GEOLOGY, GEOCHEMISTRY & DIAMOND DRILLING

ON THE

AMERICAN BOY PROPERTY

(Cindy Lou, Janelle, AB#1-AB#8, AB#13-AB#24, Roosevelt Recovery, Silver Bell, Cassiar Swift Water, Cassiar Clear Water)

Omineca Mining Division

93M/5E

55°18' 127°34'

GEOLOGICAL BRANCH ASSESSMENT REPORT

12,665

OWNER & OPERATOR: Can-Ex Resources Ltd.

AUTHOR: A.M. Homenuke, P.Eng. (Geol.)

SUBMITTED: August 21, 1984

CONTENTS

Location and Access	I.	INTRODUCTORY NOTES	
History			1/
Property Description		Physical Features	1.
Property Description		History	3/
Economic Assessment Present Work and Distribution 7/		Property Description	
II. GEOCHEMICAL SURVEY			
Procedure B		Present Work and Distribution	7/
Discussion of Results 8	II.	GEOCHEMICAL SURVEY	
III. DIAMOND DRILLING		Procedure	
Introduction		Discussion of Results	8 /
No. 1 Vein	III.		
No. 4 Vein			
No. 6 Vein Babine Workings IV. GEOLOGY Janelle Claim AB-13 Claim V. CONCLUSIONS 22 REFERENCES COST STATEMENT CERTIFICATE OF QUALIFICATIONS TABLE I Claims II Grouping III Assays - Babine Workings APPENDIX - Diamond Drill Hole Logs LLUSTRATIONS Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Lead 7 Geochemical Survey - Silver 7 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 8 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 17/ 10 No. 6 Vein 17/			
Babine Workings 16			
IV. GEOLOGY			
Janelle Claim AB-13 Claim 22, V. CONCLUSIONS 22, REFERENCES COST STATEMENT CERTIFICATE OF QUALIFICATIONS TABLE I Claims II Grouping III Assays - Babine Workings APPENDIX - Diamond Drill Hole Logs Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Lead 11 Geochemical Survey - Lead 11 Geochemical Survey - Silver 7 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 13 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 19 -		Babine Workings	16 /
AB-13 Claim 22. V. CONCLUSIONS 22. REFERENCES 23/ COST STATEMENT 24/ CERTIFICATE OF QUALIFICATIONS 25. TABLE I Claims 4/ II Grouping 6/ III Assays - Babine Workings 21/ APPENDIX - Diamond Drill Hole Logs Fig 1 Location Map 2/ Claim and Index Map 5/ 3 Geochemical Survey - Arsenic 9/ 4 Geochemical Survey - Copper 10/ 5 Geochemical Survey - Lead 11/ 6 Geochemical Survey - Lead 11/ 6 Geochemical Survey - Silver 12/ 7 Geochemical Survey - Silver 12/ 7 Geochemical Survey - Zinc 13/ 8 No. 1 Vein 15/ 9 No. 4 Vein 17/ 10 No. 6 Vein 19/	IV.		
V. CONCLUSIONS REFERENCES COST STATEMENT CERTIFICATE OF QUALIFICATIONS TABLE I Claims II Grouping III Assays - Babine Workings APPENDIX - Diamond Drill Hole Logs Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Lead 7 Geochemical Survey - Silver 7 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 8 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 17/ 10 No. 6 Vein			
REFERENCES COST STATEMENT CERTIFICATE OF QUALIFICATIONS TABLE I Claims II Grouping III Assays - Babine Workings APPENDIX - Diamond Drill Hole Logs Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Lead 7 Geochemical Survey - Silver 7 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 8 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 17/ 10 No. 6 Vein		AB-13 Claim	22,
COST STATEMENT CERTIFICATE OF QUALIFICATIONS TABLE I Claims II Grouping III Assays - Babine Workings APPENDIX - Diamond Drill Hole Logs Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Lead 7 Geochemical Survey - Silver 7 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 8 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 17/ 10 No. 6 Vein	v.	CONCLUSIONS	22 ,
TABLE I Claims 4/ II Grouping 6/ III Assays - Babine Workings 21/ APPENDIX - Diamond Drill Hole Logs Fig 1 Location Map 2/ Claim and Index Map 5/ Geochemical Survey - Arsenic 9/ Geochemical Survey - Copper 10/ Geochemical Survey - Lead 11/ Geochemical Survey - Silver 12/ Geochemical Survey - Silver 12/ Geochemical Survey - Zinc 13/ No. 1 Vein 15/ No. 6 Vein 17/ 10 No. 6 Vein 19/			23/
TABLE I Claims 6 / 1II Grouping 6 / 21 / APPENDIX - Diamond Drill Hole Logs ILLUSTRATIONS			
II Grouping III Assays - Babine Workings APPENDIX - Diamond Drill Hole Logs ILLUSTRATIONS Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Lead 7 Geochemical Survey - Silver 7 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 8 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 19	CERTI	FICATE OF QUALIFICATIONS	25 .
APPENDIX - Diamond Drill Hole Logs ILLUSTRATIONS	TABLE	I Claims	4/
APPENDIX - Diamond Drill Hole Logs ILLUSTRATIONS		II Grouping	6 /
Fig 1 Location Map 2/ 2 Claim and Index Map 5/ 3 Geochemical Survey - Arsenic 9/ 4 Geochemical Survey - Copper 10/ 5 Geochemical Survey - Lead 11/ 6 Geochemical Survey - Silver 12/ 7 Geochemical Survey - Zinc 13/ 8 No. 1 Vein 15/ 9 No. 4 Vein 17/ 10 No. 6 Vein 19/		III Assays - Babine Workings	21 /
Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 8 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 12	APPEN	DIX - Diamond Drill Hole Logs	
Fig 1 Location Map 2 Claim and Index Map 3 Geochemical Survey - Arsenic 4 Geochemical Survey - Copper 5 Geochemical Survey - Lead 6 Geochemical Survey - Silver 7 Geochemical Survey - Zinc 8 No. 1 Vein 9 No. 4 Vein 10 No. 6 Vein 12			
2 Claim and Index Map 5, 3 Geochemical Survey - Arsenic 9, 4 Geochemical Survey - Copper 10, 5 Geochemical Survey - Lead 11, 6 Geochemical Survey - Silver 12, 7 Geochemical Survey - Zinc 13, 8 No. 1 Vein 15, 9 No. 4 Vein 17, 10 No. 6 Vein 19,		ILLUSTRATIONS	
2 Claim and Index Map 5, 3 Geochemical Survey - Arsenic 9, 4 Geochemical Survey - Copper 10, 5 Geochemical Survey - Lead 11, 6 Geochemical Survey - Silver 12, 7 Geochemical Survey - Zinc 13, 8 No. 1 Vein 15, 9 No. 4 Vein 17, 10 No. 6 Vein 19,			
3 Geochemical Survey - Arsenic 9, 4 Geochemical Survey - Copper 10, 5 Geochemical Survey - Lead 11, 6 Geochemical Survey - Silver 12, 7 Geochemical Survey - Zinc 13, 8 No. 1 Vein 15, 9 No. 4 Vein 17, 10 No. 6 Vein 19,			
4 Geochemical Survey - Copper 10 - 5 Geochemical Survey - Lead 11 - 6 Geochemical Survey - Silver 12 - 7 Geochemical Survey - Zinc 13 - 8 No. 1 Vein 15 / 9 No. 4 Vein 17 / 10 No. 6 Vein 19 -			
9 No. 4 Vein 10 No. 6 Vein 17/			
9 No. 4 Vein 10 No. 6 Vein 17/	4	Geochemical Survey - Copper	
9 No. 4 Vein 10 No. 6 Vein 17/	5	Geochemical Survey - Lead	
9 No. 4 Vein 10 No. 6 Vein 17/	6	Geochemical Survey - Silver	
9 No. 4 Vein 10 No. 6 Vein 17/	7	Geochemical Survey - Zinc	
10 No. 6 Vein 19-	8	No. 1 Vein	

