$$
84-987-13037
$$

GEOLOGICAL AND GEOCHEMICAL REPORT ON THE
CHUCK - MOYEZ CLAIMS
CHUCK - MOYEZ CLAIMS

$$
\text { N.T.S.: } \quad 94 \mathrm{E} / 6 \mathrm{~W}, 11 \mathrm{~W}
$$

$$
\text { s. } 0
$$

$$
0<
$$

OWNER/OPERATOR: NEWMONT EXPLORATION OF CANADA LIMITED BY:
D. A. VISAGIE VANCOUVER, BC. NOVEMBER 1,1983
1.0 INTRODUCTION 1
2.0 PROPERTY DESCRIPTION 3
3.0 PHYSIOGRAPHY 3
4.0 GEOLOGY 5
5.0 GEOCHEMISTRY
i. Field Procedure 5
ii. Laboratory Procedure 6
6.0 RESULTS AND INTERPRETATION 7
7.0 CONCLUSIONS 8
8.0 RECOMMENDATIONS 9
9.0 STATEMENT OF QUALIFICATIONS 10
10.0 STATEMENT OF COSTS 11
LIST OF FIGURES

1. INDEX MAP $1: 250,000$ 2
2. MOYEZ-CHUCK LOCATION MAP 1:50,0004
3. GEOLOGY MAP$1: 10,000$4. SAMPLE LOCATION MAP$1: 10,000$in back pocket
4. GOLD, SILVER RESULTS$1: 10,000$in back pocket
APPENDIX1
5. Thirty element I.C.P. Analysis Results13

1.0 INTRODUCTION

The Chuck-Moyez property is located in the Toodoggone area approximately 310 km north of Smithers, B.C. It lies along Moyez Creek, which flows into the Stikine River 8 km to the east. Access is by charter aircraft for 273 km from Smithers to the Sturdee airstrip then a further 35 km north by helicopter to the property (figure 1).

There is no known record of any work being completed on the property prior to Newmont acquiring the ground. The Chuck claims were staked by Newmont Exploration in 1982 to cover the possible southern extension of an argillically altered zone of Toodoggone Volcanics located on the southern boundary of the presenty lapsed Adoo claims (previously held by Newmont).

The Moyez clafms were staked in 1982 by Newmont personnel to cover lineaments as interpreted from air photos. In addition to the grid work, regional reconnaissance soil and silt sampling were completed in 1982 on the Chuck and Moyez claims with the distance between sample sites being 400 m . The results of these programs failed to delineate any zones of economic interest.

The property is underlain by Lower to Middle Jurassic Toodoggone Volcanics, an assemblage consisting of complexly intercalated volcanic and volcanic sedimentary rocks. To date, no significant mineral occurrences have been located on the property.

The 1984 work program consisted of a more detailed geochemical and geological survey than that previously done. Silt samples were taken at 100 m intervals with corresponding soil samples taken on both sides of the stream at each site.

Four of six anomalies obtained were investigated by further soil sampling along grid and traverse lines. A total of 331 soil and 126 silt samples were collected and analysed. All outcrops encountered during this program were mapped and plotted at a scale of $1: 10,000$. Total area mapped was 2500 hectares.

All work was completed during the period July 13 to August 12, 1984 by a 6 man geological crew consisting of:

D. Visagie	Project Geologist
T. Hanel	Geologist
C. Kowall	Geologist
M. Baknes	Junior Assistant
S. Pattenden	Junior Assistant
R. Cranswick	Junior Assistant

The exploration program was carried out on the Moyez 1,2 and 4 claims.

2.0 PROPERTY DESCRIPTION (FIGURE 2)

The Chuck-Moyez property consists of the following claims:

Claim	No of Units	Record No.	Record Date
Chuck 1	12	2380	August 13,1982
Chuck 2	12	2381	August 13,1982
Moyez 1	20	2382	August 13,1982
Moyez 2	20	2383	August 13,1982
Moyez 4	20	2385	August 13,1982

3.0 PHYSIOGRAPHY

The property lies at the northern extremity of the omineca Mountains and the southern limits of the Cassiar Mountains. The area is characterized by wide U-shaped, drift-filled valleys and

deeply incised $V-s h a p e d$ upland valleys. In the vicinity of the Chuck-moyez property the terrain generally consists of roliing hills and broad drift-filled valleys. The valleys are typically full of scrub brush and swamp foliage while the uplands are characterized by serub timber. Elevations on the property range from 1380 m to 1700 m .

4.0 GEOLOGY (FIGURE 3)

Outcrop on the property is sparse (less than 5\%), with it being confined to creek banks and sharp topographic breaks on the hillsides. An extensive search for outcrop was completed on the property with little success.

Mapping and prospecting conducted by Newmont personnel in 1984 has shown the property to be underlain by Lower to Middle Jurassic Toodoggone Volcanics, an assemblage locally consisting of a massive purple crystal ash-fall tuff which on occasion has small well developed feldspar phenocrysts. The unit is medium grained and is purple-red in colour. In outcrop it is weathered and crumbles easily. Pervasive weak hematiztion of the host rock is the only alteration. No evidence was found to indicate the attitude of the volcanic units, but from regional knowledge it may be assumed that they are only gently dipping. Veining is almost totally absent, with only minor erratic carbonate veining being developed. Except for minor (less than 1%) disseminated pyrite no other sulphides or economic minerals were found on the claims.

5.0 GEOCHEMISTRY

(i) Field Procedure

The geochemistry program can be subdivided into two phases, reconnaissance and follow-up. During the reconnaissance phase silt samples were taken from the middle of selected streams at

- 6 -

100 m intervals wherever possible. At each silt sample site, soil samples were taken from each bank at a distance of about 5 m from the stream. Soil samples were taken by mattock and trowel from the "B" horizon. All samples were stored in Kraft paper bags and dried. No rock chip samples were collected.

The reconnaissance phase program resulted in a total of 246 soil and 129 silt samples being collected. of this total, 59 soil and 30 silt samples were taken just outside the property boundary, and their costs are not included in the Cost Statement at end of this report.

Follow-up soil samples were taken from grids and traverse lines located in areas where anomalous values of gold and silver occur using the 25 ppb Au and 1 ppm Ag to denote anomalous conditions. This program resulted in a total of 86 samples being collected.

Overburden consisting of glacial and colluvial till on the property is thought to be thick, in excess of 5 metres with a poor to moderately developed B horizon generally occurring at a depth between $20-50 \mathrm{~cm}$. The overlying A horizon is characteristically dark grey-black, with the B horizon varying from light to dark brown. The soil ranges in size from clay to gravel with the clay fraction being most common. Rock fragments very in shape from angular for locally derived to rounded for those more distal.
(ii) Laboratory Procedure

All samples were sent to Acme Analytical Laboratories, 852 East Hastings Street, Vancouver, B.C. to be analyzed using the 30 element Inductively Coupled Plasma (I.C.P.) method with gold being determined separately by Atomic Absorption.

Preparation for the soil and silt samples consisted of drying the sample at $60^{\circ} \mathrm{C}$ and then sieving to -80 mesh. For the 30 element I.C.P. analysis, a 0.5 gram sample is digested with 3 ml of 3:1:3 nitrid acid to hydrochloric acid to water at $90^{\circ} \mathrm{C}$ for 1 hour, then diluted to 10 mls with demineralized water and analyzed. It should be noted that the leach for $B a, P, M g, A 1$, Ti, La, Na, K, W and $C a$ is only partial. For gold determination a 10.0 gram sample that has been ignited overnight at $600^{\circ} \mathrm{C}$ is digested with hot dilute aqua regia and the clear solution obtained extracted with Methyl Isobutyl Ketone (MIKB). The gold is then determined in the MIKB extract by Atomic Absorption using a background correction.
6.0 RESULTS AND INTERPRETATION (FIGURES 4 AND 5)

The results of both the reconnaissance and follow-up programs were scanned for anomalous values, with only gold and silver being plotted. The location sites of all samples are plotted on figure 4. The analyses for these samples are given in appendix 1 .

The results of the reconnaissance program outlined 6 areas where anomalous values ($25 \mathrm{ppb} A \mathrm{~m}_{\mathrm{c}} \mathrm{l} 1 \mathrm{ppm} \mathrm{Ag}$) occur. These areas are listed as A, B, C, D, E, and F on figure 5. Anomaly A, located on the Moyez 2 claim, is characterized by several gold anomalous silts and soils located over a 1100 m length. Within this zone the gold content vary from 5 to 495 ppb , with silver being consistently less than 0.4 ppm . A follow-up traverse line 1600 m long with stations every 50 m was located 50 m away and parallel to the eastern creek bank. The results of the follow-up failed to delineate any significant zones of interest.

