DIAMOND DRILLING REPORT

ON THE
IDE 2, IDE 4 AND ANN 4 FRACTION
MINERAL CLAIMS

PART OF MINING LEASES NO. $9 \&$ NO. 14
HIGHLAND VALLEY
KAMLOOPS MINING DIVISIOn EOLOGICALBRANCH ASSESSMMTMTNWMRT

NS SHEETS 92I/6, 92I/7 lATITUDE $50^{\circ} 25^{\prime} \mathrm{N}$ LONGITUDE $121^{\circ} 00^{\prime} \mathrm{E}$

OWNED BY NATIONAL TRUST COMPANY LIMITED
510 BURRARD, VANCOUVER, B.C., V2C 2 J 7

OPERATED BY HIGHMONT OPERATING CORPORATION
BOX 3000, LOGAN LAKE, B.C., VOK IWO

Report Prepared By
L.H.C. TANG - HIGHMONT CHIEF GEOLOGIST

OCIOBER 10, 1984
PageIndex Map1
Introduction
i) Location and Access 2
ii) Claim Description 2
iii) Summary of Work Done 4
Detailed Tecinnical Data and Interpretations
i) Purpose 4
ii) Results 5
iii) Interpretations 6
iv) Conclusions 11
Itemized Cost Statement for Mining Lease No. 912
Itemized Cost Statement for Mining Lease No. 1414Authors' Qualifications$16 \& 17$
Appendix I
Diamond Drill Core Assays
Hole 84 - 380 to 384
Appendix II
Diamond Drill Log Legend
Appendix III
Diamond Drill Logs
Holes 84 - 380 to 384

LNOLX MIAT

SPENCES BRIDGE MAMIT LAKE

EDITION 2

DIAMOND DRIL工TNG REPORT
 ON THE
 AM, ANN AND IDE MINERAL CLATMS

PART OF MINING IEASES 9 AND 14

INIRODUCIION

i) Location and Access

Mineral Leases No. 9 and No. 14 are located in the Highland Valley on the southwest flank of Gnawed Mountain, at an elevation of 1585-1747 m. Highmont Operating Corporation's No. 4 mineral deposit, currently being evaluated by this drilling program, lies within these leases.

Access to the Highmont Operation is via the Highmont main access road, an 8 km all-weather gravel road which connects with the paved highway connecting Logan Lake and Ashcroft.

ii) Claim Description

Mining Lease No. 9 consists of 40 mineral claims and fractions and was issued on December 10, 1979. Mining Lease No. 14 consists of 7 claims and fractions and was issued on September 10, 1980. Both were issued for a period of 21 years.

Considerable development work has been done on Highmont's Lease No. 9, beginning with the initial claim staking in 1955 and 1956. Torwest Resources and Highmont Mining Corporation did major percussion and diamond drilling in 1966 and 1967 and then drove same 1170 m . of underground development for bulk sampling and investigations in 1967 and 1968. Additional diamond
drilling was done by Teck Corporation from 1969 to 1971 bringing the exploration drilling total to 46400 m . of diamond drilling and 18800 m . of percussion drilling.

This drilling outlined two large mineralized zones, totalling 122 million tonnes at $0.26 \% \mathrm{Cu}$ and $.027 \%$ molybdenum. (No. $1 \& 2$ ore bodies)

In 1977 and 1979, two fill-in diamond drilling programs totalling 3451 m. were carried out on Highmont's No. 2 ore body to prove up first year production grades and a production decision was announced on April 24, 1979. Stripping commenced in June, 1980 and the first ore was milled in December, 1980.

The claims within Lease No. 14 were purchased from Minex Resources when Highmont announced its production decision in 1979. Minex and Canadian Superior had drilled several diamond and percussion drill holes on thisground, encountering scattered chalcopyrite and molybdenite mineralization.

Other than the two largest ore zones(Nos.' I and 2) that are currently being mined, the Highmont property includes five small deposits. The current diamond drilling program was carried out to further evaluate the No. 4 deposit.

Several technical papers have been published on this property. Two of these reports are:

1) "The Highmont Copper-Molybdenum Deposits, Highland Valley, British Columbia" by Bergey, Carr and Reed, CIMM Bulletin, December, 1971.
2) "Highmont" Linearly Zoned Copper-Molybdenum Porphyry Deposits and their Significance in the Genesis of the Highland Valley Ores" CIMM Special Volume No. 15, pp 163-181, by Reed and Jambor 1976.
iii) Summary of Work Done

Drilling

Five NQ size diamond drill holes totalling 1027 meters. Three holes were collared within Mining Lease No. 9 on Mineral Claim Ide 4. Two holes were drilled within Mining Lease No. 14, collared on Ide 2 Mineral Claim. (See Dwg. GD-16)
iv) List of Claims

All work was performed within Mining Leases 9 and 14. The individual claims worked on are tabulated as follows:

Mining Lease No. 9

Claim Name	Record Number
Ide 4	24997
Ann 4 FR	45133
Ide 2	24995
Ann 19 FR	46154

As leases, all claims have been surveyed by a B.C. Land Surveyor. The locations of these claims and drill hole projections are shown on the attached drawing GD-16 "Lease and Claim Boundaries (BCLS) 1984 Drilling Program".

DEIATHED TECHNICAL DATA \& INIERPRETATIONS
i) Purpose

The purpose of the drilling was to both explore the lateral extension of the \#4 deposit and to look for possible low strip ratio mineralization.
ii) Results

All drilling was done under contract to Connors Drilling Ltd., Kamloops, B.C. A truck mounted diamond drill was used, and NQ size core recovered.

All other work associated with this program was done by Highmont Operating Corporation, utilizing Highmont personnel. Mr. Peter Folk, P. Eng., of Teck Corporation, supervised the diamond drilling, and logged the core, with Highmont providing overall supervision.

Core was logged and split at the Highmont minesite. Splitting was done in 10 foot lengths (3.048 meters) and assays for copper, molybdenum and silver were done using standard atomic absorption techniques by Highmont's own assay laboratory. Silver assays were only done on those assay intervals considered to be ore. All 5 holes were completely split and assayed for copper and molybdenum.