I. INTRODUCTORY NOTES

Location and Access

The American Boy Property is located a few kilometres north of New Hazelton, B.C. (Fig. 1). The claims cover the west to southwest slope of Nine Mile Mountain down to Four Mile Mountain and are bounded on the west by Two Mile Creek Valley.

Two historically active mining sites are present: the "American Boy" workings on the north part of the claims and the "Babine" workings on the southcentral part of the claims.

Access on the west and north is provided by the Nine Mile Mountain microwave road, maintained by B.C. Tel, and on the south by Four Mile Mountain road.

Locally, there are many old mining and logging trails, except in the central portion of the property where access is on foot or by helicopter.

Physical Features

The area of the claims is characterized by very steep southerly to westerly slopes, in many cases, to the point of forming escarpments. There is a broad, flatter area to the southwest. Three major creeks flow in a general southerly direction across the property, in part through steep-walled canyons.

The area is heavily forested, ranging from interior rain forest, through open spruce groves to subalpine vegetation. The type of vegetation is controlled by topography and elevation. There are a few open, grassy slopes with deciduous trees, and many swampy areas. Much of the timber is over mature and windfalls often impede progress on foot.

History

The first miners came into the Hazelton area, with completion of the railway through that town. The American Boy Property was first staked by D.A. Harris in 1910. From 1911 to 1916, Harris Mines Limited carried out surface trenching and underground development of five veins. Small shipments of high-grade silver ore were made to the Trail Smelter.

In 1917, 254 tons of lower-grade development ore were hauled to the Silver Standard gravity mill on Two Mile Creek.

In 1927, further minor development work was done and G.S.C. Memoir 223 mentions "some work done during 1937", but no details were given.

American Standard Mines acquired the property in 1950 and did considerable stripping, diamond drilling and underground work. A new vein (No. 6) was discovered in the fall of 1951.

In 1952, Pioneer Gold Mines of B.C. Limited did some further surface stripping.