Anomaly B is characterized by two samples (one silt, one soil) located 100 m apart returning values of f1155 and 305 ppb Au respectively. Silver in both instances was negligible at 0.1
ppm. A flagged grid consisting of two 200 m long lines 50 m apart with stations every 25 m was located over this anomaly. The gold results were uniformly low at 5 ppb , with silver being 0.6 ppw or less.

Anomaly C consists of a single soil sample containing 248 $\mathrm{ppb} A u$ and 0.2 ppm Ag . A flagged grid consisting of two 200 m lines, 50 m apart with stations every 25 m, was located over this site. Soil samples from this area failed to delineate anything of significant interest.

Abstract

Anomaly D consists of a single sample containing 1.2 ppm Ag and 5 ppb Au. A flagged grid consisting of two 200 m lines 50 m apart with stations every 25 m was located over this site. Soil samples from this grid failed to delineate anything of interest.

Follow-up work was not completed on anomalies E and F. The causes of the anomalies located during the reconnaissance program have not been determined. They are possibly due to very small amounts of gold silver mineralization erratically distributed through the overburden unrelated to any nearby bedrock source.

7. CONCLUSIONS

The Chuck-Moyez claims are underlain by Toodoggone Volcanics, an assemblage locally consisting of barren purple crystal ash fall tuffs.

The reconnaissance geochemical program outlined six anomalous areas. Follow-up work consisting of grid soil sampling completed on four of the anomalies failed to outine any significant zones of interest.

8.0 RECOMMENDATIONS

It is recommended that no further work be done on the property at this time.

STATEMENT OF QUALIFICATIONS

I, David A. Visagie, do hereby certify that:

1. I am a geologist presently employed by Newmont Exploration of Canada Limited.
2. I am a graduate of the University of British Columbia, 1976 with a Bachelor of Science in Geology, and since then have been steadily employed in mining exploration.
3. I supervised the mapping and geochemical sampling described in this report.

I, Terrence N. Macauley, do hereby certify that the work described in this report was done under my direction.

COST STATEMENT

1.0 PERSONNEL

2. MOBILIZATION AND DEMOBILIZATION

Includes fuel, haul, camp moves, crew moves, etc, pro-rated over program.

$$
13 \text { man-days } x \$ 27.99 / \text { man-day* } \$ 363.87
$$

3. TRANSPORTATION

3.0 hours Huges $500 \mathrm{D} \$ 500 / \mathrm{hr} \$ 1,500.00$
4. FOOD

13 man-days x \$16.75/man-day* \quad \$ 217.75
5. EXPEDITING

13 man-days x \$4.13/man-day*
\$ 53.69
6. AIRCRAFT CHARTER-FIXED WING

Primarily grocery and supply hauls
13 man-days x \$9.44/man-day* \$ 122.72
7. CAMP COSTS

Includes fuel, propane, lumber, tents, heaters, etc.
13 man-days x \$11.73/man-day*

8. GEOCHEMISTRY**

i. Sample preparation $=0.60$
ii. 30 element I.C.P. analysis $=6.00$
iii. Geochem Au by A.A. $=5.25$

$$
\text { TOTAL }=\$ 11.85 \times 372=\$ 4,408.20
$$

9. REPORT PREPARATION
\$ 200.00

TOTAL
\$8,374.72***

* several projects were carried out from our base camp using the same exploration crew. These daily rates were calculated by dividing the total expenses in each category by the total number of man days for that crew.
** only the cost of analysing those samples located within the valid claims are included here.
*** this total cost is in excess of the $\$ 6527$ cost shown on the Statement of Exploration and Development because costs for that Statement were estimated during the field season before final costs were known.

NEWMONT EXPLORATION PROJECT \# 315 FILE \# 日4-1845
PAGE 2

N	¢	99	TH	κ	MI	60	M	FE	AS	U	A ${ }^{\text {d }}$	TH	5R	cl	S8	81	1	CA	p	14	th	π	M	11	1	1	4	K	V	AUt
PF\|	PPR	PP\%	PFF	Pf\%	PP\%	PP\%	PFI	1	PP\%	PP\%	Pen	PP\%	PPM	PPK	PPn	PFT	PF	1	1	P\%	PF\%	1	P\%	1	PP\%	1	1	1	pma	PPE