The drill core is now stored at the Highmont minesite. Diamond drill assay results are tabulated in Appendix I, and diamond drill logs are attached as Appendix IIF. Assay results are also plotted on individual drill hole sections, on Erawings GC-03A to 03E, in the attached pouch.

The coordinates of the diamond drill holes, in relation to Highmont's grid system (non-metric) are:

HOLE \#	SIZE	AZIMUTH	NORIHING	EASTING	EUEVATION	DIP	LENGT
84-380	NQ	$161{ }^{\circ}$	74,148.99	110,270.09	5530.77	-50	198.1
84-381	NQ	$162{ }^{\circ}$	74,514.82	108,976.17	5405.64	-49	218.2
84-382	NQ	$162{ }^{\circ}$	74,247.25	110,885.38	5624.28	-47	216.4
84-383	NQ	$003{ }^{\circ}$	74,566.94	109,961.76	5502.82	-44	179.8
84-384	NO	$159{ }^{\circ}$	74,282.98	109,684.96	5468.21	-46	214.3

Core logging was done on graphic logs, copies of which are attached in Appendix III. Appendix II contains a legend, describing the coding and abbreviations noted on the drill logs.

A complimentary Assessment Report entitled "Geochemical Report of Soil Sampling, Trenching and Geological Mapping on the Am, Ann and Ide Mineral Claims, Part of Mining Leases No. 9 and 14, Highland Valley", dated October 3, 1984 by G.R. Sanford, provided the data base for the drilling program. Soil anomaly positions had been established and structural trends had been delineated by trench mapping. As far as practical, drill holes could be collared to cut mineralized trends at near right angles.

iii) Interpretations

The entire work area is underlain by Skeena Phase quartz diorite of the Guichon Batholith. A westerly to north westerly trending quartz porphyry dyke of Bethsaida Phase, up to 150 m . wide, cuts through the AM 32 Fraction, Ide 1 and 2, Ide 3 and 4, and Ide 5 and 6.

Ore mineralization can be found as fracture coatings, within shears, or associated with quartz veins in the host Skeena Quartz Diorite. Only small amounts ($<5 \%$) of disseminated mineralization within the quartz diorite itself are noted. The mineralization, consisting of chalcopyrite, bornite and molybdenite is definitely related to the slightly younger Bethsaida Quartz Porphyry Dyke which lies just north of the No. 4 Deposit. Fracture density and rock alteration are both important for ore localization. Known ore deposits occur both on the North and South sides of the Porphyry Dyke.

Rock alteration within the Skeena Quartz Diorite is classed as unaltered, propylitic, argillic, potassic and phyllic (sericite rich). Unaltered to lightly altered rocks have feldspars with a slight greenish tint due to sericitization and mafics are unaltered. Propylitic altered rocks have feldspars which are predaminately waxy green or buff due to variable amounts of sericite and carbonate and some chloritization of mafic minerals. Argillic altered rocks have feldspars which are light buff to chalky indicating almost complete replacement by clay and carbonate and mafics are almost completely replaced by chlorite and carbonate. Potassic altered rocks contain hyrothermal biotite which is partially altered to chlorite. Phyllic altered rocks contain quartzsulphide veinings with envelopes of white flakey sericite. Hydrothermal solutions accompanying the veings have usually caused very intense alterations of wall rocks over short distances outside the sericite envelope.

As propylitic alteration grades into argillic alteration, the distinction between the two is at times tenuous. Correlation of argillic and propylitic zones between drill holes is difficult as the alteration zones are pod like, and do not have a great lateral extent.

All five holes were entirely within the Skeena Quartz Diorite, except for Hole 84-383 which bottomed in the Quartz Porphyry Dyke. Minor amounts of porphyry and pink aplite were encountered in the other holes.

This hole was drilled over an anomaly based on the copper soils survey and trench mapping. It was collared on the southwest side of Ide 2, and drilled at -50° towards 161°, close to 90° to the dominant structural trend of 50° towards $250^{\circ}(50 / 250)$. In the top 64 m . of the hole, argillic alteration predaminated. Over the rest of the hole to the bottom at $198.1 \mathrm{~m} .$, propylitic alteration predominated, possibly implying that as distance from the Quartz Porphyry Dyke increases, alteration decreases.

Assay results were encouraging, with intervals from 39.6-70.1 m., 91.4-158.5 m. and 173.7 - 182.9 m . considered as ore by current Highmont standards. These intervals combined averaged . $17 \% \mathrm{Cu}$ and $.027 \%$ Mo over 106.7 m . The entire hole averaged $0.13 \% \mathrm{Cu}$ and .021 Mo over 195.1 m.

84-381

This was the most westerly hole drilled, collared on the southwest side of Ide 4, and drilled at -49° towards 162°. This hole tested for a westerly extension of the NO. 4 Deposit. Unaltered to propylitic alteration predominated over the entire hole. Minor argillic sections were found associated with local shear zones. This hole was further from the main Porphyry Dyke than any of the others and was the least altered. Several short intervals of Quartz Porphyry were noted in the lower half of the hole as were several thin aplite dykes.

The hole assayed ore from 39.6 to 106.7 m . at $.20 \% \mathrm{Cu}$ and $.020 \% \mathrm{Mo}$. Below $106.7 \mathrm{~m} .$, several intervals up to 12.1 m . wide were of ore grade
but discontinuous. The entire hole averaged . 138 Cu and $.017 \%$ Mo over 207.6 m .

84-382
This hole was the most easterly hole drilled, collared in the centre of Ide 2 and drilled at -47° towards 162°. This hole was designed to test the eastern extent of No. 4 Deposit and to investigate structures along the continuation of the Water Hole Fault. In Highmonts No. 1 Deposit (East Pit), mineralization is found closely associated with this major regional fault.

Propylitic alteration predominated in the top and bottom one third of the hole while argillic alteration predominated in the central third.