In 1955, J. Gallo shipped 21 tons of crude ore from a shoot on the No. 6 vein. Apparently, other operators did some work on the property in the late 1950's, but no records are available.

George Braun re-staked the property in 1967, and the Northwestern Midland Development Co. Ltd. shipped 10.35 tons of Wilfley Table concentrate, stockpiled by previous operators. Minor trenching was done in 1968 and 1971.

Tri-Con Mining Ltd. re-staked the property in 1976, and in 1978 and 1980 carried out backhoe trenching, sampling and limited electromagnetic surveying.

In 1981, the property was expanded. During staking and prospecting, one new vein was found, an old vein was "rediscovered", and mineralized float from a probable third vein was found. In addition, reconnaissance soil sampling was done on many of the claim lines.

In 1982, the property was vended to Can-Ex Resources Ltd. and additional claims were staked covering the old "Babine" property. This area has workings on two veins, but little work has been done since 1913. Staking was followed by reconnaissance geochemistry and VLF-EM surveying.

Property Description

The original 6 units, located in 1976, have been expanded to a total of 225 units. Table I lists the pertinent data from the claims. Table II shows the grouping of the claims for assessment purposes. Can-Ex Resources Ltd. is owner and operator of the property. The claims are shown on Figure 2.

TABLE I MINERAL CLAIMS

NAME	UNITS	RECORD #	LOT #	YEAR LOCATED	RECORD DATE	EXPIRY DATE
Cindy Lou	4	320	-	1976	June 8	1985
Janelle	2	319	-	1976	June 8	1985
AB-1	10	3785	-	1981	June 4	1985
AB-2	4	3786	-	1981	June 4	1985
AB-3	10	3787	-	1981	June 4	1985
AB-4	12	3788	-	1981	June 4	1985
AB-5	6	4116	-	1981	Aug. 6	1985
AB-6	10	4117	-	1981	Aug. 6	1985
AB-7	15	4118	-	1981	Aug. 6	1985
AB-8	6	4119	-	1981	Aug. 6	1985
AB-13	4	4871	-	1981	Nov. 4	1985
AB-14	10	5694	-	1983	Aug. 19	1985
AB-15 Fr.	1	5695	-	1983	Aug. 19	1985
AB-16	10	5696	-	1983	Aug. 19	1985
AB-17	20	5697	-	1983	Aug. 19	1985
AB-18	12	5698	-	1983	Aug. 19	1985
AB-19	20	5699	_	1983	Aug. 19	1985
AB-20	20	5700	_	1983	Aug. 19	1985
AB-21	18	5701	-	1983	Aug. 19	1985
AB-22	14	5702	-	1983	Aug. 19	1985

TABLE I (cont'd)

NAME	UNITS	RECORD #	LOT #	YEAR LOCATED	RECORD DATE	EXPIRY DATE
AB-23	12	5703	-	1983	Aug. 19	1985
AB-24 Fr.	1	5704	-	1983	Aug. 19	1985
Roosevelt Recovery	1	5897	4837	1983	Oct. 19	1985
Silver Bell	. 1	4952	4836	1982	Dec. 31	1985
Cassiar Swift Water	1	5692	2413	1983	Aug. 19	1985
Cassiar Clear Water	1	5693	2414	1983	Aug. 19	1985

TABLE II CLAIM GROUPING

CINDY GROUP	JANELLE GROUP	FOUR MILE GROUP
Cindy Lou AB-2 AB-3 AB-6 AB-18 AB-19 AB-20 AB-21 (98 units)	Janelle AB-1 AB-4 AB-5 AB-7 AB-13 AB-15 Fr. AB-17 AB-23 AB-24 Fr. Silver Bell Roosevelt Recovery (85 units)	AB-8 AB-14 AB-16 AB-22 Cassiar Swift Water Cassiar Clear Water (42 units)

Economic Assessment

There are at least 15 silver-gold-base metal bearing veins on the property. A few small, but very high grade ore shoots were previously mined. The Silver Standard mine, just to the west of the American Boy, produced over 7 million ounces of silver, and the Sunrise Silver Mine on Nine Mile Mountain, and the Mohawk Mine on Four Mile Mountain also had some production.

Reconnaissance geochemistry has shown many more target areas, increasing the probability of putting together enough ore shoots to make a mine.

Present Work and Distribution

A total of \$188,000 was spent on the property in 1983. The work consisted of trenching, diamond drilling, surveying and mapping, topographic map preparation, geochemical sampling and VLF-EM surveying. The work was concentrated in the areas of the original American Boy Property on Nine Mile Mountain and the Babine Property on Four Mile Mountain.

Due to budget constraints only \$52,500 of the above total is being applied, or sufficient to cover the property for two years. Work being applied includes trenching, topographic mapping, geological mapping and surveying, all of the diamond drilling and a portion of the geochemical sampling.

This work was carried out on the Cindy Lou, Janelle, AB-3, AB-13 and AB-14 mineral claims. The large size of the property and the concentrated work areas necessitated the formation of three complex groups (See Table II and Fig. 2).