31237	1	15	1	7	. 2	13	5	99\%	2.75	4	2.	* 10	2	46	1	2	2	48	. 24	. 09	11	14	. 51	253	. 02	4	2.7	. 02	. 05	2	5
31238	1	12	5	89	. 2	1	1	571	2.69	6	2	0	2	\$6	1	2	2	15	. 4	. 13	4	11	. 68	269	. 02	3	2.72	. 61	. 06	2	5
31259	1	13	5	1	. 2	12	3	636	2.44	4	2	10	2	130	1	2	2	45	. 14	. 07	9	10	. 58	27	. 05	2	2.29	. 12	. 06	2	5
31240	2	13	1	12	. 1	8	5	552	2.73	1	2	00	2	172	1	2	2	59	. $\%$.16	15	5	.71	326	. 44	4	3.35	. 6	. 07	2	5
3124 t	2	13	1	80	. 1	6	5	1437	3.86	13	2	0	2	218	1	2	2	97	1.48	, 13	11	5	, 4	291	. 10	4	J. 12	, H	.06	2	5
31242	2	16	4	81	. 2	13	1	759	2.60	9	2	10	2	95	1	2	2	56	. 57	. 11	11	13	. 75	312	. 03	5	3.55	. 02	. 06	2	5
31241	2	11	5	81	. 1	2	6	$83!$	3.97	1	2	10	2	105	1	2	2	36	1.84	. 15	9	5	. 43	44	. 10	5	1.47	. 42	. 41	2	5
3124	2	15	1	n	. 3	3	5	440	2.69	1	2	10	2	157	1	2	2	52	. 6	. 14	9	4	. 64	536	. 04	4	2.41	. 62	. 04	2	5
31245	I	10	1	78	. 2	6	4	561	2.75	6	2	10	2	169	1	2	2	67	. $\%$. 12	9	5	. 70	39	. $\%$	3	3.17	. 12	. 06	2	5
\$124	2	13	6	57	. 2	10	5	485	2.4	5	2	10	3	124	1	2	3	50	. 91	, 11	13	6	,43	204	.09	4	1.85	.03	.06	2	5
31247	2	11	1	72	. 1	4	4	918	2.88	1	2	12	2	200	1	2	2	69	1.19	. 12	14	5	. 45	302	.99	5	2.62	.03	.06	2	5
31248	2	16	3	19	. 2	10	5	417	2.39	8	2	110	2	131	1	2	2	48	. 91	.09		10	. 57	266	. $\%$	4	2.55	. 02	. 06	2	5
31249	2	Is	7	84	. 1	8	5	990	3.13	4	2	N0	2	167	1	2	2	71	1.19	. 13	15	6	. 58	292	.69	4	2.53	. 05	. $\%$	2	5
31250	1	9	6	42	.2	8	2	368	2.67	1	2	N1	2	66	1	2	2	4	.15'	. 69	6	13	. 25	35	.02	2	2.05	. 01	. 02	2	5
31251	1	12	2	62	. 8	13	4	312	2.84	8	2	ND	2	102	1	2	2	5	. 57	.10	1	10	. 42	27	.84	3	2.20	. 02	. 03	2	5
31258	2	17	8	87	. 1	5	4	870	6.44	7	2	10	2	154	1	2	2	141	.99	, 18	15	1	. 46	230	. 17	3	1.71	. 12	. 05	2	5
1125	2	14	1	9	.?	$!$	3	446	4.75	8	2	10	2	159	1	2	2	115	1.09	. 15	15	1	. 52	243	. 13	2	2.22	. 02	. 05	2	5
11254	2	14	9	17	.)	6	4	856	4.72	10	2	10	2	161	1	2	2	109	1.13	.13	IJ	8	. 52	251	. 13	3	2.24	. 02	. 85	2	5
31255	1	18	1	73	. 2	25	1	530	2.50	6	2	10	2	14	1	2	2	$4]$. 23	. 07	,	25	. 55	231	. 02	5	2.02	. 01	. 04	2	5
31256	2	13	6	68	1.1	7	5	602	3.16	5	2	10	2	159	1	2	2	14	1.05	. 13	12	1	. 54	265	.68	1	2.51	.05	. H	2	5
31257	2	14	11	76	.2	1	4	645	3.19	7	2	10	2	150	1	2	2	n	1.06	. 12	13	1	. 57	264	.07	3	2.47	. 03	.05	2	5
31256	1	12	10	${ }^{4} 1$. 3	18	4	312	3.14	13	2	10	2	$3{ }^{3}$	1	1	2	51	. 20	.08	3	20	. 56	169	. 02	J	1.52	. 11	. 02	2	5
31259	2	12	7	81	. 3	10	5	72	4.02	8	2	10	2	151	1	2	2	72	1.15	. 13	14	9	. 52	26	. 10	1	2.22	. 03	. 65	2	5
31260	2	16	9	65	+1	1	5	604	2.40	5	2	10	2	159	1	2	2	54	, 83	.11	22	9	. 59	314	,06	4	2.69	. 02	.05	2	5
31261	2	12	1	83	. 2	7	5	78	3.94	7	2	N3	2	151	1	2	2	11	1.06	. 12	13	1	. 53	259	. 16	1	2.30	. 02	. 65	2	5
31262	2	12	8	69	. 1	7	5	717	3.47	6	2	10	2	157	1	2	2	79	1.00	. 12	10	9	,5s	24	. 10	4	2.35	. 02	. 05	2	5
31263	2	12	10	63	. 1	9	4	470	2.22	5	2	18	2	118	1	2	2	49	. 72	. 16	14	1	. 57	294	.03	J	1.6 6	. 62	. 55	2	5
31264	1	13	1	62	. 1	23	1	568	3.51	4	2	10	2	6	1	2	2	69	. 53	. 01	10	19	. 47	211	. 01	b	1.63	. 01	. 63	2	5
31265	1	12	3	71	. 1	1	1	492	2.10	1	2	16	2	14.	1	2	2	49	. 12	. 15	1	7	. 5	307	. 03	3	2.8	. 05	. 04	2	5
31266	2	1	1	45	. 1	3	J	405	1.47	2	2	15	2	13	1	2	2	5	. 66	. 09	10	1	. 2	120	. 63	2	1.11	. 01	. 62	2	5
31267	2	13	1	4	. 1	1	4	816	3.27	4	2	0	2	146	1	2	2	14	1.16	. 13	13	*	. 54	260	.06	3	2.41	. 05	.05	2	5
51268	2	13	9	80	. 1	7	5	752	3.41	7	2	19	2	143	1	2	2	76	1.19	. 12	17	9	.5J	248	.08	4	2.47	. 02	. 6	2	5
31769	1	14	7	51	. 1	18	6	696	2.68	4	2	18	2	84	1	2	2	4	. 57	. 08	10	13	. 46	166	. 07	5	1.96	. 02	.03	2	5
31270	2	12	3	7	. 1	5	t	1155	3.84	9	2	10	2	182	1	2	2	47	1.25	. 12	II	8	. 64	219	.07	5	2.22	. 53	.03	2	5
31271	2	14	5	π	. 1	4	5	365	3.74	1	2	nt	2	14	1	2	2	56	1.05	. 14	11	10	. 64	206	. 09	4	1.85	.03	.03	2	5
31272	2	16	3	69	. 1	3	5	697	3.12	11	2	10	2	14	1	2	2	78	. 94	.12	11	11	. 68	194	. 07	4	2.01	. 02	. 63	2	5
31275	2	14	1	69	. 1	5	6	698	3.83	13	2	10	2	147	1	2	2	69	1.64	. 12	11	11	. 68	205	, 68	5	2.05	. 0	, 88	2	5
STE 5-1/40 0.5	41	124	116	184	33.4	153	A1	4 Al	3.16	124	106	36	162	121	84	84	43	57	. 56	. 10	13	64	. 58	123	. 07	171	1.50	.23	. 20	4	510

SAMPLEI	$\begin{gathered} \text { MO } \\ \text { PPM } \end{gathered}$		PB	26	A6	$\begin{array}{r} \text { MI } \\ P P H \end{array}$	$\begin{gathered} C 0 \\ \text { PPM } \end{gathered}$	NEWMONT		EXPLORATION				FROJECT		\＃ 315		FILE		\＃84－1845					II	$\begin{array}{r} 8 \\ \text { PP品 } \end{array}$	$\begin{gathered} A L \\ Z \end{gathered}$	MA	PAGE 3		
								M＊	FE	AS	U	AN	IH	SR	CO	S8	Bl	\checkmark	CA	p	LA	CR									
		PP\％	PP呂	PPM	PPM			PP\％	2	PPM	PPM	PPM	PPM	PPR	PPM	PPM	PPM	PPM	\pm	2	PPM	PPM	no	PPM					K	PP男	AUP
31274	1	9	7	63	． 3	1	4	1026	2.97	8	2	W0	2	189	1	2	2	71													
31275	1	9	9	59	． 2	3	4	996	2.40	9	2	NO	2	191	1	2	2	56	1.37	． 12	9	3	． 64	177	． 08		2.27	． 03	． 09	2	5
31276	2	14	12	68	． 2	7	5	846	3.84	9	2	ND	2	140	1	2	2	94	1.40 1.07	． 17	13	3	． 62	179	． 06	5	2.32	． 03	． 09	2	5
31277	2	11	7	69	． 1	5	5	805	5.60	9	2	M	3	107	1	2	2	135	． 90	． 19	17	9	． 53	184	． 08	2	1.80	． 02	． 08	2	5
31278	3	11	10	68	． 1	4	4	878	4.11	8	2	NO	2	130	1	2	2	103	1.00	． 19	13	7	． 53	143 166	． 10	9	1.60	． 01	． 07	2	120
31279	3	14	8	65	． 2	6	7	927	3.68	11	2	KD	2	117	1	2	3														
31280	3	12	11	75	． 1	4	6	1013	6.26	10	2	MD	3	111	1	2	4	153	． 8.05	． 16	13	10	． 60	188	． 04	2	1.92	． 01	． 09	2	5
31281	2	13	9	65	． 1	6	5	892	5.39		2	HD	2	114	1	2	2	132	1.05 .96	． 26	22 15	13	． 50	166	． 13	4	1.41	． 02	． 06	2	5
31282	2	12	11	74	． 1	6	4	781	6.59	8	2	ND	4	108	1	2	3	161	． 95	． 23	17	12	． 51	176	． 13	7	1.68	． 02	． 06	2	5
31283	1	14	8	69	． 1	5	5	534	3.10	7	2	NO	2	154	1	2	2	76	1.02	． 15	12	9	． 69	202	． 06	4	1.41 1.98	． 02	． 05	2	$\frac{180}{5}$
31284	1	14	11	71	． 1	7	5	635	3.74	7	2	ND	2	126	1	2	2	100													
31285	1	12	9	72	． 2	6	5	1104	3.96	11	2	ND	2	145	1	2	2	109	1.85	． 16	12	12	． 65	191	． 07	2	1.94	． 03	． 6	2	5
31286	1	14	10	58	． 2	8	5	751	3.12	7	3	N0	2	122	1	2	2	13	． 92 \	． 14	12	12	． 60	178	． 07	7	1.78	． 02	． 07	2	5
31287	1	12	10	73	． 1	3	5	1017	5.43	12	2	N0	2	121	1	2	2	135	1.03	． 22	13	12	． 51	173	． 11	6		． 02	． 07	2	5
31288	1	14	9	63	． 2	6	4	587	3.11	11	2	N0	2	132	1	2	2	78	． 95	． 14	9	10	． 64	195	． 07	2	1.49 1.89	． 02	． 06	2	5
31289	1	12	11	69	． 1	4	5	569	4.60	12	2	N0	2	129	1	2	2	118	． 98	． 20	12	9									
31290	1	14	10	66	． 3	8	5	574	3.69	10	2	ND	2	138	1	2	2	93	． 96	． 15	12	9		165	． 10	6	1.58	． 02	． 05	2	10
31291	2	14	6	72	． 2	7	4	1111	3.54	12	2	N0	2	149	1	2	2	88	1.17	． 18	14	9	． 65	200	． 07	5	1.88	． 03	． 06	2	5
31292	2	16	11	67	． 1	10	5	966	3．16	12	2	ND	2	138	1	2	2	76	1.04	． 15	13	12	． 62	224	． 08	2	1．86	． 02	． 08	2	5
31293	3	16	14	76	． 1	7	3	739	3.83	14	2	WD	2	139	1	2	2	97	1.09	． 19	21	11	． 60	221	． 06	2	2.05	． 02	． 07	2	5
31294	2	15	9	11	． 1	9	5	895	3.85	13	2	N0	2	137	1	2	2	93													
31295	3	12	12	13	． 1	6	5	808	5.23	12	2	NO	2	120	1	2	2	127	1.05	． 22	17	12	． 65	215	． 07	6	1.91	． 02	． 07	2	5
31296	2	14	8	68	． 1	7	5	888	3.05	14	2	No	2	144	1	2	2	74	1.06	． 14	17	12	． 53	174	． 11	6	1.56	． 02	． 07	2	495
31297	3	15	9	75	． 1	5	5	991	4.26	12	2	ND	2	130	1	2	2	108	1.27	． 21	15	12	． 75	23	． 05	5	2.21	． 02	． 09	2	5
31298	2	14	8	61	． 1	10	1	757	4.19	7	2	no	2	117				101	1.28	． 21	15	9	． 53	195	． 09	8	1.52	． 02	． 07	2	5
														11	1	2	2	101	． 94	． 18	15	11	． 55	166	． 09	6	1.60	． 02	． 06	2	5
31299	2	16	10	123	． 3	32	8	1440	3.29	6	2	ND	2	75	1	2	2	54			12										
31300	2	14	9	100	． 2	33	6	533	3.95	33	5	N0	2	32	1	2	2	32	． 33	． 14	12			329	.02	4	2.52	． 01	． 11	2	3
31301	2	15	9	66	． 2	27	5	612	1.78	4	2	60	2	66	1	2	2	28	． 87	． 13	10	25	． 6	351	． 01	4	2.25	． 01	． 07	2	5
31302	2	11	9	51	． 4	20	4	443	2.72	8	2	0	2	56	1	2	2	4	． 29		10	2	． 46	415	． 01	6	1.65	． 01	． 07	2	5
31303	2	12	6	84	． 2	31	5	528	2.22	7	2	ND	2	34	1	2	2	30	． 39	． 06	8	22	． 4	219	． 02	2	1.93	． 01	． 05	2	5
31304	2	17	8	54	1.2	28	5	491	2.14	4	2	N0	2	36	1	2	2														
31305	2	13	6	48	． 3	31	3	240	1.93	5	2	ND	2	20	1	3	2	29	． 13	． 07	13	28	． 49	403	． 01	2	2.82	． 01	． 06	2	5
31306	1	18	12	108	． 4	37	7	2150	2.50	7	2	10	2	64	1	3	2	32	． 81	． 12	12	27		248	． 01	1	1.66	． 61	． 05	2	5
31400	2	15	7	63	． 4	17	4	874	2.47	3	2	10	2	27	1	2	2	44	． 15	． 16	12	17	． 37	460	． 01	3	2.43	． 01	． 09	2	5
31401	1	12	9	79	． 2	20	－ 4	815	5.28	8	2	N0	2	76	1	2	2	116	． 91	． 14	11	15	． 49	178	． 12	6	1.74 1.82	． 01	．06	2	5
31402	1	14	10	72	． 3	28	5	148	3.64	7	2	10	2	65	1	2	2	74													
31403	1	14	14	76	． 3	24	4	713	3.13	6	2	N（1）	2	55	1	2	2	74 59	． 66	． 12	9	20	． 51	205	． 06	5	1.82	.01	． 07	2	5
STD S－1／AU 0.5	97	123	146	182	34.3	． 150	80	510	3.13	120	95	37	177	127	82	86	93	59	． 55	． 12	133	63	． 57	122	． 07	174	2.04	． 01	． 09	2	5

