PROGRESS REPORT

ON THE

SET 1 and SET 4

MINERAL CLAIMS

BOUNDARY DISTRICT, GREENWOOD MINING DIVISION, B.C.

NTS 82E2

49°02'30"N 118°37'30"W

on behalf of

QUADEX RESOURCES LTD.

Suite 1245 - 700 West Georgia Street

Vancouver, B.C. V7Y lAl

GEOLOGICAL BRANCH ASSESSMENT REPORT

by

B. TAYLOR, P.E.g.
G.A. NOEL & ASSOCIATES INC.

Vancouver, B.C.

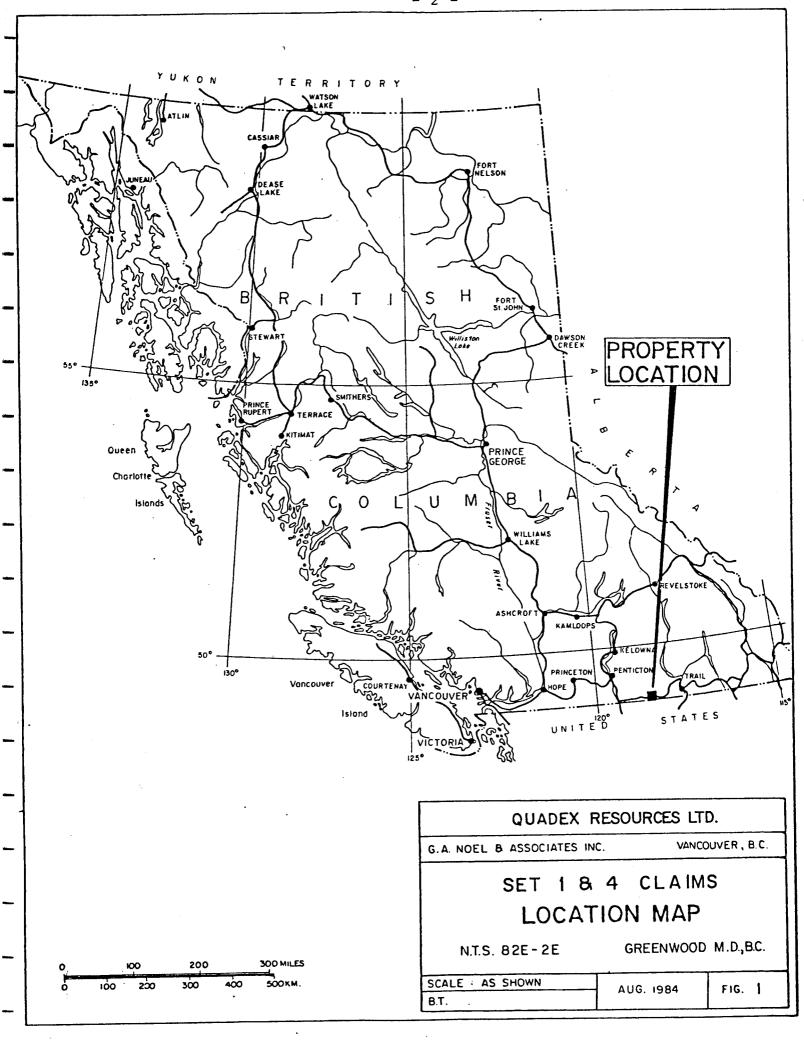
August 11, 1984

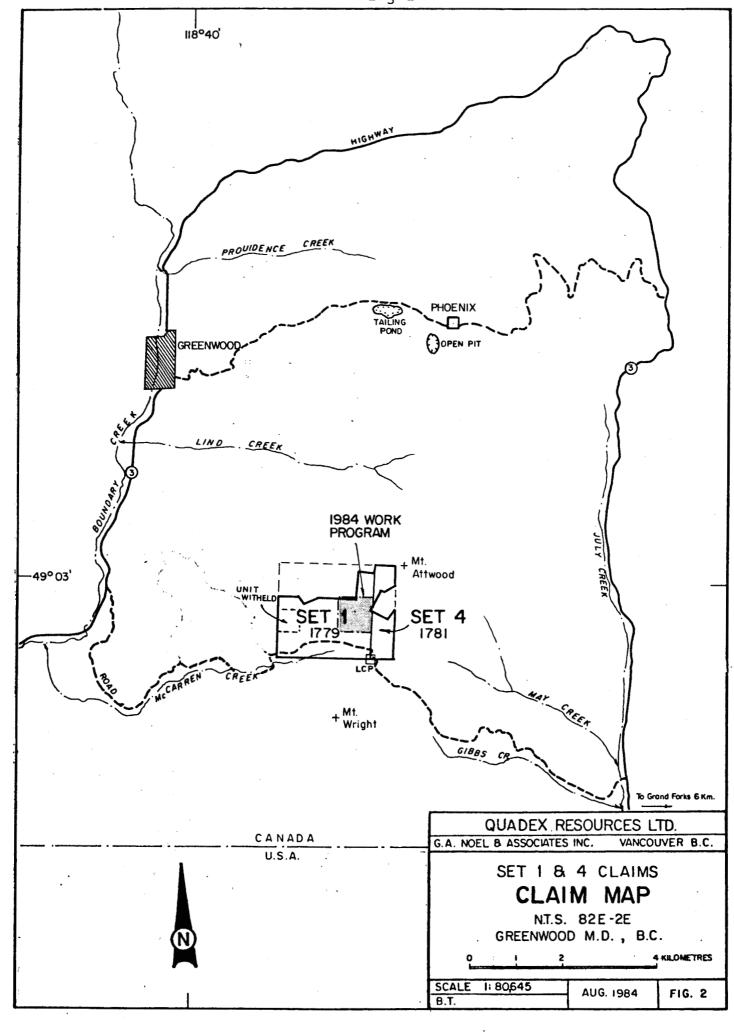
TABLE OF CONTENTS

		Page
SUMMARY		. 1
INTRODUCTION		4
LOCATION		4
PROPERTY STATUS		5
HISTORY		5
GEOLOGY		6
1984 WORK PROGRAM		6
SOIL GEOCHEMISTRY		7
CONCLUSIONS & RECOMMENDATION	S	20
CERTIFICATE		22
REFERENCES		23
APPENDIX		24
Min-En Labs ICP Repor	t	
Work Cost Statement		
ILLU	STRATIONS	
Figure 1 - Location Map		2
Figure 2 - Claim Map		3
Figure 3 - Geology Map		8
Figure 4 - Geochemical Soils	- Gold	9
Figure 5 - "	- Arsenic	10
Figure 6 - "	- Silver	11
Figure 7 - "	- Lead	12
Figure 8 - "	- Zinc	13
Figure 9 - "	- Copper	14
Figure 10- "	- Antimony	15
Figure 11- "	- Molybdenum	16
Figure 12- "	- Vanadium	17
Figure 13- "	- Bismuth	18
Figure 14- "	- Cadmium	19

SUMMARY

The work program for 1984 has been completed on the SET 1 and 4 mineral claims in the Greenwood Mining Division. It was performed by Greg Ven Huizen, P.Eng. and assistant Daniel Evans from July 4-6th 1984. This completes the First Phase of the program as recommended by B. Taylor in a report dated April 18, 1984.


A small grid was marked out, totalling four line kilometres. 87 soil samples were collected. Some generalized geological mapping of the same area was carried out at the same time. The soil samples were geochemically analyzed for eleven elements, including gold.


The geological map and seven geochemical soil maps on a scale of 1:5000 form the body of this report. No defineable geochemical targets emerged. Gold values were low and scattered. The ten elements chosen as pathfinders or for their own value were very low and the higher values scattered.

It is recommended that an outcrop geology map be made of the whole property, and included in the Second Phase of the over-all program.

Further work on the property should be deferred until; (a) the price of metals has recovered to higher, more economic levels and/or;

(b) work on surrounding claims point to some as yet unrecognized target.

INTRODUCTION

Quadex Resources has the SET 1 and SET 4 mineral claims under option from Mr. Mervin Boe of Vancouver, B.C. The general location of the claims is shown as Figure 1.

This report covers the work done in 1984 following the recommendations of B. Taylor, P.Eng. in his revised report on the property dated April 18, 1984.

LOCATION