Diamond drilling consisted of 5 holes totalling 102.7 metres on the Cindy Lou claim, 1 hole of 19.2 metres on the Janelle claim and 2 holes totalling 35.9 metres on the AB-13 claim. Backhoe trenching and topographic mapping were filed under physical work; some of this work is shown in this report. Reconnaissance geochemistry done in 1983 is not included in this report, but the results of a more detailed survey on the Janelle and Cindy Lou claims, which consisted of 114 organic samples run for five elements, are discussed. Geology and surveying on the Janelle claim are being applied and some notes from other areas are included to enhance discussion.

II. GEOCHEMICAL SURVEY

Procedure

Profiling over a known vein indicated that the Ah soil horizon would give a more definitive response than the B horizon on the Main Workings Area (see Fig. 2) of the American Boy Property. A total of 114 samples were taken from this horizon along the trend of the No. 6 Vein at 25 metre intervals on lines 50 metres apart.

The samples were placed into kraft envelopes and marked as to location. The samples were delivered to Acme Labs in Vancouver, B.C., where they were subjected to the following procedures:

- Preparation dried at 60°C, pulverized if necessary, and sieved to -80 mesh.
- Digestion 0.5 grams of sample digested with hot aqua regia for one hour, then diluted to 10 ml. with water.
- 3. Analysis Solution aspirated and analyzed by inductively coupled argon plasma (ICP). This is a computer assisted, multi-element spectral analysis: 30 elements were available, but to save on costs only lead, zinc, silver, arsenic and copper were selected.

The results are shown on Fig. 3 to 7, with contour intervals chosen by experience and data inspection to show obvious trends.

Discussion of Results

The known mineralization on the No. 6 Vein was identified by the contoured plans of all five elements. The results indicate that the No. 6 Vein probably continues to the southwest, perhaps with some fault offsets, and that there is a parallel vein about 100 meters to the west. The organic horizon was shown to be much more definitive of veins than the B horizon.

I 9 I

To the northeast, the geochemical pattern is somewhat sporadic perhaps due to thicker glacial drift and till cover.

III. DIAMOND DRILLING

Introduction

Eight holes were drilled, totalling 157.8 metres, with a "Winkie" drill producing a 2.5 cm. core. The objective was to test the continuity from surface on known veins. Due to the small core diameter, the total core was assayed from any significant intersections. For holes AB-1-1 to AB-1-3, AB-4-1, 2 and AB-6-1, the core is stored at the drill sites. B-1 and 2 core is stored in Vancouver, to where it was transported for logging. Logs of the holes are in Appendix 1.

No. 1 Vein (Fig. 8)

Three holes were drilled on the No. 1 Vein, AB-1-1 to AB-1-3, two near a cross-cutting fault and one under a high grade ore shoot. Near the fault the vein was indicated to be formed of several stringers, at least one of which was weakly mineralized. AB-1-1 intersected 20 cm. of quartz assaying 3.56 oz. silver per ton and AB-1-2 intersected 15 cm. of quartz assaying 1.74 oz. silver per ton.

AB-1-3 intersected 75 cm. assaying 1.53 oz. silver per ton and 10 cm. assaying 24.2 oz. silver per ton for an average of 4.2 oz/ton across 85 cm. This is similar to the surface width indicating that the vein structure remains strong at this depth (17 m down dip).

Prepared by: A. M. Homenuke, P. Eng. April, 1984 TRI-CON MINING LTD. The host rock in all the above holes was a fine grained grey sandstone with minor argillite, belonging to the Bowser Group.

No. 4 Vein (Fig. 9)

Two holes, AB-4-1 and 2, were drilled on the No. 4 vein. AB-4-1 probably went through a fault which "stretched" the vein and AB-4-2 intersected 21 cm. of quartz assaying 55.6 oz. silver per ton and 0.135 oz. gold per ton. These values are similar to those on surface and indicate that there is continuity of ore mineralization.

No. 6 Vein (Fig. 10)

AB-6-1 was drilled to intersect the No. 6 Vein below a shallow shaft from which some ore had been shipped in the past. The hole intersected 40 cm. assaying 1.26 oz. silver per ton, but hit the vein in an unfavourable argillite horizon instead of the more favourable sandstone host.

Babine Workings, Four Mile Mountain Area (Fig. 11)

B-1 was drilled under a known vein to obtain information on the nature of the structure away from the weathered and poorly exposed bedrock surface. At a depth of 9 metres the vein was 60 cm. wide and consisted of a quartz-siderate stockwork with a trace of sulfides. 2.2 metres on the hanging wall side was intensely altered and veined with a trace of sulfides including sphalerite.

B-2 was drilled under the surface exposure of a second vein, but drilling stopped short of the objective due to difficult drilling and cold weather.

CROSS SECTIONS of DRILL HOLES

Note: For assays, see Fig. 7A Longitudinal Section

CAN-EX RESOURCES LTD.

