GEOCHEMICAL AND GEOLOGICAL REPORT

- on the -

ADON PROPERTY

KAMLOOPS MINING DIVISION, GIETO COLUMBIA CAL BRANCH ASSESSMENT REPORT

15.334

TITAN RESOURCES LTD.

1100 - 475 HOWE STREET

VANCOUVER, B. C. V6C 2B6

COVERING: ADON I through ADON IX (154 units)

AND SOBS (20 units) Claims

WORK PERFORMED: OCTOBER 16th to NOVEMBER 7th, 1984

LOCATION: (1) 51° 17' North, 119° 47' West

(2) NTS Map No. 82 M/4, 82 M/5

(3) Approximately 25 km. North-east of Barriere, B. C.

prepared by:

KERR, DAWSON AND ASSOCIATES LTD.

206 - 310 Nicola Street

Kamloops, B. C. V2C 2P5

Douglas A. Leishman, B. Sc. James M. Dawson, P. Eng.

November 7, 1984

TABLE OF CONTENTS

																			Pag	ge	Number
SUMMARY .	• • •	• •	•		•	•	•	•	•	•	•	•	•	•	• '	•	•	•	•	1	
INTRODUCTIO	ON	• •			•	•	•	•	•	•		•	•	•	•	•	•		•.	2	
LOCATION A	ND ACC	CESSI	BIL	ITY	•		• .	•	•			•	•	•	•	•	•, ,	•	•	2	
CLAIMS		• •				•	•	•	•		•	•	•	•		•	•	•	•	4	
PHYS IOGRAPI	HY ANI	VEG	ЕТА	TIO	N	. •		•		•	•	•	•	•	•	•	•	•	.•	6	
EXPLORATIO	N HIST	ORY	•		•	•	•	•			•	•	•	•	• .	•	•	•	•	6	
REGIONAL GI	EOLOGY			• •	•		•	•	•	• .	•		•	•		•.	•.	•	•	8	
PROPERTY G	EOLOGY				•	•	. •	•			•	•	•	• ,		•	•	•	•	9	
MINERALIZA	rion	• • •	•		•		•		•.	• :	•	•	:	•	•	•	•		•	13	
GEOCHEMICA	L SURV	/ΕΥ .	•	• •		•	•	•					.•						•	14	
SAMPL	ING MI	ETHOD	•			•		•	•	•	•	•	•	•	•	•			•	14	· · · · · · ·
LABOR	ATORY	DETE	RMI	NAT	101	N		•		, `	•	• ,		•	•	•,	•		•."	14	
PRESE	NTATI(ON OF	RE	SUL	TS	•		•	<i>!</i>	•**	•	•			•	•		•		15	· .
DISCU	SSION	OF R	ESU	LTS			•		•		•	•	•	-	•	•			•	16	I
						,															

* * * * * * *

LIST OF FIGURES

Figure No.	<u>Title</u>		Page Number
350–1	Location	1:250,000	3
350-2	Claim Map	1:50,000	5
350-3	Geological Plan	1:10,000	In Pocket
350-4	Geochemical Plan	1:10,000 - Gold	In Pocket
350-5		- Copper	In Pocket
350-6		- Lead	In Pocket
350-7		- Zinc	In Pocket
350-8		- Silver	In Pocket

APPENDICES

APPENDIX I ROCK SAMPLE DESCRIPTIONS AND GEOCHEMICAL RESULTS

APPENDIX II SOIL SAMPLING AND DRAINAGE SAMPLING GEOCHEMICAL RESULTS

APPENDIX III PERSONNEL

APPENDIX IV STATEMENT OF COSTS

APPENDIX V REFERENCES

APPENDIX VI STATEMENT OF QUALIFICATION

* * * * * * *

SUMMARY

The Adon property lies on the Adams Plateau, Barriere District, Kamloops Mining Division and is centred just north of East Barriere Lake. The property consists of 10 metric claims totalling 174 units.

A recent discovery by Rea Gold (Hilton prospect) of a volcanogenic polymetallic sulphide deposit within the Eagle Bay Formation has spurred recent exploration activity in this area. The Adon property is underlain by the same geological formation and hosts two known mineral prospects (Kayjun and Ruth). In October and November of 1984 a reconnaissance programme of soil sampling, silt sampling and geological mapping was carried out over the Adon property. The results obtained presented herein provide sufficient encouragement for further exploration of this property.

INTRODUCTION:

This report outlines the geochemical and geological surveys completed on the Adon property, held under option by Titan Resources Ltd., during October and November of 1984. The work was carried out by personnel of Kerr, Dawson and Associates Ltd., Suite 206 - 310 Nicola Street, Kamloops, B. C. The property was originally staked to cover the favourable Eagle Bay Formation (Mississippian ?) which also hosts the nearby gold bearing volcanogenic polymetallic sulphide deposit of Rea Gold (Hilton prospect).

A series of maps showing property and claim locations as well as data obtained in the geochemical and geological surveys are included with this report.

LOCATION AND ACCESSIBILITY:

The Adon property is situated approximately 25 kilometres northeast of Barriere, B. C., Kamloops Mining Division, (Figure 350-1). The claim block straddles the central portion of East Barriere Lake with the geographic centre of the claims at 51° 17' north and 119° 47' west (Figure 350-2).

There is good access to the property via a paved road to approximately 5 kilometres west of East Barriere Lake. A gravelled (all weather) road continues south of East Barriere Lake and traverses the southern part of the property. Secondary logging roads and trails provide further access to the southern part of the claim group.

The northern part of the claim group is accessible by a road leading north along Russell Creek from the East Barriere River. The northern shoreline of East Barriere Lake is boat accessible.

CLAIMS:

The Adon property consists of 10 contiguous metric claims totalling 174 units. The area covered by these claims is approximately 4,350 hectares of which approximately 600 hectares underlie East Barriere Lake.

CLAIM NAME	UNITS	TAG NO.	RECORD NO.	RECORD DATE
ADON I	15	17026	4913	Nov. 7, 1983
ADON II	20	17027	4914	Nov. 7, 1983
ADON III	20	17024	4947	Nov. 17, 1983
ADON IV	20	17023	4948	Nov. 17, 1983
ADON V	20	17021	4949	Nov. 17, 1983
ADON VI	20	17020	5001	Nov. 23, 1983
ADON VII	18	17022	5002	Nov. 23, 1983
ADON VIII	6	17028	5003	Nov. 23, 1983
ADON IX	15	17029	5004	Nov. 23, 1983
SOBS	20	82757	4625	Aug. 10, 1983

The claims are held under option by Titan Resources Ltd. of Vancouver, B. C.

PHYSIOGRAPHY AND VEGETATION:

The claim group straddles the north easterly trending East Barriere Lake (625 m. a.s.l.) with sub parallel ridges rising to 1,340 metres a.s.l. on the north west side of the lake and to 1,640 metres a.s.l. to the south east (Figure 350-2). Approximately 600 hectares of the claim block are covered by the East Barriere Lake. Approximately 10 - 15% of the land area has been recently logged.

Northwest of the lake the forest cover consists of a second growth of pine, fir and cedar with small stands of poplar and birch.

South of the lake more mature stands of cedar are found on the north facing slope. Recent logging has left many old trails which provide good accessibility.

West of the June prospect are precipitous cliffs of moderate relief (50 - 75 metres). Areas such as this, steep north westerly trending drainages provide the more difficult areas to traverse.

EXPLORATION HISTORY:

The Barriere Lakes - Adams Plateau area has been prospected intermittently for more than 50 years. Since the mid 1960's exploration activity has been more active due to recognition of favourable geological environments for hosting volcanogenic polymetallic sulphide deposits. Following the discovery of the Chu Chua deposit in 1979 and the Rea Gold (Hilton) deposit in 1983 staking rushes occurred. The Adon property was staked during this rush in the fall of 1983.

There are 3 showings in the immediate area of the Adon property (EBL, BEX and Lucky Boy). These particular showings consist of disseminated to massive sulphides (copper, zinc) in acid to intermediate metavolcanic units of the Eagle Bay Formation (Figure 350-2). Within the claim boundaries of the Adon property are two known showings, the Ruth and the Kayjun (hereon referred to as the June).

In the 1960's Barriere Lake Mines carried out an exploration programme within areas of the Adon property. They apparently performed some work on it prior to optioning it along with the EBL and Lucky Boy to Scurry Rainbow Oil Ltd. in 1966. There is no information available to indicate if Scurry completed any work on the Ruth showing.

In 1973 Western Mines optioned the EBL and June (Kayjun) properties and carried out geological and geochemical surveys as well as airborne geophysical surveys (magnetic and electromagnetic) over much of what is now the Adon property. However the airborne survey was flown along north south lines. Consequently, the airborne geophysics would not have been effective in detecting conductive bodies lying concordant to the local stratigraphy (North $20-30^{\circ}$ West).

In 1983 Whopper Holdings acquired the SOBS claim group and an exploration programme of geochemical, geophysical and geological surveys were carried out in the vicinity of the June showing under the supervision of A. D. K. Burton, Consulting Engineer.

In late 1983 the Adon #1 - #9 claims were staked around the periphery of the SOBS claim and the entire package was optioned to Titan Resources Ltd. in September, 1984.

In late October of 1984 a preliminary exploration programme was carried out by personnel of Kerr, Dawson and Associates Ltd. Reconnaissance mapping, soil sampling and drainage surveys were carried out at this time and are described herein.

REGIONAL GEOLOGY:

Geographically the Adon property lies within the interior plateau of south central B. C. and more locally in the area known as the Shuswap Highlands.

