84-1385-1336Z 11/22

1984 ASSESSMENT REPORT

on the

LIZARD CLAIMS

by

D.G. Mallalieu, Geologist S. G. Enns, Geologist, Supervisor G. Hendrickson, P. Geophysicist

Clearwater Area, Kamloops Mining Division NTS 92/P16

Lat. 51°51'N Long. 120°120'W

Owned and Operated by: Kidd Creek Mines Ltd.

GEOLOGICAL BRANCH ASSESSMENT PEPORT

13,362

February 1985

Vancouver, B.C.

TABLE OF CONTENTS

Page

SUMMARY	• •	• • •	•	• •	•	• •	•	•	i
INTRODUCTION	• •	• •	۵		•	••	•	•	1
Location, Access and Terrai	n.	• •	•	• •	•	• •	•	•	1
Property History	••	• •	•	• •	•	••	٠	•	1
1984 WORK PROGRAM	• •	••	•	6 9.	• •	•	•	•	3
GEOLOGY	• •	• •	•	• •	•	••	•	•	5
Regional Geology	• •	• •	•	•••	•	••	•	•	5
Property Geology	• •	•••	•	•••	•	• . •	•	•	8
Introduction	• •	• •	•	••	•	••	•	•	8
Lithology and Stratigr	aphy		•	• •	•		•		8
Structure	• •		•	• •	•	•	•	•	10
Metamorphism		• •	•	• •	•		•	•	12
Mineralization	• •	• . •	•	• •	•		•	•	13
Discussion	• •	• •	•	•••	•	• •	•	•	13
GEOCHEMISTRY	• •	• •	•	• •	• •		•	•	14
Introduction	• •		•	•••	•		•	•	14
Orientation Survey	• •	• •	•	•••	•	•	•	•	16
Presentation			•	• •	•	• •	•	•	16
1984 Soil Sampling Results			•	• •	•	•	•	•	18
1984 Stream Sampling Result	s.	•••	•		•		•	•	19
1984 Rock Sampling Results	• •	•			•	•		•	19

()

Page

GEOPHYSICS	٠	•	•	•	•	•	•	•	•		•	•	•	•	•	٠	•	٠	•	21
Introduction	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
Data Presentat	io	n	•	•	•	•	٠	•	•	ø	•	•	•	•	•	•	•	٠	•	21
Survey Procedu	ire		•	•	•	•	•	•		•	•	•	٠	•	•	•	•	•	٠	21
Discussion of	re	ទប	lt	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
Electroma	ıgn	et	ic	2 8	and	a r	nag	gne	eti	ĹĊ	re	esi	111	s		•	•	•	•	23
Conclusion	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
LIST OF REFERE	ENC	ES	;	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26

TABLES

Table	1	Proposed lithologic correlations of the Omineca Crystalline Belt west of the Shuswap and Monashee complexes with the stratigraphy of the Kootenay Arc.	6
Table 2	2	Definition of Soil Geochemical Anomalies	17
Table 3	3	Definition of Stream Geochemical Anomalies	17
Table 4	4	Definition of Rock Geochemical Anomalies	17

APPENDICES

C

Appendix	A	Convention for the Sample Numbering System					
Appendix	В	Petrographic-Lithologic Descriptions					
Appendix	С	ethods for Determination of First and econd Order Geochemical Anomalies					
Appendix	D	Geochemical Results					
Appendix	Е	og-Probability Plots of Cu,Ag,Au,Pb,Zn,Ba from opulation 1 (phyllitic rock)					
Appendix	F	Soil and Rock Geochemistry					
Appendix	G	Major, Minor Oxide & Trace Element Analyses of Selected Rocks					
Appendix	H	Whole Rock Analyses Plots					
Appendix	I	Lower Hemisphere Equal-Area projection of Schistosity/bedding					
Appendix	J	Magnetic Profiles-Grit #6 Grid, Lizard Grid					
Appendix	K	Statement of Expenditures					
Appendix	L	Statements of Qualifications					

LIST OF ILLUSTRATIONS

Figure	e Title	Scale	Page
1	Location Map		2 /
2	Claims Location Map	1:50,000	4 /
3	Geology, Bonaparte Lake, B.C.	1:250,000	pocket /
4	Geology Map, Lizard Claims	1:10,000	pocket /
5	Plan View & Schematic Cross-Secti Line 357N	on 1:1,000	pocket /
6	Separation of Alakaline and sub- alkaline volcanic suites		Appendix H
7	Separation of calc-alkaline and tholeictic volcanic suites		Appendix H
8	Silica-total Fe/Mg plot and separ of sub-alkaline lava suites	ation	Appendix H

Figur	e Title	Scale	Page
9	Mg0/Fe0 plot		Appendix H
10	The alakali "Igneous Spectrum"		Appendíx H
11a	Horizontal Coplanar Loop Electro- magnetic Survey and Total magnetic Field Strength,Lizard grid	1:2,000	pocket
11b	GRIT #6 Grid, Line 0 profile	1:2,000	pocket /
11c	GRIT #6 Grid Line 1+50N profile	1:2,000	pocket /
12	Lower hemisphere equal area project of schistosity/bedding		Appendix I
13a	Soil Sample Locations, Lizard Grid	1:3,000 /	pocket
13b	Au, Ag, Ba Soil Results, Lizard Grid	" /	pocket
13c	Cu, Pb, Zn Soil Results, Lizard Grid	H /	pocket C
14a	Rock Geochem Sample locations Lizard Grid		pocket Nandit
14b	Au, Ag, Ba Rock Geochem Results Lizard Grid	" /	pocket HVT
14c 15a 15ab	Cu, Pb, Zn Rock Geochem Results, M199 Lizard Grid Sample location map. Au, Ag, Ba, Cu, Pb, Zn Soil Results, GRIT #6 Grid	ing " " 5	pocket
16a	Location Map, Stream Sediment Samples and Selected Soil Samples	1:10,000	pocket
16b	Regional Geochemistry (1984) and Selected Soil Geochemistry (1978) Cu, Pb, Zn, Ba	1:10,000	pocket /
16c	Regional Geochemistry (1984) and Selected Soil Geochemistry (1978) Ag, Au, Ba	1:10,000	pocket /
	PLATES		
Plate	1 Panoramic view of the Lizard H	Property	Frontspiece
Plate	2a Ptygmatically folded quartz veins in black phyllite		11
Plate	2b Reverse kink band in black phy	yllite	11

The Lizard property looking west from the Lizard Grid. Ejas Lake is on the left. Prominent hills are Fennel Formation basalt.

SUMMARY

This report presents results of the 1984 fieldwork on the Lizard claims. The purpose of the Lizard project was to explore for gold mineralization associated with pyrrhotite in the black phyllite of the Eagle Bay Exploration was prompted by Eureka Resources' Formation. discovery of stratabound gold at Frasergold Creek. The gold occurs in iron carbonate horizons within phyllite. The recognition of anomalous gold in a piece of drill core from a hole drilled by Aquitaine Company of Canada Ltd. in 1978 prompted the staking of the Lizard claims.

The project-area covers two claims, Lizard 1 and 2 (40 units) which are wholly owned by Kidd Creek Mines Ltd. The claims are located approximately 50 km northwest of Clearwater, British Columbia.

Fieldwork was carried out from June 7 to August 25, 1984 and consisted of line cutting, geologic mapping, EM and magnetometer surveys and geochemical sampling.

The claims are underlain mainly by black phyllite, quartzite, subordinate quartz-muscovite schist and tuffs of the Eagle Bay Formation. The sequence appears to be an overturned isoclinal antiform. The best mineralized outcrop is a quartz-muscovite schist with up to 7% pyrite. It is Na₂O-depleted and K₂O-enriched, but no base metal sulphides were observed.

i

Geophysical results indicate the presence of a significant 400 m long, strongly conductive and magnetic zone on the Lizard grid. It is essentially coincident with a 200 m-long Pb-Zn anomaly and is associated with pyritic quartz-sericitie schist at its north end, and with pyrrhotite-bearing black phyllite at its south end.

The magnetic conductor drilled by Aquitaine was confirmed on the GRIT #6 grid; it appears to terminate 150 m northwest of the old drill hole site. This conductor is separated by 1.5 km of swamp and appears to be on strike with the conductor on the Lizard grid.

The 1984 exploration expenditures on the Lizard claims totalled approximately \$29,000, of which \$16,000 has been applied as assessment work.

INTRODUCTION

Location, Access and Terrain

The Lizard Claim Group is located in central British Columbia at 120°20'W and 51°51'N: NTS 92P/16. The property is approximately 50 km northwest of Clearwater (Figure 1), within the bounds of Tree Farm Licence No. 18. Ejas and Maury Lakes are partially enclosed by the claim boundaries.

Access to the claims is by way of an extensive network of well maintained logging roads operated by Clearwater Timber Products Ltd.. A four-wheel drive spur road provides direct access to the Lizard Grid on the south part of the claims.

The project area lies within the northeastern part of the Shuswap Highland. Topography ranges from 1300m at Maury Lake, to 1700 m at the Lizard Grid. Ejas and Maury Lakes occupy a narrow swampy valley confined between rounded hills to the west, and Swayback Ridge to the east.

Thickness of glacial drift varies from 7 m in the region north of Ejas Lake (Dawson, 1978) to less than 1 m on Swayback Ridge. Glaciation has been sufficiently intense to limit outcrop to roadcuts and minor hills. Muskeg-type vegetation is dominant over the property. Better drained areas are occupied by black spruce and balsam.

Property History

The first reported mineral exploration in the area was conducted in 1966 (Salat, 1978). Early staking covered lead-silver-bearing float (10.68% Pb, 950g/t Ag) discovered south of Maury Lake. Reconnaissance soil sampling in this vicinity showed a few moderately anomalous zinc and copper values. This was followed by a ground magnetometer and EM survey.

optioned Grit Aquitaine the Claims from Barrier Reef Resources Ltd. in May 1977. The total staked coverage consisted of 96 units or 2400 hectares (some of which included additional staking by Aquitaine). An airborne EM and magnetic survey was flown by Aerodat in June 1977 and subsequently followed by ground geophysics over selected grids (Boerner, pers. comm. 1984). Α coincident magnetic and EM anomaly situated north of Ejas Lake was tested by a single diamond drill hole in January 1978 (Dawson, 1978). The conductor was found to be a narrow graphitic pyrrhotite section within black quartzose phyllite. A later analysis in 1983 of a piece of core indicated the presence of anomalous gold and silver in the graphitic pyrrhotite-bearing phyllite.

1984 WORK PROGRAM

The Lizard Claims (40 units) were staked in November, 1984 by Kerr, Dawson and Associated Ltd. of Kamloops, B.C. on behalf of Kidd Creek Mines Ltd. (KCM) (Figure 2).

LIZARD 1, 2 - Claim Status

Claim		Units	Record No.	Location Date	Record Date
Lizard	1	20	4943	Nov 9/83	Nov 17/83
Lizard	2	20	4944	Nov 7/83	Nov 17/83

Field work was performed during the following periods:

June 7 to 20, July 7 to 10 and August 9 to 30.

Two grids (totalling 3.1 line-km) were established for geophysics and consisted of 1680 m on the

Lizard Grid and 1410 m on the Grit #6 Grid as indicated on the geology map. Soil sampling was subsequently carried out over portions of most lines at 20 m intervals, except for lines 100N through to 527N on Lizard Grid which were sampled in their entirety. Both grids were also covered by HLEM and magnetometer surveys.

Geologic mapping at a scale of 1:10,000 was conducted along all existing logging roads. Pace and compass traverses were used to map the northwest portion of the Lizard 1 claim, which was largely drift-covered.

Stream sediment and rock sampling were conducted over the entire property as governed by streams and outcrops.

GEOLOGY

Regional Geology

The Lizard claim group lies within the Fennel and Eagle Bay Formations of the Omineca Crystalline Belt, (Figure 3). This belt is a collage of mid-Proterozoic miogeoclinal rocks comprised of Paleozoic and lower Mesozoic volcanic and pelitic rocks and local Precambrian crystalline basement. The rocks were highly deformed and variably metamorphosed up to high-grades in mid-Mesozoic to early Tertiary time. These rocks are intruded by Jurassic and Cretaceous plutons (Monger et al, 1982).

Fennel and Eagle Bay Formations occupy the western part of the Omineca Crystalline Belt. The former correlates with the Antler Formation of the Slide Mountain Group, the latter is a part of the Mount Ida Group (Preto, 1982). TABLE 1

ERA	PERIOD	CAMPBELL AND TIPPER, 1971	JONES, 1959	OKULITCH, 1979	PRETO ET AL., THIS STUDY	READ, 1976
	TRIASSIC M					•
	PERMIAN					· · · ·
	PENNSYLVANIAN	FAULT CONTACT, RELATIONSIIP UNCERTAIN		FAULY CONTACT MILFORD GROUP		MILFORD GROUP
	MISSISSIPPIAN	FENNELL FORMATION			EAGLE BAY FORMATION	
	U	FAULT CONTACT. RELATIONSHIP UNCERTAIN			FENNELL FORMATION	1
PALEOZOIC						UNCONFORMITY
	SILURIAN					
	ORDOVICIAN					LARDEAU GROUP
	U CAMBRIAN M		LARDEAU GROUP	EAGLE BAY FORMATION		
	ι		BADSHOT FORMATION	TSHINAKIN LIMESTONE		BADSHOT FORMATION
PRECAMBRIAN	WINDERMERE					
	PRE-WINDERMERE		EAGLE BAY FORMATION			

Table 1

Proposed lithologic correlations of the Omineca Crystalline Belt west of the Shuswap and Monashee complexes with the stratigraphy of the Kootenay Arc. (Preto, 1981).

 \mathbf{O}

The Fennel Formation consists of volcanic greenstones with minor interbedded chert, argillite and phyllite, concordant bodies of quartz-porphyry and small carbonate lenses (Aggarwal et al, 1984). The Eagle Bay Formation includes a broad assemblage of mafic and felsic metavolcanic and metasedimentary rocks with numerous lenses of carbonate (Preto, 1981).

The stratigraphic and age relationships between these two formations are not well established. Campbell and Tipper (1971) proposed a reverse or thrust fault generating an unconformable contact. Preto (1979) suggested that the Eagle Bay conformably overlies the Fennel Formation. Preto and Schiarizza (1982) suggested that the Upper Mississippian to late Permian Fennel Formation is, in part, coeval with and, in part, overlies the Eagle Bay Formation of late Devonian to late Mississipian age.

North of the Lizard property is the Quesnel Trough, which is a linear belt of early Mesozoic volcanic and sedimentary rocks lying along the western margin of the Omineca Crystalline Belt. The Quesnel Trough is in fault contact on the west by the Cache Creek Group and on the east by older Paleozoic and Precambrian strata. The trough has been interpreted to represent an island arc assemblage formed at a consuming plate margin above an easterly dipping subduction zone which existed from late Triassic to early Jurassic time (Saleken and Simpson, 1984).

Property Geology Introduction

Interest in the area formerly occupied by the Grit claims was revived by Eureka Resources' discovery of stratabound gold occurrences at Frasergold Creek. There, gold-pyrite mineralization occurs along an iron-carbonaterich horizon within the Upper Triassic argillite sequence which has been highly deformed and metamorphosed to phyllite (Salaken and Simpson, 1984). Apparent similarities between the lithologies at Frasergold Creek and lithologies intersected by Aquitaine's single drill hole, together with encouraging Au values from a piece of core from the conductor zone (Au 0.02 oz/ton, Ag 0.38 oz/ton), prompted KCM's acquisition of the Lizard claims.

Lithology and Stratigraphy

Ten lithological units were mapped (Figures 4 and 5) on the Lizard property. Detailed descriptions of each map-unit are found in Appendix B.

The Eagle Bay Formation underlies greater than 80 percent of the Lizard claims. Quartzite (unit 2a) and phyllite (unit 2b) dominate; white quartz-muscovite schist (unit 2c), lapilli block tuff (unit 2e) and meta block ash flow (unit 2f) are subordinate.

The Fennel Formation is represented by basalt (unit 1a), and siltstone (unit 1c). The Eagle Bay Formation is interpreted to conformably overlie the Fennel Formation.

On the property, the metasedimentary rocks of Formation from carbonate to Eagle range the Bay quartzite-quartz-granule conglomerate to phyllite and andalusite schists (Appendix B). Pyrite and pyrrhotite 28 and rarely, chalcopyrite (<18) are totalling

disseminated throughout the metasedimentary rock, however, the sulphides are most common in the phyllites.

The rock units dip about 30° to the southwest.

Pyroclastic rock displays its greatest visible thickness in the northern part of the Lizard 1 claim. Feldspar-quartz crystal tuff (unit 2d), meta block-ash minor interdigitations of sericite flow and schist (metafelsic tuff) and phyllite are present. schist Quartz-muscovite and chlorite-quartz-muscovite schist (unit 2c) represent a small unit hosted in a sequence of quartzitic and phyllitic rocks in the of Lizard 2 (Figure 5). southeastern part The quartz-muscovite schist unit has been eroded to the south but its extent along strike to the north is presently unknown.

A total of eleven samples (9 igneous, 2 sedimentary) were selected for whole rock analysis. Two samples associated with pyrite mineralization appear to be pervasively altered. Selected plots of whole rock data are listed in Appendix H.

A MgO vs FeO variation diagram (Figure 9) shows that the plot points are scattered about a line delineating the Cascades trend. Seven of nine samples, when plotted on an alkali "igneous spectrum" diagram (Figure 10) fall outside of the envelope. Two samples mineralization associated with pyrite display $Na_{2}O$ depletion when compared to typical modern volcanic terrane Na₂0 contents (Condie and Moore, 1977). The other samples are interpreted to have undergone K20 enrichment.

Whole rock geochemical analyses, given as computer print-out reports are included in Appendix G.

Interpretation of geologic data generated during the 1984 field season on the Lizard Project signficantly contradicts interpretations presented in previous reports (Salat, 1978, Campbell and Tipper, 1971).

Two previous map units (Sicamous Formation and quartz monzonite were found to be incorrect; they correlate better with lithologic descriptions of the Eagle This correlation is consistent with the Bay Formation. suggested north-northwesterly continuation of similar lithology from the Vernon map-area of the Eagle Bay Formation by Campbell and Tipper (1971), Preto (1981), Preto (1982) and Aggarwal et al (1984).

A previously mapped Cretaceous? crystalline quartz monzonite, lying west of Maury Lake is actually a massive pyroclastic flow, which exhibits increasingly stronger schistosity to the west.

Structure

Structural data on the Lizard claims was largely obtained from metasedimentary rocks, predominantly from the phyllite.

The metasedimentary - metavolcanic rock succession occurs within an overturned isoclinal (class 2) antiformal fold (Figures 4 and 5) with a shallow plunge to the northwest. Axial planes are parallel to schistosity. Two phases of folding have been defined; a third phase identified by Preto (1982) was not confirmed.

The primary phase of folding (F₁) is defined in ptygmatically folded quartz veins in phyllite (Plate

Plate 2a Ptygmatically folded quartz veins in black phyllite

Plate 2b Reverse kink band in black phyllite

2a). Parasitic folds with amplitudes greater than one metre are present on the south limb of the major antiform and reflect syn F_1 deformation.

 F_2 is defined in ptygmatically folded quartz veins such that their axial planes are essentially normal to axial planes of F_1 veins.

Sporadially developed reverse kink bands may be structures which are either syn or post F_2 deformation.