AMERICAN BOY PROPERTY

MAIN WORKINGS

NO. 4 VEIN

Prepared by: A.M. Homenuke, P.Eng TRI-CON MINING LTD.

April . 1984

FIG. 9

IV. GEOLOGY

Only the mapping and surveying on the Janelle and AB-13 claims are being applied for assessment, however results of mapping elsewhere are shown on the respective drill hole plans. Silver-gold, base metal mineralization occurs in at least 15 veins on the total property. The most significant ore shoots are in the Main Workings area (original American Boy). Several quartz veins striking northerly and northeasterly are hosted by sandstones, siltstones and argillites of the Bowser Group. Other gangue minerals include siderite, pyrite, calcite and chlorite. Ore mineralization including galena, sphalerite, tetrahedrite, and chalcopyrite occurs primarily at structural intersections. The most significant mineralization to date is in Veins No. 1, No. 4 and No. 6. Mapping control was provided by transit and stadia, with tape and compass additions for accessible underground workings. The results of mapping in these areas is shown on Fig. 8, 9 and 10.

Janelle Claim (No. 6 Vein)

The No. 6 Vein system has been traced intermittently by trenching for almost 1000 metres. The most significant mineralization occurs at the southwest end of the exposures on the Janelle claim. A series of silver-rich sulfide lenses are present over a strike length of 200 metres. There are at least two parallel veins which make up the No. 6 system. The best mineralization appears to be related to a westerly trending cross-fault. Two shafts were sunk on the vein on opposite sides of this fault (see Fig. 10) in the early 1950's. 21 tons of ore from the eastern shaft averaged 75 oz. silver per ton.

Geochemical sampling discussed earlier indicates that this vein system continues at least 200 metres further to the southwest.

TABLE III
ASSAYS - BABINE WORKINGS

SAMPLE #	LENGTH (cm)	AG(opt)	AU(opt)	%Pb	$\frac{82n}{}$	%As	<u>%Sb</u>
1	45	1.98	0.004	1.33	0.01	0.01	_
2	grab	16.90	0.046	15.86	0.01	0.03	2
3	5	10.10	0.001	-	-	-	1-07
4	grab	0.10	0.001	0.06	0.01	-	-
5	15	2.45	0.003	2.60	0.01	-	-
6	15	3.12	0.053	3.62	0.05	-	7.0
7	grab	2.36	0.003	4.55	1.92	0.20	ш,
8	10	5.90	0.182	6.32	7.98	14.80	2
9	10	6.34	0.014	5.98	0.33	0.81	0.74

AB-13 Claim (Babine Workings)

Results of surveying and mapping on the Babine Workings is shown on Fig. 11. The Four Mile Mountain area is cored by a microdiorite intrusive which has hornfelsed the host Bowser sediments for several hundred metres. A number of sulfide-bearing veins are contained within this hornfelsed halo. They are quartz-siderite veins with an antimony sulfosalt, probably boulangerite, and sphalerite being the principal sulfides. There are lesser amounts of pyrite, arsenopyrite and galena. Silver accompanies the galena while significant gold values are present with the arsenopyrite. Surface assays are shown in Table III. Results to date are subeconomic but further work is required to fully assess this area.

V. CONCLUSIONS

There are sufficient indications from trenching, drilling, underground and surface sampling and geochemical sampling that enough high grade silver ore exists to warrant further exploration, especially on the No. 1 and No. 6 veins. This should be in the form of underground development and diamond drilling.

Respectfully submitted, Tri-Con Mining Ltd.

A.M. Homenuke, P.Eng. Geological Engineer

REFERENCES

- Homenuke, A.M., 1978, Trenching and Assay Report on the American Boy Group (Ass. Rept.).
- Homenuke, A.M., 1981, EM-16 and trenching on the American Boy Group (Ass. Rept.).
- Homenuke, A.M., 1982, Geochemical Survey and Prospecting on the American Boy Property (Ass. Rept.).
- Homenuke, A.M., 1983, Geochemical and Geophysical Survey on the American Boy Property (Ass. Rept.)
- Kindle, E.D., 1954, Mineral Resources, Hazelton & Smithers areas, Geol. Sur. of Can., Memoir 223.
- Smith, Alexander, 1956, Silver Standard Mine, in Structural Geology of Canadian Ore Deposits, CIM Special Volume.

COST STATEMENT

Cindy Group Oct. 10 - Oct. 27, 1984 102.7 meters diamond drilling	
"Winkie" Drill, 2.5 cm. core \$98.09/m	\$10,073.84
Janelle Group Oct. 25 - Dec. 16, 1984	
Diamond drilling 55.1 meters @ 98.09/m Geochemical Sampling & grid	5,404.76
2 days @ 175	350.00
Analysis - 67 samples; ICP for Cu, Pb, Zn	
Ag, As @ 5.75	385.25
Surveying, mapping, sampling & core loggi	
A. Homenuke, P.Eng. 4 days @ 400	1,600.00
Helper 2 days @ 175	350.00
Assaying 16 samples variously for As, Sb,	
Ag, Au, Cu, Pb, Zn	350.00
Room and Board 8 days @ \$35/day	280.00
Truck Rental 6 days @ \$50/day	300.00
Maps, Report & Interpretation (apportion	ed)
A. Homenuke, P.Eng. 3 days @ 400	1,200.00
Miscellaneous materials, rentals,	
secretarial and copying	150.00
Subtotal	4,965.25
JANELLE GROUP TOTAL	\$10,370.01*
	========

*NOTE: This is a larger figure than recorded on the Statement of Exploration and Development as the latter was a close estimate only.

