84-1153-13213 2/85

GEOCHEMICAL REPORT

ON THE

JAN 1 to 4 CLAIMS

KAMLOOPS MINING DISTRICT

N.T.S. 921/15

50° 55'N 120° 56' W

for

PACKARD RESOURCES LTD. 1032 - 355 Burrard Street Vancouver, B.C. V6C 2G8

by

Gary A. Medford, Ph.D., FGA

Consulting Geologist 3582 West 14th Avenue Vancouver, B.C. V6R 2W4

GEOLOGICAL BRANCH ASSESSMENT REPORT

13,213

G.A. MEDFORD Geological Exploration Consulting

TABLE OF CONTENTS

Page

INTRODUCTION	1
LOCATION and ACCESS	1 /
PHYSIOGRAPHY and TOPOGRAPHY	1 /
WORK PROGRAM	2
CLAIM RECORDS	2 /
REGIONAL GEOLOGY	3 /
LOCAL and CLAIM GEOLOGY	3 /
LOCAL EXPLORATION	3/
GEOCHEMICAL SURVEY	4 /
CONCLUSIONS	57
RECOMMENDATIONS	5 /
REFERENCES	6 /
CERTIFICATE	7,

.

List of Figures

Figure 1	-	Location Map /
Figure 2	-	Claim Map 🧳
Figure 3	-	Regional Geology 🗸

List of Maps

Map 1	-	Sample Number - Location	/
Map 2	-	Geochemistry	

Appendices

Appendix 1	-	Cost Statement /
Appendix 2	-	Geochemical Results Supplied by Placer Development Ltd. Laboratory /

INTRODUCTION

The JAN 1 to 4 claims are within the southern part of the Quesnel trough, a belt well known for its prolific copper, molybdenum, lead, zinc, silver and gold mineral occurrences and deposits. The claim covers ground that has attracted interest since the turn of the century because of the presence of mercury mineralization associated with carbonate veins. Since the late seventies, considerable interest has been focused on this area because of the possibility of the finding of epithermal precious metal mineralization. The anomalous soil mercury, arsenic and antimony geochemistry found in the vicinity of these claims present interesting exploration targets that could lead to epithermal deposits such as have been extensively described and mined in Nevada.

The work described in this report has been carried out by Placer Development Ltd. Placer has given Packard Resources Ltd. permission to use the work as assessment on the claims and Packard has retained the writer to prepare a report compiling the results of their exploration program.

LOCATION and ACCESS (Fig. 1)

The legal corner posts of the JAN claims are located at 50° 55.0' N and 120° 55.7' W. They are found north of the Criss Creek road approximately nine kilometers east of the junction with the Deadman Creek road. Both of these roads are in good condition and the latter joins with the Trans Canada Highway six kilometers west of Savona, B.C., where food and lodging is available.

PHYSIOGRAPHY and TOPOGRAPHY

The highest elevation of the property is about 4200 feet (1280 m) and the lowest is in the Criss Creek valley at about 1900 feet (579 m). The topography is gently sloping to steep in the creek valley and covered by sparse forest with little brush. The property is located in the dry belt of the province but water is available from Criss Creek year around.

ъa

WORK PROGRAM

Fieldwork was carried out by R. Boyce and P. Pacor on 6, 7 and 8 May 1984. One hundred soil samples were collected at a depth of about 15 to 20 cm (B-horizon top). Prospecting was carried out over the soil lines. Rock samples were taken from six outcrops along the soil lines. Samples were analysed at Placer's laboratory (Appendix 2).

Access to the property was gained from Kamloops where lodging was obtained.

CLAIM RECORDS

The JAN 1 to 4 claims, consisting of 63 units in total (Figure 2). They are located within the Kamloops Mining Division and found on Department of Mines claim map 92I 15N. The claims are wholly owned by Packard Resources Ltd. Government records show the following:

Claim	Record No.	Units	Record Date	Expiry Date
JAN I	3147	15	Dec. 5/80	Dec. 5/84
JAN 2	3148	10	Dec. 5/80	Dec. 5/84
JAN 3	3149	18	Dec. 5/80	Dec. 5/84
JAN 4	3150	20	Dec. 5/80	Dec. 5/84
		63		

REGIONAL GEOLOGY

The property lies within the area referred to as the Quesnel Trough (Campbell and Tipper, 1970), a narrow northwest trending belt consisting of Upper Triassic and Lower Jurassic volcaniclastic and sedimentary rocks. Broad areas are covered by Eocene volcanics and sediments and by Miocene-Pliocene plateau lavas. The trough hosts many copper-molybdenum deposits mainly associated with granitic intrusions as well as numerous significant copper, gold and copper-gold deposits. The latter are associated with alkalic intrusive or volcanic activity. Locations of several of these deposits are indicated in Figure 3.

