ASSESSMENT REPORT

on the

VIDETTE PROPERTY

HAMILTON CREEK, B.C.

1983

Type of Work:

Underground geological mapping and sampling; Geochemical soil sampling; 1983

Claims:	Name	Record No.	Lot No.
	Vidette #1	592 (2)	-
	Valley #1	569	4747
	Valley #2	570	4748
	New Hope	565	4751
	Argenta #1	561	4766
	CE Fraction	562	4764

Mining Division:

Clinton

NTS Location:

92 P/2W

Latitude: Longitude: 51° 10' 35" N 120° 55' 22" W

Owner:

Hawkeye Resources Ltd., 960 - 625 Howe St., Vancouver, B. C. V6C 2T6

Operator:

Hawkeye Resources Limited

Consultant:

J.S. Kermeen, M.Sc., P.Eng., Consulting Geological Engineer 55 Whiteshield Crescent South

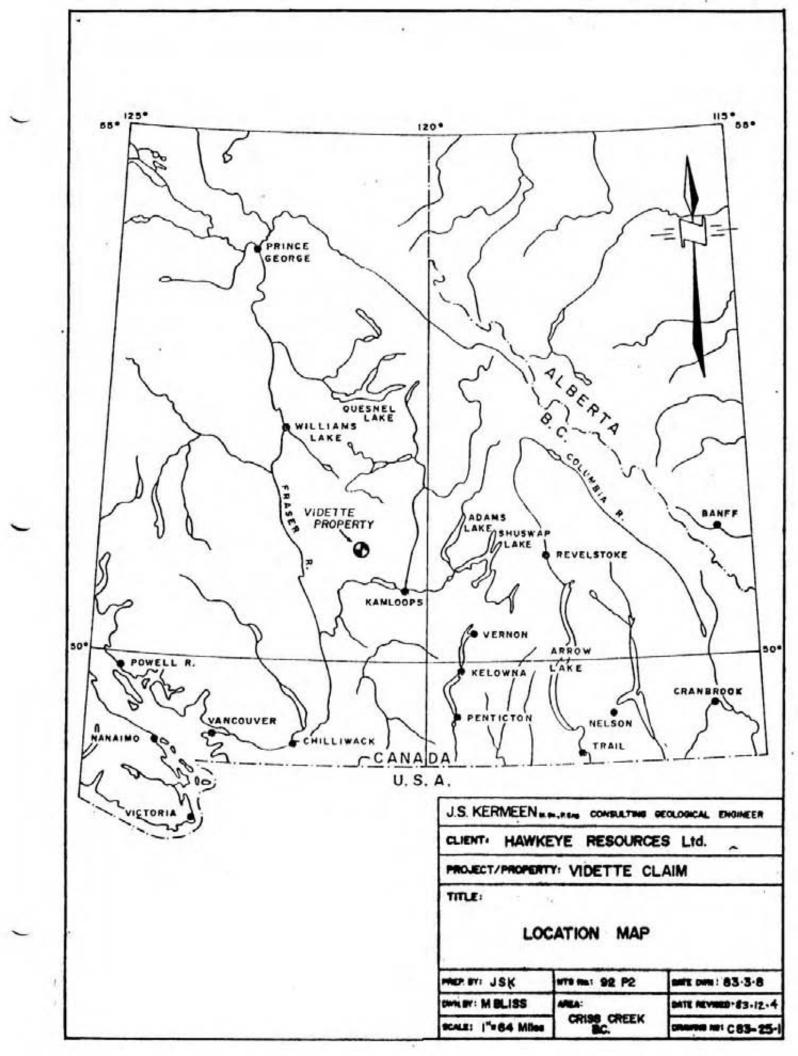
Kamloops, B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT

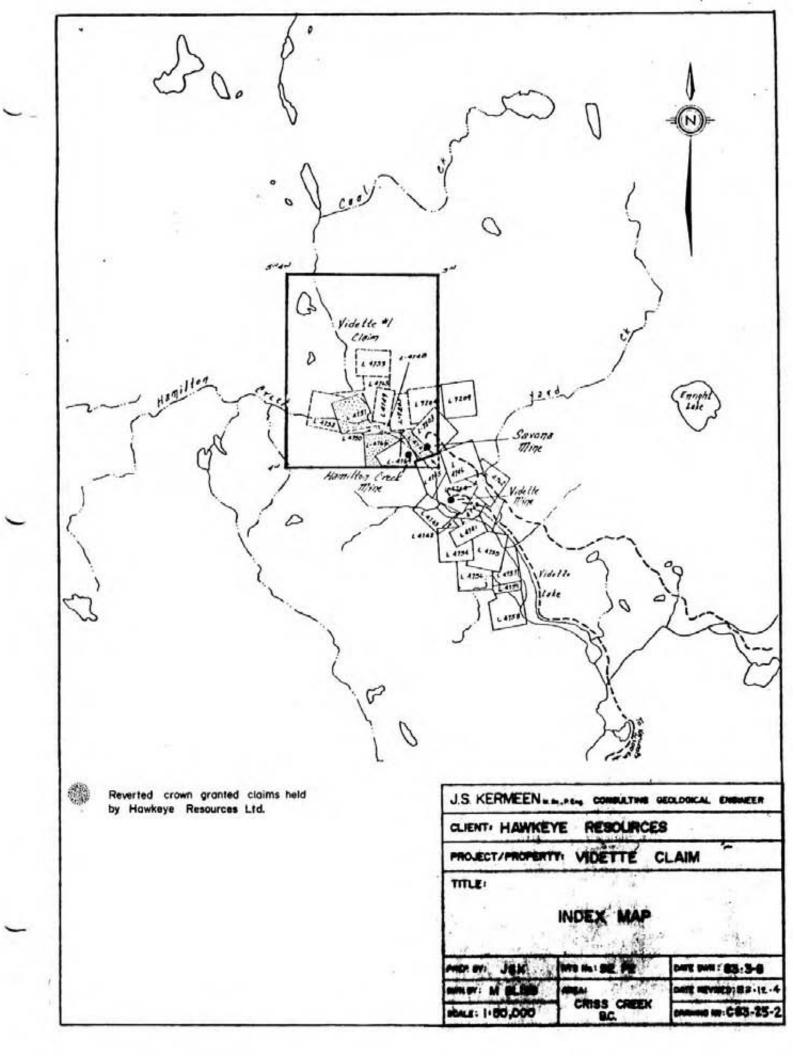
Author:

J.S. Kermeen

Date Submitted:

December 5, 198


Report No. C83-


TABLE OF CONTENTS

	Page
Introduction	
Location, Access, Transportation, Power	1
Property and Ownership	1
History	2
Physiography	2
General Geology	3
Mineral Potential	3
Summary of Work Done	4
Undergound Mapping and Sampling	
Geochemical Soil Sampling	
Technical Data and Interpretation	
Underground Geology	5
Underground Sampling	5
Geochemical Soil Sampling	6
Summary and Conclusions	7
Recommendations	8
List of References	9
Cost Statement	10
Certificate - Authors Qualifications	11
Annendix I - Analyses	

List of Drawings

C83-25-1	Location Map
C83-26-2	Property Map 1:50000
C83-25-3	Soil Geochemical Survey
	-Gold-1:5000
C83-25-4	Underground Geology
	and Sampling - 1:300

INTRODUCTION

The Vidette Group of Mineral Claims of Hawkeye Resources Limited covers approximately 495 hectares in the Clinton Mining Division of British Columbia.

At the request of Mr. William Takeshita, the writer supervised underground geological mapping and sampling and supplementary geochemical soil sampling carried out during October and November, 1983; this report summarizes and interprets the results of this work.

Location & Access

The Vidette property is located immediately northwest of Vidette Lake, some 70 kilometres northwest of
Kamloops, B.C. Vidette Lake is part of the Hamilton Creek
drainage which flows south-easterly to its junction with
Deadman Creek; Deadman Creek, in turn flows southerly to
join the Thompson River. Access to the property is by
means of a gravel road which leaves the Trans-Canada Highway 8 kilometres west of Savona, B.C. and proceeds northerly
along the above-mentioned drainage to the property.

