84-1282-13303

REPORT ON THE KALUM MINERAL CLAIM GROUP FOR BRADNER RESOURCES LTD. SKEENA MINING DIVISION BRITISH COLUMBIA

NTS 103I/10 and 15W LAT. 54° 41'North, LONG. 128° 45'West

> George Cavey Diane Howe November 19, 1984 GEOLOGICAL BRANCH ASSESSMENT REPORT

5,303

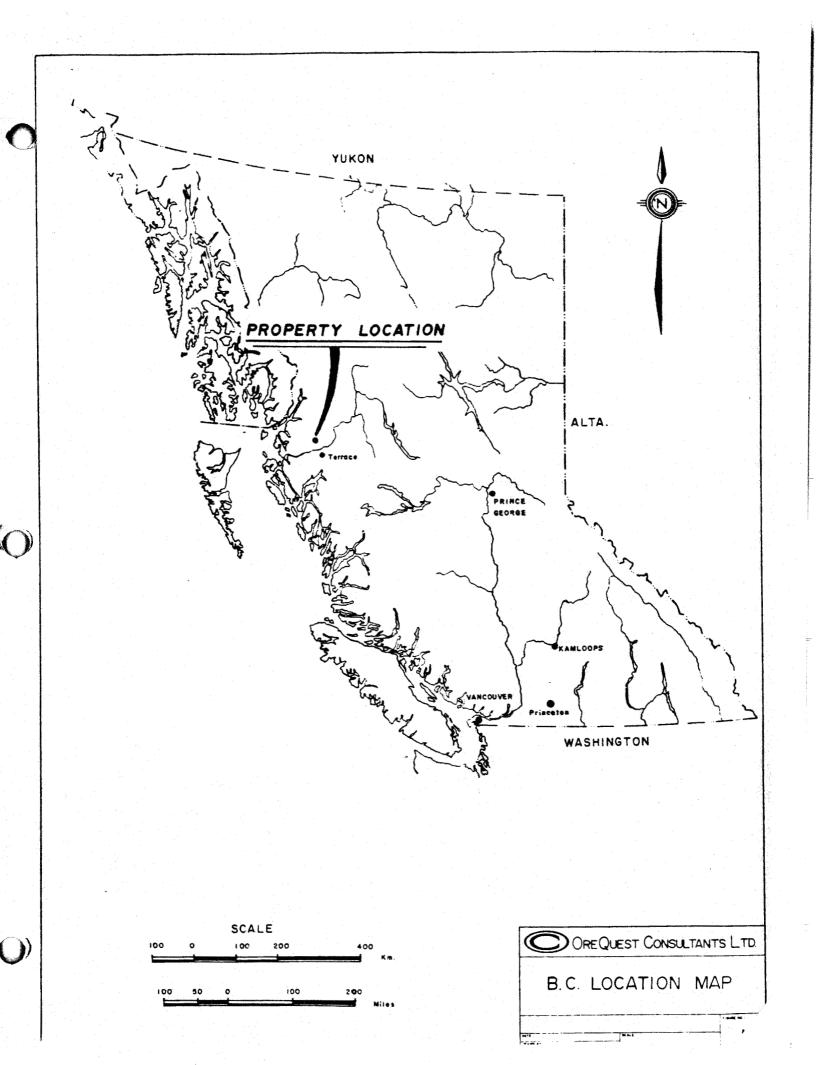
SUMMARY

The Kalum mineral claim group held in agreement by Bradner Resources Ltd. of Vancouver is located along the west shore of Kitsumkalum Lake approximately 32 kilometers north of Terrace, B.C.

The oldest rocks in the claim area are argillites and greywackes belonging to the Upper Jurrasic-Lower Cretaceous Age Bowser Group. Intrusive to the sediments are suites of granitoid rocks including granodiorite, diorite, monzonite and related rocks collectively termed the Coast Intrusions. Hybassal dikes believed related to the latter stages of the Coast Batholith also form a distinctive group within the claim area.

Exposed mineral showings on the Kalum property are the old "Portland" showings which consist of two separate quartz veins which contain appreciable values in gold and silver and are host in a quartz diorite stock.

The only recorded work on the Portland showing was in 1922-1923 when Kalum Mines Ltd. sunk two inclined shafts on the main vein, one to 30 feet and the other to 60 feet from which a drift was run westerly for 210 feet. Three hundred feet southeast of the shafts an adit had been driven for 85 feet to follow the second vein.


In late November 1983 and April 1984, the Kalum Lake Mining Group Ltd. did some hand trenching and blasting with follow up backhoe trenching on the area of the old "Portland Group". The second vein was extended along strike for approximately 30 metres.

The Kalum Lake Mining Group also conducted some regional prospecting from which a third area of interest was discovered and subsequently staked.

The 1984 field program consisted of a soil geochemical survey over the third area (south showing) of which 576 soil and 17 rock samples were collected in an attempt to detect more auriferous quartz veins.

Results of this years program has produced favourable and encouraging results enough to recommend continuation of the work program.

Phase II should consist of linecutting (20 kilometers), detailed sampling, mapping and trenching. Phase III contingent on favourable results of Phase II should consist of 1,000 metres of overburden drilling or 375 metres of diamond drilling.

TABLE of CONTENTS

Summary	
Table of Contents	
List of Figures	
Appendix	
1. Introduction	
1a. Location and Access	
1b. Physiography	
1c. Property Information	
1d. History and Previous Work	
2. 1984 Field Work	
2a. Geology	
2b. Soil Geochemical Survey	
3. Conclusions and Recommendations	
Cost Estimates	
Statement of Qualifications	
George Cavey, Consulting Geologist	
Diane Howe, Project Geologist	

Bibliography

LIST of FIGURES

Figure 1	Property Location
Figure 2	Claim Location
Figure 3	Regional Geology
Figure 4	Soil Geochemistry - Gold
Figure 5	Soil Geochemistry - Silver
Figure 6	Soil Geochemistry - Arsenic
Figure 7	Soil Geochemistry - Lead
Figure 8	Soil Geochemistry - Zinc
Figure 9	Soil Geochemistry - Copper
Figure 10	Sample Locations

following Summary following page 3 following page 5 In Pocket In Pocket In Pocket In Pocket In Pocket In Pocket

LIST of APPENDICES

Appenidix 1 - Vangeochem Analysis and Techniques

Trench Plan.

C

(

1. INTRODUCTION

This report is a summary report on the soil geochemical survey conducted in late September of this year on a portion of the Kalum mineral claim group held in agreement by Bradner Resources of Vancouver.

This report briefly summarizes exploration done to date and presents recommendations for further work. Information contained in this report is from data collected during late September and early October of this year, the authors field examination in late September, as well as information obtained through various government and private publications listed in the bibliography.

1a. LOCATION and ACCESS

The Kalum mineral claim group is 32 kilometers north of the city of Terrace located in west-central B.C. The claim block is situated on the west shore and partly straddles Kitsumkalum Lake, and is centered at 54° 45' North Latitude and 128° 45' West Longitude on NTS map sheet 1031/10, 15W (Figure 1).

Easy access is provided to the claims by an all weather gravel road which leaves the Yellowhead #16 Highway approximately 5 kilometers west of Terrace and proceeds for 32 kilometers passing through the middle of the claim group.

The majority of the claim group is accessible by several old, 2 wheel drive logging roads which exit off the main access road.

Supporting infrastructure is well established with the main power transmission line which supplies power to the Nass Valley passing through the

- 1 -

claim group, while the CNR Prince Rupert rail line which roughly follows the Yellowhead #16 Highway across B.C. is located 32 kilometers south of the property.

Pacific Western and Canadian Pacific Airlines have daily scheduled flights from Vancouver to Terrace daily.

1b. PHYSIOGRAPHY

The property is located at the divide of the Pacific Ranges of the Coast Mountains and the Hazelton Mountains of the Intermontane Physiographic Belt.

The Kitsumkalum Valley is typical of a wide glaciated valley with flat, gently rolling valley bottoms to steep, rugged mountain flanks. Elevations on the property vary from 500-1,500 feet ASL.

The area is well timbered with cedar, hemlock, fir and spruce with choking intergrowths of alder and willow.

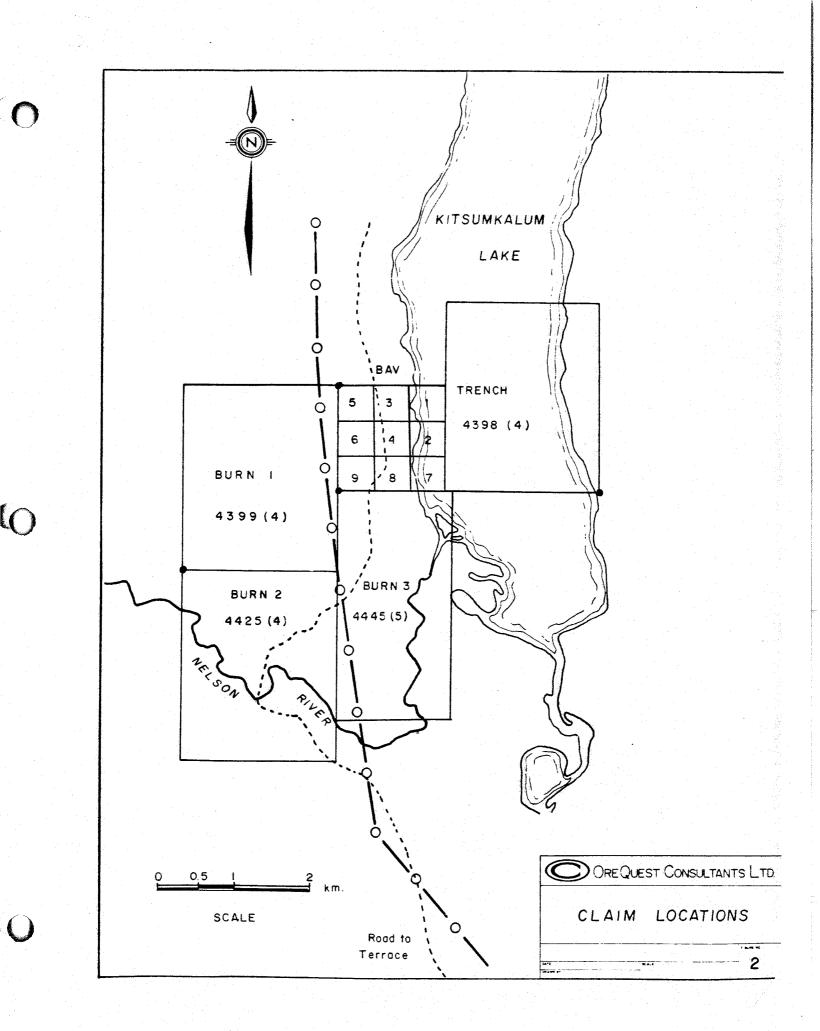
The majority of the claims lie on the west shore of Kitsumkalum Lake which would provide enough water for any further exploration and development. The Nelson River, which crosscuts through the Burn 2 and 3 claims, would also provide adequate water for any drilling to be done. It should be noted at this point that the majority of the Trench claims are overlain by Kitsumkalum Lake.

Thick glacial depris consisting of clay, sand and till blanket at least 60% of the claim area.

1c. PROPERTY INFORMATION

The Kalum group of claims consist of 5 claim blocks totalling 87 units. All claims are owned by J. Apolzer of Terrace, B.C. and by agreement Bradner Resources Ltd. of Vancouver. The details of the agreement are beyond the scope of this report.

The following table summarizes pertinent data for the claim block:


			Anniversary					
Claim Name	Units	Record #	Date	Year*				
Bav 1-4	4	37397-37400	July 21, 1990	1994				
Bav 5-9	5	4223-4227	November 28, 1984	1994				
Trench 1	20	4398	April 13, 1985	1988				
Burn 1	20	4399	April 13, 1985	1987				
Burn 2	20	4425	April 27, 1985	1987				
Burn 3	18	4445	May 11, 1985	1987				

*Pending approval of this years assessment.

All claims are located in the Skeena Mining Division of B.C. (see figure 2).

1d. HISTORY and PREVIOUS WORK

Earliest recorded activity on the Kalum property is 1919 when C.A. Smith of Terrace staked the original Lakeside claims, with the Portland and West Portland claims to follow in 1922. Between 1923 and 1925 the newly formed Kalum Mines Ltd. conducted considerable work on the property, which consisted of shaft sinking and drift development along the main vein discovered in 1919. Two shafts were sunk with the east shaft reaching 30 feet (9.1 metres) depth and the main or west shaft developed to 60 feet (18.2 metres) with 210 feet (64.0

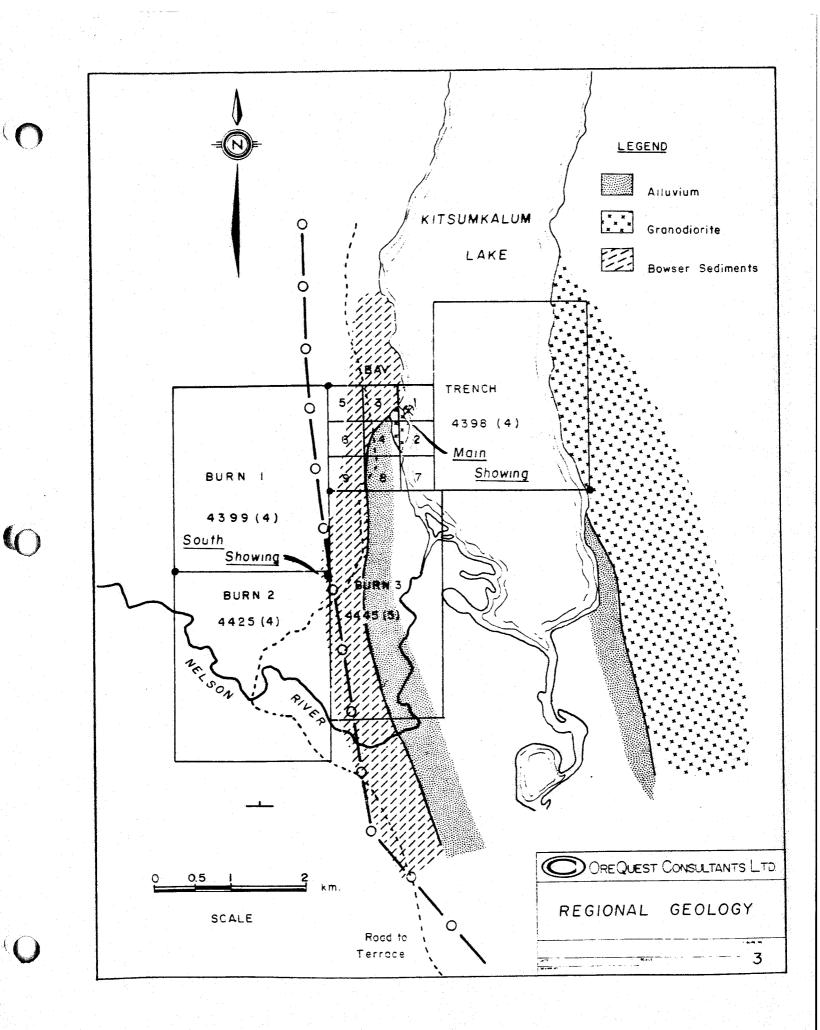
metres) of drifting westerly along the vein. A selected grab sample collected in 1930 assayed 0.62 oz/t gold and 2.2 oz/t silver.

Approximately 300 feet southeast of the main vein, Kalum Mines Ltd. put in a third adit along a #2 vein extending 85 feet (25.91 metres). Assay values from this vein in 1937 contained only minor amounts of gold and silver.

In 1972, the original claims were restaked as the Bav 1-4 by J. Apolzer of Terrace, B.C. One drill hole totalling 374 feet was drilled in an attempt to intersect the main vein. Drill records indicate that the main vein was not intersected, but granodiorite with areas of quartz veining and minor alteration were intersected. Gold and silver values range from 0.002-0.011 oz/ton and 0.08-0.02 oz/ton respectively. From studying the drill hole plan, it appears that this drill hole was drilled almost parallel to the strike of the main vein.

In November of 1983, Kalum Lake Mining Group, of which Mr. Apolzer the present property vendor is a partner, trenched and sampled the Main and #2 veins. Values up to 7.328 oz/t gold and 6.58 oz/t silver were received in a few grab samples collected from the #2 vein extension. A total of five trenches were dug utilizing a traxcavator backhoe accompanied with blasting and hand trenching. Several of the trenches did not reach bedrock and were abandoned after the stability of the slopes became hazardous.

Just to the west of the Kalum Lake Mining claims, Campbell Resources Ltd. is presently conducting a drilling program on their Misty claims. Staked as a result of the release of the 1979 Silt Geochemistry Survey by the Government, Campbell Resources Ltd. has outlined areas of high gold interest by using soil geochemistry in what is felt to be the same type of environment as the Kalum mineral showings. No further work has been reported since 1982, but Campbell is still drilling on this property.


2. 1984 FIELD WORK

The 1984 field work was carried out by Mr. Ian Dow of Terrace under the guidance of Diane Howe, OreQuest Consultants Ltd. of Vancouver. The quality of work carried out by Mr. Dow and the efficient manner in which the work was completed has been excellent.

2a. GEOLOGY

Bedrock exposure along the valley bottom is sparse and is largely confined to the shore of Kitsumkalum Lake, streams, gulleys and old trenches on the property. A thick layer (up to 60 metres) of glacial alluvium masks at least 60% of the claim area. Towards the west edge of the Burn 1 and 2 claims outcrop exposure becomes more noticeable.

The oldest rocks underlying the claim area are Upper Jurassic-Lowwer Cretaceous dominantly greywackes, conglomerates and argillites belonging to the sedimentary package of Bowser Group. General strike in the claim area is east-west with dips 75° northerly. Intrusive to this sedimentary package are stocks of the Coast Intrusions which consist of granodiorite, diorite, quartz diorite and quartz monzonite of Upper Cretaceous or later age (Figure 3). Hybassal rocks in the form of dikes and sills varying between porphyrtic to

aplitic to basaltic types intrude both the sediments and Coast granitoids.

