# GEOLOGICAL BRANCH ASSESSMENT REPORT

13,21 REPORTION DRILLING

10/85

ON THE

LIZARD GROUP

LIZARD 276 (10)
DINOSAUR 277 (10)
DIPLUDOCUS 866 (5)
CRINOSAURUS 867 (5)

ALBERNI MINING DIVISION

92F/2

49°8.5'N 124°40.5'W

Owner:

Umex Inc

Nursery Street, Burnaby, B.C.

Operator:

Noranda Exploration Company, Limited

(No Personal Liability)

Submitted by:

R. Wilson

Project Geologist November 30, 1984



# Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources

# ASSESSMENT REPORT TITLE PAGE AND SUMMARY

| TYPE OF REPORT/SURVEY(S)                                                                                                                         | TOTAL COST                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Report on Drilling                                                                                                                               | 12,963.47                                                                                               |
| AUTHOR(S) Rob G. Wilson SIGN                                                                                                                     | NATURE(S)                                                                                               |
| DATE STATEMENT OF EXPLORATION AND DEVELOPMENT FILE                                                                                               | October 16, 1984 YEAR OF WORK .4.                                                                       |
| PROPERTY NAME(S) Lizard                                                                                                                          |                                                                                                         |
|                                                                                                                                                  |                                                                                                         |
| COMMODITIES PRESENT A. (Cu)                                                                                                                      |                                                                                                         |
| B.C. MINERAL INVENTORY NUMBER(S), IF KNOWN                                                                                                       | 92 F/02                                                                                                 |
| LATITUDE 49°8.5'N LON                                                                                                                            | 12/0/0 5/1                                                                                              |
| NAMES and NUMBERS of all mineral tenures in good standing (when world (12 units); PHOENIX (Lot 1706); Mineral Lease M 123; Mining or Certified N | k was done) that form the property [Examples: TAX 1-4, FIRE 2<br>Mining Lease ML 12 (claims involved)]: |
| Crim do aureus 967 (5)                                                                                                                           | (10); Dipludocus 866 (5);                                                                               |
|                                                                                                                                                  | ····                                                                                                    |
| OWNER(S)                                                                                                                                         |                                                                                                         |
| Umex Inc. (2)                                                                                                                                    |                                                                                                         |
|                                                                                                                                                  | •••••                                                                                                   |
| MAILING ADDRESS                                                                                                                                  |                                                                                                         |
| P.O. Box 7776,<br>Burnaby, B.C. V5E 2B4                                                                                                          |                                                                                                         |
| OPERATOR(S) (that is, Company paying for the work)                                                                                               |                                                                                                         |
| (1) Noranda Exploration Company, Limited (2) (No Personal Liability)                                                                             |                                                                                                         |
| MAILING ADDRESS                                                                                                                                  |                                                                                                         |
| P.O. Box 2380,                                                                                                                                   |                                                                                                         |
| Vancouver, B.C. V6B 3T5                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                   |
|                                                                                                                                                  |                                                                                                         |
| SUMMARY GEOLOGY (lithology, age, structure, alteration, mineralization,                                                                          | size, and attitude):                                                                                    |
| The map area is underlain by rocks of the tuffs and flows, banded cherty tuffs, feldsp                                                           | Sicker Group which are andestic to dacitic                                                              |
| limestone, chert and argillite.                                                                                                                  | ar porphyry sizes of dikes, and bucce bake                                                              |
| Bedding attitudes, obtained mainly from be easterly to northerly striking, southeasterl of rocks. No evidence of major faulting was              |                                                                                                         |
| Mineralization was not extensive within t                                                                                                        | the map area. Only pyrite and very minor                                                                |
| pyrrhotite were observed occurring mainly wi carbonate veins. One sample contained minor                                                         | thin andesitic rocks and thin quartz-<br>c chalcopyrite and malachite.                                  |

| REFERENCES TO PREVIOUS WORK  | Umex Assessmen | Reports # 7 | 7719, 8568, | 8981, 10401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|----------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noranda Assessment Reports ( | 2) July, 1984  |             |             | The state of the s |
|                              |                |             |             | ALL TO SERVICE STATES OF THE SERVICE STATES  |
|                              |                |             |             | A Parties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |                |             |             | 1000 (1000 1000 1000 1000 1000 1000 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              |                |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| TYPE OF WORK IN THIS REPORT     | EXTEN<br>(IN ME                         | NT OF WORK<br>ETRIC UNITS)              |                                         | C                                     | N WHICH CLAIMS                          |                                         | COST<br>APPORTIONED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GEOLOGICAL (scale, area)        |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ground                          |                                         |                                         |                                         | · · · · · · · · · · · · · · · · · · · |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Photo                           |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GEOPHYSICAL (line-kilometres)   |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ground                          |                                         |                                         |                                         | '                                     | •                                       | · · · · · · · · · · · · · · · · · · ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Magnetic                        |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Electromagnetic                 |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Induced Polarization            |                                         |                                         |                                         |                                       |                                         | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Radiometric                     |                                         |                                         |                                         |                                       |                                         | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Seismic                         |                                         |                                         |                                         | .,                                    |                                         | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Other                           |                                         |                                         |                                         |                                       | • • • • • • • • • • • •                 | ,                                       | <br>  • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Airborne                        |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GEOCHEMICAL (number of samp     | oles analysed for)                      | 1                                       |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Soil                            | ·                                       |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Silt                            |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rock                            |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Other                           |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DRILLING (total metres; number  |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Core                            | 98.14 me                                | etres                                   | Dinos                                   | aur                                   |                                         |                                         | 12,963.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Non-core                        | 6.7 me                                  | etres (overburden)                      |                                         | ***                                   | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RELATED TECHNICAL               |                                         |                                         |                                         |                                       |                                         |                                         | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sampling/assaying               |                                         |                                         |                                         |                                       |                                         | e e                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Petrographic                    |                                         |                                         |                                         |                                       |                                         | • • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mineralogic                     |                                         |                                         |                                         | ,                                     |                                         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Metallurgic                     |                                         |                                         | • • • • • • • • •                       | • • • • • • • • • • • •               |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <del>-</del>                    |                                         |                                         | · · · · · · · · · · · · · · · · · · ·   |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PROSPECTING (scale, area)       | • • • • • • • • • • • • • • • • • • • • |                                         |                                         | • • • • • • • • • •                   | • • • • • • • • • • • • • •             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PREPARATORY/PHYSICAL            |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Legal surveys (scale, area)     |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Topographic (scale, area)       |                                         |                                         | <i></i>                                 |                                       |                                         |                                         | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Photogrammetric (scale, area)   |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Line/grid (kilometres)          |                                         |                                         | ] <i></i>                               |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Road, local access (kilometres) |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Trench (metres)                 |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Underground (metres)            |                                         |                                         |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 |                                         |                                         |                                         |                                       |                                         |                                         | 10 000 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 |                                         |                                         |                                         |                                       |                                         | TOTAL COST                              | 12,963.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FOR MINISTRY USE ONLY           |                                         | NAME OF PAC ACCOUN                      | IT DEB                                  | IT CREDIT                             | REMARKS:                                |                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 |                                         | · · · · · · · · · · · · · · · · · · ·   | TALL TO SEE                             |                                       | <del></del>                             |                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Value work done (from report)   |                                         | • • • • • • • • • • • • • • • • • • • • |                                         |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Value of work approved          | Į.                                      |                                         | • • • • • • • • • •                     |                                       |                                         | 사람들은 사람들이 되었다.<br>기가 보는 기계를 가져 있다.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Value claimed (from statement)  |                                         |                                         | • • • • •   • • • • • •                 |                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Value credited to PAC account   |                                         | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                       | - <b>(</b>                              |                                         | 10 to |
| Value debited to PAC account    | . i                                     |                                         |                                         |                                       | 1                                       |                                         | surateal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Accepted Date                   | R                                       | ept. No                                 | <i></i>                                 |                                       | . Information Class .                   |                                         | mertering in a contract of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

- .

### TABLE OF CONTENTS

|                                                                         | PAGE      |
|-------------------------------------------------------------------------|-----------|
| LIST OF FIGURES                                                         |           |
|                                                                         |           |
| INTRODUCTION                                                            | 1/        |
| Location and Access                                                     | 1/        |
| Topography and Physiography                                             | 1/        |
| Previous Work                                                           | 1/        |
| Owner - Operator                                                        | 2 /       |
| Economic Potential                                                      | 2/        |
|                                                                         |           |
| SUMMARY OF WORK DONE                                                    | 3,        |
| Drilling                                                                | 3/        |
| Claims Worked                                                           | 3/        |
|                                                                         |           |
| DETAILED TECHNICAL DATA AND INTERPRETATION                              |           |
| DETAILED TECHNICAL DATA AND INTERPRETATION                              | 3/        |
| Geological, Geochemical, Geophysical                                    | 3/        |
| CONCLUSIONS                                                             | æ5 /      |
|                                                                         | -415      |
| STATEMENT OF QUALIFICATIONS /                                           |           |
| DISTRIBUTE OF COMMITTORIES OF                                           |           |
| STATEMENT OF COSTS                                                      |           |
|                                                                         |           |
| APPENDIX 1 Analytical Method Descriptions for Geo<br>Assessment Reports | ochemical |
| APPENDIX II Diamond Drill Logs /                                        |           |
| APPENDITY III Core Sample Coochemical Analysis                          |           |

### LIST OF FIGURES

Figure 1: Location Map (1:250,000)

Figure 2: Claims Location (1:50,000)

Figure 3: DDH Liz 84-1 Drill Section

In Pocket

Figure 4: Drill Hole Location

In Pocket

#### INTRODUCTION

#### Location and Access

The Lizard group of claims is located 15 km south-east of Port Alberni between Patlicant Mountains and Douglas Peak (Fig.1). The Lizard group is comprised of 4 claims: the Lizard (276 (10) 9 units); the Dinosaur (277 (10) 3 units); the Dipludocus (866 (5) 15 units); and the Crinosaurus (867 (5) 16 units) Fig.2.

The Lizard property can be reached by two different routes from MacMillan Bloedel's Cameron Lake Divisional office at Port Alberni. Route 1 follows the Franklin Main and Thistle and Lizard Mains respectively to Lizard Lake in the centre of the claim group. Route 2 follows China Creek Main and Duck Main to Duck Lake on the eastern edge of the property.

#### Topography and Physiography

The Lizard group is situated on the lower slopes of two mountains with Lizard Lake trending north-south, central to the claims. The slope west of Lizard Lake rises gently contrasting with a very steep eastern slope.

The area is 75% logged with both juvenile forests and recently planted second growth areas. Underbrush is generally low and foot travel is relatively good.

Climatically the area is classified as coastal rain forest and although heavy rain can be expected at any time during the year, July and August are considered the dryest months. Snow accumulations to  $\pm$  1 m can be expected from December to March.

The Lizard Lake area lies within the Vancouver Island Ranges section of the Vancouver Island Mountains subdivision of the Insular Mountains physiographic zone. The bulk of the claim group is above 720 m (2360') and the highest area reaches 1160 m (3800').

#### Previous Work

Interest in the area is known since 1898 when the Regina Crown Grant (L.55G) was established by the Alberni Gold Development Syndicate on the north west boundary of the property. It is known that a trail to the property and a cabin were built but no other early work was recorded. In 1930 work was begun by a new owner on 5 adits, 1 shaft and an open cut. Several Au-Ag showings were established but none were ever mined.

Little is known of the area until 1971 when Nippon Mining of Canada Limited completed geological mapping and soil sampling of an area near the southern boundary of the Lizard group. No assessment work appears to have been filed.

In 1976 the area was regionally mapped by Western Mines Ltd., before the present claims were staked by Umex Inc. in 1978.





A summary of recent work on the Lizard group is as follows:

- Lizard and Dinosaur claims staked in October 1978
- Regional geochemistry and geology completed on the Lizard and Dinosaur claims in the fall and spring of 1978-1979
- Dipludocus and Crinosaurus claims staked in April 1980
- Limited trenching and rock chip sampling completed in the summer of 1980.
- Ground EM and further rock sampling and geology completed in 1981.
- I.P. and Magnetometer geophysical surveys completed in 1983
- Detailed Geology-Geochemistry completed in 1983

The present survey was undertaken by Noranda Exploration Company, Limited (N.P.L.).

#### Owner - Operator

The Lizard group is on option to:

Noranda Exploration Company, Limited P.O. Box 2380 1050 Davie Street, Vancouver, B.C. V6BN 3T5 F.M.C. #257876

from:

Umex Inc.
7776 Nursery Street,
Burnaby, B.C.
V6E 2B4
F.M.C. #264778

Noranda Exploration Company, Limited is the current operator.

#### Economic Potential

The Lizard group has several strong Au-As soil geochemical anomalies which require further evaluation. The economic potential of this property is therefore considered good to excellent.

#### SUMMARY OF WORK DONE

#### DRILLING

A total of 1 hole was drilled for 104.84 metres of NQ sized (47.6 mm diameter) diamond drill core.

#### CLAIMS WORKED

All drilling was performed on the Dinosaur claim, a 3 unit claim on the southern edge of the claim block.

#### DETAILED TECHNICAL DATA AND INTERPRETATION

#### GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL

Geological, geochemical, and geophysical surveys were completed in 1983/84 by Noranda in advance of the present drill programme. The results of those programmes are reported on in two assessment reports entitled "Report on Geology and Geochemistry on the Lizard Group" by R. Wilson, July 15, 1984 and "Report of Work, Geophysical Surveys on the Lizard Property" by L. Bradish, July 15, 1984.

Diamond drilling was used to test a broad Au geochemical anomaly. In the section of drilling the anomaly occurs from 99+25 to 99+75E on Line 101+00N. Au geochemical values from 100 to 680 ppb were received for soil samples taken in this area. A broad zone of low conductivity I.P. occurs coincidently with the geochemistry.

An NQ diamond drill hole at approximately 825 m elevation was collared at 100+83.5 n N 100+40.5 m E and drilled azimuth  $270^{\circ}$  at  $-55^{\circ}$  for 104.85 m. The hole, Liz 84-1, was collared on March 31, 1984 and completed April 2, 1984. Two acid dip tests were taken, one at 46.63 m and another at 101.80 m and both indicate that the hole stayed a true  $-55^{\circ}$  dip.

The rocks intersected Pennsylvanian and older Sicker Group Volcanics. They are mainly dacitic to andesitic tuffs and flows, with the more acidic rocks occurring toward the top of the hole (Figure 3). Dacitic rocks are grey green to green, fine grained, hard, and show some bedding. Crackle and mosaic breccia zones are present with some crackle breccia zones being caused by 1-5 mm quartz-calcite stockwork. Two zones of rhyodacitic breccia .30-1.3 m in length are recognized within the dacite. These zones are possible silicified dacitic tuffs.

Andesitic flows and tuffs are grey green, fine to medium grained, moderately soft and massive to slightly bedded. Anhedral feldspar crystals to 1 mm are present throughout, often with fuzzy borders. Changes in grain size are generally at distinct contacts with gradational coarsening away from a contact.

Sericite alteration and lesser chlorite and epidote alteration are seen in some sections. Quartz calcite veinlets from  $1-5\,$  mm with an average  $2\,$  mm

width occur as wispy, discontinuous and regularly dipping forms.

Tuff fragments vary from less than 1 mm to 1.5 cm and consist of angular, feldspar, hornblende and quartz. Minor chert fragments to 1.5 cm occur over sections to 30 cm.

The mineralization in this hole is poor, with pyrite being the only sulphide seen. Pyrite occurs in both the dacitic and andesitic rocks as fine grained crystals and disseminations. Pyrite is usually less than 1% but is seen occasionally to 2-3 and 5-6%.

Two narrow (less than 2 mm wide) feldspar-hornblende porphyry dikes or sills occur within the andesites. They consist of subhedral feldspar and? hornblende phenocrysts to 4 mm (average 2 mm) in a green very fine grained, hard groundmass. The feldspars comprise 25% of the rock, and mafics 15%. As the contacts with the enclosing rocks are subparallel to bedding, these units are thought to be shallowly cross-cutting dikes.