The SET 1 and 4 claims are located in the Phoenix Mining Camp, Boundary District, some 13 kilometres by road from the town of Greenwood, B.C. (see Figure 2). Access from Greenwood is via the McCarren Creek road. The property is located on the south slope of Mount Attwood and covers the intervening valley (road pass) with Mount Wright.

The centre of the claim block is 49°02'30"N Latitude and 118°37'30"W Longitude. The claims and access roads are shown as Figure 2. They vary in elevation from 1160 to 1635 metres. Relief is characterized as moderate. Vegetation consists primarily of dry, open fir and pine forest with meadows. While the climate for the Kettle River area is temperate, snow covers the area from November until approximately the end of May.

PROPERTY STATUS

The property consists of two contiguous claims, composed of 19 units, in the Greenwood Mining Divison.

Claim Name	Record No.	Expiry Date	Registered Owner	No. of Units
SET 1	1779	Sept/21/85	Mervin Boe	$16(4N\times4W)$
SET 4	1781	Sept/21/85	Mervin Boe	4(4NxlE)

The claims overlap some Crown granted and other previously staked mineral claims and consequently the property boundary is irregular. The area covered is approximately 280 hectares. Figure 2 is adapted from the January 26, 1984 revision of the Mineral Titles map.

Unit 13 (2 North on the west side) of SET 1 is excluded from the option package.

HISTORY

The area has been prospected as part of the Kettle River Mining Camp in the 1890's. Numerous gold, copper and zinc showings were found in the district. Copper bearing skarn was mined at the Phoenix mine, seven kilometres to the north, at the turn of the century, reaching peak production in 1913. From 1959 to 1972 copper production was resumed by a number of small mines in the district, but were forced to close by falling prices and mining problems. No.7 Mine on Mount Wright produced an unknown amount of copper-gold ore.

Little evidence of early prospecting activity on the SET 1 and 4 remains. A maze of logging roads from timber cutting operations of varying vintage criss-cross the property.

Some geological mapping, soil sampling and VLF-EM surveying were performed on the property in 1983 by Dr. W.D. Groves.

GEOLOGY

The Boundary district is underlain by greenstone, greywacke locally metamorphosed limestone. to Greenstone with cherty bands exist on the eastern margin of the property. Thin sill-like ultrabasic intrusions are present throughout the area. In his latest report on the area, (Paper 79-29), H.W. Little drops the term "Anarchist largest group is given The age of the pre-Carboniferous. Younger rocks are in the range from Triassic to Jurassic.

Sulphide deposits with copper-gold values have been found in minor intrustions along serpentized faults. Skarns containing copper with minor molybdenum, gold and silver were mined at the Pheonix Mine where the Nelson Intrusives penetrated a limestone member.