The tectonic fabric as defined by schistosity parallel to bedding has a northwest strike direction. Maximum, minimum and median dips are 90°, 10° and 30° to the southwest, respectively (Figure 12).

Primary and secondary schistosities (S_1) and S2 respectively) are ubiguitous throughout the Both structures are parallel to bedding/ phyllites. S1 defines the dominant cleavage in the rock, banding. S_2 defines the superimposed crenulation cleavage. Sz. is represented by lineations oblique to S1 and S2. It was observed locally but is not a well defined feature.

Faulting has not been observed on the property. The reverse or thrust fault proposed by Campbell and Tipper (1971) at the contact between the Fennel and Eagle Bay Formations has been discounted. · A better understanding of structure and stratigraphy from recent government mapping in the general Clearwater region has eliminated the necessity for a thrust faulted contact between these formations.

Metamorphism

Both regional and contact metamorphism have affected the metasedimentary and metavolcanic rock units on the claims.

Regional lower greenschist facies metamorphism has affected both the Fennel and Eagle Bay Formations in this region (Preto, 1982, Aggarwal et al, 1984). Low-grade contact metamorphism has at least affected the southern part of Lizard 2. Prograde contact metamorphism has 'thermal biotite' resulted in the generation of in quartzitic rock as well as a low-grade metamorphic mineral assemblage in pelitic rock which has altered to andalusite and cordierite bearing schists (Appendix B, samples E17 The presence of cordierite indicates that parts and E18). of Lizard 2 have attained middle-grade contact metamorphic The presence of rhyolite sills and dykes, shown facies. on Figure 4 as map units 1b and 2c, indicates the proximity of intrusive plutonic rocks probably of which are the cause of contact Cretaceous age, metamorphism.

Mineralization

Mineralization on the Lizard claims is sparse.

The most significant showing on the property occurs on the Lizard 2 claim at the north end of the Lizard grid (Figure 4). A pyritic quartz-muscovite schist, containing up to 7 percent disseminated pyrite, minor pyrrhotite and rare chalcopyrite, displays random second order anomaly Au values.

Discussion

The problems of correlation of the Eagle Bay, Fennel and Sicamous Formations with Kootenay Arc Stratigraphy are still largely with us because of the lack of sufficiently detailed stratigraphic and paleontologic information from the Eagle Bay and Sicamous Formations. The Lizard project is a locus for this problem. The Quesnel Trough, of Island Arc affinity (Salaken and Simpson, 1984), lies north of the property. To the south lie the Fennel and Eagle Bay Formations of Paleozoic age, thought to have formed in a tectonic setting similar to that of present-day oceanic islands or seamonts (Aggarwal et al, 1984). 14

The Quesnel Trough contains several stratabound gold deposits e.g. Frasergold, Megabuck, Jamboree and QR. The Chu Chua massive sulphide deposit lies in the Fennel Formation.

Geological mapping on the property revealed that the differences between the phyllitic members of the Eagle Bay Formation and those of the Quesnel Trough are subtle. Settings of mineralization similar to those of the Quesnel Trough were not encountered at Lizard.

GEOCHEMISTRY

Introduction

A total of 142 soil, 53 stream silt and 141 rock samples were collected on the Lizard property in 1984 and were submitted for geochemical analysis.

Soil sampling was carried out at 20 m intervals over cut lines of the Lizard and Grit #6 grids (Figures 13a,b,c, 15a,b). A total of 130 and 12 samples were collected, respectively over these grids. The B horizon-bedrock interface and C horizon-bedrock interface was routinely sampled. Depths to these interfaces ranged from 20 to 120 cm. For the most part, the depth required for sampling precluded the use of mattock or soil auger. A long-handled shovel, supplemented by trowel was found to be the most effective for sampling.

Twenty-five samples collected per man-day was considered to be good production.

Samples were collected by hand in Kraft paper envlopes, partially dried at room temperature, and delivered to Acme Analytical Laboratories Ltd., (Acme) Vancouver. The samples were dried at 60°C, sieved to -80 mesh and analysed. All pulp and oversize were retained.

The -80 mesh fraction was analysed as follows: A 0.500 g sample was digested with 3 ml 3:1:3 HCl-HNO₃-H₂O at 95°C for one hour and diluted to 10 ml with water. The solution was analysed by inductively coupled plasma (ICP) for Ag, Cu, Pb, Zn. Using the same sample preparation as above, Atomic Absorption Spectrometry (AA) was performed on Au and Ba. In the case of Au, a larger sample (10 g) was used.

Stream sediment samples composed of relatively fine-grained silts and sands were collected from streams and runoffs on the claims and in the vicinity. Sample media was variable depending on stream conditions but mid-stream/side-stream bar material containing physically weathered detritus was considered optimum sample material. A 300 g sample was considered an optimum size for element homogeneity. Samples were collected in Kraft paper envlopes, dried at room temperature, then delivered to Acme in Vancouver where they were sieved to -80 mesh. size fraction was analysed by methods described This above. All pulp and oversize were retained.

All outcrops encountered in the course of geological mapping were geochemically sampled.

Sample masses ranged from 0.5 to 1.5 kg of unweathered material. All samples were pulverized to -100 mesh and analysed by methods outlined above. X-Ray Assay Laboratories Limited (X-RAY) of Don Mills, Ontario performed whole rock analysis by X-ray fluorescence (XRF) and 35-element analysis neutron activation analysis (NAA), and direct current plasma analysis (DCP) on selected samples (Appendix F).

Orientation Survey

Α rudimentary orientation survey was conducted on the Lizard Grid (Figure 13 a, b, c) to determine the optimum soil horizon for analysis. The orientation was performed by sampling 'pits' 20 m at lines 200N and intervals on 100N. A11 horizons intersected were sampled i.e. A,B,C, B-bedrock interface, C-bedrock interface. Never were all horizons intersected at one locality.

Soil horizon development is poor on the Lizard Grid. The iron-rich B horizon is largely absent as is the leached lower A horizon.

Sieving at -80 mesh was considered sufficient for all analyses. Analyses were conducted by Acme of Vancouver. ICP and AA analysis were employed on Ag, Cu, Pb, Zn and Au, Ba respectively.

Data indicated that sampling the C horizonbedrock interface would maximize essentially all base metal analytical values. Conclusions could not be drawn from Au results, as all Au values were 5 ppb. **Presentation**

The locations of all soil samples are displayed on Figures 13a and 15a, Appendix F. Soil results are indicated on Figures 13b,c and 15b. Stream geochemical anomalies are indicated on Figure 16a.

A total of 43 rock sample locations along line 357N are shown on Figure 5. Whole rock analysis locations are shown on the geology map, Figure 4.

Geochemical results for soil and stream sediments and for rock samples are listed by type in Appendix D.

The methods for the determination of first and second order geochemical anomalies are discussed in Appendix C. Tables 2, 3 and 4 list the definitions of threshold values used to determine anomalies.

Table 2: Definition of Soil Geochemical Anomalies Element First Order Second Order Background

Ag	> 1.5 ppm	> 0.7 ppm	0.1-0.2 ppm
Au	> 60 ppb	> 40 ppb	5 ppb
Ba	> 300 ppm	> 250 ppm	100 ppm
Cu	> 55 ppm	> 45 ppm	24 ppm
Pb	> 100 ppm	> 50 ppm	21 ppm
Zn	> 570 ppm	> 290 ppm	105 ppm

Table 3: Definition of Stream Sediment Anomalies

Element	First Order	Second Order	Background
Ag	> 1.5 ppm	n/a	0.1 ppm
Au	> 30 ppb	n/a	5 ppb
Ba	> 500 ppm	n/a	110 ppm
Cu	> 50 ppm	n/a	19 ppm
Pb	> 40 ppm	n/a	14 ppm
Zn	> 200 ppm	n/a	63 ppm
Table 4:	Definition of	Rock Geochemical	Anomalies
Blement	First Order	Second Order	Background
Ag	> 2.0 ppm	>1.0 ppm	0.3 ppm
Au	> 150 ppb	> 20 ppb	7 ppb
Ba	>1200 ppm	>700 ppm	100 ppm
Cu	> 75 ppm	> 60 ppm	25 ppm
Pb	> 50 ppm	> 30 ppm	7 ppm
Zn	> 300 ppm	>225 ppm	80 ppm

1984 Soil Sampling Results

Lizard Grid-Base metal soil anomalies

The most significatan base metal soil anomaly is indicated on Figure 13c. It is a first order Pb Zn anomaly with several second order Cu anomalous values. This anomly strikes northwest and extends from line 200N to line 405N. It corresponds closely to the strong EM conductor axis and the northern extent overlies an altered-looking, pyritic, quartz-muscovite schist.

Lizard Grid - Au, Ag soil anomalies

Precious metal soil anomalies are not considerd to be significant. They are present as uncommon, isolated, poorly reproduceable, anomalous samples. Some Ba-enrichment is also present in isolated anomalies.

Coincident, first order Au and second order Ag soil anomalies are restricted to two localities. The first anomaly on line 200N at 140E, exhibits Au and Ag values of 290 ppb and 25 ppm, respectively. The second anomaly (60 ppb, 0.7 ppm) is on line 300N at 100E. Both anomalies are isolated and display no downslope metal dispersion.

An isolated second order Au anomaly (55 ppb) on Line 405N at 60W, displays no base metal support. Sampling north of this location has not been sufficient to identify metal dispersion patterns.

A first order Ag anomaly (1.6 ppm) on line 200N at 20W has associated first order Pb, Zn and second order Cu values. Black phyllite outcrops to the south and is interpreted to underlie the sample site. Second order Ag soil anomalies are broadly associated with downslope dispersion of base metals.

1984 Stream Sampling Results

All anomalous stream silt geochemical values, with the exception of Au, are generated on a single stream draining west to the southern part of Maury Lake.

This drainage basin incorporates predominantly black phyllite, however, pyroclastic rock may be included at its northern extent.

A single Au anomaly (50 ppb) was generated in a runoff channel on the south side of Road 128 (Figure 16c), on the western end of line 527 N of the Lizard Grid. The result was not reproduceable.

1984 Rock Sampling Results

Samples, taken mostly from outcrops on the property, gave disappointing results.

First and second order anomalies (Table 4) within phyllitic and quartzitic rock are generally restricted to Cu and Pb; maximum values were 87 and 68 ppm, respectively. Twelve out of thirteen anomalous rock samples were from localities on the Lizard Grid, (this is likely a function of increased sample density, Figures 14a, b, c). A single sample of graphitic phyllite located approximately 2 km west of the northern lobe of Maury Lake displays anomalous Ag, Au values (1.2 ppm, 165 ppb).

A quartz-muscovite schist outcrop, 3 km east of the eastern Lizard 1 claim-boundary, generated Ag and Au values of 16.7 ppm and 315 ppb, respectively. This is associated with a first order, 388 ppm Pb anomaly. Quartz-muscovite schist, located at the northern end of the Lizard Grid (Figure 9), generated only second order Pb anomalies of approximately 37 ppm. Quartz veins sampled in outcrop and a single vein from drill core generated the highest base metal, precious metal values of the project. An outcropping quartz vein, west of the southern lobe of Maury Lake, contains 1760 ppm Pb, 725 ppm Zn, 8.4 ppm Ag, and 90 ppb Au.

A 6 cm core sample from Aquitaine's drill hole G-78-1 assayed 0.020 oz/ton Au and 0.38 oz/ton Ag.

Massive non-mineralized basalt, found on the west side of Ejas Lake, was anomalous in Cu (Table 4). The values of 131 and 223 ppm are close to means set for international standards (Flanagan, 1983) so are not considered significant.

GEOPHYSICS

Introduction

During the period June 6 to August 24, a Kidd Creek geophysical crew conducted electromagnetic and magnetic surveys on the Lizard 1 & 2 claims. These claims are 100% owned by Kidd Creek Mines Ltd.

The purpose of this work was the groundlocation and evaluation of conductors located bv a previous (Aquitaine 1977) airborne electromagnetic survey, because conductors are frequently related to a combination of graphite and sulphide mineralization in association with base metals and gold. The equipment included an Apex Parametric Maxmin II electromagnetic system and two Scintrex MP-4 magnetometers, one of which was used as a base station.

Data Presentation

The data is presented in a plan of profiles form at a scale of 1:2000 (Figures 11a to 11c). The magnetic data is total field. The base field chosen for the magnetic survey is 58000 nanotesla.

In addition, а computer listing of the magnetic data is included as Appendix J. Magnetic profiles are machine-plotted beside these listings. Magnetic readings were taken every 10 metres.

The E.M. data is plotted at 1 cm = 20%. A solid line shows the in-phase component and a dashed line indicates the out-of-phase component.

Survey Procedure

The Lizard grid, consisting of 7 east-west lines, was established over the centre of the Lizard

airborne anomaly. Line separation was 100 m, with a station separation of 20 m. This grid lies on a moderate, north-facing slope.

In addition to this grid, two new lines were established on the northwest side of the old GRIT #6 grid, which had been surveyed by the Aquitaine Company of Canada Ltd. in 1978. These two lines are more at right angles to the conductor than those of the old Aquitaine survey. Their purpose was to trace the conductor northwest to higher ground, where trenching might be possible. The GRIT #6 grid lies in swampy ground.

The Maxmin II electromagnetic system was used in the horizontal coplanar loop with a coil separation of 80 metres. Measurements were taken at two frequencies, 1777 Hz and 444 Hz.

For the magnetic survey, a base station magnetometer was run continuously (sampling every 10 to monitor the diurnal shift of the seconds) earth's magnetic field. A portable magnetometer was used with the sensor attached to a tall staff to ensure against errors created by magnetic objects on the operator. Both magnetometers were total field microprocessor-controlled instruments capable of performing automatic diurnal corrections and plotting when connected to each other and a suitable printer. These state-of-the-art instruments proved to be durable and very convenient to use under field conditions. A base station standard of 58000 nanotesla was assumed for all diurnal correction.

Overburden thickness is negligible on the Lizard grid, however, it averages 5 to 10 metres on the old GRIT #6 grid.

Discussion of Results

Electromagnetic and Magnetic Results

Lizard Grid

On the Lizard Grid, a strong dual conductor, known the as main conductor, was detected over approximately 400 m. The conductivity thickness product is quite variable, however, it is certain that good conductivity and width exist on lines 100N and 200N at the baseline. The spatial position of the dual conductor is indicated by shading on Figure 11a. Dip appears near vertical or steeply to the west. A second, much weaker, conductor is present on the east side of the grid. The host rock appears to be very weakly conductive as well.

The magnetic field over the Lizard grid is complex and suggests the presence of numerous pyrrhotite or magnetite stringers. One main magnetic anomaly correlates with the strong dual conductor. The conductor appears wider than the magnetic anomaly, therefore it is probable that only part of the conductor is magnetic. A steep to moderate, westerly dip is the general indication from the magnetic data.

In general, strong magnetic anomalies without associated conductors are probably due to magnetite. Strong magnetic anomalies with coincident strong conductors probably are related to pyrrhotite mineralization. Strong conductors without magnetic expression may be due to graphite and/or non-magnetic sulphide mineralization. Frequently, an anomaly is due to some combination of the above causes.

GRIT #6 grid

A strong conductor was detected on the new line 0 at 255E, which reconfirms the work done in 1978 and strongly suggests a steep NE dip. This conductor has good width and depth extent. The top of the conductor lies approximately 8 m below the surface. The 1978 drill hole was drilled down-dip, however, it is most probable that the hole managed to intersect all of this zone. A flanking, weak non-magnetic conductor exists parallel to and approximately 80 m west of the main conductor.

The step-out line, 150 metres to the NW (line failed to detect either the conductor or 150N) the magnetic anomaly, therefore the zones dies out somewhere between lines 0 and 150N. The fact that the magnetic disappears simultaneously with anomaly the conductor suggests they have the same source, which leads us to expect pyrrhotite mineralization. The magnetic anomaly is not simple and relates to at least two closely spaced sources.

The GRIT #6 anomaly is still open to the southeast and lies approximately 1.5 km NW along strike of the Lizard grid.

Conclusion

The conductive and magnetic zone delineated on the Lizard grid deserves either trenching or drilling. The EM and magnetic anomaly on the GRIT #6 grid is very attractive. This anomaly was drilled in 1978 by Aquitaine and found to be pyrrhotite. No gold anlaysis was

conducted by Aquitaine, therefore the precious metal potential of the mineralization is unknown.

S. Hendrickson Grant Hendrickson

S. G. Enns

LIST OF REFERENCES

- AGGARWAL, P.K., FUJII, T., and NESBITT, B.E., 1984. Magmatic composition and tectonic setting of altered, volcanic rocks of the Fennel Formation, British Columbia: Canadian Jour. Earth Sci, V 21 No. 7, pp. 743-752.
- CAMPBELL, R.B. and TIPPER, H.W., 1971. Geology of Bonaparte Lake map-area, British Columbia: Geological Survey of Canada, Memoir 363, 100 p.
- CONDIE, K.C. and MOORE, J.M., 1977. Geochemistry of Proterozoic Volcanic Rocks from the Grenville Province, Eastern Ontario: <u>in</u> Baragar, W.R.A., Coleman, L.C. and Hall, J.M. eds., Volcanic Regimes in Canada: Geol. Assoc. Canada, Spec. Paper No. 16 pp. 149-168.
- DAWSON, J.M., 1978. Diamond Drill Hole Record, G-78-1: Unpublished Kerr-Dawson and Associates Ltd. Report, 7 p.
- FLANAGAN, F.J., 1983. Descriptions and analyses of eight new U.S.G.S. rock standards: in Handbook of Exploration Geochemistry, Volume 3, Rock Geochemistry in Mineral Exploration, ed. G.J.S. Govett; Elsevier Scientific Publishing Company, Amsterdam, The Netherlands. pp. 390-393.
- HUGHES, C.J., 1972. Spilites, keratophyres, and the igneous spectrum: Geol. Mag. 109, pp. 513-527.
- IRVINE, T.N., AND BARAGAR, W.A.R, 1971. A guide to the chemical classification of the common volcanic rocks: Canadian Jour. Earth Sci. 8, pp. 523-548.
- JONES, A.G., 1959. Vernon Map-Area, British Columbia: Geological Survey of Canada, Memoir 296, 186 p.
- MACDONALD, G.A., 1968. Composition and origin of Hawaiian Lavas: Geol. Soc. Amer. Mem. 116, pp. 477-522.
- MIYASHIRO, A. 1974. Volcanic rocks series in island arcs and active continental margins: Amer. Jour. Sci., 274. pp. 321-355.

MONGER, J.W.H., PRICE, R.A. and TEMPELMAN-KLUIT, P.J., 1982. Tectonic accretion and the origin of the two metamorphic and plutonic belts in the Canadian Cordillera: Geology. v. 10, pp. 70-75.

- NEVIN, A.E., 1977. Report on the GRIT MASSIVE SULPHIDE PROSPECT, Kamloops M.D., British Columbia: Unpublished Barrier Reef Resources Ltd. Report. p. 9.
- PRETO, V.A., 1979. Barrier Lakes-Adams Plateau area, British Columbia: Department of Energy, Mines and Resources. Paper 1979-1C, pp. 31-37.
- PRETO, V.A., 1981. Omineca Crystalline Belt west of the Shuswap and Monashee Complexes Squilax to Kamloops, in Field Guides to Geology and Mineral Deposits, Calgary 1981 Annual Meeting. ed. R.I. Thompson and D.G. Cook: Geological Association of Canada pp. 366-372.
- PRETO, V.A. and SCHIARIZZA, P. 1982. Geology and Mineral Deposits of the Eagle Bay and Fennel Formations from Adams Plateau to Clearwater, south-central B.C: in Programme and Abstracts, Cordilleran Section: The Geological Association of Canada pp. 22-24.
- SALAT, H. 1978. Some Notes on the Grit Claims per our 1978 Observations and Results: Unpublished Aquitaine Company of Canada Ltd. Report. 5 p.
- SALEKEN, L.W. and SIMPSON R.G., 1984. Cariboo-Quesnel Gold Belt, A geological overview: Western Miner, pp. 15-20.
- STAUFFER, M.R., MUKHERJEE, A.C., and KOO, J., 1975. The Amisk Group, An Aphebian (?) Island Arc Deposit: Canadian Jour. Earth Sc., 12, pp. 2020-2035.