The entire hole was sampled by split core procedures. The core was split in half along the core axis with one-half being collected for analysis and the other half returned to the core box. Sample lengths were dependent on lithological, mineralogical, and alteration boundaries (in that order), with a maximum sample width of 2.0 m.

A total of 54 samples were taken and sent to Noranda's geochemical laboratory in Vancouver for rock geochemical analysis. All samples were analyzed for Ag, As, Cu, Pb, Zn by Noranda's Vancouver laboratory. 35 of the samples were likewise analyzed by Noranda for Au while the remaining 19 Au analysis were completed by Bondar-Clegg laboratories in Vancouver. The Bondar-Clegg analyses are by Fire Assay - AA methods.

Appendix I contains information sheets on the analytical methods of geochemical analysis for Noranda's and Bondar-Clegg's laboratories.

The highest Au values for split core analysis are .21 and .24 gm/T and 300 ppb Au. These values are not considered to be significantly anomalous and hence the drill hole does not adequately explain the geochemical soil anomaly. The low conductivity I.P. zone is however explained by the disseminated pyrite found in the drill core.

No significant anomalies were received for other elements analyzed hence the ground tested by this hole is not considered to have economic potential.

The core is presently stored at AA Mini Storage, Nanaimo but will be returned to the south end of the property once all studies on the core have been completed.

#### CONCLUSIONS

The present drill programme was implemented as a result of geochemical - geological - geophysical studies undertaken by Noranda.

An NQ drill hole, Liz 84-1 collared at 100+83.5 m N, 100+40.5 m E was drilled azimuth  $270^{\circ}$  at  $-55^{\circ}$  dip for 104.85 m.

The drill hole intersected weakly pyrite mineralized intermediate to acidic volcanics of the Sicker Formation.

The drilling did not explain a soil geochemical Au anomaly downslope from the drill hole.

The presence of minor disseminated pyrite in the core did explain the zone of low conductivity detected by the I.P. survey.

No anomalous values were received for other elements tested.

The core is presently stored at a warehouse in Nanaimo and will be returned to the property at a later date.

#### AUTHORS QUALIFICATIONS

I Rob. G. Wilson of the City of Vancouver, Province of British Columbia, do hereby certify that:

- I am a geologist residing at 3328 West 15th. Avenue, Vancouver B.C.
- I graduated from the University of British Columbia in 1976 with a BSc degree in Geology.
- I have worked in mineral exploration since 1973 and have practised my profession as a geologist since 1976.
- I am presently a Project Geologist with Noranda Exploration Company, Limited.
- I am a member of the Geological Association of Canada (Cordillera Division).

Rob Wilson

July 15, 1984

STATEMENT OF COSTS

#### STATEMENT OF COST

| DATE | OCTOBER | 1984 |
|------|---------|------|
|------|---------|------|

PROJECT - LIZARD TYPE OF REPORT Drilling

#### a) Wages:

No. of Days -86 mandays Rate per Day - \$128.08

Dates From -January - August 31, 1984

\$11,014.76 86 X \$128.08 Total Wages

#### b) Food and Accommodation:

No. of Days -86 Rate per Day - \$35.21

Dates From - January - August 31, 1984

\$3,027.64 Total Cost - 86 X \$35.21

#### c) Transportation:

No. of Days -86

Rate per Day - \$43.98

Dates From - January - August 31, 1984 Total cost 86 X \$43.98 \$3,782.65

#### d) Analysis

#### e) Cost of Preparation of Report

| Author   |  |  | \$<br>256.16 |
|----------|--|--|--------------|
| Drafting |  |  | \$<br>256.16 |
| Typing   |  |  | \$<br>256.16 |

\$49,174.68 f) Other: Contractor 309.97 Field Supplies

\$67,309.70 Total Cost

#### UNIT COSTS

Unit Costs for Drilling

No. of Days - 86

No. of Units - 544.36 metres

Unit Costs - 123.65/meter Total cost 86 X 544.36

\$67,309.70

FOR ASSESSMENT PURPOSES HOLE #1 IS BEING USED AT A RATE OF 123.65/METER.

No. of Units - 104.84 meters Unit Costs - 123.65/meter

Total Cost - 104.84 X 123.65

\$12,963.47

#### APPENDIX I

ANALYTICAL METHOD DESCRIPTIONS FOR

GEOCHEMICAL ASSESSMENT REPORTS

#### ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applied to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver.

#### Preparation of Samples

Sediments and soils are dried at approximately  $80^{\circ}$ C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for geochemical analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples \* from constant volume), are analysed in its entirety, when it is to be determined for gold without further sample preparation.

#### Analysis of Samples

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.4 g and chemical quantities are doubled relative to the above noted method for digestion.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn can be determined directly from the digest (dissolution) with a conventional atomic absorption spectrometric procedure. A Varian-Techtron, Model AA-5 or Model AA-475 is used to measure elemental concentrations.

#### Klements Requiring Specific Decomposition Method:

Antimony - Sb: 0.2 g sample is attacked with 3.3 ml of 6% tartaric acid, 1.5 ml conc. hydrochloric acid and 0.5 ml of conc. nitric acid, then heated in a water bath for 3 hours at  $95^{\circ}$ C. Sb is determined directly from the dissolution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.3 g sample is digested with 1.5 ml of perchloric 70% and 0.5 ml of conc. nitric acid. A Varian AA-475 equipped with an As-EDL is used to messure arsenic content in the digest.

Barium - Ba: 0.1 g sample digested overnight with conc. perchloric, nitric and hydrofluoric acid; Potassium chloride added to prevent ionization. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 g - 0.3 g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest with an AA-475 complete with EDL.

Gold - Au: 10.0 g sample is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with MIBK from the aqueous solution. AA is used to determine Au.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the

range of atomic absorption. The AA-475 with the use of a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot from a perchloric-nitric decomposition, usually from the multi-element digestion, is buffered. The aqueous solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

\* N.B. If additional elemental determinations are required on panned samples, state this at the time of sample submission. Requests after gold determinations would be futile.

#### LOWEST VALUES REPORTED IN PPM

| Ag - 0.2 | Mn - 20 | Zn - 1  | Au - 0.01 |
|----------|---------|---------|-----------|
| Cd - 0.2 | Mo - 1  | Sb - 1  | W - 2     |
| Co - 1   | N1 - 1  | As - 1  | U - 0.1   |
| Cu - 1   | Pb - I  | Ba - 10 |           |
| Fe - 100 | V - 10  | Bi - 1  |           |

EJvL/ie March 14, 1984

#### GEOCHEMICAL SAMPLE FLOW

| ~  | ~ | - | ۳. | 4   |
|----|---|---|----|-----|
| ٦. | 4 | + | Η. | - 1 |
|    |   |   |    |     |

LOGGING IN

- each sample submission is assigned a unique lot number

#### STEF 2

SORT

- according to sample type (soils, streams, rocks, etc.) and then according to alphabetic and/or numeric order.
- physical sample is checked off asainst sample submittal form which has been completed (?) by the client.

#### STEP 3

- SAMPLE FREPARATION all samples are processed in numeric order with adequate drains beins ensured before preparation
- soils-sediments bang dry sample in the bag with rubber mallet to break loose fines from clods/mosses/etc.
  - pour into 80 mesh stainless steel sieve.
  - sift out all-80; if samples are for Au, sift out -20 +80 if -80 fraction less than 20 sm.
  - re-bas sample and refile if retention of rejects requested otherwise - out soes the oversize
- h) rock and drill core
- but in numerical order; insert made-up bulb bass into Proper rock bas
- primary crush
- secondary crush (80% -10 mesh)
- split out 200 400 sm with a Jones riffle splitter
- pulverize via an impact (ring and puck) grinder. Final product is about 50% -150 mesh and 99% -80 mesh; and is free from pulverizer contamination.
- c) Fan concentrates sample is rulverized in its entirety to ensure homo-
  - please no coarse metallic nussets without prior warnins
- d) Pules
- spot check for proper preparation; if unacceptable we re-eres
- e) other sample types are prepared according to client's request

#### STEF 4

WEIGHING

- using electronic balances, with a precision of t/-0.01s., we weigh 5% of the samples for duplicate analysis and 2% of our analyses are performed on accepted standards.

#### STEP 5

EXTRACTION METHOUS - HNO3-HCl- a vicious attack that satisfactorily leaches Cu Pb Zn Mo As Mn Cd Ni Co etc.in "all" rocks and soils/ seds. Problems would be low level values (less 40 ppm) in hish iron oxide soils or in tight refractory lattices - 2 -

HN03

- satisfactory for almost all ore minerals of U.Bi some As minerals, and most sulphides.

PARTIAL EXTRACTIONS - specific for specific type occurrences or for loosely bonded(e.g. hydromorphically deposited) ions.

HN03-HC104-HF

- a hisher temperature, vicious attack that specifically attacks some refractors silicates and oxides. More difficult to control precision, but useful for elements like V. Be. Se and certain low level metallics in rock seochem programs.

HBr-Br

- a slow, but rowerful oxidative attack designed for Te and Il minerals.

VARIOUS FUSIONS

- for difficult to handle elements in refractory lattices (e.g. W Cr Au Pt).

STEF &

ANALYSIS

- (see attached sheet)

STEP 7

DATA AFFROVAL AND

TRANSFER

- (see accompanying sheet entitled Computer services)

STEP 8

QUALITY CONTROL

- fifteen percent of our staff do nothing else but supervise and check procedures and techniques. The resident assager, chemist and seochemist provide the final check. 130 Pemberton Ave, North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

### GEOCHEMICAL METHODIS

| ELEMENT                                     | EXTRACTION                            | METHOD OF ANALYSIS                          |
|---------------------------------------------|---------------------------------------|---------------------------------------------|
| Cu, Po,Zn, Mo, As,<br>Cd, Ni, Co, Mn, Fe    | Hot Lefort Aqua Resia                 | Atomic Absorption                           |
| $\mathfrak{v}$                              | Hot Cone HNO3                         | Fluorimetric                                |
| w 0.29                                      | Rasic Oxidation Fusion                | Colourimetric                               |
|                                             | Rasic Fusion                          | Citrate Buffer-Specific                     |
| Au, Pt, Pd                                  | Fire Assay & Hot Aqua<br>Resia        | Atomic Absorption                           |
| As                                          | HC104-HN03 Arsine                     | Colourimetric                               |
| ня 0.59                                     | Aqua Resia                            | Closed Cell: Flameless<br>Atomic Absorption |
| Sn. Sb. Ra. Rb. Sr. Y<br>Zr. Nb. La. Ce. Ti | 0-10.09                               | Enersy dispersive XRF                       |
| Th, Se, Ta, Ga, In                          | <b>~</b>                              | Niscrete angle/cathode<br>XRF               |
| Fi                                          | Hat Cone HNO3                         | Atomic Absorption                           |
| V, Re, Li                                   | HC104-HN03-HF                         | Atomic Absorption                           |
| Cr                                          | Sodium Peroxide Fusion                | Atomic Absorption                           |
| Tl. Te                                      | HBr-Br + Organic<br>Extraction        | Atomic Absorption                           |
| <b>F</b> t                                  | Rasic Fusion                          | Flasma                                      |
| Re                                          | Alkali Fusion + Organic<br>Extraction | Atomic Absorption                           |
| C C                                         |                                       | Leco Induction Furnace                      |
| WHOLE ROCK ANALYSIS                         |                                       |                                             |
| Si02 K20 Na20 Ca0                           |                                       |                                             |
| Ms0 Mn0 Fe Al203                            | HF-HNO3                               | Atomic Absorption                           |
| Ti02 P205                                   | HF-HNQ3                               | Colourimetric                               |
| S                                           |                                       | Leco Induction Furnace                      |

Fraction used for analysis: Rocks -100 mesh; soils/sediments -80 unless otherwise noted.

APPENDIX II

DIAMOND DRILL LOGS

| Dote Collor<br>March | ed<br>31/84 | Date Co<br>Apri | mpleted<br>1 2/84                 | Core Size<br>NO                                                                                                                                                           |                                                  | PROPE                              |                                    | ZARD               |                                    |        | Р                                                | ROJE( | CT No.   | N.T.S. No.<br>92F/2 |              |        |          |         |              |  |
|----------------------|-------------|-----------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|------------------------------------|--------------------|------------------------------------|--------|--------------------------------------------------|-------|----------|---------------------|--------------|--------|----------|---------|--------------|--|
|                      | F           | IELD C          | O-ORDINA                          | TES                                                                                                                                                                       | DEPTH                                            | PEPTH BEARING ANGL                 |                                    |                    | GLE<br>CORRECTED                   |        |                                                  | SURVI | EYE      | D CO OF             | ORDINATES    |        |          | Sheet , | of 17        |  |
| Lat.                 |             |                 |                                   | Din                                                                                                                                                                       | <del>                                     </del> | RECORDED                           | CORRECTED                          | KECOKDED           |                                    |        |                                                  |       | <u> </u> | ID                  |              |        | HOLE No. |         |              |  |
| 1004                 | ⊦83.5mN     |                 |                                   | -55 deg                                                                                                                                                                   | 46.63                                            |                                    |                                    |                    | 55 deg                             |        |                                                  |       |          |                     |              |        |          | _       |              |  |
| <sup>Dep.</sup> 10 О | ⊦40.5mE     | Length          | 104.85m                           | Bearing 270 deg                                                                                                                                                           | 101.80                                           |                                    |                                    |                    | 55 deg                             | Dep.   |                                                  |       | Len      | gth                 | Be           | earing |          | LIZ     | 84-1         |  |
| From                 | То          | Recovery        |                                   | 0                                                                                                                                                                         | cription                                         |                                    |                                    |                    |                                    | %      | % Est.                                           |       | - N      | Width               |              |        |          | ASS     | AYS          |  |
| Metres               |             | Recovery        |                                   |                                                                                                                                                                           | cripiton                                         |                                    |                                    | Stru               | ucture                             | Sulph. | Grade                                            | SAMPL | .E. NO.  | Metres              | Au (         | (g/T)  | Au(oph)  | Ag(ppm) | As(ppm)      |  |
|                      |             |                 | Cas                               | sing                                                                                                                                                                      |                                                  |                                    |                                    |                    | -                                  | 1      |                                                  |       |          |                     |              |        |          |         |              |  |
| 0                    | 6.7         |                 | Overburd                          | en and fill. Tr<br>overy                                                                                                                                                  | iconed th                                        | is sectio                          | n; no                              |                    |                                    |        |                                                  | -     |          |                     |              |        |          |         |              |  |
| 6.7                  | 7.9         |                 | Medium to<br>green and            | ANDESITE Medium to dark green, medium to coarse grained. Pale green an hedral feldspar and dark green to black an he- lar mafic clots with indistinguishable borders. May |                                                  |                                    |                                    |                    |                                    |        |                                                  |       |          |                     |              |        |          |         |              |  |
|                      |             |                 | be a bou<br>Contact               | lder above bedrowith below unknown s not fit together                                                                                                                     | ck.Core q<br>wn betwee                           | uite well                          | broken.                            |                    |                                    |        |                                                  |       |          |                     |              |        |          |         |              |  |
| (6.7                 | 7.9)        |                 | As above                          |                                                                                                                                                                           |                                                  |                                    |                                    |                    |                                    |        |                                                  |       |          |                     |              |        |          |         |              |  |
|                      |             |                 | DACITE FI                         | LOW-BRECCIA                                                                                                                                                               | 1                                                |                                    |                                    | Beddin             | φ                                  |        | <del>                                     </del> |       |          |                     | <del> </del> |        |          | <u></u> | <del> </del> |  |
| 7.9                  | 20.40       | 77%             | Grey gree                         | en to green, find<br>ed, some bedding<br>recovery is good                                                                                                                 | . Rock i                                         | s quite f                          | ractured                           | 38deg.<br>25 deg   | CA@ 11.25<br>. CA@13.0<br>.CA@15.0 |        |                                                  |       |          | ·                   |              |        |          |         |              |  |
|                      |             |                 |                                   | on cutting core                                                                                                                                                           |                                                  |                                    |                                    |                    | .CA@18.6                           | -      |                                                  |       |          | <u> </u>            | +            |        |          |         |              |  |
|                      |             |                 | Veinlets<br>sections<br>zones are | lmm to lcm wide<br>to 1% as dissem<br>e crackle to mos                                                                                                                    | . Pyrite inations aic with                       | is prese<br>and veinl<br>some crac | nt over s<br>ets. Bre<br>kle brecc | hort 27 de<br>ccia |                                    | 2      |                                                  |       |          |                     |              |        |          |         |              |  |
|                      |             |                 | Two sect:                         | y qtz-calcite stores of pale greatic breccia are solon. Both zones                                                                                                        | en to whi<br>seen at l                           | te, dacit<br>1.28 to 1             | ic to<br>1.50 and                  |                    |                                    |        |                                                  |       |          |                     |              |        |          |         |              |  |
|                      |             |                 | 1% as ve                          | ry fine dissemina<br>with below arbit                                                                                                                                     | alions and                                       | d thin ve                          | inlets.                            | Cont.<br>26 deg (  | act<br>CA@20.40                    |        |                                                  |       |          |                     |              |        |          |         |              |  |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboritories

Date April 2/84

Logged By R. G. Wilson
Sample Descriptions by: G. Gill

| Date Collar<br>March |         |          | ompleted<br>1 2/84                  | Core Size                                                            |            |            | DIP TEST                                                  | S                                            |          | PROPE  |            | ZARD  |           | PROJECT No. |          | N.T.S. No.<br>92F/2 |        |
|----------------------|---------|----------|-------------------------------------|----------------------------------------------------------------------|------------|------------|-----------------------------------------------------------|----------------------------------------------|----------|--------|------------|-------|-----------|-------------|----------|---------------------|--------|
|                      |         |          |                                     | ORDINATES DEPTI                                                      |            |            | DEPTH BEARING ANGLE RECORDED CORRECTED RECORDED CORRECTED |                                              |          |        |            |       | YED CO-OR |             |          | Sheet               | of 17  |
| Lat.<br>100          | 483 5 m | Elev.    |                                     | Dip =55 deg                                                          | 46.63      | RECORDED   | CORRECTED                                                 | RECORDED                                     | 55 deg   | Lat.   |            |       | Elev.     | Dip         |          | HOLE No.            |        |
| Dep. 100             | +40.5 m | E Length | 104.85m                             | Bearing 270 deg                                                      | 101.80     |            |                                                           |                                              | 55 deg   | Dep.   |            | -     | Length    | Bearing     | <br>I    | LIZ 84              | -1     |
| _                    | _       |          |                                     | _                                                                    |            |            |                                                           | <u>'                                    </u> | <u> </u> | %      | Est.       |       |           | <u> </u>    | ASS      | SAYS                |        |
| From                 | То      | Recovery |                                     | Des                                                                  | cription   | · .        |                                                           | Stri                                         | acture   | Sulph. | Grade      | AMPLE | No. Width | Au(g/T)     | Au (PPb) | Ag(ppm)             | As(ppm |
| (7.9                 | 11.28)  | 36%      | -                                   | . Some rubbled o                                                     | ore        |            |                                                           |                                              |          |        | $\epsilon$ | 3001  | 3.38      | .07         |          | 0.2                 | L4     |
| (11.28               | 11.50   | ) 100%   | 3% Pyrite<br>gradation              | E BRECCIA  . Upper contact al                                        | 40 deg CA  | A, lower o | contact                                                   |                                              |          |        | 6          | 3002  | .22       | .14         |          | 1.8                 | 48     |
| (11.50               | 13.50)  | 100%     |                                     | 1% pyrice.                                                           |            | -          |                                                           |                                              |          |        | 6          | 3003  | 2.0       | <.07        |          | 0.2                 | L4     |
| (13.50               | 15.50)  | 100%     | AS ABOVE<br>Less than               | 1% Pyrite.                                                           |            |            |                                                           |                                              |          |        | $\epsilon$ | 3004  | 2.0       |             | 10       | 0.2                 | 8      |
| (15.50               | 17.50)  | 75%      | AS ABOVE<br>Core leng               | th 1.7m. Less th                                                     | lan 1% pyi | rite.      |                                                           |                                              | -        |        | é          | 3005  | 2.0       |             | 10       | 0.2                 | 12     |
| (17.50               | 18.50   | ) 94%    | AS ABOVE<br>Core leng               | th .94m.                                                             |            |            |                                                           |                                              |          |        | $\epsilon$ | 3006  | 2.0       | < .07       |          | 0.2                 | L4     |
| 18.50                | 19.90)  | 90%      | Core leng<br>Some grap<br>CA, lower | E BRECCIA<br>th 1.26m Pyrite=<br>hitic shear zone<br>contact at 38 c | s. Upper   |            |                                                           | 38m.                                         |          |        | ē          | 3007  | 1.4       | .07         |          | 0.2                 | 40     |
| 9.90                 | 20.40)  | 100%     | AS ABOVE<br>Core leng               | th .5m. Pyritic                                                      | fracture   | at 20.2m   | . Pyrite                                                  | 1%                                           |          |        | $\epsilon$ | 3008  | .5        | . 17        |          | 0.2                 | 16     |

NOTE: Gold results expressed in g/tonne were determined by Bondar Clegg Laboritories

Date\_\_April 2/84

Logged By R.G. WILSON
Sample Descriptions by: G. Gill,

| Dote Collor<br>March | ed<br>31/84 | Date Co<br>Apri | mpleted<br>1 2/84                               | Core Size                                                                |                                                | ļ                                                   | DIP TEST                                          | S        |           | PROPE  | RTY   | IZARD    |                    | PROJE       |         | N.T.S.No.<br>92F/2 | <u> </u>   |
|----------------------|-------------|-----------------|-------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------|-----------|--------|-------|----------|--------------------|-------------|---------|--------------------|------------|
|                      |             |                 | O-ORDINAT                                       |                                                                          | DEPTH                                          | RECORDED                                            | RING<br>CORRECTED                                 | RECORDED | GLE       | 1      | S     | URVEY    | D CO-OR            | O-ORDINATES |         |                    | of 17      |
| Lat. 100             | +83.5mN     | Elev.           | · ·                                             | Dip -55 deg                                                              | 46,63                                          |                                                     |                                                   |          | 55 deg    | Lat.   |       | El       | v.                 | Dip         |         | HOLE No.           | · · ·      |
|                      | +40.5mE     | 1.              | 104.85                                          | Bearing 270 deg                                                          |                                                |                                                     |                                                   |          | 55 deg    | Dep.   |       | Le       | ngth               | Bearin      | 3       | LIZ 84             | -1         |
| From                 | To          | Recovery        |                                                 |                                                                          | scription                                      | <u> </u>                                            |                                                   |          |           | %      |       |          |                    |             | ASS     | AYS                |            |
|                      | Metres      | Recovery        |                                                 |                                                                          |                                                |                                                     |                                                   |          | cture     | Sulph, | Grade | SAMPLE N | o. Width<br>Metres | Au(g/T)     | Au(ppb) | Ag(ppm)            | As (ppm    |
| 20.40                | 31.20       | 78%             | Grey-green                                      | DACITE FLOW & T<br>n fine to mediu<br>ive to slightly<br>eining still pr | m grained<br>bedded to                         | hard to mobrecciat                                  | ed. Quart                                         | z 45 deg | CA@ 23.3m | i l    |       |          |                    |             |         |                    |            |
|                      |             |                 | unit above<br>as at 24-2<br>Majority (          | e. Core is qui                                                           | te broken<br>ery fine p                        | to rubble                                           | ed in plac<br>th short                            |          |           |        |       |          |                    |             |         |                    |            |
|                      |             |                 | Breccia<br>angular f<br>fragments<br>than 30 cm | sections are gragments to 1 cquartz- calcitm long. Contaccrease in fragm | enerally men. Brecci<br>e healed,<br>t with be | nosaic bre<br>la section<br>are gener<br>low somewl | eccia with<br>is with<br>cally less<br>nat arbitr | ary.     |           |        |       |          |                    |             |         |                    |            |
|                      |             |                 | minor pyrgrained ac<br>28.50                    | ite only. Inter<br>ccurs over sect                                       | bedded tu                                      | ff which i                                          | is fine                                           |          |           |        |       |          |                    |             |         |                    |            |
| (20.40               | 22.40)      |                 | actual le                                       | calcite veinin                                                           | g than pre                                     | evious sec                                          | ctions,                                           |          |           |        |       | 63009    | 2.0                |             | 10      | 0.2                | <b>Z</b> 4 |
| (22.40               | 24.40)      | 85%             | with pyri                                       | ore. Actual len<br>te from 22.40m                                        |                                                |                                                     | z-c.c. vei                                        | n        |           | :      |       | 63010    | 2.0                |             | 40      | 0.2                | 16         |
| (24.40               | 26.40)      | 65%             | AS ABOVE<br>Section is                          | s very broken.                                                           | Actual ler                                     | ngth= 1.30                                          | )m•                                               |          |           |        |       | 63011    | 2.0                |             | 10      | 0.2                | 4          |
| (26.40               | 28.40)      | 78%             | <u> </u>                                        | alcite veins. A<br>d near lower en                                       | ,                                              |                                                     |                                                   |          |           |        |       | 63012    | 2.0                |             | 30      | 0.2                | Z 4        |

NOTE: Gold Results expressed in g/tonne were determined by Bondar Clegg Laboritories

Logged By \_\_\_\_\_\_\_ Sample Descriptions by: G. Gill

| Date Collar<br>March |          | Date C                                | ompleted<br>i1 2/84   | Core Siz    | e<br>NO                  |             |                  | DIP TEST  | S        |                                        | PROPE        |       | IZARD  |           | PROJEC   | T No.     | N.T.S. No.<br>92F/2 | <u>,                                      </u> |
|----------------------|----------|---------------------------------------|-----------------------|-------------|--------------------------|-------------|------------------|-----------|----------|----------------------------------------|--------------|-------|--------|-----------|----------|-----------|---------------------|------------------------------------------------|
|                      |          |                                       | O-ORDINA              | TES         | му                       | DEPTH       | BE A<br>RECORDED | RING      | RECORDED | GLE<br>CORRECTED                       |              |       |        | ED CO-OR  | DINATES  |           | Sheet 4             | of I7                                          |
| Lat. 100             |          | Elev.                                 |                       | Dip         | -55 deg                  | 46.63       |                  | CORRECTED | RECORDED | 55 deg                                 | Lat.         |       |        | ev.       | Dip      | · . · · . | HOLE No.            |                                                |
| Den                  | 7-63.5mE | Length                                | 104.85m               | Bearing     |                          |             |                  |           |          | <u> </u>                               | Dep.         |       | Le     | ength     | Bearing  |           | LIZ 84-             | 1                                              |
| 100                  | 1+4U.5mE | 1                                     | 104.85m               | ٠           | 270 deg                  | 101.80      |                  | L         |          | 55 deg                                 | <del> </del> |       |        |           |          | 100       | AYS                 |                                                |
| From                 | To       | Recovery                              | ,                     |             | Des                      | cription    |                  |           | Str      | ucture                                 | %<br>Sulph.  | Est.  | SAMPLE | wo. Width | <u> </u> | H 33      | I                   | 1                                              |
| Metres               | Metres   | · · · · · · · · · · · · · · · · · · · |                       |             |                          | <del></del> |                  |           |          |                                        |              | 0.000 |        | Metres    | Au (g/T) | Au (ppb)  | Ag (ppm)            | As (pp                                         |
| (28 40               | 30.40)   | 80%                                   | AS ABOVE<br>Actual le | nath=       | 1 6m                     |             |                  |           |          | 1,                                     |              |       |        |           |          |           |                     |                                                |
| (20.40               | 30.40)   | 00%                                   |                       |             | ning incre               | ases in i   | ntensity         | starting  | at       |                                        |              |       | 63013  | 2.0       |          | ] .       |                     |                                                |
| <del></del>          |          |                                       | 29.70m-30             | 40m.        | - Well bro               | ken at 28   | .80-29.00        | m         |          |                                        | ļ            | ļ     |        |           | 1        | 10        | 0.2                 | 4                                              |
|                      |          |                                       |                       |             | end at 29.<br>0-30.40m.  | 00m-moder   | ately pyr        | itic qtz  |          |                                        |              |       |        |           |          |           | 100                 |                                                |
|                      |          |                                       | Verns 110             | m 29.0      | 0-30.40III.              |             |                  |           |          |                                        |              |       |        |           |          |           |                     |                                                |
|                      |          |                                       |                       | <del></del> |                          |             |                  |           |          |                                        |              |       |        | _         |          |           |                     | ļ                                              |
| (20. (0              | 31.20)   | 0.25                                  | AS ABOVE              | . 1         | 71 0                     | ٠. لــ      |                  |           |          |                                        | 1            |       |        | -         |          |           |                     |                                                |
| (30.40               | 31.20)   | 93%                                   |                       |             | .74 m. Som               |             |                  |           |          |                                        | -            |       | 63014  | .8        |          |           | 1.                  |                                                |
|                      |          |                                       | DACITIC-A             |             |                          | any milero  |                  |           |          |                                        |              | L     | 0301-  | •         |          | 20        | 0.2                 | 4                                              |
| 31.20                | 35.65    | 90%                                   | ļ                     |             |                          |             |                  |           |          |                                        |              |       |        |           |          |           |                     |                                                |
|                      |          |                                       |                       |             | to dark g<br>ns are har  |             |                  |           |          | ig?<br>CA@ 33.8m                       | Py           |       | ,      |           |          |           |                     |                                                |
|                      |          |                                       |                       |             | r and mafi               |             |                  |           |          | CAG JJ.OII                             | 1/°          |       |        |           |          |           |                     | <u> </u>                                       |
|                      |          |                                       | 3mm dia.              | color       | and hardne               | ss change   | s from pa        | le-green  |          |                                        | -            |       |        |           |          |           |                     |                                                |
|                      | 4 45 4   |                                       |                       |             | darker gre<br>ly massive |             |                  |           |          |                                        |              |       |        |           |          |           |                     |                                                |
|                      |          |                                       |                       |             | tensive.                 |             |                  |           |          |                                        | .            |       |        | 1         |          |           |                     |                                                |
|                      |          |                                       | as crysta             | ls die      | out i <u>n ru</u>        | boled cor   | е.               |           |          |                                        |              |       |        |           |          |           |                     | Ţ                                              |
| * 4.*                |          |                                       | . "                   |             |                          |             |                  |           |          |                                        |              |       |        |           |          |           |                     |                                                |
|                      |          |                                       |                       |             |                          |             |                  |           |          |                                        |              |       |        |           |          |           |                     |                                                |
|                      |          |                                       | AS ABOVE              |             |                          |             |                  |           |          | ······································ |              |       |        |           |          |           |                     |                                                |
| (31.20               | 33.20    | 90%                                   |                       |             | 1.8m. Top                |             |                  |           | İ        |                                        | -            |       | 63015  | 2.0       |          |           |                     |                                                |
|                      |          |                                       |                       |             | alcite vei<br>des in & o |             |                  |           |          |                                        |              |       |        |           |          | 40        | 0.2                 | Z4                                             |
|                      |          |                                       | breccia.              | Few qt      | z & calcit               |             |                  |           |          |                                        |              |       |        |           |          |           |                     |                                                |
|                      |          |                                       | fractures             | •           |                          |             |                  |           |          |                                        |              |       |        |           | 1        |           |                     |                                                |
| 1                    |          |                                       | 1                     |             |                          |             |                  |           | 1        |                                        | 1            | 1     |        |           |          |           |                     |                                                |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboritories. Date\_\_\_\_