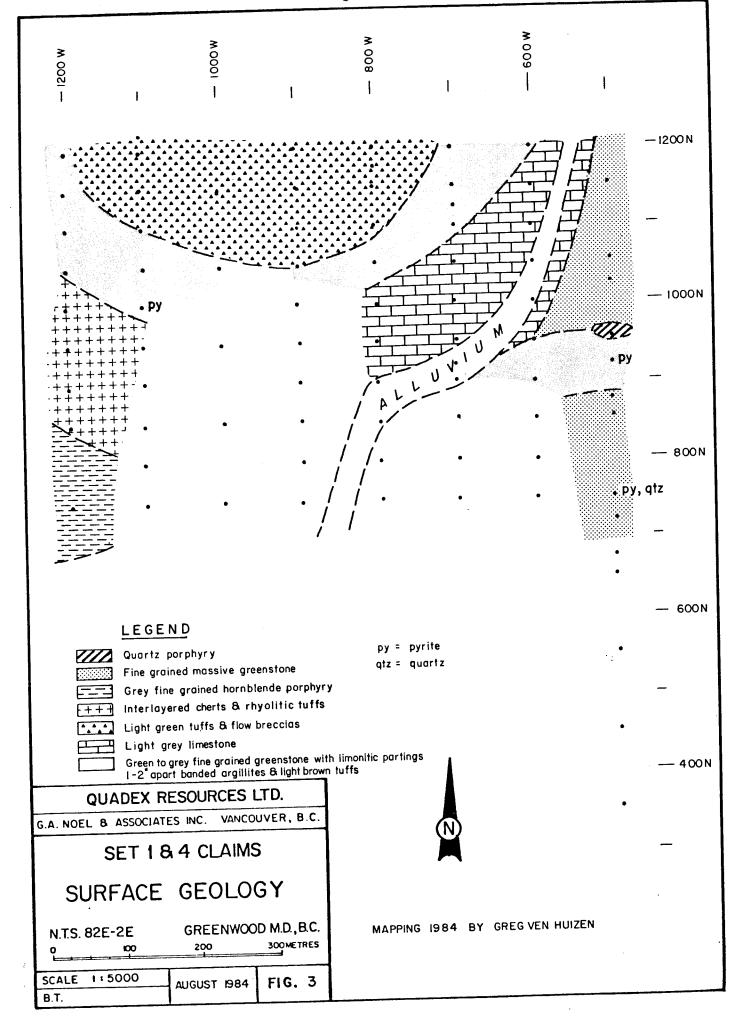
1984 WORK PROGRAM

The work program recommended was basically to geologically map and soil sample a 12 unit area. This would cover the ground in more detail where the 1983 reconnaissance spaced soil sampling had revealed a few values in gold.

The field work was done by Greg Ven Huizen, P.Eng., and helper Daniel Evans from July 4th to July 6th 1984. It consisted of running eight north-south lines spaced 100 metres apart. They were numbered 5 West to 12 West. Station spacing along the lines was basically at 50 metre intervals from 750 North to 1200 North. 87 soil samples were collected, one at each station, from an average depth from surface of 15 centimetres, which is the "B" soil horizon. A grub

hoe was used to dig the hole and extract the soil at the proper depth. The soil, less the larger pebbles, was put into kraft paper bags obtained from the analytical laboratory for that purpose, and marked with a felt pen as to location. The soil was an intimate, variable mixture of silt, sand, and angular pebble derived from the underlying bedrock. It is considered to have travelled only a few metres from its bedrock source.

The soil samples were delivered to Min-En Labs in North Vancouver for geochemical analysis. The soil was seived and the -80 mesh portion analyzed by ICP (Induction Coupled Plasma) for gold (parts per billion) and silver, arsenic, bismuth, cadmium, copper, molybdenum, lead, antimony, vanadium and zinc in parts per million.


Generalized geological mapping was carried out along the grid. See Figure 3 for the resulting geology map.

SOIL CHEMISTRY

The results of the soil sample analysis are plotted as Figure 4 - 14 on a scale of 1:5000, for gold, arsenic, silver, lead, zinc, copper, antimony, molybdenum, vanadium, bismuth and cadmium.

The gold histogram indicated that background was 10ppb and less. The gold results are low and scattered. The better results are confined to the north-east quadrant. They confirm in a casual manner the indications from the 1983 soil work.

The arsenic histogram shows background value cut-off to be about 40ppm. The plotted results show the northern part of the grid contains the most arsenic. Again values are scattered.

	- 1200 W	ı	W 0000 -	1	№ 0008	1	₩ 009 -		
	ЯО	•25 •5		•10	•5 •5	•5	•10		— 1200 N
	•5	•5	•<5	•20	• 10	•35 •5	•5	• 5	
	- 5	•10		•5	•5	•10	•5		_
	•5	•5	•5,	•10	•5	•5	• 25	• 5	
	•5	•30		•5	•5	• 40	•5	•5	— 1000N
	•10	•10	• 10	•45	•5	•5	•10	•5	
	•5	•5		•5	•5	•<5 •10	•5	•5 •5	_
	•5	•5	•5	•5	•5	• 5	•5	•5	
		•10		• 35	•5	•5	•5		800N
	ŧ 5	•5	•5	•10	' 5	•10	• 10	• 10	
								•5 • 5	-
									— 600N
								•5	
	-								_
								•5	
			050 170		ı				400N
	G.A. NOEL 8 ASSO	X RESOUR		B.C.				•5	
	SET	184 CL	AIMS			V)			
	SOIL G	EOCHE				•			
	N.T.S. 82E-2E		ENWOOD M.D.,						-
!	SCALE 1:5000 B.T.	AUGUST	1984 FIG.	4					