The property is on NTS sheet 92 P/2W.

Property & Ownership

Claims in the Vidette property are listed below:

Name	Record No.	Lot No.	7	Area
Vidette #1	592 (2)	_	20 uni	its
Valley #1	569	4747	6.00 1	nectares
Valley #2	570	4748	1.97	
New Hope	565	4751	19.92	"
Argenta #1	561	4766	13.40	
CE Fraction	562	4764	0.26	

The above-listed reverted crown grant claims lie within the Vidette #1 claim; in addition, the Vidette #1

claim covers part of a small reverted crown grant claim (Lot 4745) owned by others. The net total area of the property is thus approximately 495 hectares.

The claims are owned and operated by:

Hawkeye Resources Ltd., 960 - 625 Howe St., Vancouver, B.C. V6C 2T6

History

The southern portion of the Vidette Group covers part of what was once the Vidette Gold Mine property. The Vidette Gold Mine itself, which lies 600 metres southwest of the LCP of the Vidette #1 claim, produced 54,199 tons of ore between 1933 to 1940 which yielded the following metals:

Metal	Amou	nt
Gold (Au)	29,869	ounces
Silver (Ag)	46,573	
Copper (Cu)	96,619	pounds
Lead (Pb)	356	"

The workings known as the Hamilton Creek and Savona mines were driven during the same period to explore veins lying in the valley northwest of the Vidette mine; they lie within the bounds of the present Vidette Group. There is no recorded ore production from these workings.

Sporadic exploration, chiefly for porphyry-type copper and molybdenum mineralization was carried out in the 1960's and 1970's. The more recent of this type of work was a geochemical soil survey, analysing for Cu, Mo and Hg, carried out by Ken Dawson and Associates in 1980 (5). Subsequently, samples were run for gold and a number of anomalous areas were indicated (6,7).

Physiography

The Vidette Group straddles a steep-walled NW-SE valley (Hamilton Creek then Coal Creek) which is joined on the property by an east-west tributary valley (Hamilton

Creek) entering from the west. Uplands flanking these valleys are gently rolling.

Elevations on the property range from 870 to 1140 metres a.s.l.

Except where cleared for logging and minor agriculture, the property is treed.

General Geology

Andesitic volcanics (flows and some pyroclastics) of the Upper Triassic Nicola Group have been tightly folded, moderately metamorphosed and intruded by small bodies of intermediate to felsic porphyritic rock of probable Jurassic age. Relatively unmetamorphosed andesitic volcanics of the Cenozoic Kamloops Group lie unconformably over the abovementioned rocks.

The Nicola volcanics are exposed on the flanks of the valleys; the overlying Tertiary volcanics are exposed on the uplands on either side of the valleys.

The NW-SE trending valley is the manifestation of a major zone of faulting in which gold-bearing quartz veins occur (at the Vidette mine).

Mineral Potential

There is a good potential for narrow gold-bearing quartz veins similar to those exploited previously in the Vidette Gold Mine immediately south of the property.

In addition, there is a lesser but still significant, potential for:

- (a) Stratiform volcanogenic deposits within the Nicola volcanics
- (b) "Porphyry-type" mineralization associated with felsic intrusives
- (c) Epithermal mercury (and possibly antimony and gold) deposits similar to those occurring in a belt extending some 45 km south from the property; these are characterised by major carbonate alteration zones.

Summary of Work Done

Underground Mapping and sampling: A total of 366 metres of underground drifts and cross-cuts were geologically mapped in detail using tape and Brunton compass control. This includes all of the Hamilton Creek workings and that part of the Savona workings which is presently accessible. The Hamilton Creek workings were washed down with high pressure water hose prior to mapping.

Twenty-one chip samples were collected from quartz veins and alteration zones selected on the basis of mapping and assay for gold by fire assay/atomic absorption method and silver by atomic absorption at:

Kamloops Research and Assay Laboratory, 912A Laval Crescent, Kamloops, B. C.