＊	部这	nummin	nosumus	nnomm	nommun	nommun	ancomon	nommon	$n \mathrm{n}$ \％
	＝${ }_{\text {a }}^{\text {a }}$		\％	N	nenten	nnente	numam	nonnem	NNO
	\cdots		$\because ッ M ッ$	88%	¥ッニッ゚	훈우으․	앙응ㅇㅇㅡㅡㅇ	ㅇ％88\％	¢\％
	\％	흐응․	훙ㅎ․	훙흥	훙ㅇ․	훙ㅎㅇㅇ	훙ㅎㅇㅇ․	훙¢ㅜ옹	히파
	\＃		ベベヘiN	にな思が 			M合		¢8000
	\cdots ¢	－n＋mn	－mmom	$\rightarrow+\mathrm{NNO}$	－nmmm	nommon	－nmm－	mnNon	－
	$=\cdots$	\because	$\because 9 ㅇ ㅡ ㅇ$	¢웅¢ㅇ웅	훟ㅎㅎ․	웅웅ㅇㅇㅇ․	훙웅응	웅ㅎㅇㅇ	
	※		が	氣㤩玉第	岛읏응응		సす		－${ }_{\sim}^{\sim}$ ㅍ
	\％${ }^{\text {\％}}$	뿌％\％\％	กิ\％¢\％¢ ¢	ำッサ゚	윢） 8		ค\％\％	กั？	F．8\％
	9 \％	$\simeq ニ$ ポ	ํローำ困	二小欠9\％\％		ダ吅界』	ํ．えํ	工xN®	二
	\leq 景	\simeq ニニニュ	ロッッッニ		Mロッmin	－onm	～ッロッツ	ッロッニ＊	\cdots－
	a．	$\because \geqslant \%$ 파	¢ッッニッ	그ํํํ	メッ\％ニ～	$\because \because \sim$		$\because ッ シ ッ$ ¢	$\stackrel{\sim}{\because}$
$\underset{\sim}{\underset{J}{w}}$	er		สั¢ ¢ ¢	\％9\％	꺠％	두ำッ	స\％	추ํํㅜ	¢\％¢ ¢
4	＞天	ロミロッ\％	スニさが	$\because \pm \%$ \％	$=\sim 8=7$	¢0\％ $8=9$		\％ッニ8お	にスた
6	－	nnmN	nnman	4	\sim	NNNNT	nNmm	nuna	NN\％
$\begin{aligned} & \text { \# } \\ & \text { ㅂ } \\ & \text { u } \\ & \sim \\ & 0 \\ & \alpha \\ & 0 \end{aligned}$	思	NNNN	nnmen	$\sim \sim \sim N$	nnonn	nnann	nnmen	nNmNo	～～』
	을	－－－－－		－－－－	－－－－－	－－－－	－－－－－	－－－－－	－あ
	웅	¢ 20% \％	－ 50				\％－9\％	8 た～ち～	ヵに\％
	位家	nenno	nnnan	nnon	nunnm	\sim	nnnmal	nnmen	NNE
	ま	是岸是是是	是是是是是	是是崖是星		是是星星晨	是是晨星畐	是是早是蒝	是是思
	＝${ }_{\text {a }}^{\text {a }}$	nonno	nnmun	\sim	n	m	＝NNNN	nnenn	－No
	¢	$m \rightarrow \infty$	\sim	$\cdots \cdots \infty$	$\sim \infty \times \infty$	$\sim \simeq \simeq \infty$	\cdots－n＝	$\vec{\sim}$	$\underline{n}=\underline{x}$
	Wm	웅으ㅂㅡㅡㄴ			こま戸に罟 え～ウ～～～	영옹		$\because \overrightarrow{M r j m i}$	o우웅
		实号恕云に		N	凩斗気呂品		す్ర్ర\％	云号会面品	5oำ
		－nno－	mo－nm	－norn	－∞	m	nn	いmu－n	\rightarrow い
	三管	回思男か二		궁ㅇㄲ	¢ $=\sim \sim$ 思	えがへえ	二えニ呂	\％x \％	\％ガら
	曲景	マッソッ	$\because-$	$\because \div$ ？	$\cdots \div$	ソッ－－		－¢ ¢ \％	
	三家	ェニ』	心三\＄8\％	¢¢®®®	2 $\underline{0}^{(1)}$	以上だが	か～ロ～\％		추요
	玉゙あ	$\underline{O}^{\boldsymbol{\sigma} \cdot \boldsymbol{\omega}}=$	$\pm \simeq 0=0$	ツットの	$\because \pm \cos$	$\bigcirc \cdots=0$	$\cdots=0 \pm$	$\infty \times \sim$ の	$\infty \times$
	ご嫘	$\cdots \pm \pm \underline{\circ}$	ロニニニの	二ッ\％	2สニッル	$\because \sim M ッ ロ$		ํ๙ロッツ	ำํ
	잊츨	\rightarrow	－－m－n	numan	－r－m	$\sim-m N N$	numen	$n-\cdots-n$	$--\%$
									霛完亭