					. V				
	— 1200 ₩	1	№	1	№ 0008	ł .	₩009—		
	•1	•63 •9		3 0	•29 •16	•24	•58		— 1200 N
	•0	•95	•17	•33	•21	•7	•15	•50	
	•0	•57		•39	• 32	•4	•38		
	•0	•85	•16	•36	•23	.9	•56	•18 •29	
	•10	•183		*30	•13	•56	•1	- 23	— 1000N
	•0	•33	•12	•23	•11	•25	•10	•15	- E
	•0	•20		•1	•15	•4I •6	•12	•17	_
	•0	•11	•38	•10	•12	•0	•9	• 3	
		•10		•20	•28	•0	•16		— 800N
	•3	•8	•9	•7	•25	•1	•20	•12	
								• 0	-
								•3	
									- 600N
								· · O	
									-
								•0	
	OUAD	EV DESO	UDCES LTD			1			400N
	G.A. NOEL B AS		URCES LTE					•2	
		T184				H			_
		SENIC	EMISTF - PPM	\					
	N.T.S. 82E-2E		REENWOOD M	.D.,B.C.	•				
:	SCALE 1:500	O AUGI	JST 1984 FI	G. 5					

	– 1200 w	I	* 0001 −	I	- 800 w	I	* 009 —	
	•.3	• ••6		••5	•-2 •-2	• 1.3	•1.6	— 1200 N
	•.2	•.6	•.4	• •.3	•.3	•.4	•.8	•.9
	•.1	•.6		•.5	•.4	•.5	•1.2	_
	•.2	•.7	•.5	•.3	•.6	•.4	•2.0	•11 •2.2
	•.7	•1.6		•.8	•.7	•.7	• i. O	1000N
	•.0	•1.3	•.5	•.4	•1.4	•.8	•.8	•.5
	•.4	•.6		•.7	•1.2	• 1.4 • .8	•1.1	•9 — •8
	•.0	•.5	•.6	•.3	•1.1	•.7	•.6	•.8 •1.1
		•.8		•.5	•I. O	•.8	•.6	— 800N
	•.1	•.6	•.5	· •.1	•.7	•.7	•.7	•.8
								-
								• •.6
								— 600 N
								·.5
								•.9
-	OHAD	EV DECO	IDCEC LT			1		400N
-	G.A. NOEL 8 ASS		URCES LTI					. •.9
		Г184			•	(N)		_
	SOIL (SEOCH _VER ·		₹Y				
	N.T.S. 82E-2E	GR	EENWOOD M	I.D., B.C.		y • * *		
-	SCALE 1:5000 B.T.)		G. 6	Ar g			

_									
	- 1200 w	1	* 0000 –	I	₩ 000 ₩	1 .	₩ 009—	1	
	•3	•31 •4		•17	• 32 • 13	•10	•3		—1200 N
	•0	•9	·íi	•11	•15	•4 •!!	• 9	•5	
	•18	•12		• 20	•17	•2	•3		-
	•2	•39	•5	•16	•1	•7	• 19	•7 •20	
	12	•29		•11	45	•7	•0		1000N
	•17	•24	•4	•14	•6	•3 •13	• 0	• o • 4	
	•0	•8		•0	•3	•3	•0	•0	-
	•0	•14	•11	•6	.4	•0	•9	•0	
		•2		•6	•8	•0	• 11		800N
	•6	•7	•3	•5	•5	•0	•7	•4 •9	
								• 37	-
								•0	
									— 600N
								. •0	
									-
								.0	
	QUAD	EX RESC	OURCES LTI	D.		1		•	400N
	G.A. NOEL 8 ASS			ER, B.C.		N		•5	
	SOIL C	SEOCH	CLAIMS HEMISTI - PPM	RY		A			
,	N.T.S. 82E-2E	G	REENWOOD N	M.D., B.C.	* 1 € 10 € 10 € 10 € 10 € 10 € 10 € 10 €				
:	SCALE 1:5000 B.T.	AUG	:UST 1984 F	1G. 7					

- 1200 W	ł	W 0000 H	1	₩ 000 ₩	I		I
•73	•31 •78		•52	•62 •48	•67	•107	— 1200 N
•51	•47	•46	•126	•61	•85 •6	•94	•60
•54	•69		•61	•67	•57	•113	-
•,51	•104	•42	•58	•59	•64	•193	•62 •95
•84	•326		•56	•52	•75	•72	1000N
•70	• 252	•56	•60	•51	•72 •77	•70	•53 •84
• 45	•64		•36	• 48	•73	•64	•43
•39	• 47	•77	•50	•78	•'57	•63	•69
	•54		•52	•33	•45	•59	800N
•44	•46	•32	•47	•33	•47	•55	•51
`							- •0 •109
							— 600 N
							· 39
							-
							•42
QUAD	EX RESOL	JRCES LTD).		1		400 N
G.A. NOEL B ASS					N		•80
SOIL 0	F1840 SEOCHI INC - I	EMISTE	RY		×		<u>-</u>
N.T.S. 82E-2E	GR	EENWOOD M	.D.,B.C.	t vita i se	y e	:	
SCALE 1:5000 B.T.	AUGU	ST 1984 FI	G. 8				

1								
	≯		≫		8 ○ ○ ○ ★		№ 009	
	— I200 ₩		× 000 −		800		09	
	1	1	1	ı	1	1 -		1
		•						
		•33			•00	.50	•63	—1200 N
	•29	• 29		•33	•26 •32	•58	•63	120011
	•24	•24	•24	•54	•26	•29	•22	• 17
						•67		
	•22	•31		•42	•34	•26	•22	_
					170	•29	•36	•25
-	•26	•31	•29	•46	•30	- 29	-36	•109
	•28	•39		•38	• 3 5	•27	•24	— 1000N
	•32	•38	\$36	•26	•38	•23	•20	* 21
		4.0				• 48 • 57	00	•26
	• 49	• 46		•22	•35	•53	•28	- •24
	176	•34	•37	•13	•21	18	•17	•15
	•36	*J -4	31	10	Ψ.			
		•63		•23	•17	•26	•28	— воон
							7.4	7.4
	•31	•52	•I5	•12	•14	•20	•34	•34
								•5 —
								•
								•26
								— 600 и
								•.27
								-
								0.5
								•25
						1		400N
i	QUAD	FX RFSO	URCES LTD).				
	G.A. NOEL 8 ASS					*		•36
						(N)		
		T184		,,				_
			EMIST	ΥΥ				
	· CO	PPER	- PPM					
	N.T.S. 82E-2E		REENWOOD M					
	0 100	2	00 30	OMETRES	4.5	*	* * *	
(SCALE 1:5000	AUGU	JST 1984 FI	G. 9				
	B.T.							