April 2/84

R.G. WILSON

\_\_ Logged By \_

Sample Descriptions by: G. Gill

| Date Colla<br>March | red<br>31/84 | Date C<br>Apri | ompleted<br>1 2/84                  | Core Size<br>NO                                                               |                                    |                                     | OIP TEST                        |                               |                                             | PROPE  |       | IZARD  |                     | PROJEC<br>20 | CT No.  | N.T.S. No.<br>92F/2 |         |
|---------------------|--------------|----------------|-------------------------------------|-------------------------------------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------|-------------------------------|---------------------------------------------|--------|-------|--------|---------------------|--------------|---------|---------------------|---------|
|                     | F            | IELD C         | O-ORDINA                            | ATES                                                                          | DEPTH                              | RECORDED                            | RING<br>CORRECTED               | AN<br>RECORDED                | GLE<br>CORRECTED                            |        | 9     | SURVEY | ED CO-OF            | DINATES      |         | Sheet 5             | of 17   |
| Lat.                | -83.5mN      | Elev.          |                                     | Dip<br>-55deg                                                                 | 46.63                              | RECORDED                            | COMMECIES                       | RECORDED                      | 55 des                                      | Lat.   |       | E      | lev.                | Dip          |         | HOLE No.            |         |
| Dep.                | 40.5mE       | Length         | 104.85m                             | Bearing 270 deg                                                               | 101.80                             |                                     |                                 |                               | 55 Deg                                      | Dep.   |       | L.e    | ength               | Bearing      |         | LIZ 84              | -1      |
|                     |              |                |                                     |                                                                               |                                    |                                     |                                 | 1                             |                                             | %      | Est.  |        |                     |              | ASS     | SAYS                |         |
| From<br>detres      | To<br>Metres | Recovery       |                                     | De                                                                            | scription                          |                                     |                                 | Stri                          | ucture                                      | Sulph. | Grade | SAMPLE | No. Width<br>Metres | Au (g/T)     | Au(ppb) | Ag(ppm)             | As(ppm  |
| (33.20              | 35.20        | 93%            | section 8                           | ength= 1.85 md<br>back to light<br>veining with pyr                           | green near                         | end. Mod                            | erate qtz                       | -                             |                                             |        |       | 63016  | 2.0                 |              | 40      | 0.4                 | Z4      |
| -                   |              |                | frac. fil                           | lling. Rock become cock also appears = 1-1.5%                                 | mes much s                         | ofter nea                           | r lower                         |                               |                                             |        |       |        |                     |              |         |                     |         |
| 35.20               | 35.65)       | 78%            | AS ABOVE<br>Actual le               | ength= .35m. Wel                                                              | l broken c                         | ore. Many                           | microfra                        | ctures.                       |                                             |        |       | 63017  | .45                 |              | 20      | 0.2                 | 24      |
| 35.65               | 43.3         | 100%           | to slight                           | ? FLOWS<br>dark green very<br>ly bedded. Very<br>inlets present l             | minor to                           | no pyrite                           | . Calcite                       | - 40 deg                      | ng<br>CA@37.0<br>CA@38.4                    |        |       |        |                     |              |         |                     |         |
|                     |              |                | are in ra<br>Changes i<br>tacts wit | andom directions<br>in grain size are<br>th gradational co<br>s seen occasion | not paral<br>generatl<br>parsening | lel to be<br>y at dist<br>away from | dding.<br>inct con-<br>a contac | 43 deg<br>48 deg<br>t. 50 deg | CA@42.1<br>CA@41.55<br>CA@ 43.0<br>CA@ 43.2 |        |       |        |                     |              |         |                     |         |
|                     |              |                | ly as dis                           | seminations. Ave<br>with below unknossible fault boo                          | erage grad<br>nown betwe           | e is much                           | less tha                        | n<br>of                       |                                             |        |       |        |                     |              |         |                     |         |
|                     |              |                | seen.                               |                                                                               | :                                  |                                     |                                 |                               |                                             |        |       |        |                     |              |         |                     | -       |
| (35.65              | 37.65)       | 89%            | ł                                   | ength= 1.78m. Mir<br>o no pyrite.                                             | nor qtz ca                         | lcite vei                           | ning.                           |                               |                                             |        |       | 63018  | 3 2.0               |              | 10      | 0.2                 | <u></u> |

NOTE: Gold Results expressed in p/tonne were determined by Bondar-Clegg Laboratories

Date April 2/84

Logged By R.G. WILSON

Sample Description by: G. Gill

| Date Collar<br>March | red<br>31/84 | Date Co<br>Apri | mpleted<br>1 2/84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Core Size<br>NQ                                                                                                                                                          |                                            | _                                       | DIP TEST              | -              |                 | PROPE       |                                         |          |          | PROJE    | CT No.  | N.T.S. No.<br>92F/2 |        |
|----------------------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------|----------------|-----------------|-------------|-----------------------------------------|----------|----------|----------|---------|---------------------|--------|
|                      | F            | IELD C          | O-ORDINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TES                                                                                                                                                                      | DEPTH                                      | RECORDED                                | RING<br>CORRECTED     | AN<br>RECORDED | GLE             | T           |                                         | SURVEY   | ED CO-OF | RDINATES |         | Sheet 6             |        |
| Lat. 100-            | +83.5mN      | Elev.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dip<br>-55 deg                                                                                                                                                           | 46.63                                      | RECORDED                                | CORRECTED             | RECORDED       | 55 deg          | Lat.        |                                         | Ele      |          | Dip      |         | HOLE No.            |        |
| Dep. 100             | +40.5mE      | Length          | 104.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bearing 270 deg                                                                                                                                                          | 101.80                                     |                                         |                       |                | 55 Deg          | Dep.        | -                                       | Lei      | ngth     | Bearing  | 9       | LIZ 84-             | -1     |
| From                 |              | Recovery        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Des                                                                                                                                                                      | cription                                   |                                         |                       | Str            | ucture          | %<br>Sulph. | Est.<br>Grade                           | SAMPLE N | o. Width |          | ASS     | SAYS                |        |
| metres               | Metres       |                 | AS ABOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          | 1                                          | * · · · · · · · · · · · · · · · · · · · |                       |                |                 | - Julian    | Orde                                    |          | Metres   | Au(g/T)  | Au(ppb) | Ag(ppm)             | As(ppm |
| (37.65               | 39.65)       | 84%             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ngth= 1.67m. Mo<br>soft5% sulfi                                                                                                                                          |                                            | fractured                               | rock whi              | ch             |                 |             | *************************************** | 63019    | 2.0      |          | 10      | 0.2                 | < 4    |
| (39.65               | 41.65)       | 100%            | tuffaceou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S ABOVE ctual length= 2.0m. Minor pyrite in fractures in uffaceous zone. Qtz-calcite veins exist but are not xtreme. Pyrite along fractures. Sample is mainly uffaceous. |                                            |                                         |                       |                |                 |             |                                         |          |          |          | 10      | 0.2                 | < 4    |
|                      |              |                 | tuffaceou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S.                                                                                                                                                                       |                                            |                                         |                       |                |                 |             |                                         |          |          |          |         |                     |        |
| (41.65               | 43.30)       | 100%            | the state of the s | ength= 1.85m. So<br>ed pyrite.                                                                                                                                           | me qtz &                                   | calcite v                               | eining wi             | th             |                 |             |                                         | 63021    | 1.65     |          | 10      | 0.2                 | 16     |
| 3.3                  | 44.9         | 88%             | Subhedra<br>mm are s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -HORNBLENDE PORP<br>1 feldspar and?<br>et in a very fin<br>1dspars comprise                                                                                              | hornblend<br>e grained                     | e phenocr<br>hard gre                   | en ground             | _              |                 | -           |                                         |          |          |          |         |                     |        |
|                      |              |                 | The maficalcite sharp & 45 deg C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cs tend to clust<br>veinlets and pyr<br>irregular at 65<br>A immediately to                                                                                              | e <b>f</b> in zon<br>ite .5%.<br>deg CA wi | es. Minor<br>Contact                    | quartz-<br>with below | CONTA          | ACT<br>CA@ 44.9 |             |                                         |          |          |          |         |                     |        |
| 43.30                | 44.90)       | 84%             | Pyrite-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ength= 1.35m. M<br>minor & along fr                                                                                                                                      |                                            | malcite v                               | einlets.              |                |                 |             |                                         | 63022    | 1.6      |          | 10      | 0.2                 | 12     |
| 4.9                  |              | 78%             | As, 35.65<br>fragment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TUFF & FLOWS?<br>5-43.3 but is mo<br>sections as at<br>rt sections but                                                                                                   | 48.00. Py                                  | rite is m                               | ore common            | n 45 deg       |                 | Py<br>1%    |                                         |          |          |          |         |                     |        |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboratories. Date\_

Logged By R.G. WILSON
Sample Descriptions by: G. Gill

| Date Collar<br>March | gd/84        | Date Co<br>Apri | mpleted,                         | Core Size NQ                                                                   |                        | [          | DIP TEST               |          |                  | PROPE    | RTY   | IZARD   |              | PROJEC<br>2 | CT No.   | N.T.S. No.<br>92F/  | >       |
|----------------------|--------------|-----------------|----------------------------------|--------------------------------------------------------------------------------|------------------------|------------|------------------------|----------|------------------|----------|-------|---------|--------------|-------------|----------|---------------------|---------|
|                      | F            | ELD C           | O-ORDINA                         | TES                                                                            | DEPTH                  | RECORDED   | RING                   | RECORDED | GLE<br>CORRECTED |          | 5     | URVEY   | ED CO-OR     | DINATES     |          | Sheet 7             |         |
| Lat. 100+            | -83.5 mN     | Elev.           |                                  | Dip - 55 deg                                                                   | 46.63                  |            |                        |          | 55 deg           | Lat.     |       | EI      | ev.          | Dip         |          | HOLE No.<br>LIZ 84- | 1       |
| Dep. 100+            | -40.5 mE     | Length          | 104.85                           | Bearing 270 deg                                                                | 101.80                 |            |                        |          | 55 deg           | Dep.     |       | Le      | ength        | Bearing     |          | LIZ 04-             | •       |
|                      | ·            |                 |                                  |                                                                                |                        | <u> </u>   |                        |          |                  | %        | Est.  |         |              |             | ASS      | AYS                 |         |
| From<br>Metres       | To<br>Metres | Recovery        |                                  | Des                                                                            | cription               |            |                        | Stri     | ucture           | Sulph.   | Grade | SAMPLEN | width Metres | A11(0/T)    | Au (ppb) | Ag(ppm)             | As(ppm) |
|                      | : 1<br>: %:  |                 | Broken t                         | ined sections ar<br>o rubbled core 4<br>rained and sandy<br>CA                 | 6.4-46.9?              | 50.16-50   | .60 core               |          |                  |          |       |         |              |             |          |                     |         |
| (44.90               | 46.90        | 90%             | AS ABOVE<br>Actual 1<br>& 46.75m | ength= 1.8m. Ver                                                               | y crumbly              | core bet   | ween 46.6              | 60       |                  |          |       | 63023   | 2.0          |             | 10       | 0.2                 | 8       |
| (46.90               | 48.90        | 93%             | med. gr.                         | ength= 1.85m. 5%                                                               | 1772                   |            |                        |          |                  |          |       | 63024   | 2.0          | 0.07        |          | 0.2                 | 16      |
| 48.90                | 50.70)       | 83%             |                                  | ength= 1.5m. Ver<br>(rusty). Very pyr                                          |                        |            |                        |          |                  |          |       | 63025   | 1.8          |             | 80       | 0.2                 | 200     |
| 50.7                 | 55.8         | 78%             | As 49.9-<br>slightly<br>epidote  | TUFFS? FLOWS<br>-50.7 but coarser<br>clay altered an<br>alteration throu       | d pale gr<br>ghout roc | een in co  | lor. Gene<br>k is mode | r+       | ing<br>eg @ 52.7 | Ру<br>1% |       |         |              |             |          |                     | -       |
| -                    |              |                 | which is<br>as at 52<br>classifi | oft. Some short some softer. Py pres<br>2.7-52.8. Some se<br>led as fine grain | ent to 1% ctions of    | over sho   | rt sector              | ıs       |                  |          |       |         |              |             |          |                     |         |
| 50.7                 | 52.7 )       | 75%             | (clay) f                         | E<br>Length= 1.50m. An<br>Feldspar xtals or<br>Hesitic flow. Py                | fg feld.               | . porphyry | grading                |          |                  |          |       | 63026   | 2.0          |             | 60       | 0.2                 | 240     |
| ILL LOG . 87         |              |                 | 52.20m                           |                                                                                |                        |            |                        |          |                  |          |       |         |              |             |          |                     |         |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboratories. Date\_