Mineralization at the Kalum property is of the epigenetic vein type which typically consists of quartz gangue, pyrite, chalcopyrite and tetrahedrite with associated values in gold and silver. Lode vein deposits are common throughout the Terrace area with most deposits consisting of narrow quartz veins that have formed in faults, fractures, shear zones or along margins of dikes.

- 6 -

There are two good examples of vein mineralization exposed on the Kalum property and are host in a small granodiorite stock near waters edge.

The main vein, which was the locus for work in 1922-1923, is about 30 centimetres (1 foot) true width as exposed in the two shafts. Mineralization consists of pyrite, chalcopyrite, tetrahedrite and quartz gangue with associated gold and silver values. Selected assay samples collected from the dump between 1978-1984 have assay values ranging between trace to 5.62 oz/ton gold and 0.01-13.92 oz/t silver. Boths shaft were visited earlier this spring and fall and both were caved and probably flooded at depth.

The #2 vein, which is believed to be the vein which was followed by the adit in 1923, has been trenched and exposed on surface for about 30 metres (100 feet) along strike. This vein similar to the main vein in mineralogy, varies between 15 to 60 centimetres (6 to 24 inches) true width. In reports by the B.C. Ministry of Mines, there is mention of another vein approximately 10 centimetres wide which comes in along the north wall of the old adit and comes to within 5 centimetres of the second vein. Selected assay samples taken from the adit in 1937 indicate only minor amounts of gold and silver. Surface trench samples taken from the same vein in 1983-1984 have yielded values up to 7.328 oz/ton gold and 6.58 oz/ton silver.

Both the main and #2 veins strike parallel at 037° northeast with the main vein dipping approximately 45° southwest and the #2 vein dipping approximately 65° southwest.

Not all quartz veins crosscutting the granodiorite carry mineralization. Most quartz veins observed are generally a barren, milky coloured quartz which strike obique to the two main auriferous veins. It is felt that the masses of barren quartz are older in age than the auriferous veins, but this is uncertain at this time.

Both basaltic and porphyritic type dikes are observed within the old workings. In review of the old drill core left on the property, both types appear fairly common, but their relationships to the mineralization at this time is uncertain. A 12 cm wide basaltic dike was observed as the footwall in the main vein adit. It is possible that the open spaces developed along the borders of the dikes formed conducts or dilant zones for mineral deposition.

Aplitic dikes are frequently observed crosscutting the barren quartz veins. The relationship again to the other rocks observed is uncertain.

A second area of interest located approximated 2.25 kilometers southwest of

the main showing has been discovered by the owners while doing some regional prospecting. Tentatively labeled the south showing, the granodiorite here is similar to the main showing and indicates some alteration to the original rock with associated quartz veins and stringers. Pyrite and chalcopyrite have been observed and selected grab samples from a trench have yielded values up to 0.49 oz/t gold and 7.06 oz/t silver.

2b. SOIL GEOCHEMICAL SURVEY

Most exploration and mining personal believe that soil geochemistry is an effective tool in areas of little or no glacial overburden. Exploration geochemistry is based on the feature that economic mineral deposits constitute an "anomalous" concentration of one or more metals relative to surrounding country host rock. During the process of surface and near surface weathering, these anomalous concentrations of metals become incorporated in the weathering products and through natural processes of chemical and mechanical breakdown spread outwards from the ore deposit giving a "dispersion halo", which provides a considerably larger exploration target than the ore deposit itself.

Based on the abovementioned theory, a systematic grid was established over the Burn 1 and 2 claims where glacial overburden was believed minimal and mineralization has been observed.

A total of 576 soil and 17 rock samples were collected along grid lines 100 metres apart with 100 metre interval stations. A four kilometer cut line base was used for control while grid lines were established using a compass and chain. Soil samples of the B horizon were collected where possible and sent to Vangeochem Labs in Vancouver for anaylsis in gold, silver, copper, lead, zinc, arsenic and molybdenum. A summary of their techniques and copies of the lab report sheets are given in Appendix I.

From results returned, threshold, anomalous and very anomalous values were determined by standard statistical techniques.

	Threshold	Anomalous	Very Anomalous
Gold (ppb)	29	52	95
Silver (ppm)	1.4	2.5	4.6
Arsenic (ppm)	23	53	121
Zinc (ppm)	222	449	909
Lead (ppm)	43	70	114
Copper (ppm)	36	64	112

Results of the survey are encouraging.

Most of the anomalies in all elements are isolated occurrences, but based on the large grid dimensions the individual anomalies are expected. An area stretching between Lines 2+00S and 7+00N and stations 0+00N (baseline) to 20+00N should be considered for further detailed evaluation.

Gold values returned are extremely encouraging with isolated anomalous values reaching 9,400 ppb. Most of the anomalous values are confined between Lines 2+00S to 7+00N and stations 0+00 (baseline) to 6+00 West. This area partly overlies the south showing and is believed underlain by the altered granodiorite. A large swamp passes through the middle of the anomalous area indicating that overburden may vary in thickness through this area.

One other very anomalous isolated gold value (120 ppb) is located outside the area of interest on Line 12+00S at Station 15+00W. This small area should also be resampled.

High silver values are primarily confined to the main area of interest. Silver values range between "0" to 3.1 ppm. The higher anomalous silver values are located on Lines 1+00S at station 1+00W, 1+00W at station 14+00W and 5+00W at station 14+00W. Elevated silver values are generally dispersed, but noteably confined to the area of interest. Arsenic is the same as with silver values. Isolated arsenic anomalies are noteably confined to the area of interest. There are also scattered isolated anomalies in zinc, copper and lead which either may or may not be coincident with one other element.

3. CONCLUSIONS and RECOMMENDATIONS

Phase I has been successfully completed and consisted of a soil geochemical survey and a preliminary geological survey over the Burn 1 and 2 mineral claims of the Kalum group.

Due to a thick glacial overburden cover on most of the Bav, Trench and Burn 3 claims, the entire Phase I program was designed to concentrate on areas where the overburden cover is not as excessive.

Results of the Phase I program were extremely encouraging and continuation of the exploration program is recommended.

Phase II should concentrate in the area outlined in Phase I and consist of linecutting, detail soil and rock sampling and geological mapping. Pending results, trenching may also be required.

Pending successful completion and encouraging results of Phase II, diamond drilling and/or overburden drilling will be recommended.

ITEMIZED COST ESTIMATE

PHYSICAL

Cat Trenching, blasting, explosives, copco rock drill, etc. (done in April 1984 - Kalum Lake Mining Group) \$12,017.00

SOIL SAMPLING

J. Holland - 12 days @ \$125/day	1,500.00
J. Dow - 20 days @ \$100/day	2,000.00
- 3 days @ \$150/day	450.00
(Mapping) - 10 days @ \$200/day	2,000.00
D. Howe (Supervision) - 2 days @ \$200/day	400.00
Report Writing and Drafting	2,000.00

DISBURSEMENTS

Truck Rental	525.00
Gas	315.00
Freight	58.80
Kanata Travel	295.00
D. Howe - (Expense)	107.89
Neville Crosby	115.86
B.C. Telephone	50.74
Assays	8,701.43
Maps	20.00
	\$18,540.62

QUALIFICATIONS

I, George Cavey, of 6891 Wiltshire Street, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1976) and hold a BSc. degree in geology.
- I am presently employed as a consulting geologist with OreQuest Consultants Ltd. of 404-595 Howe Street, Vancouver, British Columbia.
- I have been employed in my profession by various mining companies for the past nine years.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. I am a member of the Canadian Institute of Mining and Metallurgy.
- 6. The information contained in this report was obtained during the completion of the field work program supervised by OreQuest Consultants Ltd. in 1984.
- 7. Neither OreQuest Consultants Ltd. nor myself have direct or indirect interest in the property nor in the securities of Bradner Resources Ltd.
- This report may be used by Bradner Resources Ltd. for all corporate purposes and including any public financing.

George Cavey

Consulting Geologist

DATED at Vancouver, British Columbia, this 19th day of November, 1984.

QUALIFICATIONS

I, Diane Howe, of 21394-126th Avenue, Maple Ridge, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1980) and hold a BSc. degree in geology.
- I am presently employed as a project geologist with OreQuest Consultants Ltd. of 404-595 Howe Street, Vancouver, British Columbia.
- I have been employed in my profession by various mining companies for the past five years.
- 4. I am a member of the Canadian Institute of Mining.
- 5. The information contained in this report was obtained from data personally collected during the field program in April and September of 1984 and from the reports and files listed in the Bibliography.
- Neither OreQuest Consultants Ltd. nor myself have direct or indirect interest in the property described nor in the securities of Bradner Resources Ltd.
- 7. This report may be used by Bradner Resources Ltd. for all corporate purposes and including any public financing.

Diane Howe Project Geologist

DATED at Vancouver, British Columbia, this 19th day of November, 1984.

BIBLIOGRAPHY

B.C.D.M. ASSESSMENT REPORTS #8299, #8393

B.C.D.M. MINISTRY OF MINES ANNUAL REPORT 1927-47, 1923-47, 1924-48, 1925-69, 1927-63, 1930-74

DUFFEL, S. and SOUTHER, J.G. Geology of the Terrace Map Area, B.C. Memo 329; 1964, 117 pp.

G.S.C. PAPER 1956: 36-17-22

APPENDIX A

SAMPLE #		Mo ppe	Cu po s	P5 ppm	Zn	Ag	Au pob	HS ppm
85 8H 85 1H 85 2H 85 3H		3 5 3 2	15 31 24 31	24 27 40 59	115 149 119 88	1.3 .8 1.2 1.6	5 % (S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	4 2 18 28
85 4H		2	- 14	25	24	.4	5	5
85 54 95 64 95 74 85 84		2 2 2 2 1	9 16 29 37 5	28 24 25 24 19	49 54 94 91 75	.3 .8 .6 .4	15 5 18 5 nd	2 2 10 4 2
85 9 N			10	10	35	.2	19	nd
95 194 95 114 95 124 95 134 95 144		1 2 3 2	6 14 17 15	16 25 58 33	28 66 174 88	.4 .7 1.0, 1.2	20 15 5	2 4 nd
85 15H 85 16H 85 17H 85 18H 85 18H		3 2 1 2 1	18 19 9 4 2	24 15 12 16 9	113 49 25 41 9	1.6 .9 .6 .4	15 50 10 18	18 18 nd 4 nd
95 294		1	7	14	13	.7	5	2
15 00W 15 01W 15 02W		2 4 7	24 44 74	29 31 25	228 690 98	.8 2.6 1.1	E 5 9	38 35 50
15 834 15 844 15 854 15 854 15 854 15 874		2 7 2 2 1	16 25 24 12 11	19 20 16 15 15	85 143 122 49 53	.7 .8 .8 .5 .7	28 18 15 5 29	2 4 2 2 4
15 08H 15 09H 15 10H 15 320mH		2 2 2 2 2 5	25 15 14 nd 95	28 16 19 16 23	79 96 55 15 166	2.2 .2 .3	nd 5 5 15 5	4 18 4 2 1.4
15 - 11W 15 - 12W 15 - 13W 15 - 14W 15 - 15W		3 3 nd 2	21 28 9 15	27 26 15 15	144 195 19 26	20 10 2 4	5 19 18 5	.9 1.8 .6
15 - 16) 15 - 17) 15 - 18) 15 - 19)		4 3 2 1	19 18 11 12	23 14 15 13	76 74 27 54	15 2 4 4	18 15 5 5	.1 .6 .3 .5
	• • • • • • • • • • •					As		Aq

0

C

0

BRADJER

					· ~ .		1. J
	No	Cu ppm	Pb	Zn pp n		Au ppb	Ag ppm
25 - N	5	22	20	162		nd	.4
25 - 1W	3	24	ස	168	20	20	.6
25 - 24	2	35	21	97	30	10	
25 - 34 25 - 44	4	24 28	28 25	111 226	20 10	nd nd	.4
25 - 5W	2	ස	23	99	4	15	.2
25 - 6W	2	ක	38	110	19	5	.3
26 - 7N	2	18	26	123	15	nd	.4
25 - 84 25 - 94	2 3	13 27	18 18	188 158	10	5 nd	.5 .3
25 - 194	1	.er 9	13	-44	4	5	.2
	9	12			15	18	7
25 - 11W 25 - 12W	2	16 14	24 26	95 84	10	18	.3
25 - 134		26	27	156	20	5	.5
25 - 14W	2	15	17	199	10	- 18	.7
25 - 154	3	18	28	198	15	18	•
25 - 16W	3	11	22	75	18	5	.5
25 - 17 1	3	26 15	28 29	49 41	4 · · ·	15 15	.1
25 - 184 25 - 194	2	32	28	127	15	10	.5
0020	-						
L3S - 🗰	3	15	21	165	35	5	.4
L3S - 1W	2	23	20	147	30	5	.3
L3S - 2W	1	7	9	35	5	18	.2
1.35 - 34 1.35 - 44	2	14 16	15 18	44 59	nd 30	18	.4
L3S - 54	1	9	18	27	10	10	.3
L3S - 64	2	15	28	55	2	5	.7
L35 - 7N	5	72	31	55		18	1.6
L3S - 🎒		18	15	75	20	nd	.3
L3S - SN	3	14	24	198	18	10	.5
L35 - 19N	3	19	- 29	97	48. 39	18	.6
L3S - 11W L3S - 12H	2 2 2	22 16	17 24	73 143	<i>ා</i> ස	18 5	.4
L3S - 13W	2	17	21	87	28	5	.4
L3S - 144	2	17	20	9 9	28	10	
L36 - 15M	2	10	23	166	15	10	.2
DETECTION LIMIT	1	1	2	1	2	5	-
		Ċn	Рb	ZH.	As	An	A s
L35 16H		15	19	87	.5	nd	2
L36 17N		9	28	75	.4	nd	2
L35 18W		11	16	55	.4	10	2
L3S 19W		13	15	49	•	nd	2
L3S 29W		11	13	36	.4	5	4
					-	·	

O

		Cu	Pb	Zn	Ag	Au	As
•		ppa	ppm	ppe	ppe	ppb	- ppm
	$\tau \sim 1$						
L	45 M	5	17	110	.2	nd	nd
l i	AS 11	28	15	78		15	. . .
	45 2V	16	15	95	.5	nd	4
) ı	45 34	48	41	85	.6	5	nd
. 1	45 44	16	14	72	.6	nd	с Д а
	AS SH	17	15	98	.3	nd	2
	AS GN	9	11	34	.2	nd	nd
	45 7N	14	14	53	nd	nd	2
	45 8H	9	12	68	.6	nd	- 4
1	45 SH	19	18	59	.6	nd	2
	45 18N	15	16	71	.3	5	- 4
	45 11W	11	27	116	0.1	5	15
	45 124	14	15	101	.5	nd	2
	4S 13N	12	11	49	.3	nd	2
	45 14W	8	10	75	.6	nd	19
	L45 15M	12	11	64	.4	nd	- 4
	AS 16W	14	14	40	.4	nd	18
	L45 17N	15	16	45	4	5	20
	AS 18M	18	12	58	.2	nd	4
	4S 19W	25	15	116	.4	nd	4
	45 20N	7	12	38	.1	5	4
	55 8	12	22	114	.2	nd	2
	55 IW	15	16	151	.5	nd	4
~ 1	155 24	35	18	136	.7	18	10
	155 3N	28	28	128	.6	B	4
	LISS 44	24	15	77	.5	nd	4
	155 54	12	21	116	.7	5	2
	156 64	9	-14	41	.2	5	2
	L55 7N	16	15	55	.4	10	10
	L35 84	17	23	9 5	.3	5	15
	155 94	15	16	100	.5	nd	
	LSS 10H	21	21	144	.3	nd	4
	L55 114	16	21	86	.3	18	28
	155 124	15	24	75	.6	18	2
	L5S 13M	12	21	99 95	.6	nd	2
	L55 144	15	17	86	4	5	- 4.
	L55 15H	28	15	86	.7	19	4
	L55 16W	15	21	39	.1	nd	-
	LSS 17N	14	9	66	.3	nd	4
	LSS 194	11	21	71	.4	10	2
	LSS 194	12	15	60	.5	18	2
	L55.2W	82	17	123	.3	18	5

		Da	Pb ppm	Zn ppm	Ag pps	Au ppb	As point
$\mathbf{\hat{\mathbf{A}}}$	L65 8 4	18	17	84	.3	nd	
	LES 1W	18 10	29	98 18	.3	nd 18	4
	LES 3H LES 4H	19 8	21 15	53 45	.7 .3	1 9 5	
	L65 5W	17	21	95	.3	18	4
	L65 64 L65 74	12 10	15 17	54	.5	5	2 2 2
	LES 84 LES 94 LES 184	12 11 18	19 12 28	139 78 149	.3 .2 .6	nd nd 15	2
	LES 11W	8	13	46	.4	5	2 2
	L6S 124 L6S 134 L6S 144	15 36 21	8 4 28	90 136 123	.8 .7 .4	nd 15 10	18
	L6S 15W	10	ක 15	53 68	.6	15	2
	L6S 16W L6S 17W L6S 18W	9 14 14	28 19 28	48 55 46	.4 .5 .5	5 5 nd	10 4 2
	L65 191	9	16	39		nd	
U	L75 🗰	5		18	.2	nd	5
diff	L75 1H L78 3AH L75 3BH	4 12 5	14 21 8	28 75 28	.1 .4 .2	5 15 19	2 4 2
U ₀	175 44	21	17	56	n)	5	4
	1.75 5 1 1.75 61	6 24	23	65 135	.8 .5	5	18
	L75 74	12 12	28 19	185 75	.7	18	4
	L75 9W	11 13	න 24	186 99	.2	5	
	L75 11W	14	17 19	199	.2 .3	and and	4
	L75 134	9	19	115	nd	nd	10
	L75 144	11 14	24 17	60 185	.4	10 nd	15 4
	L75 16W	6 10	14 15	35 55	.2 .1	5	2
	L75 18W	15	15	39	nd	10	4
O^{1}	L75 194	29 21	14 15	59 56	.5	(SR) nd	4