Both geology and sample assays are depicted on enclosed map C83-25-4 on a scale of 1:300.

Geochemical Soil Sampling: To provide further detailing of areas previously indicated to be anomalous in gold, a total of 47 soil samples were collected from the upper part of the B-horizon in two separate areas. They were analyzed for gold at:

Results are plotted on attached map C83-25-3.

TECHNICAL DATA AND INTERPRETATION

Underground Geology (Map C83-25-4)

The bedrock in both adits was found to be primarily andesite flows with thin interbeds of andesitic tuff. They are cut by numerous fault planes marked by heavy gouge, slickensides and brecciation, the intensity of which is depicted on the map by line thickness and number (F1,2 etc.) The fault planes vary considerably in attitude, however, two appear to predominate: 325°, dips 35° to 72° NE; 350°, dips 20° to 61° E. The variability in dips is evident on the curving fault planes observable in the workings.

Very intense carbonate alteration occurs along most of the more intense faults (symbol C on the plan) for up to 10 metres on either side. It comprises calcite veins, criss-crossing calcite micro-veinlets, breccia in-fillings, and disseminated calcite grains?

Quartz veins, usually with appreciable calcite content, occur as lenses up to 30 centimetres wide and up to ten metres in length; most are much smaller than the maximum.

Most of the veins occupy major fault planes as described above. However, small stringers were noted occupying minor fractures in diverse directions.

Sparse sulphides, including pyrite and chalcopyrite occur rarely in the quartz veins.

Minor disseminated pyrite is present in much of the country rock; here and there concentrations to perhaps 3% pyrite were noted.

Underground Sampling

Sample locations, assays and sample widths are indicated on plan C83-25-4. Assay certificates are included in Appendix I.

Of the eleven samples from the <u>Hamilton Creek workings</u>, five are from altered wall rock containing a small amount of vein quartz and one is fault gouge. Gold values range from less than .001 to 0.025 ounces per ton; silver values range from 0.03 to 0.09 ounces per ton. Only two are of possible significance:

12057: quartz vein - 0.025 oz/ton gold

0.09 oz/ton silver

12059: altered wallrock - 0.016 oz/ton gold

0.06 oz/ton silver

Nine samples from the <u>Savona workings</u> were assayed; a similar range of values is indicated. The best gold assay is from a calcite vein:

12067: calcite - 0.025 oz/ton gold 0.7
0.06 oz/ton silver 2.7

Composite samples were prepared from all the samples from each adit and assayed for mercury; both assayed less than 0.001%.

Surface Geochemical Soil Sampling

38 samples were collected on lines 500N, 565N, 625N and 685N in an attempt to further extend and define a previously returned anomalous reading at 500N, 600W and to test for possible extension of the structures exposed in the Savona workings where these structures would approach a feldspar porphyry intrusive body. Apparent gaps in the sampling pattern are due to inappropriate (talus) or disturbed (road grades) sampling medium.

The original anomalous reading was confirmed by a still higher anomalous reading (825 ppb) and one other distinctly anomalous reading is recorded (335 ppb at 500N; 675W). No extension of this zone to the north is indicated. Unfortunately, budget restrictions did not permit testing for its southerly extension.

Nine samples were collected around a previously recorded anomalous value at 2000N; 600W (165 ppb); no anomalous analyses were returned at this location.

SUMMARY AND CONCLUSIONS

Both the Hamilton Creek and Savona underground workings intersect intensely faulted and carbonate-altered (calcite) andesitic volcanic rocks.

Narrow discontinuous veins of quartz, usually with some calcite occur within the fault planes.

Anomalous gold values occur in quartz veins, carbonate veins and altered wall rock but values are neither high enough or continuous enough to indicate potentially economic mineralization within the present workings.

A small area of highly anomalous gold-in-B soil was confirmed. It lies on the northwesterly extension (across the valley) of the fault/vein zone exposed in the Hamilton Creek workings. Further work is warranted to follow up this specific indication.