CERTIFICATE OF QUALIFICATION

- I, ALEXANDER M. HOMENUKE, do hereby certify:
- THAT I am a member in good standing of the Association of Professional Engineers of British Columbia.
- THAT I received the Degree of Bachelor of Science in Geological Engineering from the Colorado School of Mines in 1974.
- THAT I received a Diploma of Technology in Mining from the B.C. Institute of Technology in 1969.
- 4. THAT I have been employed in various aspects of mining exploration for 15 years and am presently employed by Tri-Con Mining Ltd., of #2580 1066 West Hastings Street, Vancouver, British Columbia.
- THAT I presently reside at 29825 Harris Road, Mt. Lehman,
 B.C.
- THAT this Report is based on work supervised or conducted by myself.

DATED AT VANCOUVER, British Columbia, this 21st day of August, 1984.

A.M. Homenuke, P.Eng. Geological Engineer

APPENDIX I DIAMOND DRILL HOLE LOGS

Company Mining Division		OMI			S L	<u> </u>	Pr	ojeo oper arte	ty		ME No.	Work I VE	Boy	Bearing Inclination	on	279° 	0	Sheet of Coordinates	Hole No. A8- -
Geographic Coordinate					_	=		mple gged						Depth _		9 m		Altitude	
Footage	Core		m	1	cm	02,	/ton			°/.						R E	MARK	S	
meters	Rec	Rec	from	to	width	Ag	Au	Cu	Pb	Zn	As	Sb							
0-1.2	-												overbu	rden		-			
1.2-14.9		100%											fine q.	amed gre	y Sa.	ndstone	with occo	isional argillaceos	m partings
			_	-	-	_	-	-				-	20	% argillite	thin	y smin	ited from	4-5.2 4	to' CA
5.8 - 13.7													9+2 S+	ringers , X	-cut	a confor	m. up to	3/10cm	
@ 6.1														qtz-sideri					
@ 8.7													2.5 cm	atz W/s	iderite	t HW a	FW 50°C	A)	
@ 9.3		-							-		- 3	33	6 cm	9tz-sider	ile 6	oca f	ew cm alt	ention Evein	Zone
e 9.6													6 cm	well bande	datz	-cidents	c, tr sullid	er SSCA	
@ 12.0						-							Z.5cm	atz-sidente	300	CA			
12.3-12.7													40 cm	atz-sidente	vein	minor	galena on H	w, some leachin	4
27. E		-				-318						- 1		HW 65°CA					
			12.3	12.5	20	3.56	.004	.03	.82	1.55	-	-	tag no.	74.857					
€ 14.8			_	_											nor ga	lena, spha	linte chalco	Pyrit Z5°CA	
				-					-			+	-		-				
														¥					
												1							
	-	-	_	-	-		-		-	-		-			-	_			
												一	-		_		V/C=		100
																			Shee
					_				_			_							ř
	-		-						-			-	-					Ar	3-1-1
				-	-					_								11.5	en en

.

.

	(((
Company Mining Division Geographic	. –	N -EX			<u> </u>	TD	Pr St Co		rty	=		n Wo	10 y ckings	Bearin Inclin Depth	ation	=	79° -60°			inates		e No. <u>A8</u>	-1-2
Footage	Core		-		1	02	/ton	_	_	0/.	_	-	ore store	ed at dril	ll site		REM	ADV	c				
metres	Rec	Rec	from		Cm			-	PL	Zn		SL	-				REM	AKK	5				_
0 -3.4		-	Tram	To	Wigh	1 19	/\u	Çu	10	Lin	1/2	56	overbu	relen	0/10/	7	7			_			_
3.4-27,4		100%							F				fine g	rained g					sional	argilla	ceous par	times	
														wark Str	15 5000 500 500 500	and the second s		_	s-cuttin	to Z	5.3, h	to few/	locin
@8.2		-											3cm	tz-sider	rite 3	SOCA	Confor	m?)			-	-	
21.6-27.6											THE CO.			-1.5 cm					ulfides	30-40	CA (X-	cul bus,)
24.4-24.5			24.4	24,5	15	1.74	,038	.05	11.	.64	-	-		gtz -side									
25.9-%.2							-1						30cm	HW 60°C				ilant	, tr- 3,	ulfides	on HW		
				3 73																	-22 m		
a.V												1				_							
																				_			_
												1										4	_
																		_		_			Sheet
																				AB-	1-2		100

