							
EXPENDABLES (Sample bags, chain, flagging etc.)							

REPORT PREPARATION

WRITING & CONSULTING

DRAFTING, TYPING, BINDING, COPIES

TOTAL COST

\$ 6255

14003

<u>350</u> :

September 12, 1984

BIBLIOGRAPHY

- CHRISTOPHER, P.A., 1983. Prospecting Report, Fly Claims, Tootsee River Area, Liard M.D., B.C. Assessment Report for Reg Resources Corporation.
- ECCLES, L.K., 1980. Geological and Geochemical Report, Bear 2, JM, TM, BP Claims, etc. DuPont of Canada Exploration, unpub. report.
- GABRIELSE, H., 1969. Geology of the Jennings River Map-Area. GSC Paper 68-55, 37pp.
- GORDY, S.P. et al., 1982. Stratigraphy and Structure of Sylvester Allocthon, Southwest McDame Map-Area, Northern British Colimbia. G.S.C.
- GROSS, W.H., 1964. Geological, Geochemical and Geophysical Studies, Amys Claims Group, Rancheria Minings Companys Ltd., BCMM* Assessments Reports No. 734.
- HOLLAND, S.S., 1968. Silver Tip Claims, Liand M.D. Summary of Geology and Exploration. BCDM Annual Report, p. 24-33.
- HYLANDS, J., 1980. Midway Property. Assessment Report No. 9912, BCDM.
- MCINTYRE, D.C., 1982. Midway Occurrence. Geological Fieldwork, 1982. BCDM Paper 1982-1 pp. 162-166.
- Poole, W.H. et.al., 1960. Wolfe Lake Area, Yukon Territory. GSC Maps 10-1960.
- PRICE, B.J., 1983. Geological Report Fly Claims, Tootsee River Areas. Liard Mining Division. February 6, 1983 Report for Reg Resources. Corporation...

CERTIFICATE

- I. Peter A. Christopher, with business address at 3707 West 34th Avenue, Vancouver, British Columbia, do hereby certify that:
- 1) I am a consulting geological engineer registered with the Association of Professional Engineers of British Columbia since 1976.
- I am a Fellow of the Geological Association of Canada and a member of the Society of Economic Geologists.
- 3) I hold a B.Sc. (1966) from the State University of New York at Fredonia, a M.A. (1968) from Dartmouth College and a Ph.D. (1973) from the University of British Columbia.
- 4) I have been practising my profession as a Geologist for over 15 years...
- 5) I have 20,000 shares of Reg Resources Corporation and Teryl. Resources Corporation but now direct interests in the properties of either company.
- 6) I have based this report on a review of available geological data, and on exploration programs conducted under my supervision during: August, 1983 and August, 1984.
- 7) I consent to the use of this report by Reg Resources Corporation. and Teryl Resources Corporation for assessment work and in any Filing: Statement. Statement of Material Facts or Prospectus issued by the Companies.

Christopher

Eng.