The intensity of the carbonate alteration in the underground workings indicates major movements of hydrothermal solutions which may have deposited economic mineralization, perhaps of the epithermal type, elsewhere within the structure.

While no specific evidence for stratiform volcanogenic or disseminated "porphyry-type" mineralization was found, the area covered in the current program is very small and a potential for these types of deposits elsewhere on the property has not been fully tested.

RECOMMENDATIONS

- (1) Extend detailed soil sampling southwesterly from the area of highly anomalous gold (500N; 600W)
- (2) Trench overburden to determine the source of the anomalous gold.
- (3) If (2) indicates a significant vein zone, consider diamond drilling to test at depth below the anomaly and also below the valley between the anomaly and the Hamilton Creek workings.
- (4) Carry out geological mapping and fill in geochemical sampling throughout the remainder of the property.

LIST OF REFERENCES

(1)	BCMM Reports:	1931 to 1936, 1939 & 1940
(2)	Campbell & Tipper:	G.S.C. Memoir 363, 1971
(3)	Cockfield, W.E.:	G.S.C. Memoir 179 pp. 30-34, 1935
(4)	Dawson, J.M.:	Geochemical Assessment Report, 1973
(5)	Gruenwald, W.:	Geochemical Assessment Report, 1980
(6)	Kermeen, J.S.:	Geochemical Assessment Report, 1983
(7)	Reed, A.J.:	Geochemical Assessment Report, 1982
(8)	Von Rosen, G.:	Recommendation Report, 1983

COST STATEMENT

J. S. Kermeen, Consulting Geological Engineer

On property Office	2 days (Sept.1 3 days	8, Nov.8/83)
Total	5 days @ \$350		\$1,750.00
Expenses:			
J.S. Kermeen	: Auto Mileage	Sept.18	25.00
Kamloops Res	earch & Assay	21.30 284.00 314.90	620.20
Nov.10 &	sual undergroun day @ 120 11, Contract so	120.00	
& helpe	g (incl. vehicl r) days @ 175	350.00	470.00
Jim Lyon - Casual 2 days Truck F		240.00 25.00	265.00
Norman Wade Map enl Printin	argements	8.50 20.00	28.50
Leah Gardner	- typing		56.00
Drafting - (J.S.K.)		100.00
Miscellaneou Maps Batteri	es, etc.	3.21 45.34	48.55
ABC Consultants, C	Contract Washing	g Adit	1,048.10
			\$4,411.25

CERTIFICATE

I, JAMES SEATON KERMEEN, do hereby certify:

- (1) That I am a Consulting Geological Engineer with offices at 55 Whiteshield Crescent South, Kamloops, British Columbia.
- (2) That I am a member in good standing of the Association of Professional Engineers of British Columbia and Saskatchewan.
- (3) That I am a graduate of the University of Saskatchewan from which I obtained the degrees of Bachelor of Science in Geological Engineering, 1951 and Master of Science in Geology, 1955.
- (4) That I have practiced my profession continuously for 31 years.
- (5) That the attached report entitled "Assignment Report on the Vidette Property, Hamilton Creek, B.C., 1983" is based on work performed and supervised by me.
- (6) That field work was performed on the dates indicated on the Cost Statement.

Dated this __5 __ day of __December ___ , 1983 in the City of Kamloops in the Province of British Columbia.

J. S. Kermeen, M. Sc., P.Eng. Consulting Geological Engineer APPENDIX I

ANALYSES

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

то _	Mr. J. Kermeen	Certificate No.	K 6110
	55 Whiteshield Cres. S.	Date	November 28,1983
	Kamloops, B.C. V2E 1P3	Date	20,1705

3 hereby certify that the following are the results of assays made by us upon the herein described _______ samples