APPENDIX A

CONVENTION FOR THE SAMPLE NUMBERING SYSTEM
APPENDIX A

CONVENTION FOR THE SAMPLE NUMBERING SYSTEM

The convention for designating rock samples from the Lizard Project area is based on a sequence of four sets of letters and numbers. A typical sample e.g. DM-950-84-506 is discussed below:

DM-Sampler	First and last initials of the
	sampler. DM-David Mallalieu TM-Tim Huttemann
950-Project Number	950 designates the project.
84-Year	1984 specifies the year of sampling.
506-Sample Number	506 represents the number within a
	series.

The exceptions to this conventions are: 1) where only one letter set and one number is present e.g. E-14. This designates the sampler (Enns) and the number of a sample within a series, and,

2) where a rock sample is obtained from a soil sample pit or vicinity of a stream silt sample. In this case, the rock was given the number of the soil or stream silt sample based on the KCM sample identifier code, e.g. DA 05222.

APPENDIX B

PETROGRAPHIC-LITHOLOGIC DESCRIPTIONS

APPENDIX B

PETROGRAPHIC-LITHOLOGIC DESCRIPTIONS Unit 2a QUARTZITE E-15 DM-950-84-478b, 489

Quartzite is typically a grey to black, massive to bedded rock composed dominantly of anhedral mosaictextured quartz (0.2 mm, >70%). White mica (10%) occurs as patches 1.5 mm in diameter consisting of shredded plates (0.45 mm) or as anhedral to subhedral grains interstitial to quartz.

In thin section, microcrystalline opaque (graphite?) occurs as a dusting throughout or as concentrations (0.3 x 0.7 mm, 10%) sufficient to be opaque. It defines translucent wavey bands (0.2 mm), attributed to primary banding or deformation.

Laths, blebs (0.3 mm, 4%) of hematite/ pyrrhotite are present as intergrowths along cleavage planes of white mica.

Sample DM-950-84-478b is a fine-grained pale white orthoquarzite. Anhedral quartz grains (0.04 mm) constitute 90% of the rock. Locally, bands (5%) of mosaic-textured quartz are up to 0.8 mm thick.

Section examination reveals subhedral, rectangular plates of white mica (0.003 x 0.02 mm, 7%) overgrow guartz and define a subtle lineation.

Sample DM-950-84-489 is impure quartzite. Unsorted, subrounded, vitreous, grey, quartz grains (3-5 mm, 25%) are set in an aphanitic black quartz-muscoviterich matrix. In thin section the groundmass is found to be composed of angular to subangular quartz (0.02-0.2 mm, 50%) displaying sutured grain boundaries. Locally, angular grains (0.2 mm) form aggregates up to 1.5 mm in diameter. Muscovite (0.01 x 0.04 mm, 10%) is interstitial to and overgrows matrix quartz. Biotite (7%) exhibits light brown to orange pleochroism. Anhedral plates (0.04 mm) are interstitial to equant, subrounded quartz grains and matrix minerals.

Microcrystalline carbonaceous? material (5%) occurs as a fine dusting throughout the rock. It is concentrated locally in association with biotite.

Unit 2a QUARTZ-WACKE, QUARTZ-GRANULE CONGLOMERATE

Quartz-wacke and quartz-granule conglomerate are gradational units. Discrimination between the units is largely qualitative depending upon the size of quartz clasts present. Given that the quartz clast content is ≥ 20 % and/or clasts are ≥ 8 mm in diameter, the term quartz-granule conglomerate is preferable to quartzwacke. The groundmass is equivalent to the quartzite and impure quartzite.

Unit 2b PHYLLITE, GRAPHITIC PHYLLITE

Phyllite, graphitic phyllite are black, well foliated, and locally crenulated rocks composed of fine-grained quartz, muscovite and graphite? Finely disseminated microscopic pyrite, pyrrhotite and rarely, chalcopyrite account for up to 5% of the mode.

GRAPHITIC PHYLLITE E-16

Graphitic phyllite is a black rock displaying contorted fine lamellae. In thin section, bands 0.05 mm in thickness are composed of non-metallic opaque (50%) and are deformed into discrete lenticles (0.45-2 mm). Spacing between bands ranges from 0.1 to 1.5 m.

Angular quartz grains (0.04-0.08 mm, 55%) display mosaic texture. Banding in quartz is defined by intervening graphite?

Aggregates of anhedral, white mica (0.05-0.2 mm, <2%) is interstitial to quartz.

Metallic, blocky opaque and hematite (0.1 mm and 0.04 mm, respectively), are randomly distributed throughout and account for 3% of the mode.

Unit 2b ANDALUSITE-BIOTITE-MUSCOVITE SCHIST E-18

Andalusite-biotite-muscovite schist is a schistose, black rock composed of muscovite and biotite (75%) hosting trapezoidhedral (0.75-2 mm) andalusite porphyroblasts (10%).

In thin section, aligned anhedral muscovite grains (<0.02 mm, 60%) generate a crenulation cleavage. Anhedral, blocky (0.04 mm, 15%) biotite participates in defining only a mild lineation. When fine-grained and elongate, it intergrows with muscovite.

Opaque (graphite?) lamellae 0.01 to 3.5 mm in thickness mimic the crenulation cleavage. Grains are <0.001 mm in diameter and account for 10% of the mode.

Andalusite is euhedral blocky to diamondshaped. Porphyroblasts are rimmed by carbonaceous material (0.01 mm). Schistosity does not penetrate the grains.

Unit 2b CORDIERITE-MUSCOVITE-BIOTITE SCHIST E-17

Cordierite-muscovite-biotite schist is a shistose, lustrous, black rock composed of aphanitic, muscovite-biotite plates which host ellipsoidal cordierite porphyroblasts.

Thin section examination reveals that the crenulated matrix consists of biotite, muscovite and quartz. Biotite (45%) is anhedral platelike. Muscovite is needle-like (0.01 x 0.04 mm, 35%) and is intimately intergrown with biotite.

Crenulation cleavage is well defined, the amplitude of folds is 0.3 mm.

Unit 2c QUARTZ-MUSCOVITE SCHIST E-19, E-20

Quartz-muscovite schist is a moderately schistose grey to white rock. It consists of an aphanitic quartz-muscovite groundmass in which grey to black vitreous sub-polygonal to shard-like quartz crystals (7%) and varying amounts of pyrite (0.5%) are distributed.

Quartz displays two habits: i) broken crystals with minor resorption textures and ii) anhedral grains up to 0.2 mm in diameter accounting for 50% of the mode.

Thin section examiantion shows that muscovite (white mica) is subheral platey (0.02 x 0.08 mm, 40%). It is interstitial to anhedral quartz grains and displays a mild lineation. Locally, concentrations up to 0.35 mm in thickness exhibit crenulation cleavage.

Plagioclase (albite) occurs as anhedral grains with moderately developed albite twinning and Carlsbad twinning. It is present on the perimeter of quartz crystals or intersitial to quartz-white mica aggregates. White-mica overgrows the grains. It accounts for 1% of the mode.

Unit 2c CHLORITE-QUARTZ-MUSCOVITE SCHIST DM-941-84-259

Chlorite-quartz-muscovite schist is an analogous unit to the quartz-muscovite schist, however, fine-grained, anhedral, light green chlorite accounts for 10% of the rock.

Schistosity is only poorly developed. It is crenulated where present.

Unit 2d QUARTZ CRYSTAL TUFF DM-950-84-499

The quartz crystal tuff consists of augen-shaped quartz aggregates (3 x 8 mm) comprising 10% of the rock. The matrix is black, mildly schistose, and consists of quartz, white mica and minor iron oxide/ hydroxide. Anhedral quartz grains (0.04 mm, 10%) are interstitial to muscovite and are locally concentrated in the hinge of crenulations. Aggregates (0.2 x 0.45 mm, <1%), act as perturbations in the micaceous matrix. Cleavage wraps around the grains.

Cordierite (2-3 mm, 20%) is pseudo-hexagonal in shape and is dusted with fine anhedral grains (0.03 mm) of biotite, accounting for 20% of their volume. Anhedral opaque grains (<0.02 mm, 3% crystal volume) are disseminated throughout.

Cordierite is encompassed in a 0.04 mm rim of non-pleochoric, light yellow poikiloblastic staurolite?

Unit 2b IMPURE CARBONATE E-14

The impure carbonate is massive, black, with subtle yellow-green patches 1.5 cm in diameter composed of carbonate and epidote aggregate.

In thin section, mats of anhedral, finegrained carbonate (60%) contain anhedral epidote (0.04 mm) displaying polygonal granoblastic texture. The grains (20%) display low, 2° birefringence, no pleochroism. In plane polarized light the grains are yellowish-grey. Clinozoisite (0.7 mm, <5%) occurs as cloudy masses, yellowish to grey translucent, displaying no crystal structure.

Anhedral quartz (0.2 mm, 2%) grains are isolated within the epidote mat and in randomly distributed, oriented veinlets (1.5 mm, 10%). The veinlets are composed of polygonal grains (0.35 mm). Rare, anhedral grains of carbonate (<0.35 mm) are interstitial to the quartz. Subhedral plates of white mica (<0.35 mm, 5%) overgrow quartz.

Pyrite occurs as fine disseminations throughout (<<1%).

In thin section, quartz crystals (3%) are sub-equant and display embayments and sutured grain boundaries indicative of recrystallization. New grains in the pressure shadow of quartz cystals are equant (0.03 mm) and generate 'beards' up to 1.2 mm in length. Quartz in the groundmass (55%) is anhedral (0.08 mm). Long axes of the grains parallel foliation.

Schistosity is defined by white mica (15%) in bands up to 0.8 mm in thickness. Grains are subhedral, rectangular (0.01 x 0.04 mm). Grains interstitial/ overgrowing quartz (0.01 mm, 20%) reflect no structure.

Limonite? is amorphous, non-pleochroic, non-birefringent, rust-orange. It occurs as clots 1 mm in diameter, sub parallel to schistosity.

Subhedral, rectangular plates of biotite and mats/clots of shredded biotite and sheaf-like chlorite (0.04 mm) account for 3% of the mode.

Unit 2d FELDSPAR-QUARTZ CRYSTAL TUFF DM-941-84-236

Feldspar-quartz crystal tuff is a gradational unit to the quartz crystal tuff. It consists of clear to soft white, equant, shard-like and cuspate (2 mm) quartz crystals (10%) randomly distributed throughout a poorly foliated, aphanitic, dark grey to grey-green groundmass. Feldspar is anhedral to subhedral lath-like (2 mm,10%). It is locally euhedral (7 x 10 mm), accounting for ≤ 3 % of the mode. Euhedral plates (2 mm) of biotite (5%) occur in massive rock.

The matrix is similar to that described for quartz crystal tuff.

Unit 2e LAPILLI-BLOCK TUFF DM-950-84-501

Lapilli-black tuff (Plate) is a schistose, pale greenish-white, fine-grained rock. In section, grey

Plate 3a Lapill-block tuff displaying heterogeneous composition. Feldpsar crystal tuff blocks, and chloritized mafic volcanic blocks have elongated parallel to schistosity.

Plate 3b Lapilli-block tuff displaying hetrogeneous composition. Massive aphyric felsic volcanic, chloritized mafic volcanic and feldspar crystal tuff blocks are chaotically distributed throughout. vitreous equant quartz crystals (1-2 mm, 5%) and anhedral feldspar (<1 mm, <10%), are set in a fine-grained quartz-sericite matrix. Lapilli and blocks of feldspar crystal tuff, chloritized mafic and massive aphyric felsic rock are elongate parallel to schistosity.

Feldspar crystal tuff blocks (10 x 100 cm, 5%) are beige, mildly schistose, and exhibit a pumaceoustextured weathering surface. They consist of anhedral, white feldspar crystals (<1 mm, 15%) hosted in finegrained intermediate to felsic matrix.

Chloritized mafic clasts (1 x 10 cm) are massive, dark green, fine-grained. They account for 5% of the mode.

Massive aphyric felsic rock (7%) is snow white, round to elongate (1-5 cm, 1 x 4 cm, respectively). Schistosity wraps around the clasts. Locally, sericite schist and phyllite occur as interdigitations up to 40 cm in thickness.

Unit 2f META BLOCK-ASH FLOW DM 941-84-266d,e DM-950-84-512

Meta block-ash flow consists of angular (10 x 20 cm) fine-grained, light green to white felsic clasts (25%) composed of anhedral, white feldspar (1mm, 50%) distributed through a fine-grained, peppermint green felsic matrix. Clasts are aligned parallel to subtle laminations. Fragments display a 5 mm thick, white reaction rim.

In thin section, it is found that 90% of the ash-rich part of the meta block-ash flow consists of anhedral quartz (0.01-0.02 mm) and anhedral to subhedral white mica (0.02-0.2 mm). Isolated, anhedral quartz grains (0.75-1.5 mm) with minor resorption textures and recrystallized grain boundaries account for 1-2% of the mode. Grain boundaries consist of chaotically oriented, new grains (0.08 mm). The quartz crystals act as pressure shadows for recrystallized quartz aggregates (beards) 1.5 mm in length.

Matrix quartz (50%) is mosaically textured and displays a mild lineation.

White mica (30-45%) occurs as anhedral to subhedral grains in the interstices between quartz grains and locally as bands up to 0.75 mm in thickness. Mats (<1.5 mm in diameter) are composed of randomly oriented grain <0.2 mm along the c-axis.

Chlorite (3%) occupies the interstices between quartz grains and the interface between matrix quartz and white mica mats.

Sample DM-941-84-266d exhibits a slight gneissic fabric generated by white elongate patches (4 x 15 mm) composed of quartz, carbonate and white mica aggregate. Carbonate (30%) is anhedral, up to 0.75 mm in diameter.

A thin section of sample DM-950-84-512 shows bands of white mica 1.5 mm thick, composed of subhedral grains (0.02 x 0.04 mm) exhibit minor crenulation cleavage and refract around quartz grain perturbations.

Unit 2g, 1b QUARTZ/FELDSPAR-PHYRIC RHYOLITE DYKE E-21 DM-941-84-261

Quartz/feldspar rhyolite dyke is massive grey with a matrix of anhedral quartz and plagioclase (<0.2 mm) comprising 50% of the rock. Phenocrysts of biotite (3-7%) are blocky to pseudo-hexagonal (1.5-5 mm). Subhedral blocky to lath-like albite phenocrysts (1.5-12 mm) account for 1-40% modal percent.

Groundmass composition is variable given individual dykes.

Thin section examination of E-21 and DM-941-84-261, shows that sample E-21 is composed of anhedral quartz and plagioclase grains with myrmektic texture.

Sample DM-941-84-261 is composed of anhedral quartz (0.02 mm, 70%) with overgrowing and interstitial rectangular plates (0.01 mm) of white mica. It is present in 40% of the section. Locally, concentrations are sufficient to obliterate underlying quartz grains.

Holocrystalline albite displays reverse zoning, albite and Carlsbad twinning. Phenocrysts are euhedral to subhedral and are locally clouded by patches of fine-grained white mica (0.5 mm).

Ti-rich biotite - pleochroic, straw-yellow to red-brown and Fe-rich biotite - pleochroic, straw-yellow to slime-green are randomly distributed throughout. Intergrowths of chlorite along cleavage planes are indicative of retrograde metamorphism.

Anhedral grains of ilmenite (0.02 mm) are disseminated throughout.

Unit 1a BASALT, DIABASE DM-941-84-270, TH-950-84-350

Basalt is a dark green, aphanitic to fine-grained, massive rock. Subophitic texture is locally exhibited by subhedral lath-like plagioclase and actinolite (0.8 mm, 50:50 distribution). Randomly oriented white quartz veinlets (<1 mm, 1%) occur in fine-grained phases of the rock.

Massive fine- to medium-grained, medium green diabase displays subophitic textured subhedral lath-like plagioclase (1-1.5 mm, 50%) randomly distributed throughout a predominantly actinolitic matrix. Actinolite is dark green, subhedral lath-like to blocky (<1 mm) accounting for 50% of the mode.

Unit 1c SILTSTONE

Siltstone occurs in contact with basalt southeast of the southern lobe of Ejas Lake.

The rock is fine-grained, black and is composed of feldspar, hornblende, biotite aggregate. Grains are euhedral and typically much less than 1 mm in diameter. A micro-gneissic fabric is defined by steaks of feldspar (1 x 10 mm). The rock has a gritty texture and is porous to HCL.

APPENDIX C

METHODS FOR DETERMINATION OF FIRST AND SECOND ORDER GEOCHEMICAL ANOMALIES

APPENDIX C

METHODS FOR DETERMINATION OF FIRST AND SECOND ORDER GEOCHEMICAL ANOMALIES

Soil geochemical background values were determined through calculation of medians and inspection of plotted results. First and second order geochemical anomalies were defined as analytical values greater than or equal to those associated with the 2.5 and 5.0 percentiles on a histogram. In the case of Pb, the values were re-adjusted by visual inspection of results.

The population density was not sufficient in most cases to warrant extensive statistical evaluation.

Given the number of stream sediment samples (53, total includes duplicates) that are disseminated throughout several populations, statistical analysis could not be justified. All interpretations are based solely on visual inspection of plotted results (Figure 16).

Rock geochemistry was performed on nine populations. One population, composed solely of pelitic rock, typically black phyllite, consists of 56 individuals. This (Appendix E), was considered large enough to warrant statistical evaluation in the form of cumulative frequency distribution plots.

Background values are given by the intersection of the line with the 50 percentile ordinate. A semi-quantitative interpretation of threshold values i.e. lower limit first, second order anomalies was based on 1) significant breaks in the curve and 2) intersection of the 2.5 percentile ordinate with the curve. Qualitative judgment was exercised where thresholds resulting from either above criteria were such that due to analytical imprecision results would not be reproduceable.

The remaining eight populations of lithological samples, (comprised of 85 individuals, with the largest population composed of 26 individuals), did not warrant statistical analysis for threshold values.

Individuals within the quartz vein and sericite schist populations have anomalous geochemical values when using the threshholds suggested in Table 4.