NEWMONT EXPLORATION FROJECT \# 315 FILE \# 84-1845
PAGE 5

SAMPLEE	mo	Cu	PB	IN	AE	MI	CO	N	FE	AS	U	AU	TH	SR	CO	SB	BI	v	CA	p	LA	CR	4	84	1	B					
	PPM	PPM	PPM	PPM	PPH	PPM	PPM	PPM	1	PPM	PPM	PPM	PPM	PPM	PP年	PPM	PPh	PPM	1	χ	PPK	PPM	\%	PP早	7	PPM	2	1	1	PP\%	PPB
31441	1	21	1	74	. 2	33	5	418	2.24	7	4	no	2	33	1	2	2	32	. 19	. 23	7	33	. 49	294	. 01	6	2.11	. 01	. 06	2	5
31442	1	14	10	61	. 2	28	5	362	2.20	6	2	WD	2	49	1	2	2	35	. 37	. 11	8	22	. 53	170	. 01	6	1.75	. 01	. 07	2	5
31443	1	16	17	86	.1	28	5	696	4.32	9	2	W	2	53	1	2	2	88	. 61	. 15	18	21	. 51	185	. 06	9	1.42	. 01	. 0	2	5
31444	1	16	10	62	. 1	41	9	433	2.06	8	2	N0	2	45	1	2	2	27	. 28	. 08	10	28	. 58	195	. 01	8	1.12	. 01	. 04	2	5
31445	2	29	7	92	. 2	70	8	469	2.91	7	2	no	2	44	1	2	2	33	. 32	. 10	9	47	. 87	253	. 01	6	1.91	. 01	. 07	2	5
31446	1	16	7	74	. 1	41	7	578	2.69	9	2	no	2	52	1	2	3	44	. 53	. 12	11	28	. 62	190	. 02	11	1.43	. 01	. 06	2	5
31447	1	24	8	65	. 1	45	8	611	2.52	8	2	W	2	60	1	2	2	36	. 74	. 12	11	29	. 67	163	. 04	6	1.60	. 01	. 08	2	5
31448	1	52	12	165	. 4	76	10	778	3.36	15	2	KD	2	59	3	2	2	48	. 89	. 15	22	50	. 88	409	. 01	5	2.49	. 01	. 09	2	5
31449	1	19	9	77	. 1	13	6	507	2.70	5	2	MD	2	47	1	2		44	. 54	. 11	11	30	. 65	185	. 02	7	1.42	. 01	. 05	2	5
31450	1	15	9	48	. 2	22	5	266	2.01	4	2	no	2	27	1	2	2	29	. 09	. 11	8	19	. 30	209	. 01	2	1.33	. 01	. 04	2	5
31451	1	13	6	45	. 1	34	6	459	1.94	6	4	No	2	32	1	2	2	24	. 30	. 12	6	26	. 49	165	. 01	7	1.24	. 01	. 05	2	5
31452	1	17	14	70	. 1	45	7	482	2.49	9	2	10	2	45	1	2	2	40	. 48	. 11	10	28	. 62	173	. 02	d	1.33	. 01	. 05	2	5
31453	2	21	6	61	. 1	46	9	547	2.24	7	2	No	2	39	1	2		29	. 23	. 07	10	32	. 61	207	. 01	3	1.22	. 01	. 05	2	5
31454	2	13	6	47	. 1	34	5	291	2.09	5	2	W0	2	29	1	2		22	. 13	. 12	7	29	. 42	185	. 01	2	1.26	. 01	. 04	2	5
31455	1	16	14	71	. 1	42	7	462	2.62	9	2	ND	2	41	1	2		43	. 45	. 11	10	29	. 62	153	. 02	7	1.28	. 01	. 05	2	5
31456	1	15	7	57	. 1	34	8	726	2.22	5	2	10	2	48	1	2		33	. 43	. 11	12	24	. 54	214	. 01	3	1.57	. 02	. 04	2	5
31457	1	24	7	107	. 5	53	6	437	3.31	9	3	14	,	28	1	2		41	. 18	. 22	5	43	. 69	214	. 01	5	2.59	. 01	. 07	2	10
31458	1	17	9	70	. 1	47	8	418	2.35	6	2	mo	2	44	1	2	2	37	. 46	. 10	8	32	. 66	157	. 01	5	1.34	. 01	. 05	2	10
31459	1	15	5	62	.7	29	4	196	1.81	6	3	ND	2	14	1	2	2	25	. 05	. 18	5	31	. 43	197	. 01	2	1.90	. 01	. 05	2	5
31460	1	18	10	72	. 2	36	5	482	2.65	8	2	10	2	20	1	2	2	29	. 08	. 12	4	32	. 51	172	. 01	8	1.59	. 01	. 04	2	5
31461	1	21	11	84	. 1	16	6	542	2.85	10	2	M ${ }^{\text {a }}$	2	48	1	2	2	47	. 55	. 11	9	32	. 66	206	. 02	6	1.57	. 01	. 05	2	5
31462	1	33	11	95	. 8	52	7	399	3.10	6	3	10	2	41	1	2	2	36	. 20	. 22	11	43	. 67	430	. 01	5	2.48	. 01	. 08	2	5
31463	1	13	8	50	. 3	17	3	332	2.16	6	2	ND	2	33	1	2	,	27	. 22	. 09	5	13	. 30	234	. 01		1.22	. 01	. 05	2	5
31464	1	14	8	59	. 2	31	4	267	1.60	4	2	No	2	30	1	2	2	23	. 25	. 17	6	28	. 42	258	. 01	2	1.61	. 01	. 04	2	5
31465	1	18	12	81	.1	45	6	599	2.40	8	2	ND	2	42	1	2	,	36	. 57	. 11	10	30	. 64	239	. 01	4	1.61	. 01	. 05	2	5
31466	1	18	14	57	. 1	48	12	1528	2.74	11	2	40	2	39	1	2	2	34	. 40	. 13	12	36	. 63	372	. 01	3	1.75	. 01	. 04	2	5
31467	1.	21	10	90	. 1	46	8	707	2.34	8	2	N0	2	48	1	2		34	. 65	. 12	10	35	. 68	305	. 01	4	1.80	. 01	. 06	2	5
31468	2	21	9	74	.1	49	7	387	2.93	9	2	MD	2	33	1	2	3	33	. 19	. 09	9	40	. 69	303	. 01	3	1.85	. 01	. 07	2	5
31469	2	13	2	62	. 1	30	4	218	1.89	3	2	W0	2	27	1	2	2	27	. 15	. 16	6	30	. 44	322	. 01	2	1.60	. 01	. 03	2	5
31470	2	18	11	83	. 1	48	7	666	2.62	9	2	N0	2	44	1	2	1	41	. 59	. 12	10	35	. 68	281	. 01	7	1.75	. 01	. 05	2	5
31471	2	13	8	52	. 1	34	5	266	2.38	5	2	mb	2	18	1	2	2	27	. 09	. 11	8	31	. 47	149	. 01	7	1.81	. 01	. 03	2	5
31472	1	16	11	80	. 1	42	6	701	2.43	9	2	10	2	43	1	2	2	35	. 58	. 13	9	29	. 67	201	. 01		1.85	. 01	. 07	2	5
31473	1	21	9	91	.1	50	7	692	2.60	5	2	W0	2	51	1	2	4	39	. 69	. 12	10	37	. 73	305	. 01	4	2.00	. 01	. 06	2	5
31474	2	24	11	104	. 5	48	9	1011	2.66	9	2	M ${ }^{\text {P }}$	2	45	1	2	2	33	. 40	. 25	7	39	. 64	384	. 01	8	1.91	. 01	. 11	2	10
31475	1	21	10	80	. 1	45	5	426	2.62	6	2	N0	2	47	1	2		37	. 58	. 15	5	37	. 71	328	. 01	9	2.10	. 01	. 07	2	5
31476	1	24	9	100	. 1	53	7	719	2.51	10	2	M ${ }^{\text {P }}$	2	55	1	2	3	36	. 79	. 13	10	35	. 72	315	. 01	5	2.10	. 01	. 07	2	5
31477	1	16	7	72	. 1	38	6	670	2.43	9	2	WD	2	44	1	2	2	37	. 64	. 11	9	28	. 68	204	. 02	6	1.90	. 01	. 06	2	5
ST0 5-1/AU 0.5	97	125	-120	186	35.3	155	82	501	3.16	131	89	39	173	129	90	86	96	57	. 56	. 13	131	64	. 58	124	. 08	174	1.50	. 23	. 20	72	520