April 2/84

R.G. WILSON

| Date Collar<br>March | red<br>31/84 | Date Co<br>April | ompleted<br>2/84  | Core Size NQ                          |                |                  | DIP TEST          |                | <del></del>      | PROPE                                  | ERTY                                   |                |                                                  | PROJE                                            |              | N.T.S. No.<br>92F/2 | 1.           |
|----------------------|--------------|------------------|-------------------|---------------------------------------|----------------|------------------|-------------------|----------------|------------------|----------------------------------------|----------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------|---------------------|--------------|
|                      | F            | IELD C           | O-ORDINA          | TES                                   | DEPTH          | BE A<br>RECORDED | RING<br>CORRECTED | AN<br>RECORDED | GLE<br>CORRECTED | $\Gamma$                               |                                        | SURVEYE        | D CO-OR                                          | DINATES                                          |              | Sheet 8             | of 17        |
| Lat. 1004            | -83.5 mN     | Elev.            |                   | Dip -55 deg                           | 46.63          | , and a second   | COMMECTED         |                | 55 deg           | Lat.                                   |                                        | Ele            | ٧.                                               | Dip                                              |              | HOLE No.            |              |
| Den                  |              | Length           | 104.85m           | Regring                               |                |                  |                   |                |                  | Dep.                                   |                                        | Len            | gth                                              | Bearing                                          | <br>         | LIZ 84-             | 1            |
| 100+                 | 40.5mE       |                  | 104.85m           | 270 deg                               | 101.80         |                  | L                 |                | 55 deg           |                                        | Τ                                      | т              |                                                  | <del>                                     </del> | ۸۹۹          | AYS                 |              |
| From                 | 1 1          | Recovery         |                   | Des                                   | cription       |                  |                   | Stri           | sture            | % Sulph.                               | Est.<br>Grade                          | SAMPLE NO      | 1                                                |                                                  | T            | T                   |              |
| Metres               | Metres       |                  | AS ABOVE          |                                       |                |                  |                   |                | <del></del>      | <u> </u>                               | <del> </del>                           | <del> </del> - | Metres                                           | Au(g/T)                                          | Au(ppb)      | Ag(ppm)             | As(ppm)      |
| (52.7                | 54.7)        | 84%              |                   | ength= 1.67m. La                      | ]<br>rge rusty | y qtz vein       | at 54.20          | m              |                  |                                        |                                        | 63027          | 2.0                                              |                                                  |              |                     | 100          |
|                      | 1            |                  |                   | ite veins-minima                      |                |                  |                   |                |                  |                                        | ŧ                                      |                |                                                  | 0.21                                             |              | 0.2                 | 480          |
|                      |              |                  | AG ABOVE          | · · · · · · · · · · · · · · · · · · · | <u> </u>       |                  |                   |                |                  | ļ                                      | <del> </del>                           |                | <del>                                     </del> | <del> </del>                                     |              |                     | -            |
| (54.7                | 55.8)        | 86%              | AS ABOVE          | ength=0.95m.Larg                      | <br>e_hh=nvro  | ny ytals i       | n some            |                |                  |                                        |                                        | 63028          | 1.1                                              | 0.21                                             |              | 0.2                 | 120          |
| (2                   | 33.07        | 00%              |                   | of fg. pale gre                       |                |                  |                   |                |                  | 1                                      |                                        | 100020         |                                                  | 0.21                                             |              | 0.2                 |              |
|                      |              |                  | over sec          | tion & up to 5%                       | as at 54.      | .9m-55.15m       | n. Pyrite         |                |                  | <u> </u>                               |                                        |                |                                                  |                                                  |              |                     | <u> </u>     |
|                      |              |                  |                   | s fracture filli                      |                |                  |                   |                |                  | -                                      |                                        |                |                                                  |                                                  |              |                     |              |
|                      |              |                  | calcite           | veins exist but                       | are not e      | extensive.       |                   |                |                  |                                        | 1                                      | 1              |                                                  |                                                  |              |                     | 1            |
|                      |              |                  |                   |                                       |                |                  |                   |                |                  |                                        | J                                      |                | ]-                                               |                                                  | 1            |                     |              |
| <del></del> .        |              |                  | ANDESITE          | FLOWS                                 | T              |                  |                   |                |                  | 1                                      | 1                                      |                |                                                  |                                                  | <u> </u>     | <u> </u>            |              |
| 55.8                 | 66.6         | 94%              |                   | o dark green fin                      |                |                  |                   | ely            |                  |                                        | {                                      | 1              |                                                  |                                                  |              |                     | 1            |
| Territory            |              |                  |                   | requently fractu                      |                |                  |                   |                |                  |                                        |                                        | ĺ              |                                                  | 1                                                |              |                     | 1            |
|                      |              |                  |                   | 1 present. Quart                      |                |                  |                   |                | <u> </u>         | <b>-</b>                               | ļ                                      |                | <del> </del>                                     | -                                                |              |                     | <del> </del> |
| -                    |              |                  |                   | inlets from 1mm is, Sericite but      |                |                  |                   |                | *                | 1                                      |                                        |                |                                                  |                                                  |              |                     |              |
|                      | * 4 * *      |                  |                   | is generally abs                      |                |                  |                   |                |                  |                                        |                                        | i .            |                                                  |                                                  |              |                     |              |
|                      |              |                  |                   | nations and frac                      |                |                  |                   | 56.7-5         | 57.0             | ļ                                      |                                        |                |                                                  |                                                  |              |                     |              |
|                      |              | 1.               |                   | generally broke                       |                |                  | ured, loc         |                |                  |                                        | T                                      |                |                                                  | -                                                |              |                     |              |
|                      |              |                  |                   | ng a brecciated                       |                | ce.              | 14                | Beddir         |                  | .                                      | İ                                      | l              |                                                  |                                                  |              |                     | ľ            |
|                      |              | . *              | Core              | gouge@ 57.0- 57                       | .2; 62.1-      | _62_2            |                   | 35 deg         | CA@ 57.40        | '[                                     |                                        | }              |                                                  |                                                  |              |                     |              |
|                      |              |                  | Gouse             | is probably due                       |                |                  | Bedding           | is             |                  |                                        | +                                      | l              | <del> </del>                                     | <del> </del>                                     | <del> </del> |                     | +            |
|                      |              |                  |                   | ly massive and i                      |                |                  |                   |                |                  |                                        |                                        |                |                                                  |                                                  |              |                     |              |
|                      |              |                  |                   | sections. Mino                        |                |                  |                   | у              |                  |                                        |                                        | 1              |                                                  |                                                  |              |                     |              |
|                      |              |                  |                   | 0.5. Minor, porp                      |                |                  |                   |                |                  | ļ                                      |                                        | <b> </b>       |                                                  | <b></b>                                          |              |                     | 1            |
|                      |              |                  | Contact<br>20 cm. | with below irre                       | gular and      | i?gradatio       | mal over          |                |                  |                                        |                                        |                |                                                  |                                                  |              |                     |              |
|                      |              |                  | ZU CM.            |                                       |                |                  |                   |                |                  |                                        |                                        |                |                                                  |                                                  |              |                     |              |
|                      |              |                  |                   |                                       |                |                  |                   |                |                  |                                        |                                        |                |                                                  |                                                  |              |                     |              |
| IL LOG · 8           | Ļ            |                  | L                 |                                       |                |                  | <del> </del>      | _4             | <del></del>      | ــــــــــــــــــــــــــــــــــــــ | ــــــــــــــــــــــــــــــــــــــ | <u> </u>       | <del></del>                                      | 1                                                |              | ·                   |              |

DRILL LOG - 81

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboritories. Date\_

logged By R.G. WILSON
Sample Descriptions by: G. Gill

| Date Colla<br>March | 31/84   | Date Co<br>Apri | impleted<br>1 2/84 | Core Size NQ                           |            |                                                  | DIP TEST          | S              |                  | PROPE        | RTY                                              | LIZARD    |                                       | PROJE    | CT No.  | N.T.S. No.<br>92F/2 |              |
|---------------------|---------|-----------------|--------------------|----------------------------------------|------------|--------------------------------------------------|-------------------|----------------|------------------|--------------|--------------------------------------------------|-----------|---------------------------------------|----------|---------|---------------------|--------------|
|                     | F       | IELD C          | O-ORDINA           | ATES                                   | DEPTH      | BE A                                             | RING<br>CORRECTED | AN<br>RECORDED | GLE<br>CORRECTED |              |                                                  |           | D CO-OR                               | DINATES  |         |                     | of 17        |
| Lat.                | 83.5mN  | Elev.           |                    | Dip<br>-55 deg                         | 16.60      | RECORDED                                         | CORRECTED         | RECORDED       |                  | Lat.         | -                                                | Ele       |                                       | Dip      |         | HOLE No.            |              |
| Dep.<br>100+        |         | Length          | 10/ 05             | Bearing 270 deg                        | 46.63      | <del>                                     </del> | -                 |                | -55 deg          | Dep.         |                                                  | l er      | ath .                                 | Bearing  |         | LIZ 84              |              |
| 100+                | 40.5mE  |                 | 104.85m            | 2/0 deg                                | 101.80     | <u> </u>                                         | <u> </u>          |                | 55 deg           |              | ,                                                |           | · · · · · · · · · · · · · · · · · · · | Dearing  | ,       | LIZ O               |              |
| From                | To      | Recovery        |                    | Des                                    | cription   |                                                  |                   | 24.            | ucture           | %            | Est.                                             | SAMPLE N  | . Width                               | L        | ASS     | AYS                 |              |
| Metres              | Metres  |                 |                    |                                        |            |                                                  |                   | 3""            | uciure           | Sulph.       | Grade                                            | SAMPLE IN | Metres                                | Δ11(α/T) | Au(ppb) | Ac (nnm)            | I            |
| (55.0               | 57.0    | 0.5%            | AS ABOV            |                                        |            |                                                  |                   |                |                  | 1            |                                                  |           |                                       | 110(5/1) | ла(рры) | L VE ( bbill )      | ASCROTT      |
| (55.8               | 57.8)   | 95%             |                    | length= 1.90m.                         |            |                                                  |                   | eď             |                  |              |                                                  | 63029     | 2.0                                   |          | 90      | 0.6                 | 130          |
|                     |         |                 |                    | zones occur as at                      |            |                                                  |                   |                |                  | ļ            |                                                  | ľ         | 1                                     | 1 .      | 90      | 0.6                 | 130          |
| <del></del>         |         |                 | SULT &             | crumbly & contages & as dissemina      | t one V    | 1% pyrite                                        | along ira         | С              |                  | 1            |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 | 56.90 t            | to 57.80m & heavy                      | sericite   | . Clumbiy<br>- alterati                          | ion               |                |                  |              | -                                                |           | 1                                     |          |         |                     |              |
|                     |         |                 |                    | oo oo oo oo oo oo oo oo oo oo oo oo oo | beliefe    | arceraci                                         | ion.              |                |                  |              |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 |                    |                                        |            |                                                  |                   |                |                  |              |                                                  |           |                                       |          |         |                     |              |
|                     |         | ,               | AS ABOV            |                                        |            | -                                                |                   |                |                  | †            | <del>                                     </del> |           | · · · · · · · · · · · · · · · · · · · |          |         |                     | <del> </del> |
| (57.8               | 59.80)  | 88%             | Actual             | length= 1.75m.                         | Pale gree  | en & very                                        | crumbly c         | ore.           |                  |              | !                                                | 63030     | 2.0                                   |          |         |                     |              |
|                     |         |                 | Gouge f            | from shearing cor                      | itains ser | ricite. H $\epsilon$                             | avy clay          |                |                  |              |                                                  |           | 1                                     |          | 60      | 0.4                 | 36           |
|                     |         |                 | alterat            | ion throughout s                       | ection. (  | Core becom                                       | nes slight        | 1y             |                  |              |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 | more co            | mpetent & tuffac                       | epus fron  | n 59.40-59                                       | .80m.             |                |                  |              |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 | Pyrite             | occurs in fracti                       | res ( 5%   | ()                                               |                   |                |                  |              |                                                  |           |                                       |          | "       |                     |              |
|                     |         | :               |                    |                                        | -          |                                                  |                   |                |                  |              |                                                  |           |                                       |          |         |                     |              |
| <del></del>         |         |                 |                    |                                        | <u> </u>   |                                                  |                   | <u> </u>       |                  |              |                                                  |           |                                       |          |         |                     |              |
| (59.80              | 61.80)  | 00%             | AS ABOV            |                                        |            |                                                  |                   |                |                  |              |                                                  |           |                                       |          |         |                     | 1            |
| (39.60              | 01.00)  | 90%             | ACTUAL             | length- 1.95m.                         | Moderate   | heavy cla                                        | y & seric         | ite            |                  |              |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 | fractur            | ion in sample. Free surfaces. Exte     | yrite occ  | curs along                                       | some              |                |                  |              |                                                  | 63031     | 2.0                                   |          | 20      | 0.4                 | . 8          |
|                     |         |                 | 60 63m-            | -60.87m. although                      | nsive qiz  | -calcire                                         | veining a         | <u> </u>       |                  | <del> </del> |                                                  |           |                                       |          |         |                     | <del></del>  |
|                     |         |                 | minimal            | veinlets of lat                        | ter compo  | section 6                                        | ias<br>1 60-61 3  | 0              |                  | [            |                                                  |           |                                       | 1        | . 24    |                     |              |
|                     |         |                 | also an            | area of extensi                        | ve otz-ca  | olcite vei                                       | nlets at          |                | 4.               |              |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 | random             | orientation. Ve                        | ining & f  | racturing                                        | in core           |                |                  |              |                                                  |           |                                       |          |         |                     |              |
| ļ                   | 100     |                 | makes f            | or breccia appea                       | rance.     |                                                  |                   |                |                  |              |                                                  |           |                                       |          |         |                     | 1            |
|                     |         |                 |                    |                                        |            |                                                  |                   | ~              | 15               |              |                                                  |           |                                       |          |         |                     |              |
| -                   |         |                 |                    |                                        |            |                                                  |                   |                | * .              |              |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 | AS ABOV            | AF                                     | 1          |                                                  |                   |                |                  |              |                                                  |           |                                       |          |         |                     |              |
| (61.80              | 63.8)   | 98%             |                    | length= 1.95m. W                       | ell fract  | ured 62 4                                        | m-                |                |                  |              |                                                  |           |                                       |          |         |                     |              |
|                     |         |                 | sericit            | ic alteration al                       | one conce  | material                                         | <br>(chear        |                |                  |              |                                                  | 63032     | 2.0                                   |          |         |                     |              |
|                     |         | 1.              | zone?)             | Large qtz-calci                        | te vein a  | t 62.50m                                         | Fine or           |                |                  |              |                                                  | 03032     | 2.0                                   |          | 10      | 0.2                 | 8            |
| RILL LOG - 81       | <u></u> | <del></del>     | fieldsp            | oar porphyry obse                      | rved at 6  | 3.08m                                            | TINC EL.          |                |                  | لـــــا      | <u></u>                                          |           |                                       | L        |         | <u> </u>            | <u> </u>     |

NOTE: Gold Results expressed in g/tonne were determined by Bondar Clegg Laboritories.

Date April 2/84

Logged By R.G. WILSON
Sample Descriptions by: G. Gill

| Date Collor<br>March | red<br>31/84 | Date Cor<br>Apri | npleted<br>L 2/84              | Core Size<br>NQ                                                             |                                     |                       | DIP TEST                                | -        |                  | PROPE  | RTY<br>ZARD |       |                       | PROJE<br>20 | CT No.                                | N.T.S. No.<br>92F/2 |          |
|----------------------|--------------|------------------|--------------------------------|-----------------------------------------------------------------------------|-------------------------------------|-----------------------|-----------------------------------------|----------|------------------|--------|-------------|-------|-----------------------|-------------|---------------------------------------|---------------------|----------|
|                      | F            |                  | ORDINA                         | TES                                                                         | DEPTH                               | BE A<br>RECORDED      | RING                                    | RECORDED | GLE<br>CORRECTED | 1      |             | SURVE | YED CO-OF             | DINATES     | · · · · · · · · · · · · · · · · · · · |                     | of 17    |
| <sup>Lat.</sup> 100+ | -83.5mN      | Elev.            |                                | Dip -55 deg                                                                 | 46.63                               |                       |                                         |          | 55 deg           | Lat.   |             |       | Elev.                 | Dip         |                                       | HOLE No.            |          |
|                      | -40.5mE      | Length           | 104.85m                        | 5                                                                           | 101.80                              |                       |                                         |          | 55 Deg           | Dep.   |             |       | Length                | Bearing     | ]                                     | LIZ 84              | -1       |
|                      |              |                  |                                |                                                                             |                                     |                       |                                         |          |                  | %      | Est.        | T     |                       |             | ASS                                   | SAYS                |          |
| From<br>Metres       |              | Recovery         |                                | Des                                                                         | cription                            |                       |                                         | Stru     | scture           | Sulph. |             | SAMPL | E No. Width<br>Metres | Au(g/T)     | Au(ppb)                               | Ag(ppm)             | As (ppm) |
|                      |              |                  | veinlet<br>the las             | full of microfi<br>s but is more of<br>t 2 samples, i.e<br>(crumbly core)   | ompetent<br>2. 57.8-61              | (although             | soft) th                                |          |                  |        |             |       |                       |             |                                       |                     |          |
|                      |              |                  | siliceo                        | us andesite betw<br>rock appears mon                                        | reen 63.15                          | m + 63.3              | 5m. From                                |          |                  |        |             |       |                       |             |                                       |                     |          |
| (63.8                | 65.8)        | 83%              | large 2                        | E<br>length= 1.65m. 6<br>-3cm qtz vein t<br>& extensive qtz                 | o c.a.                              | -                     |                                         | end      |                  |        |             | 6303  | 3 2.0                 |             | 10                                    | 0,2                 | < 4      |
|                      |              |                  |                                | Om. Core is quit<br>ion. V. little p                                        |                                     |                       |                                         | te       |                  |        |             |       |                       |             |                                       |                     |          |
| 65.8                 | 66.6)        | 90%              | by micro                       | E<br>length= .72m. A<br>ofractures + qtz<br>ractures (190) R                | -calcite                            | veinlets.             | Pyrite                                  |          |                  |        |             | 6303  | 4 1.5                 |             | 50                                    | 0.2                 | < 4      |
|                      |              |                  | breccia                        | ted.                                                                        |                                     |                       | • • • • • • • • • • • • • • • • • • • • |          |                  |        |             |       |                       |             |                                       |                     |          |
| 66.6                 | 68.1         | 87%              | Clay alt<br>a green<br>soft wi | R-PORNBLENDE POR<br>tered feldspar a<br>fine grained gr<br>th top and botto | nd? hornb<br>oundmass.<br>m contact | Rock is<br>being ha   | moderate1                               | in<br>y  |                  |        |             | ·     |                       |             |                                       |                     |          |
| ILL LOG - 81         |              |                  | Phenod<br>and ave              | matted light to<br>crysts are subhe<br>rage 2mm. Quartz<br>of the rock and  | dral, up<br>-calcite                | to 3mm di<br>veinlets | are ubiqu                               |          |                  |        |             |       |                       |             |                                       |                     |          |

continuous.