APPENDIX D

GEOCHEMICAL RESULTS

€

SOIL SAMPLE GEOCHEMICAL RESULTS

KIDD CREEK	PRO	JECT #	950	FILE #	* 84-12	222
SAMPLE#	CU PPM	PB PPM	ZN PFM	AG PPM	AU* PPB	BA* FPM
SA 20601 SA 20602 SA 20603 SA 20604 SA 20605	35 15 15 19 22	22 14 11 14 21	236 86 89 89 89 98	.1 .2 .1 .3	មា មា មា មា	80 50 55 65 65
SA 20606 SA 20607 SA 20608 SA 20609 SA 20610	33 23 50 14 20	29 60 117 22 16	115 150 139 87 91	.5 1.1 2.5 .5 .3	5 70 290 55 5	90 75 165 35 35
SA 20611 SA 20612 SA 20613 SA 20614 SA 20615	24 32 15 20 21	25 24 21 18 20	132 190 68 107 109	.2 .1 .2 .1 .1	មា ទា ទា ទា ទា	40 65 35 55 35
SA 20616 SA 20617 SA 20618 SA 20619 SA 20620	22 21 14 17 16	17 18 20 29 30	181 169 117 135 129	.1 .1 .1 .2	ម ម ម ម ម	35 25 36 35 24
SA 20621 SA 20622 SA 20623 SA 20623 SA 20625	24 42 36 26 30	32 163 75 35 34	181 1049 233 136 151	.3 .9 .3 .2 .4	<u>ទ</u> ទ ទ ទ ទ ទ	36 85 65 60 65
SA 20626 SA 20627 SA 20628 SA 20629 SA 20630	27 25 29 14 28	24 44 35 15 15	127 99 104 32 109	.1 .3 .1 .3	ស ទា ស ស ស	42 40 48 35 50
SA 20631 SA 20632 SA 20633 SA 20634 SA 20635	15 25 20 20 27	17 17 11 19 21	85 126 86 76 88	.3 .2 .1 .2 .2	ចម្លាស់ ទ	55 78 48 54 50
SA 20636 SA 20637 STD A-1/AU 0.5	21 32 29	12 24 39	104 67 184	.2 .3 .3	10 35 500	36 95 -

Ó

4.

C

		GEC	SOIL SA	AMPLE L Resul	TS		
KIDD	CREEK	PRO	JECT #	950	FILE	# 84-1	222
SAMPLE#		CU PFM	PB PPM	ZN PPM	AG PPM	AU* PPB	BA* PPM
SA 20638 SA 20639 SA 20640 SA 20641 SA 20642		20 23 25 24 11	19 19 16 18 13	110 105 99 63 103	.4 .3 .1 .2 .4	ស	105 50 72 22 34
SA 20643 SA 20644 SA 20645 SA 20646 SA 20647		28 22 27 41 21	20 16 20 31 21	169 103 197 194 113	.4 .2 .5 .3	ទ ទ ទ ទ ទ ទ ទ	83 65 85 105 55
SA 20648 SA 20649 SA 20650 SA 20651 SA 20652		35 21 33 34 31	40 36 27 31 29	170 127 161 109 88	.1 .3 .4 .5 .1	ទ ទ ទ ទ ទ	62 60 55 50 38
SA 20653 SA 20654 SA 20655 SA 20656 SA 20657		23 21 26 31 43	20 29 20 20 17	85 53 92 171 262	.2 .2 .3 .3	<u>ទ ទ ទ ទ ទ</u> ទ	33 22 50 40 60
5A 20658 STD A-1/AU	0.5	36 30	19 39	217 186	.4	5 500	50
					FILE	# 84-1	545
SAMPLE#		CU PFM	PB FPM	ZN FFM	AG PPM	AU* PPB	BA* PPM
SA-20659 SA-20660 SA-20661 SA-20662 SA-20663		23 26 21 15 16	14 26 23 27 14	165 85 100 108 94	.1 .3 .2 .2	15 25 80 25 15	160 120 140 160 140
SA-20664 SA-20665 SA-20666 SA-20667 SA-20668		21 18 23 19 17	14 16 28 29 16	86 78 163 62 60	.3 .2 .3 .1 .1	30 15 30 25 10	160 120 160 150 120
SA-20669 SA-20670 SA-20671 SA-20672 SA-20673		18 20 21 28 32	31 29 26 22 45	104 71 50 110 216	.2 .7 .1 .1 .2	30 60 5 35 40	80 90 90 80 100

(

(

SOIL SAMPLE GEOCHEMICAL RESULTS

C

C

KIDD CREEK	PROU	JECT #	950	FILE #	84-15	545
SAMPLE#	CU PPM	PB FFM	ZN FFM	AG PPM	AU* PPB	BA* PPM
SA-20674 SA-20675 SA-20676 SA-20677 SA-20678	24 76 26 16 99	34 46 37 15 22	94 306 157 105 196	. 3 . 1 . 1 . 1 . 4	25 20 20 30 210	80 360 160 110 60
SA-20679 SA-20680 SA-20681 SA-20682 SA-20683	31 15 26 26 30	20 13 14 65 40	162 59 121 269 168	• 1 • 1 • 4 • 4	20 20 10 10 55	120 120 110 120 220
SA-20684 SA-20685 SA-20686 SA-20687 SA-20688	17 23 33 32 27	26 18 16 18 14	172 96 107 104 94	.1 .3 .2 .1	30 30 25 30 5	160 210 130 120 120
SA-20689 SA-20690 SA-20691 SA-20692 SA-20693	20 28 11 17 21	14 26 49 14 18	90 124 34 46 110	• 1 • 4 • 4 • 6 • 1	5 30 5 10	110 220 210 80 120
SA-20694 SA-20695 SA-20696 SA-20801 SA-20802 SA-20803 SA-20803	14 13 12 12 18 50 54	15 15 12 30 34 190 123	108 77 57 75 31 929 340	.4 .2 .3 .1 1.6 .4	5 2 5 5 5 5 5 5 5 5 5	220 230 300 140 150 420 260
SA-20805 SA-20804 SA-20807 SA-20808 SA-20809	36 40 26 38 27	72 65 32 37 29	225 119 129 152 145	.3 .4 .3 .1 .3	10 5 5 5 5	220 240 210 240 220
SA-20810 SA-20811 SA-20812 SA-20813 SA-20814	34 49 27 24 27	54 191 107 24 38	161 531 569 74 109	.5 .8 .7 .1 .4	មា មា មា មា មា មា	110 280 220 180 210
SA-20815 STD A-1/AU 0.5	24 30	29 39	86 188	.3	5 500	180

SOIL SAMPLE GEOCHEMICAL RESULTS

{

KIDD CREEK	PRO	JJECT #	950	FILE	# 84-	2347
SAMFLE#	CU PPM	PB PPM	ZN F'F'M	AG FFM	AU* PPB	BA* FFM
SA-20697 SA-20698 SA-20699 SA-20700 SA-20701	32 115 33 24 18	13 26 19 17 15	130 205 258 114 108	.1 .3 .1 .2 .6	5 105 5 5 5	346 176 233 176 23 3
SA-20702 SA-20703 SA-20704 SA-20705 SA-20706	36 12 33 25 33	20 18 23 25 16	129 47 187 53 161	.1 .1 .2 .2	ម ភូមិ ទំនា ទំនា ទំនា ទំនា	317 176 173 131 145
SA-20707 SA-20708 SA-20709 SA-20710 SA-20711	36 28 34 49 25	26 19 52 505 131	141 106 121 77 94	.1 .1 .7 .5	មាមាមា	117 117 145 173 173
SA-20712 SA-20713 SA-20714 SA-20715 SA-20716	48 70 18 40 32	65 241 35 35 26	485 628 70 90 129	.4 .3 .4 .3 .3	ទ 15 ហ ស ស ស	201 258 145 201 230
SA-20717 SA-20718 SA-20719 SA-20720 SA-20721	27 118 26 13 22	29 25 15 20 26	167 216 112 79 58	.3 .1 .2 .2 .2	10 210 5 15 5	258 117 173 173 117
SA-20722 SA-20723 SA-20724 SA-20725 SA-20726	19 16 22 15 21	16 13 20 17 18	55 76 73 53	.1 .1 .2 .2 .1	5 10 5 5 5	173 145 818 230 201
SA-20727 SA-20728 SA-20729 SA-20730 SA-20731	19 16 14 15 26	15 14 15 10 23	65 49 43 48 86	• 1 • 1 • 1 • 4	មាមមាម	187 328 145 187 230
SA-20732 SA-20733 SA-20734 SA-20735 SA-20736 STD C/AU-0.5	18 17 15 21 115 58	13 16 14 21 25 40	53 53 75 106 213 123	.1 .1 .2 .3 7.0	5 5 5 50 500	201 173 231 191 48

STREAM SEDIMENT GEOCHEMICAL RESULTS

	KIDD CREEK	PROU	JECT #	950	FILE #	\$ 84-12	222
SAM	IPLE#	CU PPM	PB FFM	ZN PPM	AG PPM	AU* PPB	BA* PPM
DA DA DA DA DA	05201 05202 05203 05204 05205	29 21 34 33 28	26 17 27 23 20	95 55 166 93 77	.7 .4 .6 .8 .5	ម ម ម ម	150 75 110 130 85
DA DA DA DA DA	05206 05207 05208 05209 05210	24 30 56 14 41	16 33 44 14 16	127 131 200 54 76	.8 .6 1.8 .3 .4	<u> </u>	120 140 190 63 77
DA DA DA DA DA	05211 05212 05213 05214 05215	11 17 16 23 18	12 13 13 21 14	61 60 59 114 63	- 1 - 1 - 6 - 1	ហិតហិត	70 72 45 115 54
DA DA DA DA DA	05216 05217 05218 05219 05220	18 14 20 15 16	14 11 14 10 15	57 43 81 61 105	.1 .1 .1 .2	<u> ទ</u> ទ ទ ទ ទ	62 45 45 66 90
DA DA DA DA DA	05221 05222 05223 05224 05225	28 33 19 17 20	31 19 17 11 14	119 124 69 51 70	1.1 .1 .1 .1	5 5 10 15	30 96 90 50 54
DA DA DA DA DA	05226 05227 05228 05229 05230	15 16 16 16	14 14 12 8 12	50 61 54 50 53	.1 .1 .1 .3	ទី ទី ទី ទី ទី	65 46 55 50 105
DA DA DA STD	05231 05232 05233 A-1/AU 0.5	17 15 17 30	12 13 16 40	53 56 60 188	.1	10 5 5 510	45 51 59 -

4

C

••

Ö

STREAM SEDIMENT GEOCHEMICAL RESULTS

KIDD CREEK	PRO	JECT #	750	FILE #	# 84-15	545
SAMPLE#	CU	PB	ZN	AG	AU*	BA*
	PPM	FFM	PPM	FFM	PPB	FFM
			•			
DA-05234	18	12	57	. 1	5	180
DA-05235	18	10	55	- 1	5	160
DA-05236	18	14	72	. 2	5	170
DA-05237	20	11	61	.1	5	180
DA-05238	20	12	61	. 1	5	180
DA-05239	21	12	59	.2	5	140
DA-05240	97	22	192	• ట	95	B¢
DA-05241	30	36	154	. 4	5	190
DA-05242	26	34	149	.3	5	180
DA-05243	51	40	187	1.4	5	520
DA-05244	53	45	190	1.5	5	500
DA-05245	52	31	204	1.5	5	480
DA05246	55	34	203	1.6	5	520
DA-05247	47	25	181	1.2	5	400
DA-05248	46	26	177	1.2	5	360
DA-05249	17	10	58	. 1	5	190
DA-05250	18	9	55	. 1	10	180
DA-05251	19	12	56	.3	5	260
DA-05252	21	13	66	. 3	5	180
DA-05253	20	13	68	.2	5	190
DA-05254	17	(3)	50	. 1	5	160
STD A-1/AU 0.5	30	39	184	.3	520	م، ایرا ۱۹ ^۰ مت

Ċ

PHYLLITIC ROCK (Population 1)

۰.

KIDD CREEK FROJECT # 950

SAMPLE#	CU PPM	PB PPM	ZN FFM	AG PPM	AU*	BA* FFM
AB-18516	47	68	145	.5	5	43
AB-18517	68	9	119	. 1	5	43
AB-18518	50	12	128	.3	5	43
AB-18519	25	10	70	. 1	5	65
AB-18522	46	17	84	. 1	5	140
AB-18523	64	15	97	.3	5	119
AB-18525	38	12	118	. 1	5	216
AB-18529	47	7	59	. 1	5	669
AB-18530	26	8	60	. 1	5	151
AB-18533	30	8	74	- 1	5,	108
AB-18535	61	11	129	.4	5	43
AB-18537	33	5	71	.2	5	65
AB-18538	24	11	57	. 3	5	307
AB-18539	23	7	44	. 1	5	185
AB-18542	24	15	96	. 1	5	193
AB-18545	15	16	101	. 1	5	109
AB-18547	2	12	23	.2	5	269
AB-18549	2	1 -	1	. 1	5	200
AB-18550	8	18	13	1.2	265	596
AB-18557	16	6	73	. 1	5	154
AB-18560	3	3	3	.7	5	535
AB-18562	9	4	2	. 4	5	558

QUARTZOSE ROCK

•

KIDD CREEK PROJECT # 950

SAMPLE#	CU PPM	PB PPM	ZN FFM	AG PPM	AUX PPB	BA* PPM	С %
AB 16829 AB 16831 AB 16834 AB 16842 AB 16848	15 4 4 3 44	22 7 4 7 22	73 49 33 19 55	- 1 - 1 - 1 - 1 - 1	មេខម្ម	22 54 105 23 12	-18 -16
AB 16860 AB 16866 AB-16883 AB-16884	2 13 33 21	29 9 55 9	8 40 210 89	.1 .1 .7 .2	5 10 5 5	12 35 220 60	
AB-18508 AB-18507 AB-18511 AB-18512 AB-18520	18 16 39 34 36	7 18 33 17 12	32 216 86 106 121	.1 .1 .2 .1 .1	មមល	43 65 22 43 43	
AB-18521 AB-18524 AB-18526 AB-18527 AB-18528	38 66 7 11 16	50 9 5 15 7	133 156 32 41 53	. 4 . 1 . 1 . 1 . 1	5 5 5 5 5	65 140 65 54 173	
AB-18534 AB-18536 AB-18540 AB-18541 AB-18543	45 18 11 44 13	8 23 2 11 5	134 52 44 89 121	. 1 . 1 . 1 . 1	ម្លាសមា មា	324 43 154 154 200	
AB-18544 AB-18563	13 3	11 3	26 2	• 1 • 1	55	63 512	
		QUART	Z VEIN				
•							

AB 16830 AB 16836 . 1 . 1 8.4 AB 16838 AB 16858 . 1 AB 16859 . 1

PAGE 2

QUARTZ VEIN

(

KIDD CREEK PROJECT # 950

.-

SAMPLE#	CU PPM	PB PPM	ZN	AG PPM	AU* PPB	BA* FFM
AB 16861 AB 16864 AB 16867 AB 16868 AB 16870	5 4 2 1 1	4 15 3 2 2	5 5 1 4 1	• 1 • 1 • 1 • 1 • 1	5 85 5 5 10	5 11 4 3 10
AB 16878 AB 16879 AB 16880 AB-16902 AB-16903	10 7 3 2 2	54334 734	13 12 6 3 2	- 1 - 1 - 1 - 1 - 1	5 5 15 5 5	24 12 3 10 10
AB-18531 AB-18532 AB-18548 AB-18552 AB-18553	11 7 3 2	3 177 43 4	14 10 5 12 1	- 1 - 7 - 1 - 1 - 1	២ហភ្ សល	54 43 154 109 63
AB-18554 AB-18555	2 2	5	23	• 1 • 1	5	63 63
	:	SERICI	TIC SC	HIST		
AB 16851 AB 16852 AB 16853 AB 16854 AB 16855	3 6 6 7 2	35 10 26 8 20	18 42 45 18 34	.3.5.1	75 15 115 5 15	25 24 25 35 65
AB 16876 AB-16894 AB-16895 AB-16898 AB-16899	33 5 3 34 5	388 23 35 2 38	19 7 5 108 9	16.7 .3 .2 .1 .3	315 15 5 5	22 640 240 440 120
AB-16900 AB-16901 AB-18502 AB-18503 AB-18504	2 15 12 10 5	38 36 22 19 11	4 31 41 39 22	. 1 . 3 . 1 . 1 . 1	សមា សមា ម	120 220 129 65 43

SERICITIC SCHIST

KIDD	CREEK	PROJECT	# 95	0				PAGE
SAMPLE#	CU PFM	FB FFM	ZN FFM	AG FFM	AU* PPB	BA* FFM	•	
AB-18505 AB-18506 AB-18515 AB-18561	4 5 17 13	5 17 18 7	12 5 14 6	• 1 • 1 • 1 • 3	ទទ	280 65 43 657		
		FELSIC	ASH TUF	F				
AB 16850 AB 16862 AB 16863 AB 16865	5 1 2 1	13 17 6 9	55 1 2 35	• 1 • 1 • 1 • 1	មិសមិទ	90 65 60 35		
	F	ELSIC CR	YSTAL T	UFF				•
AB 16833 AB-18546 AB-18551	1 2 4	4 7 4	32 26 15	. 1 . 1 . 1	ភ ម	65 154 154	•	
	MAF	IC FLOW/	INTRUSI	ON				
AB 16835 AB 16839 AB 16841 AB 16869	9 131 223 10	4 27 5 4	62 39 16 11	.1 .2 .1 .1	5 5 5	60 4 3 10	•	
	F	ELSIC DY	KE ROCK					
AB 16840 AB 16849 AB 16856	6 7 1	17 10 1	40 14 26	. 1 . 1 . 1	5 5 10	35 30 30		
		SILT	STONE					
AB-18557	2	3	1	. 1	5	238		

3

APPENDIX E

LOG-PROBABILITY PLOTS OF Cu, Ag, Au, Pb, Zn, Ba FROM POPULATION 1 (PHYLLITIC ROCK)

3

02 01003 001 7 = 24 ppm 7 = 24 ppm 1 = 54 7 = 24 ppm max=3322 pp				
2 05 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0				8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
tribution (6 8045				
Frequency D1s Ba - Pourlation Ba - Pourlation Ba - Pourlation				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
solution solution solution solution solution solution				♦
8 <u></u>				
(4) Statistic de la seconda d seconda de la seconda de	وسنوب استبدا المتهاقات			
6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000 0000 0000 0000 0000 0000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	188 - mqq	Ω * (* 1 ⊯ + * * * *
	3000 1000	- 8 8 2 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98 କରିନ୍ଦ୍ର ଓ ଓ କିର୍ବ ⊧୧ଘ-wdd	Ω , ε, , , , , , , , , , , , , , , , , ,
			92 - 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2-	g , , , , , , , , , , , , , , , , , , ,
003 001 10 013 02 01 10 10 10 10			9 	g
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			B B B B B B B B B B B B B B	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Markasser Constraint in Fragmeny Distribution 6 cos Markasser Constraint in Fragm				
$\frac{1}{1} = \frac{1}{2} = \frac{1}$				