September 12, 1984

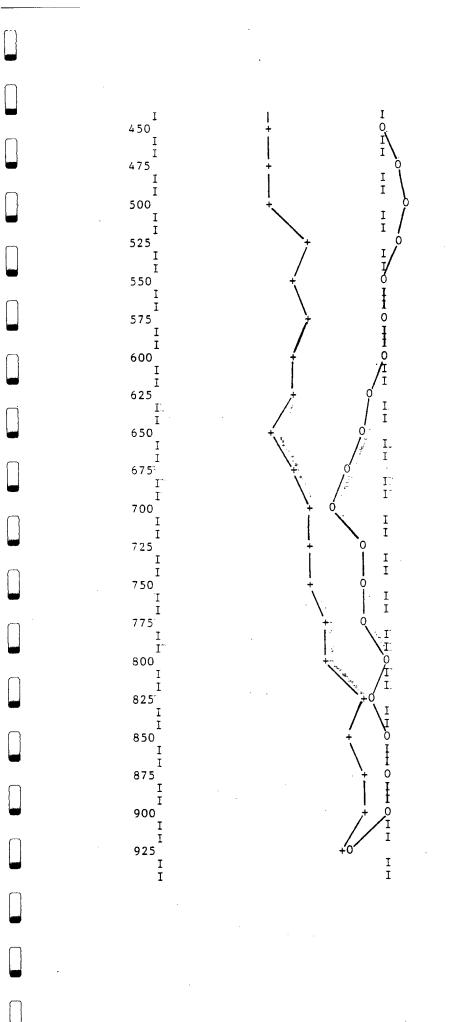
APPENDIX A

VLF-EM SECTIONS

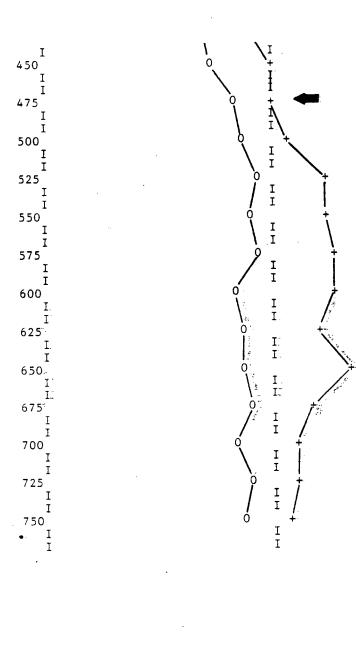
LINE 00 00 TO 9+25E

LINE 00 25W TO 8+00W

LINE 1+50S 25W TO 8+00W

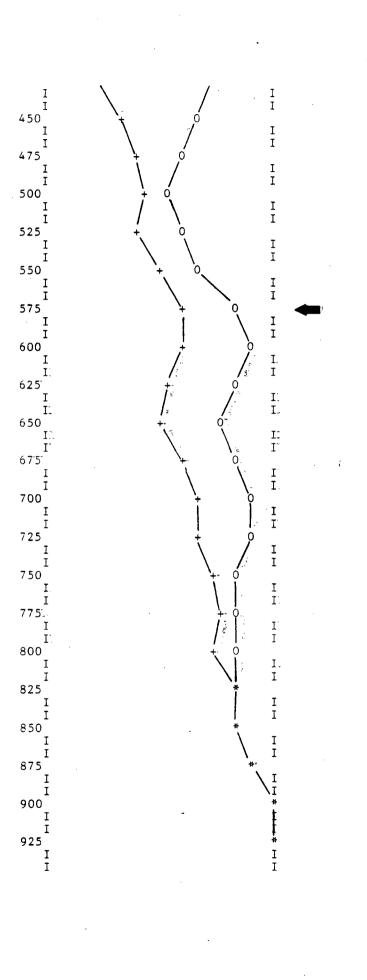

LINE 1+00S 25E TO 9+25E

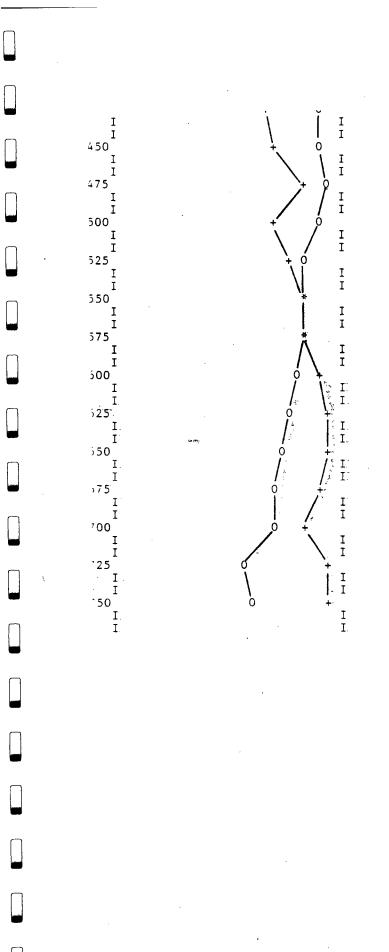
LINE 131E (BLY) 00 TO 7+50SE


LINE 7+00SE 25W TO 5+00W

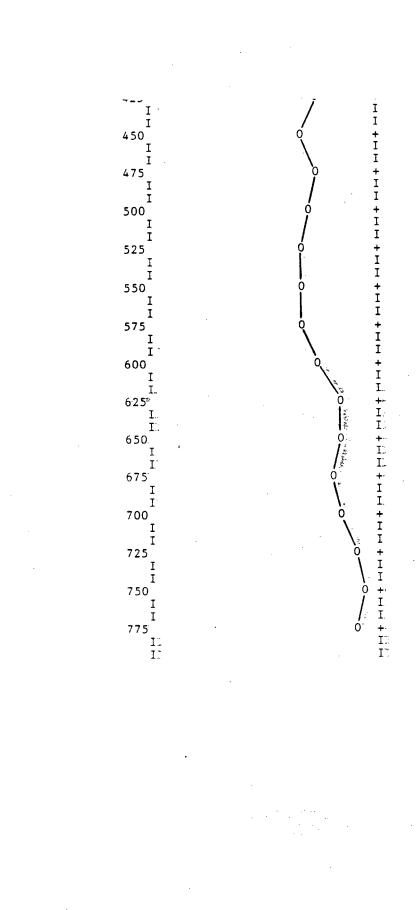
LINE 7SE 4+50W 00 TO 4+00N

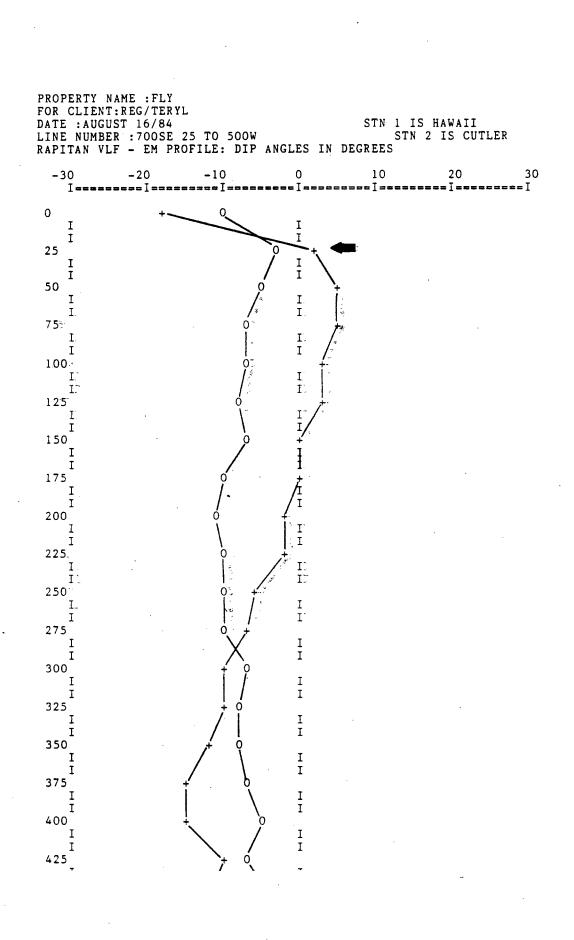
PROPERTY NAME :FLY FOR CLIENT:REG/TERYL STN 1 IS HAWAII
STN 2 IS SEATTLE DATE : AUGUST/84 LINE NUMBER :00 FROM 00 TO 9+25E RAPITAN VLF - EM PROFILE: DIP ANGLES IN DEGREES 30 10 20 -10 -20 0 25 50 I. 75 I 100 I. 1. I. 125 I 150 Ι I 175 Ι I Ι 200 225 250 Ι 275 I 300 Ι 325 350 Ι 0 375 Ι 400 Ι 425


PROPERTY NAME :FLY FOR CLIENT: REG/TERYL DATE :AUGUST/84
LINE NUMBER :OO FROM 25 TO800W
RAPITAN VLF - EM PROFILE: DIP ANGLES IN DEGREES STN 1 IS SEATTLE STN 2 IS CUTLER 30 - 20 -10 -20 Ι 50 75 100 I. 125 150 I 175 I I 200 I. 225 I. 2.50 Iï. 275 Ι 300 Ι I. Ι 325 I I $\cdot \mathbf{I}$ Ι 350 Ι 375 Ι 400 I I I I 425


PROPERTY NAME :FLY FOR CLIENT:REG/TERYL STN 1 IS HAWAII STN 2 IS SEATTLE DATE :AUGUST/84

LINE NUMBER :100S 00 TO 9+25E


RAPITAN VLF - EM PROFILE: DIP ANGLES IN DEGREES 20 -20 -10 0 25 I. I: 100 Ι 125 I. 150 I Ι Ι I 200 Ι Ι Ι.. 225. L I I. 250 I. Ι ľ L 275 I Ι I I 300 Ι Ι Ι 325 Ι Ι 350 Ι Ι I I 375 Ι I Ι Ι 400 Ι Ι 425