Assay grades differed from the two previous holes. For the top 158.5 m . virtually no molybdenum was present although many sections assayed better than $0.20 \% \mathrm{Cu}$. This section averaged . $16 \% \mathrm{Cu}, .004 \% \mathrm{Mo}$. The hole bottomed in the Water Hole Fault, in an expected higher grade molybdenum zone. Molybdenum grades began to increase within 45 m . of the fault. The last 57.9 m . from 158.5 to 216.4 m . averaged $.21 \% \mathrm{Cu}$, $.023 \% \mathrm{Mo}$, with the entire hole averaging $.17 \% \mathrm{Cu}, .009 \%$ Mo over 213.4 m .

84-383
This hole was collared on the east central edge of Ide 4. It was drilled at -44° towards 003°, the only northerly drilled hole.

Alteration varied from unaltered and propylitic at the collar to mixed sections of propylitic, argillic and phyllic before entering
the Porphyry Dyke at 126.5 m .

Assay results were very discouraging in the Skeena rocks, with very few ore intervals greater than 3.1 m . wide. Skeena rocks averaged $.11 \% \mathrm{Cu}$ and $.008 \% \mathrm{Mo}$. Bethsaida rocks averaged $.03 \% \mathrm{Cu}$ and $.003 \% \mathrm{Mo}$ with the entire hole averaging . $09 \% \mathrm{Cu}$ and $.006 \% \mathrm{Mo}$ over 176.8 m .

84-384

This hole was collared in the southeast corner of Ide 4, midway between Holes 84-380 and 381 and was drilled at -46° towards 159°. It tested the ore trend established by Holes 84-380 and 381.

Propylitic alteration predaminated with short intervals of argillic alteration. Short intervals of Ouartz Porphyry were also noted near the hole bottam.

Assay results were not as encouraging as Holes 380 and 381 with only three short ore intersections. A 9 m . interval from 82.3 to 91.4 assayed $.28 \% \mathrm{Cu}$ and $.017 \% \mathrm{Mo}$; the second interval fram 134.11 to 146.30 (12 m.) assayed . $12 \% \mathrm{Cu}$ and $.071 \% \mathrm{Mo}$. The last interval fram 161.5 to 170.7 (9 m.) assayed . 138 Cu and $.074 \% \mathrm{Mo}$. Overall, the entire 205.1 m . of hole assayed $.09 \% \mathrm{Cu}$ and $.015 \%$!10. The ore intersections between the three holes were correlateable, but discontinuous.
silver assays in the ore intersections averaged 0.033 ounces per ton. Higher silver assays coincided with higher copper assays. Waste intervals assayed averaged $.018 \mathrm{oz} / \mathrm{ton}$. The silver mineral is unidentified.

Acidetech tests for din were done in all five drill holes. Dips did not change.

iv) Conclusions

The known mineralization associated with the No. 4 Deposit was extended, although higher copper grades indicated from previous work were not encountered, and low strip ratio ore was not located.

Silver mineralization is associated with the copper sulphides, in an unidentified mineral.

In general, rock alteration within the Skeena appears to increase as the Quartz Porphyry Dyke is approached.

COST STATEMENT

MINING LEASE NO. 9

DIAMOND DRILLTNG

July 17 - Aug. 27, 1984, 3 holes, 612 m of NQ core @ $\$ 51.22 / \mathrm{m}$, including field costs, mobilization, etc.
\$31,350.00

ASSAYING
201 Drill core samples, analyzed for Cu, Mo @ $\$ 4.00$ per element l,610.00 43 drill core samples, analyzed for Ag @ \$7.00 per sample
300.00

CORE LOGGING, MAPPING, DRITL SUPERVISION
P. Folk, P. Eng.

July 9 - Aug. 27, 1984, 34 days in period @ 184.37 per day

6,270.00

CORE SPLITITING

> July 10 - Aug. 27, 1984, 32 days in period @ $\$ 80.00$ per day

SURVEYING
July - Aug. 1984, 42 hours in period @ $\$ 17.42$ per hour
730.00

DRAFTING
July - Oct. 1984, 26 hours in period @ $\$ 22.50$ per hour 27 hours in period @ 10.00 per hour 860.00 $=$
VEHICTE RENTAL
July 11 - Aug. 25, 1984, 30 days in period @ $\$ 18.05$ per day, Chev. pickup includes 15% for fuel and maintainence

SUPERVISION
July - Aug. 1984, 22 days in period
miscellaneous Highmont personnel 2,300.00 @ \$104.44 per day
TRAVEL COSTS
P. Folk, P. Eng.

July l- Aug 27, 1984, two return flights Vancouver - Kamloops
410.00

LODGING AND MEALS

P. Folk, P. Eng.

July 1 - Aug. 27, 198433 days in period
@ $\$ 45.00$ per day $\quad 1,480.00$

REPORI PREPARATION
July 1 - Oct. 10, 198410 days in period @ $\$ 90.00$ per day
900.00

MISCEILIANEOUS CONSUMABLES
Sample envelopes, Bags, Shovels, PVC pipe and Steel pipe left in drill hole collars, etc.

TOTAL
$\$ 49,820.00$

NOTE: Charges for surveying, drafting, vehicle rental, supervision, travel costs, lodging and meals, report preparation and miscellaneous consumables include a portion attributable to, but not included in a separate complimentary Assessment Report entitled "Geochemical Report of Soil Sampling, Trenching, and Geological Mapping on the Am, Ann and Ide Mineral Claims, part of Mining Leases No. 9 and 14, Highland Valley" by G.R. Sanford, 03 October 1984.

COST STATEMENT

MINING LEASE NO. 14

DIAMOND DRTUTING
July 17 - Aug. 27, 1984, 2 holes 415 m . of NQ core @ $\$ 51.21 / \mathrm{m}$
including field costs, mobilization, etc. \$21,250.00

ASSAYIIVG
136 drill core samples, analyzed for Cu,
Mo @ 73.50 per element analyzed for Ag a 950.00
$\begin{array}{ll}73 \text { drill core samples, analyzed for Ag a } \\ \$ 7.00 \text { per sample } & 510.00\end{array}$

CORE LOGGING, MAPPING, DRTU SUPERVISION
P. Folk, P. Eng.