LOCAL and CLAIM GEOLOGY

The claim is underlain by upper Triassic Nicola group volcanics, grey-green to purple in colour, and often stained rusty brown. To the northwest Kamloops group volcanic and sediments overlie the Nicola. Regional mapping (GSC O.F. 980) projects two faults northwest-southeast through the property with sediments of the Ashcroft formation (argillite, siltstone, sandstone, conglomerate) in fault contact to the east.

LOCAL EXPLORATION

Historical interest in mercury and related mineralization is referenced in Dickinson (1973) to which the reader is directed. Work on the adjacent D.M. claims by Guichon Explorco Ltd. (Gamble, 1981) has included detailed grid work immediately to the northwest of the JAN claims. The baselines for two grids established on the D.M. claims strike directly towards the Jan claims from the northwest and cover a fault that continues through the Jan claims. Anomalous Au zones and coincident Hg and As anomalies are found proximal to Tertiary intrusions but silver is consistently at or below detection limits (0.1 ppm). Some anomalous Mo values were also detected.

Ja

--- Schematic map of the pre-Tertiary geology of the Quesnel Trough and surroundings. The Trough is defined by the occurrence of Upper Triassic and Lower Jurassic volcanic and sedimentary rocks and is bounded by Paleozoic or older rocks on either side. Previous work on the Jan claims by Placer Development Ltd. has also resulted in some anomalous Au, Sb, As, Cu and Zn zones, but Mo has been found to be present in only low concentrations and silver not detectable. An Hg-As anomaly directly north of the Cayuse claim may be the extension of a similar anomaly found on the Cayuse claim. Dickinson (1973) postulated this elongate Hg-As anomaly to define a fault zone running north-south through the Cayuse claim.

In 1972, Andex Mines carried out mapping and widespaced geochemical work on the Split 1-40 claims which are now contained by the Cayuse and JAN claims (Amendologine, 1972). Substantial Ag anomalies (many greater than 5 ppm) were outlined based on auger sampling to a depth of 18 inches (30 cm), as well as a few weak Cu and Zn anomalies. Subsequent B horizon sampling reported by Dickinson (1983) did not reproduce the earlier results but frequently indicated the presence of Ag above the detection limit (i.e., 0.2 to 0.6 ppm). In addition, Hg and As proved highly anomalous but Au was below 10 ppb in all soils.

GEOCHEMCIAL SURVEY

Two thirds of samples were taken from soils overlying Nicola Group volcanics west of the fault on Map 1. The remaining third came from Ashcroft Group sediments to the east. Several samples along the southerly road were downhill from a Kamloops Group basalt ridgetop to the south. Samples were collected from the B horizon.

Geochemical results are not encouraging. Only one soil sample showed detectable gold (0.12 ppm). It was located in the Ashcroft unit, 100 metres east of the bounding fault along the line of Tertiary intrusives. Float noted was mainly basalt and minor diorite. About one-sixth of samples contain greater than 180 ppb mercury. Most of these occur in the Nicola unit, and there is no apparent connection with faults. Silver, antimony and arsenic are all at or below detection limit, and base metals are background.

Rock samples are all quite high in mercury. The highest (1733 ppb) occurs in pegmatite at a blasted pit. A sample of the foliated dioritic host rock returned lower values. Similarly, soils taken near surface, and immediately above bedrock returned

low values, although mercury was higher near bedrock. One basalt sample contained 12 ppm arsenic. It was heavily limitized and altered quartz-carbonate veined rock, probably of the Nicola Group. This rock-type was common in float in the southwestern area. All other metal values in the rocks were at background level.

CONCLUSIONS

Contour soils could more effectively show the geochemical signature of the area if a line or two were run lower on the slope. The slope is steeper and probably has little glacial-source material, and would reflect downslope migration from a bigger area, including that topographically lower. Also, there is more outcrop in the canyon walls. However, it is believed that there has been adequate coverage to reveal some indication of mineralization. Favourable rock units have been crossed, both by map and by observation, and no significant values have emerged.

RECOMMENDATIONS

The old claim posts of Split 1-40 should be located and from these the position of a couple of the strong Ag anomalies reported in the assessment report A.R. 4305. The original sampling procedure should be employed in an attempt to reproduce the silver anomalies. If successful results are obtained, a detailed grid sampling program should be carried out on the Cayuse and JAN 1 and 2 claims that now cover the same area.