SAMPLE #		Mo pps	Cu ppm	Pb ppa	Zn pps	Ag pps	Au ppb	As pps
		- Pha					10	2
85 1W		5	5	7	8	1.9	10 5	15
85 2W		3	27	16	57	2.3	5	4
BS 3H		3	-14	24	124	المينية.	5	10
85 44		2	14	28	65	.5	18	- 4
85 5W		2	15	27	ස	.6	16	
85 64		2	5	29	48	.5	10	2
85 7H		1	15	ස	138	.3	18	10
85 8W		3.	9	17	61	.6	18 5	2
85 94		1	5	11	35	.2		
	LAS 12N		1 4	3	28	.1	10	nd :4
	L65 134		12	35	95	.5	nd	2
	L8S 14W		6	18	75	.2	nd	£
	LAS 15H		15	22	129	·••	nd	15
	1.85 164		10	19	76	.7	5	2
	L06 17N	••• •••	9	21	- 54	.7	nd	4
	LAS 18M		19	22	· 44 .	24	nd	2
	LIS 19N		8	12	37	.1	nd	2
							· · · · -	_
			16	15	48	.2	nd	2
95 IW		3	19	16	100		10	10
95 2W		2	13	24	195	.6	10	٠
95.3H		2	21	ස	125	.7	18	18
95 4N		1	5	28	48	.3	20	5
95.5H		2	12	21	118	.6	nd	- 4 -
95 6H		2	9	28	84	.3	28	4
		1	5	18	68	.3	15	2
95 7H		2	18	15	58	.2	10	2
95 84 95 94		1	18	49	55	.7	15	.
	196 120		24	5	18	.6	nd	2
			4	14	28		19	2
	L95 144		5	15	44	.3	nd	•
				48	45	.2	5	5
	195 154		18	15	93	.2	5	· •
	1.95 164		14 7	19	36		18	
	L95 174	•	15	17	71	.3	nd	2
	L95 184		1J- 6	5	35	.3	5.	2
	L95 194							_
	195 200		9	13	66	nd	- 28 /	5

			No	Cu	Pb ppe	Zn ppm	Ag ···	Au ppb	As ppm
							ε. R	5	e de e
	185 1W		3	15	15	90	.5		
-	165 2N		3	16	29	99	.9	18	•
	105 3N		3	18	19	87	.5	10	
	186 4W		2	13	21	71	.7 .2	5 nd	4
	105 5W		2	10	15 21	64 115	.6	5	2
	185 6H		3	11	C1	117	* u	•	
	-		3	9	28	75	.6	nd	4.
	105 7N 105 12N			10	23	189	.8	5	4
	185 139			18	26	94	.6	18	18
	186 144		2	15	28	· . 95	.6	nd	2
uck		LINE 16H		18	14	51	.5	-10	
#15				13	23	182	.2	nd	30 2
9		LINS ION		6	19	48	.2	5 nd	10
		LISS 18504 18	.5	21	10	54	.1		
		·		6	7	27	.2	10	ad i
		L105 194		18	18	34	.3	-5	4
		L166 200							_
	115 10		2	6	21	65	.5	nd	
	110 14						. **	nd	10
	115 24		2	16	22	85 85	.4	5	4
	115 3		2	10	16 21	106		nd	2
	115 4		3		ක	177	.5	nd	. 4
	115 5	l de la companya de l La companya de la comp	 -			· · · · · · _ · ·		2 	4
		LIIS 134		13	12	79 34		5 nd	19
		L115 14W		9	.9 15	71	.2	nd	4
		L115 154		16	10	••			
	·	L115 16W		15	13	51	.6	nd	4
check	1	L115 174		15	15	71	.4	5	4
Chill		L115 184		13	15	79	.6	nd 5	15
	18 A,B	L115 1888M		21	14	68 33	.4	nd	2
	•	L115 194		7	5	33	• • •		
		L115 284		4	9	ක	.2	nd	5
	125	1 N		2 16	19	69	1	15	↓
				~ ~	34	75	.3	5	18
		211		29 29			.4	5	2
-		34		z 5 3 15			.4	5	4 -
	125 125			2 7			.6	15	2
	163				_				
		L125 13W		· · · · ·	. 10				4.
		LIES 14W		Z	3 19		.2	nd	15
		L125 154		1					2
		L125 16H		1	5 19	9 81	.1	. .	-
				ана 1911 — Ар	5 11	1 20	.,	nd	nd
		L125 17N			4 (.5	nd	2
		L125 194			9 1	9 35	.3		2
		L125 200		2	5 1	2 58) .1	5	18
		1							

Q

*v*0

	Mo (ppn)	Du ppm	Pb ppm	Zn ppu	Ag ppe	Au ppb	As. pps
	VPP.						
13S 1W		2	. 5	18	4	5	2
135 2W	1	9	15	62	5	nd	18
135 34	5	14	19	142	.4	nd	
13S 4W	2	14	16	67	.5	5	4
135 136	3	15	22	58	.6	5.	15
135 144	3	5	19	46	.8	5	2
135 154	2	11	49	49	1.8	5	4
13S 16W	5	19	æ	37	.6	5	2
13S 17W	2	8	21	- 94	.6	nd	5
	3	26	ත	127	1.8	5	19
145 10	3	C0	EJ	167	1. 4		
(4P 0)	2	18	15	47	.4	5	2
145 2N	3	25	24	96	.6	5	10
145 3 4 145 44	2	9	21	65	.4	5	2
145 18N	3	12	24	45	4	10	10
145 11W	3	15	14	34	.3	5	4
1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	. .		- •				-
145 120	3	8	19	58	.4	nd	2
145 13N	3	13	21	55	.1	18	20
145 144	3	6	21	46	())	10	2
145 154	. 3	6	16	53	·	nd	2
145 164	3	18	25	198	.7	10	4
145 174	3	10	28	88	.7	19	2
155 19	2	5	28	65	.3	5	4
155 24	2	15	21	183	.3	nd	- - (4)
155 34	3	6	10	67	.2	nd	5
							•
and a second	•	9	19	38	.5	18	4
155 184	2	- 4	19	16	.6	5	2
156 119	2	5	19	88	.4	5	2
	<u>с</u>	5	18	8		5.	4
155 134		7	25	30		5	4
155 144		T	النبية		•••	-	

		Mo	Cu	26	22	AS	A-	AS	
165 W		3	14	18	79	.6	nd.	4	
165 1W		3	11	22	75	.6	10	2	
165 2W		7	10	18	100	.4	5	4	
165 3 N		7	9	23	114	.5	nd	4	
120 81		3		6E		· · · ·			
165 BN			14	25	44	.5	nd	4	
165 S M		4	12	38	51	.7	15	5	
165 1 0		4	16	18	64	.3	10		
165 11W		5	-10	16	49	.8	18	1.14	
165 12W		4	6	21	184	.4	5	10	
165 1 3 4		4	10	23	69	.6	5	4	
165 144		3	10	ක	88	.4	18	10	
175 M		1	.6	10	69	.5	18	5	
175 1W		5	14	28	103	.5	10	18	
175 24	an a	3	10	ස	134	.6	18	4	
				· ·			_	.	
175 34		4	15	35	145	.	5	4	
175 74		5	7	17	30		5	2	
175 8 H		3	.11	22	58	.4	5	2	
175 94		3	10	15	31	.6	5	10	
175 184		3	14	15	33	.3	5	28	
175 119		2	5	15	ž	.7	15		
113 114		.		20					
185 00		2	13	13	137	.7	5	2	
185 IN		. 1 .	-24	14	75	.2	nd	÷ 🐴	
185 2N		2	10	28	149	.6	5	2	
185 34		2	7	14	196	.3	nd	4	
185 SW		3	-14-	21	53	.5	10	10	
185 SH		3	19	19	-35 49	.4	5	.4	
185 19M		2	11	14	45	.3	5		
-		· · · · · · · · · · · · · · · · · · ·	14	21	70	.3	nd	4	
185 11W		7	17	Ci -	19		TIU '	7	

		No	Cu pps	Pb pp#	Zn	Ag po n	Au ppb	As pom
					404	.4	18	2
IN OH	*	(2) 8 (19) 3	21	. 38	124 88	• • 7		4
1N 1W		6	34 14	29 31	56	.4	nd	2
1N 2N		19	15	38	78	.7	19	4
1N 3H		.	10 1					
1N 5H		2	35	19	35	.2	5	nd
1N 5H		2	19	31	149	4	10	2
1N 7W		2	14	27	39	.6	٩	4
1N 8H		3	15	25	68	.4	18	4
1N 9W		2	25	38	95	.7	5	18
451 FO E		2	14	36	39	.5	18	4
1N 18H		2	28	38	88	.4	15	15
1N 11H 1N 12H		2	18	30	75	.8	15	18
IN 134		- 4	7	21	37		18	5
1N 14W		3	39	40	144	3.1	58	10
		•	20	32	89	.6	10	18
1N 15W		2	28 18	39 39	99	.6	5	15
1N 16H		3	14	24	35	.6	5	- 4
1N 17W		Б 1	4	16	11	.4	5	nd
1N 18W		•						
1N-19W		1	4	7	5	.1	nd	nd
1N 284		, i i 1	5	7	18	.8	19	2
2N 0H		1	9	14	56	.3	nd	nd
2N IN		9	25	28	135	.8	nd	4
2N 2W		2	12	25	148	.7	5	15
2N 3W		1	15	17	75	1.0	10	2
2N 4H		2	5	2	9	35	nd	4
2N 5H		1	6	16	69	.3	5	2
Chi (11		. ()	17	28	75	.4	(50)	15
2N 6H 2N 7H		2	28	25	85	.2	5	4
2N 8N		1	5	18	35	.3	nd	nd
21 94		1	19	5	25	.7	5	* *
21 104		2	26	25	ෂා	2.0	nd	10
		2	15	24	177	.5	nd	· · 4.
2N 119		2 3	15	18	55	1.2	nd	4
2N 129		2	31	16	419	nd	nd	(82)
2N 13H		2	. 15	18	25	.2	nd	8
2N 14H 2N 15H		2	.9	22	29	.9	nd	4
		en de la construction Altre de la construction			·			10
2N 16W		2	21	15	34 79	.3	nd 15	10
2N 17W		2	19	15	38 A1	.7	5	5
2N 18W		3	15	19 16	41 9	.5	10	nd
2N 19M		2	10 25	22	56	.5	18	10
2N 20H		c	C 3	<u> </u>	50	• • • •		

Quit A Vo

Ó

O

				s.			
a	Ho	Cu	P5 DDB	Zn DDel	Ag DD#	Au ppb	As Dpm
3N 88W	1	15	15	75	.5	15	
3N 01W	1	20	15	138	.1	19	15
31 824	2	19	15	58	.3	5	2
3N 83*	5	26	19	75	. 4	nd	15
3N 84W	2	5	11	45	1.8	18	4
31 854	nd		5	15	- 1	15	2
3N 86H	2		15	98	nd	28	10
3N 87H	1		13	68	.5	28	1 4
3N 88W	.3		45	138	.7	35	19
3N 89N	1		9	24	.7	10	nd
3N 10H	- 2		18	23	.2	10	nd
3N 11W	2		9	29	.2		4
3N 12H	3		14	58	.5	10	10
3N 13N	3	14	14	85	.3	29	15
		_	_				5
3N 14H	nc		5	17	.2	nd 10	5
3N 15H	1	-	2	5 39	.2 nd	10	18
3N 16W	nc		11	13	nd		10
3N 17W	No		6 1		nd	5	5
3N 18W	. n	3 3	. 1	2	144		
7961 4 (763		2 18	13	35	.7	5	4
3N 19N		2 8	18	54	.3	nd	15
3N 28N 4N 88N		2 8	14	64	.2	nd	18
AN 81W		1 18	.14	61	.3	nd	4
AN BEN		1 6	6	21		5	- 2
			-				
4N 03H	. 1	ż 7	8	59	.3	18	5
4N 84W		1 18	5	52	.3	nd	nd
4N 85W		1 5	19	14	.4	18	2
4N 85H		1 14	15	- 80 	.6		18
4N 87W	ា	d 2	15	- 29	.*	10	а н 1
4N 88H		2 24	න	22	1.1	10	4
4N 89H		1 38	48	- 38	1.3	18	nd
4N 18W		2 19	16	17	1.8	10	4
4N 11W		1 5	6	29	. 4	5	nd
AN 12W		1 4	3	12	.2	15	nd
			$\phi_{1} = \frac{1}{2} \left(\frac{1}{2} \right)^{2}$				
4N 13M		2 11	11	39	.2	10	2
4N 144		2 14	23	58		5	15 2
4N 15H		2 13		35	1.5	nd 5	4
4N 16H		4 28		45	1.3	6	15
4N 17W		7 12	39	38	• 3	5	ل ام
		1 6	9	15	.2	nd	2
4N 18H		1 0. 1 nd			.4	10	5
4N 19H 4N 28H		2 14			.2	nci	-4
		· · · · · · · · · · · · · · · · · · ·	. 1.1				

ананан алар алар алар алар алар алар ала							
			D1-	Zn	Ag	Au	As
a	Ho	Cu	Pb	DD#	pp#	כמס	pp
	DON	BDM	ppe	PP	******		
		•					
annatta (hafki)	1	5	18	118	.5	3	20
00W 81W	2	8	11	- 1 -	.8	20	· 4
51 821		18	:14	84	.5	18	4
5N 83H	1	23	- 24	114	1.4	5	18
5N 84H	1	13	24	198	1.2	nd	10
5N 86H	2	5	9	ස	.3	nd	5
				~~	F		4
5N 87H	1	15	16	98 -18	.5	ru B	nd
5N 96W	1	4	5 14	55	1.2)	15	15
5N 89N	nd	14 35	®	Ž	1.1	5	2
5N 19W	1	න ක	සි	98	.7	5	1
5N 11W	1. 	<u>د</u>		••			
5N 12H	1	3	nd	5	nd	5	5
5N 13H	1	6	18	35	.1	nd	2
5N 14H	2	15	15	62	2.1	nd	4
SN 154	. 4	15	33	96	Lee	nd	30
5N 16H	3	15	24	42	.6	nd	4
		_	·	-			2
5N 17W	.2	8	9	25	.3	nd 19	5
5N 18W	7	14	29 15	53 55	.3	nd	4
5N 19H	3	19	11	25	.3	28	4
5N 29N	2	8 5		33	.3	5	nd
GN BOW		J	2		••		
6N 91W	5	19	19	95	.7	nd	5
O SN 82W	2	10	28	88	5	nd	4
EN RIGHT CHIEF	3	31	28	144	.2	9	10
6N 838W	3	13	20	184	.3	nd	19
6N 84H	1	18	. 14	55	.6	B	10
				(286)	1.5	(00)	50
5N 85W	4	39	(158)	78	.6	18	10
6N 86H	1	11	14	38	.3	nd	2
6N 87W	1	5	1 9 15	59	.5	5	4
EN OBH	1 2	15 14	58	133	.2	15	2
EN 09H	с. С. С. С.						
255 C061	2	15	15	58	.4	nd	*
5N 18W	3	23	15	70	.6	nd	2
6N 12H	. 1	16	15	75	.5	nd	2
EN ISAN) CHESS	2	10	15	58	.4	nd	10
6N 13BH	3		17	159	.9	nd	2
		·		~~	.6	nd	2
6N 15H	3		19	88	.4	nd	4
6N 16W	2		15	55 66	.5	5	
5N 17W	6		19 14	24	.3	15	2
6N 18H	2	10	14	6 7			
Pat - 700 1		15	15	36	.6	18	10
6N 19N	4		15		.3	nd	15
EN 284							

	SAMPLE #		Cu	РЬ	Zn	Ag	Au	As
			ppe	ppe	ppæ	ppm	ppb	ppm
	L7N ON		5	5	28	.3	5	nd
1	L7N 1W		8	16	114	.3	nd	- 4
)	L7N 2N	•	14	24	93		nd	2
	L7N 3W		18	24	59	.4	nd	4
	L7N 4W		14	19	39	.6	nd	2
· .	L7N 5W	1 A.	15	15	91	.8	18	4
	L7N 6W		5	10	35	.5	5	nd
	L7N 7W		4 1	11	28	.2	nd	2
	L7N OW		25	15	63	.3	(5)	18
	L7N 94		5	18	20	.2	nd	nd
	1.000		ත	44	198	.7	18	2
	L7N 19N		4	5	58	.2	10	2
	L7N 11W		· 4	28	12	.2	5	nd
	L7N 13N		13	18	46	.6	-28	2
	L7N 14W	No	14	8	41	.6	- 5	2
	2111 1 10	TIG						
7N 15H		2	15	15	39	.4	5	2
7N 16H		nd	7	7	16	.3	10	5
7N 17H		3	38	28	68	0	nd	4
7N 18W		5	13	12	42	.3	5	10
7N 19H		5	18	18	41	.3	nd	18
7N 20H		4	18	9	38	.3	18	-
				-				
)				••	EE		nci	4
	Lan ah		12	12	55 45	.4	nd	2
	LBN 1W		28 28	18 19	128	.5	10	10
	LBN 2N		6	14	66	.3	nd	nd
	LAN 34 Lan 44		21	35	91	.5	nd	18
	LBN 4H			~				
	Lan Sh		18	15	78	.5	10	4
	LBN GH		8	9	48	.5	nd	2
	LON 7M		-4	2	15	-4	nd	nd
	LON BH		3	6	- 15	.4	nd	5
	LON SH		12	.15	93	1.1	nd	4
					~	· · · · · · · · · · · · · · · · · · ·	5	2
	LBN 18H		9	24	25	.* .7 .4	nd	2
	LBN 11W		10	19	31 69	.5	nd	18
	LBN 12H		15	25	34	1.0	nd	2
1	LBN 13H		11	19 9	24	.6	nd	nd
	LBN 14H		10		67			
	1 04 4511		7	5	11	.8	5	2
	LBN 15H		10	15	35	.1	5	4
	LBN 100	ta da sera da sera	19	15	33	.2	nd	÷ 4
	LBN 18H		9	13	24	.1	5	5
	LON 19H		21	28	73	.4	nd	15
·	ware a see						~	
)	LON 200		17	15	42	.8	(5)	5
-								

÷.