								_
— 1200 W	ı	W 0001 -	I	- 800 W	 	₩ 009 —		
•0	•12 • 3		•6	• 7	•10	•3	— 1200 N	
•0	•5	•5	•7	• 4	•1	•6	•2.	١
•0	•6		•9	• 7	•0	• 7		
•0	•5	•6	•5	•5	•3	•58	•1	
•3	•1	•	•5	•4	•1	•1	• 5 — 1000	N
•0	•4	•3	•5	•7	•0	•3	•2	
•0	•4		•4	•4	•6	•3	•5 —	
•0	•5	• 4	• 4	•1	•1	•2	•3 •1	
	•5		•5	•5	•0	•2	800	N
•1	•5	•4	.3	•5	•2	•1	•16	
							• .	
							•16 •1	
•							- 6001	N
			,				·: • 0	i
·							•1	
					1		400	N
QUAD G.A. NOEL 8 ASS		OURCES LTI					•	
SOIL (T 1 & 4 GEOCI	CLAIMS HEMISTI Y - PPM	RY				-	
N.T.S. 82E-2E	G	REENWOOD N	i		ty volume to t			
SCALE 1:5000 B.T.	O AUC	SUST 1984 F	IG. 10					

								~	
	- 1200 W	ı	* 0001 −	ł	8 008 −	f	₩ 009 —	I	
	•1	•0 •2	·	•2	•2 •2	•2	•2		—1200N
	•1	•2	•2	•2	•2	• 2	•2	•1	
	•1	•2		•3	•2	•1	•2		_
	•1	•2	•3	•2	•2	•2	•2	•2	
	•2	•1		•2	•2	•1	•2	•3	1000N
	•1	•2	•2	•2	•2	•1	•2	•1	
	•0	•1		•1	•2	•2 •I	•2	•4	_
		•2	•2	•2	•2	•1	•1	•2 •1	
	•1		٠2		•1	•2	•2		800N
		•2		•2					- 00011
	•1	•2	•1	•1	•1	•1	•2	•I • 0	
			•					• .	_
					٠			•1	
						•			600N
								. • 1	
									-
								•1	
	OLIAD	EV DESC	OURCES LTI	, 7		1			400N
	G.A. NOEL 8 AS							•2	
			CLAIMS	- V		H			-
			IEMISTI IUMPPM						
	N.T.S. 82E-2E	G	REENWOOD M						
!	SCALE 1:5000	<u> </u>		iG. 11					
	<u> </u>								

	- 1200 *	1	* 0000 -	1	8 00 8 -	1.1	600 w	1
	•41.0	•15.8 •38.9		•43.2	•46.4 •55.8	•64.5	•56.1	— 1200 N
	•40.4	•40.5	437.5	•42.4	•	•71.1 •14.0	•41.2	•35.5
	•32.2	•46.1		•56.5	•	•66.3	•38.3	.
	• 47.0	•40.7	•41.0	•28.1	•42.7	•57.5	+43.7	•48.5 •52.9
	• 49.7	•40.6		•57.2	•68.3	•46.3	•34.1	— 1000N
	•33.7	•34.3	•83.5	•29.7	•48.1	•43.6	• 47.1	•33.8
	•58.5	•51.9		•28.2	• 45.6	•63.7 •51.1	•60.8	•61.1 — •42.2
	•46.6	•58.6	•42.7	•29.1	• 47.5	141.0	•44.6	•59.5
		•41.9		• 42.1	• 44.4	•44.4	•50.3	— в∞и
	• 47.7	•43.7	•29.3	•35.3	•39.7	•38.0	•55.2	• 43.3
								• - •7.3
								•43.4
							,	— есон
								•57.8
								-
								•42.2
_			2050 170			ı		400N
			RCES LTD.		ı			•42.1
G.A.		184 C	VANCOUVER	, B.C.		N)		.511
			MISTR	Υ	,			_
	VAN	ADIUM	- PPM					
N.	T.S. 82E-2E		ENWOOD M.D	,B.C.	• • • .		5	
SCA B.T.	LE 1:5000		T T	5. 12			•	
0.1.								

T /

	- 1200 W	ı	₩ 0001 —	1	8 00 8 −	1 2	₩ 009 —	1	
	•5	.0		•6	•4	•7	• 7		-1200N
	•4	•6	•5	•6	• 5	•4 •1	•6	•3	
	•3	•6		•6	•5	4	•5		_
-	•3	•5	•4	•5	•5	•4	•6	•5 •5	
	•5	•4	_	•5	•3	•4	•4	• 4	1000N
	•3 •3	•6	•6	•2	•5	•6 •5	•6	• 4	
	•2	•7	•5	•3	•5	•5	•6	•5 •6	
		•5		•1	•5	•4	•5		— воон
	•3	•5	•4	•3	•4	•5	•5	•6	
								•0	-
								•6	600N
								. •4	
									-
								• 6	
			OURCES LT					•5	400N
	G.A. NOEL B	ET 184		ER, B.C.					_
			HEMIST	RY		•			
	N.T.S. 82E-2	2 E G	REENWOOD N	A.D.,B.C.	· • • • • • • • • • • • • • • • • • • •	v · · · · ·	:		
	SCALE 1:50 B.T.	AUG	SUST 1984 F	IG. 13					