The JAN 3 and 4 claims should be allowed to lapse as little encouragement has been obtained on ground covered by these claims other than on the portion overlapping the Cayuse claim which is presently in good standing.

REFERENCES

- Amendolagine, E. 1972. Workprogress Report on Andex Mines Ltd. Property, Split 1-40, A.R. 4305.
- Campbell, R.B. and Tipper, H.W., 1970. Geology and Mineral Deposits of the Quesnel Trough, British Columbia. CIM Trans. Vol. LXXIII pp. 174-179.

Dickinson, R.A., 1983. A Geochemical Report on the Cayuse Claim, Kamloops, M.D.

- Gamble, D., 1981. Geological and Geochemical Surveys of the D.M. Claims, Hoodo Grid, Kamloops M.D. A.R. 9729.
- Medford, G.A. 1984. Geochemical and Geophysical Report on The Cayuse Claim, Kamloops M.D. Filed for assessment.

CERTIFICATE

I, Gary A. Medford, with business address at 3582 West 14th Avenue, Vancouver, British Columbia, do hereby certify that:

- I am a consulting geologist and have been engaged in my profession for over 15 years.
- 2) I am a graduate of McGill University with B.Sc. Honours (1968) and M.Sc. (1970) degrees in geology, and have graduated from The University of British Columbia with a Ph.D. (1976) in geology.
- 3) I am a Fellow of the Geological Association of Canada.
- 4) I have no direct or indirect interest in the JAN 1 to 4 claims.
- 5) The cost statement in this report is as represented to me by R.A. Boyce, Placer Development Ltd.

Gary A. Medford, Ph.D., FGAC

APPENDIX 1

Cost Statement

R. Boyce, May 6, 7, 8 @ \$252.00	756.00
P. Pacor, May 6, 7, 8 @ \$252.00	756.00
Room and Board	216.00
Vehicle	196.00
Supplies	45.00
Geochemistry, 106 soils @ \$1 ,839.00; 7 rocks @ \$20.50	1,983.00
Planning & reporting	654.00
	\$ 4,606.00
G.A. Medford, preparation of assessment report and secretarial	394.00

TOTAL

APPENDIX 2

1 of 3

FLACER GEOCHEM ASSAY SYSTEM: DATA FROM Carabine R. Boyce

SF1D	SAMPLE	PEGJECT	<u>cu</u>	ZN	PB	A G	<u>AU</u>	<u> </u>	HG	<u>\$5</u>
	JNN2 1204557 JNN2 4557 JNN2 4557		2243770	- とてていいこと	10696756				10790940 12990 12940	
	JKX X 10 JKX X 10 JKX X 10 JKX X 10 JKX X 10 JKX X 10 JKX		120200-01-0 20200-01-0		000557 68s				2 macomeas 2 macomeas 2 macomeas	
	JKX 15 JKX 15 JKX 17 JKX 17 JKX 17 JKX 20 JKX 20 JKX 20		222961210 222961210		140540077				112553565	A A A A A A A A A A A A A A A A A A A
	JNX X X X X X X X X X X X X X X X X X X	4444444 4444444 20000000000000000000000	222250758	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 7 5 8 7 6	······································			125555555555555555555555555555555555555	
	JNX 301 JNX X 51 JNX X N JNX X X 7 JNX X X 7 JNX X 3 JNX 3 J	40000000000000000000000000000000000000	16 16 19 200 200	48 705557266776	075766767				469 469 112 78	
	JNX 37 JNX 38 JNX 39 JNX 40 JNX 41 JNX 47	40000 40000 40000 40000 40000 40000 40000	147209	5725 7506 554	7 5 6 7 8 8	<0002 <0002 <0002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02		156733	
	JNX 43 JNX 44 JNX 45 JNX 45 JNX 47 JNX 47 JNX 47 JNX 101	4444444 4444444	21216587	6780 2037 4578	7 8 6 5 10	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2			446 264 1045 330 70	
92115W 92115W 92115W	JNX102 JNX103 JNX104	4036 4036 4036	20 38 26	90 68 65	7 7 8	<0.2 <0.2 <0.2	<0.02 <0.02 <0.02	<2 <2 <2	70 107	<br <br </td