2 3 4 5 6 7 8 9 10	12051 / 12052 / 12053 / 12054 / 12055 / 12056 / 12057 / 12058 / 12059 / 12060 /	.001 .009 L.001 L.001 .001 .001 .025 .001 .016	.06 .03 .06 .06 .03 .03 .09 .06					
2 3 4 5 6 7 8 9 10	12052 V 12053 V 12054 V 12055 V 12056 V 12057 V 12058 V 12059 V	.009 L.001 L.001 .001 .001 .025 .001	.03 .06 .06 .03 .03 .09 .06					
5 6 7 8 9 10	12053 V 12054 V 12055 V 12056 V 12057 V 12058 V	L.001 L.001 .001 .001 .025 .001	.03 .06 .06 .03 .03 .09 .06					
5 6 7 8 9 10	12054 V 12055 V 12056 V 12057 V 12058 V 12059 V	L.001 L.001 .001 .001 .025 .001	.06 .06 .03 .03 .09 .06					
5 6 7 8 9 10	12055 V 12056 V 12057 V 12058 V 12059 V	.001 .001 .001 .025 .001	.06 .03 .03 .09 .06					
6 7 8 9 10	12056 × 12057 × 12058 × 12059 ×	.001 .001 .025 .001	.03 .03 .09 .06					
6 7 8 9 10	12056 × 12057 × 12058 × 12059 ×	.001 .025 .001 .016	.03 .09 .06					
8 9 10	12057 × 12058 × 12059 ×	.025 .001 .016	.09 .06 .06					
11	12059√	.001	.06				1	
11		.016	.06	-				1
11	12060 ✓				- 1	12		
11 12		.003	.06		4			
12	12061 🗸	.010	.06					
4.0	12062	.001	.12			1		
13	12063 ~	.001	.03			1		
14	12064	L.001	.06			1		
	12065 V	.010	.03					
	12066 ~	.004	.03					
	12067 🗸	.025	.06	- 1	1			
18	12068	.006	.06	1	1		1	
	12069 /	.005	.06	1		1	1	
20	12071	.009	.06					

NOTE:

Rejects retained three weeks. Pulps retained three months unless otherwise arranged. Registered Assayer, Province of British Columbia

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

I he	reby certify that the follow	ving are the results of as	says made by us upon t	he herein described	sample	es
INo.	Marked	Hg				
		per cent				
21 22	Composite A Composite B	L.001				

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Registered Assayer, Province of British Columbia