The Shuswap Highlands geologically lie along the contact of the Intermontane Belt and the Omineca Crystalline Belt. This Omineca Crystalline Belt is composed of medium to high grade metamorphic rocks of uncertain age divided into two major units, the Shuswap Metamorphic Complex and the Okanagan Plutonic and Metamorphic Complex. In the area of the Adon property the Shuswap Complex is overlain by units of the Eagle Bay Formation of Pre Cretaceous to Pre Late Devonian age.

The Eagle Bay Formation is considered to be an eugeosynclinal assemblage of high energy, proximal volcanic and sedimentary units. Rapid facies changes is a common characteristic of strata within this type of environment. This environment combined with later structural complexities has caused problems in determining stratigraphic relationships of individual units within the succession. (Preto, 1980)

The regional geology of the area has been mapped by both the G.S.C. (Okulitch, O.F. 637, 1979) and the B. C. Ministry of Energy, Mines and Petroleum Resources (Preto, Preliminary Map No. 56, 1984). The scale of this regional mapping and the stratigraphic problems associated with the Eagle Bay Formation result in little detail being shown in the area covered by the Adon claim group.

PROPERTY GEOLOGY:

According to Okulitch, the property is underlain by 3 units of the Eagle Bay Formation. These are:

EBv Greenstone, chloritic phyllite, minor agglomerate sericitic phyllite, quartzite and limestone.

EBq Sericitic, siliceous phyllite, sericitic quartzite, quartz biotite schist, quartz biotite garnet schist and minor layers of EBv, EBva, EBp, EBc.

EBp Black argillite, argillaceous phyllite, shale.

For mapping purposes the units underlying the Adon property were subdivided into 5 major metasedimentary and metavolcanic units with minor intrusive activity (Figure 350-3).

A broad north west trending syncline is a prominent feature seen trending north west across the Adon property. At the core of this syncline are a series of quartz feldspar sericitic schists intrastratified with light coloured phyllites and sericitic phyllites. Blue quartz eyes are prominent in some of these units particularly south of East Barriere Lake. Previous workers have suggested these blue quartz eyes indicate the original units were felsic flows. Preto has suggested a volcanic centre is located close to the south end of North Barriere Lake (just to the north of the Adon property).

South of East Barriere Lake at the core of the syncline is a small area of a coarsely crystalline hornblende feldspar schist. It forms a prominent knob and is quite distinct from the enclosing units.

Flanking the quartz feldspar schists is a greenschist. This unit is very finely grained though in areas north of the lake it has horizons of coarse agglomerates. This unit is very chloritic and has minor amounts of disseminated sulphides.

There are several bands of limestone and limy horizons north and south of the lake which consist of dark grey foliated limestone with segregations of crystalline carbonate. Often these limestone horizons are gradational into more argillaceous horizons. Some of the more argillaceous horizons are graphitic and/or pyritic in places. Within the SOBS claim is a band of buff white bedded to massive nodular limestone which could possibly correlate with the Tshinakin Limestone, a well known marker unit within the Eagle Bay Formation.

Preto (1984) interprets a fault parallel and under East Barriere Lake with a lateral displacement. The scale of mapping by the writer was not able to confirm or deny its existence.

A more detailed description of the individual units is below:

- 1. Greenschist, generally massive, very finely crystalline with faint outlines of pale coloured feldspars in coarse units set in a chloritic groundmass, chlorite develops along cleavage planes with variable amounts of disseminated sulphides (trace to several percent). The coarser crystalline unit is gradational to chloritic phyllites in places with minor quartz and carbonate veining. Within this unit are lighter coloured horizons, sometimes limy which might be indicative of a sedimentary origin.
 - 1a. Agglomerate similar groundmass composition to above with coarse flattened fragmentals (10 - 30 centimetre size) with intermediate to felsic fragments. This particular unit appears to have a limited distribution in the north central part of the claim block.

- Quartz Feldspar and Quartz Biotite Schists, fine to medium grained buff grey green colours, gradational to phyllites and quartzites with some of the phyllites slightly calcareous. Again fine grained nature of units obscures mineralogy. Faint outlines of pale white feldspars in darker coloured groundmass. Development of chlorite and biotite along cleavage planes indicates low grade metamorphism. Very minor amounts (trace - 2%) of disseminated pyrite have an erratic distribution in these units. This particular unit seems to be more predominant in the southern part of the claim block.
 - 2a. Distinct blue quartz eyes within quartz feldspar schists, blue quartz eyes never exceed 5% by volume. Previous workers have suggested these blue quartz eyes indicate the units are derived from rhyolitic flows. More detailed mapping might delineate "quartz eye" horizons.
- 3. Metasediments, argillaceous, generally very fine grained, dark grey to black with disseminated sulphides (pyrite) in places. Widespread but probably limited distribution. Horizons within this unit can be graphitic or calcareous. Also gradational into paler coloured phyllites and quartzites which might be of metavolcanic origin (as unit 2).
 - 3a. Graphitic horizons.
 - 3b. Calcareous horizons.

- 4. Limestone dark grey foliated (recrystallized) with crystalline carbonate segregations. Again unit is wide-spread but probably very limited extent. It is gradational into more argillaceous units as described above; in places resembles a marble.
 - 4a. Buff white bedded to more massive nodular, seen in vicinity of June deposit where it grades into a series of calcareous grits and then argillite. This unit might be correlated to the Tshinakin Limestone which is a well known marker horizon within the Eagle Bay Formation.
- 5. Hornblende Feldspar Schists massive coarsely crystalline with a groundmass of 60 70% white crystalline feldspars with approximately 30% altered (chloritic) hornblendes. This unit has a very limited extent and is found near the hinge of the synclinorium where it forms a prominent knob.

Intrusives:

- 6. Quartz Feldspar Dykes massive buff grey, very siliceous with faint outlines of feldspars. Seen only in southern part of claim group, distribution too limited to map.
- 7. Hornblende Diorite small outcrop in a quarry just off south boundary of claim group.

MINERALIZATION:

There are two known mineral occurrences on the Adon property.

The best known is the June prospect which is located along a contact between a graphitic siliceous shale (argillite) and massive Tshinakin (?) Limestone. This prospect is exposed in a trench of approximately 100 metres and consists of veins and irregular lenses of quartz along a faulted contact between the overlying limestone and underlying argillite. The mineralization seems to be confined primarily to the quartz veins and consists of variable amounts of galena, sphalerite, chalcopyrite and pyrite. One grab sample SO-3, taken along this zone returned 720 ppm Ag. (Appendix I)

Western Mines sampled this zone in 1973 and calculated the following average grades over a strike length of 130 feet (width unknown): Au 0.027 oz/ton, Ag 1.52 oz/ton, Pb 2.38%, Zn 1.18%.

The Ruth showing is said to be located on the Adon II claim north of the lake. It was not found during the course of this initial property examination. It apparently consists of scattered chalcopyrite, galena and sphalerite in quartz veins.

Minor amounts of mineralization occurs in several other localities on the property (Figure 350-3). At two localities on the south side of the lake there are quartz veins with minor amounts of chalcopyrite and pyrite along a contact between argillaceous and limy sediments.

North of the lake in the south east corner of Adon V (or possibly on the EBL property) minor amounts of galena and sphalerite were seen in quartz filled joints (1-2 cm. width) within buff coloured thin bedded quartz sericitic schists (volcanic origin ?). A boulder of highly oxidized volcanic greenstone nearby carried several percent disseminated pyrite with a trace of chalcopyrite.

GEOCHEMICAL SURVEY:

Sampling Method:

A reconnaissance survey of soil sampling was conducted over the Adon property in late October, 1984. Samples of the "B" horizon were taken along lines following the contours (north $30-50^{\circ}$ east) at intervals of approximately 100 metres. In addition silt samples were taken of all the major drainage systems traversed. A total of 569 soil and 53 silt samples were taken in all.

The samples were collected in waterproof kraft envelopes and sent for analysis to Kamloops Research & Assay Laboratory Ltd.

Laboratory Determination:

i.

All samples were analysed for copper, lead, zinc, silver and gold.

For copper, lead, zinc and silver, samples were dried and sieved (~80 mesh stainless steel). An aliquot of the -80 mesh fraction was used. Extraction was attained using hot concentrated aqua regia and the sample then diluted to 10 millilitres with analysis by atomic absorption spectrophotometry.

Gold was analysed by a combination of Fire Assay and Atomic Absorption. Between 15 to 30 grams of the sieved sample was taken and fused with a combination of sodium carbonate, lead oxide, silica and borax. Depending on the suspected association of the gold (i.e. sulphides or oxides) either potassium nitrate or flour would be included in the above.

The sample was cupelled and the bead (Doré) dissolved in aqua regia. Nitric and hydrochloric acid was then added and the sample diluted to volume (dependent on original sample weight). The sample was then read by atomic absorption spectrophotometry.

Values of Cu, Pb, Zn, and Ag were read in ppm while gold values were obtained in parts per billion.

Presentation of Results:

All geochemical data is included in Appendix II. The mean and standard deviation was computed and the data classified into the following categories:

Non Anomalous	less than	Mean
Possibly Anomalous	Mean	(Mean + 1 Std. Dev.)
Probably Anomalous	(Mean + 1 Std. Dev.)-	→(Mean + 2 Std. Dev.)
Definitely Anomalous	greater than	(Mean + 2 Std. Dev.)

The values were plotted on a 1:10,000 scale base map of the property and anomalous samples were indicated by symbols. (Figures 350-4 through 350-8)

Discussion of Results:

- Within the area of the SOBS claim is a large area of coincident anomalous lead zinc values which might be indicative of other zones of mineralization similar to the June showing.
- 2. In parts of the ADON V, ADON II and ADON IX claims is a large zone of northwesterly trending of roughly coincident anomalous copper, lead and zinc. Associated with this zone are several clusters of silver values. This broad zone might be indicative of the presence of polymetallic sulphides or possible vein type mineralization.
- 3. There were very few anomalous gold values within the survey area. Some were found within the broad anomaly defined above. However the erratic distribution of gold in soils is well documented and a much narrower spacing is necessary to properly define anomalous zones of gold.
- 4. In defining anomalous soils no consideration was taken of the underlying geology. More fill in sampling and closer geologic control is necessary to properly evaluate any anomalous zones.

respectfully submitted,
KERR, DAWSON AND ASSOCIATES LTD.