- 1200 ×	I	*000I —	1	₩ 000 ₩	1	* 009 —	1	
•.3	•0 •.1		•1.1	•1.3	•.1	•0		—1200 N
•0	•0	۱.۰	•1.0	•.7	•0	•.4	•.1	
•0	•.3		•.7	•.2	•.3	•.0		
•0	•.8	•0	•.6	•.2	•0	8. •	•0	
•.3	*3.3		•0	•0	•0	•0	1	— 1000N
•.6	•3.6	•0	•0	•0	•0	•0	•0	
•0	•0		•0	•0	•0	•0		_
•0	•0	•0	•0	•0	•0	•0	•0	
	•.5		•0	•0	•0	•.2		— 800N
•0	•0	•0	•0	•.2	•0	•0	•0	
							•0	-
							•0	
								600N
							•0	-
								-
		٠					•0	
ΩΠΑ	DEX RESO	URCES LT	D.					400N
G.A. NOEL B	ASSOCIATES IN	C. VANCOUV			(N)		•0	
			RY		A			
CAI	MUIMO	- PPM						
N.T.S. 82E-2					e j ek o rek			
SCALE 1:50 B.T.	AUGL	JST 1984 F	1G. 14 .					
	•.3 •0 •0 •0 •.3 •.6 •0 •0 •0 •0 SOIL CAI N.T.S. 82E-2	O O	O O O O O O O O O O O O O O O O O O O	O O O II O O O O O O O O O O O O O O O	.31 .1.1 .1.35 .0 .01 .1.07 .0372 .08062 .3 .3.300 .6 .3.6000 .0000 .000 .	.3 .1 .1.1 .1.31	QUADEX RESOURCES LTD. QUADEX RESOURCES LTD. GA. NOEL B ASSOCIATES NC. VANCOUVER, B.C. SET 1 & 4 CLAIMS SOIL GEOCHEMISTRY CADMIUM — PPM N.T.S. 82E-2E GREENWOOD M.D., B.C. PO 200 300METRES SCALE 1+50000 AUGUST 884 FIG. 14	**************************************

<u>Silver</u> values are very low. Background is 1.1ppm and below.

<u>Lead</u> values are also very low. Background is 18ppm and below.

Zinc values are relatively low. Background is 90ppm and below.

Copper values for a copper producing district are low. A background cut-off of 45ppm was used.

Antimony values are concentrated in the north-east quadrant. A cut-off value of 6ppm was used.

The <u>bismuth</u>, <u>cadmium</u>, <u>molybdenum</u> and <u>vanadium</u> values are all in the background range.

CONCLUSIONS & RECOMMENDATIONS

The 1984 work program essentially completed the first phase of the program as recommended by Dr. W.G. Groves in 1983, and concurred with the writer in April 1984. The program cost less than budgeted for. The geological mapping is insufficiently detailed over the property. An outcrop map on the scale of 1:2000 is required and should be included in the second phase. It should be noted that the G.S.C. maps, 6-1957 and Map 1500A as part of Paper 79-29, both by H.W. Little are markedly different in the amount of detail and the interpretation of the rocks on and in the vicinity of the property. This is only partially due to the difference in map scales.

The soil geochemical survey indicates the presence of gold but in scattered small quantities, with the best

concentration in the north-east corner of the grid. Arsenic and the other elements analyzed for as pathfinder elements show little consistency other than the higher values being largely in the north half of the grid area. It is quite possible that soil geochemistry is not the proper tool to indicate trenching or drilling targets.

It is recommended that the second phase be deferred temporarily, until the price of metals including gold has strengthened, which will increase the attractiveness of searching for an orebody on the property. Secondly, as the surrounding area is heavily staked, work on neighboring claims may suggest target areas on the SET mineral claims.

Respectfully submitted

Vancouver, B.C. August 11th, 1984 B. TAYLOR, P. Eng.

CERTIFICATE

- I, Bert Taylor, do hereby certify that:
- 1. I am a practicing Geological Engineer with G.A. Noel & Associates Inc., 721 602 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of Saskatchewan and have been granted the degree of Bachelor of Science in Geological Engineering.
- 3. I have been practicing my profession as a Geological Engineer for over 25 years with underground and surface exploration experience in Val D'Or and Noranda, Quebec, as well as in Newfoundland and British Columbia.
- 4. I am a member of the Association of Professional Engineers of British Columbia, Registration No. 7879.
- 5. I have no interest, nor expect to receive any interest, direct or indirect, in the properties or securities of Quadex Resources Ltd.
- 6. The information in this report is from information supplied by Greg Ven Huizen, P.Eng., and soil sample geochemical analysis by Min-En Laboratories Ltd., North Vancouver, and by the references listed.
- 7. I have visited the property on August 10th and 11th 1984.
- 8. Quadex Resources Ltd. is hereby given permission to reproduce the above report, or any part of it, for the purpose of a financial prospectus, or as otherwise required by Regulatory Authorities, provided, however, that no portion may be used out of context in such a manner as to convey a meaning differing materially from that set out in the whole.

Dated at Vancouver, B.C. this 15th day of August, 1984.

BERT TAYLOR, P.Eng.