PROPERTY NAME :FLY FOR CLIENT: REG/TERYL DATE :AUGUST / 84
LINE NUMBER :1+50S FROM 25W TO 8+00W
RAPITAN VLF - EM PROFILE: DIP ANGLES IN DEGREES STN 1 IS SEATTLE STN 2 IS CUTLER 20 -20 -10 I 25 I 50 I. I 75 I. Ι 100 -I. I. Ι 125 I 150 Ι 175 Ι 200 I I Ι 225: I* Ι 250 I Ι Ι 275 I Ι 300 I. 325 I 350 Ι I Ι 375 I Ι 400 I Ι Ι 425

PROPERTY NAME :FLY
FOR CLIENT:REG/TERYL
DATE :AUGUST 16/84
LINE NUMBER :131E 00 TO 750SE STN 1 IS HAWAII STN 2 IS NONE RAPITAN VLF - EM PROFILE: DIP ANGLES IN DEGREES -10 -20 25 50 75 1.00 I. 125 Ι I. 150 Ι Ι 175 Ι Ι 200 225 I. Ι 275 Ι Ι 300 I I 325 350 375 Ι 400 Ι Ι

PROPERTY NAME :FLY FOR CLIENT:REG/TERYL DATE :AUG16/84 STN 1 IS LINE NUMBER :700SE 450W 25 TO 400N RAPITAN VLF - EM PROFILE: DIP ANGLES IN DEGREES STN 1 IS HAWAII STN 2 IS CUTLER -30 -20 -10 10 20 30 0 0 I I 25 50 Ι I. I. 757. I I I I. 100 I. Iî. I. 1 2.5 I. Ī I. 150 I I 175 Ι 200. I Ι Ι 2.25 I: 2.50 I. Ι I 275 Ī Ι 300 Ι Ι Ι Ι Ι Ι 350 I I I Ι 375 I Ι Ι

APPENDIX: B

CERTIFICATES OF ANALYSIS

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

& ASSOCIATES INC. : CHRISTOPHER. PETER

3707 WEST 34TH AVE.. VANCOUVER. B.C.

V6N 2K9

CERT. # : A8415255-001-A

INVOICE # : 18415255 : 29-AUG-84 DATE

P.C. # : NONE

	Sample	Prep	Pb	Zn	Ag			
<u> </u>	description	code	mag	mqq	mqq			
	FPC-84814-01	201	51	160	1.2			
_	FPC-84814-02	201	27	50	1.0			
	FPC-84814-03	201	30	51	2.1			
	FPC-84814-04	201.	25	180	2 • · C.			
	FPC-84814-05	2.01.	34	300	0.9			
	FPC-84814-06=	2.01	7'0"	600	0 • 5°			
	FPC-84814-07	2.015	38-	2.2.7	0 •.6.			
	FPC-84814-08»	2.0.1	8.9	51.03	0 -8		-	·
\Box	FPC-84814-09	2.01.	128	490	1:2.	~		
	FPC-84814-10	201	70	2.8:0	0 • 5			
	FPC-84814-11	2.01	407	140	0 -2		AND MICE.	***
	FPC-84814-12	201	155	266	3 • 1			
	FPC-84814-13	201	174	810	5 • 3			
	FPC-84814-14	201	123	530	3.5			
	FPC-84814-15	201	305	1400	12.7			
	FPC-84814-16	201	152	760	9•8			
	FPC-84814-17	2.01	880 .	1900.	16 • 2.	*		
	FPC-84814-18	201	170	780	5 • 5			
	FPC-84814-19	201	35:	46	0 -4			
	FPC-84814-20.	201	6	48	0-3			··· · · · · · · · · · · · · · · · · ·
	FPC=84814-212	20.13	4.5	131	0.5		and a spin to	
	FPC-84814-22	2013	37	160	0 ••7	-		
	FPC-84814-23	201	1.8	3801	0 ••9			
	FPC-84814-24	201	110	380	2 • 4			
	FPC-84814-25	201	428	930	8.0			**************************************
	FPC-84814-26	201	500	1460	19.8			
	FPC-84814-27	201	70	470	1.6			
	FPC-84814-28	201	850	1380	20.0			
\bigcap	FPC-84814-29	201	285	950	11.0			
	FPC-84814-30	201	84	343	1.0	~~		
_	FPC-84814-31	201	35	259	0.9			
\bigcap	FPC-84814-32	201	110	550	2.5			
	FPC-84814-33	201	265	1340	6.7			
	FPC-84814-34	201	550	1100	8 • 1			
	FPC-84814-35	2.01	980	1050	15.5			
	FPC-84814-36	201	265	560	4.5			
	FPC-84814-37	201	300	620	3.4			
	FPC-84814-38	201	58	200	0.9			
	FPC-84814-39	201	100	407	1.7			
	FPC-84815-40	201	52	180	0 • 8			
_						to the	. 0 0 .	