D. A. Leishman

D. A. Leishman, B. Sc. Geologist APPENDIX I

ROCK SAMPLE DESCRIPTIONS AND GEOCHEMICAL RESULTS

ROCK SAMPLES

Sample Number	Description
21.19	Massive quartz vein material, no visible sulphides, grab sample.
21.4	Grab sample, primarily quartz filling joints (2-3 cm. width) in quartz sericitic schist. Galena and sphalerite (to several percent) as semi-massive blebs within the quartz only.
21.5	Grab sample, highly silicified chloritic greenstone (very oxidized) with several percent pyrite and trace chalcopyrite, boulder of float.
22.25	Grab sample, very carbonaceous argillite (graphitic) with quartz injection, minor pyrite and trace chalcopyrite associated with quartz veining.
22.26	Grab sample, similar to above.
22.28	Grab sample, quartz veining with trace pyrite and chalcopyrite, similar geologic setting as above.
25.11	Grab sample, quartz vein with large cubes of pyrite (to 1 cm.).
SO.1	Representative grab sample, quartz vein material.
SO.2	Representative grab sample, quartz carbonate vein material, trace sulphides, galena and sphalerite.
so.3	Chip sample, quartz vein and highly oxidized contact zone of overlying limestone and underlying black carbonaceous argillite. Sulphides (pyrite, galena and sphalerite) in quartz vein and host (altered argillite).

Sample Number	Description
23.27	Grab sample, silicified dyke (?) with sericite and trace pyrite along contacts of sericitic phyllites.
23.9	Grab sample, massive quartz vein, no visible sulphides.
24.5	Grab sample, massive quartz vein, with sericite, fuschite (?), and trace of pyrite slightly oxidized
24.6	Grab sample, quartz feldspathic schist, originally sedimentary (?) with trace disseminated pyrite along cleavage, and wisps of emerald green mica (fuschite ?).
24.8	Grab sample, quartz carbonate vein float, slighly oxidized.
25.9	Grab sample, quartz vein, massive with $1-2\%$ pyrite.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

FILE NO. __

B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL LAB REPORT

Kerr, Dawson and Associates Ltd., Suite 206 Nicola Place, 310 Nicola Street, Kamloops, B.C. V2C 2P5

#350

DATE November 7, 1984

ANALYST G-1243

AL NO. ppmppm ppm IDENTIFICATION Pb Zn Cu 15 SO-1 16 98 SO-2 12 178 668 3 205 S0-3 3950 G4000 21.4 19 2050 110 21.5 144 35 22.25 39 29 26 22.26 21 37 53 8 22.28 22 19 26 G means "greater than" Cu, Ph, 7n Method: -80 Nesh Hot Acid Extraction Atomic Absorption

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL LAB REPORT

Kerr, Dawson and Associates Ltd., Suite 206 Nicola Place, 310 Nicola Street, Kamloops, B.C. V2C 2P5

DATE Oct	ober 30.	1 <i>9</i> 84	
ANALYST	-		
FILE NO	G-1236		

AL NO.	IDENTIFICATION	ppb Au	ppm Ag				
1	21.19	L5	L.1			:	
2	21.4	5	5.0				
3	21.5	L5	L.1				
4	22.25	L5	.2				
5	22.26	L5	L.1				
	22.28	L5	L.1				
7	23.27	L5	L.1_				
8	23.9	L5	L.1				
9	24.5	L5	L.1				
10	24.6	5	L.1				
	24.8	L5	L.1_				
11	25.9	L5	L.1				
13	25.11	L5	2.3				
14	<i>\$</i> 0.1	L5	L.1				
15_	50.2	1.5	1_				
16	\$0.3	885	720.0				
					· · · · · · · · · · · · · · · · · · ·	•	
	I means "less tha	n"					
	Au Method: -80 Me	sh					
	Fire /	ssay					
	Atomic	Absorp	tion				
	Ag Method: -80 Me	sh					
	Hot Ac	id Exti	action				
	Atomic	Absorp	tion				
-							
							•
				•			

APPENDIX II

SOIL SAMPLING AND DRAINAGE SAMPLING

AHMLUUMS RESEARCH & ASSAY LABORATORY

LTD

KAMLOOPS RESEARCH B. C. CERTIFIED ASSAYERS

ASSAY LABORATORY 912 LAVAL CRESCENT

PHONE 372-2764 - TELEX 048-6320

GEOCHEMICAL LAB REPORT

KERR DAWSON & ASSOCIATES 206-310 NICOLA ST KAMLOOFS B C V2C P3 DATE OCT 28 1984 ANALYST

FILE NO. @ 1229

PROJECT 350

							PAGE 1	
أقت	KRAL NO.	IDENTIFICATION	Aü	CU	2 6	ZN	AG I	r - 1
	1	65 i	1.0	22. 0	26. Ø	32. 0	ə. ə	
أفت	2 3	65 2	1.0	11. 0	2i. 0	47. Ø	୬. ଡ	
		65 3	1.0	13. 0	23. 0	48. 0	9. 9	
7	4	65 4	1. 0	39. 0	27. ข	131. 0	0.1	
3	5	6 5 5	1.0	Ð. Ð	9. 8	20, 0	9 . 8	
- 12	5	65 6	1.0	10. 0	16. 0		ଥ . ଥ	
- Tag		65 7	1.0	10. 0	18. 0	29. 0	0.1	
100	8	65 8	1. 0	11. 0	22. 0	36. 0	ð. 1	
	9	65 9	1. 0	13. 0	6. 0	26. 0	ଥ. ଚ	
	10	BS 10	1.0	52. 0	12. 0	75. 0	9. 9	
	11	B5 11	1.0	21. 0	8.0	71. 0	0. O	
	12	85 12	1. 0	11. 0	13.0	41.0	0. 0	
	13	BS 13	1. 0	S. 0	14. 0		ତ. ପ	
	14	65 1 4	1. 0	10. 0	13. 0	59. <u>9</u>	ଥ . ଥ	
	15	85 15	1. 0	9. 0	16 . 0	39, 0	0 . 0	
	16	65 16	1.0	9. 0	15. 0	37. 0	9. 9	. •,
Sto.	17	BS 17	1. 0	77. 0	2. 0	71. 0	9. 0	
	18	BS 18	1. 0	21. 0	22. 0	60. O	0.0	
	19	85 19	1. 0	10. 0	16. 0	27. 0	. ଥ. ଥ	
	20	BS 20	1. 0	8. 0	4. 0	22. 0	ଡ . ଡ	
	21	B5 21	1. 0	14. 0	31. 0	42. 0	0. 0	
	22	BS 22	1.0	3. 0	159. 0	55. _. 0 ,	0.5	
200	23	85 23	1. 0	16. 0	31. 0	63. Ø	ə . ə	
70	24	BS 24	1.0	16. 0	14. 0	47. 0	ଥ . ଥ	
	25	65 25	1. 0	12. 0	16. 0	51. 0	ଡ. ଡ	
	26	85 26	1. 0	12. 0	15. 0	39. 0	ଥ. ଥ	
	27	BS 27	1. 0	11. 0	26. 0	42. 0	0. 2	
	26	8 5 28	1.0	16. 0	16. 0	82. 0	ଡ. ଡ	
	29	65 29	1. 0	11. 0	17. 0	36. 0	0. 0	
	30	6 5 30	1. 0	13. 0	16. 0	46. 0	0. 0	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL NO.	FILE NO G 1229 IDENTIFICATION	AU	CU	PB	ZN	PAGE :	2 / 4
31	BS 31	1. 0	12.0	7. 0	29. Q	0. Q	
32	BS 32	1. 0	16. 0	13. 0	59. 0	9. 9	
33	8 5 33	1.0	13. 0	16. 0	30. 0	0.0	
34	85 35	1.0	18. 0	8. 0	53. 0	0. Đ	
35	65 36	i. 0	10. 0	14. 0	29. Ø	0.0	
36	85 37	1. 0	14. 0	17. 0	36. 0	0.0	
37	BS 38	1. 0	24. 0	18. 0	50. 0	9. 9	
38	BS 39	1. 0	13. 0	15. 0	39. 0	0. 0 0. 0	
39	65 40	1. 0	11. 0	17. 0	63. 0	0. 0 0. 0	
40	BS 42	1.0	10. 0	14. 0	48. 0	0. O	
41	BS 43	1. 0	31. 0	15. 0	60. O	0. O	
42	65 44	1. 0	6. 0	13.0	59. a	0.0	
43	65 45	1.0	20. 0	8. Ø	50. 0	0. O	
44	89 46	i. 0	17. 0	8.0	34. 0	0. 0 0. 0	
45	65 47	1. 0	12.0	8. 0	36. 0	9. 0 9. 0	
46	65 46	1.0	9. 0	6. O	27. 0	9. 0 9. 0	
47	85 49	1. 0	7. 0	7. 0	21. 0 50. 0	9. 9 9. 9	
48	85 30	i. 0	7. õ	11.0	49. 0	9. Q 9. 9	
49	85 31	1.0	4. O	5. 0	43. 0	0. g 0. 2	
50	65 32	1.0	6. 0	10.0	54. 0	9. E 9. G	
51	65 53	1.0	5.0	10. 0	25. 8	0. 0 0. 0	
32	65 54	1. 0	13. 0	21. 0	62. 0	0. 0 0. 0	
53	85 55	1.0	3.0	10.0	56. ଚ	0. 0 0. 0	
54	65 56	1.0	3 . 0	8.0	25. 0	0. O	
55	65 57	i. 0	27. 0	17. 0	140.0	0. i	
56	65 5 6	1. 0	13. 0	13.0	76. 0	0. 2	
57	85 59	i. 0	5. 0	3. O	50. 0	0. Ū	
58	65 60	1. 0	4. 0	9. 0	40. 0	8. D	
59	65 61	1. 0	6. 0	8. 0	27. 0	0.0	
60	BS 62	1.0	13. 0	10.0	110.0	9. 0	
5 <u>i</u>	65 63	1. 0	12.0	11. 0	51. 0	0. 0	
62	65 64	1. 0	12. 0	19. 0	33. 0	0. 0 0. 0	
63	83 63	1. 0	9. 0	23, 0	43. 0	a. a	
64	55 66	1. 0	8. 0	10. 0	37. 0	0.0 0.0	
- 65	65 67	1.0	9. 0	11.0	54. 0	0. O	
66	85 68	1.0	10.0	17. 0	61. 0	ପ. ଚ	
67	BS 69	1. 0	25. 0	13.0	52. 0	9. 9	
5 8	65 79	1.0	16. 0	7. 0	71. 0	9. 9 9. 9	
69	55 71	1.0	11.0	35. 0	100.0	e. e e. e	
70	BS 72	1.0	15. 0	55. 0 62. 0	137. 8	ଷ. ଷ ପି. ପି	
			man and a phy	~=. U	ت ، انجم	U. U	