					－ $21-$				
N	产䆜	いかんにか	のmmun	かnommo	のかいいい	がッぃいぃ	のぃいいの		$\cdots 8$
	$=$ \％	nonner	nornom	nnonn	nnmon	nonnmo	nnmen	norner	NNR
	$\times \mathrm{m}$				g $\ddagger 8 \%$		동¢ㅇ․	옹t5	\＄\％¢
	＊	웅융응	웅웅웅	둥 ¢ ¢ ¢	응 5 ¢		웅후융	둥 ¢ ¢	¢8
	－		웃춧혼	여ㅇㅒㅒㄴ		Oq \% \%		¢880	
	∞ 安	nornm	mun\％	以NTOM	noundra	－nぃめn	＊ツ＊mm	$\cdots \rightarrow-\infty$	－－\＆
	$=\cdots$	（95\％\％	앙웅항․	¢ ¢ ¢ \％¢ ¢	응ㅇㅇㅇ응	웅흥응	웅융	\％\％\％\％	\＄ $\mathbf{S}_{\mathbf{8}}^{\mathbf{8}}$
	¢			区 \％¢					80
	0 m	\％ํํ	呇 0	SO\％		ก－9		8989	¢ ت ¢ \％
4	풀	ッニホ二8	人心の界	バがッ	$m=9 \sim$	このが下	アニニが	毋Nか\％	¢85
	\leq 年	のッッニ	$\cdots \mathrm{O}-\mathrm{O}$	$\boldsymbol{\infty}$－ 0 으	ニローニ	\cdots－	∞ のかのか	$\simeq \sim \infty=$	으을
	a．	우ำ뀨ํ		드ํッ	여은	나으־ํㅡㄴ	웅응¢끠	듞ㅍ․	\％\＃\％
－	So			Nッ\％	¢¢둒	¢\％\％	$\bar{\square}$	꿍ํ \％ 5	\％ 8 \％
4	＞	8\％pNo	\％ロッが品	のッらッか		78980	$\pm \% 3 \mathrm{~mm}$	二ニッ日里	885
	い	nnomm	nemmen	nnonn	nonnm	nnonn	monnm	nonmer	NHz
	오ㅇㅡㅡㄹ	nunmm	nommn	nunme	nnmon	nemen	nnonn	nnent	N～M
	它高				－－－－－	－－－－－	$\rightarrow \sim$	－	ー－玉
		号708\％	$\wedge \sim \%$ ¢	M	ふへ～ジ	以下スギ	内9\％\％	二票里早	¢ \％\％
	조츨	nmenn	nNunN	nnund	nunno	$n \sim N \sim N$	nNundr	nnonn	$\sim \sim$
	事言		是家家是星		是是是是家	是星是是是			是显品
	$=$ 乭	nonnm	NONON	nonnom	nonnon	nonno	nnumm	nnonn	N～q
	里緊	＊＊mn＝	以上mか0	$\infty \times \infty$－	$\infty \times \infty$	$=$	$\cdots \sin 0 \times$	¢－！	\sim～ํ
E$\frac{2}{2}$$\frac{3}{3}$$\frac{山}{2}$	出		No	Maŋぁ		～～～～～～～			$\underset{\sim}{\text { qion }} \underset{\sim}{\circ}$
						\％\％\％	下运喜呂多		颪通
	을	－¢～mm	\sim	～ 0 －¢	nnomor	－nのnヶ	－ぃールぃ	－ 0	－－\％
	플	$\because \pm 0 \mathrm{M}$	－	思に゙ニ			～N®®ニ	ぶ㕩品	界里咀
	¢				$\because \because \because \because$	$\because \because ワ$	$\because ワ ワ$－	$\because-\square$	
	\＃${ }_{\text {\％}}^{0}$	め®キロロ	$\bigcirc \infty \sim$－	ふがっが	흥ํㅇㅛㅡㅡㄹ	N0\％	ロ～M～N		3～0
	…증	$\simeq=0 \sim$	$\simeq ニ \pm \infty$	$=\sim n=0$	$0 \times \infty$	\cdots 으 ∞^{∞}	$\sim \infty \pm \infty$	으Mmm	$\cdots \cdots$
	こ高	二二巾～n	－ロロッツ	セップツ	－	๓	ニニコさキ	$\because ニ \sim ニ \sim$	士－ํㅓㅄ
	은 즐	$\rightarrow-\cdots$	－－－－－	－－－－－	－nNmm	Nr－－－	$\cdots-\cdots$	nMmmon	NN\％
									\cdots
				N్ల్లి					