July 9 - Aug. 27, 1984, 15 days in period @ $\$ 184.37$ per day
$2,770.00$

CORE SPITITIING

July 10 - Aug. 27, 1984, 16 days in period at $\$ 80.00$ per day

1,280.00

SURVEYING
July - Aug. 1984, 20 hours in period © $\$ 17.42$ per hour
350.00

DRAFTING
July - Oct. 7, 1984
13 hours in period @ $\$ 22.50$ per hour
13 hours in period @ $\$ 10.00$ per hour
420.00

VEHICTE RENTAL

July 11 - Aug 25, $1984, ~ 15$ days in period	
@ $\$ 18.05$ per day, Chev. pickup, includes	
15% for fuel and maintainence	310.00

SUPERVISION
July - Aug. 1984, 11 days in period miscellaneous Highmont Personnel @ \$104.55 per day

1,150.00

TRAVEU COSTS
P. Folk, P. Eng.
July l - Aug. 27,1984 , return flight
Vancouver - Kamloops

LODGING AND MEALS
P. Folk, P. Eng.

July 1 - Aug 27, 1984, 16 days in period a $\$ 45.00$ per day
720.00

REPORT PREPARATION
June 1 - Oct. 10, 1984, 5 days in period @ $\$ 80.00$ per day 400.00

MISCELLANEOUS CONSUMABLES

Sample envelopes, Bags, shovels, PVC pipe and steel pipe left in drill hole collars, etc.

NOTE: Chazges for surveying, drafting, vehicle rental, supervision, travel costs, lodging and meals, report preparation and miscellaneous consumables include a portion attributable to, but not included in a separate complimentary Assessment Report entitled "Geochemical Report of Soil Sampling, Trenching, and Geological Mapping on the AM, Ann and Ide Mineral Claims, Part of Mining Leases No. 9 and 14, Highland Valley" by G.R. Sanford, 03 October 1984.

CERTIFICATE OF. QUALIFICATIONS

Peter G. Folk, P. ENG.

I hereby certify that:

1. I graduated from the University of British Columbia in 1971 with a B.A.S.C. degree in geological engineering.
2. I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
3. I have worked since graduation as an exploration geologist and mine geologist in Canada and the United States.
4. The work described herein was done under my direct supervision.

Author's Certificate

I, Louis Tsang, of Logan Lake, British Columbia, do hereby certify that:

1. I am a graduate of the University of British Columbia with a B. Sc. degree (1972) in geology and geophysics.
2. I am a member of the Geological Association of Canada.
3. I have practiced my profession since 1972 while employed by Bacon \& Crowhurst Consulting Engineering Ltd., (one summer season), and by Zapata-Granby Corporation, Granisle Division (seven years).
4. Present, I am employed by Highmont Operating Corporation Ltd., Post Office Box 3000, Logan Lake, B.C.
5. I have directed the entire drilling program described herein.

Chief Geologist Highmont Operating Corporation

APPENDIX I

DIAMOND DRIJ工 CORE ASSAYS

HOIES 84-380

84-381
84-382
84-383
84-384

HIGHMONT OPERATING CORPORATION

HOLE 84-380
North 74148.99
East 110270.09
Elevation 5530.77

Azm. $161^{\circ}{ }^{\circ}$ Dip. -50°

FOOTAGE	METERS	\% CU	\% MO	$\underline{\mathrm{Ag} \mathrm{Oz} / \mathrm{Ton}}$
10-20	3.05-6.10	. 12	. 010	. 021
20-30	6.10-9.14	. 07	. 012	. 017
30-40	9.14-12.19	. 07	. 012	. 017
40-50	12.19-15.24	. 08	. 023	. 019
50-60	15.24-18.29	. 08	. 023	. 019
60-70	18.29-21.34	. 08	. 003	. 017
70-80	21.34-24.38	. 09	. 004	. 017
80-90	24.38-27.43	. 09	. 009	. 013
90-100	27.43-30.48	. 11	. 012	. 017
100-110	30.48-33.53	. 10	. 009	. 015
110-120	33.53-36.58	. 06	. 010	. 019
120-130	36.58-39.62	. 10	. 018	. 022
130-140	39.62-42.67	. 21	. 035	. 031
140-150	42.67-45.72	. 23	. 051	. 038
150-160	45.72-48.77	. 06	. 035	. 019
160-170	48.77-51.82	. 26	. 015	. 033
170-180	51.82-54.86	. 06	. 014	. 020
180-190	54.86-57.91	. 10	. 020	. 022
190-200	57.91-60.96	. 16	. 016	. 029
200-210	60.96-64.01	. 10	. 016	
210-220	64.01-67.06	. 15	. 047	. 034
220-230	67.06-70.10	. 13	. 027	. 029
230-240	70.10-73.15	. 11	. 015	
240-250	73.15-76.20	. 05	. 005	
250-260	76.20-79.25	. 03	. 019	
260-270	79.25-82.30	. 03	. 024	
270-280	82.30-85.34	. 10	. 014	
280-290	85.34-88.39	. 12	. 015	. 038
290-300	88.39-91.44	. 04	. 012	
300-310	91.44-94.49	. 18	. 020	. 038
310-320	94.49-97.54	. 08	. 005	
320-330	97.54-100.58	. 21	. 015	. 043
330-340	$=100.58-103.63$. 71	. 077	. 098
340-350	103.63-106.68	. 24	. 093	. 056
350-360	106.68-109.73	. 14	. 032	. 029
360-370	109.73-112.78	. 07	. 037	. 023
370-380	112.78-115.82	. 07	. 007	
380-390	115.82-118.87	. 17	. 052	. 038
390-400	118.87-121.92	. 11	. 013	
400-410	121.92-124.97	. 20	. 013	. 036
410-420	124.97-128.02	. 16	. 006	
420-430	128.02-131.06	. 05	. 078	. 017
430-440	131.06-134.11	. 16	. 029	. 027
440-450	134.11-137.16	. 24	. 027	. 033

HOLE 84-380 (cont'd)