KAMLOOFS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL NO.	FILE NO 0 1229 IDENTIFICATION	ñú	CU	P B	ZN	PAGE AG	3/4
71	BS 70	1. 0	15. 0	103. 0	72.0	0.0	
72	B5 74	i. 0	8. 0	. 27. ย	65. 0	Ð. Ð	
. 73	5 5 70	1.0	6. Đ	17. 0	56. 0	ଥି. ଥି	
74	85 76	1. 0	12. Ə	23. 0	129. 0	0.0	
75	65 77	1. 0	5. Đ	16. 0	97. 0	0. 0	
76	53 78	i. ઈ	7. 0	24. 0	73. 0	0.0	
17	BS 79	1.0	21. Đ	44. Ū		0.0	
78	65 80	1.0	7. 0	16. Đ	88. 0	ଡ. ଡ	
79	86 8 1	1. 0	14. Đ	. 17. 0	63. 0	0.0	
ତିଥି	65 62	<u>i.</u> 0	7.10	23. 0	198. 9	a. 1	
<u>o</u> i	65 6 3	i. 0	5 . 0	11.0	34. 0	Ð. 1	
82	85 84	1. 0	5. 0	14. 0	47. 0	ପ . ପ	
83	80 80	150. 0	13. 0	29. 0	67. G	୍ ପ୍ର	
84	BS 86	1.0	29. 8	5ର ଶ	. 116. ย	ଥ. ପ	
- 35	85 87	1.0	19. 0	21. Û	48. 0	Ð. Ð	
86	65 66	1.0	67. B	22. Đ	174. 원	ଡ. ଡ	
<u>87</u> j.	65 69	1.0	15 . 0	18. Đ	81.0	ପ. ପ	
88	<u>85</u>	1.0	35. 0	24.0	71. Đ	9. 0	
3 9	55 51	1.0	32. 9	20. 0	69. 0	9. 9	
90 24	55 32	1.0	53. Ø -	41.0	1,67, 0	9. 2	
21	25 53	1.0	49. 0	62. 0	163. 0	9.5	
- 92 93	85 94 85 93	1.0 1.0	25. 0 27. 0	36. 0 21. 0	139. 0 97. 0	3.7 9.1	
54	85 36	i. 0	76. 🖁 -	3i.0	ବିହି. ଶି	ି ପ୍ର	
30	85 97	1.0	- 59. 0	27. 0.	109. O	0.4	
35	25 58	1. 2	43. Ø	22. 6	102.0	Ð. 2	
37	22 25	1.0	44. O	16. Đ	8 5. 8	0.1	
98	65 160	1.0	47. Ø	22. 8	<u> </u> 63. 8	Ø. 1	
99	85 101	1.0	79. O	30. O	69. 0	Đ. 1	
199	65,102	1.0	32. 0	16, 0	्रे रे. ची	0.1	
191	85 103	<u>1</u> . 0	46. 0	37. 0	132.0	0 4	
192	88 194	1.0	14.0	26. Đ	87. Đ	9.1	
103	85 105	1. 8	51.0	39.0	124. 0	9.5	
194	85 106	1.0	18.0	26. 0	. 108. 0	원. 1	
185	85 107	1.0	45. 0	29. 0 ·	149. 0	0. 1	
186	55 108	1.0	38. 0	39. 8	117. 0	9. 9	
197	BS 189	1.0	69. Q	40. 0	138.0	e. 5	
198	BS 110	1. 0	54. 0	36. Đ	126. 8	ଖି. ପ	
103	55 lil	i. 9	39.0	26. 0	78. 9	9. 8	
110	65 112	1.0	48. Đ	47. e	116.0	ଥ. ଥ	

KAMLOOFS RESERROH & ASSAY LABORATORY LTD: GEOCHEMICAL LAB REFORT

KRAL NO.	FILE NO 8 1229 IDENTIFICATION	กับ	ĈŪ.	Fö	ZN	FAGE 60	4 / 4
4 4 1 1 :	85 113	1. 0	32. 0	40. 0	100. 0	0. 5	
112	85 114	1. 0	30. 0	25. 0	413.0	Ø. 1	
113	85 115	<u>1</u> . 0	47. 8	19. 0	81. 8 j	0. 3	
114	85 116	<u>i</u> . 0	95. 0	38: Đ	129. 0	Ð. Ð	
115	85 117	1. 8	37. 0	155. O	96. O	9. 2	
115	85 11 8	1.0	49. 0	149. Đ	95. Ø	0. i	
117	65 119	1.0	26. 0	- 22. 0	127. 0	9. 1	
118	8 5 120	<u>i</u> . Đ	42. 0	9. 0	129. 0	Ð. 1	
-119	85 121	1.0	17. 0	୨. ଡ	110. 0	Ð. 0	
120	BS 122	1.0	70. 0	13. 0	103. 0	9. 9	
121	BS 123	1.0	19. 0	16. O	3 ଣ. ପ	0. O	
122	5 5 124	145. e	30. 0	14. 0	145, 8	ଡ. ଡ	
123	B5 125	1.0	14.0	18. 0	76. 0	0.2	
124	88 126	1.0	13.0	14. 0	103. 0	ଥ. ଶ	
125	BS 127	1.0	47. Ø	11.0	6 7. 0	9. 9	
126	BS 126	i. 0	11 0	11. Ø	69. Q	9. 9	
127	B5 123	1.0	13 . 0	ව. ව	83. 0	Ø. 0	
128	55 130	j. Đ	14. O	11. Đ	ଚି÷. ପ	ହି. ହି	
129	ES 131	1.0	20. 0	19. 9	69. Đ	ē. ē	
130	65 132	1. 0	61.0	31. 6	462. 0	, Ø. B	
131	55 134	1.0	55. 0	11.0	198.0	ଥି. ଥି	
132	BS 135	<u>1</u> . 8	72. 0	32. 0	232. 9	Q. 2	
133	55 13 6	1.0	45. 0	17. 0	107. 0	0 . 2	
134	85 137	j. 6	11.8	15. 0	65. 9	9. 1	
135	88 130	i. 0	34.0	22. O	106. 9	Q. 2.	
136.	35 133	1. 3	66. O	48. 0.	135. 8	ย. 7	
1.27	85 148	.1. €	26. 0	16.0	115. Đ	9, 2	
138	85 1 41	1, 2	71.0	16. 0	193. 8	ē. 4	
1119	85 142	1. 9	25. 0	18. 0	25. Q	0.1	
140	55 143	1.0	19. 0	19. 0	79, 0	0.0	
141	ES 144	1. 8	16. 0	27. 0	83. Đ	0. C	
142	BS 140	i. 0	21. 0	19. ∂	€8. 0	인 원	
143	BS 146	1.0	16. 0	12. 8	64, ଥି	0. T	
144		<u>. 1. 0</u>	4. Ū	€. Đ	75. @	0. g	•
147	88 148	i. 0	ି : ଟି	36. Đ	163. G	ିଶ. ପ	
146	BS 148	1.0	8. 8	22. 0	104. 0	8. e	
147	55 139	1.0	. 38. 0	89. 0	175.0	a. a	
145	83 131	1.0	14.0	33. 9	108. 9 ·	, Đ. Đ	
145	55 132	1.0	30. 0	53. Đ	141.6	9. i	
178	Ş3 <u>15</u> 3	1.0	17. 0	51. G	131. 0	Ð. 1	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL	NO.	FILE NO IDENTIFIC	ลบ	CU	F6	ZN	PAGE AG	5 /	4
	51	BS 154	1. 9		176. 0		0. 2		
	.5£	85 155	i. 0	24. 0	136. 0	295. 0	0.6		
	.53	65 156	 1.0	31.0		165. 0	0. 2		
	54	BS 157	i. O	49. 0	44. 0	77. 0	0. 1		
	.55	65 158	1. 0	9. 0	23. 0		0. 0		
	56	65 160	1.0	12. 0	15. 0		9. 0		
	57	85 161	1. 0	13. 0	16. 0	67. Đ	<u>ି</u> ଥି		
	.58	65 162	 1. 0	ର. ଡ 4. ଡ	12. 0	36. 0	0. 0		
	.59	65 163	1.0		18. 0	75. 0	୍ ଚ. ଚ		
	.60	BS 164	1. 0		43. 0		9. 9		
	.61	85 165	1. 0	6. 0	- 28. 0		ଡ. ଡ		
	.62	85 166	i. 0	6. 0	46. Đ	137. 0	0. 0		
	.63	85 167	1.0	2. 0	29. 0	156. 0	9. 9		
	.64	BS 168	1.0		17. 0	134. 0	9. 9		
	.65	85 16 <i>3</i>	1.0	6. 0	28. 0		0. 0		
	.66		1.0		27. 0		0.0		
	.67	85 171	1. 0	7: 0		64. ଡି	0.0		
	.66	65 172	1.0	3. 0	14. 0	51. 0	9. 9		
	.69	85173	1.0	4. 0	17. 0	41.0	9. 9		
	.70	85174	1. 0	15.0	7. 0	63. Ø i	0. 0		
	71		1.0	40. 0	7. 0	72. 0	0. 1		
	.72	BS 176	1. 0	29. 0		114. 0	0.1		
	.73	BS 177	1. 0	11.0	14. 0	81.0	0. 0		
	74	65 173	1.0	12. 0	8. 9	60. O	ଡ. ଡ		
	.75	85 179	1.0	18.0	10. 0	54. 0	9. 9		
	76	85 180	1.0		6. ଶ	56. 0	0. 0		
	77	BS 181	1.0	12. 0	14. 0	66 . 0	9. 9		
	.78	85 182	1. 0	21. 0	16. 0	65. 0	9. 0		
1	.79	85 183	1.0	8. 0	3. 0	65. 0	9. 9		
1	66	BS 164	1. 0	8. Ø	10. 0	42. 0	0 . 0		
	.61	85 185	1. 0	25. 0	5. 0	34. 0	0 . 0		
1	.62	BS 186	1. 0	8. 0	7. 0	73. 0	9. 9		
1	.63	85 167	1. 0	27. 0	14.0	104. 0	0. 0		
1	.64	85 188	1. 0	17.0	13. 0	92. 0	9. 9		
1	.26	65 189	1. 0	12. 8	14. 0	121. 0	0. 0		
1	66	BS 190	1. 0	35. 0	29. 9	<i>33.</i> 0	0. 1		
1	76.	85 191	1. 0	18. 0	15. 0		0. i		
	66	65 192	1. 0			79. 0	9. 9		
	69	B3193	1. 0	13. 0	14. 0	<i>3</i> 2. 0	0. 0		
	.90	85 194	1. 0	19. 0	15. 0	<i>9</i> 9. 0	9. 0		