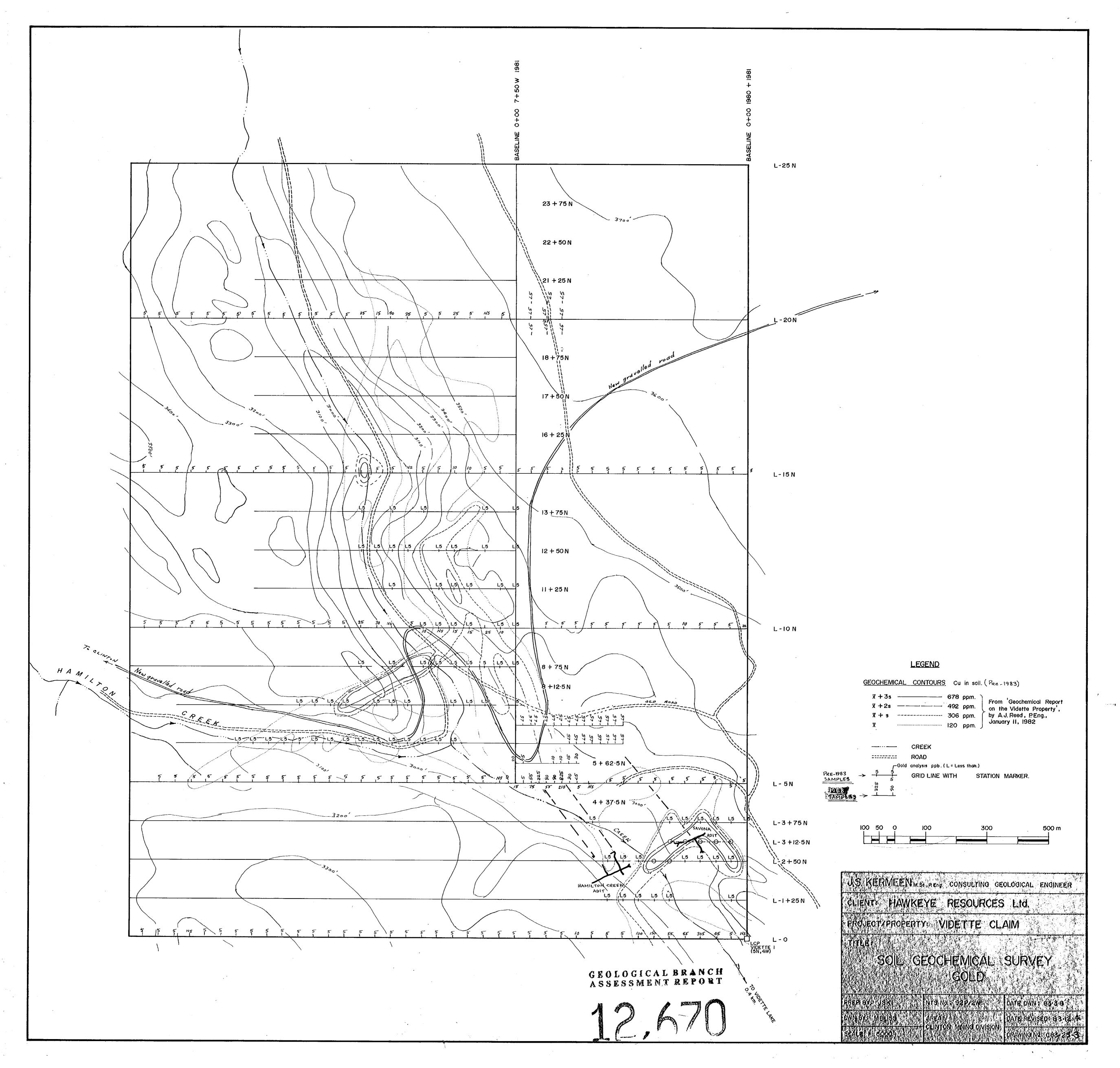
KAMLOOPS ESEARCH & ASSAY LABORATORY LTD.