,

J

Ο

	ca 61 cos oci 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Х = 85 ррт 61 = 57ррт тах = 334 рр																	
	90		S N														+		88 88
istribution 200	er er R									~			F						8 8
tive Frequency D	or Zn - Populati																		8
ter se	Plot f																		ন ম হ
	8																		~ ~ ~
																			· · ·
								 	0-40 -40	S 23 -	8 M	20		<u>c</u> e- co	• •	Γ 1 Δ	m	N	
			- <u></u>			Υ 6. 	· ·												
and all the second			- <u>-</u> -		08 · · · · ·	; 6	м ^т	2 •											
	100-	τά	mgg Mgg				42 - 14 - -	.								u)		5	
	05 02 01 053 001	n= 56 X = 13pm 67 = 11 ppm	mars = Bepm mars = 1 pm																
	8043 8043 2 2 1 05 02 01 053 051 	n= 56 X= 13ppm	mar - Martin - Ma																8
	Distribution 5 8043	та 1 26 Халана 1 26 Стала 1 2000	mar element of the second of t																8 8 8 8 8
	ive Frequency Distribution 5 203 re P - Population 1 10 - 5 2 1 05 02 01 05 00 re 20 - 20 20 20 10 - 5 2 1 05 02 01 05 00	$\mathbf{r} = \sum_{i=1}^{n} \left\{ \mathbf{r} = \sum_{i=1}^{n} \left\{ \mathbf{r} = \mathbf{r} \right\} + \sum_{i=1}^{n} \left\{ \mathbf{r} = \mathbf{r} \right\} +$	$\frac{1}{100} = \frac{1}{100} = \frac{1}$																
	1.000 Communitive Frequency Distribution 5.8003 4000 For De Population 1.1000 State 1.000 State State 1.000 State 1.0000 State 1.000 State 1.000 State 1.000 State 1.000 State 1.000 State	$\mathbf{r} = \frac{1}{2} \mathbf{r} = \frac{1}{2} \mathbf{r}$	Max 689pm Max 687 11 10 11 11 11 11 11 11 11 11 11 11 11																
	6-2 remeasurer x4. soc. Comunitative Frequency Distribution 5 2043 6-2 remeasurer x4. soc. Comunitative Frequency Distribution 5 2043 6- 8: 8: 8: 9: 70 - 9: 49: 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	marce ellippin																
	No.2 Second multive Frequency Distribution 5 20.3 No.2 Second multive Frequency Distribution 5 20.3 No.5 Second multive Frequency Distribution 5 20.3 No.5 Second multive Frequency Distribution 5 20.3 No.5 Second multive Frequency Distribution 5 20.3	$n = 5k$ $\overline{\chi} = 13ppm$	marc 68pm marc 1 pm marc 1																

C

APPENDIX F

SOIL AND ROCK GEOCHEMISTRY

ſ

 \mathbf{O}

APPENDIX G

MAJOR, MINOR OXIDE & TRACE ELEMENT ANALYSES OF SELECTED ROCKS

**** KIDD CREEK MINES LTD **** === KIDD CREEK MINESITE COMPUTER SYSTEM ===

1

PAGE 1 REPORT #2000 PRINTED 22-OCT-84 WHOLE ROCK GEOCHEMICAL ANALYSIS 11:45:44 SAMPLE ID # AB16851 LAB REPORT # 22063 FIELD NUMBER : DM94184259 PROJECT # TOWNSHIP : LOT : O CONCESSION : PROVINCE : BRITISH COLUMBIA NTS : 092P16 PROJECT : 0.0 UTH ZONE : 10 GRID COORDINATES : E : 685950.0 N : 5747600.0 EL : SAMPLE TYPE : GRAB SAMPLE, THIN SECTION FIELD NAME : METAMORPHIC , FELSIC, FINE. FINAL NAME : ALTERATION : PERVASIVE , SERICITIZATION, STRONG. MINERALIZATION : DISSEMINATED AND BLEES, 5-20% , PYRITE. FORMATION : SAMPLED BY : D.MALLALIEU DATE : 14-JUN-84 ANALYTICAL DATE : 24-AUG-84 TECHNIQUE : X-RAY FLUORESCENCE ANALYZED BY : XRAL NORMALIZED NORMALIZED WT & ANHYDROUS WT & ANHYDROUS CATION & NORMS CLASSIFICATIONS AND INDICES ----------13.40 C 1.48 OR 1.04 PP 0.13 NA20+K20 3.83 SIO2 80.03 SUEALKALINE 77.40 80.03 62.10 SI02 11.68 AL203 11.30 8.33 FE203 2.03 21.32 OL* 1.51 NE* 3.31 Q* 95.18 SUBALKALINE 3.33 0.00 1.27 FE0 3.70 0 00 00W 100 00

CAO	0.12	0.12	0.13	AN	0.15	CPX 0.00 0L	0.00 0PX 1	00.00 SUDALKA	7050
MGO	0.45	0.47	0.67	LC	0.00				
NA20	0.38	0.39	0.74	NE	0.00	A 51.77 F	41.93 M	6.30 THOLEIT	IC
K20	3.32	3.43	4.26	KP	0.00				
T102	0.46	0.48	0.35	AC	0.00	AL203 11.68	NORM PLAG	3.86 THOLEIT	IC
P205	0.07	0.07	0.06	DI	0.00				
MNO	0.02	0.02	0.02	HE	0.00	AN 0.59 AB*	14.72 OR	84.69 K-RICH	SERIES
S	0.00	0.00	0.00	EN	1.35				
NIO	0.00	0.00	0.00	FS	0.00	CI 4.23	NORM PLAG	3.86 RHYOLII	E
CR203	0.00	0.00	0.00	FO	0.00				
C02	0.00	0.00	0.00	FA	0.00				
H20+	0.00	0.00	0.00	WO	0.00	JENSEN THOLEI	ITIC RHYOLITE	2	
H20-	0.00	0.00	0.00	LN	0.00	AL 79.01 FE	17.02 MG	3.98	
1.01	3.08	0.00	0.00	TH I	2.12				
202				TI.	0.70				
TOTAL.	96.71	100.00	100.00	ĈR	0.00	COLOR INDEX 1	4.23		
				HM	0.07	HASHIMOTO INDEX	: 88.29		
				AP	0.16				
				PO	0.00				
				NS	0.00				
				KS	0.00				
				RU	0.00				
				AG	0.00				
				OL	0.00				-
				OPX	1.35				
	4			CPX	0.00				
				AB*	3.70				
TRACE	elements (P.P.M.) AU,P	T (P.P.B.)						
CR	30.00:RB	140.00:SR	100.00 Y	20.00:ZR	130.00:NB	20.00:AU	90.00:SC	15.00:CO	-1.00
NI	3.00 CU	4.00:ZN	31.00:AS	90.00:SE	-3.00:BR	-1.00:RB	160.00:SR	-500.00:MO	-5.00
AG	0.50:CD	-0.20:SB	1.40:CS	2.90:BA	1200.00:LA	27.90:CE	55.00:ND	20.00:SM	3,80
EU	0.70.VB	2.00.1.0	0.361HF	4.00 TA	-1.00 W	0.30:PB	32.00:BI	-0.50:TH	8.60
Ū	1.90:								

COMMENTS : PYRITIC WHITE SERICITE SCHIST PYTITE AS DISSEMINATIONS, 7%

an and the second states a solution and the second states and the

**** KIDD CREEK MINESITE COMPUTER SYSTEM ***

REPORT #2000

PRINTED 22-OCT-84 SAMPLE ID # AB16852 WHOLE ROCK GEOCHEMICAL ANALYSIS 11:46:47 _____ LAB REPORT # 22063 FIELD NUMBER : DM95084259 PROJECT # TOWNSHIP : LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA NTS : 92P16 PROJECT : UTM ZONE : 10 GRID COORDINATES : E : 685950.0 N : 5747600.0 EL : 0.0 SAMPLE TYPE : GRAB SAMPLE FIELD NAME : METAMORPHIC , FELSIC, FINE.

FINAL NAME : ALTERATION : PERVASIVE ,SERICITIZATION,STRONG. MINERALIZATION : DISSEMINATED AND BLEBS,5-20% ,PYRITE. FORMATION :

SAMPLED B	3X -	្រេ	.MALLALIEU
ANALYZED	BY		XRAL

DATE : 14-JUN-84 DATE : 24-AUG-84

	WT 2	ANHYDROUS WI *	ANHYDROUS CATION	*	NORMS	CLA	SSIFIC	ATIONS	AND :	INDIC	23	· .	
SI02	66.30	69.12	66.18	- Q -	38.15	NA20	+K20	4.43	S102		69.12	SUBALKA	LINE
AL203	14.40	10.01	10.34		4.73	OT +	12 72	ATELL	5 41	0 +	61 97	GURALKA	LINE
FEO	0.00	2.10	2.17	AR	A 6A	000	16.13	141214	7.41	¥^	01.07	Sommer	DIND
CAO	3.19	3.33	3.41	AN.	16.14	CPX	0.00	OL	0.00	OPX	100.00	SUBALKA	LINE
MGO	2.22	2.31	3.30	LC	0.00								
NA20	0.48	0.50	0.93	NE	0.00	A	38.81	F	40.92	M	20.27	THOLEIT	IC
K20	3.77	3.93	4.81	KP	0.00		• · · ·	-			_		
T102	0.59	0.62	0.44	AC	0.00	AL20	3	15.01	NORM	PLAG	77.66	THOLEIT	IC
P205	0.13	0.14	0.11	DI	0.00								
MNO	0.15	0.16	0.13	HE	0.00	AN	36.02	AB*	10.36	OR	.53.62	K-RICH	SERIES
S	0.00	0.00	0.00	EN	6.61								
NIO	0.00	0.00	0.00	FS	2.14	CI		11.99	NORM	PLAG	77.66	BASALT	
CR203	0.00	0.00	0.00	FO	0.00								
C02	0.00	0.00	0.00	FA	0.00					_	·		
H20+	0.00	0.00	0.00	WO	0.00	JENS	EN C	ALC-A	LKALIN	E AND	ESITE		
H20-	0.00	0.00	0.00	Pirit A	0.00	AL	69.00	rE	17.55	MG	13.95		
LOI	3.70	0.00	0.00	ML	2.36								
				IL	0.89					~			
TOTAL	-95.92	100.00	100.00	CR	0.00	COLU	INDE		11.9	9 67 61			
				- H.M	0.00	MASP	IIMOIQ	INDEX	3	62.01			
		•		PO	0.23								
				NG	0.00								
	,			10	0.00								
				RII	0.00								
				AC	0.00								
				OT.	0.00								
				ŐPX	8.75								
				CPX	0.00								
				AB*	4.64								
TRACE E	LEMENTS	(P.P.M.) AU,PT	(P.P.B.)										
CR	30.00, RF	140.00:SR	290.00:1	0.00:ZR	190.00:NB		20.00	:AU	-20	.00:5	C 20	0.00:C0	10.0
NI	12.00 · CL	10.00:ZN	64.00:AS 4	9.00.SE	-3.00:BR		-1.00	:RB	170	.00:S	R -50	0.00:MO	-5.0
AG	1.00:00	-0.20:SB	0.90:CS	3.70:BA	1600.00:LA		41.00	:CE	80	.00:N	D 34	0.00:SM	6.
EU	1,10:VE	3.00:LU	0.55 HF	5.00 TA	-0.10:W		-3.00	:PB	26	.00:E	I -	0.50:TH	12.
n l	3 50.		*****										

COMMENTS : CHLORITE SERICITE SCHIST PALE YELLOW WHITE PYRITE.7%

9

PAGE 1

•

ANALYTICAL

TECHNIQUE : X-RAY FLUORESCENCE

**** KIDD CREEK MINES LTD **** *** KIDD CREEK MINESITE COMPUTER SYSTEM ***

REPORT #2000

SAMPLE ID # AB16899	WHOLE ROCK GEOCHEMICAL A	NALYSIS	PRINTED 22-OCT-84 11:48:15
LAB REPORT # 22063 TOWNSHIP : NTS . 92816	FIELD NUMBER : DM95084396 LOT : 0 CONCESSION :	PROJECT # PROVINCE : BRITISH COLUMBIA	
SAMPLE TYPE ; GRAB SAMPLE, THIN SECTION	GRID COORDINATES : E :	40.0 N : 360.0 EL :	0.0

FIELD NAME : VOLCANICLASTIC, FELSIC, ASH, QUARTZ PORPHYRITIC, TECTONIZED.

FINAL NAME :

ALTERATION : PERVASIVE , SERICITIZATION, STRONG.

.....

MINERALIZATION : DISSEMINATED AND BLEBS, 1-5%, PYRITE. FORMATION :

SAMPLED BY : D.MALLALIEU ANALYZED BY : XRAL

DATE : 10-JUL-84 DATE : 24-AUG-84

ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE

	rr *	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	¥	NORMS	CLASSIFIC	ATION	B AND INDI	CES		
5102	70.20	73.27	69.76	- 2	42.90	NA20+K20	5.82	S I02	73.27	SUBALKAL	INE
AL203	14.80	15.45	17.34	С	8.98						1100
FE203	4.44	1.94	1.39	OR	22.91	OL* 4.03	NE*	17.41 Q*	78.55	SOBALKAL	INE
FLO	0.00	2.42	1.93	AB	18.98	CDY 0 00	OT.	0 00 02	x 100.00	SUBALKAL	INE
MCO	0.00	0.03	0.03	T.C.	-0.07	CFA 0.00	01	0.00 01	100100		
MGO MA20	1 97	2.06	3 80	NE	0.00	A 55 72	F	39.54 M	5.24	THOLEITI	c ·
K20	3.61	3.77	4.58	KP	0.00	a 33.22		33134 11	5121		-
TT02	0.36	0.38	0.27	AC	0.00	AL203	15.45	NORM PLA	3 0.00	CALC-ALK	ALINE
P205	0.07	0.07	0.06	DT	0.00	102000					
MNO	0.01	0.01	0.01	HE	0.00	AN 0.00	AB*	45.31 OR	54.69	K-RICH S	ERIES
S	0.00	0.00	0.00	EN	1.57						
NIO	0.00	0.00	0.00	FS	1.95	CI	6.14	NORM PLA	G 0.00	RHYOLITE	
CR203	0.00	0.00	0.00	FO	0.00						
C02	0.00	0.00	0.00	FA	0.00						
H20+	0.00	0.00	0.00	WO	0.00	JENSEN 7	HOLEI	ITIC RHYOL	ITE		
H20-	0.00	0.00	0.00	LN	0.00	AL 79.82	FE	16.57 MG	3.61		
LOI	3.85	0.00	0.00	MT	2.09						
				IL	0.54						
TOTAL	95.81	100.00	100.00	CR	0.00	COLOR INDE	X :	6.14	•		
				HM	0.00	HASHIMUTU	INDEX	1 65.8	8		
				AP FO	0.16						
				10	0.00						
				KS	0.00						
				RU	0.00						
				AG	0.00						
				OL	0.00						
				OPX	3.52						
				CPX	0.00						
				AB*	18.98						
TRACE E	LEMENTS	(P.P.M.) AU,PI	C (P.P.B.)								
CR	10.00:RI	3 170.00:SR	40.00:Y	40.00:ZR	160.00:NB	20.0	UA:C	20.00:	SC 2	0.00:CO	0.30:
NI	5.00:Ct	J 5.50:ZN	15.00:AS	44.00:SE	-3.00:BR	-1.0	0:RB	170.00:	SR -50	0.00:MO	0.50
AG	-0.50:CI	-0.20:SB	2.60:CS	3.00:BA	1400.00:LA	45.5	0 CE	89.00:	ND 4	0.00:5M	5.50:
EU	1.10:YI 3.80:	3.00:LU	0.50:HF	0.50:TA	-1.00±W	-3.0	0:FB	40.001	BI -	0.50:TH	15.00:

COMMENTS : QUARTZ SERICITE SCHIST. QUARTZ CRYSTALS EQUANT. (5MM, 5%) FINE GRAINED PALE YELLOW PYRITE ACCOUNTS FOR 5%

PAGE 1

**** KIDD CREEK MINES LTD **** *** KIDD CREEK MINESITE COMPUTER SYSTEM ***

REPORT #2000

SAMPLE ID # AB16900	WHOLE ROCK GEOCHEMICAL AND	ALYSIS	PRINTED 22-0CT-84 11:49:16
LAB REPORT # 22063 TOWNSHIP : NTS : 92P16	FIELD NUMBER : DM94184397A LOT : 0 CONCESSION :	PROJECT # PROVINCE : BRITISH COLUMBIA PROJECT :	
UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE, THIN SECTION	GRID COORDINATES : E :	0.0 N: 415.0 EL:	0.0

FIELD NAME : VOLCANICLASTIC, FELSIC, ASH, QUARTZ PORPHYRITIC, TECTONIZED, LOOK AT COMMENTS FILE.

FINAL NAME :

ALTERATION : PERVASIVE ,SERICITIZATION, STRONG.

MINERALIZATION : DISSEMINATED AND ELEBS, 1-5%, PYRITE.

FORMATION :

SAMPLED BY : D.MALLALIEU ANALYZED BY : XRAL

DATE : 10-JUL-84 DATE : 24-AUG-84

ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE

PAGE 1

	WT *	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION %	:	NORMS	CLASSIFICATIONS AND INDICES	
5102	74.00	75.84	71.64	Q	44.72	NA20+K20 6.05 SIO2 75.	84 SUBALKALINE
FE203	15.50	1.22	0.87	OR	22.81	0L* 1.59 NE* 18.61 Q* 79.	81 SUBALKALINE
FEO CAO	0.00	0.00 0.08	0.00 0.08	AB AN	20.74 0.21	CPX 0.00 OL 0.00 OPX 100.	00 SUBALKALINE
MGO NA20	0.49 2.21	0.50	0.71 4.15	LC	0.00	A 79.08 F 14.35 M 6.	57 CALC-ALKALINE
K20	3.69	3.78	4.56	KP	0.00		00 CALC-ALKALINE
P205	0.03	0.03	0.02	DI	0.00		13 K-DICH SEDIES
S	0.00	0.00	0.00	EN	1.41	AN 0.46 AD 47.37 OK 52.	
N10 CR203	0.00	0.00	0.00	F3 F0	0.00	CI 2.30 NORM PLAG I.	.00 RHYOLITE
C02 H20+	0.00	0.00	0.00	FA WO	0.00 0.00	JENSEN CALC-ALKALINE RHYOLITI	2
H20- L0I	0.00 2.16	0.00	0.00 0.00	ln Mt	0.00 0.00	AL 90.49 FE 5.89 MG 3	.62
TOTAL	97.58	100.00	100.00	IL CR HM	0.02 0.00 0.87	COLOR INDEX : 2.30 HASHIMOTO INDEX : 64.61	
				AP PO NS	0.07 / 0.00		
				KS RU	0.00		
				OL OPX CPX	0.00 1.41 0.00		
TRACE	ELEMENTS	(P.P.M.) AU,FI	(P.P.B.)	AB*	20.74		
CR NI	30.00:RE 3.00:CU	180.00:SR 3.00:ZN	60.00:¥ 20 11.00:AS 29	0.00:ZR 9.00:SE	120.00:NB -3.00:BR	20.00:AU -20.00:SC -1.00:RB 170.00:SR	11.00:C0 -1.00: -500.00:M0 -5.00:
AG EU U	-0.50:CD 1.00:YE 2.70:	-0.20:SB 3.00:LU	5.60:CS 0.38:HF	3.30:BA 5.00:TA	1400.00:LA -1.00:W	48.80:CE 82.00:ND -3.00:PB 36.00:BI	30.00:SM 6.10: -0.50:TH 16.00:

COMMENTS : RUBBLY O/C ON B/L 415N QUARTZ SERICITE SCHIST,QTZ BLUE GREY EQUANT (6MM,25%) PY DISSEMINATIONS (3%

**** KIDD CREEK MINESITE COMPUTER SYSTEM ***

PAGE 1

3.00: -5.00: 5.70: 15.00:

REPORT #2000

SAMPLE ID # AB18556	WHOLE ROCK GEOCHEMICAL ANALYSIS	PRINTED 22-0CT-84 11:50:53
LAB REPORT # 22598 TOWNSHIP : NTS : 092P16	FIELD NUMBER : DM95084500 PROJECT * LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA PROJECT :	
UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE	GRID COORDINATES : E : 684380.0 N : 5750400.0 EL :	0.0

FIELD NAME : VOLCANICLASTIC, FELSIC, ASH, TECTONIZED, CRYSTAL , LOOK AT COMMENTS FILE.