-

(

	5 - 5 - 5 			· 			1			2 of 3	51
LU	92115h 92115h 92115h	UNN 105 UNX 106 UNX 107 UNX 107 UNX 108				77		<0.02 <0.02 <0.02		41 24 100 41	
AUTOVA	92115W 92115W 92115W	JNX11C JNX111 JNX111		14	55	7	<0.2	<0.02		37	
	92115 92115 92115	JNX112 JNX114 JNX115	444	120	04.41	- 22 2 4	<0.2	<0.02 <0.02		248	
:	92115W 92115W 92115W	JNX115+ JNX116 JNX117	4036	27 40 21	7197		<0.2 <0.2 <0.2	20.02×		2259	
-	92115# 92115# 92115#	JNX 118 JNX 119 JNX 129	4036 4036 4036	21 12	E -		<0.2 <0.2 <0.2	<0.02 <0.02 <0.02 <0.02		248	<2 <2 <2
	521154 521154 521154	JNX 123 JNX 123 JNX 123	4 6 8 8 8 4 6 8 8 8 4 6 8 8 8	17	1-1-1-1 1-1-1-1 1-1-1-1-1			<0.02 <0.02 <0.02		126 44 74	
	521154 921154 521154	382724 382724 382724	40366	18 19 14	5 4 5 4 7 7	(A) (A)	< < < < < < < < < < < < <	<0.02 NSS <0.02	<2 <2 <2	141 167 54	<2 <2 <2
:	92115W	252 122 252127 252125	144		č :		<	<0.02 <0.02 <0.02	<		
	921156 921156 921156	J N X 1 2 7 J N X 1 3 0 J N X 1 3 1				1.12	<0.2 <0.2 <0.2 <0.2	<0.02 <0.02 <0.02		<5 61 259	
, , ,	921154 921154 921154	JNX132 JNX133 JNX134	4036	24	75 71 120		<0.2 <0.2 	<0.02 <0.02 - <0.02		61 <5 <5	
	921156 921156 921156	JNX135 JNX136 JNX137	4036 4036 4036	30 19	1101	É	<0.2 <0.2 <0.2	<0.52 <0.02 <0.02	< < < < <	336 256 96	<22 <22 <22
	92115W 92115W 92115W	JNX138 JNX139 JNX140	4036 4036 4036	18 12	1040 4	4.414)	<0.2 <0.2 <0.2	<0.02 <0.02 <0.02	<2 <2 <2	266 409	<2 <2 <2
``	92115W 92115W 92115W	JNX142+ JNX142+	4036 4036 4036	19 	102	5.54	<0.2 <0.2 <0.2	<0.02		29 10Xr	2> 2 ar 4 ar 2
(92115W 92115W 92115W	JNX145 JNX144 JNX145	4036	22	0 0 0 0 0 0		<0.2 <0.2 <0.2	<0.02 <0.02 <0.02	<2 <2 <2	310 102	<2 <2 <2
	92115W 92115h 92115h	JNX146 JNX147 JNX145	4036 4036 4036	29	502 552	うろも	<0.2 <0.2 <0.2	<0.02 <0.02 <0.02		83 160 <5	
	92115k 92115k 92115k	JNX129 JNX150 JNX151	4036	34	2012	7	<0.2 <0.2 <0.2	<0.02 <0.02 <0.02	<22 <22 <22	218 291 186	<2 <2 <2
$\left \right\rangle$	92115W 92115W test	JNX152 JNX152* STD G	4036	28	-58 -58 -68	100	<u><0.2</u> <0.2 1.1	<0.02	<22 <22 65	112	<2
	PLACER (SEOCHEM AS	SAY SYSTE	M: DATA	FROM	Cara	bine	R. Boy	c c		
┢	<u>GRID</u> test	SAMPLESTD_G	PROJECT 4036	<u>()</u> 98	<u>ZN</u> 68	<u>PE</u> 107	AG D.7	<u>F1</u>	<u> </u>	<u> </u>	SE
	test test test	STD G STD G STD G	4036 4036 4036	880 888	71 67 71	108 106 110	Ŭ.E 0.6 0.7		185 65 64		
	test test test	STD SE STD SE STD SE	403E 4036 4036	_	·		_		-		148 148 148
	test test test	STE SE STD SE STD SE	4036 4036 4036	ato - ek			•••••••••••••••••••••••••••••••••••••••				14E 153 14C
	test	STC AU	4034					1.73			-