FOOTAGE	METERS	\% CU	\% M0	$\underline{\mathrm{Ag} \mathrm{Oz} / \mathrm{Ton}}$
450-460	137.16-140.21	. 13	. 011	. 032
460-470	140.21-143.26	. 19	. 019	. 036
470-480	143.26-146.30	. 22	. 019	. 044
480-490	146.30-149.35	. 14	. 017	. 030
490-500	149.35-152.40	. 14	. 016	. 027
500-510	152.40-155.45	. 14	. 014	. 027
510-520	155.45-158.50	. 11	. 052	. 032
520-530	158.50-161.54	. 08	. 012	
530-540	161.54-164.59	. 09	. 011	
540-550	164.59-167.64	. 10	. 008	
550-560	167.64-170.69	. 07	. 005	
560-570	170.69-173.74	. 13	. 008	
570-580	173.74-176.78	. 11	. 030	. 026
580-590	176.78-179.83	. 21	. 011	. 036
590-600	179.83-182.88	. 10	. 018	
600-610	182.88-185.93	. 15	. 008	
610-620	185.93-188.98	. 10	. 015	.
620-630	188.98-192.02	. 16	. 008	
630-640	192.02-195.07	. 12	. 003	
640-650	195.07-198.12	. 10	. 010	

HOLE 84-381
North 74514.82
East 108976.17
Elevation 5405.64

$$
\begin{array}{ll}
\text { Azm. } & 162^{\circ} \\
\text { Dip. } & -49^{\circ}
\end{array}
$$

FOOTAGE	METERS	\% CU	\% MO	$\underline{\mathrm{Ag} \mathrm{Oz} / \mathrm{Ton}}$
35-40	10.67-12.19	. 03	. 002	
40-50	12.19-15.24	. 08	. 075	. 023
50-60	15.24-18.29	. 02	. 003	
60-70	18.29-21.34	. 02	. 002	
70-80	21.34-24.38	. 07	. 004	
80-90	24.38-27.43	. 04	. 004	
90-100	27.43-30.48	. 08	. 008	
100-110	30.48-33.53	. 02	. 004	
110-120	33.53-36.58	. 04	. 005	
120-130	36.58-39.62	. 08	. 008	
130-140	39.62-42.67	. 24	. 014	. 025
140-150	42.67-45.72	. 07	. 006	
150-160	45.72-48.77	. 10	. 031	. 019
160-170	48.77-51.82	. 18	. 016	. 026
170-180	51.82-54.86	. 39	. 066	. 037
180-190	54.86-57.91	. 32	. 012	. 039
190-200	57.91-60.96	. 16	. 022	. 026
200-210	60.96-64.01	. 23	. 004	
210-220	64.01-67.06	. 04	. 003	
220-230	67.06-70.10	. 06	. 017	
230-240	70.10-73.15	. 10	. 005	
240-250	73.15-76.20	. 21	. 030	. 023
250-260	76.20-79.25	. 20	. 029	. 029
260-270	79.25-82.30	. 08	. 004	
270-280	82.30-85.34	. 34	. 017	. 043
280-290	85.34-88.39	. 39	. 040	. 039
290-300	88.39-91.44	. 17	. 009	
300-310	91.44-94.49	. 17	. 012	
310-320	94.49-97.54	. 15	. 014	
320-330	97.54-100.58	. 25	. 032	. 030
330-340	100.58-103.63	. 23	. 026	. 030
340-350	103.63-106.68	. 25	. 022	. 027
350-360	106.68-109.73	. 06	. 005	
360-370	109.73-112.78	. 02	. 005	
370-380	112.78-115.82	. 18	. 029	. 021
380-390	115.82-118.87	. 14	. 029	. 020
390-400	118.87-121.92	. 11	. 010	
400-410	121.92-124.97	. 07	. 010	
410-420	124.97-128.02	. 08	. 021	
420-430	128.02-131.06	. 06	. 035	
430-440	131.06-134.11	. 16	. 009	
440-450	134.11-137.16	. 04	. 005	

HOLE 84-381 (cont ${ }^{1} \mathrm{~d}$)

FOOTAGE	METERS	$\% \mathrm{CU}$	\% M0	Ag Oz/Ton
450-460	137.16-140.21	. 04	. 010	
460-470	140.21-143.26	. 05	. 009	
470-480	143.26-146.30	. 06	. 014	
480-490	146.30-149.35	. 06	. 018	
490-500	149.35-152.40	. 05	. 025	. 026
500-510	152.40-155.45	. 10	. 011	
510-520	155.45-158.50	. 11	. 016	
520-530	158.50-161.54	. 08	. 010	
530-540	161.54-164.59	. 08	. 004	
540-550	164.59-167.64	. 08	. 002	
550-560	167.64-170.69	. 18	. 021	. 029
560-570	170.69-173.74	. 22	. 028	. 032
570-580	173.74-176.78	. 19	. 023	. 021
580-590	176.78-179.83	. 18	. 018	. 026
590-600	179.83-182.88	. 07	. 010	. 021
600-610	182.88-185.93	. 01	. 002	
610-620	185.93-188.98	. 14	. 056	. 035
620-630	188.98-192.02	. 03	. 005	
630-640	192.02-195.07	. 13	. 015	
640-650	195.07-198.12	. 18	. 021	
650-660	198.12-201.17	. 14	. 023	
660-670	201.17-204.22	. 14	. 019	
670-680	204.22-207.26	. 14	. 026	
680-690	207.26-210.31	. 18	. 036	
690-700	210.31-213.36	. 13	. 013	
700-710	213.36-216.41	. 10	. 011	
710-716	216.41-218.24	. 09	. 013	