REFERENCES

- LITTLE, H.W. 1983 Geology of the Greenwood Map-Area, British Columbia, G.S.C. publication 79-29.
- LITTLE, H.W. 1957 Kettle River Map (East Half), Similkameen, Kootenay and Osoyoos Districts, British Columbia, G.S.C. Map 6-1957.
- GROVES, W.D. 1983 Assessment report on Geochemical, Geophysical and Geological Work on the following adjacent Mineral Claims, SET 1 and 4, Mount Attwood Area, South-central B.C.
- TAYLOR, B, 1984 Revised summary report on the SET 1 and SET 4 Mineral Claims, Greenwood Mining Division, B.C.

APPENDIX

COST STATEMENT

WAGES									
Greg Ven Huizen, geologist - July 4-6th 3 days in field	\$ 800.00								
July - 1½ days in office	300.00								
David Evans, geologist assistant July 4-6th 3 days in field	600.00								
W.L. Yarborough, consultant - July 4 days @\$250.00	1,000.00								
B. Taylor, geological consultant - August									
lঠ days office, preparing report	400.00								
August 11, 1 day field	350.00								
Food & Accomodation									
2 men for 3 days	519.64								
Truck Rental	390.25								
Geochemical Analysis	1,032.35								
Report Preparation									
Drafting	113.83								
Typing	100.00								
Xeroxing	36.00								
-									

•		- ome	good as	Figure 5									
COMPA	NY: QUADEX RESOURC	CES			MIN-E	N LABS ICP	REPO	RT			(ACT:G	EO3B) PAG	E 1 OF 1
	CT No: GREENWOOD S		_	705 WEST	15th ST.,	HORTH YANG	COUVE	R, B.C. V7M 1T	2		FILE No: 4-5525/P1+2		
ATTEN'	TION: JOHN OLIVER		0	1	(604)990-	5814 OR (6	04)98	B-4524 P				TE: JULY	16, 1984
(REPO	RT VALUES IN PPH)	AG	A5	BI	CD	CU	MO	PB	SB	V	ZN	AU-PPB	****
	SA+25	. 0	11	4	.2	27	1	Ž Ů	3	43.3	71	5	
·	SA+50	.5	7	~5	.0	~3 7	i	7	2	-53.3	48	5	
7	SL5W0+350H	, 9 , 1	2	5	.0	-36 -	2	5	. 3	42.1	∞8 0	5	
	SL5H0+450W	 9	0	 	.0	25	1	0	1	42.2	42	5	
	SL5W0+&50N	.6	3		.0	26	_ 1	00	_	43.4	109	5 -	
	SL5N0+750N	₹38	12	4	.0	3 4	1	9	ł-c	43.3	51	10	
	SL5N0+850N	4.1	3	·	.0	15	1	0	1	59.5	-69	5	
- 1 of	SL5N0+875N	72	•7	-5-	.0	24	2	0	3	42.2	43	, 5	
5	SL5H0+925N	49	17	4	.1	-87 -	4	4	. 5	541	-84	5	
	SL5N0+950N	.5_	_ 15 _	4	.0	21	_ 1	0	2.2	33.8	53	5	
-	SL5W1+025N	2.2	29	5	7.7	40-	3	28	-5	52.9	274	. 5	•
•	SL5W1+050N	4.1	19	5-	.0	25	2	7	4	48.5	-62	5	
1	SL5W1+150N	. 9	50	3	. 1	17	1	5	2	35.5	άÜ	5	
	SL6W0+750N	7	20	.∕5	.0	-34	2	7	4	55.2	55	10	
	SL6H0+800N	6	16	<u> </u>	2	28	_ 2	11	_ 2	50.3	59	5	
	SL6W0+850N	.6	9	+	.0	17	1	. 9	2	44.6	7 2	5	
1	SL6M0+900H	1.1	12	4	.0	28	2	0	3	8.03	64	5	
~ ·	SL6W0+950N	8	10	-4	.0	20	2	0	3	47.1	70	-10"	
	SL6W1+050N	-2.0	56	<u>-6</u>	-∡8	-36	2	17	59	43.7	193	52	
	SL6N1+100N	1.2	38	- 5-	_ 0 _	22	2	3	7	38.3	_ 113 _	5	
	SL6N1+150N	0.	15	+	.4	22	2	9	-6	41.2	94	5	
1	SL6W1+200N	-1.6-	58	7	.0	- 6 3-	2	3	3	56.1	107	^10	
	SL7W0+750N	.7	1	-5	.0	20	1	0	2	38.0	47	. 10	
_ 7~	SL7W1+200N	-1.3	24	-	.i	49	2	10	7	64. 5	55	(5	
	SL7H0+920N	1.4	41	🚣 _	0	48	2	13	_ :	63.7	77 _	5	
7	SL8W0+750N	.7	25	4	.2	14	1	5	≖ 5	39.7	33	. 5	
4.	SLENO+BOON	1.0	28	~5 .	.0	17	1	8	- 3	44.4	33	5	
. •	SL8W0+850N	4.4	12	-5	.0	21	2	4		47.5	78	5	
4 1	SLBW0+900N	4.2	. 15	5	.0	-35	2	3	-4	45.2	4B	5	
	SLBW0+950N	1.4	14		0	38	2	6	_ 7	43.1	51	5	
	SL8W1+050N	.6	23	- 5	.2	-30	2		-5 -		59	- 5	
	SL8W1+100N	.4	~32 *	-5-	. 2،	-34	2	717	-7	40.3	-67		
II.	SL8H1+150N	.3	21	5	سته	26	Ź	15"	-4	42.9	*61	-10	
	SL8W1+175N	.2	16	- 5	.5	32	2	43	4.	55.8	48	5	
	SL8H1+200N	2	29	4	1.2	26		52	- 7	46.4	62 _		
	SL9W0+750N	.1	7	3	.0	12	1	5	3	35.3	47	·10	
	SL9W0+800N	.5	20	1	.0	23	2	6	-5	42.1	52	. 35	
	SL9W0+850N	.3	10	3	.0	13	2	6	~4 \	29.1	50	5	
	SL9H0+900N	.7	1	3	.0	22	1	0	`.4	28.2	36	5	
	SL9H0+950N	4	23 -	2	- · · · · ·	26		14	5	29.7	<u>-60</u> _	(5	
	SL9W1+050N	.3		5	76	45	2	1t	.5	28.1	58 51	-10 5	
1	SL9H1+100N	.5	•-39	- 6	-1	42	3	20	4	56.5		20	
	SL9W1+150N	.3	.33	-6	1.0	54	2		7	42.4	126		
	SL9N1+200N	.5	30	~6	1.1-	33-	2	- 17	6	43.2	52 72	10	
	SL10N0+750N	5			0-	<u>15</u> 377		3	-4	29.3	· 32 -	5	
	SL10H0+B50N	.6	38.	5	.0		2	11	. 4·	42.7	56	5 10 س	
- 10m	SL10W0+950N	.5	12	+	.0	~3 6	2	4	3	83.5			
	SL10#1+050N	.5	. 16	4	.0	29	3		- 6	41.0	42	5 /5	
	SL10W1+150N	.4	17	- 5	.1	24	2	11	5	37.5	46	<5 5	
	SL11W0+750N	:6	8 _		0-	52	, 🕺	7		- 43.7	4 <u>6</u> -	10=-	
_	SL11W0+BOON	. 8	10	5	.5	-63	2	-	J F	41.9 58.6	34 47	5	
	SL11W0+850N	.5	11	7	.0	34: 34:	2	14 	- 5 - 4	51.9	-64	5	
	SL11W0+900N	.6	20	6	.0.	46 ~20	2	8 2 4	14	34.3	- 25 2	-40·t∈	•
· * * * * * * * * * * * * * * * * *	SL11W0+950N	~1.3 ⁻	.: 3 8 ≃os-	<i>6</i> -	3.6	+38 -⊀!	2	24 59	- T	34.3 40.7	104	5	
	SL11W1+050N	=7	25	5	3		· - ½		- 2	46.1	- 69	10	
	SL11W1+100N	.6	57 95	6 1-	.s .0	-31 24	2	9	5	40.5	47	5	
	SL11W1+150N	.6		+	.1	29	2		. 3	38.9	• 7 8	5	
	SL11V1+200N SL12V0+750N	. i	9 3	3	.0	-31	1	, , , , , , , , , , , , , , , , , , ,	1	€7:7	44	⟨5	
	3L12NUT/3UN	1.	J	J		-01	4	Ü	,	4/1/	• • •		