FINAL NAME :

ALTERATION : METAMORPHOSED ,LOOK AT COMMENTS, NO COMMENT. MINERALIZATION : DISSEMINATED AND BLEBS, <1%, PYRITE. FORMATION :

SAMPLED BY : D.MALLALIEU ANALYZED BY : XRAY			DATE : 19-AUG-84 DATE : 04-0CT-84			ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE							
	WT *	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	\$	NORMS	CLASSIFICATIONS AND INDICES							
S102	74.20	75.72	71.15	 0	39.73	NA20+K20 6.30 SIO2 75.72 SU	BALKALINE						
ML203	2 01	1 00	13.60	00	16 47	01 + 2 03 NE+ 25 20 0+ 71 77 SH	BALKALINE						
FE203	0.00	0.17	0 14	AR AR	27 25								
CAO	0.67	0.68	0.69	AN	2.83	CPX 0.00 OL 0.00 OPX 100.00 SU	BALKALINE						
MGO	0.70	0.71	1.00	LC	0.00								
NA20	3.48	3.55	6.47	NE	0.00	A 71.09 F 20.84 M 8.07 CA	LC-ALKALINE						
K20	2.69	2.75	3.29	KP	0.00								
TI02	0.32	0.33	0.23	AC	0.00	AL203 14.08 NORM PLAG 8.05 CA	LC-ALKALINE						
P205	0.09	0.09	0.07	DI	0.00								
MNO	0.05	0.05	0.04	HE	0.00	AN 5.48 AB* 62.63 OR 31.89 K-	RICH SERIES						
S	0.00	0.00	0.00	EN	2.00								
NIO	0.00	0.00	0.00	FS	0.00	CI 3.67 NORM PLAG 8.05 RH	YOLITE						
CR203	0.00	0.00	0.00	FO	0.00								
C02	0.00	0.00	0.00	FA	0.00								
H20+	0.00	0.00	0.00	NO	0.00	JENSEN CALC-ALKALINE RHYOLITE							
H20-	0.00	0.00	0.00	LN	0.00	AL 85.14 FE 9.40 MG 5.46							
LOI	1.93	0.00	0.00	MT	0.00								
				IL	0.36								
TOTAL	97.99	100.00	100.00	CR	0.00	COLOR INDEX 1 3.67							
				HM	1.31	HASHIMUTU INDEX : 44.90							
				AP	0.20								
				PU	0.00								
				NS	0.00								
1 e				57	0.00								
				NO NO	0.03								
				01	0.00								
				05X	2.00								
				CPX	0.00								
				DB+	32 35								
TRACE E	ELEMENTS	(P.P.M.) AU.PI	(P.P.B.)	8D.	. 34								
CR	10.00:RE	100.00:SR	110.00:Y	30.00:ZR	150.00:NB	30.00:AU -20.00:SC 8.70):CO 3						
NI	5.00 CL	4.50:ZN	47.00:A3	-2.00:SE	-3.00:BR	-1.00:RB 100.00:SR -500.00):MO -5						
AG	-0.50:CI) -0.2018B	-0.20:03	2.30:BA	1200.00:LA	44.90:CE 84.00:ND 30.00):SM						
EU	0.80:YI	3 2.00:LU	0.41:HF	6.00:TA	-1.00:W	-3.00:PB 18.00:BI -0.50):TH 15						
U	2.10:												

COMMENTS : QUARTZ PHYRIC DACITE TO RHYODACITE (CRYSTAL TUFF)

**** KIDD CREEK MINES LTD ----=== KIDD CREEK MINESITE COMPUTER SYSTEM ====

REPORT #2000

100

WHOLE ROCK GEOCHEMICAL ANALYSIS	PRINTED 22-0CT-84 11:52:15
FIELD NUMBER : DM95084512 PROJECT # LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA PROJECT :	****
GRID COORDINATES : E : 689000.0 N : 5747880.0 EL :	0.0
	WHOLE ROCK GEOCHEMICAL ANALYSIS FIELD NUMBER : DM95084512 PROJECT # LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA PROJECT : GRID COORDINATES : E : 689000.0 N : 5747880.0 EL :

FIELD NAME : VOLCANIC, FELSIC, FINE, AUTOBRECCIATED, MASSIVE , LOOK AT COMMENTS. FINAL NAME :

ALTERATION : METAMORPHOSED , LOOK AT COMMENTS, NO COMMENT. MINERALIZATION : NODULES ,1-5%, PYRITE. FORMATION :

SAMPLED BY : D. MALLALIEU DATE : 20-AUG-84 ANALYZED BY : XRAY

DATE : 04-0CT-84

ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE

PAGE 1

	WT %	NORMALIZED ANHYDROUS WT *	NORMALIZED ANHYDROUS CATION	13	NORMS	CLAS	SSIFIC	ATION	B AND I		53		
S102 AL203	68.10	69.17 16.45	65.41 18.34	2	35.78	NA204	+K20	4.01	SI02		69.17	SUBALKAL	INE
FE203	4.86	2.15	1.53	OR	6.32	ol*	5.65	NE*	23.96	Q*	70.40	SUBALKAL	INE
CAO	3.57	3.63	3.67	AB	17.42	CPX	0.00	OL	0.00	0PX	100.00	SUBALKAL	INE
MGO NA20	1.21 2.92	2.97	1.73	LC NE	0.00 0.00	A 4	1.43	F	45.87	м	12.69	THOLEITI	С
K20	1.03	1.05	1.26	KP	0.00	11 202			NODW	DT 10	20.05	ONC NEW	AF TREP
P205	0.14	0.14	0.11	DI	0.00	AL 403		10.45	NORM	Pinto	39.05	CALC-AUA	
MNU S	0.08	0.00	0.07	HE EN	3.46	AN	34.21	AB*	53.39	OR	12.41	AVERAGE	SERIES
NIO CR203	0.00	0.00	0.00	FS	1.66	CI		8.32	NORM	PLAG	39.05	ANDESITE	
C02	0.00	0.00	0.00	FA	0.00						·		
H20+	0.00	0.00	0.00	LN	0.00	AL	26.11	ALC-A FE	16.71	E DAC. MG	11E 7.19		
LOI	1.70	0.00	0.00	MT IL	2.30								
TOTAL	98.46	100.00	100.00	CR	0.00	COLOR	R INDE	X:	8.3	2			
				AP	0.30	naon.	INUIU .	INUCA	1	43.00			
				PO NS	0.00								
1.1.1				KS RU	0.00								
				AG	0.00								
				OPX	5.13								
				CPX AB*	0.00 27.19								
TRACE	ELEMENTS	(P.P.M.) AU, PI	(P.P.B.)										
CR	170.00:RE	60.00:SR	820.00:Y	20.00:ZR 3.00:SE	100.00:NB -3.00:BR		20.00	:AU :RB	-20 60	.00:S	C 40 R 600	0.00:C0	11.00: -5.00:
AG	-0.50:CI	-0.20:SB	-0.20:CS	1.60:BA	1100.00:LA		28.40	:CE	52	.00:N	D 20	0.00:SM	3.70:
U	1.60;	1.00:00	0.31 m	0.40:1A	2.00:4		-0.30	110			1	J. JU: IN	11.001

COMMENTS : SAME AS DM94184257

LOCALLY PYRITE NODULES PRESENT (2CM, 1%). HETEROLITHIC FLOW BRECCIA? FRAGS (20X10CM) , ANGULAR FELSIC IN COMP.

==== KIDD CREEK MINESITE COMPUTER SYSTEM ===

REPORT #2000

SAMPLE ID # AB18567	WHOLE ROCK GEOCHEMICAL ANALYSIS	PRINTED 22-OCT-84 11:53:47
LAB REPORT # 22598 TOWNSHIP : NTS : 092P16	FIELD NUMBER : DM94184254 PROJECT # LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA PROJECT :	
UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE	GRID COORDINATES : E : 685755.0 N : 5746790.0 EL :	0.0

FIELD NAME : SEDIMENTARY , SANDSTONE AND WACKE , GRANULE, TECTONIZED, LOOK AT COMMENTS. FINAL NAME :

ALTERATION :

MINERALIZATION : DISSEMINATED AND BLEES, (1%, PYRITE. FORMATION :

SAMPLED BY : D. MALLALIEU ANALYZED BY : XRAY DATE : 06-SEP-84 DATE : 04-OCT-84

ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE

	WT %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	1 4	NORMS	CLA	SSIFIC	ATION	S AND	INDICE	3		
S102	69.00	72.22	69.56	0	47.58	NA2C	0+K20	4.36	SI02		72.22	SUBALK	ALINE
AL203	14.00	14.65	16.64	Ĉ	10.17								
FE203	5.76	2.24	1.62	OR	22.47	ol*	9.37	NE*	6.43	Q*	84.20	SUBALK	ALINE
FEO	0.00	3.41	2.75	AB	6.65			07		0.014	100.00		
CAU	0.52	0.54	0.56	AN	1.60	CPX	0.00	UL,	0.00	OPX	100.00	2024110	
MGO	1.56	1.03	4.34	LC	0.00		20 21		47 40	м	14 30	THATET	PTC
X20	1.49	3.65	4.49	KP	0.00	n	30.41	£	4/.47	n	14.30	THOMET.	
T102	0.64	0.67	0.49	AC	0.00	AL20	3	14.65	NORM	PLAG	19.38	CALC-A	LKALINE
P205	0.17	0.18	0.15	DI	0.00								
MONO	0.09	0.09	0.08	HE	0.00	AN	5.20) AB*	21.64	OR	73.16	K-RICH	SERIES
S	0.00	0.00	0.00	EN	4.69								
NIO	0.00	0.00	0.00	FS	3.05	CI		11.15	NORM	PLAG	19.38	DACITE	
CR203	0.00	0.00	0.00	10	0.00								
	0.00	0.00	0.00	ra WO	0.00	TENO	2531 1	MOTET	TTTC D	ACTTE			
H207	0.00	0.00	0.00	T.N	0.00	AL.	69.5	T FE	20.63	MG	9.80		
1120 - 1.01	3.00	0.00	0.00	MT	2.44				40103				
TOT	2.00	0.00	••••	IL.	0.97								
TOTAL	95.55	100.00	100.00	CR	0.00	COLC	OR INDE	X z	11.1	5			
				HPM	0.00	HASI	HIMOTO	INDEX	1	80.80			
				AP	0.39 .								
				PO	0.00								
				NS	0.00								
				KS DU	0.00								
				AC .	0.00								
	· · ·			01.	0.00								
				OPX	7.74								
				CPX	0.00								
				AB*	6.65								
TRACE	ELEMENTS	(P.P.M.) AU.PI	C (P.P.B.)										
	260 00-91	140 00.50	30 00.0	30.00.78	200.00 NB		20.0	UA:O	-20	s	c ı	3.00:C0	18.00:
NI	48.00±Cl	58.00:ZN	75.00:AS	3.00:SE	3.00:BR		-1.0	0:RB	160	.00:5	R -50	0.00:MO	9.00:
AG	0.50:CI	-0.20:SB	-0.20:CS	2.70:BA	800.00:LA		47.3	0:CE	88	8.00:N	D 3	0.00:SM	6.10:
EU U	1.00:YE 3.80:	2.00:LU	0.38:HF	7.00:TA	1.00:W		-3.0	0:PB	46	.00:B	I -	0.50:TH	15.00:
	1												

COMMENTS : QUARTZ WACKE- IMPURE QUARTZITE, EQUANT QUARTZ GRAINS (1-2MM, 10%) RANDOMLY DISTRIBUTED THROUGHOUT, SLIGHTLY MICACEOUS , MILD SCHISTOSITY

PAGE 1

**** KIDD CREEK MINES LTD **** *** KIDD CREEK MINESITE COMPUTER SYSTEM ***

. .

. .

REPORT #2000			PAGE 1 PRINTED 22-00T-84
SAMPLE ID # AB18568	WHOLE ROCK GEOCHEMICAL ANALYSIS		11:54:46
LAB REPORT # 22598 Township : NTS : 092P16	FIELD NUMBER : DM94184266D PROJECT # LOT : 0 CONCESSION : PROVINCE PROJECT :	: BRITISH COLUMBIA	
UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE, THIN SECTION	GRID COORDINATES : E : 687725.0 N :	5748840.0 EL :	0.0

FIELD NAME : VOLCANIC, FELSIC, FINE, FLOW BANDED OR FLOW LAMINATED, TECTONIZED, LOOK AT COMMENTS. FINAL NAME :

ALTERATION : UNKNOWN ,SERICITIZATION,STRONG. MINERALIZATION : DISSEMINATED AND BLEBS,<1%,PYRITE. FORMATION :

SAMPLEI ANALYZE) by : D. 1 ID by : XR	MALLALIEU AY	DATE : (DATE : (06-SEP-84 04-0CT-84		ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE
	WT 2	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	t	NORMS	CLASSIFICATIONS AND INDICES
ST02	67.20	70.68	66.61	- 0	34.91	NA20+K20 3.34 STO2 70.68 SUBALKALINE
AL203	12.70	13.36	14.84	č	0.00	
FE203	2.64	1.74	1.23	ŌR	8.04	OL* 8.48 NE* 18.34 0* 73.18 SUBALKALINE
FEO	0.00	0.94	0.74	AB	18.35	······································
CAO	5.94	6.25	6.31	AN	23.90	CPX 46.23 OL 0.00 OPX 53.77 SUBALKALINE
MGO	3.22	3.39	4.76	LC	0.00	
NA20	1.91	2.01	3.67	NE	0.00	A 36.24 F 27.07 M 36.69 CALC-ALKALINE
K20	1.27	1.34	1.61	KP	0.00	
T102	0.15	0.16	0.11	AC	0.00	AL203 13.36 NORM PLAG 56.57 THOLEITIC
P205	0.05	0.05	0.04	DI	5.72	
MNO	0.10	0.11	0.08	HE	0.11	AN 47.52 AB* 36.49 OR 15.98 AVERAGE SERIES
S	0.00	0.00	0.00	EN	6.65	
NIO	0.00	0.00	0.00	FS	0.13	CI 14.69 NORM PLAG 56.57 HIGH ALUMINA BASALT
CR203	0.00	0.00	0.00	FO	0.00	
C02	0.00	0.00	0.00	FA	0.00	
H20+	0.00	0.00	0.00	WO	0.00	JENSEN CALC-ALKALINE ANDESITE
H20-	0.00	0.00	0.00	LN	0.00	AL 68.19 FE 9.95 MG 21.86
LOI	4.08	0.00	0.00	MT	1.85	
				IL	0.22	
TOTAL	95 .08	100.00	100.00	CR	0.00	COLOR INDEX : 14.69
				ŀМ	0.00	HASHIMOTO INDEX : 36.39
				AP	0.11	
				PO	0.00	
				NS	0.00	
				KS	0.00	
				RU	0.00	J.
				AG	0.00	
				OL	0.00	
				OPX	6.79	
				CPX	5.84	
				AB*	18.35	
TRACE	ELEMENTS	(P.P.M.) AU,PT	(P.P.B.)			
CR	130.00:RE	60.00:SR	1150.00:¥ 3	0.00:ZR	120.00:NB	20.00:AU -20.00:SC 4.50:CO 3.00:
NI	14.00:CL	4.00:ZN	80.00:AS -	2.00:SE	-3.00:BR	-1.00:RB 50.00:SR 1100.00:MO -5.00:
AG	0.50:CI	-0.20:5B	0.30:CS	2.80:BA	1500.00:LA	59.60:CE 102.00:ND 30.00:SM 5.50:
EU	1.00:YE	3 2.00:LU	0.39:HF	6.00:TA	2.00:W	-3.00:PB 48.00:BI -0.50:TH 18.00:
ข	2.20:					
COMMEN	TS : ASH E	TLOW, FINE GRAINE	D, DISPLAYING A SLIG	HT GNEIS	SIC FABRIC GE	NERATED BY QUARTZ CARBONATE, AND WHITE MICA.

**** KIDD CREEK MINES LTD **** *** KIDD CREEK MINESITE COMPUTER SYSTEM ***

. .

.

. .

REPORT #2000 SAMPLE ID # AB18569		WHOLE ROCK GEOCHE	MICAL	ANALYSIS				F PRINTED 22-C 11:	AGE 1 CT-84 55:47
LAB REPORT # 22598 TOWNSHIP : NTS - 092P16	• 	FIELD NUMBER : TH95084 LOT : 0 CONCESSION	357 ;	PROJE PROVI PROJE	CT #	BRITISH CO	DLUMBIA		
UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE		GRID COORDINATES :	E :	686540.0	N :	5748825.0	EL :	0.0	

FIELD NAME : IGNEOUS , INTERMEDIATE, FINE, EQUIGRANULAR, QUARTZ AND FELDSPAR PORPHYRITIC, MASSIVE. FINAL NAME : ALTERATION :

MINERALIZATION : NIL ,NIL ,NO COMMENT. FORMATION :

SAMPLED ANALYZE	BY : T. DBY : XR	Huttemann Ay	DATE : DATE :	06-SEP-8 04-OCT-8	4 4	ANALYTICAL TECHNIQUE : X-RA	Y FLUORESCEN	ICE
	WI 3	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	*	NORMS	CLASSIFICATIONS AND 1	INDICES	
SICZ	61.70	64.56	59.84	<u>g</u>	9.97	NA20+K20 10.79 SIO2	64.56	ALKALINE
AL203	16.70	1/14/	1 26		47.60	OF + 2 CO NET 43 10	04 56 21	SUBALKALTNE
FEO	2.57	0 68	0.53	AR	24.54	0L- 2.00 NL- 41.19	Q	boot managements
CAO	2.98	3.12	3.10	AN	11.62	CPX 67.23 OL 0.00	OPX 32.77	ALKALINE
MGO	0.87	0.91	1.26	LC	0.00			
NA20	2.61	2.73	4.91	NE	0.00	A 76.41 F 17.14	M 6.45	CALC-ALKALINE
K20	7.70	8.06	9.54	KP	0.00			
T102	0.35	0.37	0.26	AC	0.00	AL203 17.47 NORM	PLAG 32.13	CALC-ALKALINE
P205	0.10	0.10	0.08	DI	2.55			
MNO	0.06	0.06	0.05	HE	0.00	AN 13.85 AB* 29.27	OR 56.88	SODIC
S	0.00	0.00	0.00	EN	1.24			
NIO	0.00	0.00	0.00	FS	0.00	CI 5.97 NORM	PLAG '32.1.	3 MUGEARITE
CR203	0.00	0.00	0.00	FU ·	0.00			
Ç02	0.00	0.00	0.00	ra Vo	0.00		DUVOT TOP	
H20+	0.00	0.00	0.00	PNU .	0.00	JENSEN CALC-ALALIN		
H20-	0.00	0.00	0.00	LIV	0.00	AL 04.74 FL 3.00	10 0.00	
LOI	3.16	0.00	0.00	191	0.50			
momtr	05 57	100 00	100.00	C5	0.51	COLOR INDEX 5 9	7	
TUTAL	95.57	100.00	100.00	HM	0.71	HASHIMOTO INDEX :	60 .52	
				AP	0.22			
				PO	0.00			,
				NS	0.00			
				KS	0.00			
				RU	0.00			
				AG	0.00			
				OL	0.00			
				OPX	1.24			· .
				CPX	2.55			
			• .	AB*	24.54			
TRACE	ELEMENTS	(P.P.M.) AU,PI	(P.P.B.)					
CR -	100.00.8	B 170.00+SR	270.00:7	30.00:2R	140.00:NB	20.00:AU -20	.00:SC	10.00:C0 5.00:
NI	8.00 · C	U 3.50:ZN	34.00:AS	2.00:SE	-3.00:BR	-1.00:RB 210	.00:SR -5	00.00:MO 6.00:
AG	-0.50 C	D -0.20:SB	-0.20:CS	2.60:BA	2900.00:LA	50.50:CE 94	.00:ND	40.00:SM 6.20:
EU	1.60 Y	B 2.00:LU	0.45:HF	8.00:TA	1.00:W	3.00:PB 22	.00:BI	-0.50:TH 18.00:
Ū	3.40:							

COMMENTS : INTERMEDIATE COMPOSITION LEUCOCRATIC HYPABYSSAL INTRUSION

**** KIDD CREEK MINES LTD **** === KIDD CREEK MINESITE COMPUTER SYSTEM ===

REPORT #2000		PAGE 1 PRIMITED 22-OCT-84
SAMPLE ID # AB18570	WHOLE ROCK GEOCHEMICAL ANALYSIS	11:56:47
LAB REPORT # 22598 TOWNSHIP : NTS : 092P16	FIELD NUMBER : DM95084478B PROJECT # LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA PROJECT :	
UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE, THIN SECTION	GRID COORDINATES : E : 686030.0 N : 5747350.0 EL :	0.0

FIELD NAME : SEDIMENTARY , SANDSTONE AND WACKE , SILT, LAMINATED , LOOK AT COMMENTS. FINAL NAME : ALTERATION : MINERALIZATION : NIL ,NIL ,NO COMMENT. FORMATION :

SAMPLED BY : D. MALLALIEU ANALYZED BY : XRAY

DATE : 06-SEP-84 DATE : 04-0CT-84

ANALYTICAL

. . . .