						Cu ope	Pb pps	Zn ppm	Ag p pe	Au ppb	As poll
	ļ	.9N	84			10	18	61	.7	5	2
		L9N	1₩			11	7	48	.5	nd	2
		L9N	24			12	11	65		nd	2
		LIN	51			11	18	48	.2	3	10
		LIN	6 W			9	12	25	nd	16	2
		L9N	71			25	16	78		nd	10
		L9N	81			24	7	8	.5	ß	nd 2
		LSN	9			13	12	75	.6	C)	2
		LSN	1911			28	28	71	1.0	nd	4
		LIN				14	11		.4	5	4
		L9N				19	14	97	.4	nc	: 4 -1
		L9N				15	17	58	.2	n	2
		L9N	141			10	18	24	.1	nd	10
		L9N	154			4	6	7	.3	nd	nd
		L9N				3	5	4	.2	nd	nd
			17			18	18	33	.3	nd	2
			184			27	12	55	nd	5	4
		1.9N	190			49	26	71	1.3	nd	*
		LISN	294			6	2	18	.2	nd	'nd
							DL	7-	Ag	Au	As
					No	Cu	Pb	Zn	7		
					No	Cu ppm	pp n	pps	pos	ppb	
	-				pps	p pm	<u>pps</u>	pps		ppb	
19N	1W 2W								7		
19N 19N	1W 2W				2 2 2	9 10	29 15	ррж 39 90	ppm 1.0 .1	ppb 15 5	4 4
10N	2W 3W				2 2 2 2	9 10 8	29 29 15	ррж 39 98 44	ppm 1.0 .1 1.0	ppb 15 5 nd	4 4
19N 19N 19N	211 311 411				2 2 2 2 5	pp≡ 9 10 8 25	209 15 18 22	998 39 98 44 65	1.0 .1 1.0 2.1	ppb 15 5 nd nd	4 4 4 2
19N 19N 19N 19N	211 311 411 511				2 2 2 5 3	ppm 9 10 8 25 16	29 15 18 22 15	pp# 39 98 44 65 52	۲۰۳ ۱.۴ .1 ۱.۴ (۲)	ppb 15 5 nd 5 5	4 4 4 2 4
10N 10N 10N 10N 10N	211 311 411 511 611				2 2 2 5 3 3	ppm 9 10 8 25 16 12	28 15 18 22 15 15	pps 39 98 44 65 52 74	pr≡ 1.0 .1 1.0 (2.1) .4 .7	ppb 15 5 nd 5 10	4 4 4 2
19N 19N 19N 19N	211 311 411 511				2 2 2 5 3	ppm 9 10 8 25 16	29 15 18 22 15	pp# 39 98 44 65 52	۲۰۳ ۱.۴ .1 ۱.۴ (۲)	ppb 15 5 nd 10 10 10	(5))11 4 4 4 2 4 2 4
19N 19N 19N 19N 19N	211 311 411 511 611				2 2 2 5 3 3 1 2	ppm 9 10 8 25 16 12 3 16	29 15 18 22 15 15 15 14 15	998 39 98 44 65 52 74 45 57	pom 1.0 .1 1.0 2.1 .4 .7 .3 .3	ppb 15 5 nd nd 5 18 18 18	4 4 4 2 4 2 4 4
10N 10N 10N 10N 10N	211 311 411 511 611 712 811				2 2 2 3 3 1 2 3	ppm 9 10 8 25 16 12 9 16 7	29 15 18 22 15 15 15 14 15 14	pp# 39 98 44 65 52 74 45 57 52	prom 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .3	ppb 15 5 nd nd 5 18 18 18 18	1 4 4 2 4 2 4 4 2 4 4 2
10N 10N 10N 10N 10N 10N 10N 10N	2H 3H 4H 5H 6H 7K 8H 9H 10H				2 2 2 5 3 3 1 2 3 1	ppm 9 10 8 25 16 12 9 16 7 9	29 15 18 22 15 15 15 14 15 17 14	pp# 39 98 44 65 52 74 45 57 52 45	ppm 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4	ppb 15 5 nd nd 5 18 18 18 18 18 28	4 4 2 4 2 4 2 4 2 2
10N 10N 10N 10N 10N 10N 10N 10N	2W 3W 4H 5W 5W 7W 8W 9W 10W 11W				2 2 2 5 3 3 1 2 3 1	ppm 9 10 8 25 16 12 9 16 7 9 15	28 15 18 22 15 15 15 14 15 17 14 21	pps 39 98 44 65 52 74 45 57 52 45 41	ppm 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .4	ppb 15 5 nd nd 5 18 18 18 18 28 5	4 4 2 4 2 4 2 4 2 4
10N 10N 10N 10N 10N 10N 10N 10N	2W 3W 4H 5W 5W 7W 8W 9W 10W 11W				2 2 2 3 3 1 2 3	ppm 9 10 8 25 16 12 9 16 7 9	29 15 18 22 15 15 15 14 15 17 14	pp# 39 98 44 65 52 74 45 57 52 45	ppm 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4	ppb 15 5 nd nd 5 18 18 18 18 18 28	4 4 2 4 2 4 2 4 2 2
10N 10N 10N 10N 10N 10N 10N 10N 10N 10N	24 34 44 54 54 54 54 54 74 84 94 104 114				22 2 5 3 3 1 2 3 1 2 3	9 10 8 25 16 12 3 16 7 9 15 24	200 15 18 22 15 15 15 14 15 17 14 21 16	998 44 65 52 74 45 57 52 45 41 68	Pr= 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .3	ppb 15 5 nd nd 5 18 18 18 18 28 5	4 4 2 4 2 4 2 4 2 4
10N 10N 10N 10N 10N 10N 10N 10N 10N 10N	2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 12H				2 2 2 5 3 3 1 2 3 1	9 10 8 25 16 12 9 16 7 9 15 24 19	28 15 18 22 15 15 15 14 15 17 14 21	pps 39 98 44 65 52 74 45 57 52 45 41	ppm 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .4	ppb 15 5 nd nd 5 18 18 18 18 28 5 28 18 18	12700 4 4 2 4 2 4 2 4 2 8 2 8 2 8 2 8 2 8 2 8
10N 10N 10N 10N 10N 10N 10N 10N 10N 10N	2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H				2 2 2 5 3 3 1 2 3 1 2 3 2 2	9 10 8 25 16 12 3 16 7 9 15 24	29 15 18 22 15 15 15 14 15 17 14 21 16 14	pps 39 98 44 65 52 74 45 57 52 45 41 68 85 71 53	pr= 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .3 .6 .7 .6	ppb 15 5 nd nd 5 18 18 18 18 28 5 28 18 18 28 5 28 18 18 5 28 5 2	13700 4 4 2 4 2 4 2 4 2 8 2 8 2 8 2 8 2 8 4 4 2 8 4 4 2 8 8 4 4 2 4 4 2 4 4 4 4
19N 19N 19N 19N 19N 19N 19N 19N 19N 19N	2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 12H				22 2 5 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 3	ppm 9 10 8 25 16 12 9 16 7 9 15 24 10 11 10 10	289 15 18 22 15 15 15 14 15 17 14 21 16 14 19 16 21	pps 39 98 44 65 52 74 45 57 52 45 57 52 45 41 68 85 71 53 89	pp 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .3 .5 .7 .6 .7 .8 .4	ppb 15 5 nd nd 5 18 18 18 18 28 5 28 18 19 19 5 28	1 4 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 3 4 5 4 5 5 5 5 5 5 5 5
19N 19N 19N 19N 19N 19N 19N 19N 19N 19N	2W 3W 4W 5W 5W 6W 7W 9W 10W 11W 12W 13W 13W				22 2 5 3 3 1 2 3 1 2 3 2 4 3	ppm 9 10 8 25 16 12 9 16 7 9 15 24 10 11 10	289 15 18 22 15 15 15 14 15 17 14 21 16 14 19 16	pps 39 98 44 65 52 74 45 57 52 45 41 68 85 71 53	pr= 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .3 .6 .7 .6	ppb 15 5 nd nd 5 18 18 18 18 28 5 28 18 18 28 5 28 18 18 5 28 5 2	13700 4 4 2 4 2 4 2 4 2 8 2 8 2 8 2 8 2 8 4 4 2 8 4 4 2 8 8 4 4 2 4 4 2 4 4 4 4
19N 19N 19N 19N 19N 19N 19N 19N 19N 19N	2W 3W 4W 5W 5W 5W 7W 9W 9W 10W 11W 12W 12W 12W 12W 12W 12W 12W 12W 12				2 2 2 5 3 3 1 2 3 1 2 3 1 2 3 4 3 4 3	9 10 8 25 16 12 9 15 24 19 11 10 10 13	200 15 18 22 15 15 15 15 14 15 17 14 21 16 14 19 16 21 15	pps 39 98 44 65 52 74 45 57 52 45 41 68 85 71 53 89 89	Pr= 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .3 .4 .4 .3 .6 .7 .6 .4 .7	ppb 15 5 nd nd 5 18 18 18 18 18 18 18 28 5 28 19 19 5 28 19 19 5 28 15	4 4 4 2 4 2 4 2 4 2 8 2 8 2 8 2 8 2 8 2
19N 19N 19N 19N 19N 19N 19N 19N 19N 19N	2W 3W 4W 5W 5W 5W 6W 7W 9W 10W 11W 12W 12W 12W 12W 12W 12W 12W 12W				22 2 5 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 3	9 10 8 25 16 12 9 16 7 9 15 24 19 11 10 10 13	200 15 18 22 15 15 15 14 15 17 14 21 16 21 15 15	pp# 39 98 44 65 52 74 45 57 52 45 41 68 85 71 53 89 89 89 56	pres 1.0 1.0 2.1 .4 .7 .3 .3 .3 .3 .4 .4 .3 .6 .7 .6 .4 .7 .6 .4 .7 .6 .4 .7 .6 .4 .7 .3 .4 .4 .4 .3 .4 .4 .4 .4 .3 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	ppb 15 5 nd nd 5 18 18 18 18 18 28 5 28 18 19 5 28 19 5 28 15 5 5	1 4 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 3 4 5 4 5 5 5 5 5 5 5 5
19N 19N 19N 19N 19N 19N 19N 19N 19N 19N	2W 3W 4W 5W 5W 5W 7W 9W 9W 10W 11W 12W 12W 12W 12W 12W 12W 12W 12W 12				2 2 2 5 3 3 1 2 3 1 2 3 1 2 3 4 3 4 3	9 10 8 25 16 12 9 15 24 19 11 10 10 13	200 15 18 22 15 15 15 15 14 15 17 14 21 16 14 19 16 21 15	pps 39 98 44 65 52 74 45 57 52 45 41 68 85 71 53 89 89	Pr= 1.0 .1 1.0 2.1 .4 .7 .3 .3 .3 .4 .4 .3 .4 .4 .3 .6 .7 .6 .4 .7	ppb 15 5 nd nd 5 18 18 18 18 18 18 18 28 5 28 19 19 5 28 19 19 5 28 15	4 4 4 2 4 2 4 2 4 2 8 2 8 2 8 2 8 2 8 2

			·····	ppe.	pps	PB pps	2n pps	Hg ppa	рры	нs pp u
	12N	SM		2	5	15	43	.4	8	2
	12N	3₩		2	13	14	58	.6	5	4.
	12N	4₩		3	9	28	45	Č?	nd	2
	12N	51		3	11	28	49		5	4
	IZN			2	14	15	65	.2	5	4
	12N			4	8	19	56	.2	5	nd
	12N	84		1	6	9	.34	.3	5	2
	12N	99		5	37	31	134	.7	5	18
		194		5	6	15	78	.6	5	5
		11₩		3	18	18	58	.4	10	4
	12N	11.584		3	14	16	100	(i . i)	nd	4
1.14	12N	128		3	9	28	45	.2	nd	19
	121	134		4	13	28	36	.4	nd	5
·	12N	140		3	18	18	47	.2	5	4
		150		3	19	17	63	.5	5	4
	12N	16₩		6	16	15	39	.8	5	18
	12N	17₩		5	36	19	45	.6	5	4
. 1	12N	184		2	11	12	58	.1	5	4
;	121	194		6	17	12	45	.5	18	•••• ↓
	12N	284		7	14	15	58	.6	19	10
	4N	134		3	5	6	15	.3	nd	nd
1	4N	13.50W		3	5	7	28		18	2
1	4N	144		2	2	16	- 14	.2	nd	2
1	4N	14.58N		3	9	18	ස	.7	5	4
		150		3	9	16	53	.8	5	2
1	4N	15.584		3	9	28	35	.8	5	4
1	4N	168		3	18	15	41	.6	5	2
- 1	4N	16. 58		3	8	15	38	0	5	2
1	4N	171		3	6	14	17	.5	10	2
		17 . 58H		4	26	21	74	.9	nd	10
1	4N	189		4	28	16	41	.8	18	4
1	4N	18. 58 0		2	15	14	27		nd	:
		191		3	9	14	58	.3	nd	4
		19.58		4	14	17	53	.5	18	· 4
1	4N	290		4	15	15	55	.4	18	4
	6N	13.50W		2	5	15	24	.4	5	nd
		144		1	10	11	22	.4	nd	2
		14.58N		5	6	15	24	.2	10	4
		15		1	11	22	47	.8	18	18
		15.584		2	18	23	54	.7	10	4
	<u>61</u>	15.68N		· :	14	20	58	.2	5	18
		168		2	5	17	35	.3	18	4
		16. 58		3	7	29	42	.4	nd	
		171		3	6	15	27	.5	19	2
		17.58N		3	15	13	45	.7	18	2
. 1	6N	184		4	8	ස	25	.5	5	18
		18.50		3	15	15	55	.4	5	4
		19₩		4	10	21	51	.7	10	4
		19.38		2 3	14	19	50	.3	5	50 nd
		19.58W		3	15	16	92	.5	10	nd

		Mo	Cu	РЬ	ZN	Aq	An	As.
18N 13W		2	8	- 6	17	.3	10	2
18N 13.58H		3	15	15	55	.4	15	- 4
18N 14H		3	14	16	49	.3	10	4
18N 14.58M		3	16	12	33	.5	5	2
18N 15H		2	54	16	79	.2	5	15
18N 15.58W		1	9	17	48	.3	5	2
18N 15W		2	8	12	19	.2	28	38
18N 16.50W		3	10	. 14	ක	.5	5	30
18N 17N		1	11	14	ස	.4	nd	68
18N 17.58H		5	14	11	37	<u>4</u>	nd	4
18N 18N		4	12	14	46	.6	5	
18N 18.58M		1	7	9	25	.1	10	30
18N 19W		2	18	11	79	.1	10	35
18N 19.58W		4	ක	æ	64	.3	10	40
18N 28W	n an	.	36	22	80	.3	nd	38
20N 13U		3	12	6	14	.5	5	5

C

C

SAMPLE #	Mo pps	Cu pps	Ръ	Zn pp m	As ppm	Au ppb	Ag	Jampic Louricy
		24	18	78	18	5	.5	70 - N of Zions, ZOLOON
KALUM 1		45	17	123	68	nd		1+005, 11+00 W
Kalum 2 Kalum 3	1	11	12	61	20	5	.4	1+005 118+80W
DETECTION LIMIT	1	1	2	1	5	5	8,1	

Rocks

SOMPLE #	Cu	Pb	2n ppr	Ag pos	Au peb	As pom	
C - 1 C - 2 C - 3 C - 4 E - 5	688 5888 69 10 6	65 1500 29 5 nd	14 115 39 71 35	8.0 80.1 4.2 .5 .7	648 16788 78 5 nd	50 190 4 nd 4	QZ - SOUTH SHOULDA. H(JUL - DUMP (CAV) 1+005, 3+10W (QZ) 4+000, 4+30W (ARG) QZ 4+005, 8+50W (") QZ
C = 6 C = 7 C = 8 C = 9 C = 10 C = 11 C = 13 C = 14	39 65 12 22 18 13 127 1528	25 15 13 9 4 16 438 850	124 32 71 74 53 67 19 2	.6 .8 .5 .2 .4 .9,2 199.2	15 5 nd 5 nd 1575 6580	18	0+00, 7.00W (") 2+00N, 10+50W (RENT?) 0+00, 5+00W (RENT Q? 1+00W, 15+30W (") 3+00N, 15+50W (") Q2 5+00W, 15+60U (") Q2 BAJ#2
	No	Сц	Pb pom	Zn	Ag	Au ppb	As pp#
8C 1N 1458N (ROCK)	 1	35	13	84	.2	nd	10 1+00~, 14+50~

U

File B:BRADNER.VGC Threshold/Anomaly Statistics GOLD

B:BRADNER.VGC / col 7	Normal	Log-xform	Un-xform
No. Samples	387		
Min	5.00		
Max	100.00		
Mean	10.84	0.93	8.59
Standard Deviation	10.73	0.26	1.83
Threshold	32.29	1.46	28.64
Anomalous	43.02	1.72	52.29
Very Anomalous	53.74	1.98	95.47
Upper Discard Limit	100.00		

Listing of threshold & anomalous values:

Sample	Raw Value		Log10(Value)	
*******			*************	
(1)	45.00	** ANOM	1.65 *	thresh
(3)	50.00	** ANOM	1.70 *	thresh
(15)	40.00	* thresh	1.60 *	thresh
(16)	50.00	** ANOM	1.70 *	thresh
(21)	40.00	* thresh	1.60 *	thresh
(25)	35.00	* thresh	1.54 *	thresh
(40)	60.00	*** V ANOM	1.78 **	ANOM
(65)	35.00	* thresh	1.54 *	thresh
(68)	80.00	*** V ANOM	1.90 **	ANOM
(90)	50.00	** ANOM	1.70 *	thresh
(94)	60.00	*** V ANOM	1.78 **	ANOM
(102)	80.00	*** V ANOM	1.90 **	ANOM
(103)	100.00	*** V ANOM	2.00 **	V ANOM
(261)	45.00	** ANOM	1.65 *	thresh
(273)	35.00	* thresh	1.54 *	thresh
(275)	30.00		1.48 *	thresh
(329)	50.00	** ANOM	1.70 *	thresh
(377)	30.00		1.48 *	thresh
			-	