Certified by ..

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C.

Canada V7J 2C1

Telephone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

& ASSOCIATES INC. TO : CHRISTOPHER, PETER

3707 WEST 34TH AVE.

VANCOUVER. B.C.

V6N 2K9

CERT. # : A8415255-002-A

INVOICE # : 18415255 DATE : 29-AUG-84

P.O. # : NONE

			· · · · · · · · · · · · · · · · · · ·					
	Sample	Prep	Pb	Zn-	Ag			
	description	code	mqq	mag	ppm			
	FPC-84815-41	201	27	107	0.7			
	FPC-84815-42	201	19	76	0 • 6			
	FPC-84815-43	201	125	313	0.9			
	FPC-8481.5-44	201	36.	137	07	andr ana.		
	FPC-84815-45	201.	27	53	0 • 4			
\bigcap	FPC-84-81.5-46-	2.01	1.7	4.7	0 3.3°			
	FPC-84815-47	201	13	63	0 • 6-			
	FPC-8481.5-48	201	120	1.5 2.	18		-	
	FPC-84815-49	2 0:13	62.	97 .*	0.49		-	
	FPC-84815-50#	201:	30-	99%	0.43	· · · · · · · · · · · · · · · · · · ·	And Andrews	
	FPC-64815-51	2.01	1.4-	2.9₹	0 ⊶4 ≈			
	FPC-84815-52.	201	25	70	0 •.6-			
	FPC-84815-53	201	31	52	0.7	~~		
	FPC-84815-54	201	24	71	0 • 4			
	FPC-84815-55	201	14	.5.0	0 • 3 *			
	FPC-84815-56	201	73	87	0.6			
	FPC-84815-57	201	50	38	0 • 5			
	FPC-84815-58.	201/	1.1.	30	0 •.1			→
\cap	FPC-84815-59	2.01	35·	28.	0 • 4			
	FPC-84815-60	201.	15	30.	0 • 3			
	FPC-84815-61	2.0.1	74-	1.62	1 2			
<i>(</i> ¬	FPC-84815-62	201	1.5 ×	55	0 ••4*	-		
	FPC-84815-63	201	1.8	36.	0 ••9₽			
	FPC-84815-64	201	37	51	0.6			-
	FPC-84815-65	201	25	61	0 • 3			
	FPC-84815-66	201	13	48	0 • 3			
	FPC-84815-67	201	25	56	0 • 4			
	FPC-84815-68	201	25	62	0.3			
	FPC-84815-69	201	24	78	0 • 4			
	FPC-84815-70	201	16	112	0 • 4			
	FPC-84815-71	201	35	192	0 • 8			
٠ د،	FPC-84815-72	201	107	510	1.7			
	FPC-84815-73	201	48	109	0.7			
	FPC-84816-74	201	13	82	0.7			
	FPC-84816-75	201		43				
	FPC-84816-76	201	21	77	0 • 8			
	FPC-84816-77	201	250	3350	55.0			
	FPC-84816-78	201	275	480	4.3			
\bigcap	FPC-84816-79	201	308	1480	7.2			
	FPC-84816-80	201	95	500	2.1			
	•					•		