HOLE 84-382
North 74247.25
East 110885.38
Elevation 5624.28

		$\begin{array}{ll} \text { Azm. } & 162^{\circ} \\ \text { Dip. } & -47^{\circ} \end{array}$	
METERS	\% CU	\% MO	$\underline{\mathrm{Ag} \mathrm{Oz} / \mathrm{Ton}}$
3.05-6.10	. 26	Tr	
6.10-9.14	. 14	. 001	
9.14-12.19	. 24	. 001	. 045
12.19-15.24	. 23	. 002	. 039
15.24-18.29	. 28	. 002	. 047
18.29-21.34	. 21	. 001	. 036
21.34-24.38	. 25	. 002	. 028
24.38-27.43	. 10	. 004	
27.43-30.48	. 16	. 024	. 038
30.48-33.53	. 03	. 002	
33.53-36.58	. 02	. 002	
36.58-39.62	. 10	. 002	
39.62-42.67	. 05	. 002	
42.67-45.72	. 13	. 002	
45.72-48.77	. 10	. 002	
48.77-51.82	. 19	. 002	
51.82-54.86	. 04	. 001	
54.86-57.91	. 18	. 001	
57.91-60.96	. 06	. 002	
60.96-64.01	. 14	. 002	
64.01-67.06	. 28	. 003	. 032
67.06-70.10	. 37	. 002	. 055
70.10-73.15	. 07	. 002	
73.15-76.20	. 33	. 006	. 058
76.20-79.25	. 22	. 004	. 036
79.25-82.30	. 16	. 006	
82.30-85.34	. 04	. 004	
85.34-88.39	. 13	. 005	
88.39-91.44	. 12	. 004	
91.44-94.49	. 28	. 003	. 050
94.49-97.54	. 24	. 003	. 042
97.54-100.58	. 15	. 003	
100.58-103.63	. 25	. 004	. 042
103.63-106.68	. 21	. 004	. 036
106.68-109.75	. 25	. 004	. 042
109.75-112.78	. 26	. 002	. 045
112.78-115.82	. 23	. 005	. 033
115.82-118.87	. 16	. 010	
118.87-121.92	. 08	. 003	
121.92-124.97	. 14	. 003	
124.97-128.02	. 14	. 002	

FOOTAGE
$420-430$
$430-440$
$440-450$
$450-460$
$460-470$
$470-480$
$480-490$
$490-500$
$500-510$
$510-520$
$520-530$
$530-540$
$540-550$
$550-560$
$560-570$
$570-580$
$580-590$
$590-600$
$600-610$
$610-620$
$620-630$
$630-640$
$640-650$
$650-660$
$660-670$
$670-680$
$680-690$
$690-700$
$700-710$

METERS	\% CU	\% MO	$\underline{\mathrm{Ag} \mathrm{Oz} / \mathrm{Ton}}$
128.02-131.06	. 06	. 003	
131.06-134.11	. 13	. 006	
134.11-137.16	. 19	. 021	. 041
137.16-140.21	. 18	. 011	
140.21-143.26	. 09	. 008	
143.26-146.30	. 07	. 008	
146.30-149.35	. 10	. 006	
149.35-152.40	. 09	. 001	
152.40-155.45	. 03	Tr	
155.45-158.50	. 04	. 002	
158.50-161.54	. 07	. 020	
161.54-164.59	. 12	. 007	
164.59-167.64	. 44	. 031	. 080
167.64-170.69	. 19	. 011	. 030
170.69-173.74	. 32	. 003	. 054
173.74-176.78	. 11	. 013	
176.78-179.83	. 14	. 008	
179.83-182.88	. 14	. 021	. 045
182.88-185.93	. 09	. 006	
185.93-188.98	. 17	. 006	
188.98-192.02	. 18	. 012	. 036
192.02-195.07	. 32	. 033	. 033
195.07-198.12	. 21	. 024	. 026
198.12-201.17	. 16	. 022	. 023
201.17-204.22	. 13	. 093	. 032
204.22-207.26	. 18	. 065	. 032
207.26-210.31	. 26	. 018	. 033
210.31-213.36	. 46	. 040	. 067
213.36-216.41	. 36	. 014	. 047

HOLE 84-383

North 74566.94
East 109961.76
Elevation 5502.82

$$
10-20
$$

20-30
30-40
40-50
50-60
60-70
70-80
80-90
90-100
100-110
110-120
120-130
130-140
140-150
150-160
160-170
170-180
180-190
190-200
200-210
210-220
220-230
230-240
240-250
250-260
260-270
270-280
280-290
290-300
300-310
310-320
320-330
330-340
340-350
350-360
360-370
370-380
380-390
390-400
400-410
410-420
420-430

		$\begin{gathered} 0033^{\circ} \\ -4)^{\circ} \end{gathered}$	
METERS	\% CU	\% MO	Ag Oz/Ton
3.05-6.10	. 04	. 017	
6.10-9.14	. 20	. 016	. 029
9.14-12.19	. 14	. 010	
12.19-15.24	. 02	. 015	
15.24-18.29	. 03	. 005	
18.29-21.34	. 05	. 005	
21.34-24.38	. 01	. 002	
24.38-27.43	. 01	. 003	
27.43-30.48	. 08	. 006	
30.48-33.53	. 14	. 016	. 021
33.53-36.58	. 11	. 008	
36.58-39.62	. 18	. 010	. 023
39.62-42.67	. 06	. 004	
42.67-45.72	. 09	. 011	
45.72-48.77	. 07	. 024	. 021
48.77-51.82	. 15	. 013	
51.82-54.86	. 08	. 005	
54.86-57.91	. 03	. 008	
57.91-60.96	. 03	. 005	
60.96-64.01	. 10	. 005	
64.01-67.06	. 13	. 017	. 024
67.06-70.10	. 40	. 013	. 035
70.10-73.15	. 52	. 013	. 025
73.15-76.20	. 03	. 007	
76.20-79.25	. 08	. 004	
79.25-82.30	. 09	. 004	
82.30-85.34	. 07	. 006	
85.34-88.39	. 06	. 005	
88.39-91.44	. 11	. 005	
91.44-94.49	. 14	. 004	
94.49-97.54	. 36	. 030	. 058
97.54-100.58	. 07	. 002	
100.58-103.63	. 14	. 005	
103.63-106.68	. 09	. 004	
106.68-109.73	. 06	. 001	
109.73-112.78	. 06	. 004	
112.78-115.82	. 20	. 008	
115.82-118.87	. 14	. 003	
118.87-121.92	. 13	. 004	
121.92-124.97	. 03	. 001	
124.97-128.02	. 04	. 001	
128.02-131.06	. 04	. 002	