Note: 10 value(s) not included (exceed limit of 100)

Class % vs. Log10(PPM): B:BRADNER.VGC

GOLD

C

0

O

upper ·				FR	EQ	UE	NC	Y (%)				
Log10	Class%	Cum%	+	:	1		2	:	3	:	4	:	5
0.03	0.00	0.00	:	•	:	.	. :	•	1.1	•	:	•	:
0.13	0.00	0.00	:		:	•,	:	•	:	•	:	•	:
0.23	0.00	0.00	:	•	:	•	:		:	•	:	•	4
0.33	0.00	0.00	:	•	:	•	:			•	•	•	:
0.43	0.00	0.00	:	•	:	•	:		. :	•	:	•	:
0.53	0.00	0.00	:	•	:	•	:	•	:	•	1	•	:
0.63	0.00	0.00	:	•	÷	•	:		:	•	1	•	
0.73	44.44	44.44	****	*****	****	****	****	****	****	****	****	**	: :
0.83	0.00	44.44	:	•	•	•	:	•	:	٠	:	•	';
0.93	0.00	44.44	М	•	:	•		•	•		4.1	•	
1.03	35.92	80.36	:****	****	****	****	****	****	****	****	:	•	:
1.13	0.00	80.36	:	•	:	•	:	•	1 :	•		• •	:
1.23	8.27	88.63	:****	****	:	•	:	•	:	•	:	•	:
1.33	5.17	93.80	:****	*	:	•	:	•.	:	•	•	•	
1.43	1.55	95.35	T**	•	:	•	:	•.	:	•	:	•	:
1.53	0.52	95.87	:*	•	:	•	:	•	:		:		:
1.63	1.29	97.16	A*	•	:	•	4	•		•	: :	•	:
1.73	1.55	98.71	:**	•	•	•	:	•	:	.•	:	•	:
1.83	0.52	99.22	:*	•	:	•	:	•	:	•	;	•	:
1.93	0.52	99.74	V*	•	:	٠	:	•	:	•	:	•	:
2.03	0.26	100.00	:	•	:	•	:	•	:	•	:	•	:
			+		1		2	:	3	:	4	:	5

Cumulative Percent vs. Log(PPM): B:BRADNER.VGC GOLD

	uppor				Р	RO	BAB	тт	ITY	,	(C U	M %)			
PPM	upper Log10	Cum%	.01	.1	.5	2	10	30	50%		90	98	-	999	9999	
4.3	0.63	0.00	:	-	;		:	:	4	:	:	•	:	1	:	
5.4	0.73	44.44	:		:	:	•		+	:	:	:	:	:	:	
6.8	0.83	44.44	:	:	:		:	:	1	:	:	:	:	:	:	
8.5	0.93	44.44	:	:	:	:	•	:	1	:	:	• •	:	:	:	
11	1.03	80.36	:	:	:	:	:		1	:	+ :	:	:	:	:	
13	1.13	80.36	:	:	:	1		.:	1	:	. :	. :	:	•	:	
17	1.23	88.63	:	:	:		:	:	1	:	+:	:	:	:	:	
21	1.33	93.80	:	:	:	:		:	-	:	:	+ :	:	:	:	
27	1.43	95.35	:	• :	:		:	:	1	:	:	+ :	• :	:	· . :	
34	1.53	95.87	:	:			:	:	1.1	:	:	+ :	•	:	. :	
43	1.63	97.16	:	:	:		•	: :	ł	:	:	+ :	:	: .	· •	
54	1.73	98.71	4	4	:	:	*		1	:	.1	+	- :	:	:	
68	1.83	99.22	•	:	:	:	•	:		-1	:	:	+:	:	1	
85	1.93	99.74			÷	:		:	1		:	. :	:-	+ :	:	
107	2.03	100.00		:	÷.	:	:	•	1	:	:	:		:	:+	
			.01	. 1	• 5	2	10	30	50%	70	90	98	99	999	9999	

File B:BRADNER.VGC Threshold/Anomaly Statistics SILVER

B:BRADNER.VGC / col 6	Normal	Log-xform	Un-xform
No. Samples	563		,
Min	0.10		
Max	3.10		
Mean	0.51	-0.37	0.43
Standard Deviation	0.33	0.26	1.82
Threshold	1.16	0.15	1.41
Anomalous	1.49	0.41	2.56
Very Anomalous	1.82	0.67	4.65

Listing of threshold & anomalous values: Sample Raw Value Log10(Value) * 0.11 1.30 thresh (1)* 0.08 1.20 thresh (3) ** ANOM * thresh 0.20 1.60 (4)* (15) 1.20 thresh 0.08 * ** ANOM 0.20 thresh 1.60 (16) ** *** V ANOM 0.49 ANOM (35) 3.10 ** ANOM (43) *** V ANOM 0.41 2.60 * *** V ANOM 0.30 thresh (64) 2.00 0.08 1.20 * thresh (66) * . 0.11 (100) 1.30 thresh ** ANOM 0.18 * thresh (106) 1.50 × 0.11 (107) 1.30 thresh * 0.15 (115) 1.40 thresh 0.08 1.20 * thresh (116) * thresh 0.08 (120) 1.20 *** V ANOM 0.32 × thresh (124) 2.10 ** ANOM 0.20 × thresh (137) 1.60 * 0.11 (161) 1.30 thresh *** V ANOM 0.32 * thresh (181) 2.10 1.20 * thresh 0.08 (215) * thresh 0.15 1.40 (254) * thresh 0.15 (270) 1.40 * 0.11 (393) 1.30 thresh (520) 1.40 * thresh 0.15 * * ANOM 0.20 thresh (556) 1.60

0

Class % vs. Log10(PPM): B:BRADNER.VGC SILVER

upper				F			- C											
Log10	Class%	Cum%	+	:	1		;		2	2		:		3-	:-	4		5
0.03	94.32	94.32	****	* * *	***	**	***	**	***	***	**	* * *	**	* *	****	*****	****>>	> :
0.13	3.20	97.51	T***	•	:		·		:			•		:	°	1	• .	
0.23	1.60	99.11	**	•	3				:	:		•		÷		:	•	;
0.33	0.53	99.64	A*	•	: :		•			:	2	•		÷		:	•	
0.43	0.18	99.82	•	•						:				` :	•	:	•	:
0.53	0.18	100.00	· •	•	:		•			:		•		1	•	:	•	:
			+	:	1			·	2	2		:		3-	:	4		5

Cumulative Percent vs. Log(PPM): B:BRADNER.VGC SILVER

	upper				P	RO	BAI	BIL	IT	¥.	(C U	M %)	I		
PPM	Log10	Cum%	.01	.1	. 5	2	10	30	50%	70	90	98	99	999	9999
1.1	0.03	94.32	:	¹ :	:	· •	:	· t		:	: -	+ :	•	: •	:
1.3	0.13	97.51	:	:	:	.:	:	•		:	:	+ :	:	:	:
1.7	0.23	99.11	:	:	•	:	· · · · •	:	1	:	:	:4	n :	:	:
2.1	0.33	99.64	s :	:	:	. :	, 1 .	:		:	:	:	+	:	:
2.7	0.43	99.82	:	•	:	:		· · · · •	1	:	:	:	: 3	+:	•
3.4	0.53	100.00	:	:	:	:	:	:	1	:	:	:	.:	:	:+
			.01	.1	. 5	2	10	30	50%	70	90	98	99	999	9999

File B:BRADNER.VGC Threshold/Anomaly Statistics ARSENIC

B:BRADNER.VGC / col 8	Normal	Log-xform	Un-xform
No. Samples	536	a gang antar laing datar Will Lang ang ang ang datar datar dat	- 'ter 120' inte ann ann ann Aith Aith Aith Ann -
Min	2.00		
Max	80.00		
Mean	6.88	0.66	4.52
Standard Deviation	8.71	0.36	2.27
Threshold	24.29	1.37	23.40
Anomalous	33.00	1.73	53.21
Very Anomalous	41.71	2.08	120.99

Listing	of	threshold	δ.	anomalous	values:
					- 10/11.1

Sample	Raw Value			Log10(Valu		
+	30.00	*****	thresh	1.48	*****	thresh
(35)	35.00	**	ANOM	1.54	*	thresh
(36)	50.00	***	V ANOM	1.70	*	thresh
(37)		***		1.90	**	ANOM
(58)	80.00	**			*	
(110)	40.00		ANOM	1.60	*	thresh
(114)	30.00	*	thresh	1.48		thresh
(125)	50.00	***	V ANOM	1.70	*	thresh
(280)	50.00	***	V ANOM	1.70	*	thresh
(308)	30.00	*	thresh	1.48	*	thresh
(309)	50.00	***	V ANOM	1.70	*	thresh
(310)	60.00	***	V ANOM	1.78	**	ANOM
(313)	30.00	*	thresh	1.48	*	thresh
(314)	35.00	**	ANOM	1.54	*	thresh
(315)	40.00	**	ANOM	1.60	*	thresh
(316)	30.00	*	thresh	1.48	*	thresh
(502)	40.00	**	ANOM	1.60	*	thresh
(504)	30.00	*	thresh	1.48	*	thresh
(522)	35.00	**	ANOM	1.54	*	thresh
(523)	30.00	*	thresh	1.48	*	thresh
(525)	30.00	*	thresh	1.48	*	thresh
(528)	50.00	***	V ANOM	1.70	*	thresh
(531)	40.00	**	ANOM	1.60	*	thresh
(532)	30.00	*	thresh	1.48	*	thresh
(533)	25.00	*	thresh	1.40	*	thresh

(

Class % vs. Log10(PPM): B:BRADNER.VGC ARSENIC

ι	ıpper				F	RI	EQ	UΕ	N	CY	(%)				
I	log10	Class%	Cum%	+	:	-1-		:	2		:	3		4	:	5
	0.03	0.00	0.00	:	•	:		•	:		•	:	•	: .	•	:
	0.13	0.00	0.00	:	•	1		•	:	· ·	• .	:	•	: .	•	•
	0.23	0.00	0.00	:	•	.:		•	:		•	:	•	:	• *	:
	0.33	33.96	33.96	****	***	**	****	****	***	****	*****	****	•	:	•	:
	0.43	0.00	33.96	:	•	:		•			•	:	•	:	•	:
	0.53	0.00	33.96	:	•	:		•	:	· · · ·	•	:	•	:	•	:
	0.63	37.87	71.83	M****	****	**	***	****	* * *	****	*****	*****	****	:	•	:
	0.73	0.00	71.83	:	•	:		•	:		•	:	•	:	•	:
	0.83	0.00	71.83	:	•	:		•	:	1	•	:	•	: • •	•	:
	0.93	0.00	71.83	1	•	.:		•			•	:	•	:	•	1
	1.03	15.49	87.31	****	****	**	****	*	:		•	:	•	:	•	:
	1.13	0.00	87.31	:	•	:		•	:	1.1	•	:	•	:	•	1
	1.23	5.60	92.91	:****	**	•:		• 1			• .	: ,	•	:	•	:
	1.33	2.61	95.52	T***	•	:		•	:		•	:	• :	:	•	:
	1.43	0.19		:	•	:		•	:	. 4	•	:	•	:	•	:
	1.53	1.68	97.39	:**	•	:		•	:		•	:	•	: .	•	:
	1.63	1.31	98.69	A*	•	۰:		•	:	·	•	:	•	:	•, '	
	1.73	0.93	99.63	:*	•	• :		•	:	. 1	•	:	•	:	•	÷.,
	1.83	0.19	99.81	:	•	:		•	•		•	:	•	:	•	:
	1.93	0.19	100.00	:	•	:		•	:	1	•	:	•	:	•	:
				+	:	-1-			2		:	3	:	4	:	5

Cumulative Percent vs. Log(PPM): B:BRADNER.VGC ARSENIC

	upper				P	RO	B	A.B	IL	ITY	ł.	(C	U	М %)		
PPM	Log10	Cum%	.01	.1	÷5	2		10	30	50%	70	9	0	98	99	999	9999
1.7	0.23	0.00	:	:	:	:		:	:	1	:		:	:	:	:	:
2.1	0.33	33.96	:	:	:	:		:	-+	ł	:		:	:	: :	:	:
2.7	0.43	33.96	:	:	:	·		:	· • •	1	• •		:	:	:	:	:
3.4	0.53	33.96	;	:	:	:		:	:	1	:		:	:	. :	;	:
4.3	0.63	71.83	:	:	:	:		:	:	1	. +		:	:	:	:	:
5.4	0.73	71.83	:	:	:	:		-		1	:			:	:	:	:
6.8	0.83	71.83	: :	:	:	:		:	:	1	:		:	:	:	:	:
8.5	0.93	71.83	•	:	:	:		:	:	·	:		;	:	:	:	:
11	1.03	87.31	:	:	:	:		:	:	1	. :	+		:	.:	:	:
13	1.13	87.31	:	:	:	:		:	:	1	:		:	:	:	:	:
17	1.23	92.91	:	:	:	:		:	:	Į.	:		:+	:	:	:	t * 1
21	1.33	95.52	:	:	:	:		:	· • •	- 1	:		:	+ :	:	:	:
27	1.43	95.71	:	:	:	:		:	:	ţ	:		:	+ :	;	:	
34	1.53	97.39	, :	:	:	:		:			:		:	+ :	:	:	. : -
43	1.63	98.69	:	:	•	:		:	:	1	:		:	+	:	:	:
54	1.73	99.63	:	:		:		3	:	1	:		:	:	+	:	:
68	1.83	99.81	:	:	· •	:		:			;		:	:	. :	+:	1
85	1.93	100.00	:	:	.:	:		:	:	1	:		:	. :	:	:	:+
			.01	.1	. 5	2		10	30	50%	70	9	0	98	99	999	9999

(

File B:BRADNER.VGC Threshold/Anomaly Statistics ZINC

Normal	Log-xform Un-xform
576	ين حد حد دو دو دو به من حد بن حد مر ح مر ح بن بن بن بن بن بن بن بن من بن من بن بن بن بن
1.00	
286.00	
66.81	1.74 54.33
41.04	0.31 2.02
148.89	2.35 222.19
189.93	2.65 449.33
230.97	2.96 908.69
500.00	
	576 1.00 286.00 66.81 41.04 148.89 189.93 230.97

Listing of threshold & anomalous values: Sample Raw Value Log10(Value) (14)* 174.00 thresh 2.24 (27) 149.00 × thresh 2.17 ** (42) 220.00 ANOM 2.34 (63) 229.00 ** ANOM * 2.36 thresh * (64) 177.00 thresh 2.25 (103) ** 220.00 ANOM 2.34 ** ANOM (125) 200.00 2.30 (140) 184.00 * 2.26 thresh (142) *** V ANOM * 286.00 2.46 thresh (151) * 159.00 thresh 2.20 * (217) 177.00 thresh 2.25 (277) ** 198.00 ANOM 2.30 (340) * 149.00 thresh 2.17 (357) ** 190.00 ANOM 2.28 ** ANOM (410) 205.00 2.31 (429) * 151.00 thresh 2.18 (525) * 150.00 thresh 2.18 (532) * 166.00 thresh 2.22 * (542) 160.00 thresh 2.20 ** (545) 226.00 ANOM

2.35 thresh (550) * 150.00 thresh 2.18 (554) 156.00 * thresh 2.19 * (561) 165.00 2.22 thresh (576) * 166.00 thresh 2.22 Note: 2 value(s) not included (exceed limit of 500)

Class % vs. Log10(PPM): B:BRADNER.VGC ZINC

C

(

C

				. <u>.</u> .					7 91	.				
upper		· ·		E	RE	QUI	ENC	X	(%)				-
Log10		Cum%		:	1		2		3		:	4	:	• >
0.03	0.17	0.17		•	1	٠	:	•	:		•	:	•	
0.13	0.00	0.17		•		•	•	•	:		•	• .	•	:
0.23	0.00	0.17		•	4	•	1	•	1		•	:		
0.33	0.00	0.17	:	•	:	•	:	•	1		•	:	•	:
0.43	0.00	0.17	:	•	:	•	:		: •		•	:	•	;
0.53	0.00	0.17	:	•	:	•	:	. •	:		•	:	•	:
0.63	0.17	0.35	:	•	:	•	:	•	÷.		•	:	•	1
0.73	0.69	1.04	*	•	:	•	:	•	:		•	•	•	:
0.83	0.00	1.04	:	•	:	•	:	•	:		• 11	:	•	:
0.93	0.52	1.56	*		.:	•	:	·	:		•	:	•	:
1.03	1.39	2.95	*	•	•	•	:		:	- C.	•		•	:
1.13	1.04	3.99	*	•	:	•			:		•	:	•	:
1.23	2.08	6.08		•	:	•	:	•	:		•	:	•	:
1.33	3.30	9.38	***	•	:	• .	•	•	:		•	:	•	:
1.43	4.86	14.24		*	:	1. 1. 1. •		•	:		•	:	•	.:
1.53	4.69	18.92	****	*	:	•		•	:		•	:	•	:
1.63	11.98	30.90	*****	***	*****	e .	:	•			•	:	•	:
1.73	13.72	44.62	M****	***	****	**	:	•	:			:	•	:
1.83	13.89	58.51	****	***	****	**	:	•	:		·• ~	:		:
1.93	14.41	72.92	:****	***	****	***	:	•	:		•	:	•	:
2.03	12.67	85.59	****	***	****	** .	:	•	:		•	:	•	.:
2.13	7.47	93.06	****	***	:	-	•	•	•		•	:	•	:
2.23	4.69				:		:	•	:		•	:	•	:
2.33	1.39	99.13		•	:		:		:		•	:	•	:
2.43	0.69	99.83		•	:	•	:	•	:		•	:	•	:
2.53		100.00			-	•	•				•	:	•	:
		0	- 		1		?_		3	·	•		- •	-5