GRID 921154 921154 921154 921154	◆SAMPLE 27558 27559 27560 27561	PROJECT 4037 4037 4037	F () 2 2 7	CU 14 6 5 9 1 3	Z N 2 1 7 2 4 5	PE	۸۵ ۲۰۱۰ ۲۰۱۰ ۲۰۱۰ ۲۰۱۰ ۲۰۱۰	Δη < 0 . 0 2 < 1 . 0 2 <1 . 0 2 < 0 . 0 2	∧s 1 : < : 7 : 1 :	HG 301 1733 245 654	BA 0.04 0.03 0.03 0.03 0.02	SB <2 <2 <2 <2	L ON GLO MERAT PCGMATITE (' ALTERED BASAL BASALT
921150 921150 921150 921150 test test test test	27562 27563 27563* STD G STD AU STD SE STD HG	4037 4037 4037 4037 4037 4037 4037 4037 4037	11		49 39 70 70	ຊ <u>ີ</u> ຊີ 108	<0 <0 <0 1.0	<0.02 <0.02 <0.02 <0.02 1.9⊍	< 2 < 2 & 2 & 4		0.02 0.03 0.02	<2 <2 <2	BASALT 51:01:0/11/2 + P&GM7 N. peret .
END OF GCLIST	LISTING - RUN AT: C	- 11 PEC 33:29:39	OPDS PR	RINTED									
											-	· · ·	

APPENDIX2A

STANDARD ANALYSIS METHODS USED BY PDL GEOCHEM LAB ARE LISTED BELOW: ALL RESULTS EXPRESSED AS INDICATED IN UNITS COLUMN BELOW

UNITS WT.O ATTACK USED METHOD TIME RANGE * 0 0.5 PP* C HCL04/HN03 4435 1-1009 ATOMIC ABSORPTION ςυ PPM **ن ،** S С HCL04/HN03 4HRS 2-4000 ATOMIC ABSORPTION 0.5 ATOMIC ABSORPTION 21 PPV HCL04/HNC3 4483 2-3000 PE PFM Ĵ **-** 5 HCL04/HN0D 4 H R S 1-3000 A.A. BACKGROUND COR. r D P Y 00 0.5 C HOLO4/HNC3 4HRS A.A. BACKGROUND COP. 0.2-200 PPM 6.5 C HCL04/HNC3 * 1 4885 2-2000 ATOMIC ABSORPTION 5 . ن FP" HCL04/HN03 CÛ Ç 2-2000 4HRS ATOMIC ABSORPTION ũ.5 AG1 D P Y C HCL04/HNC3 4 H R S 0-2-27 A.A. BACKGROUND COR 4 G 2 **с Р "** C HND3 0.5 2HRS Ú•Ü2+4•∩U A.A. SOLVENT EXTRACT ۸IJ ₽ P M 3.0 C HEF/PR 12HPS 0.02-4.00 A.A. SOLVENT EXTRACT 6.25 1.0-1000 FLUORIMETRY SOLV. EX. DPM DIL HHOS 2HRS ť ε.5 npm ATOMIC ABSORPTION C HE/HCL04/HN03/HCL 64RS 5-1000 ٧ **PP**M 5-500 1.0 C HE/HN03/HCL/H2504 4485 A.A. SOLVENT EXTRACT. ~ 0.21 F PPY MAZCOS/KNOT FUSION 2001A 49-4000 SPECIFIC ION ELECTODE 45 PPN 0.5 1 HCLO4/HNAD 4HRS 1-1868 A.A. HYDRIDE GENERATC \$5 DFN 0.5 C HELO4/HNO3 4HRS 1-1000 A.A. HYDRIDE GENERATE PI PF" 1.5 C HCL04/HH02 4HRS 2-2000 ATOMIC ABSORPTION 16 D £ 7 5 • ت C HELO4/HNO3 4485 2-3000 ATOMIC ABSORPTION C HE/HCL04/HNU?/HCL FΕ T. ATOMIC ABSORPTION 0.5 6HRS 0.02-20% DIL HNO3 HG npn 0.5 2HRS 5-2000PP6 A.A. COLD VAPOR GEN. * • C.5 C HE/HI/OXALIC 0.02-20¥ ATOMIC ABSORPTION 4HRS ۴ 14 ປ**.**5 HE/HCL04/HNG3/HCL ATOMIC ABSORPTION 0.2 -20% C 6HRS ۲ 0.2 -20% ATOMIC ABSORPTION ĸ 6.5 HE/HCL04/HN03/HCL GHRS C 6.5 CA 2 C HE/HCL04/HN03/HCL OHRS 5.02-20X ATOMIC ABSORPTION SŘ 2.pv ū+3 C HE/HCLO4/HNO3/HCL 6HRS 10-2000 ATOMIC ABSORPTION ٠ MG C HE/HCLO4/HNG7/HCL ATOMIC ABSORPTION 0.5 64RS 2.2-20% PPM SIN "H41 FUSION 1"HI4 9-500 1.0 A.A. SOLVENT EXTRACT. LCI •/ 1.0 ASH KOR DER C 2435 0105-00% WEIGH RESDUE

/

1