FOOTAGE	$\underline{\text { METERS }}$	$\frac{\% \mathrm{CU}}{}$	$\underline{\% \mathrm{MO}}$	Ag Oz/Ton
$430-440$	$131.06-134.11$.01	.001	
$440-450$	$134.11-137.16$.01	.003	
$450-460$	$137.16-140.21$.01	.003	
$460-470$	$140.21-143.26$.01	.002	
$470-480$	$143.26-146.30$.06	.007	
$480-490$	$146.30-149.35$.04	.002	
$490-500$	$149.35-152.40$.03	.003	
$500-510$	$152.40-155.45$.04	.002	
$510-520$	$155.45-158.50$.05	.002	
$520-530$	$158.50-161.54$.02	.003	
$530-540$	$161.54-164.59$.02	.002	
$540-550$	$164.59-167.64$.03	.001	
$550-560$	$167.64-170.69$.02	.003	
$560-570$	$170.69-173.74$.03	.003	
$570-580$	$173.74-176.78$.03	.005	
$580-590$	$176.78-179.83$.003		

HOLE 84-384

North 74, 282.98
East 109,684.21
$\begin{array}{ll}\text { Azm. } & 159^{\circ} \\ \text { Dip. } & -46^{\circ}\end{array}$

Elevation 5468.21

FOOTAGE	METERS	\% CU	$\% \mathrm{MO}$	$\underline{\mathrm{Ag} \mathrm{Oz} / \mathrm{Ton}}$
30-40	9.14-12.19	. 14	. 005	
40-50	12.19-15.24	. 20	. 016	. 017
50-60	15.24-18.29	. 05	. 004	
60-70	18.29-21.34	. 06	. 008	
70-80	21.34-24.38	. 03	. 004	
80-90	24.38-27.43	. 06	. 005	
90-100	27.43-30.48	. 09	. 004	
100-110	30.48-33.53	. 10	. 014	
110-120	33.53-36.58	. 03	. 002	
120-130	36.58-39.62	. 05	. 006	
130-140	29.62-42.67	. 03	. 008	
140-150	42.67-45.72	. 02	. 004	
150-160	45.72-48.77	. 03	. 009	
160-170	48.77-51.82	. 04	. 008	
170-180	51.82-54.86	. 02	. 005	
180-190	54.86-57.91	. 13	. 004	
190-200	57.91-60.96	. 05	. 011	
200-210	60.96-64.01	. 05	. 013	
210-220	64.01-67.06	. 02	. 002	
220-230	67.06-70.10	. 05	. 007	
230-240	70.10-73.15	. 06	. 006	
240-250	73.15-76.20	. 04	. 005	
250-260	76.20-79.25	. 02	. 005	
260-270	79.25-82.30	. 06	. 007	
270-280	82.30-85.34	. 19	. 016	. 022
280-290	85.34-88.39	. 43	. 022	. 052
290-300	88.39-91.44	. 21	. 012	. 022
300-310	91.44-94.49	. 05	. 010	
310-320	94.49-97.54	. 04	. 003	
320-330	97.54-100.58	. 04	. 004	
330-340	100.58-103.63	. 09	. 006	
340-350	103.63-106.68	. 09	. 015	
350-360	106.68-109.73	. 05	. 024	
360-370	109.73-112.78	. 05	. 012	
370-380	112.78-115.82	. 10	. 010	
380-390	115.82-118.87	. 04	. 029	
390-400	118.87-121.92	. 09	. 018	
400-410	121.92-124.97	. 13	. 017	. 022
410-420	124.97-128.02	. 11	. 017	
420-430	128.02-131.06	. 05	. 007	
430-440	131.06-134.11	. 12	. 005	
440-450	134.11-137.16	. 25	. 078	. 034
450-460	137.16-140.21	. 11	. 160	. 017
460-470	140.21-143.26	. 08	. 025	. 013

HOLE 84-384 (continued)

FOOTAGE
$470-480$
$480-490$
$490-500$
$500-510$
$510-520$
$520-530$
$530-540$
$540-550$
$550-560$
$560-570$
$570-580$
$580-590$
$590-600$
$600-610$
$610-620$
$620-630$
$630-640$
$640-650$
$650-660$
$660-670$
$670-680$
$680-690$
$690-703$

METERS	\%CU	\%MO	Ag Oz/Ton
$143.26-146.30$.12	.020	.013
$146.30-149.35$.06	.010	
$149.35-152.40$.06	.007	
$152.40-155.45$.06	.008	
$155.45-158.50$.07	.016	
$158.50-161.54$.14	.006	
$161.54-164.59$.13	.024	
$164.59-167.64$.11	.08	.024
$167.64-170.69$.11	.004	
$170.69-173.74$.14	.009	
$173.74-176.78$.06	.011	
$176.78-179.83$.09	.006	
$179.83-182.88$.05	.004	
$182.88-185.93$.03	.002	
$185.93-188.98$.04	.003	
$188.98-192.02$.07	.006	
$192.02-195.07$.12	.008	
$195.07-198.12$.08	.010	
$198.12-201.17$.05	.007	
$210.17-204.22$.06	.006	

APPENDIX II
DIAMOND DRILI LOG LEGEND
FT. - Footage; core is logged and split in 10 foot intervals.
GRAPH $\quad-\quad$ A graphic representation of the drill core, including
a) Rock Type - SK = Skeena Quartz Diorite, QFP $=$ Bethsaida Quartz Feldspar Porphyry, BX = Breccia.
b) Alt - Alteration, which is described as being;
$\underline{U}=$ Unaltered, $\underline{P}=$ Propylitic, $\underline{A}=$ Argillic, $\underline{K}=$ Potassic, $\bar{M}=$ Phyllic (Sericite Rich), $=$ Highly Fractured, PIP = Intense Propylitic

- Fracture Fillings

MAL = Malachite, $\mathrm{LIM}=$ Limonite, $\underline{\mathrm{HEM}}=$ Hematite, $\underline{Q}=$ Quartz, $\overline{\mathrm{BN}}=$ Bornite, $\mathrm{CP} \equiv$ Chalcopyrite, $\overline{\mathrm{CC}}=$ Chalcocite, $\mathrm{MO}=$ Molybdenite, $\overline{\mathrm{T}}=$ Tourmaline, $\mathrm{CO}_{3}=$ Carbonate, $\mathrm{PY}=$ Pyrite, $\mathrm{EP}=$ Epidote, $\mathrm{MU}=$ Muscovite (Sericite), usually as selvages, $\overline{\mathrm{CL}}=$ Chlorite, $\overline{\mathrm{KF}}=$ Potassium Feldspar, BI $=$ Secondary Biotite, CLAY = Clay, CARE = Calcite Veins, fractures, MAG = Magnetite.