KAMLOOFS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL NO.	FILE NO G 1229 IDENTIFICATION	AU	CU	FB	ZN	FAGE 6/4
191	 BS 195	1.0	15. 0	14. 0	95. 0	9. O
192	BS 196	1.0	6. Ø	10.0	31. 0	0. 0 0. 0
193	BS 197	1.0	15. 0	10.0	42. 0	0.0
194	BS 198	1.0	6. 0	7. 0	59, 0	9. 9
195	B5199	1.0	13. 0	7.0	36. 0	0. 0 0. 0
196	BS 200	1. 0	16. 0	9. 0	43. 0	0. O
197	BS 201	1.0	13. 0	11.0	69. 0	0. G
198	B3 202	1. 0	18. 0	16. 0	96. O	0. 0 0. 0
199	BS 203	1.0	67. 0	26. 0	118.0	9. Đ
200	BS 204	10.0	113. 0	36. 0	89. 0	0. 2
201	65 205	1. 0	105. 0	25. 0	96. 0	0. 3
202	BS 206	1. 0	191. 0	29. 0	83. 0	0. 1
203	BS 207	1. 0		14. 0	112. 0	ð. <u>0</u>
204	BS 208	1:0	45. 0	13. 0	97. 0	9.
205	BS 209	1. 0	43. 0	12. 0	57. 0	0. 0
206	BS 210	1.0	60. O	14. 0	70. 0	ଥ. ଥ
207	BS 211	1.0	20. 0	19. 0	74. 0	ତ. ତ
208	BS 212	1. 0	22. 0	16. 0	115.0	9. 0
209	65 213	1. 0	25. 0	11. 0	76. 0	ର . ଡ
210	85 214	1. 0	31. 0	17. 0	93. 0	ର. ଚ
211	BS 215	1. 0	34. 0	15. 0	ି 66. ଡି	0. O
212	BS 216	1.0	19. 0	9. 0	69. Ø	0. 0 j
213	BS 217	1. 0	46. O	10.0	64. Ø	ଥ. ଥ
214	65 218	1. 0	59. 0	10. 0	105. 0	ଥି. ପ
215	65 219	1.0	45. 0	19. 0	53. 0	0. O
216	85 220	1. 0	38. 0	5. 0	32. 0	9. 9
217	BS 221	1. 0	43. 0	6. 0	34. 0	9.0
218	85 222	1. 0	41.0	18. 0	82. O	ଥ. ଚ
219	65 223	1. 0	35. 0	8.0	37. 0	0.0
. 220	BS 224	1.0	12. 0	3. O .	82. 0	<u>ର</u> . ଡ
221	BS 225	1.0	28. 0	3.0	15. 0	0.0
222	BS 226	1.0	11.0	9. 0	103.0	0.0
223	BS 227	1.0	53. 8	12.0	36.0	0. 0 -
224 225	85 228	1.0	50.0	11.0	38. 0	0. 2
226 226	85 229 85 230	1.0	21. 0	10.0	93. 8 51. 0	0.0 2.2
227	85 23i	1. 0 1. 0	28. 0 50. 0	19.0	64. Ø	9. 2
226 228	82 535 83 531	1. U 1. O	59, 9 21, 9	24. 0	92.0	0. 1
229	55 233	1.0	21. 0 17. 0	20. 0 16. 0	157. 0	0. 0
239	55 234	1.0	22. 0			0.0 0.0
೭೨೮	00 ED4	1. 0	22. 0	16.0	41.0	ପ. ପ

KAMLOUPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

	GEOGRAPHIC	int tho.	KEFUKI			666F 7 14
voor vo	FILE NO G 1229 IDENTIFICATION	AU	CU	C.C.	k :	PAGE 7/4
MAIL NO.	IDENTIFICATION			FB	ZN	AG
231	85 235	1. 0	16. 0	6. 0	35. 0	0 . 0
232	85 236	5. 0	30. 0	14. 0	59. 0	9. 9
233	BS 237	1. 0	39. 0	18. 0	55. 0	0.0
234	65 238	1. 0	- 20. 0	20. 0		0. 0
235	63 239	1. 0	19. 0	32. 0	119. 0	
236	65 240	1. 0		20. 0		ə . ə
237	BS 241	1.0	25. 0	9. 0	72. 0	
238	BS 242	1.0	32. 0	26. 0	104. 0	0. 0
239	65 243	1. 0	28. 0	14. 0	56. 0	0. 0
240	65 244	1. 0	24. 0	12.0	73. 0	ତ ତ
241	65 245	1.0	31. 0	25. 0	76. O	
242	85 246	1.0	13. 0	10.0	63. 0	0 . 0
243	85 247	1.0	40. 0	15. 0	72. 0	ଚ . ଚ
244	85 248	1. 0	15. 0	5. 0	106. 0	9 . 0
245	85 249	1.0	15. 0	6. 0	67. 0	9. 9
246	65 250	i. 0	26. 0	6. 0	45. 0	0.0
124	65 251	i. 0	65. 0	16. 0	53. 0	ə. ə
125	85 252	i. 0	42.0	7. 0	58. 0	0.0
126		1. 0		ii. 0	67. 0	0. 2
127	85 254	1. 0	24. 0	11.0	ିର, ପ	9, 2
128	6 5 255	1.0	13. 0	7.0	77. 0	0.1
129	8 5 256	1.0	15. 0	7. 0	79. 0	0. 0
130	85 257	1. 0	23. 0	9. 0		0.0
131	6 5 258	1. 0	14. 0	7. 0		ଥ. ଥ
1.32	65 239	1.0	46. 0	8. 0	56. Đ	0. 0
133	6 5 260	1. 0	22. 0	6. 0	92. 0	0. 0
134	85 261	1. 0	135. 0	28. 0	<i>97.</i> 0	9. 2
135	63 262	1. 0	31. 0	14. 0	93. 0	0.1
.136	65 263	1. 0	36. 0	12. 0	164. 0	0. 1
137	85 264	1.0	16. 0	6. 0	88. 0	0. 0
138	65 265	1. 0	13. 0	5. 0	52. 0	0. 0
139	85 266	1.0	14. 0	5. 0	81. O	0. 0
140	BS 267	1. 0	9. 0	6. 0	36. 0	0. 0
141	85 268	1. 0	92. 0	22. 0	88. 0	0. 0
142	65 269	1. 0	45. 0	7. 0	72. 0	0. 0
143	85 270	1. 0	40. 0	11. 0	156. 0	
144	BS 271	1. 0	23. 0	10. 0	70. 0	0. 0
145	B5 272	1. 0	25. 0	9. 0	77. 0	0. 1
146	BS 273	1. 0	52. 0	6. 0	51. 0	0. 1
147	BS 274	15. 0	67. 0	12. 0	69. 0	0. 1