Hart Bichler Certified by

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1

Telephone: (604) 984-0221

Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

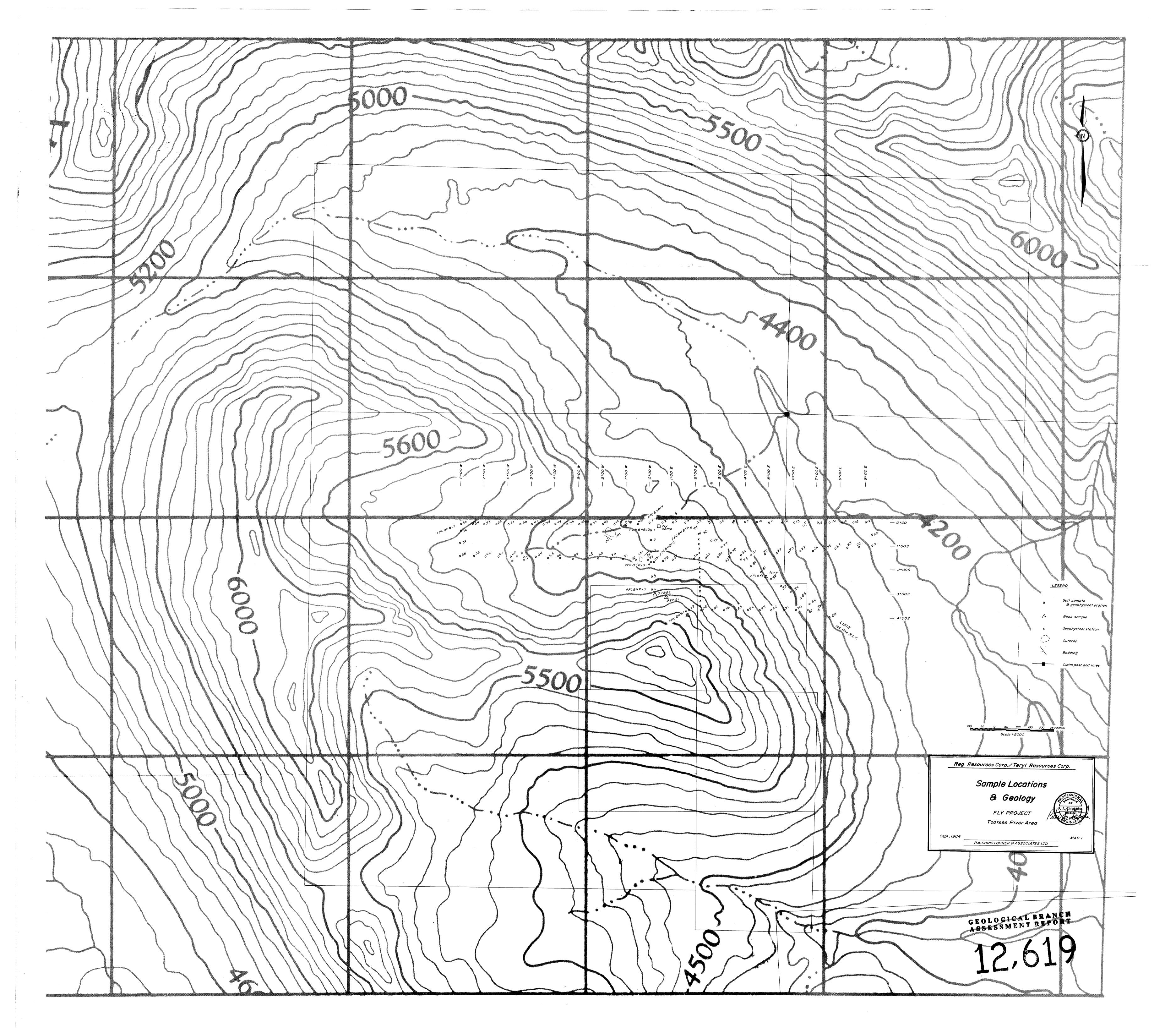
& ASSOCIATES INC. : CHRISTOPHER - PETER

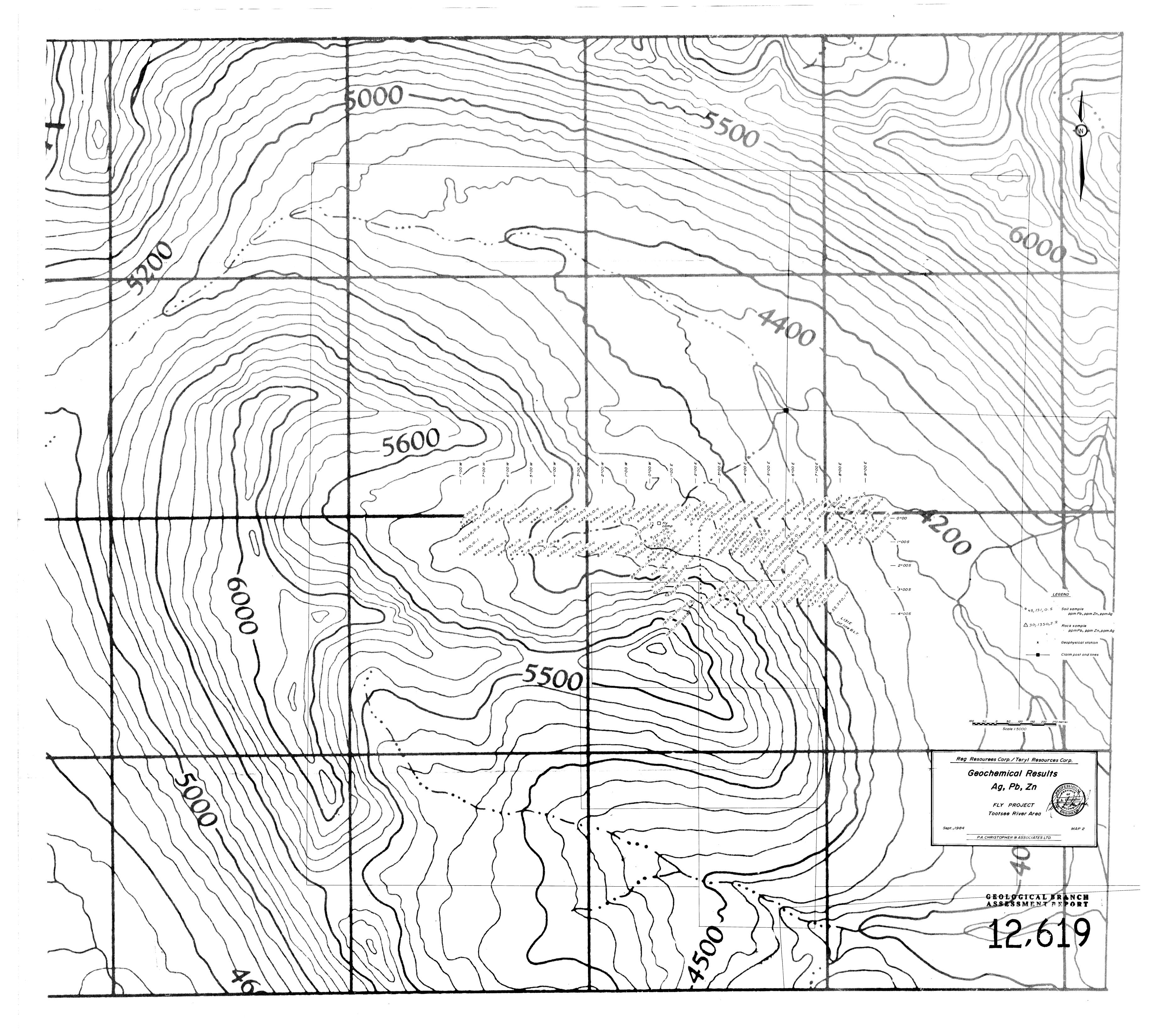
3707 WEST 34TH AVE.,

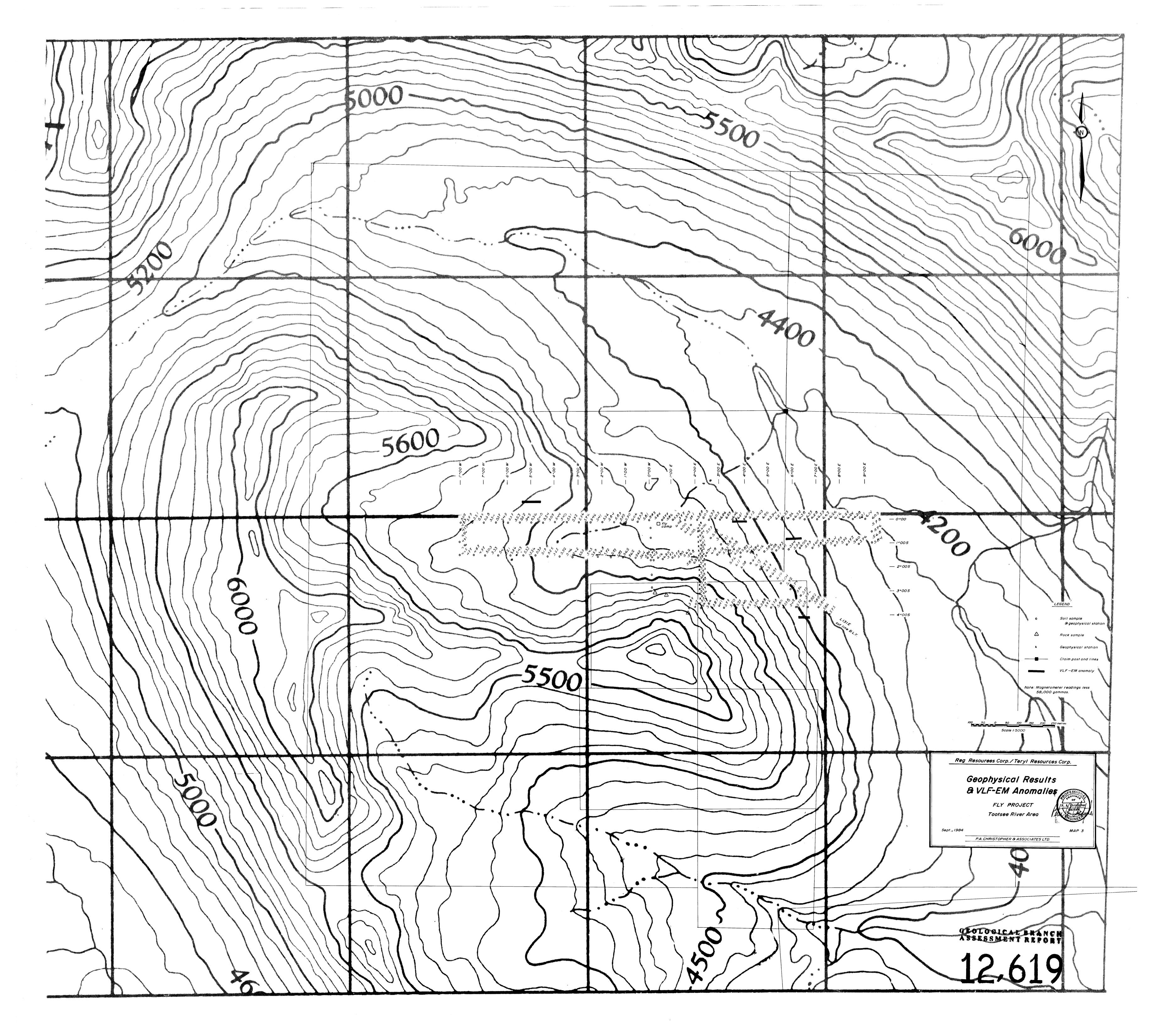
VANCOUVER, 3.C.

V6N 2K9

CERT. # : A8415255-003-1


INVOICE # : 18415255 DATE : 29-AUG-84


P.O. # : NONE


_	Sample	Prep	Pb	Zn	Ag			