Cumulative Percent vs. Log(PPM): B:BRADNER.VGC ZINC

(

	upper				Р	RO	B	AB	IL	ITY	((C U M					
PPM	Log10	Cum%	.01	.1	. 5	2		10	30	50%	70	90	98	99	999	9999	
1.1	0.03	0.17		+	:	: -		:	:	1	:	:	:	:	:	:	
1.3	0.13	0.17	:	:	:	:	-	:	:	1	:	:	:	:	:	•	
1.7	0.23	0.17	:	:	:	:		:	:		: -	:	:	:		- 1	
2.1	0.33	0.17	- :	:	:	:			:		:	:	:	:	:	:	
2.7	0.43	0.17	:	:	.:	:			: :	1	:	:	÷.	:		•	
3.4	0.53	0.17	•	ŧ	:	:		:	:		•	:	:	:	. •	:	
4.3	0.63	0.35	:	:	+:	:		:	:	1	:	:	:	:	:	:	
5.4	0.73	1.04	;	:		+ :		:		1	:	:	:	:	:		
6.8	0.83	1.04	:	:	:	:		:	:	1	:	:	:	:	:	1.	
8.5	0.93	1.56	:	:	:	+:		:	:		:	:	:	:	:	1	
11	1.03	2.95	:	1	:	: : +		:	•	1	:	:	;	; :	:	: .	
13	1.13	3.99	:	:	:	:	+	:	:	1	•	•	. 4	:	, t -	:	
17	1.23	6.08	: :	:	:	:	+	:	:	l	:	:	. , :	:	· \$	4	
21	1.33	9.38	:	:	. :	:		+:		1.	. •	:	:	:	:	:	
27	1.43	14.24	: .	:	:	:		:+	:	1	:	:	. :	:	.:	:	
34	1.53	18.92	:	:	:	;		: -	⊨ .‡	1	:	:	:	. •	:	1	
43	1.63	30.90	:	:	:			:	+	1	:		:	:	;	:	
54	1.73	44.62	:	:	. :	:		:	1	+{	1	:	:	:	•	:	
68	1.83	58.51	:	:	:	:		: :	1.	+	:	:	:	:		:	
85	1.93	72.92	:	:	:	. :		:	· :		+	:	:	:	•	.	
107	2.03	85.59	:	:	· .:	•		:	:		:	+ :	:	:	:	1	
135	2.13	93.06	:	:	:	:		:		ł	:	:+	:	:	:	:	
170	2.23	97.74	:	:	:	:		:	:		:	:	+:	:	1	: : : · · ·	
214	2.33	99.13	:	:	:	:		:	;	1		•	:	+ :	:	:	
269	2.43	99.83	:	:	:	Í		:	:	1	:	· · · · ·	:		+:	1	
339	2.53	100.00	:	:	:	:		: :	. • :	1	:	: ,	, ;	:	•	:+	
			.01	.1	• 5	2		10	30	50%	70	90	98	99	999	9999	

File B:BRADNER.VGC Threshold/Anomaly Statistics LEAD

4 Normal	Log-xform	Un-xform
576		a agun anns anns anns anns anns anns anns
1.00		
160.00		
17.78	1.20	15.91
9.90	0.21	1.64
37.59	1.63	42.64
47.49	1.84	69.82
57.39	2.06	114.30
	576 1.00 160.00 17.78 9.90 37.59 47.49	576 1.00 160.00 17.78 1.20 9.90 0.21 37.59 1.63 47.49 1.84

Listing of threshold & anomalous values:

Sample	Raw Value	Log10(Value)										
(3)	40.00	* thresh	1.60									
(4)	59.00	*** V ANOM	1.77 *	thresh								
(14)	50.00	** ANOM	1.70 *	thresh								
(35)	40.00	* thresh	1.60									
(37)	39.00	* thresh	1.59									
(83)	45.00	* thresh	1.65 *	thresh								
(105)	40.00	* thresh	1.60									
(126)	96.00	*** V ANOM	1.98 **	ANOM								
(142)	160.00	*** V ANOM	2.20 **	* V ANOM								
(182)	49.00	** ANOM	1.69 *	thresh								
(249)	40.00	* thresh	1.60									
(357)	44.00	* thresh	1.64 *	thresh								
(410)	41.00	* thresh	1.61									

0

Class % vs. Log10(PPM): B:BRADNER.VGC

LEAD

								× ``				
upper				REQ	UE	NCI	i Çi	«)		,	-	
	Class%				-:	-2		2		4 ;	:)	t i
0.03	0.17	0.17		•	•	:	•	•	•	:	• :	
0.13	0.00			:	•	•	•	:	•	:	• :	· .
0.23				:	•	4	•	:	•	:	• :	
0.33	0.69			:	•	:	•	: •	• .	:	• :	
0.43	0.00	0.87			•		•.		•	: 4	• :	
0.53				•	•	:	•	:	•	:	• •	
0.63	0.35			:	• .	:	•	:	•	t , , , , ,	• ; ;	
0.73	2.60		***	:	•	:	•	:	•	:	• :	
0.83	1.56			:	•	•	•	:	٠.	1	• :	
0.93	2.08			:	•	:	•	:	•	:	• :	:
1.03			******		•	:	•	:	•	:	- :	н. Т
1.13	8.16	23.61	M******	* :	•		•	::	•	:	• 1	
1.23	27.78			*****	*****	****	*****	:	•	:	• 1	: ,
1.33				*****		****	****	., t	•	:	• •	:
1.43	13.89	92.36	******	*****	**	:		;	•	: .	• `*	:
1.53	4.69		T****	1	•	:	•	:	•	:	• :	:
1.63				•	•	:	. •	:	•	t 11	• •	
1.73	0.69	99.48	:* •	:	• .	1	•	:	•	•	• :	:
1.83	0.17	99.65	Α.	:	•	7	• ;	:	•	:	• :	1
1.93	0.00	99.65	: •	:	•	:	•	:	•	:	- 1	. .
2.03	0.17	99.83	v .	:	•	:	•	:	•	:	• •	
2.13	0.00	99.83	: •	:	٠	:	•	:	•	:	• ; ;	:
2.23	0.17	100.00	:	:	•	:	•	:	•	•	•	: .
			+:	1	:	-2	:	-3		4	:	5

Cumulative Percent vs. Log(PPM): B:BRADNER.VGC

LEAD

	upper				P	RO	B	AB	IL	I T Y		CU					
PPM	Log10	Cum%	.01	.1	. 5	2		10	30	50%	70	90	98	99	999	9999	
1.1	0.03	0.17	:	+	:	.:		:	:	1	:	:	:	:	:	:	
1.3	0.13	0.17	:	:	:	:		:	:	1		:	:	.:	:	:	
1.7	0.23	0.17	:	:	:	;		1	:	1	1	:	:	. 1	:	:	
2.1	0.33	0.87	:	:	: 1	- :		:	:	1	:	1	:	. :	:	:	
2.7	0.43	0.87	:	;	:	:		:	:		:	:		:	:	:	
3.4	0.53	1.22	:	:	:	+:		:	:	1	:	:	:	. :	:	1	
4.3	0.63	1.56	:	:	:	+:		:	:	1	:	:	:	:	:	:	
5.4	0.73	4.17	:	:	÷	:	÷	:	:	1	:	:		:	:	:	
6.8	0.83	5.73	:	:	:	:	`+		:	1	:	:	:	- :	•	:	
8.5	0.93	7.81	:	:	:	•	•	+ :	:	1	:	:	:	. :	:::	:	
11	1.03	15.45	:	:	.:	;		:+	:		:	:		:	:	:	
13	1.13	23.61	:	:	:	:			+ :	1	1.1		:	:	`+ :	:	
17	1.23	51.39	: .	;	:	:		:	:	+	:		, 1		:		
21	1.33	78.47	:	:	:	:		:	:		;+	t 1	. :	· .:	.:	•	
27	1.43	92.36	:	:	:	:		:	•	1	:	:+	:	:	:	: :	
34	1.53	97.05	:	. :	:	:		:	:	1	:	:	+ :	:	:		
43	1.63	98.78	:	:	:	:		:	:		:		+	· :	:	2	
54	1.73	99.48	:	:	:	:		:	:		:	:	:	+:	:	1 1 1	
68	1.83	99.65	:	:	:	:		:	:	1	:	:	. :	+	:		
85	1.93	99.65		:	:	:		:	:	1	:	:	:	:	:		
107	2.03	99.83	:	· . :	:	:		:	:	1	:	:	:	:	+: `		
135	2.13	99.83	:	· .:	:	:		:	:	1	:	:	:	:	:	:	
170	2.23	100.00	•	:	:	:		· •	:	ł	:	:	:	:	:	:+	
			.01	.1	.5	2		10	30	50%	70	90	98	99	999	9999	

File B:BRADNER.VGC Threshold/Anomaly Statistics COPPER

B:BRADNER.VGC / col 3	Normal	Log-xform	Un-xform
No. Samples	575	a data data data data data data data da	, an
Min	2.00		
Max	95.00		
Mean	13.87	1.07	11.85
Standard Deviation	8.87	0.24	1.75
Threshold	31.62	1.56	36.46
Anomalous	40.49	1.81	63.94
Very Anomalous	49.37	2.05	112.15

Listing of Sample	threshold Raw Value	& and	omalous	values: Log10(Valu	ie)	
(9)	37.00	*	thresh	1.57	*	thresh
(23)	34.00	*	thresh			
(26)	35.00	*	thresh	1.54		
(35)	39.00	*	thresh	1.59	*	thresh
(43)	44.00	**	ANOM	1.64	*	thresh
(44)	74.00	***	V ANOM	1.87	**	ANOM
(124)	35.00	*	thresh	1.54		
(163)	35.00	*	thresh	1.54		
(224)	37.00	*	thresh	1.57	*	thresh
(233)	36.00	*	thresh	1.56		
(326)	54.00	***	V ANOM	1.73	*	thresh
(336)	36.00	*	thresh			
(399)	49.00	**	ANOM	1.69	*	thresh
(409)	40.00	*	thresh	1.60	*	thresh
(429)	35.00	* .	thresh	1.54		
(461)	36.00	*	thresh			
(531)	95.00	***	V ANOM	1.98	**	ANOM
(542)	35.00	*	thresh	1.54		
(559)	32.00	*	thresh	1.51		
(567)	72.00	***	V ANOM	1.86	**	ANOM

(

(

Class % vs. Logiu(PPM): B:BKAUNEK.vGC COPPER

upper				F	RE	Q	UE	NC	Y	(%)				
Log10	Class%	Cum%	; + ; -	:	1-		:	2	:		3	:	4	:	5
0.03	0.00	0.00	:	é é	:		•	:	•		:	•	:	•	:
0.13	0.00	0.00	:	•	:		•	:			:	•	:	•	:
0.23	0.00	0.00	:	•	. 4		•	:	•		:	•	:	•	:
0.33	0.87	0.87	:*	•			•	•	•		:	•	:	•	:
0.43	0.00	0.87	:	٠	:		•	:	•		:	•	:	•	:
0.53	0.87	1.74	:*	•	:		•	:	•		:	•	:	•	:
0.63	2.78	4.52	***	•	:		•	:			:	•	:	•	:
0.73	5.91	10.43	****	**	:		•	:	•		:	• .	:	•	:
0.83	4.17	14.61	: ****	•	::		•	:	•		:	•	:	•	:
0.93	6.78	21.39	:****	***	:		•	:			:	•	:	•	:
1.03	21.74	43.13	M****	***	****	* * *	***	****	۲		:	•	:	•	:
1.13	12.35	55.48	:****	***	****	*	÷	:	· .		:	•	:	•	:
1.23	22.26	77.74	****	***	****	***	****	****	۲.		:	•	:	•	:
1.33	8.87	86.61	:****	***	**:		•	:			:	•	:	•	:
1.43	7.48	94.09	****	***	:		•	:			:	•	:	•	:
1.53	2.61	96.70	T***	é .	:		•	:	•		:	•	1.	•	:
1.63	2.26	98.96	**	•	:		•	. :			:	•	÷	•	:
1.73	0.35	99. 30	A	•	:		•	:			:	•	:	•	:
1.83	0.17	99.48	:	•	:		•	:	•		:	•	:	•	:
1.93	0.35	99.83	:	•	:		ч. Т	:	•		:	•	t .	•	:
2.03	0.17	100.00	v	•	:		•	:	•		:	•	:	•	:
			+	:	1-		:	2	:		3	:	4	:	5

Cumulative Percent vs. Log(PPM): B:BRADNER.VGC COPPER

	upper				P	RO	BAB	IL	IT	2	(C -U	M %)		
PPM	Log10	Cum%	.01	.1	• 5	2	10	30	50%	70	90	-98	99	999	9999
1.7	0.23	0.00	:	:	:	:	:	:	1	:			:	•	•
2.1	0.33	0.87	:	:	:+	- :	:	:		:			:		:
2.7	0.43	0.87	:	:	:	:	:	:	1	:	1.1		:	•	:
3.4	0.53	1.74	:	:	•	+	:	:	1	. :	:		:		:
4.3	0.63	4.52	:	:	÷.	: +	:	:	1	:	:	:	:	:	
5.4	0.73	10.43	:	. :	:	:	+:	:	1	· :	•		:	÷	:
6.8	0.83	14.61	:	:	:	:	:+	· • •	1	•	.:	:	:	:	:
8.5	0.93	21.39	:	:	:	:	:	+ :	1	:	:		:	:	:
11	1.03	43.13	:	:	:	:	:	:	+	:	:		: :	:	:
13	1.13	55.48	:	:	:	:	:	. :	+	:	.:	:	:	:	:
17	1.23	77.74	:	· :	:	:	:	:	1	:+	• •		:	:	:
21	1.33	86.61	:	:	:	:	:	. :	1	:	+ :	· · ·	:	:	:
27	1.43	94.09	:	:	:	:	:	:	1	:	:	+ ;	:	:	:
34	1.53	96.70	:		:	:	:	:	1	:	:	+ ;	:	:	:
43	1.63	98.96	:	. :	:	:	:	:	1	· · ·	:	:	+ :	:	:
54	1.73	99.30	:	:	:	:	:	:	1	:	:		+:	•	:
68	1.83	99.48	:	:	:	· •	:		1	:	:	:	+:	:	:
85	1.93	99.83	:	:	:	:	:	•	4	:	•	:	:	+:	· · · ·
107	2.03	100.00	:	:	:	:	:	:	1.	:	•		:	:	:+
			.01	-1	• 5	2	10	30	50%	70	9 0	98	99	999	9999

File B:BRADNER.VGC Threshold/Anomaly Statistics MOLYBDENUM

B:BRADNER.VGC / col 2	Normal	Log-xform	Un-xform
No. Samples	383	r tille sinn som den den den sinn sinn sinn påre sen sinn	
Min	1.00		
Max	20.00		
Mean	2.71	0.37	2.32
Standard Deviation	2.06	0.23	1.69
Threshold	6.84	0.82	6.65
Anomalous	8.91	1.05	11.25
Very Anomalous	10.97	1.28	19.05

Listing of threshold & anomalous values:

S	ample	Raw Value			Log10(Valu	e)	
(22)	20.00	***	V ANOM	1.30	***	V ANOM
(23)	8.00	*	thresh	0.90	*	thresh
(24)	19.00	***	V ANOM	1.28	**	ANOM
(44)	7.00	*	thresh	0.85	*	thresh
	46)	7.00	*	thresh	0.85	*	thresh
1	54)	18.00	***	V ANOM	1.26	**	ANOM
C	55)	9.00	* *	ANOM	0.95	*	thresh
C	107)	7.00	*	thresh	0.85	*	thresh
(127)	7.00	*	thresh	0.85	*	thresh
(230)	7.00	*	thresh	0.85	*	thresh
Ċ	298)	7.00	*	thresh	0.85	*	thresh
(299)	7.00	*	thresh	0.85	*	thresh
(376.)	17.00	***	V ANOM	1.23	**	ANOM

-----= = =

O

Class % vs. Log10(PPM): B:BRADNER.VGC MOLYBDENUM

upper		· · · · ·					Q I					 C 1 	-					
Log10	Class%	Cum%	+	-:	1	[2			:	-3-			4	:	5
0.03	16.97	16.97	:***	****	***	***	***	***	:			•	:			:	•	:
0.13	0.00	16.97	:	•		:	. •	•				•	:			:	• :	:
0.23	0.00	16.97	:	•		:						• [-	:			:	•	
0.33	39.16	56.14	M***	****	***	***	***	***	***	***	***	****	* * *	*****	****	:	• :	:
0.43	0.00	56.14	:		·	:			:			•	;			: .	•	•
0.53	27.15	83.29	***	****	***	***	***	***	***	***	k 🛪 🤅	***	::			:	• :	:
0.63	9.40	92.69	:***	****	**	:		•	:		•	•	:			:	•	
0.73	3.13	95.82	T***	•		:			:			•	:		а. С. а.	:	•	:
0.83	0.78	96.61	. *	•	1	:		•	:			•	:			:	•	
0.93	2.09	98.69	:**	•		:		•	:			•	•			:	•	:
1.03	0.26	98.96	Α	•	:	:		•	;			•	:			:	• ;	
1.13	0.00	98.96	:	•				•	:			•	:			:	•	
1.23	0.00	98.96	V	•		:		•	:			•	:			:	•	:
1.33	1.04	100.00	. *	•	. 1	:		•	1			•	:			: .	• 7	
			+	-:	1	l		:	2	!	;	:	-3-	;	·	4	:5	5

Cumulative Percent vs. Log(PPM): B:BRADNER.VGC MOLYBDENUM

	upper				P	RO	BAB	IL	IT	Z	(C U M	2)		
PPM	Log10	Cum%	01	.1	• 5	2	10	30	50%	70	90	98 99	999	9999
1.1	0.03	16.97	:	:	:	:	:	+ :	4	:	:	· • •	:	:
1.3	0.13	16.97	:	:	:	:	•	:	1	:	:	: :	:	:
1.7	0.23	16.97	:	:	:	:	1	•		:	:	: :	:	:
2.1	0.33	56,14	:	:	:	· :	:	:	" +	. 1	:	: :	:	. :
2.7	0.43	56.14	:	:	:	· • •	:	:		:	:	: :	•	:
3.4	0.53	83.29	:	:	:	•	:	:	4	:	+ :	: :	:	:
4.3	0.63	92.69	:	:	:	:	:	:	1	:	:+	: :	:	:
5.4	0.73	95.82	:	:	:	:	:	•	1	:	: +	• : :	;	:
6.8	0.83	96.61	:	:	:	:	:	• :	1	:	: +	: :	:	:
8.5	0.93	98.69	•	:	:	:	:	:	¹	:	:	+ :	:	:
11	1.03	98.96	:	:	:	:	:			:	:	:+ :	:	:
13	1.13	98.96	:	:	:	:			1	:	:	: :	:	;
17	1.23	98.96	:	:	:	:	:		i	:	:	: :	. :	:
21	1.33	100.00	:	:	:	:	:		i	:	•	: :		:+
			.01	.1	• 5	2	10	30	50%	70	90	98 99	999	9999

986-521]

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-888X2XX2

V7P 2S3

Nov. 8 1983

...2

TO: 90 Orequest Consultants #404 - 595 Howe St. Vancouver, B C V6C 2T5

- FROM: Vangeochem Lab Ltd. 1521 Pemberton Ave. North V ncouver, B.C. V7P 2S3
- SUBJECT: Analytical procedure used to determine hot acid soluble arsenic in geochemical silt, soil, lake sediments and rock samples.

for geochem soil humus, rock samples

1. Sample Preparation

- (a) Geochemical soil, silt, lake sediments or rock samples were received in the laboratory in wet-strength 3½ x 6½ Kraft paper bags and rock samples in 4" x 6" Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven.
- (c) The dried soil and silt samples were sifted by hands using a 8" diameter 80-mesh stainless steel sieves. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a nwq bag for analysis later.
- (d) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. Method of Digestion

- (a) 0.25 gram of the minus 80-mesh sample was used. Samples were weighed out by using a top-loading balance.
- (b) Samples were heated in a sand bath with concentrated perchloric acid (70 - 72% HCLO₄ by weight) at a medium heat for four hours.
- (c) The digested samples were diluted with demineralized water.