NOTE: Gold results expressed in g/tonne were determined by Bondar-Clegg Laboratories. Date April 2/84

Logged By R.G. WILSON
Sample Descriptions by: G. Gill

| Date Collare<br>March | ed<br>31/84 | Date Co<br>Apri | mpleted<br>I 2/84               | Core Size<br>NQ                                                                                 |                                   |                                 | DIP TEST                |                    |          | PROPE    | RTY<br>ZARD |        |                     | PROJE<br>20 | CT No.  | N.T.S. No.<br>92F/2 |         |
|-----------------------|-------------|-----------------|---------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|-------------------------|--------------------|----------|----------|-------------|--------|---------------------|-------------|---------|---------------------|---------|
|                       | F           | ELD C           | O-ORDINA                        | TES                                                                                             | DEPTH                             | RECORDED                        | RING                    | AN<br>RECORDED     | GLE      | 4        |             | SURVE  | YED CO-O            | RDINATES    | 5       | Sheet 11            | of 17   |
| at.<br>100+           | 83.5mN      | Elev.           |                                 | Dip<br>-55 deg.                                                                                 | 46.63                             |                                 |                         |                    | 55 deg   | Lat.     |             |        | Elev.               | Dip         |         | HOLE No.            |         |
| Dep. 100+             | 40.5mE      | Length          | 104.85m                         | Bearing 270 deg                                                                                 |                                   |                                 |                         |                    | 55 deg   | Dep.     |             |        | Length              | Bearin      | g       | LIZ 84              | -1      |
|                       |             |                 | <del></del>                     |                                                                                                 |                                   |                                 |                         |                    |          | %        | Est.        |        |                     |             | ASS     | SAYS                | -       |
| From<br>Metres        |             | Recovery        |                                 |                                                                                                 | cription                          |                                 |                         | Str                | ucture   | Sulph.   | Grade       | SAMPLE | No. Width<br>Metres | Au(g/T)     | Au(ppb) | Ag(ppm)             | As(ppm) |
|                       |             |                 | continu<br>dissemi              | is present throu<br>ous bands to 3 m<br>nations. Unit is<br>ct with below, a                    | nm wide an<br>massive             | id as occa<br>bedded.           | isional                 |                    |          |          |             |        |                     |             |         |                     |         |
|                       |             |                 | and gra-<br>a conta             | dational in appe<br>ct of porphyry t<br>37 deg CA.                                              | arance, h                         | owever it                       | does hav                | e<br>ct            | CA@ 68.1 |          |             |        |                     |             |         |                     |         |
| (66.60                | 68.10)      | 100%            | slightl<br>qtz-cal              | length= 1.5m. Fe<br>y altered feldsp<br>cite veinlets ir                                        | ar phenos<br>regularly            | Few to                          | moderate<br>hroughout   |                    |          |          |             | 6303   | 5 1.5               |             | 300     | 0.2                 | < 4     |
|                       |             |                 | lets co                         | Rock is very har<br>ntaining epidote<br>+ py in qtz at 6                                        | & pyrite                          |                                 | qtz vein-               |                    |          |          |             |        |                     |             |         |                     |         |
| 58.1                  | 73.5        | 98%             | Green to                        | F FLOWS MINOR TU<br>o green grey, fi<br>ow rocks with so<br>of tuff . Quart                     | ne to med<br>me flow b            | reccias a                       | nd minor                | tely               | -        |          |             |        |                     |             |         |                     |         |
|                       |             |                 | Alterat<br>nature.              | ous, often wispy<br>ion appears to b<br>e occurs locally                                        | e minor a                         | nd silice                       | ous in                  |                    |          |          |             |        |                     |             |         |                     |         |
|                       |             |                 | 69.5 and<br>69.45.<br>Rock is   | ained disseminat<br>d 70.0-70.45. Mi<br>s gen <b>e</b> rally mass                               | nor chalc                         | opyrite p<br>d with mi          | resent at<br>inor moder |                    |          |          |             |        |                     |             |         |                     |         |
| II log 81             |             |                 | frequent<br>tufface<br>but gene | sections. Beddin<br>t fractures. Sho<br>ous material exi<br>erally 1-2mm in<br>s highly fractur | rt sectio<br>sts with<br>diameter | ns of<br>fragments<br>as at 73. | s to 2cm<br>5-73.8.     | Bedding<br>35 deg( | ,        | Ру<br>3% |             |        |                     |             |         | A.                  |         |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboratories

Date April 2/84

Logged By R.G. WILSON

| Date Collar<br>March | ed<br>31/84 | Date Co<br>Apri | mpleted<br>1 2/84            | Core Size<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       | DIP TEST             |          |               | PROPE  |       | LIZARD   |           | PROJE   |         | N.T.S. No.<br>92F/2 | ,        |
|----------------------|-------------|-----------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|----------------------|----------|---------------|--------|-------|----------|-----------|---------|---------|---------------------|----------|
|                      | F           | IELD C          | O-ORDINA                     | TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEPTH                   | RECORDED                              | RING                 | RECORDED | GLE CORRECTED |        |       | SURVEY   | ED CO-OR  | DINATES |         | Sheet 12            |          |
| Lat. 100+            | 83.5mN      | Elev.           |                              | Dip<br>-55 deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46,63                   |                                       | CORRECTED            |          | 55 deg.       | Lat.   |       | El       | ev.       | Dip     |         | HOLE No.            |          |
| Dep 100+             |             | Length          | 104.85m                      | Bearing 270 deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.80                  |                                       | - 1                  |          | 55 deg        | Dep.   |       | Le       | ngth      | Bearing | 9       | LIZ 84-             | 1        |
| From                 |             | Recovery        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cription                |                                       |                      | Str      | ucture        | %      | Est.  | SAMPLE N | lo. Width |         | ASS     | AYS                 |          |
|                      | Metres      |                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                      |          |               | Sulph. | Grade | OAW EE   | Metres    | Au(g/T) | Au(ppb) | Ag(ppm)             | As(ppm)  |
|                      |             |                 | with qu                      | epidote alterationaliste veninaliste venin | ining.                  |                                       |                      |          |               |        |       |          |           |         |         |                     |          |
|                      |             |                 |                              | t with below is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                       |                      |          |               | ļ      |       |          |           |         |         |                     | <u> </u> |
|                      |             |                 |                              | al present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in the % c              | or turrace                            | eous                 |          |               |        |       | -        |           |         |         |                     |          |
|                      |             |                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                       |                      |          |               | 1.     |       |          |           |         |         |                     |          |
| (68.10               | 70.1)       | 91%             |                              | /E<br>length= 1.81m.<br>ith many microfra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                       |                      | +        |               |        |       | 63036    | 2.0       |         |         |                     |          |
|                      |             |                 | occur                        | in flows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                       |                      |          |               |        |       | 03030    | 12.0      | 0.14    |         | 0.2                 | < 4      |
|                      |             |                 | fractur<br>69.90 r           | res (5%) Large so<br>n with epidote pro<br>n - zone of pyrit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ticeous z<br>cesent als | one (3-50<br>so.                      | em) at               | а        |               |        |       |          |           |         |         |                     |          |
|                      |             |                 | breccia                      | a (3% pyrite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>J</b>                | · · · · · · · · · · · · · · · · · · · |                      |          |               |        |       |          |           |         |         |                     |          |
|                      |             |                 | AS ABOV                      | 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                       |                      |          |               |        |       |          |           |         |         |                     |          |
| (70.1m               | 72.1)       | 90%             | Actual<br>± epido<br>betweer | length= 1.80m.<br>ote. Pyritic rich<br>n 70.5 & 70.6m. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n andesite<br>Large qtz | flow in vein at                       | fractures<br>71.00 - |          |               |        |       | 63037    | 2.0       | 0.10    |         | 0.2                 | 16       |
|                      |             |                 | 71.23m<br>sample             | with pyritic sel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vage (2-3               | 3%). Pyrit                            | e thougho            | ut       |               |        |       |          |           |         |         |                     |          |
| (72.1                | 73.5 )      | 90%             | 73.5m-7                      | /E<br>length= 1.26m. V<br>73.80m. Core is s<br>(shear zone?) at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | siliceous               |                                       |                      |          |               |        |       | 63038    | 1.4       | <0.07   |         | 0.2                 | < 4      |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboratories. Date April 2/84

Logged By R.G. WILSON
Sample Description by: G. Gill

| Date Collai<br>March | red<br>31.84 | Date Cor<br>Apri | pleted<br>2/84                | Core Size<br>NQ                                                       |                                          |                                 | DIP TEST                |                   |                                       | PROPE      |       | LIZA  | RD.    |        | PROJE   | CT No.  | N.T.S. No.<br>92F/2 |         |
|----------------------|--------------|------------------|-------------------------------|-----------------------------------------------------------------------|------------------------------------------|---------------------------------|-------------------------|-------------------|---------------------------------------|------------|-------|-------|--------|--------|---------|---------|---------------------|---------|
|                      | F            |                  | ORDINA                        | TES                                                                   | DEPTH                                    | RECORDED                        | RING                    | AN<br>RECORDED    | GLE<br>CORRECTED                      | -          |       |       |        | COOR   | DINATES |         | Sheet 1             | 3 of 17 |
| Lat.                 | -83.5mN      | Elev.            |                               | Dip -55 deg                                                           | 46.63                                    |                                 |                         |                   | 55 des                                | Lat.       |       |       | Elev.  |        | Dip     |         | HOLE No.            |         |
| Dep.100+             | 40.5mE       | Length           | 104.85                        | Danie -                                                               | eg 101.80                                |                                 |                         |                   | 55 deg                                | Dep.       |       |       | Leng   | th     | Bearing | i .     | LIZ 84              | -1      |
| From                 | То           | Recovery         |                               |                                                                       | escription                               | <b>+</b>                        |                         |                   |                                       | %          | Est.  | SAMPL |        | Width  |         | ASS     | AYS                 |         |
|                      | Metres       | Recovery         |                               |                                                                       |                                          |                                 |                         |                   | ucture                                | Sulph.     | Grade | SAMPL | E. NO. | Metres | Au(g/T) | Au(ppb) | Ag(ppm)             | As(ppm) |
| 73.5                 | 104.85       | 92%              | As 68.1<br>over fl<br>than lm | E TUFF AND FLO -73.5 but tuff ow sections. nm to 1.5cm and            | aceous sect<br>Tuff fragme<br>consist of | ents vary<br>angular,           | from less               | 55 deg<br>37 deg  | CA@ 80.1<br>CA@ 77.8<br>CA@ 89.1      |            |       |       |        | -      |         |         |                     |         |
|                      |              |                  | chert f<br>Quartz-            | feldspar, hor ragments to 1. calcite veinle discontinuous             | 5cm in sect<br>ts to 5mm a               | ions to inverage 2              | 30cm.<br>nm occur a     | ıs                | CA@ 100.7                             | 75         |       |       |        |        |         |         |                     |         |
|                      |              |                  | 33 and<br>Tuff                | ies of cross-c<br>25 deg Ca.<br>sections are g<br>ne ash? tuff        | enerally ma                              | assive bed                      | lded. Only              |                   |                                       |            |       |       |        |        |         |         |                     | 7       |
|                      |              |                  | veinlet                       | occurs as diss<br>s to 2-3% as a<br>te alteration                     | t 81.7-83.4                              | 0 1% Py 8                       | 38.39-89.3              | all a contract of |                                       |            |       |       |        |        |         |         |                     |         |
| -                    |              |                  | 3 cm<br>1 cm wi<br>At 93      | associated wit<br>quartz vein wi<br>de parallel to<br>3.9 core become | th 2% py at<br>CA@ 94.1-9<br>s highly br | 83.62; 0<br>94.5.<br>Token at 9 | uartz cal<br>95.1 to 96 |                   | n                                     | Py<br>2%   |       |       |        |        |         |         |                     |         |
| ./                   |              |                  | section<br>Py 1%<br>Py 1-2%   | over this sec<br>96.2-104.85                                          |                                          | sent fo r                       | 80% of                  |                   |                                       |            |       |       |        |        |         |         |                     |         |
|                      |              |                  | <del></del>                   | z vein @ 97.5                                                         |                                          |                                 |                         |                   |                                       | Ру<br>5-6% |       |       |        |        |         |         |                     |         |
| 73.5                 | 75.5)        | 88%              | frags t                       | TE<br>length= 1.76m.<br>o 3cm at 73.9-<br>Small pyritic               | 74.0m in fg                              | andesiti                        | ic tuff                 | 7                 | · · · · · · · · · · · · · · · · · · · |            |       | 63039 |        | 2.0    | 0.07    |         | 0.2                 | < 4     |

DRILL LOG 81

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboratories

Date April 2/84

Logged By R.G. WILSON

Sample Description by: G. Gill

| Date Colloi<br>Marc | red<br>h 31/84 | Date Co  | mpleted<br>11 2/84 | Core Size                            |                    |           | DIP TEST          |                                         |                                         | PROPE        | RTY           | LIZARI   | )         | PROJE                                            | ECT No. 20                                       | N.T.S. No. | 92F/2        |
|---------------------|----------------|----------|--------------------|--------------------------------------|--------------------|-----------|-------------------|-----------------------------------------|-----------------------------------------|--------------|---------------|----------|-----------|--------------------------------------------------|--------------------------------------------------|------------|--------------|
|                     | F              | IELD C   | O ORDINA           | ΓES                                  | DEPTH              | RECORDED  | RING<br>CORRECTED | AN<br>RECORDED                          | CORRECTED                               | 1            |               | SURVE    | YED CO-OR | DINATES                                          | S                                                | Sheet 13   | a of 17      |
| Lat. 100-           | +83.5mN        | Elev.    |                    | Dip -55 deg                          | 46.63m             |           | SU AMERICA        | *************************************** |                                         | Lat.         |               | 1        | Elev.     | Dip                                              | •                                                | HOLE No.   | - 1          |
| Don                 | +40.5mE        | Length   | 104.85m            | Boaring                              | 101 .80m           |           |                   |                                         | 55 deg                                  | Dep.         |               | ı        | _ength    | Bearin                                           | g                                                | LIZ        | 84-1         |
| 100                 | 140.51115      |          | 104.0511           | 270 deg                              | 101 .00m           | L         | <u>L</u>          |                                         | 55 deg                                  | -            | T             | 1        |           | <del></del>                                      |                                                  | 1          |              |
| From                | То             | Recovery |                    | Des                                  | cription           |           |                   | Str                                     | ucture                                  | %<br>Sulph.  | Est.<br>Grade | SAMPLE   | No. Width | <u> </u>                                         | T                                                | SAYS       | ¥            |
| Metres              | Metres         |          |                    |                                      |                    |           |                   |                                         |                                         | Jourph.      | 01000         |          | Metres    | Au (g/                                           | T Au (ppb)                                       | Ag(ppm)    | As (pm)      |
|                     |                |          | veinlet            | at 74.05m. Epid                      | o <b>t</b> e alter | ation per | vasive.           |                                         |                                         |              |               |          |           |                                                  |                                                  |            |              |
|                     |                |          | únit cór           | 4.55- zone of qt                     | rags up t          | o 3-4 cm  | long.             |                                         |                                         |              |               |          |           |                                                  |                                                  |            |              |
|                     |                |          | Py#ite a           | along qtz vein =<br>Frags in andesit | 2-3%, 74           | .48-74.93 | - more            |                                         | · · · · · · · · · · · · · · · · · · ·   | <u> </u>     |               |          |           |                                                  |                                                  | <u> </u>   | ļ            |
|                     |                |          | Cherty i           | rags in andesit                      | 14 matrix          | •         |                   |                                         |                                         |              |               |          |           |                                                  |                                                  |            |              |
|                     |                |          |                    |                                      |                    |           |                   |                                         |                                         |              |               |          |           | ļ ·                                              |                                                  |            |              |
|                     |                |          |                    |                                      |                    |           |                   |                                         |                                         |              | 1             |          |           | İ                                                |                                                  |            |              |
| /25 5               |                |          | AS ABOVE           |                                      |                    |           |                   |                                         |                                         |              |               |          |           | 1                                                | 1                                                |            | <u> </u>     |
| (75.5               | 77.50)         | 100%     | Actual 1           | length= 2.52m. 7                     | 6.1-76.27          | m= zone o | fqtz              |                                         |                                         |              |               |          |           |                                                  |                                                  |            |              |
|                     |                |          | veining            | with siliceous<br>zone coats frac    | & epidote          | alterati  | on. Pyrit         | e                                       |                                         | ļ.           |               | 63040    | 2.0       |                                                  | 90                                               | 0.2        | 4            |
|                     |                |          | atz stri           | ngers 77.0m-77.                      | 20m= zone          | of enid   | alteratio         | РУ                                      |                                         | <del> </del> | -             |          |           |                                                  |                                                  |            | <del> </del> |
|                     |                |          | associat           | ed with qtz-cal                      | cite vein          | ing & obv | ious cher         | tvi                                     |                                         | -            |               |          |           |                                                  |                                                  |            |              |
| . 1                 |                |          | or rhyol           | itic fragments.                      |                    |           |                   |                                         |                                         |              |               |          | · ·       |                                                  |                                                  |            |              |
|                     | 1.1            |          | Core is            | hard & very com                      | petent. 7          | 6.70m-77. | 00m-              |                                         |                                         |              |               |          |           |                                                  |                                                  |            |              |
|                     |                |          |                    | rags in tufface                      |                    |           |                   |                                         | *************************************** |              |               |          |           |                                                  |                                                  |            |              |
|                     |                |          | //. TOM-           | zone of very br                      | oken core          | (10 cm 1  | ong)              | .                                       |                                         | 1            |               | Ì        |           |                                                  |                                                  |            |              |
|                     |                |          |                    |                                      |                    |           |                   |                                         |                                         |              |               |          | 1         |                                                  |                                                  |            |              |
|                     | •              |          | AS ABOVE           |                                      | 1                  |           |                   |                                         |                                         | 1            |               | <b> </b> |           | <del>                                     </del> | -                                                |            | <del> </del> |
| (77.50              | 79.5)          | 100%     | Actual I           | ength= 2.23m. 7                      | 9.80m- 79          | .95- zone | of qtz-           |                                         |                                         |              |               |          |           |                                                  |                                                  |            |              |
|                     |                |          | calcite            | veinlets,epidot                      | e alterat:         | ion, som  | e cherty          |                                         |                                         |              |               | 63041    | 2.0       | 0.07                                             |                                                  | 0.2        | 4            |
|                     |                |          | 78.70m             | s & pyrite alon<br>-78.93m- zone o   | g rracture         | surface   | s.                |                                         |                                         | L            |               |          |           | J                                                | <u> </u>                                         |            | <u> </u>     |
|                     |                | -        | extensiv           | e epidote alter                      | ation. F           | ine-med o | ning with         |                                         |                                         |              |               |          |           |                                                  |                                                  |            | 1            |
| I                   |                |          | & сру ос           | cur in qtz blebs                     | s up to 2          | cm long   | as                | ŀ                                       |                                         |              |               |          |           |                                                  |                                                  |            | 1            |
|                     |                |          | dissemin           | ations & fractu                      | re surface         | es. A da  | rk green          |                                         |                                         |              |               |          |           |                                                  |                                                  |            | 1            |
|                     |                |          | chloriti           | c? zone occurs a                     | around sor         | ne of the | mineralia         | ed                                      |                                         |              |               |          |           |                                                  | <del>                                     </del> |            |              |
|                     |                | - [      | quartz p           | ods. Pyrite to                       | T% thrus           | sample co | re becomes        | 3                                       |                                         |              |               |          | -1        | 1                                                |                                                  |            |              |
|                     |                |          | nassive            | ., more competar<br>closer to lower  | nt, less f         | ractured  | & more            |                                         |                                         |              |               |          |           |                                                  |                                                  |            |              |
| ILL LOG 81          |                |          | massive            | croser to lower                      | end or sa          | imbre.    |                   | . 1                                     |                                         | ll           |               | -        |           | <u> </u>                                         |                                                  |            |              |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboratories

Date <u>April 2, 1984</u>

Logged By R.G. WILSON

Sample Description by: G. Gill

| Ogte Collo<br>March | 31/84        | Date Co<br>Apri                                  | ompleted<br>1 2/84  | Core Size<br>NO                      |           |           | DIP TEST                                         |                |                  | PROPE        |               | ZARD   |           | PROJEC       | CT No.      | N.T.S. No.<br>92F/2 |              |
|---------------------|--------------|--------------------------------------------------|---------------------|--------------------------------------|-----------|-----------|--------------------------------------------------|----------------|------------------|--------------|---------------|--------|-----------|--------------|-------------|---------------------|--------------|
|                     | FI           | ELD C                                            | O-ORDINA            | TES                                  | DEPTH     | BE A      | RING                                             | AN<br>RECORDED | GLE<br>CORRECTED |              |               |        | YED CO-OR | DINATES      |             | Sheet 14            | of 17        |
| at. 100             | +83.5mN      | Elev.                                            |                     | Dip -55 deg                          | 46.63     |           |                                                  |                | 55 deg           | Lat.         |               | E      | Elev.     | Dip          |             | HOLE No.            |              |
|                     |              | Length                                           | 104.85m             | Bearing 270 deg                      | 101.80    |           | <del>                                     </del> |                | 55 deg           | Dep.         |               |        | ength.    | Bearing      |             | 1                   |              |
| -                   |              | <del>                                     </del> | · ·                 | 1                                    |           | L         | <u> </u>                                         | <u> </u>       |                  | -            |               |        |           | <del></del>  | ۸۹۹         | AYS                 | 8/-1         |
| From                | To<br>Metres | Recovery                                         |                     | Des                                  | cription  |           |                                                  | Stri           | ucture           | %<br>Sulph.  | Est.<br>Grade | SAMPLE |           |              | Γ           | T                   | Τ            |
| lettes              | Pietres      |                                                  | AS ABOVE            |                                      | <u> </u>  |           |                                                  |                |                  | <del> </del> |               |        | Metres    | Au (g/T)     | Au (opb )   | Ag(ppm)             | AS(ppn       |
| (79.5               | 81.50)       | 81%                                              | Actual le veinlets. | ngth= 1.77m. Mo<br>Very competent    | rock. 79  | .95m-qtz- | -calcite                                         | •              |                  |              |               | 63042  | 2.0       | 0.17         |             | 0.2                 | 4            |
|                     |              |                                                  | veining w           | ith epidote alte                     | ration &  | 3% disser | inated                                           |                |                  |              |               |        |           |              |             |                     |              |
|                     |              |                                                  | epid & py:          | 95 - fg. bedding                     | zones as  | sociated  | with qtz                                         |                |                  |              |               |        |           |              |             |                     |              |
|                     |              |                                                  |                     | Sample becomes rom 80.70m to 81      |           |           |                                                  |                |                  |              |               |        |           |              |             |                     | <del> </del> |
|                     |              |                                                  |                     | rock. Very comp                      |           |           |                                                  |                |                  |              |               |        |           |              |             |                     |              |
| · .                 |              |                                                  | AS ABOVE            | <del></del>                          | -т        |           | * *                                              |                |                  | $\vdash$     |               |        |           | <del> </del> |             | ļ                   | <del> </del> |
| 81.50               | 83.50)       | 97%                                              | Actual le           | ngth = 1.94m. F                      |           |           |                                                  |                |                  |              |               |        |           |              |             |                     |              |
|                     |              |                                                  | flow rocks          | & minor amts.of                      | d. green, | ig andes  | itic                                             |                |                  |              |               | 63043  | 2.0       | 0.07         | 1.00        | 0.2                 | < 4          |
|                     |              |                                                  |                     | 2% in frac & qtz                     |           |           |                                                  |                |                  |              | -             |        |           |              |             |                     |              |
|                     |              |                                                  | tuff as at          | Fg diss pyrite<br>t 81.80-82.35m.    | (pyrite   | to 5%).   | Core is                                          | -              |                  |              |               |        |           |              |             |                     |              |
| <del></del>         |              |                                                  |                     | competent. Som                       |           |           |                                                  | <b>_</b>       |                  |              |               |        |           |              | <del></del> |                     | ļ            |
|                     |              | ·                                                |                     | . 81.40-81.50 s<br>sociated fg pyri  |           | zone-qtz  | veins                                            |                |                  |              |               |        |           |              |             |                     |              |
|                     |              |                                                  |                     |                                      |           |           |                                                  |                |                  |              |               |        |           |              |             |                     |              |
|                     |              |                                                  | AS ABOVE            |                                      | ]         |           |                                                  |                |                  |              |               |        |           |              |             |                     |              |
| 83.50               | 85.50        | 90%                                              | siliceous           | ngth= 1.42m. 35.<br>ly- altered ande | sitic tuf | f with 1% | pyrite                                           |                |                  |              |               | 63044  | 2.0       | 0.07         |             | 0.2                 | 80           |
|                     |              | ł                                                | and has pe          | ong fractures.<br>ervasire epidote   | alterati  | on throug | hout.                                            |                |                  |              |               |        |           |              |             |                     |              |
|                     |              |                                                  |                     | curs as dissemin<br>ssocited with qt |           |           |                                                  |                |                  |              |               |        |           |              |             |                     |              |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboritories

Date April 2/84

Logged By R. G. Wilson
Sample Descriptions by: G. Gill

| ote Collor<br>March | ed<br>31/84 | Date Co<br>Apri | mpleted<br>1 2/84           | Core Size<br>NQ                                                     |                                                     |                                                | DIP TEST                                       |                |                  | PROPE  |      | LIZARD    |         | PROJE   | <b></b> | N.J.S.No.<br>92F/2 |       |
|---------------------|-------------|-----------------|-----------------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------|------------------|--------|------|-----------|---------|---------|---------|--------------------|-------|
|                     | F           | IELD C          | D-ORDINA                    | ATES                                                                | DEPTH                                               | RECORDED                                       | RING<br>CORRECTED                              | RECORDED       | GLE<br>CORRECTED |        |      | SURVEYE   | D CO-OF | DINATES |         | Sheet 15           | of 17 |
| at.                 | +83.5mN     | Elev.           |                             | Dip                                                                 | 16.60                                               |                                                |                                                |                |                  | Lot.   |      | Ele       | ٧.      | Dip     |         | HOLE No.           |       |
|                     |             |                 | 104.85                      | -55 deg<br>Bearing 270 deg                                          | 46.63                                               |                                                |                                                | 1.             | 55 deg<br>55 deg | Dep.   |      | Len       | gth     | Bearing |         | LIZ 84             | -1    |
|                     |             |                 | ·                           | <del></del>                                                         |                                                     |                                                | <b>.</b>                                       |                |                  | %      | Est. |           |         |         | ASS     | AYS                |       |
| From<br>Metres      |             | Recovery        |                             | De                                                                  | scription                                           |                                                |                                                | Str            | ucture           | Sulph. |      | SAMPLE NO | Metres  | Au(g/T) | Au(pph) | Ад9ррт)            | As (r |
| 85.50               | 87.5)       | 93%             | 85.70m                      | VE<br>length= 1.85 m.<br>. Core loss bet<br>chunks of andesi        | ween 85.8/                                          | 'm & 86.31                                     | lm                                             |                |                  |        |      | 63045     | 2.0     |         | 10      | 0.2                | < 4   |
|                     |             |                 | andesi<br>Core<br>Pervas    | tic tuff at 87.1 becomes more coive epidote alterant mainly assets  | 6m<br>ompetent r<br>ration thi                      | near botto<br>roughout s                       | om of samp<br>sample. I                        | le.<br>'yrite= |                  |        |      |           |         |         |         |                    |       |
|                     |             |                 |                             | e veinlets.                                                         |                                                     |                                                |                                                |                |                  |        |      |           |         |         |         |                    |       |
| 37.5                | 89.5)       | 100%            | d. gree                     | VE<br>length= 2.lm. M<br>en flow rock.<br>icant core loss           |                                                     |                                                |                                                | <u> </u>       |                  |        |      | 63046     | 2.0     |         | 40      | 0.2                | 20    |
|                     |             |                 | associa                     | ated with fractu<br>g diss pyrite se                                | ring & qtz                                          | -calcite                                       | veinlets.                                      |                |                  |        |      |           |         |         |         |                    |       |
| .5                  | 91.5)       | 79%             | green                       | VE<br>length=1.58m. A<br>to pale green in<br>assoc. with qtz        | color. Py                                           | rite occu                                      | ırs in                                         |                |                  |        |      | 63047     | 2.0     |         | 10      | 0.2                | < 4   |
|                     |             |                 | broken<br>between<br>fractu | core between 89 n 90.45m & 90.55m res. Highly chlosesitic tuff cont | .5h & 90.3<br>n. Pyrite<br>ritic zone<br>aining fg. | 37m. Vein<br>exists on<br>at 91.0-<br>frac. fi | breccia<br>lly along<br>-91.14 on<br>lling pyr |                |                  |        |      |           |         |         |         |                    |       |
|                     |             |                 | Lg cal                      | cite vein with e                                                    | oi <b>l</b> ote at                                  | 91.34-91.                                      | 41- no py                                      | rite.          |                  |        |      |           |         |         |         |                    | 5.    |

Logged By R.G. WILSON
Sample descriptions by: G. Gill

| Dote Colloi<br>March | 31/84   | Date Co<br>Apri | ompleted<br>1 2/84                             | Core Size<br>NO                                                            |                                                      |                                                      | DIP TEST                                      |                |        | PROPE  |       | LZARD     |                 | PROJEC   | CT No.   | N.T.S. No.<br>92F/2 |        |
|----------------------|---------|-----------------|------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------|--------|--------|-------|-----------|-----------------|----------|----------|---------------------|--------|
|                      | F       | IELD C          | O·ORDINA                                       | TES                                                                        | DEPTH                                                | RECORDED                                             | RING<br>CORRECTED                             | AN<br>RECORDED | GLE    |        |       |           | D CO·OR         | DINATES  |          | Sheet 16            | of 17  |
| Lat 100              | +83.5mN | Elev.           |                                                | Dip -55 deg                                                                | 46.63                                                |                                                      |                                               |                | 55 deg | Lat.   | •     | Ele       | <b>v</b> .      | Dip      |          | HOLE No.            |        |
|                      | +40.5mE | Length          | 104.85m                                        | Bearing 270 deg                                                            | 101.80                                               |                                                      |                                               |                | 55 deg | Dep.   |       | Len       | gth             | Bearing  |          | LIZ                 | 84-1   |
| From                 | То      | Recovery        |                                                | 0-                                                                         | scription                                            |                                                      |                                               |                |        | %      | Est.  |           |                 |          | ASS      | AYS                 |        |
|                      | Metres  | Recovery        | r,                                             | De:                                                                        | scription                                            |                                                      |                                               | Str            | ucture | Sulph. | Grade | SAMPLE No | Width<br>Metres | Au (g/T) | Au(ppb.) | Ag(ppm)             | As(ppm |
| (91.5                | 93.4)   | 98%             | epidote a                                      | ength = 1.96m. L<br>altered, f-med g                                       | r. andes                                             | tuff-mode:                                           | rately                                        | 5.             |        |        |       | 63048     | 2.0             |          | 10       | 0.2                 | 24     |
|                      |         |                 | calcite)<br>Core loss                          | wity pyrite obs<br>s between 92.20m<br>ags of cherty ma                    | enved in 1<br>& 92.65m                               | both of th<br>. 93.25m                               | he latter                                     |                |        |        |       |           |                 |          |          |                     |        |
| (93.5                | 95.5)   | 100%            | in frac 8                                      | ength = 2.0m. 93<br>& diss in andesi<br>zcalcite vein                      | tic tuff                                             | (5%) 93.9                                            | 5m-94.35m                                     | -              | 1 -    |        |       | 63049     | 2.0             |          | 70       | 0.2                 | 36     |
|                      |         |                 | 94.55m-95<br>cluded be<br>Pyrite as            | 5.30m-= very broetween 94.90m & ssoc. with qtz-css section.                | ken core.<br>95.20m wi                               | Gouge math sericit                                   | aterial i<br>te altera                        | ion.           |        |        |       |           |                 |          |          |                     |        |
| (95.5                | 95.7)   | 88%             | AS ABOVE<br>Actual le<br>pervasive             | ength= 1.75m Fi<br>e epidote altera<br>& fracturing. C                     | tion, mode                                           | erate qtz-                                           | -calc.                                        | ith            |        |        |       | 63050     | 2.0             | < .07    |          | 0.2                 | 12     |
|                      |         |                 | sheared a<br>5% pyrite<br>95.60m.<br>qtz calci | as there is no g<br>e in frac & as d<br>Pyrite occurs m<br>ite veinlets as | ouge mater<br>isseminati<br>ainly alor<br>at 97.30-9 | rial prese<br>lons betwe<br>ng frac as<br>97.40m and | ent.<br>een 95.5 d<br>ssoc. with<br>l at 95.8 | im             |        |        |       |           |                 |          |          |                     |        |
| (97.5                | 99.5)   | 95%             | AS ABOVE<br>Actual le                          | ength = 1.9m 97.<br>erate qtz-calcit                                       | 5=top of 1<br>e veining                              | box 18<br>. Core i                                   | And <b>t</b> sitic<br>s quite                 | 1              | · .    | ·      |       | 63051     | 2.0             | < .07    |          | 0.2                 | 4      |
|                      |         |                 | 98.1-occa<br>where 2%                          | t. Large qtz-ca<br>asional cherty f<br>pyrite in frac<br>ght colored due   | rags as we<br>tures also                             | ell as at                                            | 98.6-98.<br>Core is                           |                |        |        |       |           |                 |          |          |                     |        |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboritories

Dote April 2/84

Logged By R. G. Wilson
Sample Descriptions by: G. Gill

| Dote Collor<br>March | 31/84   | Date C<br>Apri | ompleted<br>1 2/84                   | Core Size<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                      | DIP TEST                              | S          |                  | PROPE  |               | TZARD  |                    | PROJE    | CT No.                                | N.T.S. No.<br>92F/2 |             |
|----------------------|---------|----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|------------|------------------|--------|---------------|--------|--------------------|----------|---------------------------------------|---------------------|-------------|
|                      | F       | IELD C         | OORDINA                              | TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEPTH                                 | RECORDED                             | RING                                  | RECORDED   | GLE<br>CORRECTED |        |               |        | ED CO-OI           | RDINATES | М                                     | Sheet 17            | 7 of 17     |
| Lat 100-             | +83.5mN | Elev.          |                                      | Dip -55 deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.63                                 |                                      |                                       |            | 55 deg           | Lat.   | · · · · · ·   |        | lev                | Dip      |                                       | HOLE No.            |             |
|                      |         | Length         | 104.85m                              | Bearing 270 deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.80                                |                                      |                                       |            | 55 deg           | Dep.   |               |        | ength              | Bearing  |                                       | LIZ 84-             | -1          |
|                      |         |                |                                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                              |                                      | · · · · · · · · · · · · · · · · · · · | T          | 1                | %      | T             | T      |                    | T        | ASS                                   | SAYS                | <del></del> |
| From<br>Metres       |         | Recovery       |                                      | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cription                              |                                      | ·                                     | Stri       | ucture           | Sulph. | Est.<br>Grade | SAMPLE | No Width<br>Metres | Au (g/T) | T .                                   | Ag(ppm)             | As (pp      |
|                      |         | -              |                                      | n. Cherty frags<br>section. Pyrit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                      |                                       |            |                  |        |               |        |                    |          |                                       |                     |             |
| 99.5                 | 101.5)  | 100%           | Flow & fg                            | ngth=2.00m. And<br>tuff observed n<br>ff observed near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ear botton                            | n of sect                            | ion. Rocl                             |            |                  |        |               | 63052  | 2.0                | 0.10     |                                       | 0.2                 | 28          |
|                      |         |                | quite soft<br>found alor<br>qtz      | & well fractured fractured frac. & associate veinle fractured from the fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture fracture frac | ed but not<br>c. with th<br>ts. Pyrit | t crumbly<br>ne modera<br>ce also fo | . Pyrite<br>te thin<br>ound as di     | <u>'</u>   |                  |        |               |        |                    |          |                                       |                     |             |
| 101.5                | 103.5)  | 84%            | AS ABOVE<br>Actual len<br>cherty fra | ngth=1.67m Fg-me<br>agments as at 10<br>L fractured and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 andesiti<br>1.87m-102.              | ic tuff w                            | ith occasi<br>ck is mode              | r          |                  |        |               | 63053  | 2.0                | 0.10     |                                       | 0.4                 | 56          |
|                      |         |                | at 102.54m                           | n -102.60m.<br>er this section =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 8 600                                |                                       |            |                  |        |               |        |                    |          |                                       |                     |             |
| 103.5                | 104.85) | 100%           | green is c                           | ngth= 1.70m. Fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | te compet                             | ent. Pyi                             | rite occur                            | oark<br>'s |                  |        |               | 63054  | 1.35               | 0.24     |                                       | 0.6                 | 170         |
|                      |         |                | to 1% Core                           | re filling to 2% is quite soft. e veining exists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                      |                                       |            |                  |        |               |        |                    |          | · · · · · · · · · · · · · · · · · · · |                     |             |
| L LOG 81             | 104.85  |                |                                      | E<br>illed. 2' section<br>hole marker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on of casi                            | ng left í                            | n                                     |            |                  |        |               | -      |                    |          |                                       |                     |             |

NOTE: Gold Results expressed in g/tonne were determined by Bondar-Clegg Laboritories

Date\_April 2/84

\_ Logged By <u>R. G. Wilson</u>
Sample Descriptions by: G. Gill

APPENDIX III

CORE SAMPLE GEOCHEMICAL ANALYSIS

|      | 92F/2 |  |
|------|-------|--|
| UTS. | 925/2 |  |

PROPERTY\_

LIZARD GROUP

D.D.H. LIZ 84 - 1

DATE -

MAY 1 / 84

### SAMPLE REPORT

NOTE: L = Less Than

|            |                        |      |                 |           |           |    | ASSAYS    | 3         |           |           | SAMPLE           |
|------------|------------------------|------|-----------------|-----------|-----------|----|-----------|-----------|-----------|-----------|------------------|
| SAMPLE NO. | LOCATION & DESCRIPTION | TYPE | width<br>metres | Cu<br>ppm | Zn<br>ppm | Pb | Ag<br>ppm | As<br>ppm | Au<br>ppb | Au<br>gmt | вҮ               |
| 63001      | 7.90 - 11.28 m         | CORE | 3.38            | 68        | 86        | 2  | 0.2       | L4        |           | .07       | DGG              |
| 63002      | 11.28 - 11.50 m        | 11   | .22             | 530       | 28        | 6  | 1.8       | 48        |           | .14       | 11               |
| 63003      | 11.50 - 13.50 m        | 11   | 2.0             | 80        | 54        | 2  | 0.2       | L4        |           | L.07      | .,               |
| 63004      | 13.50 - 15.50 m        | 11   | 2.0             | 66        | 64        | 2  | 0.2       | . 8       | 10        |           | 11               |
| 63005      | 15.50 - 17.50 m        | 11   | 2.0             | 66        | 64        | 2  | 0.2       | 12        | 10        |           | 11               |
| 63006      | 17.50 - 18.50 m        | 11   | 2.0             | 64        | 76        | 2  | 0.2       | L4        |           | L.07      | 11               |
| 63007      | 18.50 - 19.90 m        | 11   | 1.4             | 130       | 54        | 2  | 0.2       | 40        |           | .07       | **               |
| 63008      | 19.90 - 20.40 m        | ı t  | .5              | 200       | 68        | 2  | 0.2       | 16        |           | .17       | 11               |
| 63009      | 20.40 - 22.40 m        | · ## | 2.0             | 72        | 64        | 2  | 0.2       | L4        | 10        |           | 11               |
| 63010      | 22.40 - 24.40 m        | FT.  | 2.0             | 64        | 76        | 2  | 0.2       | 16        | 40        | -         | † I              |
| 63011      | 24.40 - 26.40 m        | pę   | 2.0             | 78        | 90        | 2  | 0.2       | 4         | 10        |           | 11               |
| 63012      | 26.40 - 28.40 m        | 11   | 2.0             | 180       | 74        | 2  | 0.2       | L4        | 30        |           | 11               |
| 63013      | 28.40 - 30.40 m        | 11   | 2.0             | 76        | 96        | 2  | 0.2       | 4         | 10        |           | . **             |
| 63014      | 30.40 - 31.20 m        | 11   | .8              | 160       | 90        | 2  | 0.2       | 28        | 20        |           | 11               |
| 63015      | 31.20 - 33.20 m        | 11   | 2.0             | 210       | 68        | 4  | 0.2       | L4        | 40        |           | 11               |
| 63016      | 33.20 - 35.20 m        | 11   | 2.0             | 300       | 62        | 2  | 0.4       | L4        | 40        |           | 11               |
| 63017      | 35.20 - 35.65 m        | 11   | .45             | 120       | 78        | 2  | 0.2       | 24        | 20        |           | 11               |
| 63018      | 35.65 - 37.65 m        | "    | 2.0             | 88        | 72        | 2  | 0.2       | L4        | 10        |           | 11               |
| 63019      | 37.65 - 39.65 m        | rr   | 2.0             | 80        | 72        | 2  | 0.2       | L4        | 10        |           | TT.              |
| 63020      | 39.65 - 41.65 m        | 11   | 2.0             | 84        | 80        | 2  | 0.2       | L4        | 10        |           | 1.1              |
| 63021      | 41.65 - 43.30 m        | T†   | 1.65            | 54        | 80        | 2  | 0.2       | 16        | 10        |           | H,               |
| 63022      | 43.30 - 44.90 m        | 11   | 1.6             | 84        | 80        | 2  | 0.2       | 12        | 10        |           | . <b>u</b> r" 15 |
| 63023      | 44.90 - 46.90 m        | "    | 2.0             | 120       | 76        | 2  | 0.2       | 8         | 10        |           | . 11             |

N.T.S. <u>92F/2</u>

DATE

MAY 1 / 84

PROPERTY LIZARD GROUP

D.D.H. LIZ 84 - 1

SAMPLE REPORT

NOTE: L = Less Than

| SAMPLE NO. | LOCATION & DESCRIPTION | TYPE | WIDTH  |     |           |           | ASSAYS |           |     |       | SAMPLE |
|------------|------------------------|------|--------|-----|-----------|-----------|--------|-----------|-----|-------|--------|
|            |                        |      | metres | Cu  | Zn<br>ppm | Pb<br>ppm | Ag     | As<br>ppm | Au  | Augmt | ВҮ     |
| 63024      | 46.9 - 48.9 m          | CORE | 2.0    | 190 | 54        | 2         | 0.2    | 16        |     | .07   | DGG    |
| 63025      | 48.9 - 50.7 m          | 11   | 1.8    | 110 | 74        | 2         | 0.2    | 200       | 80  |       | *1     |
| 63026      | 50.7 - 52.7 m          | FT   | 2.0    | 86  | 68        | 2         | 0.2    | 240       | 60  |       | 11     |
| 63027      | 52.7 - 54.7 m          | 11   | 2.0    | 100 | 70        | 2         | 0.2    | 480       |     | .21   | 17     |
| 63028      | 54.7 - 55.8 m          | 11   | 1.1    | 100 | 84        | 2         | 0.6    | 120       |     | .21   | 11-    |
| 63029      | 55.8 - 57.8 m          | 11   | 2.0    | 170 | 70        | 2         | 0.6    | 130       | 90  |       | 11     |
| 63030      | 57.8 - 59.8 m          | **   | 2.0    | 110 | 86        | 2         | 0.4    | 36        | 60  |       | 11     |
| 63031      | 59.8 - 61.8 m          | **   | 2.0    | 100 | 80        | 2         | 0.2    | 8         | 20  |       | 11     |
| 63032      | 61.8 - 63.8 m          | 11   | 2.0    | 90  | 74        | 2         | 0.2    | 8         | 10  |       | 11     |
| 63033      | 63.8 - 65.8 m          | 11   | 2.0    | 62  | 82        | 2         | 0.2    | L4        | 10  |       | *1     |
| 63034      | 65.8 - 66.6 m          | 11   | 1.5    | 120 | 80        | 2         | 0.2    | L4        | 50  |       | 11     |
| 63035      | 66.6 - 68.1 m          | 11   | 1.5    | 830 | 66        | 2         | 0.2    | L4        | 300 |       | и      |
| 63036      | 68.1 - 70.1 m          | ***  | 2.0    | 440 | 88        | 2         | 0.2    | L4        |     | .14   | • •    |
| 63037      | 70.1 - 72.1 m          | 11   | 2.0    | 430 | 88        | 2         | 0.2    | 16        |     | .10   | 11     |
| 63038      | 72.1 - 73.5 m          | 11   | 1.4    | 88  | 66        | 2         | 0.2    | L4        |     | L.07  | 11     |
| 63039      | 73.5 - 75.5 m          | 11   | 2.0    | 140 | 78        | 2         | 0.2    | L4        |     | .07   |        |
| 63040      | 75.5 – 77.5 m          | 11   | 2.0    | 120 | 68        | 2         | 0.2    | L4        | 90  |       | 11     |
| 63041      | 77.5 - 79.5 m          | 11   | 2.0    | 120 | 78        | 2         | 0.2    | L4        |     | L.07  | 11     |
| 63042      | 79.5 - 81.5 m          | 11   | 2.0    | 160 | 84        | 2         | 0.2    | 4         |     | .17   | "      |
| 63043      | 81.5 - 83.5 m          | 11   | 2.0    | 210 | 70        | 2         | 0.2    | L4        |     | .07   | 11     |
| 63044      | 83.5 - 85.5 m          | 71   | 2.0    | 76  | 72        | 2         | 0.2    | 80        |     | .07   | 11     |
| 63045      | 85.5 - 87.5 m          | 11   | 2.0    | 86  | 84        | 2         | 0.2    | L4        | 10  |       | "1     |
| 63046      | 87.5 - 89.5 m          | 11   | 2.0    | 64  | 88        | 2         | 0.2    | 20        | 40  |       | 11     |

| I.T.S. | 92F/2 |  |
|--------|-------|--|
|        |       |  |

PROPERTY\_

LIZARD GROUP

D.D.H. LIZ 84 - 1

DATE \_\_\_\_\_MAY 1 / 84

#### SAMPLE REPORT

NOTE: L = Less Than

|            |                        |      |                 |           |           |           | ASSAYS    |           |    |           | SAMPL |
|------------|------------------------|------|-----------------|-----------|-----------|-----------|-----------|-----------|----|-----------|-------|
| SAMPLE NO. | LOCATION & DESCRIPTION | TYPE | width<br>metres | Cu<br>ppm | Zn<br>ppm | Pb<br>ppm | Ag<br>ppm | As<br>ppm | Au | Au<br>gmt | ВҮ    |
| 63047      | 89.5 - 91.5 m          | CORE | 2.0             | 80        | 64        | 2         | 0.2       | L4        | 10 |           | DGG   |
| 63048      | 91.5 - 93.5 m          | 11   | 2.0             | 62        | 52        | 2         | 0.2       | L4        | 10 |           | **    |
| 63049      | 93.5 - 95.5 m          | 11   | 2.0             | 120       | 52        | 2         | 0.2       | 36        | 70 |           | 11    |
| 63050      | 95.5 - 97.5 m          | . 11 | 2.0             | 98        | 50        | 2         | 0.2       | 12        |    | L.07      | 11    |
| 63051      | 97.5 - 99.5 m          | 71   | 2.0             | 140       | 48        | 2         | 0.2       | 4         |    | L.07      | 11    |
| 63052      | 99.5 - 101.5 m         | 11   | 2.0             | 280       | 40        | 2         | 0.2       | 28        |    | .10       | 11    |
| 63053      | 101.5 - 103.5 m        | ††   | 2.0             | 120       | 50        | 2         | 0.4       | 56        |    | .10       | **    |
| 63054      | 103.5 - 104.5 m        | ft   | 1.35            | 120       | 46        | 2         | 0.6       | 170       |    | .24       | 11    |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
| 1          |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    | 11.5      |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      | -               |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           |           |    |           |       |
|            |                        |      |                 |           |           |           |           | 1         |    |           |       |