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

	FILE NO G 1229	UNL LHB	KEPUKI			PAGE	8/4
KRAL NO.	IDENTIFICATION	AU	CU	PB	ZN	AG	···
148	BS 275	1. 0	56. 0	10. 0	60. 0	0. 1	
149	BS 276	1. 0	28. 0	14. 0	112. 0	0. 2	
150	65 277	1. 0			95. 0	0.1	
151	BS 278	1. 0	14. 0	6. 0	91. 0	0. 1	
152	BS 279	1. 0	14. 0	6. 0	30. 0	0. 0	
- 153	BS 280	1. 0	14. 0	8. 0	102. 0	0. 1	
154	BS 281	1. 0	20. 0	9.0	91. 0	9. 9	
155	B5282	1. 0	14. 0	7. 0	82. 0	0. 0	
156	BS 283	1. 0	65. 0	36. 0	121. 0	0.1	
157	65 264	1. 0	88. 0		118. 0	0. 2	
156	65 265	1.0	93. 0	40. 0	108. 0	0.3	
159	BS 286	10. 0	67'. 0	41.0	100. 0	0. 0	
160	BS 287	1.0	70. 0	37. 0	99. 0	0.3	
161	BS 288	1.0	64. O	32. 0	94. 0	0 . 3	
162	BS 269	1. 0	56. 0	25. 0	67. ଡ	9, 9	
163	BS 290	1. 0	52. 0	16 . 0	59. 0	0. 1	
164	BS 291	1.0	72. 0	25. 0		0.1	
165	65 292	1.0	, 59. 0	23. 0	6 3. 0	9. 9	
166	85 293	1.0	49. 0	21. 0	130.0	0. 4	
167	BS 234	1. 0		45. 0	167. 0	ର 4	
168	B S 295	1. 0	85. Ø	38. 0	102. 0	0. 1	
169	85 296	1.0	120. 0	36. 0	148. 0	8, 4	
170	65 297	1. 0	126. 0	28. Đ	96. O	0 . 3	
171	65 298	1. 0	125. 0	34, 0	108. 0	0.2	
172	65 299	1. 0	93. 0		156. 8	9.12	
173	BS 300	1.0	149. 0	39.0	149. 0	0. 6	
174	RS 01	1. 0	18. 0	15. 0	41.0	0. 2	9
175	RS 02	1. 0	17. 0	12. 0	34. 0	0. 1	
176	RS 03	1. 0	12.0	6. 0	32. 0	9. 9	
177	RS 04	1. 0		12. 0	56. 0	0. 0	
178	RS 05	1. 0	17. 0	11.0		0. 0	
179	RS 06	1. 0	12.0		39. 9	0.0	
160	RS 07	1. 0	11. 0		38. 0	ଡ . ଡ	
181	R5 08	1. 0	10.0	13. 0	28. 0	0. o	
182	R5 09	1. 0	14. 0	9. 0	27. 0	0. 0	
183	RS 10	1. 0	12.0	6. 0	24. 0	0. O	
184	RS 11	1. 0	12. 0	6. 0	20. 0	0.1	
185	RS 12	1. 0	10.0		31. 0	0.1	
186	RS 13	i. 0	19.0	3. 0	33. 0	9. 9	
187	R5 14	1. 0	14. 0	16. 0	27. 0	0. 0	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL NO.	FILE NO G 1229 IDENTIFICATION	AU LHB	CU	PB	ZN	FAGE AG	9/4

188	RS 15	15. 0	13. 0		87. 0	0. i	
189	RS 16	1. 0	12. 0	6. 0	35. 0	9. 9	
190	RS 17	1.0		12. 0	41.0	9. 9	
191	R5 18	1.0	21. 0	21. 0	31.0	0. 0	
192	R5 19		9. 0	6. 9	32. 0	9. 9	
193	RS 20	1.0	16. 0		33. 0	0. 1	
194	RS 21	1. 0	13. 0	6.0		9. 0	
195 196	R5 22	1.0	9.0	6.0	30. 0	0.0	
197	RS 23 RS 24	1.0	12.0	6.0	35. 0	ə. ə	
198	RS 25		10.0	7. 0	64. 0	0. 0	
130 133	RS 26	1.0		6.0	42. 0		
200	RS 26 RS 27	1.0	5.0	5. 0	26. 0	0.0	
200 201	RS 28	1.0		9.0	29. 0		
595	RS 29	1.0	12.0	7. 0	59. 9	9. 9	
203	RS 30	1.0	19.0	10. 0	60.0	9. 9	
204	RS 31	1. 0 1. 0	27. 0 29. 0	18.0	57. 0	0.0	
205	RS 32	1. 0	22. 0 22. 0	36. 9 24. 9	68. 0	9. 9	
206	RS 33	1. 0	12. 0	24. 0 8. 0	57. 0 46. 0	9. 9 9. 9	
207	RS 34	1. 0	13. 0	บ. บ ร ล	31. 0		
208	RS 35	1.0	11. 0	14. 0	62. 0	0.0	
209	RS 36	1. 0	19. 0	11.0	44. 0	0. 0	
210	RS 37	1.0	16. 0		27. 0		
211	RS 38	1. 0	33. 0	29. 0	63. 0	0. 0	
212	RS 40	1. 0	16. 0	27. 0	39. 0		
213	RS 41	1.0	9. 0 .	9. 0	19. 0	9. 9	
214	R5 42	1. 0	16. 0		74. 0	0. O	
215	R5 43	1. 0	69. 0		83. 0	9. 9	
216	RS 44	1.0	3 9. 0	39. 0	131. 0	0. O	
217	RS 45	1. 0			55. 0	ଡ. ଡ	
218 219	RS 46 RS 47	1.0	17. 0		56. 0	0.0	
229	RS 48	1.0	19.0	11.0	57. O	0. 0	
221	RS 49	1.0	16.0		78. 0	9. 9	
222	RS 50	1.0 1.0	19. 0 12. 0		91. 0	9. 9	
223	RS 51	1.0	10.0	23. 0	59. Ø	9. Q	
224	RS 52		8. 0 10. 0	16. 0 16. 0	33. 0 24. 0	9. 9 9. 9	
225	RS 53	1.0	14. 0	18. 0	24. 0 70. 0		
226	RS 54	1.0	11. 0	11. 0	7 0. 0 35. 0	0. 0 0. 0	
227	R5 55	1. 0	9. Ø	16. 0	33. 0 75. 0	0. 0 0. 0	
		J. U	J. 15	TO. 0	13.0	9. 9	

KAMLOGPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

	GEOCHEMI FILE NO G 1229	CAL LAB	REPORT			FAGE	10 / 4
KRAL NO.	IDENTIFICATION	AU	CU	PB	ZN	AG	10 / 4
226	RS 36	1.0	12. 0			0. 0	
229	RS 57	1. 0		15. 0		0.0	
230	RS 56	1. 0		6. 0		0. 0	
231	RS 59	1. 0	32. 0		56. 0	0.0	
_ 232	RS 60	15. 0			108. 0	0.0	
233	RS 61	1. 0	23. 0		107. 0	0.1	
234	RS 62	1.0	51. 0	45. 0	118.0	0.0	
235	RS 63	1.0			131.0	0. 0	
236	RS 64	1. 0			103. 0	9. 2	
237	RS 65	1.0	37. 0		85. Ø	0.0	
236	RS 66	1. 0	26. 0		97. 0	0.0	
239	RS 67	1.0			6 5. 0		
240	RS 68	1. 0	22. 0			9. 0	
241	RS 69	1. 0			32. 0	0.0	
242	RS 70	1.0	44. 0		57. 0	9. 9	
243	RS 71	1.0	17. 0	10.0	42. 0	0.0	
244	RS 72	1.0	15. 0		64. 0		
245	RS 73	1. 0	15. 0	23. 0	74. 0	9. 9	
246	RS 74	1.0	24. 0	90. 0	71.0	0.0	
247	RS 75	1. 0	24. 0	61. 0	62. 0	9. 9	
248	RS 76	1. 0	32. 0	40. 0	80. Ø		
249	RS 77	1. 0	19.0	16. 0	48. 0		
250		1.0	12. 0	17.0	110.0		
251	RS 79	1. 0	41.0		90. O	0.0	
252	RS 60	1. 0	36.0		51.0	9. 9	
130	RS 84	1.0		42.0		9. ଚ	
131	RS 81	1.0	19.0		52. 0	9. 9	
132	RS 82	1.0	15.0		33.0		
133	RS 63	1. 0	6. 0		15. 0		
134	RS 85	1.0	21. 0		52.0		
135	RS 66	1.0	18.0				
136	RS 67	1.0	14.0		36. 0	9. 9	
137	RS 68	1. 0	34. 0			9. 2	
138	RS 69	1.0	26. 0		124.6	0.2	
139	R5 90	1.0	. 9.0 a.a		63. 0	0. 4 2. 7	
140	R5 91	, 1. 0 1. 0	9.0	26. 8 20. 0	74. 0	8.3 o.o.	
141	RS 92	1. 0	26. 0	20. O	78. 0	. 9. 9	
142	R5 93	1.0	43. 0	21. 0 15.0	65. 0 34. 0	0 .0	
143	RS 34	1.0	12.0	16. 0	76. 0	9. 2	
144	RS <i>9</i> 5	1.0	22. 0	16. 0	88, Ø	ତ . ଡ	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL NO.	FILE NO G 1229 IDENTIFICATION	AU AU	CU	FB	ZN	FAGE 11 / 4
XRAL NO. 145 146 147 146 147 146 149 150 151 152 153 154 155 156 157 158 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	FILE NO G 1229	AU 1.001.0001.000000000000000000000000000	19.00 10.00 10.00	13.3.6.000000000000000000000000000000000	67. 9 70. 9 104. 9 105.	66 9.9999999999999999999999999999999999
180 181 182 183	RS 131 RS 132 RS 133 RS 134	1.0 1.0 1.0 1.0	19. 0 15. 0 5. 0 16. 0	16. 0 3. 0 4. 0 5. 0	96. 0 36. 0 30. 0 34. 0	9. 9 9. 9 9. 9 9. 9
164	RS 135		7. 0	3. 0	53. 0	0. 0 0. 0