3. Method of Analysis

NEW LAB LID.

(a) Potassium iodide and stannous chloride in HCL were added to the digested samples.

- 2 -

- (b) Zinc metal was introduced and the arsenic in solution was gassed off as arsene through a glass wool scrubber plug saturated with lead acetate and into a solution of silver diethyldithiocarbamate in chloroform with 1-ephedrine, forming a red complex with the silver diethyldithiocarbamate.
- (c) The concentration of the arsenic was determined colorimetrically by comparing the intensity of the color of the red complex with a set of known standards prepared in a similar fashion as the samples.
- 4. The analyses were supervised or determined by Mr. Eddie Tang or Mr. Conway Chun and their laboratory staff.

Eddie Tang / VANGEOCHEM LAB LTD.

986-5211

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-XXXXXXXX

V7P 2S3

Nov.8, 1983

....2

- To: Orequest Consultants #404 - 595 Howe St. Vancouver, B C V6C 2T5
- From: Vangeochem Lab Ltd. 1521 Pemberton Avunue North Vancouver, B.C. V7P 2S3
- Subject: Analytical procedure used to determine hot acid soluble Mo, Cu, Pb, Zn, Agin geochemical silt, soil and rock samples.

1983 samples

1. Sample Preparation

- (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 3½ x 6½ Kraft paper bags and rock samples in 4" x 6" Kraft paper bags.
- (b) The wet samples were dried in a ventilated oven.
- (c) The dried soil and silt samples were sifted by hands using a 8" diameter 80-mesh stainless steel sieves. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
- (d) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. <u>Methods of Digestion</u>

- (a) 0.50 gram of the minus 80-mesh samples was used. Samples were weighed out by using a top-loading balance.
- (b) Samples were heated in a sand bath with nitric and perchloric acids (15% to 85% by volume of the concentrated acids respectively).

(C) The digested samples were diluted with demineralized water to a fixed volume and shaken.

-2-

3. Method of Analysis

analyses were determined by using a Tech-Mo, Cu, Pb, Zn, Ag tron Atomic Absorption Spectrophotometer Model AA4 or Model AA5 with their respective hollow cathode lamps. The digested samples were aspirated directly into an air and acetylene flame, but Mo digestion were aspirated into an acetylene and nitrous flame. The results, in parts per million, were calculated by comparing a set of standards to calibrate the atomic absorption unit and displayed in a strip chart recorder.

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and the labroatory staff.

Back Ground Correction 5.

A Hydrongen continunnm lamp is used to correct the silver groung interferencesa.

Eddie Tang

VANGEOCHEM LAB LTD.

ET:j1

4.

986-5211

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA 604-969-2472

V7P 2S3

Nov.8, 1983

... 2

To: 0request Consultants #404 - 595 Howe St. Vancouver, B C V6C 2T5

From: Vangeochem Lab Ltd. 1521 Pemberton Ave. North Vancouver, B.C. V7P 2S3

Subject: Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples.

For soil and humus samples

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4 x 6 Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hands using a 8" diameter 80-mesh stainless steel sieve, The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was tracsferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. Method of Digestion

- (a) 5.00 10.00 grams of the minus 80-mesh samples were used. Samples were wrighed out by using a top-loading balance into beakers.
- (b) 20 ml of Aqua Regia (3:1 HC1:HNO₃) were used to digest the samples over a hot plate vigorously.
- (c) The digested samples were filtered and the washed pulps were discarded and the filtrate was reduced to about 5 ml.
- (d) The Au comples ions were extracted into diisobutyl ketone and thiourea medium. (Anion exchange liquids "Aliquot 336").

SPECIALIZING IN TRACE ELEMENT ANALYSIS

4.

ET: j1

(e) Separate Funnels were used to separate the organic layer.

3. Method of Detection

The gold analyses were detected by using a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode Lamp. The results were read out on a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values in parts per billion were calculated by comparing them with a set of gold standards.

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and his laboratory staff.

Eddie Tang

VANGEOCHEM LAB LTD.

VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3 (604) 986-5211

Nov.8 1983

... 2

To: Orequest Consultants #404 - 595 Howe St. Vancouver, B C V6C 2T5

GC

- From: Vangeochem Lab Ltd. 1521 Pemberton Avenue North Vancouver, B.C. V7P 2S3
- Subject: Analytical procedure used to determine gold by fire-assay method and detected by atomic absorption spec. in geological samples.

For samples requested for Fireassays- AAS finished

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hands using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80-mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. Method of Extraction

- (a) 20.0 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into a fusion pot.
- (b) A Flux of litharge, soda ash, silica, borax, flour, or potassium nitrite is added, then fused at 1900°F and a lead button is formed.
- (c) The gold is extract by cupellation and part with diluted nitric acid.
- (d) The gold bead is saved or measurement later.

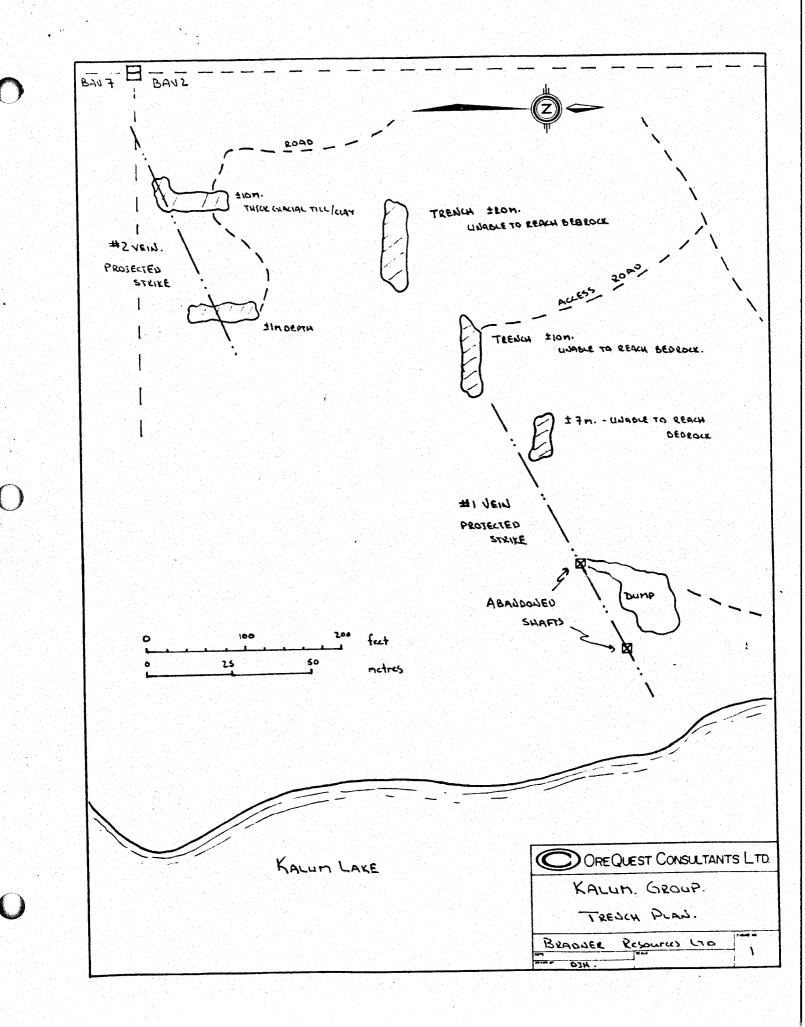
YGGC VANGEOCHEM LAB LTD. 1521 PEMBERTON AVE., NORTH VANCOUVER, B.C., CANADA V7P 2S3 (604) 986-5211

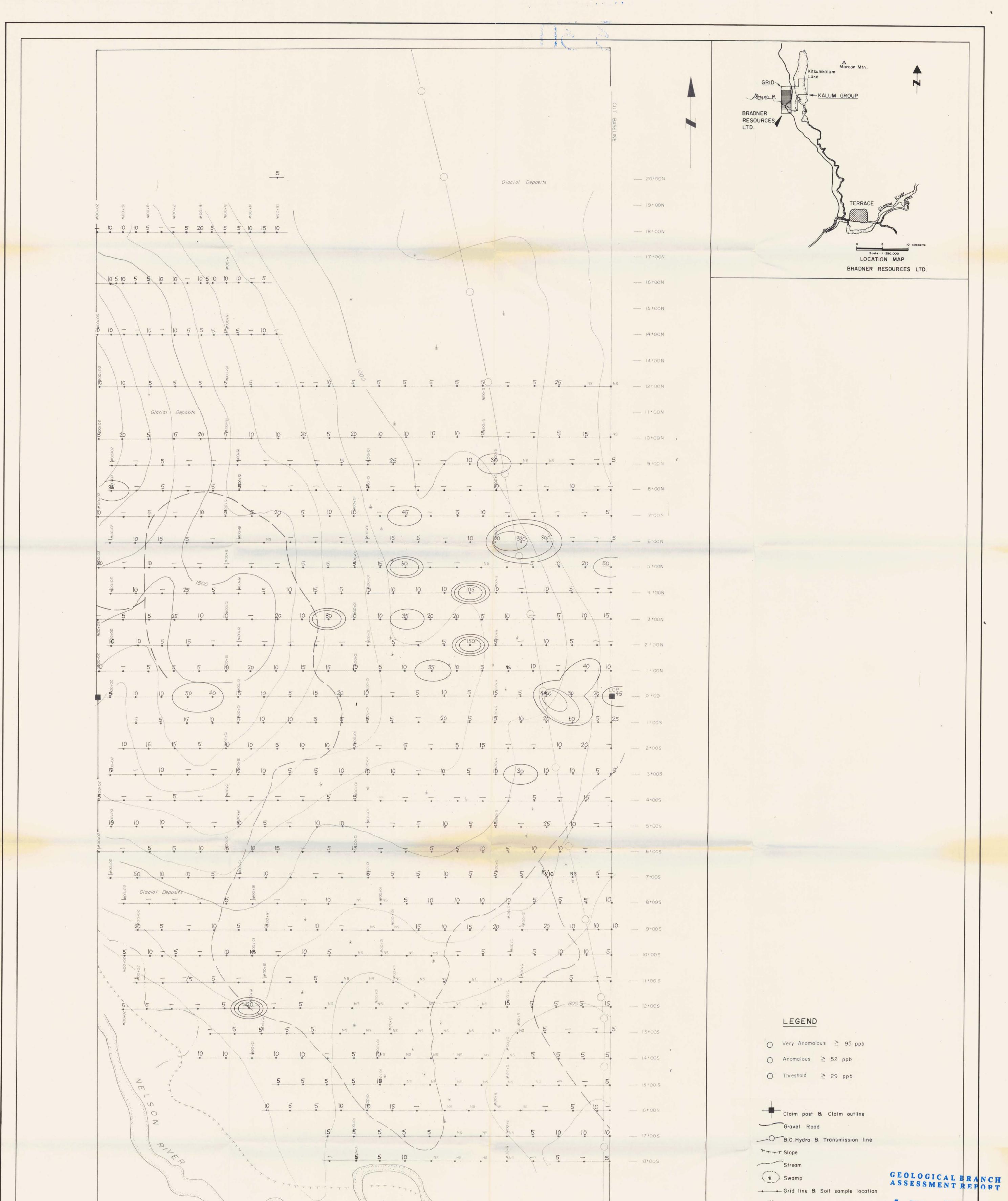
- 2 -

3. Method of Detection

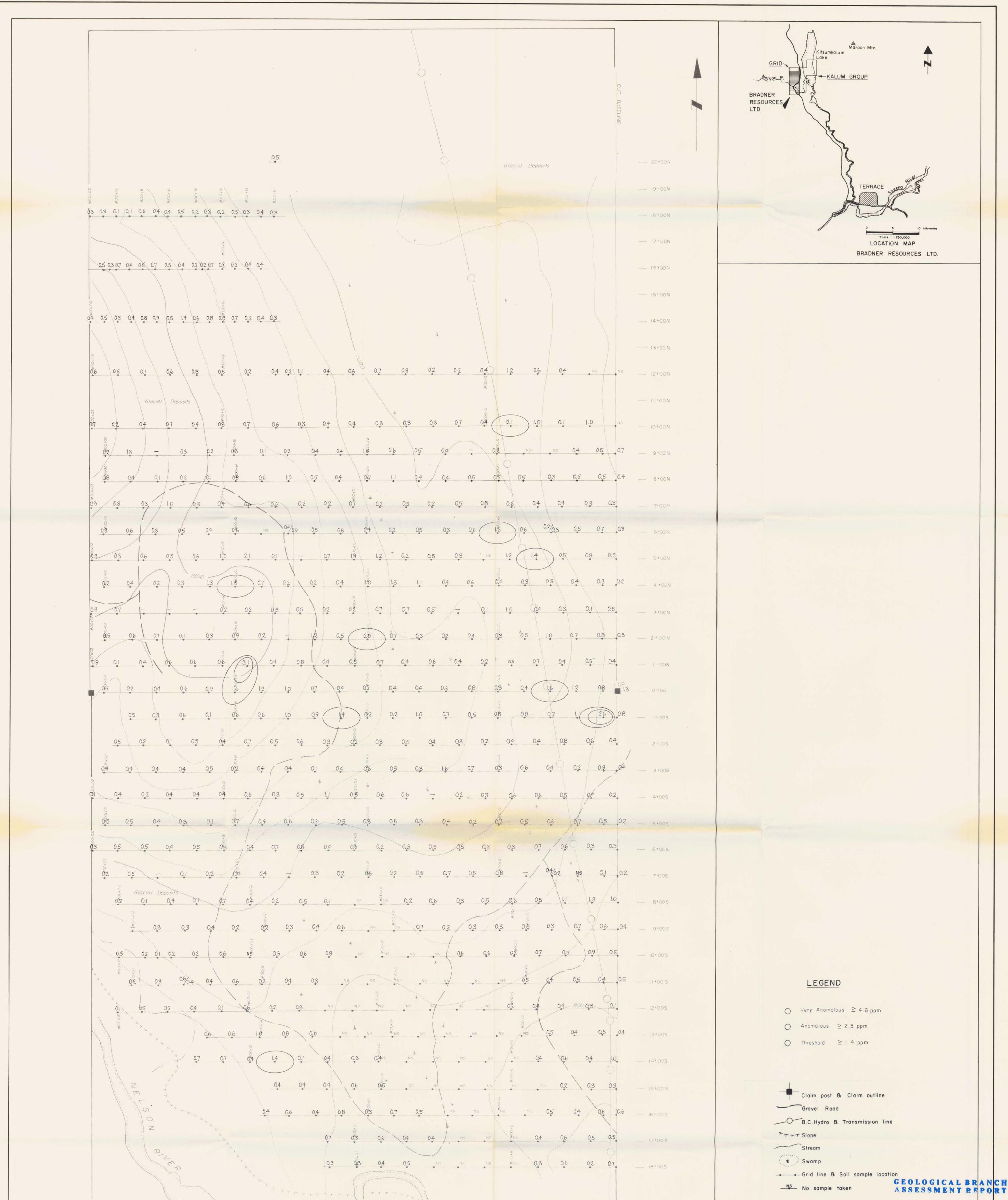
- (a) The gold bead is disolved by boiling with sodium cyanide, hydrogen peroxide and amonium hydroxide.
- (b) The gold analyses were detected by using a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values in parts per billion were calculated by comparing them with a set of gold standards.