Company Mining Division	_	OMI				_	Pr	ope:	rty ed		CALC DE LO		4 11 10 10 17	Boy Bearing 270° Sheet 10f 1 Hole No. 48-1-3
Geographic Coordinate			_		_	_	Lo	mp1	eted d by	: -	Αm			27/83 Depth 19.8 m Altitude
Footage	Core		n	,	cm	02/	/ton	Т		0/.				REMARKS .
metres	Rec	Rec	from	to	width	Ag	A.	Cu	Pb	Zn	As	Sb		
0-1.8														overburden
1.8-19.3		100%												fine grained grey sondstone with occasional argillacrous partings 45°CA few qtz stringers to 11 m, many 30°CA increase to 3/10cm
@16.2				-	_		_	_			-		-	10cm ate & siderile HW&FW stringers 75°CA, cross 90°CA ILET
17.2 -18.1														85cm Quartz Vein, Hw few imm of galena, patoles in center
														to few mm, FW 10 cm 10% galena
						1.53		_	,		-	-		tag 110 78461
			18.0	18.1	10	24.2	,015	,05	9.25	.11	-	-	_	78462
		-		_			_	-			_		-	
		-	_				_	-			-			
													i	
				4										
-		-	_		-	-	_	_				_	_	
	1000	\neg	_		_				-		-	-	-	
											-		-	
	-				7.1.3									
		-	-			-								HB-1-3
														110-1-3

. .

Company Mining Division	_	N-EX			3 17	<u> </u>	Pr St	opei arte	cty ed	7				Y Bearing 265° Inclination -60°			Sheet of thole No. A	8-4-1
Geographic Coordinate			_		_	=	Lo	mple gge	eted d by	: -				Depth at drill site		22.9	Altitude	
Footage	Core	1	m	1	Cm	02,	/ton	1	-	0/.						REM	ARKS .	
metres	Rec	Rec	from	to	width	Ag	Au	Cu	Pb	Zn	As	Sb					The second secon	
0-2.4													overb	urden				
2.4-22.9		100%															ith occasional argillaccone	
		-			-			-						parting in	0.	Sm Zones	45°CA	
	_	-	-	-	-	_							-	few 1-3 m	mm g	tz stringe	15 to 19.8 m.	
@ 10-1	-	-	-			_	-	-		-			15	.111	_			
10.4-109				-		-		\vdash					13 21	argillite Accous W/	nina.	- 01	The second secon	
			13.7	13.8	7	.48	006	.01	.13	1./.2	-		7 cm	at vein	mino	in putition	opyrite, shattered, tag no 74359	
(0.16.8)		-	-	7.0		-	-000			110			fault	50° CA	Scmi	-conform?	THE PARTY OF THE P	-
													1.32		1			
							1		1									
		_			_			_										
		-		-	-	_	-	_	-	_					-			
		-	-	-		-	-	-		-	-							
			_		-	-	-			-			-					
-														-		-	·	
										7.				· · · · · · · · · · · · · · · · · · ·				
						+												
						_												_
				_					-									- Sh
	_			_	_	_	_		-	_		-						Sheet
	-	-		-	-		-	-	-			-						- "
	-		-						\neg i								AB-4-1	+ ~
																		- ef
			_	-	$\overline{}$	-		_	_	_	_	_						-

. .

ore Rec Re	c from	n to	c m wid H	02/ A4	Log	_	by:	°/.	мΗ		O/27/83 Depth 17.7m Altitude	
Rec Re	c from		_	_		c. T		0/.		_		
		to	wid H,	Aq	Au	C.	4.00				REMARKS .	
100	%	-			_	CH	76	Zn A	s S	Ь		
100	%				_	4	-		_	+	overburden	-
	-					1		#	+	+	fine grained gray sandsione with occasional argillaceous partiring ABOCA few gtz stringers	_
	_	-				7	- 17	-	-	+	50% argillite minor pyrite	_
											argillite	
	14.9	15.1	21	55,6	.136	.56	7.70	5.05 -	- -	-	21 Cm Quartz - Sulfide Vein, Arsenopyrite HW, Calena FW ~60°CA	_
						-	+	+		+	fault 25:CA	_
-	-				\exists	1	7	-	-	-		
	-	_			-	-	+	+	+	1		
					4		1	-	1			
	-				1	1	1	1	Ŧ	T		
	1			*		1			1	T		
							\exists			T		_
=	-					1	+	+	-	+		Sheet
_	-				4		1	1	-	F	AR.4-2	. ~
		14.9	14.9 15.1	14.9 15.1 21	14.9. 15.1 21 55.6	14.9 15.1 2.1 55.6 .136	(4.9) 15.1 2.1 55.6 .136 .56	(4.9) 15.1 2.1 55.6 .136 .56 7.70 .5	19.9 15.1 2.1 55.6 .136 .56 7.70 5.05 -			14.9 15.1 21 55.6.136.56 7.70 5.05 21 Cm Quartz - Sulfide Vein, Arsenopynte HW, Galena FW ~60°CA tag no 74860 fault 25°CA