TECHNIQUE : X-RAY FLUORESCENCE

2.00: 6.00: 1.50: 2.30:

	WI %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION :	2	NORMS	CLASSIF	CATION	S AND INDICES	3	
S102	90.70	92.47	91.33	- Q	83.98	NA20+K20	1.13	SI02	92.47	SUBALKALINE
AL203	3.33	3.39	3.95	C	1.23			0 70 0+	05 22	GIIDAT PAT THE
FE203	1.40	1.43	1.05	ND ND	9.3/	ULA 1.	99 NC.*	2,70 QA	95.23	SUDALIALINE
r EU C N O	0.00	0.00	0.00	AD	9.40	CPX 0.0	or.	0 00 0PX '	100.00	SUBALKALINE
MCO	0.80	0.82	1 20	LC	0 00	CIA VIC		v.vv 018		
NA20	0.43	0.44	0.84	NE	0.00	A 35.0	2 F	39.74 M	25.24	THOLEITIC
K20	0.68	0.69	0.87	KP	0.00			57111 11		
T102	0.16	0.16	0.12	AC	0.00	AL203	3.39	NORM PLAG	37.52	THOLEITIC
P205	0.04	0.04	0.03	DI	0.00		••••			
MNO	0.03	0.03	0.03	HE	0.00	AN 22.	73 AB*	37.85 OR	39.43	K-RICH SERIES
3	0.00	0.00	0.00	EN	2.40					
NIO	0.00	0.00	0.00	FS	0.00	CI	3.51	NORM PLAG	37.52	DACITE
CR203	0.00	0.00	0.00	FO	0.00					
C02	0.00	0.00	0.00	FA	0.00					
H20+	0.00	0.00	0.00	WO	0.00	JENSEN	CALC-A	LKALINE ANDE	SITE	
H20-	0.00	0.00	0.00	LN	0.00	AL 62.	14 FE	18.99 MG	18.87	
LOI	1.47	0.00	0.00	MT	0.00					
				IL	0.05					•
TOTAL	98.09	100.00	100.00	CR	0.00	COLOR IN	DEX :	3.51		
			·	HM	1.06	HASHIMUT	U INDER	1 60.91		
				AP DO	0.09					
				FU NG	0.00					
				N S V Q	0.00					
				RU	0.10					
				AG	0.00					
		the second s		OL	0.00					
				OPX	2.40					
				CPX	0.00					
				AB*	4.20					
TRACE	ELEMENTS	(P.P.M.) AU, PI	r (P.P.B.)		1					
CR	280.00:RI	40.00:SR	120.00:¥ 1	0.00:ZR	20.00:NB	20.	00:AU	-20.00:50		5.80:C0 2
NI	10.00:CU	24.00:ZN	25.00:AS 1	3.00:SE	-3.00:BR	-1.	00:RB	40.00:SR	-50	0.00:M0 6
AG	-0.50:CI	-0.20:SB	0.50:03	0.80:BA	600.00:LA	12.	00:CE	18.00:ND	1	0.00:SM 1
EU U	0.50:YI 0.90:	3 1.00:LU	0.16:HF	1.00:TA	-1.00:W	-3.	00:PB	12.00:BI	-	0.50:174 2

COMMENTS : P0161/12NE

KIDD CREEK MINES LTD *** KIDD CREEK MINESITE COMPUTER SYSTEM ***

REPORT #2000

PRINTED 22-OCT-84 WHOLE ROCK GEOCHEMICAL ANALYSIS 11:57:47 SAMPLE ID # AB18571 LAB REPORT # 22598 FIELD NUMBER : DM95084499 PROJECT # TOWNSHIP : LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA NTS : 092P16 PROJECT : UTM ZONE : 10 GRID COORDINATES : E : 684475.0 N: 5750380.0 EL: 0.0 SAMPLE TYPE : GRAB SAMPLE, THIN SECTION

FIELD NAME : VOLCANIC, FELSIC, FINE, TECTONIZED, QUARTZ PORPHYRITIC, LOOK AT COMMENTS. FINAL NAME :

NONATION

ALTERATION : METAMORPHOSED , SERICITIZATION, MODERATE. MINERALIZATION : NIL ,NIL ,NO COMMENT. FORMATION :

NODALETTE

SAMPLED BY : D. MALLALIEU ANALYZED BY : XRAY

DATE : 06-SEP-84 DATE : 04-0CT-84

ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE

100000

PAGE 1

	WI %	ANHYDROUS WT *	ANHYDROUS CATION	\$	NORMS	CLASSIFICAT:	LONS AND IN	NDICES		
SI02 AL203	71.70	74.51	70.89	- ĉ	44.43	NA20+K20 5	.67 S102	74.5	SUBALKA	LINE
FE203	2.76	1,90	1.36	OR	23.61	OLA 2.18	VE* 15.76	04 82.0	5 SUBALKA	LINE
FEO	0.00	0.87	0.69	AB	16.48					
CAO	0.82	0.85	0.87	AN	3.71	CPX 0.00	0.00 DL	OPX 100.0	0 SUBALKA	LINE
MGO	0.62	0.64	0.91	LC	0.00					
NA20	1.72	1.79	3.30	NE	0.00	A 63.76 1	F 29.00	M 7.2	4 CALC-AL	KALINE
K20	3.74	3.89	4.72	KP	0.00					
T102	0.33	0.34	0.25	AC	0.00	AL203 15	.07 NORM	PLAG 18.3	39 CALC-AL	KALINE
P205	0.09	0.09	0.08	DI	0.00					
MNO	0.04	0.04	0.03	HE	0.00	AN 8.48	AB* 37.63	OR 53.9	0 K-RICH	SERIES
S	0.00	0.00	0.00	EN	1.83					
NIO	0.00	0.00	0.00	FS	0.00	CI 4	.16 NORM	PLAG 18.3	39 DACITE	
CR203	0.00	0.00	0.00	FO	. 0.00					
C02	0.00	0.00	0.00	FA	0.00					
H20+	0.00	0.00	0.00	MO	0.00	JENSEN CAL	C-ALKALINE	RHYOLITE		
H20-	0.00	0.00	0.00	LN	0.00	AL 83.89	FE 11.58	MG 4.5	54	
LOI	2.70	0.00	0.00	MT	1.44					
			1	IL	0.49					
TOTAL	96.23	100.00	100.00	CR	0.00	COLOR INDEX	: 4.16			
				HM	0.40	HASHIMOTO IN	DEX: 6	3.19		
				AP	0.20					
				PO	0.00					
		,		NS	0.00					
				KS	0.00					
				RU	0.00					
				AG	0.00					
				OL	0.00					
				OPX	1.83					
				CPX	0.00					
TRACE	ELEMENTS	(P.P.M.) AU.PI	(P.P.B.)	AB*	16.48					
			· · · ·							
CR	150.00:RE	150.00:SR	50.00:¥ 1	0.00:ZR	130.00:NB	20.00:A	U -20.	00:SC	10.00:CO	3.00:
NI	9.00:CU	4.00:ZN	50.00:AS	4.00:SE	-3.00:BR	1.00:R	B 170.	00:SR	-500.00:MO	6.00:
AG	-0.50:CI) -0.20:SB	-0.20:CS	3.30:BA	1600.00:LA	. 50.10:C	E 89.	00;ND	30.00:SM	6.00:
EU U	0.70:YE 2.30:	3.00:LU	0.46:HF	6.00:TA	1.00:W	4.00:P	B 14.	00:BI	-0.50:TH	17.00:

COMMENTS : PS329/65SW

QUARTZ CRYSTAL TUFF, RHYODACITIC COMPOSITION.

APPENDIX H

WHOLE ROCK ANALYSES PLOTS

.

Fig. 9 Typical calc-alkaline (Cascades) trend on a MgO-FeO plot (after Stauffer et al, 1975).

8.00

FE0

0.00

Fig. 10 The alkali "igneous spectrum" (after Hughes, 1972).

O OPEN CIRCLES REPRESENT O ALTERED THOLEIITIC OR CALC-ALKALINE ROCKS

SOLID CIRCLES REPRESENT ALTERED ALKALINE ROCKS

APPENDIX I

APPENDIX J

MAGNETIC PROFILES - GRIT #6 GRID, LIZARD GRID

420.E 57935.6

-10.7 :

1.	erator:	Ope	988. 3/17	998: 4/08	No : !	Ser Date	a 1.	d Dat	ter recte Job	cor Cor	Magnet *=Un id: <i>GRIT#</i> 1)00. Gr	X V1.3 eld 580 150.N	CINTRE ase Fi ine:
100		ia dili dati sha ung	 60			 40		20		0	nmas)	(Gar	Field	Total
1000	00		500	6		400		200		Ö	nmas)	(Gar	Field	Total
1000					!					۰.	Change	Fld	Mag	tation
· • • • • • •										:	-	5.4	57996	220.W
~~.	•		•	1				.x		:	-74.1	2.3	57922	210.W
· · · ·	•								0	:	175.8	3.1	58098	200.W
^:	•			. x	-			•	o	:	-43.5	.6	58054	190.W
•				•	x				o	: : (-7.4	.2	58047	180.W
						×			0	: (-6.5	.7	58040	170.W
				•		×			D	: (0.1	.8	58040	160.W
5 C							×			:0	-15.7	.1	58025	150.W
				. x						:	-71.1	.0	57954	140.W
		x				•		•		:	-88.6	.4	57865	130.W
	, j		• ×							:	-1.9	.5	57863	120.W
	. 0		• X					•		:	-2.4	.1	57861	110.W
:	. 6		• ×					•		:	1.6	.7	57862	100.W
1		×		•				•		1	2.7	.4	57865	90.W
:		×						•		:	2.5	.9	57867	M. 08
:	x ò							•		:	12.7	.6	57880	70.W
x :								•		:	15.0	.6	57895	60.W
; 6	•		•	•		•		•	×	:	15.7	.3	57911	M. UC
· :	. ó		•	•		•		•	- "	, x -	-9.8	.5	57901	40.W
× :	. b			•	•	a		•		;	-5.6	.9	57895	30.M
:	. ģ					•		•		×1.1	6.0	. >	57901	20.W
1	x oʻ		•	•	•			•		:	-22.4	.ວ	57074	10.W
:	م . ×	>			•			•		:	-4.6	.9	57874	10 -
:	. <				×`.	•		•		:	-29.3	.6	57845	10.E
:	· 9		. x		•	•				:	19.1	• /	57864	20.E
*			. x			•				:	4	.3	57864	30.E
11 21	. ģ	x	. >	,		•				:	2.2	.ສ	3/866	40.E
_								-		. :	17.5.	.0	57884	30.E

х

o

b

2

.

)

ine:	FIG 280	Grid	*=Und	cori 6.	Johr	Data	1 .	Ser No	99898 84/09	38.	Operate		. 4
									04/08/		operato		1.
(Total	Field	(Gamm	as)	0		20		40	(50	80	l	100
Station	Mag	Fld (as) Changa			200		400	60	00	800		1000
280.W	57951	.9	change	ž 2 . V	* * * * * * *								1
270.W	57937	.1	-14.8	•		•			_ ~X	•	•		• :
260.W	57938	.5	1.4	•		•		× •	•	•	•		e :
250.W	57923	.9	-14.6	•		• • •			•	•	•	1	, o :
240.W	57909	.5	-14.4	5	X			•	•	•	•	^	:
230.W	57899	.0	-10.5	*				•	•	•	•	, U	:
220.W	57900	.4	1.4	×				•	•	•	•	· Y	X
210.W	57917	.4	17.0	;		X				•	•	<u> </u>	
200.W	57960	.2	42.8	:				frankfiren og fange værden kan		×	•		
190.W	58000	.2	40.0	#									<u> </u>
180.W	58020	.8	20.6	:0		×				•		Strangene - Frence	
170.W	58066	.0	45.2	:	0	•				. x			1
160.W	58056	.8	-9.2	:	0	•		•	• X	•			
150.W	57995	.1	-61.7	:							and a start and a start		- x-0
140.W	57919	.8	-75.3	:		X						, 0	
130.W	57852	.4	-67.4	1		•			• X			0	. :
120.W	57830.	.8	-21.6	:		•	x	•				Ó	:
100 H	57813.	.9	-16.9	:	x	•		•	•	•		ó	:
700 M	57826	•1	12.2	:		• ×		•	•	•		o	:
20 .W	57819.		-6.4	;		×		•	•	•	•	Ó.	:
70 U	57030,	• <	16.5	:		•		х.	•	•		à	:
60 W	57055	.J E	26.1	:		•		•	•	• X	•	Ŷ	;
50 M	57944	.J 5	-11 0	1		•		•	• ×	•	•	Ó	1
40 W	57964	.J う	-11.0	1		•		• X	•	•	•	Q	:
30.W	57897	7	19.7	:		•		•	•	• ×	•	ે	:
20.W	57886	7	-11 0	:		•			•	•	•	ે	×:
10.W	57836	2	-11.0			•		•	•	•		xo	:
0.	57842.	.3				•		х.	•	•		0	:
10.E	57863	8	21.5	•		•		• X	•	•	•	o	:
20.E	57868.	7	4.9	• *		•		•	•	• X	•	9	1
30.E	57899.	8	31.1	£		•		•	•	• •	•	•	1
40.E	57920.	2	20.4	:	and the second	x		•	•	•	•	٩_	×
50.E	57913.	7	-6.5	:				•	•	•	•	0	:
60.E	57873.	9	-39.8-	f	0			•		•	· ·	~ 0	:
70.E	57890.	7	16.8	:						-	· ·	#	:
80.E	57899.	9	9.2~	£	where the second states in the second			-			•	T	:
90.E	57935.	9	36.0	:			-96	x	-		•	, °	× •
100.E	57955.	з	19.4						. x-	-	-	· · ·	<u>``</u>
110.E	57968.	3	13.0	:						. ×			• •
120.E	57986.	7	18.4	:								×	· ·
130.E	57985.	0	-1.7	:						-	-	x	۲ ۰
140.E	57990.	0	5.0	;					-		•		~ <u>`</u> .
150.E	58008.	1	18.1 d)	х	•			•			~ ~	- *-
160.E	58019.	9	11.8	:0		x			•				
170.E	58044.	4	24.5 :	Ò		÷		. x					• ेत् •
180.E	58070.	7	26.3 ;		0				•		x .		:
1 911	SU127	0	571.		· -								-