COMPANY: QUADEX RESOURCES

MIN-EN LABS ICP REPORT (ACT:GEO3B) PAGE 1 OF 1 705 WEST 15th ST., NDRTH VANCOUVER, B.C. V7M 1T2 FILE No: 4-5525/P3

PROJECT No: GREENWOOD SET1+SET2 (604)980-5814 DR (604)988-4524 DATE: JULY 16, 1984 ATTENTION: JOHN OLIVER AU-PPB (REPORT VALUES IN PPH) CD CU SB AS .0 0 2 .0 36 Ú 39 5 SL12W0+850N Û 46.6 5 45 . 4 3 49 0 0 58.5 SL12W0+900N 0 .0 0 .0 33.7 SL12W0+950N 0 3 -6--32 1 47 0 70 -10 12~ SL12W1+050N .2 0 3 .0 26 1 2 0 47.0 51 5 5 32.2 54 SL12W1+100N . i Ø 3 .0 22 -18 24 51 5 .2 SL12N1+150N .0 Ō 40.4 0 4 0 SL12W1+200N .3 5 .3 29 3 41.0 73 10 39 5 5~ SL5N0+550N 27 ø .5 0 .0 57:8 ₹ SL7WO+BOON 44.4 45 5 _B 0 .0 26 0 57 5 SL7W0+850N .0 18 41.0 72 10 -53 51.1 SL7W0+900N .8 Ō. 72 . 6 25 23 3 0 43.0 _ 5 ٥. SL7W0+950N 7 ---64 5 29 57.5 SL7W1+050N . 4 9 .0 2 2 57 10 .5 4 .3 26 2 65.3 SL7#1+100N 29 24 SL7W1+150H .0 71:1 - 85 35 SLSWI+000N 34.1 72 5 1 .0 Û 1.0 7 -75 40 .7 55 .0 27 1 46.3 SL7W1+000N 52 5 -35 2 -5 68.3 SL8M1+000N .7 13 .0 z. 9 .0 38 2 11 57.2 56 5 SL9#1+000N 30 183 -39 40.6 -32¢ 3♦ SL11W1+000N **4**2 28 - 84 SL12W1+000N 10

(ACT:GEO3B) PAGE 1 OF 1 COMPANY: QUADEX RESOURCES MIN-EN LABS ICP REPORT 705 WEST 15th ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE No: 4-552R/P1 PROJECT No: GREENWOOD SET1+SET2 DATE: JULY 16, 1984 ATTENTION: JOHN OLIVER (604)980-5814 OR (604)988-4524 AU-PPB (REPORT VALUES IN PPH) 60 CU NO 37 7.3 .0 0 5 Ø RL5W0+675N .0 -16 Ú 0 RL5NO#20N .i 29 1 .2 26 2 5 19.9 -70-H15-1 3 3 9.1 17 RL5N0+750N .7 13 2 .1 10 109 6B.3 95 5 5 . 9 23 .0 3 RLSH1+025N 67 -58 2 20 RL7W1+113N 14.0

.0

RL7W1+200N

RL/N1+225N

.0

63

5

5

- 94

31

115.9

15.8

10

12