- Fracture Types
Joint Fracture
Minor Shear
Shear
Fault
c) Angle CA - Angle to Core Axis
- Strucutral angles are measured from the core axis

FRACT - Fractures, an actual count of Cu (Copper), Mo (Molybdenite), and Qtz (Quartz) bearing strucutres over the 10 foot interval. UNMIN = Unmineralized.

- \quad RQD = Rock Quality Designation,
$=$ No. of pieces of core in the interval which exceed 4 inches in length.

MINERALIZATION

- A subjective estimate of mineralization, on a scale of 0 - 5. O is none or trace, 5 is high grade. $\underline{C P}=$ Chalcopyrite, $\underline{M o}=$ Molybdenite, $\underline{B o}=$ Bornite

PAGK
$G E \ldots$
OFI 10
 $\frac{15}{48}$

PAGE 3 OF-1
COPE SIZE CORE SIZE-
STARTED COMPLETED

140 St

COGGED
CORE SIZE STAATED
\qquad

84-381

PAGE 3 OF 10
CORE SIZE STARTED \qquad
DEPTH_ COMPLETED

$\frac{f t}{n o}$

PAGE 7
CORE SIZ
CORE SIZ STARTED
COMPLETED

DDH $=84-381$ D/PDEPTH
 ROCK TYPE NOTES
QUARTZ-FRLD PIRPAYRY WITH
HEM.-EPIDOTE FRACTS @ 45°
MINOR DISSEM MAG. COGGED

PAGF 9 OFIC STARTED COMPLETED

PAGE 7 OF 1 CORE SIZE COLLAR: EAST

	GRAPH FRACT						MLNER QLIZATLON								ALTERATION												
$F t$	$\begin{gathered} 5 \\ 0^{5} \\ s^{2} \end{gathered} \hat{x}^{2}$				Q	* $\hat{N}^{\text {a }}$	${ }_{m}{ }^{\text {c }}$		M ${ }_{\text {m }}$	A	$\mathrm{BiN}_{\mathrm{A}}$	m	A		DESCRIPTION	K F	B	m v	P Y	C	C	E	C	\xrightarrow{H}		$\left.\begin{aligned} & L \\ & 1 \\ & M \end{aligned} \right\rvert\,$	M A C
420			2		0	7	5	0	5	1 F	Fl				KSPAR ALT with clany. atovidian itrom on fina sirfitasest FAACT.	4	0	1	O	3	0	0	3	3	2	0	0
	$\begin{gathered} \mathrm{S} \\ \mathrm{~K} \\ A \\ A \\ A \\ A \\ A \end{gathered}$		22	2	0	5	的	2	S	1	0				INTENSK CLAY $\mathrm{Het}+\mathrm{CO}_{3}$ AsSOC. W, TH FTULT 2ONE	2	0	,	O	4	0	0	4	1	0	0	0
	$\left.\begin{array}{l\|l\|} \hline & A \\ 0 & A \\ C & A \\ G & A \\ E & A \\ - & k \\ k & k \end{array} \right\rvert\,$		1	3	1	15	$\left\|\begin{array}{l} 0 \\ 5 \end{array}\right\|$	1	S		F				wTENSACLAT TKSPAR + CO_{3} ALT. with Hhm.	3	0	2	0	3	1	0	3	3	0	0	0
468			1	D	1	6		0	D 1	1	E D Q				propyziric ALE SHEAA + fRNLT RELATKD CHLORITA hemiatith	1	0	2	0	2	3	0	2	4	0	0	0
420			10	0	0	9		0	D	15	D 1				WITT CO_{3} As above	1	0	0	θ	2.	3	1	3	4	0	0	0
480			0	1	0	7		0	$\left\lvert\, \begin{aligned} & S \\ & D \end{aligned}\right.$	D	D 2				As ABOVIC witht INC. KSPAR.	2	0	1	0	2	3	2	3	4	0	0	0
4201			12	2	0	17		0	S	2	$\begin{aligned} & F \\ & D \end{aligned}$				KSPAR ALT RAPIDLY GRADINE GRADINE TO PROGYFTV	3	0	1	0	1	2	0	2	3	1	0	2

STAE SIZ
STRATED
SOMPLETED
 ROCK TYPE, NOTES

FAULT ZOWK HIGHLY SHaNRKA
BUT FRAGMENTS ARK HCLD
TOCAKANAB wITH Chay HecD
FINR Co ON IRRRGULAR CO_{3}
HARLINK SAAARS MO ON
FA
$B U T$
B

FRACT. SKARNA
WKAKLY MIN

4

OPE SIZE ORE SIZ STARTED
COMPLETED-

CORE SIZEN N STARTED 13B STARTED 1BA GRAPH FRACT ALNERALIZATION ALTERATION DEPTH 590' 38

LOGGE

 $10 S_{1}$ \qquad

PAGE 2 OF 2

PAGE 5 O

COPE SIZE ORE SIZ STARTED
GGRAPH ERACT MLNERRLZATLON ALTERATIRN

COPE S12 DEPTH LOGGED STARTED
GRAPH FRACT NLNERALIZATLQN ALTERATLQN STARTED
COMPLETED

PAGE \& OFAE COPE SIZE STARTED COMPLETED
 DEPTA
 CORE SIZE STARTED
COMPLETEDGRAPH ERAC NORTH_ELEV \qquad

\qquad | COMPLETED |
| :--- |
| Mo |$|$| | | Cus |
| :--- | :--- | :--- | Ft

370
380

PAGE_ OF Ll D / P

CORE S/Z
COP
COMPLETED-
DEPTH— \angle COGGED \qquad
1.253

OLLAR: EAST

CORE SIZE
STARTED
STARTED

DEPTH— $\overline{\angle O G G E D}$

Mo	A	CUE

55

PAGE 10 OF 16

PROFILE	
HOLE NO $84-383$	SECTION
SCALE 1984	
LOOKING \quad ' $=50^{\prime}$	FIGURE NO. GC-O3D
WWN BY	
CHK BY GRS	