	Imol No	GEOCHEM: FILE NO G 1229 IDENTIFICATION		CU	F6	ZN	PAGE 12 / AG	4
_						 30. 0	ə. ə	
	165	R5 136	1.0	8. 0	2. 0 3. 0	34. 0	9. O	
	186	RS 137	1. 0 1. 0	8. 0 40. 0		65. 0	0. 0	
	187	RS 136	1.0			43. 0	ତ. ତ	
	188	RS 139	1.0		12.0	128. 0	0.2	
	169 190	RS 140 RS 141	1. 0	25. 0	12.0	44. 0	0.1	
	191	RS 142	1.0	6. 0	7. 0	64. 0	9. 9	
	192	RS 143	1.0		9. 0	37. 0	0.0	
	193	RS 144	1. 0		21. 0		0.0	
	194	RS 145	1. 0		2.0	39. 0	9. 9	
	195		1. 0	5. 0	3. 0	36. 0		
	196		1. 0		2. 0	74.0	9. 0	
18	197		1. 0	7. 0	7. 0	112.0		
æ	136		1.0			62. 0	0.0	
	133		1.0		16. 0	51. 0	0.0 1.0	
	200		1. 0	12.0	6. 0	55. 0 76. 0	ପ. ପ ପ. ପ	
	201		1.0		18. 0 39. 0		and the second s	
	202		1.0	17. 0	35. 0 43. 0	40. 0	0. i	
	203		1.0	17. 0 5. 0		11. 0		
	204		1.0 1.0				•	
	205		1. 0 1. 0	43. 0	20. 0	146.0	ତ. ଡ	
	206		1.0	180. 0		108.0		
	207		1.0	97. 0		126. 0		
	208 209		1.0		16. 0			
	210	and the second s	1.0	20. 0	9. 0	39. 0	9. O	
80	211		35. 0		20. 0	78. 0		
986	212		1. 0	35. 0		54. 0	0.1	
Market Control	213		1. 0			55. 0		
₩.	214		1.0	276. 0	25. 0	127. 0	0.2	
in in	213		1.0		29. 0	146.0		
1	216		1.0		49. 0		0. 3 0. :	
	217		50. 0		73. 0		0.4 0.1	
	218		1.0		21.0	. 93. 0	0. 1 0. 2	
	213		1.0		31. 0 46. 0	178. 0 378. 0	0. z 0. 1	
	229		1.0		46. 0 16. 0			
	22:		1.0	30. 0 48. 0				
- Service	22		1. 0 1. 0					
100	22. 22.			20.0				
	22	e ra liv	<u> </u>		-			
m								

	GEOCHEMICA FILE NO G 1229		REPORT			PAGE	13 / 4
KRAL NO.	IDENTIFICATION	AU	CU	FB	ZN	AG	
225	RS 176	1. 0		9. 0	43. 0	0. 1	
226	RS 177		21.0	3. 0	69. 0	9. 9	
227	RS 178		30. 0	4. 0	36. 0	9. 9	
228	RS 179		169. 0	14. 0	78. 0	0.4	
229	RS 180		47. 0	15. 0	96. 0	0.0	
230	RS 181	1.0	83. 0		54. 0	0. 0	
231	RS 182 RS 183			25. 0	114. 0	0. 0	
232 233	RS 184	1.0	147. 0	45. 0	186. 0	0.2	
234	RS 185	1.0	163.0	32. 0	124. 0	0.3	
235	RS 186	1.0	158. 0	29. 0	63. 0	0.1	
236	RS 187	1. 0 1. 0		18.0	107. 0	0.0	
237	RS 188	1.0	63. 0	5.0	35.0	0.1	
238	RS 189	1.0	43. 0 22. 0	10.0	60. 0	0.2	
239	RS 190	1.0	39. 0 °	4. 0 8. 0	47. 0	0. 1 0. 0	
240	RS 191	1. 0	55. 0 56. 0	10.0	78. 0 43. 0		
241	RS 192	1.0	23. 0	5. 0	34. 0	9. 9 9. 9	
242	RS 193	1.0	24. 0	7. 0	34.0	0. 0 0. 0	
243	RS 194	1.0	18.0	3. 0	31. 0 89. 9	0.0	
244	RS 195	1. 0	10.0		59. 0	0. 0 0. 0	
245	R5 196	1.0	15. 0	ੂੰ 0 6. 0	69. 9	0.0	
246	RS 197	1. 0	13. 0		69. 0	9.9	
247	RS 198	1.0		7. 0	81. 0	9. 9	
246	RS 199	1. 0	34. 0	7. 0	76. 0	0.0	
249	RS 200	1. 0	41.0	10. 0	36. 0	9. 9	
121	RS 201	1. 0	13.0	6. 0	52. 0	9. 9	
122	RS 202	1. 0	62. 0	15.0	54. 0	0.3	
123	RS 203	1. 0	11. 0	12.0	57. 0	9. 9	
124	RS 204	1.0	72. 0	13. 0	ั 55. อ	0. 1	
125	RS 205	1. 0	20. 0	12.0	75. 0	0. 0	
126	RS 206	1.0	49. 0	16. 0	112.0	0. 2	
127	RS 207	1. 0	31. 0	14. 0	68. 0	0. 0	
128	RS 208	1.0	19. 0	13.0		0. 0	
129	RS 209	1.0	23. 0	11. 0	58. 0	0.0	
130	RS 210	1.0	26. 0	10.0	48. 0	0.0	
131	R5 212	1.0	18. 0	11.0	51. 0	0.0	
132	RS 213	1. 0	29. 0	12. 0	40. 0	0.0	
133	RS 214	1.0	13.0	9. 0	73. 0	0.0	
134	R5 215	1. 0	6. 0	6.0	18. 0	0.0	
135	RS 216	1. 0	9. 0	7. 0	23, 0	0. 0	

100		orochenie	THE LIND	NEI ON I					
		FILE NO G 1229	12					14 /	4
	KRAL NO.	IDENTIFICATION	AU 	CU		ZN	AG		
	136	RS 217	1. 0	29. 0	12. 0	47. 0	0. 0		
	137	RS 218	1.0		10.0	68. 0	0. 0		
	136	RS 219	1. 0	31. 0	10.0	51. 0	0. 0		
wasa	133	RS 220	1. 0	36. 0	7. 0	66. 0	9. 9		
	140	RS 221	1. 0	19. 0	12.0	69. 0	0. 0		
L L	141	RS 222	1. 0	20. 0	6. 0	46. 0	9. 9		
	142	RS 223	1. 0	21. 0	17. 0	88. 0	9. 0		
	143	RS 224	1. 0	3. 0	12. 0	<i>32. 0</i>	0. 0		
	144	RS 225	1. 0	32. 0	30. 0	59. 0	0. 0		
B) HE	145	RS 226	1. 0	14. 0	6. 0	48. 0	0. 0		
\$15	146	RS 227	1. 0	21. 0	13. 0	109. 0	9. 9		
	147	RS 228	1. 0	37. 0	14. 0	82. 0	0. 0		
	148	RS 229	1.0		21. 0	110.0	0. 0		
	149	RS 230	1. 0	17. 0	6. 0	72. 0	9. 9		
1	150	RS 231	1.0	25. 0	13. 0	111. 0	0. 0		
à	151	RS 232	1. 0	36. 0	12. 0	113.0	0. 0		
	152	RS 233	1.0	35. 0	7. 0	68. 0	0. 0		
	153	RS 234	1.0	23. 0	4. 0	56. 0	9. 9		
100	154	RS 235	1.0	26. 0	5. 0	73. 0	0 . 0		
. 88	155	RS 236	1.0	32. 0	4. 0	45. 0	9. 9		
THE .	156	RS 237	1. 0		10. 0	65. 0	ଥ. ପ		
	157	RS 238	1.0	15. 0	16. 0	41. 0	9. 9		
	158	R S 239	1.0	16. 0	6. 0	57. 0	9. 0		
	159	RS 240	1. 0	236. 0	28. 0	109. 0	0. i		
	160	RS 241	1. 0	44. 0	18. 0	6i. 0	ଡ. ଡ		
	161	RS 242	1.0		7. 0				
NEADOW.	162	RS 243	1. 0	63. O	15. 0	151. 0	0.1		
	163	RS 244	1.0			105. 0	ପ. ପ		
	164	RS 245		68. 0			0. 0		
	165			61. 0			9. 9		
	166		1. 0		20.0				
	167		1. 0						
	168		1. 0	49. B					
	169	RS 250	1.0	101. 0			0. Q		
	170	RS 251	1. 0	21. 0	5. 0	41.0	9. 9		
	171	RS 252	1.0	14. 0	6. 0	76. 0	ଡ. ଡ		
	172	RS 253	1.0	13. 0	6. 0	57. 0	9. 9		
	173	RS 254	1. 0	25. 0	13. 0	39. 0	9, 9		
1	174	RS 255	1.0	14. 0	7. 0	77. 0	0. 0		
	175	RS 256	1.0	୍ 8. ଖ	5. 0	6 2. 0	9. 9		