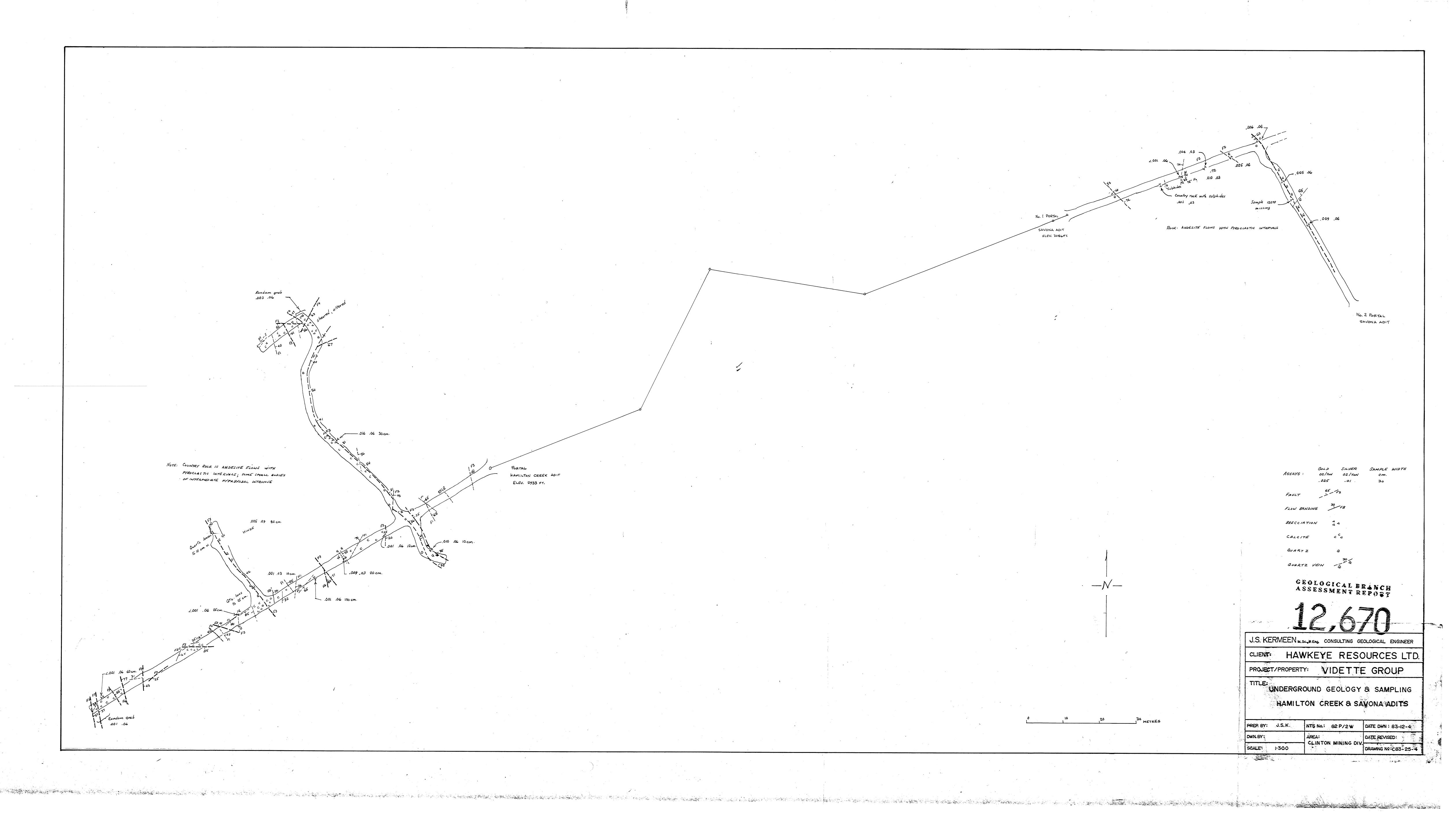
B.C. CERTIFIED ASSAYERS

FILE NO. ___

2095 WEST TRANS CANADA HIGHWAY — KAMLOOPS B.C. V1S 1A7 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL LAB REPORT


Mr. J. Kermeen 55 Whiteshield Cres. S. Kamloops, B.C. V2E 1P3


. F5 3%

DATE_____November 28, 1983

G 1002

KRAL NO.	IDENTIFICATION	ppb Au		KRAL NO.	IDENTIFICATION	ppb Au		141/
1	L500N 550W	L5		31	L685N 575W	L5		15
2	575W	30		32	600W	L5		
3	600W	825		33	625W	L5		
4	625W	90		. 34	650W	L5	125-5	14
5	650W	90		35	685W	L5 .		
	675W	335	1	36	700W	L5		
7	700W	55		37	725W	L5		i= 1 = 3
8	725W	5		38	750 W	L5		
9	775W	10		39	L1950N 600W	L5		4000
10	L565N 550W	30		40	650W	L5		
111	575W	15		41	700W	L5		1
12	600W	10		42	L2000N 600W	L5		1- 1
13	625W	10		43	650W	L5		
14	725W	15		44	700W	L5		- 3
15	750W	20		45	L2050N 600W	L5		
16	L625N 400W	L5		46	650W	L5		
17	42'5W	L5	material material	47	700W	L5	1001774	CONTRACT.
18	450W	£3						
	475W	L5			Au Method: -80 1		1007 000	
20	500W	L5				Assay ic Absorpt	ion	
29	525W	L5				-		
ŽŽ	550W	L5		95 1	H 1970			
23	575W	L5		-	(CONTRACT 1000			
24	L685N 400W	L5				4		
ŽŠ	425W	L5					e idamin	
Ž6	450₩	Ľ5	7				44	
27	475W	L5				Assin (c. Absorpt	T05	
7	500W	Ĺ5			Nu Method: -80		177.1-44	
29	525W	ES						
30	550W	L5			360d	1.5		