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

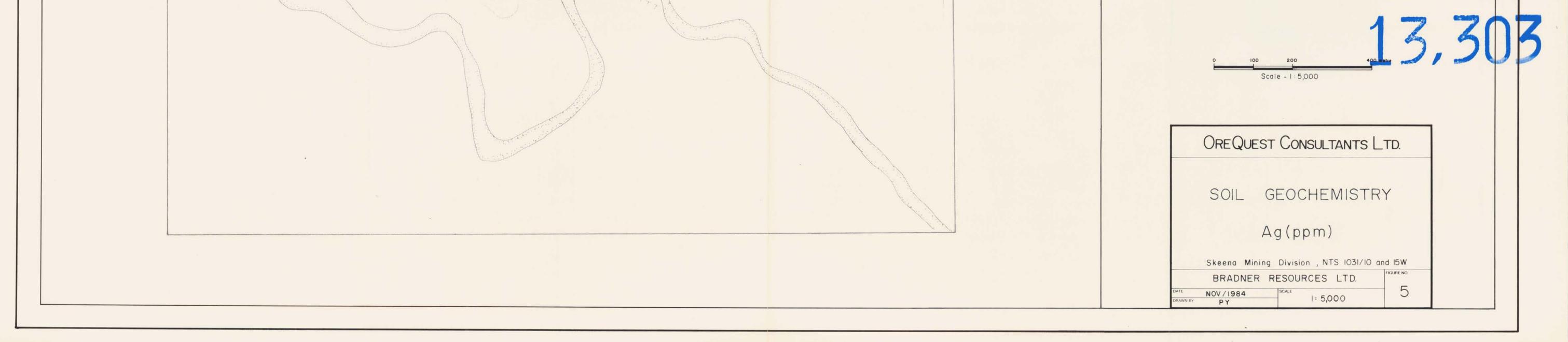

Pavid Chiu

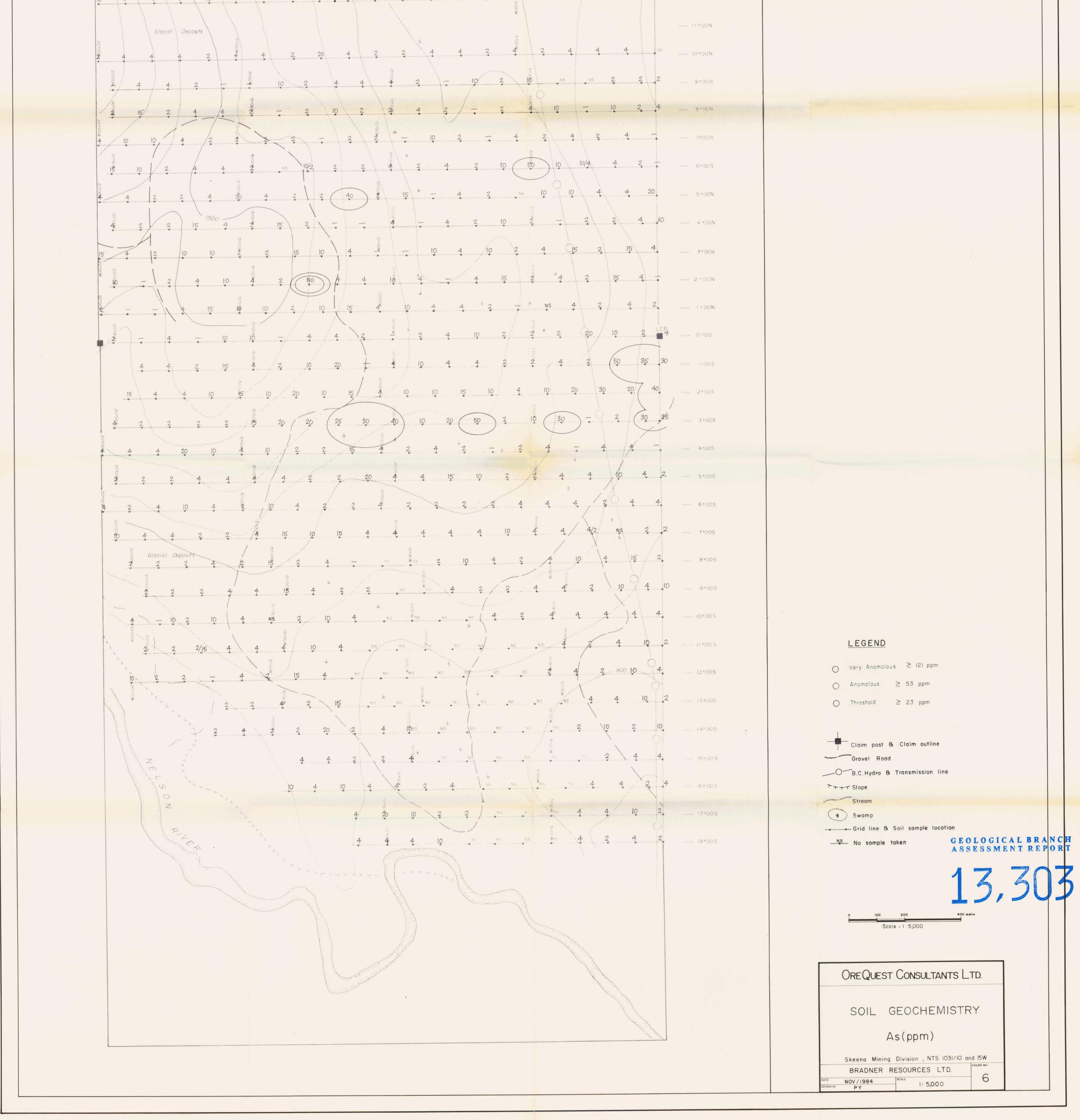

VANGEOCHEM LAB LTD.

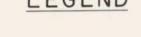
DC:jl

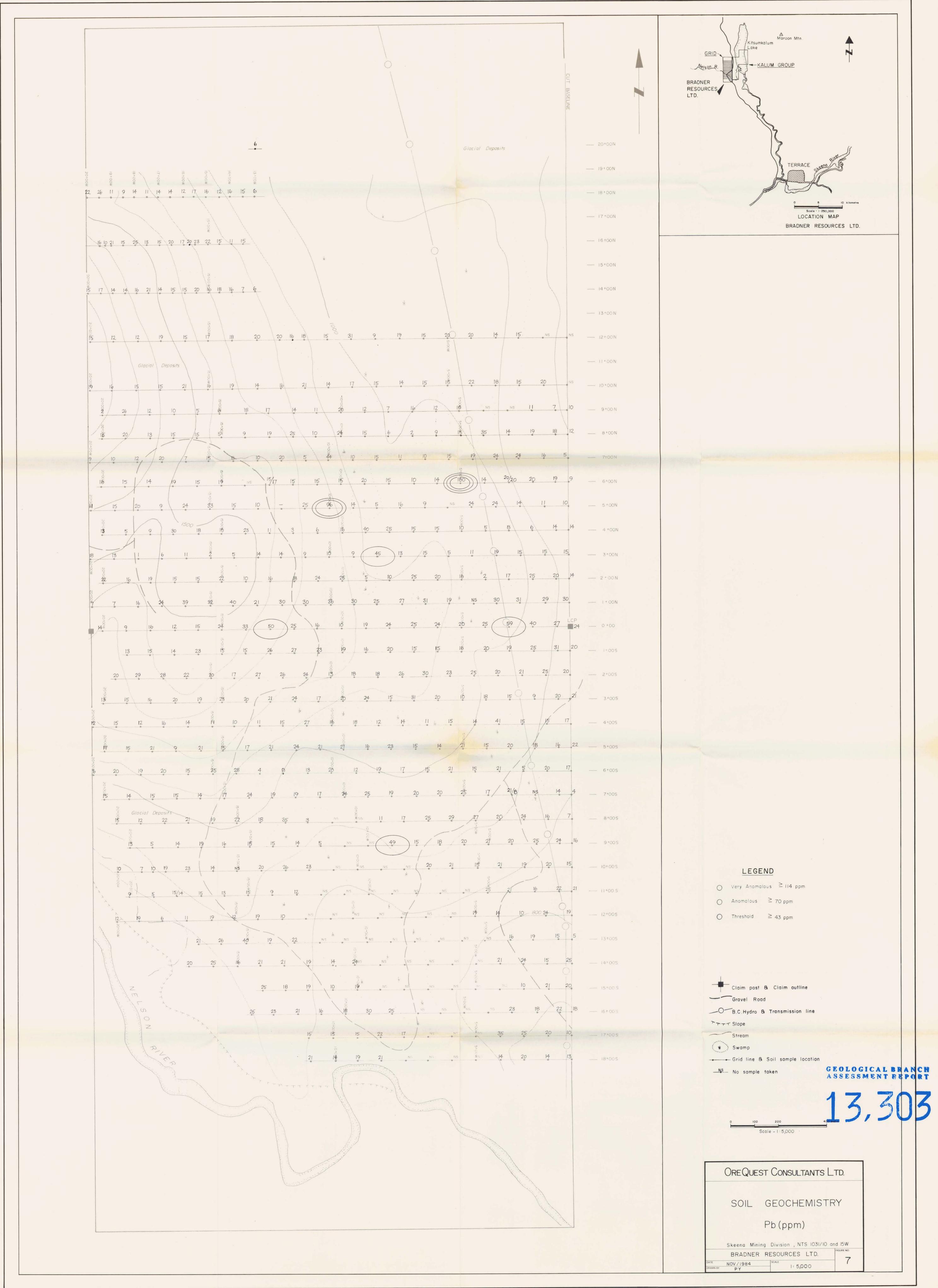

¢

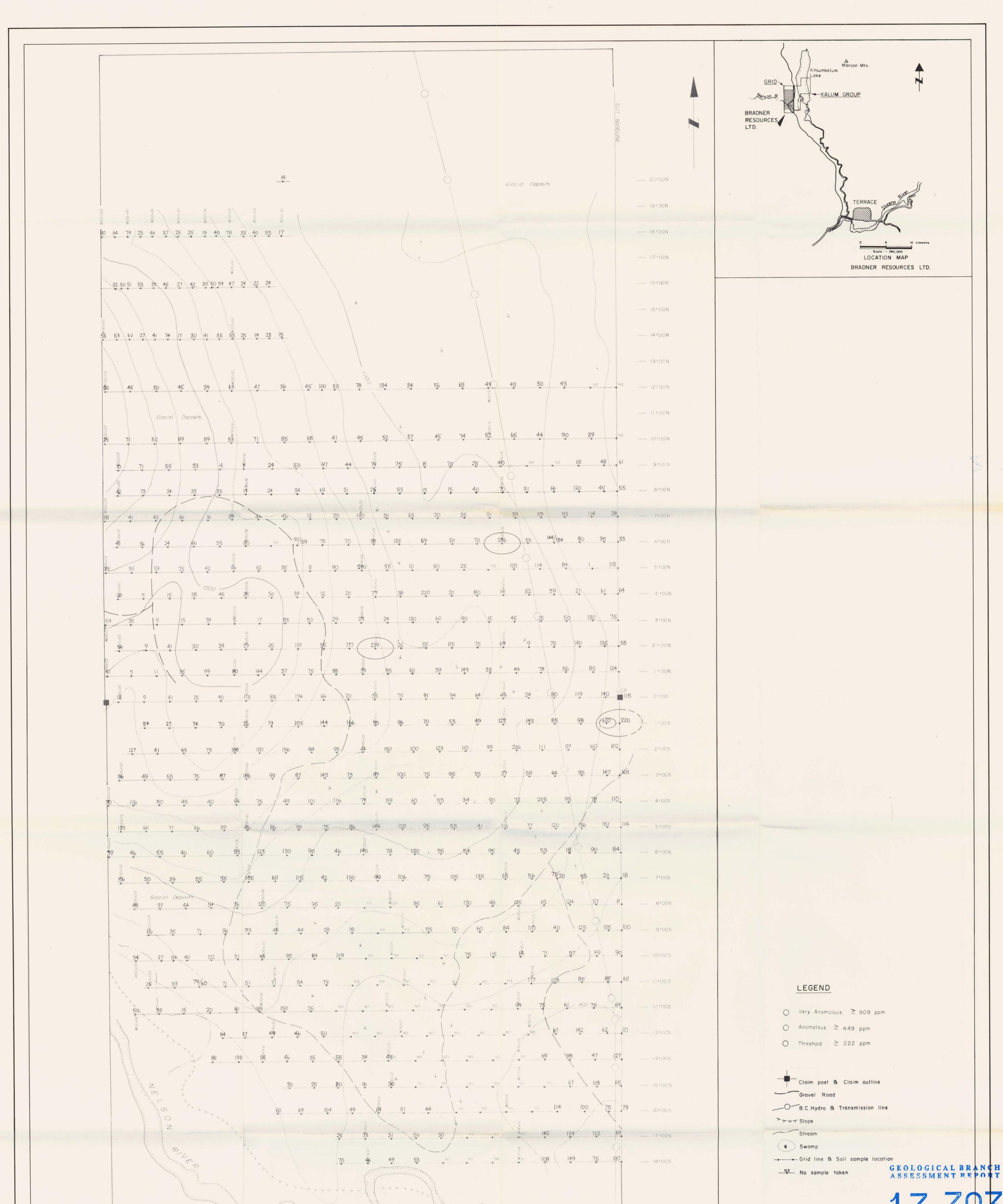
4.

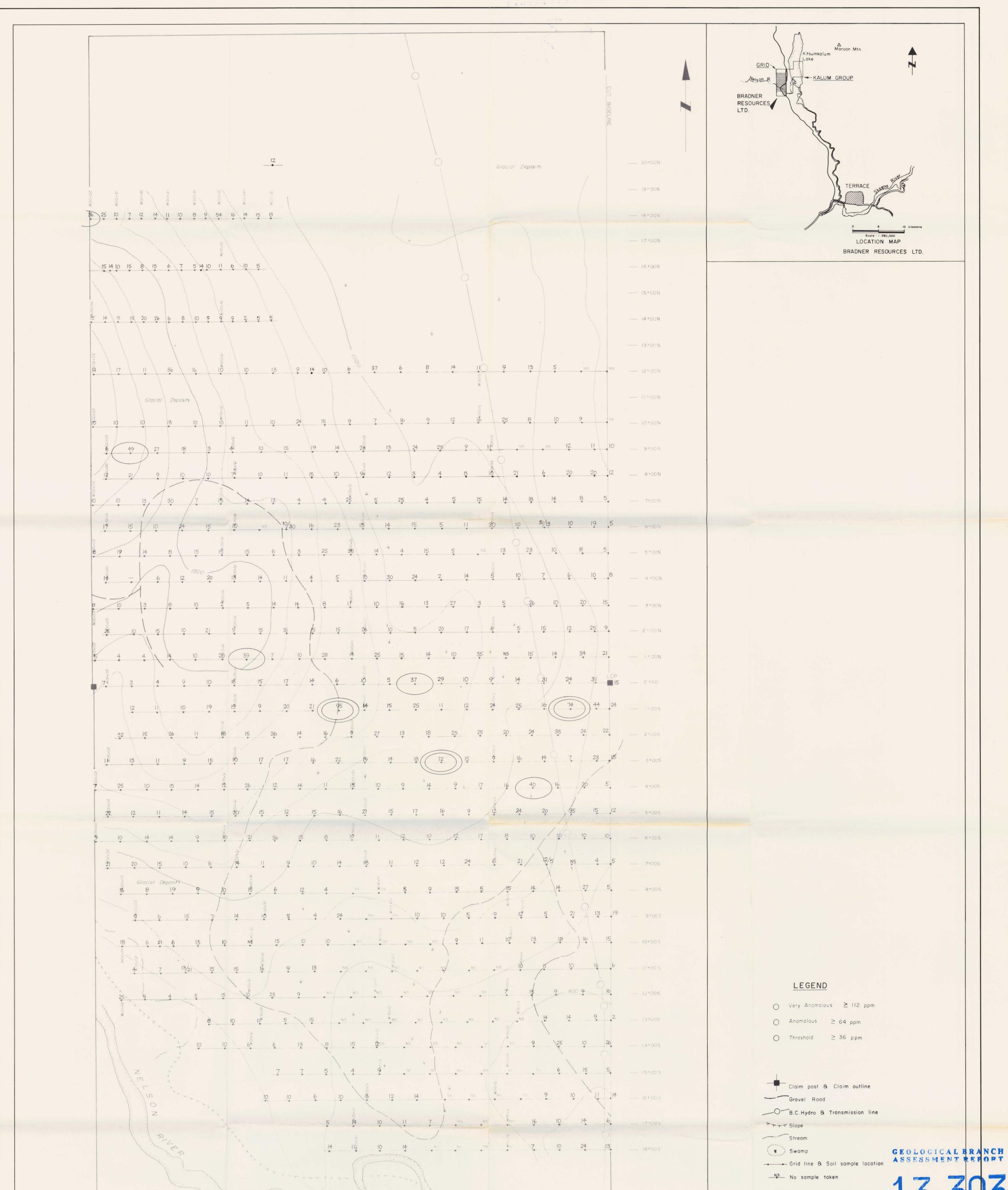



OREQUEST CONSULTANTS LTD.		No sample taken <u> voo zoo</u> Scale - 1:5,000 No sample taken 13,303
		OREQUEST CONSULTANTS LTD.
SOIL GEOCHEMISTRY		SOIL GEOCHEMISTRY
Au(ppb)		Au(ppb)
Skeena Mining Division , NTS 1031/10 and I5W BRADNER RESOURCES LTD. DATE NOV/1984 DERAWN BY PY		BRADNER RESOURCES LTD.


ASSESSMENT RE ORT




. Allert 1. the ... Maroon Mtn. Kitsumkalum Lake ¢ GRID KALUM GROUP Nelson R. BRADNER RESOURCES LTD. _2___ 20100N Glacial Deposits TERRACE ----- 19+00N 40 35 30 2 4 60 50 30 2 15 2 4 4 2 ----- 18 + OON Scale - 1:250,00 LOCATION MAP ----- 17 +00N BRADNER RESOURCES LTD. -50441022441041042------ 16+00N ----- 15+00N 4 4 4 4 10 2 2 2 4 2 4 2 2 ------ 14+00N * ----- 13+00 N 4 4 4 10 4 4 2 10 4 4 2 10 2 - 4 40 2 4 2 NS NS - 12+00N


1.00

<u>scale - 1:5,000</u> <u>100 200 400 metre</u> Scale - 1:5,000
OREQUEST CONSULTANTS LTD.
SOIL GEOCHEMISTRY
Zn(ppm)
Skeena Mining Division , NTS 1031/10 and 15W BRADNER RESOURCES LTD. FIGURE NO DATE NOV/1984 DATE NOV/1984 DRAWN BY PY

Constant in the second second

0 100 200 400 metre Scale - 1 : 5,000
OREQUEST CONSULTANTS LTD.
SOIL GEOCHEMISTRY Cu (ppm)
Skeena Mining Division , NTS 1031/10 and 15W BRADNER RESOURCES LTD. FIGURE NO. DATE NOV/1984 SCALE I : 5,000