75420	1	17	15	80	. 2	12	\dagger	63t	3.51	16	5	10	2	116	1	5	2	89	. 71	. 15	5	18	.79	207	. 8	2	2.41	. 02	. 09	2	5
75421	1	16	15	38	. 1	9	7	345	4.68	11	5	10	2	120	1	2	2	125	. 81	. 18	8	15	. 14	210	. 10	2	2.06	. 02	. 06	2	5
75472	3	12	14	114	. 1	19	10	H49	3.52	$!$	5	15	7	170	1	3	2	71	1.02	. 15	5	21	. 74	67	. 10	2	2.26	. 03	. 07	2	5
15423	1	14	11	60	. 4	11	3	726	1.24	5	5	0	2	89	t	2	3	21	1.25	. 27	5	17	. 7	276	. 01	V	1.10	. 02	. 07	2	5
75424	1	15	13	76	. 2	27	6	499	3.97	7	5	19	2	90	1	2	2	15	. 62	. 17	9	20	. 57	238	. 89	2	2.42	. 12	,06	2	5
75425	1	15	26	101	. 1	15	8	438	3.71	1	5	10	2	54	1	2	4	219	. 51	. 4	12	23	. 38	158	. 17	2	2.79	. 02	. 05	2	5
75426	1	15	17	67	. 6	29	6	529	2.95	12	5	19	2	16	1	2	2	$5!$. 10	.1]	5	29	. 45	126	. 03	5	1.95	. 01	.0	2	5
75427	2	12	15	54	1.4	28	11	2902	1.64	1	5	41	2	116	1	2	2	31	1.62	. 59	21	26	. 32	เ97	. 01	9	2.26	.01	. 05	2	5
75426	3	9	11	53	. 3	18	J	400	1.77	1	10	12	2.	15	1	2	3	38	. 07	. 14	5	28	. 30	164	. 01	1	1.52	. 01	. 09	2	5
75429	1	15	13	12	. J	53	1	26.	2.31	8	5	WI	2	17	1	1	2	43	.69	.68	7	31	.53	183	. 02	5	1.78	. 01	. 6	2	5
75130	1	14	17	99	. 1	26	5	$3{ }^{3}$	2.51	25	5	k	2	26	1	2	2	43	. 21	. 11	5	29	. 47	175	. 02	5	1.72	. 01	. 07	2	5
75431	1	15	11	83	4	35	5	407	2.26	4	5	ND	2	\$8	1	\$	2	45	. 11	. 11	8	31	. 58	526	. 01	5	1.\%	.02	. 64	2	5
2403	2	25	$1]$	89	. 5	15	1	539	J. 13	9	5	10	2	45	1	1	2	59	. 40	. 21	6	42	. 59	468	. 01	2	2.86	. 01	.13	2	5
75053	2	21	14	76	. 5	18	b	364	2.84	5	5	10	2	51	1	2	2	19	. 31	. 15	13	40	. 6.	131	. 01	b	2.45	. 02	. 68	2	5
75434	1	21	15	89	.2	18	6	907	2.85	10	5	19	2	n	1	2	?	56	1.84	, 13	15	16	. 61	319	. 05	5	2.40	. 02	. 14	2	5
75655	t	2	14	103	. 2	17	5	60 :	3.09	1	5	10	7	82	1	2	2	${ }^{1}$. 93	. 12	14	18	. 71	152	. 06	2	2.96	. 02	. 14	2	5
75436	2	29	14	71	. 7	18	5	110	1.60	13	8	0	2	183	1	6	2	37	2.21	. 34	32	16	. 52	541	. 02	1	2.82	. 02	.09	2	5
75437	2	24	18	78	. 5	16	5	541	2.68	11	5	10	2	135	1	3	2	61	1.45	. 18	21	17	. 61	405	. 05	1	2.67	. 03	. 10	2	5
75478	1	18	15	87	. 1	15	6	592	3.27	19	5	N,	2	115	1	2	2	75	1.69	. 13	10	16	. $\mathrm{LS}^{\text {d }}$	327	. 01	1	2.52	. 52	. 12	2	5
75434	1	23	1	44	. 4	11	3	510	. $\mathrm{Hi}^{\text {d }}$	2	1	10	2	230	t	2	2	17	2.9	. 76	1	\dagger	. 4	109	. 01	14	1.18	.01	. 06	2	5
75445	1	2	17	1	. 1	15	${ }^{6}$	6se	1.00	13	5	13	2	111	1	2	2	11	1.16	. 13	18	15	. 58	210	. 11	5	2.\%	. 12	, 11	2	5
5T0 5-1/40 0.5	\%	123	117	186	32.6	158	6	$4{ }^{4}$	3.15	12)	102	37	174	129	87	78	14	5	.56	. 13	138	4	. 58	124	. 68	176	1.7	.2I	.20	14	\$05
* 514	1	21	:2	(\%)	\cdots	π	b	545	$\therefore .5$?	5	18	:	45	1	:	:	$4:$. 48	. $\%$	4	\#i	. 47	$4: 8$. 01	,	2.21	. 01	.13	2	5
7544:	1	\%	14	:05	\therefore	2	t	835	- , bt	21	\%	M	*	7	!	\%	,	\$3	. 5	. 2	31	21	.67	25:	. 22	,	2.71	. 02	. 6	2	
\% 015	$!$	*	10	\%	.1	*	8	58°	2.5	: 6	\%	M	,	32	t	?	t	48	. 37	. 12	18	\%	. \because	: $: 1$, $0:$	3	2.27	. 01	. 08	2	5
7544	:	J!	$: 8$	112	.1	It	5	$9 \% 4$	2.31	19	5	$\times 10$	-	72	:	*	*	51	.f9	A2	20	24	. ${ }^{\text {P }}$:	.0:	-	2.79	. 02	. 11	2	
\% 4 4\%	1	\%	14	141	\therefore	21	7	\% 51	: 40	,	$\stackrel{1}{*}$	N\%	:	'2	!	?	\%	4	1.07	, 1	$!!$	25	,76	**	. 01	4	2.74	. 01	. 14	2	5
75446	1	45	12	68	. 1	\%	$!$	40 :	2.24	7	5	18	2	4	$!$?	:	4	. 54	. 09	θ	*	. 5	264	. $0:$	${ }^{1}$	1.\%	. 01	.08	10	:
7547	$!$	21	16	96	. 1	\%	t	518	2.81	12	5	W0	2	4	1	?	?	48	. 63	. 82	17	\because	4 . 5	294	. 51	!	2.15	.0!	.-9	2	5
75448	1	范	9	100	. 1	\%	7	20:	2.87	16	5	18	7	48	1	2	7	52	. 62	. 16	4	40	. 6 ?	44	. 01	3	2.59	. 01	. 0 \%	2	2
\% 544	1	70	10	50	. 5	:	5	424	2.70	:1	\$	10	2	48	1	2	?	48	. 83	. 23	20	28	. 35	39:	. 01	2	2.75	. 01	. 06	2	5
25450	:	29	16	20\%	. 4	$4!$	8	\%2	3.01	0	5	4	2	7	:	2	2	50	1.CE	. 22	14	40	*	199	. $0:$	2	3.t:	. 01	. 12	2	9
"4\%1	1	24	8	54	\therefore	\%	4	$43:$	1.75	\%	\%	15	?	91	!	?	2	39	1.7!	. 20	14	22	. 46	3%	. 01	\%	2.04	. 01	. 65	2	5
\% 5 \%	1	16	11	${ }^{6} 7$. 1	27	!	$7{ }^{3}$	二,78	?	5	N*	*	\%	1	,	\%	57	. 76	, 13	14	21	, 51	798	. 34	?	1.58	. 62	**	2	*
515 5-1/2 2.:	\%\%	:24	117	156	Ji.?	:51	52	$4{ }^{6}$	2.15	:**	82	\%	10	1%	\% 7	7	¢	S	. 4	. 8	159	62	*S	124	. 69	ib7	1.57	. 22	.2i	69	515