Company Mining Division Geographic	. —	N -EX			<u> </u>	<u>- 6.</u>	Pro Sta	oper arte	rty		Am	1 WO	PE,	Boy Bearing 300° Sheet 1of 1 Hole No. AS. No-S Inclination -50° Coordinates 24/83 Depth 19.2 m Altitude Stored at drill site	6-1
Footage	Core		m	1	cm	02,	/ton	1		0/.	-	001		REMARKS	
metres	Rec	Rec	from	+0	widt	Aq	Au	Ch	Pb	Zn	As	56			_
			1.0											collared on bedrock	
0-9.1		100%												fine - med grained grey sindstone	
9.1-16.3		100%												argillite	-
16.5-16.7		105%	16.3	16.7	40	1.26	.012	,21	1.2.1	1.12	-	-		Otz Vein zone HW 80°CA minor siderje sulfises tagno 73719	_
16.7-18.6											13-97			sandstone - from vein to 17.4 1.5 cm 9+2 stringer down in av	
C 17.4												9		2 x 2.5 cm gtz veins Go CA	
18.6 - 13.2			\$\$;											argillite	;8
		_		-									_		
		_			_								_		
		_	-	_	-	_	-			-	-	- 1	_		_
			_		-	_		-		-	-	-	-		
	_	-	-	-	-	-	_		-	-	-				_
	_	-		-		-		-		-	-	-	-		
		_	-	_		-				-		-	-		_
	_		-	-			-				-				-
										-					-
_										1					
										1					r/s
															Sheet
															Et
		28.77	1		1										-
										- 1				A B-6-1	0
															e j
	50			(C)		10.0	,		, ,						

(

. .

Company Mining Division	_c^	N -EX			<u> </u>	ъ.	_							RKINGS Inclination -58° Sheet of / Hole No. B-1				
Geographi Coordinat								Completed Logged by:						3/6/84 Depth 14.3 m Altitude				
Footage	Core		m cm 02/				/ton	ton						REMARKS .				
metres	Rec	Rec	from	to	wid#	Ag	Au	Cu	Pb	Zn	As	Sb						
0-43														overburden				
4.3 -6.4		86%												pale mouve hornfelect sandsfore? highly fractured & slickenided				
											-			minor chlorite, pyritic fractions, few qtz & calcite string is				
6.4-7.2		90%		4		74								Increased bleaching cilicification of puritization, pale grey-green				
7.2 - 9.0		90%			200									Bleached shattered sheared + reined w/ gtz, pyrite & gtz-sided veine-				
														tr sphalente tr grey sultides 45°CA-60°CH				
9.0 -9.6		100%											S,	Qtz - sidente vein staknork, @9.6 3mm gtz W/ minorine :				
9.6-14.3		100%												decreasing altered character as in 6.4-7.2 then 4.3 to 6.4				
										X 1								
				11														
												1						
		Lances																
	L	Vance of			100				- 3			1						
10:	- 1	7.4																
				COORDINATED IN							4							
						U	(1)					i						
	1/1							- 11										
	. 8			0.05						7.00								
														R-1				
	_				_	_		_	\rightarrow	-			_					

Company Mining Division	_c^	N -EX		Pr	ojec oper	ty	^	MEI	RICAT	W	Boy Bearing 350° Sheet 1 of 1 Hole No. 1 RKINGS Inclination -60° Coordinates	3-2					
Geographi Coordinat		_		-	ted by					16/97 Depth 21.6 Altitude Stored in Vancouver							
Footage	Core	m			cm	_	/fon			°/.				REMARKS .			
metres	Rec	Rec	from	to	width	Ag	A۱	Ch	Pb	Zn	As	Sb					
0-6.4			2.722					700						Overburden			
6.4-12.5		100%												varicolored pale green, grey, tan, moderately homfelied sonds to is			
0.00		-	-		-	_	-		_				_	Bem 9/2 vein with punk ochlorite.	_		
€ 7.3	-	toot/	-	-			-						_	Bun gtz vein with pyrk & chlorite.			
12.5-17.8	-	100%	-	-	-	-	-		-				_	Dyke? fale grey-green with white phenocrysts (gtz-ksp:			
12 8 -11/		100%	-	-	-	_	-						-	dissem seriale; pyrile al pyrile	_		
17.8-21.6	-	100/8	_										_	Same as 6.4-12.5 less hornfelsed from 19.2	-		
	1		_		\vdash								_				
				Y						THE					_		
	-																
		_	-	_						_			_				
		-			-	_	-					-	_				
-	-	-	-	-			-	-	-		-	-	-				
			_					-	-	-	-	-	-		-		
									-				_		-		
								T					_				
															0		
															Shee		
		<u></u>													1 65		
	_	_					_	_				_			1 -		
	-	-	_		_	_	-	_	-	_		_		3-2	- 0		
						_		_	-		_	_	_] 8		

- (

(

£1