KRAL NO.	FILE NO G 1229 IDENTIFICATION	AU ENO		PB	2N	PAGE 15 / 4 AG
 176	RS 257	1. 0	93. 0	24. 0		
177	RS 250	1. 9	30, 0	15. 9		a. o
178	RS 259	1. 0	25. 0	13. 0		0. 0
179	RS 260	1.0	16. 0	13. 0	63. 0	9. 9
180	RS 261	1. 0	68. 0	16. 0		0. 0
181	RS 262	1.0	21. 0	13. 0		9. 9
182	RS 263	1.0	29. 0	14. 0		0. 0
163	RS 264	1.0	26. 0			
164		1.0	0.0			0. O
165	RS 266	1.0				
186		1.0			90.0	9. 9
187		1.0			51. 0	0.0
188		1. 0		12. 0		
189		1. 0			73. 0	0.0
190		1.0	41. 0		99. 0	
131		1.0		13. 0		0.0
132		1.0		3. 0	65. Ø	
73		1.0			58: 0 57: 0	ତ. ହ
74	BSL 2	15. 0		20. 0	67. 0	ର. ଚୁ
75	83L 3	1.0	22. 0			
76		1.0	35. 0			
. 77	6SL 5	1.0		3. 0	36. 0	
78		10.0	29. 0	11.0	78. 0	0.0
79		1. 0	21. 0	9, 0	51.0	
80	65L 8	1.0	15. 0	6. 0		
81	83L 9	1. 0	65. 0		103.0	
82	BSL 10	1. 0	32. 0	22. 0		0.0
83	B5L 11	1.0	33. 0	41. 0		
84		1.0	18. 0			
85	B5L 13	1.0	19.0	19.0		
86	65L 14	1. 0		64. 0		
67		1. 0		27. 0		
66		1.0				
69	BSL 17	1.0	51. 0	10. 0	44. 0	
90	BSL 18 ↔	45. 0				
91	65L 19	1.0	50. 0	13.0	67. 0	9. 9
32		1.0	100.0	18.0	59. 0	0.2 0.2
93		1. 0	7. 0	1.0		9. Ø
94		1. 0	44.0	10.0	39. 0	9, 9 0, 0
95	65L 23	1.0	63. Đ	25. 0	93. 0	0. 0

		FILE NO G 1229	One cit				PAGE 16	7.4
KF	AL NO.	IDENTIFICATION	AU	cu	FB	ZN	AG	•
	 96	BSL 24	i. 0	 เรน ด	20. 0	76. 0	0.1	
	97	85L 25		116. 0			0.0	
	96 98	RSL 01	1.0			68. 0		
		RSL 02	1 0	32. 0		87. Ø	ତ. ଡ	
	100		1.0			6 4 . 0	ଡ. ଡ	
	101	RSL 04 *	25. 0					
	102		1.0					
	103	RSL 06 *	1.0		13. 0		9. 9	
	104		15. 0	52. 0	16. 0			
	105	R5L 08	1. 0	22. 0	18. 0	49, 9	ଡ. ଡ	
	106		1. 0	14, 0	12. 0	32. 0	0.0	
	107	RSL 10	1. 0	18. 9		65. 0		
	198	RSL 11	1.0	21. 0	13. 0			
	109	RSL 12	1.0	16. 9	13. 0	37. 0	ଥ . ଥ	
	110	RSL 13	5, 9	129. 0	57. 0	103. 0	0 . 0	
	111	RSL 14 +	1.0	28. ଚ୍				
	112	RSL 15	±. ⊖		- 12. 0		9. 9	
l	113	RSL 16		17. 0			-0. 0	
	114	RSL 17		13. 0				
	115	RSL 18		18. 0			ପ. ପ	
	116	RSL 19 *		16. 0	10.0	39. 0		
	117		1. 0		6. 0	44. 0	0.0	
	118		1.0					
	119		1. 0	72. Đ	9.0	37. 0		
	120			83. 0			0.1	
B	121	RSL 24 +		55. 0	7. 0		9. 9	
	122		1.0				9. 0 a a	
9	123		·	62. 0				
MI.	124			64. 8				
1000000	125	RSL 28 ★	1. 0	36. 0	<i>3.</i> ઇ	٦١. ق	ຍ. ຍ	

*INDICATES SAMPLE HAS BEEN PULVERISED

IN AU COLUMN 1 INDICATES LESS THAN SPFB

IN AG COLUMN 0.0 INDICATES LESS THAN . 1884

AU METHOD -80 MESH FIRE ASSAY ATOMIC ABSORPTION

CU PB ZN AG METHOD -80 MESH HOT ACID EXTRACTION ATOMIC ABSORPTION

APPENDIX III

PERSONNEL

PERSONNEL

J.	M. Dawson, P. Eng.	Geologist	Oct. 16,	
			Nov. 1, 2, 4, 5, 7.	days
Ď.	A. Leishman, B. Sc.	Geologist	Oct. 18, 19-24,	
			Oct. 29-31,	
			Nov. 5, 6, 7.	2 days
W.	Gruenwald, B. Sc.	Geologist	Oct. 29, 30.	2 days
R.	Henderson	Sr. Technician	Oct. 15-22.	days
В.	Cross	Sr. Technician	Oct. 16-22.	7 days
F.	Robinson	Jr. Technician	Oct. 16-22.	7 days
G.	Thompson	Jr. Technician	Oct. 16-22.	7 days

APPENDIX IV

STATEMENT OF COSTS

PROGRAMME COSTS

LABOUR:

				· · · · · · · · · · · · · · · · · · ·	
	J.	M. Dawson, P. Eng. 6 days @ \$400/day		\$ 2,400.00	
	D.	A. Leishman, B. Sc. 12 days @ \$300/day		3,600.00	
	W.	Gruenwald, B. Sc. 2 days @ \$300/day		600.00	
	R.	Henderson 7½ days @ \$200/day		1,500.00	
	В.	Cross 7 days @ \$200/day		1,400.00	
	F.	Robinson 7 days @ \$150/day		1,050.00	
	G.	Thompson 7 days @ \$150/day		1,050.00	
					\$ 11,600.00
VΠ	EMC	EC AND DICDIDCEMENTS.			

EXPENSES AND DISBURSEMENTS:

(a)	Truck and Boat Rental	\$ 936.00	
(b)	Room and Board	1,295.39	
(c)	Geochemical Analysis	7,201.40	
(d)	Drafting and Base Map Preparation	305.49	
(e)	Secretarial, Blueprints, Xerox, etc.	173.40	
		· · · · · · · · · · · · · · · · · · ·	9,911.68

TOTAL COSTS

\$ 21,511.68

APPENDIX V

REFERENCES

REFERENCES

BURTON, A. D. K. (1984):

Report on Kayjun Property, East Barriere Lake Area; Private Report to Primont Resources Ltd.

DAVIES, M. (1984):

Rea Gold, A Strong Resource Base; Western Miner, Volume 57, No. 6.

DAWSON, J. M. (1984)

Report on the ADON Property, Adams Plateau - Barriere District, Kamloops Mining Division for Titan Resources Ltd., November 5, 1984.

GARRATT, G. (1984):

Report on the Kayjun (June) Showing, East Barriere Lake Area; Private Report to Northair Mines Ltd.

KERMEEN, J. S. (1983):

Report on the Kayjun Property (SOBS Claims), East Barriere Lake, B. C.; Private Report to Primont Resources Ltd.

MISENER, D. J. and MULLAN, A. W. (1980):

Report on the Combined Airborne Magnetic and Electromagnetic Survey on the EBL and Kayjun Claim Groups, Kamloops Mining Division; Private Report to Western Mines Ltd.

MORAAL, D. (1984);

Summary Report on SOBS Claim, Kamloops Mining Division; Private Report (Assessment) for Whopper Holdings Ltd.

OKULITCH, A. V. (1980):

Geological Map of Thompson-Shuswap-Okanagan; G.S.C. Open File No. 637.

PRETO, V. A. (1981):

Barriere Lakes - Adams Plateau Area; Geological Fieldwork, 1980; B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1980-1.

SCOTT, G. H. (1973):

Report on the Geochemical Survey of the Kayjun Claim Group, East Barriere Lake, Kamloops M. D.; Private Report for Western Mines Ltd.

APPENDIX VI

STATEMENT OF QUALIFICATION

JAMES M. DAWSON, P. ENG.

Geological Engineer

#206 - 310 NICOLA STREET • KAMLOOPS, B.C. V2C 2P5 • TELEPHONE (604) 374-0544

CERTIFICATE

- I, JAMES M. DAWSON OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:
- (1) I am a geologist employed by Kerr, Dawson and Associates Ltd. of Suite 206 310 Nicola Street, Kamloops, B. C.
- (2) I am a graduate of the Memorial University of Newfoundland, B. Sc. (1960), M. Sc. (1963), a fellow of the Geological Association of Canada and a Member of the Association of Professional Engineers of British Columbia. I have practised my profession for 21 years.
- (3) I am the co-author of this report which is based on an exploration programme carried out on the subject property under my direct supervision.

J. M. DAWSON
BRITISH
COLUMBIA

KERR, DAWSON AND ASSOCIATES LTD.,

James M. Dawson, P. Eng.

GEOLOGIST

Kamloops, B. C.

November 7, 1984.

KERR, DAWSON AND ASSOCIATES LTD.

Consulting Geologists and Engineers

No. 206 - 310 NICOLA STREET • KAMLOOPS, B.C. V2C 2P5 • TELEPHONE (604) 374-0544

CERTIFICATE

- I, DOUGLAS A. LEISHMAN OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:
- (1) I am a geologist employed by Kerr, Dawson and Associates Ltd. of Suite 206 310 Nicola Street, Kamloops, B. C.
- (2) I am a graduate of the Northern Alberta Institute of Technology, Exploration Technology (Minerals Option), 1971, Edmonton, Alberta.
- (3) I am a graduate of the Imperial College of Science and Technology, Royal School of Mines, London, England, B. Sc. (Hons.) Mining Geology, 1981. I have been actively involved in mineral exploration since 1971.
- (4) I am the co-author of this report which is based on an exploration programme carried out by myself.

KERR, DAWSON AND ASSOCIATES LTD.,

Douglas Leishmon

Douglas Leishman, B. Sc. (Hons.)
GEOLOGIST

Kamloops, B. C.

November 7, 1984.