NEWMONT FFQJECT \# 215 FILE \# 34-23E2
FFGE A
Sinver

- \% - \%	1	§	15	30	.2	!	2	218	1.22	13	:	ND	2	18	1	:	2	4:	is	. 09	21	1	. 07	513	. 01	4	. 86	. 01	. 14	2	:
\% \% 0	1	14	3	38	. 1	6	5	631	$2.2 *$	46	5	ND	2	155	1	2	2	2	. 68	. 11	18	6	. 42	502	. 01	5	1.54	. 01	. 20	:	¢
\because	:	58	57	141	. 1	17	16	3064	4.15	18	5	$N 2$	2	50	2	2	:	143	1.02	. 23	16	2 C	1.21	32	. 06	-	2.85	. 01	. 08	2	\%
75:08	1	$\because 0$	J5	$1: 5$. 1	4	10.	2154	3.75	5	5	ND	2	2!	1	2	?	64	. 40	. 28	11	1	. 45	539	. 02	4	1.55	. 01	. 08	2	
\%570	1	14	20	30	. 1	5	11	1125	4.92	29	5	ND	2	12	1	2	;	58	. 45	. 09	21	6	1.08	37	. 15	8	1.16	. 01	. 13	2	5
25:10	1	27	10	\&?	. 1	3	6	1353	1.91	4	5	ND	$?$	38	!	2	2	\because	1.25	. 12	17	2	. 78	785	. 06	7	1.18 .85	. 01	. 10	2	-
7e7:19	$!$	16	16	6^{7}	1	31	8	35	3.68	9	5	ND	2	25	1	2	;	6	. 20	. 17	15	28	. 5 :	159	. 05	4	1.8z	. 01	. 05		
7512	1	17	14	7	\therefore	24	7	70 :	4.05	7	5	NE	2	24	1	2	3	6 ?	. 15	. 08	10	$2{ }^{2}$. 51	174	. 04	1	1.52	. 01	. 06	2	5
75918	$!$	it	14	15	. 1	30	6	540	3.38	4	5	KD	2	22	1	2	\%	55	. 15	. 09	?	31	. 58	205	. 03	3	1.88	. 01	. 06	2	5
75:14	1	14	15	59	. 1	32	?	520	2.77	3	5	ND	2	41	1	2	\%	45	. 4	. 06	?	3	. 62	186	. 04	\pm	1.88	. 01	. 06	2	5
90:5	:	15	$?$	52	\therefore	38	5	324	2.81	δ	5	ND	2	35	1	2	2	47	-	. 08	B	28	. 63	153	. 04	2	1.25 1.58	. 01	. 06	2	5
75:16	1	2	11	3	1	32	?	\%3	2.89	12	5	NT	2	51	1	\%	2	5	$\therefore 0$. 0°	15	\#	. 3	242	. 04	?	2.86	. 02	. 07	2	¢
75717	1	19	13	79	. 1	36	7	667	3.63	?	5	KD	2	25	1	2	2	5 ?	19	. 08	9	39	. 70	196	. 02	2	1.95	. 01	. 07	2	5
75:18	1	15	9	48	4	31	6	465	2.25	1	5	ND	2	38	1	2	?	35	. x	. 07	11	25	. 50	1ie	. 05	\%	1.08	. 01	. 06	2	-
75719	1	22	8	80	.2	40	5	359	2.54	4	5	ND	2	53	1	2	2	39	. 6	. 10	9	38	. 72	349	. 01	2	1.08 2.04	. 01	. 06	2	5
75720	1	16	11	5	. 1	29	5	44	2.61	11	5	ND	2	20	1	2	2	41	.18	. 06	8	2 ?	. 54	165	. 02	2	1.44	. 01	. 06	$?$	-
75721		32	16	0	1	33	7	723	2.91	11	5	WD	2	36	1	2	2	45	. 41	. 07	15	34	. 04	247	. 02	2	1.70	. 01	.06	2	:
15\%22	1	29	14	74	.	32	6	1282	2.73	11	5	ND	.	53	1	2	2	45	. 82	. 09	11	31	. 65	219	. 02	2	1.74	. 01	. 06	?	5
75753	i	$4!$	15	33	.2	30	$\stackrel{9}{9}$	1771	3.19	17	5	0	2	57	1	2	2	SE	. 90	. 08	20	29	. 75	301	. 04	2	2.17	. 02	. 09	2	5
75724	1	16	8	56	.1	31	5	332	2.74	5	5	N0	3	18	1	2	2	40	.13	. 05	8	29	. 59	115	. 02	2	2.18	. 01	. 06	2	5
75735	1	17	8	57	. 1	32	5	327	2.80	3	5	ND	2	17	1	2	2	41	. 10	. 05	7	30	. 61	139	. 02	2	1.91	. 01	. 06	2	5
75726	1	16	9	60	. 1	36	5	284	2.74	2	5	ND	2	18	1	2	2	40	. 15	. 07	6	3	. 34	136	. 02	2	1.71	. 01	. 05	$\hat{2}$	5
75727	1	18	9	45	. 1	28	4	319	2.00	6	5	ND	2	37	1	2	2	J 3	. 51	. 08	10	27	. 52	193	. 02	\%	1.20	. 01	. 05	i	5
75728	1	3	15	6	.2	36	8	906	2.84	?	5	ND	$?$	I6	1	?	2	4	. 84	. 12	12	J6	. E 7	405	. 01	2	2.05	. 01	. 06	${ }_{2}$;	5
\%e729	1	22	39	65	. 5	28	5	459	2.46	8	5	ND	?	62	1	\pm	2	40	. 5	. 07	10	24	. 59	188	. 23	2	1.42	. 01	. 05	2	5
75730	1	15	?	59	. 1	26	5	409	2.30	3	5	18	2	62	1	2	?	d	. 57	. 06	9	24	. 59	181	. 03	2	1.46	. 01	. 05	2	5
ワ1:\%	1	:	11	30	. 1	26	5	521	2.31	2	5	ND	?	56	1	2	2	28	. 53	. 08	9	29	. 59	214	. 02	2	1.50	. 01	. 06	2	5
75:2	$!$	15	\%	$6{ }_{6}$	\therefore	25	5	418	2.19	4	5	ND	2	59	1	2	2	36	. 62	. 07	?	23	. 56	197	. 02	3	1.41	. 01	. 05	2	5
	$!$	14 15	8	67	\because	25 25	1	348	2.15	?	5	W0	2	64 51	1	?	2	33	. 59	. 07	8	24	. 60	191	. 03	2	1.53	. 01	. 06	2	5
75735	1	15 11	I!	68 58	.	25 25	10	1814 305	2.56 1.97	8	5	N0	2	51 59	1	2	$?$	40	. 60	.13	10	26	. 53	287	. 01	2	1.76	. 01	. 05	2	5
				3	1	23	t	J05	1.97	\checkmark	5	no	2	59	1	2	2	3	. 54	. 08	9	2	. 56	174	. 03	2	1.53	. 02	. 04	2	5
75036	$!$	23	10	70	\therefore	34	7	531	3.32	1	5	N0	3	49	1	2	2	58	. 59	. 08	10	J5	. 83	264	. 02						
75737	1	26	10	97	. 5	37	9	$127!$	3.29	6	5	ND	2	64	i	2	2	52	. 75	. 12	12	3	. 76	476	. 01	2	2.21	. 02	. 00	2	5
STD C.'Au-0.5	20	58	39	122	6.8	69	27	1021	3.83	40	20	3	37	48	17	17	19	58	. 4	.13	38	56	. 88	175	. 06	40	1.65	. 06	. 12	14	520

257	1	20	11	38	． 4	20	5	519	2.62	7	5	H2	2	69	！	：	：	4！	． 77	． 14	iJ	20	． 64	235	． 31	：	1.92	． 01	． 06	2	5
150：	1	15	$1!$	63	． 3	2	；	314	2.1 ？	6	5	ND	2	5	：	2	2	\％	． 67	． 10	11	2 S	． 58	312	． 2.2	3	1.54	． 01	． 05	2	5
75740	！	35	14	isj	． 6	43	9	1559	3.13	10	5	N0	2	5	：	？	？	$4 \dot{4}$	1．10	． 16	15	34	． 82	418	． 01	2	2.65	． 01	． 09	2	5
35741	1	：	18	\because	． 5	21	6	645	3．39	b	5	N\％	2	88	，	：	2	41	． 60	．${ }^{9}$	15	20	． 43	270	． 05	2	1．\％	． 01	． 07	2	5
（57\％2	！	：1	9	46	． 1	24	4	325	2.56	？	5	KD	2	59	1	2	：	5 ？	． 32	．11	11	19	． $5:$	154	． 04	3	1.71	． 01	． 04	2	5
75．43	1	\bigcirc	8	45	\therefore	2	4	306	2.25	；	5	N0	2	89	：	2	2	40	． 36	． 11	10	17	． 54	171	． 05	2	1.71	． 01	． 04	2	5
3 374	1	is	15	65	． 3	13	5	510	3.98	9	5	ND	2	5	1	2	2	59	． 21	． 08	14	17	． 50	182	． 04	3	1.42	． 01	． 05	2	5
75745	1	：	10	Ss	． 1	28	1	327	2.28	7	5	N	2	38	：	2	2	\％	． 25	． 08	10	22	． 5 t	：60	． 02	2	1.43	． 01	． 04	2	5
75746	i	11	9	47	． 2	28	4	245	2.30	Q	5	ND	：	20	1	2	2	J	． 20	． 08	9	25	． 52	12i	． 02	2	1.56	． 01	． 03	2	5
75747	1	12	9	48	． 1	$3!$	4	255	2.23	？	5	ND	2	23	：	2	2	\％	． 24	． 06	9	26	． 58	$15 i$	． 02	3	1.28	． 01	． 03	2	5
75748	1	14	11	5	． 2	26	5	454	2.51	16	5	ND	2	43	1	2	2	32	． 62	． 10	8	20	．st	144	． 04	3	1.89	． 01	． 06	2	5
75749	1	21	14	12	． 6	30	9	1783	2.52	126	5	ND	2	66	1	2	2	30	． 92	． 23	15	29	． 55	601	． 01	2	2.22	． 01	． 06	2	5
75750	1	17	9	61	． 1	28	5	452	2.41	11	5	ND	2	47	1	2	2	38	． 54	． 10	13	25	． 61	278	． 01	3	1.85	． 01	． 04	2	5
75751	1	2	17	74	． 3	3	6	454	2.96	11	5	ND	2	42	！	2	－	5	． 64	． 12	22	32	． 7	386	． 01	2	2.24	． 01	． 05	2	5
35752	1	25	：9	78	． 2	31	7	755	2.95	14	5	ND	2	40	1	2	2	4 4．	． 61	． 09	19	28	． 72	321	． 02	3	1.99	． 01	． 06	2	5
75753	1	25	14	87	． 3	35	7	349	2.80	12	5	ND	2	46	1	2	2	47	． 69	． 12	16	30	． 77	486	． 01	2	2.45	． 01	． 06	2	5
75754	1	14	9	51	． 2	30	6	403	2.32	8	5	ND	2	40	1	2	2	39	．4：	． 08	12	23	． 60	127	． 05	4	1.46	． 01	． 05	2	5
75755	1	30	11	112	． 2	42	8	955	3．35	9	5	ND	2	39	1	2	2	47	． 32	． 18	19	40	． 73	469	． 01	2	2.85	． 01	． 07	2	5
75756	$!$	2！	13	74	．	37	6	511	2．75	11	5	N0	2	34	1	2	2	sa	． 37	． 13	13	30	． 66	245	． D ！	3	2.40	． 01	． 05	2	5
7575	1	13	\％	56	． 3	27	4	337	2.32	10	5	N0	2	30	1	2	2	30	． 35	． 08	8	22	． 53	126	． 02	3	1.64	． 01	． 04	2	5
75758	1	14	12	61	． 2	19	4	516	3.16	11	5	ND	2	39	1	2	2	46	． 55	． 12	12	17	． 41	203	． 03	4	1.97	． 01	． 06	2	5