	description	code	ppm	mag	ppm			
	FPC-84816-81	201	58	108	1.0			
_	FPC-84816-82	201	940	2350	32.0			
1	FPC-84816-83	201	210	610	3.6			
	FPC-84816-84	201	1.1.3	690-	1.4.4			
	FPC-8481.6-85	201	5.5:	92	0 - 4			
٦	FPC-84816-86*	201	1.63%	670%	4 • 2		400-400	
	FPC-84816-87	2.013	7'02	31.0	14			
_	FPC-84816-88	2013	53	37 0	13.4			
_	FPC-84816-89	2:013	57*	1.57*	12.			
_}	FPC-84816-90	2.0.12	6:4	2.2.02	0 3.6.4			
	FPC-84816-91	201	103	3.902	1:-3>			The same of
	FPC-84816-92	201	113	392	0.5			
1	FPC-84816-93	201	55	222	0 • 8			
	FPC-84816-94	201	70	220	1.0			
	FPC-84816-95	201°	7'80'	3700	15.2			
٦	FPC-84816-96	201	60	323.	1.7			
	FPC-84816-97	201	46.2	830	12.3	***		
	FPC-84816-98	201	1.400.	1980	74.0			emp referen
٦	FPC-84816-99	2.0 1 1	1.850	4700	48 - 0			
	FGH-8481.5-01	201	57	302	11.			
	FGH-8481.5-02°	201	123	450	1.•.6.			
_	FGH-84815-03	201.*	70	2 61 £	1:•.2		****	
	FGH-84815-04	201.	88	32.6	1:-8:			
	FGH-84815-05	201	15	46	0 • 4			
	FGH-84815-06	201	53	200	8.0			

Hout Buchler Certified by