CINTREX V1.3 Magnetometer *=Uncorrected Data ine: Ser No:998988. Date: 84/08/14 ine: 300.N Grid:2/gAAP1. Job: 1. Date: 84/08/14 Operator: Total Field (Gammas) 0 20 40 60 80 Total Field (Gammas) 0 200 400 600 800 tation Mag Fld Change X 280.W 57873.2 : X 280.W 57873.1 1.65: X 280.W 57893.1 1.64: X 280.W 57893.1 4.4: X 280.W 57893.1 4.4: 280.W 57893.1 4.4: 210.W 57951.7 41.9: 180.W 57990.7 22.8 :		× · · × ·		· · · · · · · · · · · · · · · · · · ·	0 0 X X X	· · · · · · · · · · · · · · · · · · ·	0	× o		73.8 6.1 -91.7 -71.0 -110.7 -96.6 -45.9 0.8 -21.7 14.8 0.3 -8.2 -39.0 -6.4 -3.9 12.3 27.3 -5.0 -9.5 -10.7	58394.3 58400.4 58308.7 58237.7 58127.0 58030.4 57984.5 57985.3 57963.6 57978.7 57978.7 57970.5 57921.2 57921.2 57933.5 57960.8 57955.8 57935.6	230.E 240.E 250.E 260.E 270.E 280.E 290.E 300.E 310.E 320.E 330.E 350.E 350.E 360.E 370.E 380.E 390.E 400.E 410.E
ass Field 38000. *=Uncorrected Data Ser No:998988. ine: 300.N Grid://gARP1. Job: 1. Date: 84/08/14 Operator: Total Field (Gammas) 0 20 40 60 80 Total Field (Gammas) 0 200 400 600 80 Total Field (Gammas) 0 200 400 600 80 Zaoutic Station Mag Field Change								 ter	omet	Magnet	∨1.3	CINTRE
Total Field (Gammas) 0 20 40 60 80 Total Field (Gammas) 0 200 400 600 800 tation Mag Fld Change	r: 1.	Operator:	98988. ⁄08⁄14	No:998 : 84/0	Ser N . Date:	ata 1	d D	recte Job	corr 1.	*=Une id://g <i>ARD</i> :	1d 58000. 300.N Gi	ase Fie ine:
tation Mag Fld Change	100	80	60		40] % 0	_2		0	mmas)	Field (Ga	Total
280.H 57873.2 270.H 57874.8 1.6 260.H 57891.3 16.5 250.H 57893.1 4.4 230.H 57893.6 0.5 220.H 57999.8 16.2 x 210.H 57951.7 41.9	1000	800	600	-	400		20		U	mmas) Chance	Maq Flo	tation
270.W 57874.8 1.6: X 260.W 57891.3 16.5: X 250.W 57888.7 -2.6: X 240.W 57893.1 4.4: X 230.W 57893.6 0.5: X 220.W 57909.8 16.2: X 210.W 57951.7 41.9: X 200.W 57955.0 3.3: X 200.W 579575.0 3.3: X 190.W 57967.9 12.9: X 180.W 57990.7 22.8: X 170.W 58002.1 11.4 ox X 160.W 57969.6 -32.5: X 170.W 58002.1 12.5: X 130.W 57955.3 1.9: X 120.W 58042.5 87.2: 0 110.W 57998.1 -44.4: X 100.W 58118.2 120.1: 0 X 90.W 57911.9 -79.4: X X 70.W 58271.7 237.9: <		••••••••••			•••••	• • • • •	• • •		:	en en ge	57873.2	280.W
260.W 57891.3 16.5 : ************************************	0 :	× •	•	•					:	1.6	57874.8	270.W
240.W 57898.7 -2.6 : 240.W 57893.1 4.4 : 230.W 57893.6 0.5 : 220.W 57909.8 16.2 : x 210.W 57951.7 41.9 : 200.W 57955.0 3.3 :	- dx	A vanue,	•						:	16.5	57891.3	260.W
230.W 57893.6 0.5 220.W 57909.8 16.2 x 210.W 57951.7 41.9 x 200.W 57955.0 3.3 x 190.W 57955.0 3.3 x 190.W 57957.9 12.9 x 180.W 57990.7 22.8 x 170.W 58002.1 11.4 ox x 160.W 57969.6 -32.5 x 150.W 57982.1 12.5 x 140.W 57953.4 -28.7 x 130.W 5795798.1 -44.4 x 120.W 58042.5 87.2 o x 100.W 58118.2 120.1<:	*	-	•	•	•	•			1	-2.6	57888.7	250.W
220.W 57909.8 16.2 x 210.W 57951.7 41.9 x 200.W 57955.0 3.3 x 190.W 57967.9 12.9 x 180.W 57990.7 22.8 x 170.W 58002.1 11.4 ox x 160.W 57967.9 12.5 x 170.W 58002.1 11.4 ox x 160.W 57969.6 -32.5 x 170.W 58002.1 12.5 x 130.W 57952.3 1.9 x 130.W 57955.3 1.9 x 120.W 58042.5 87.2 o 110.W 57998.1 -44.4 x 100.W 58118.2 120.1 o x 90.W 57991.3 -126.9 x x 60.W 58033.8 121.0 o x 70.H 57912.8 0.9 x x 60.W 58033.8 121.0 o x 30.W 58010	• × :	•	•	•	•	,			1	4.4	57893.1	230 W
210.W 57951.7 41.9 200.W 57955.0 3.3 190.W 57967.9 12.9 180.W 57990.7 22.8 x 170.W 58002.1 11.4 ox x 160.W 57969.6 -32.5 x 160.W 57962.1 12.5 x 140.W 57953.4 -28.7 130.W 57955.3 1.9 120.W 58042.5 87.2 100.W 57913.1 -44.4 100.W 57911.9 -79.4 90.W 57912.8 0.9	• × :	•	•	•	•	•		v	:	16.2	57909.8	220.W
200.W 57955.0 3.3	Q I T	•	•	•	•			X	•	41.9	57951.7	210.W
190.W 57967.9 12.9 : x 180.W 57990.7 22.8 : x 170.W 58002.1 11.4 ox x 160.W 57969.6 -32.5 : x 150.W 57952.1 12.5 : x 140.W 57953.4 -28.7 : x 130.W 57955.3 1.9 : x 120.W 58042.5 87.2 : o x 110.W 57998.1 -44.4 : x 100.W 58118.2 120.1 : o x x 90.W 57991.3 -126.9 : x 80.W 57911.9 -79.4 : x x 70.W 57912.8 0.9 : x x 60.W 58033.8 121.0 : o x 30.W 58271.7 237.9 : o x 40.W 58102.9 -168.8 :x o x 30.W 58010.2 -92.7 :o x x 20.W 58106.4 96.2 : x o x 10.W 58032.2 -74.2 : o x 0. 57823.3 -200.8	• :	•	 X .	• ×	•				:	3.3	57955.0	200.W
180.W 57990.7 22.8 : 170.W 58002.1 11.4 ox 160.W 57969.6 -32.5 : x 150.W 57982.1 12.5 : x 140.W 57953.4 -28.7 : x 130.W 57955.3 1.9 : x 120.W 58042.5 87.2 : o x 110.W 57998.1 -44.4 : x 100.W 58118.2 120.1 : o x x 90.W 57991.3 -126.9 : x 90.W 57911.9 -79.4 : x x 70.W 57912.8 0.9 : x x 60.W 58033.8 121.0 : o x 50.W 58271.7 237.9 : o x 40.W 58102.9 -168.8 :x o x x 30.W 58010.2 -92.7 : o x x x 20.W 58106.4 96.2 : x o x x 10.W 58032.2 -74.2 : o x x	0:	× -	· · ·			1			:	12.9	57967.9	190.W
170.M 58002.1 11.4 ox 160.H 57969.6 -32.5 : x 150.H 57982.1 12.5 : x 140.H 57953.4 -28.7 : x 130.H 57955.3 1.9 : x 120.H 58042.5 87.2 : o x 110.H 57998.1 -44.4 : x 100.H 58118.2 120.1 : o x x 90.H 57991.3 -126.9 : x 80.H 57911.9 -79.4 : x x 70.H 57912.8 0.9 : x x 60.H 58033.8 121.0 : o x 50.H 58271.7 237.9 : o x 40.H 58102.9 -168.8 :x o x 30.H 58010.2 -92.7 : o x 20.H 58106.4 96.2 : x o x 10.H 58032.2 -74.2 : o x 0. 57823.3 -208 9 x	x								:	22.8	57990.7	180.W
150.H 57982.1 12.5 x $140.H$ 57953.4 -28.7 x $130.H$ 57955.3 1.9 x $120.H$ 58042.5 87.2 o x $110.H$ 57998.1 -44.4 x x $100.H$ 58118.2 120.1 o x $90.H$ 57991.3 -126.9 x x $90.H$ 57911.9 -79.4 x x $70.H$ 57912.8 0.9 x x $60.H$ 58033.8 121.0 o x $50.H$ 58271.7 237.9 c x $40.H$ 58102.9 -168.8 x o $30.H$ 58010.2 -92.7 o x $20.H$ 58106.4 96.2 x x $0.$ 57823.3 -208.9 x x	J.	•			•				оx	11.4	57060	160 M
140.W 57953.4 -28.7	¢ :	× .	•	•	•				1 · ·	-32.3 12 5	57982.1	150.W
130.W 57955.3 1.9 x 120.W 58042.5 87.2 o x 110.W 57998.1 -44.4 x 100.W 58118.2 120.1 o x 90.W 57991.3 -126.9 x 90.W 57991.3 -126.9 x 70.W 57912.8 0.9 x 60.W 58033.8 121.0 o x 50.W 58271.7 237.9 o x 40.W 58102.9 -168.8 :x o 30.W 58010.2 -92.7 :o x 20.W 58106.4 96.2 :x o 0. 57823.3 -208.9 x i	• •	• ×		•	•				:	-28.7	57953.4	140.W
120.W 58042.5 87.2 : 0 x 110.W 57998.1 -44.4 : 100.W 58118.2 120.1 : 0 x 90.W 57991.3 -126.9 : 80.W 57911.9 -79.4 : x 70.W 57912.8 0.9 : x 60.W 58033.8 121.0 : 0 x 50.W 58271.7 237.9 : 0 x 40.W 58102.9 -168.8 : x 0 30.W 58010.2 -92.7 : 0 x 20.W 58106.4 96.2 : x 0 10.W 58032.2 -74.2 : 0 x 0. 57823.3 -208.9	Ý :	•	× . × .	• ×	•				:	1.9	57955.3	130.W
110.W 57998.1 -44.4 : 100.W 58118.2 120.1 : o x $90.W$ 57991.3 -126.9 : $80.W$ 57911.9 -79.4 : x $70.W$ 57912.8 0.9 : x $60.W$ 58033.8 121.0 : o x $50.W$ 58271.7 237.9 : o x $40.W$ 58102.9 -168.8 : x o x $30.W$ 58010.2 -92.7 : o x $20.W$ 58106.4 96.2 : x x $0.$ 57823.3 -208.9 x x	0	•			.×				: 0	87.2	58042.5	120.W
90.W 57991.3 -126.9 80.W 57911.9 -79.4 x 70.W 57912.8 0.9 x 60.W 58033.8 121.0 o x 50.W 58271.7 237.9 o x 40.W 58102.9 -168.8 :x o 30.W 58010.2 -92.7 :o x 20.W 58106.4 96.2 :x o 10.W 58032.2 -74.2 o x 0. 57823.3 -208.9 . x	×o				•				:	-44.4	57998.1	100 U
80.W 57911.9 -79.4 : x 70.W 57912.8 0.9 : x 60.W 58033.8 121.0 : o x 50.W 58271.7 237.9 : o 40.W 58102.9 -168.8 :x o 30.W 58010.2 -92.7 :o x 20.W 58106.4 96.2 : x o x 10.W 58032.2 -74.2 : o x 0. 57823.3 -208.9 x		•	•	•	•		х.	0	:	120.1	57991 3	90.W
70.W 57912.8 0.9 : x 60.W 58033.8 121.0 : o x 50.W 58271.7 237.9 : o 40.W 58102.9 -168.8 :x o o 30.W 58010.2 -92.7 :o x z 20.W 58106.4 96.2 : x o z 10.W 58032.2 -74.2 : o x 0. 57823.3 -208.9	X _0	•	•	•	•		•	v	:	-79.4	57911.9	80.W
60.W 58033.8 121.0 : o x 50.W 58271.7 237.9 : o x 40.W 58102.9 -168.8 :x o 30.W 58010.2 -92.7 : o x 20.W 58106.4 96.2 : x o 10.W 58032.2 -74.2 : o x 0. 57823.3 -208.9	•	•	•	•	•		•	x	:	0.9	57912.8	70.W
50.W 58271.7 237.9: o x 40.W 58102.9 -168.8:x o x 30.W 58010.2 -92.7:o x 20.W 58106.4 96.2: x 10.W 58032.2 -74.2:o x 0. 57823.3 -208.9	U i	•		:	× .				: 0	121.0	58033.8	60.W
чо.м 58102.9 -168.8 :x о 30.W 58010.2 -92.7 :o x 20.W 58106.4 96.2 : x о 10.W 58032.2 -74.2 : o x 0. 57823.3 -208.9	• ~~· 0~· . 1	×		•		0			:	237.9	58271.7	50.W
20.W 58106.4 96.2 : x o 10.W 58032.2 -74.2 : o x 0. 57823.3 -208.9	•	a		•	• .		•	0	:×	-168.8	58102.9	40.W 30.U
10.W 58032.2 -74.2 : 0 x	1 @	•	•	•	•		•	X	:0	-92./	58106 4	20.W
0. 57823.3 -208 9	:	•	•	•	•		•	X Q	; X	-74.2	58032.2	10.W
	and Carent		•	•	х.	v	•		. 0	-208.9	57823.3	Ο.
10.E 57976.9 153.6	3	.0	•	•	•	^	•		:	153.6	57976.9	10.E
20.E 58053.2 76.3 : 0	~ O :	х.	x -	. ×	*		•	5	: 0	76.3	58053.2	20.E
30.E 57839.0 -214.2 : ×	•			•	×		•		:	-214.2	57839.0	30.E 40 E

80.E	58027.3	37.6	:0		,			· • •	-
90 5	57659 6	-267 7		• •	•	•	•	. •	1 - 6
	57655.6	-307.7	;	•	•	•	X O	•	ť
100.E	57634.1	-25.5	:		х.		. 0	_ ·	
110.E	57614.3	-19.8	:	Χ.			0		-
120 5	57070 0	250 0		· ·	•	•	• •	•	
120.0	J/0/J.2	200.9	:	•	•		• X	. 0 :	5
130.E	57733.0	-140.2	:		x .		. 0		
140.E	57736.4	3.4	•			-	· · ·	. •	•
150 5	57050 0	017 5	•	•	× •	•	• 0	•	. .
100.6	37933.9	217.5	:	•		. x	•	• • • •	a .'
160.E	57953.5	4	:			. ×			
170.F	57878.4	-75 1			-	• •	•	•	
100 0	57704 6	· • • •	•	•	•	•	•	X. 0 :	2
100.6	37794.6	-83.8	:	•				0 X	8
190.E	57768.6	-26.0	:		· · · _		v o		-
200.E	57783.7	15 1		•	•	•	• • • •	_	i
210 5	57651 0	10.1	•	•	•		•	0, X :	
210.E	37631.3	-132.4	:	•		• ×	. 0	. :	
220.E	57669.8	18.5	:			-	0 X		
230.F	57962.2	292 4	•	-	•	•	• • • • • • • • • • • • • • • • • • •		•
240 5	57004 0	222.4	ě.	•	•	•	• X		
240.E	57924.3	-37.9	2	• X					1
250.E	57886.7	-37.6	:	-					
260 F	57814 9	-71 0		· · ·				·	i
070 F			•	_ X +	•		•	•,0	1
270.E	57804.9	-10.0	: X			•		ó .:	
280.E	57824.9	20.0	:	X					
			-	• •	•	•	•	.0 :	
-									-
CINTRE)	X V1.3	Magneton	neter						
ace Fie	ald 58000	skalloor			0 ht		~~		
	40E N 0.1		urrect	eo vata	Ser No	0:33838	38.		
ine:	405.N Gri	C: LIZARD1	. Jo	b: 1	. Date:	84/08/	⁄14 Opera	tor: 1.	
Total	Field (Gam	mas) ()	20	40		50	00 100	
Total	Field (Gam	() = =) (200	40		50	00 IUU	i i
10.01					400	<u> </u>			
			,	200	400	60	0 8	00 1000	
tation	Mag Fld	Change :	, 	200	400	60 • • • • • •)0 8 		l
tation 280.W	Mag F1d 57946.5	Change :	, 	200	400	60 • • • • • •)0 8 		
tation 280.W 270.W	Mag Fld 57946.5 57934 4	Change	, 	200 •••••	400	60 • • • • • •)) 	00 1000 :	
tation 280.W 270.W	Mag Fld 57946.5 57934.4	Change : -12.1 :	, 1 	200	400	6(• • • • • • •	00 80 • • • • • • • • •		l
tation 280.W 270.W 260.W	Mag Fld 57946.5 57934.4 57910.9	Change : -12.1 : -23.5 :	, . ×		400 -x	6(• • • • • • • •	00 80 		l
tation 280.W 270.W 260.W 250.W	Mag Fld 57946.5 57934.4 57910.9 57910.1	Change : -12.1 : -23.5 : 8 :	, , , , , , , , , , , , , , , , , , , ,		400 •	6(• • • • • • • •	00 80 		l
tation 280.W 270.W 260.W 250.W 240.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0	Change : -12.1 : -23.5 : 8 :	×		400 •	6(• • • • • • • •	00 80 		I
tation 280.W 270.W 260.W 250.W 240.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0	Change : -12.1 : -23.5 : 8 : -3.1 :	×××		400 •	6(:	00 80 		I
tation 280.W 270.W 260.W 250.W 240.W 230.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7	Change : -12.1 : -23.5 : 8 : -3.1 : 14.7 :	×	200 	400 	6(00 8 . : :		l
tation 280.W 270.W 260.W 250.W 240.W 230.W 220.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2	Change : -12.1 : -23.5 : 8 : -3.1 : 14.7 :	×	200	400 	6(00 8		I
tation 280.W 270.W 260.W 250.W 240.W 230.W 220.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2	Change : -12.1 : -23.5 : 8 : -3.1 : 14.7 : 5 :	× ×	200	400 	6(· · · · · · · · · · ·	00 8 • • • • •		l
tation 280.W 270.W 260.W 250.W 240.W 230.W 220.W 210.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0	Change : -12.1 : -23.5 : 8 : -3.1 : 14.7 : 5 : -10.2 :	× × ×	200 	400 	6(· · · · · · · · · · · · · · · · · · ·	00 8		I
tation 280.W 270.W 260.W 250.W 240.W 230.W 220.W 210.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6	Change -12.1 : -23.5 : 8 : -3.1 : 14.7 : 5 : -10.2 : 11.6 :	×	200 	400 	6(00 80 		1
280.W 270.W 260.W 250.W 250.W 230.W 230.W 220.W 210.W 210.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57921.0 57922.6 57907.7	Change -12.1 : -23.5 : 8 : -3.1 : 14.7 : -10.2 : 11.6 : -14.9 :	×××	200 	400 	6(:	00 80 		1
tation 280.W 270.W 260.W 250.W 240.W 230.W 230.W 210.W 200.W 190.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7	Change -12.1 : -23.5 : 8 : -3.1 : 14.7 : -10.2 : 11.6 : -14.9 :	×××	200 	400 	6(00 80 		1
280.W 270.W 260.W 250.W 240.W 230.W 230.W 220.W 210.W 200.W 190.W 180.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0	× × ×	200 	400 	6(00 8	00 1000	
tation 280.W 270.W 260.W 250.W 240.W 230.W 230.W 220.W 210.W 200.W 190.W 180.W 170.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0	Change -12.1 -23.5 8 -3.1 14.7 -10.2 11.6 -14.9 -27.0 -5.7	× × ×	200 	400 	6(00 1000	1
280 .W 270 .W 260 .W 250 .W 250 .W 240 .W 230 .W 220 .W 210 .W 200 .W 190 .W 180 .W 170 .W 160 .W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0	Change -12.1 -23.5 8 -3.1 14.7 5 -10.2 11.6 -14.9 -27.0 -5.7 83.0	× × ×	200 	400 		00 8	00 1000	1
280.W 270.W 260.W 250.W 250.W 230.W 230.W 220.W 210.W 200.W 190.W 180.W 150.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0	Change -12.1 -23.5 8 -3.1 14.7 5 -10.2 11.6 -14.9 -27.0 -5.7 83.0	× × ×	200 	400 		00 8 		
ation 280.W 270.W 260.W 250.W 250.W 230.W 230.W 220.W 210.W 200.W 190.W 180.W 170.W 160.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57971.3	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3	× × ×	200 	400 	6(00 8		1
tation 280.W 270.W 260.W 250.W 240.W 230.W 230.W 210.W 210.W 190.W 190.W 170.W 150.W 140.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57958.0 57971.3 57998.4	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1	× × ×	200 	400 	6(00 8		
ation 280.W 270.W 260.W 250.W 230.W 230.W 230.W 220.W 210.W 200.W 190.W 190.W 150.W 150.W 150.W 130.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57958.0 57971.3 57998.4 58021.3	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9	× ×	200 	400 	6(00 8	00 1000	
tation 280.W 270.W 260.W 250.W 230.W 230.W 230.W 220.W 210.W 200.W 190.W 180.W 150.W 150.W 130.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57958.0 57971.3 57998.4 58021.3 58025 5	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 -54.2	× ×	200 	400 - x - · · · · · · · · · · · · · · · · ·	6(00 8	00 1000	
tation 280.W 270.W 260.W 250.W 230.W 230.W 230.W 230.W 210.W 200.W 190.W 190.W 150.W 150.W 150.W 130.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57958.0 57971.3 57998.4 58021.3 58075.5	Change -12.1 -23.5 8 -3.1 14.7 -3.1 14.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2	××××	200 	400 		00 8	00 1000	s / a /
tation 280.W 270.W 260.W 250.W 230.W 230.W 230.W 220.W 210.W 190.W 190.W 150.W 150.W 150.W 150.W 140.W 130.W 120.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6	Change -12.1 -23.5 8 -3.1 14.7 5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1	×××××	200 	400 		20 8	00 1000	to to
ation 280.W 270.W 260.W 250.W 230.W 230.W 230.W 210.W 200.W 190.W 190.W 150.W 150.W 150.W 150.W 150.W 120.W 120.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1	x	200 	400 		200 81	00 1000	
tation 280.W 270.W 260.W 250.W 240.W 230.W 220.W 200.W 190.W 190.W 150.W 150.W 140.W 130.W 120.W 100.W 100.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0	Change -12.1 -23.5 8 -3.1 14.7 5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	x	200 	400 		200 81	00 1000	to to
tation 280.W 270.W 260.W 250.W 250.W 240.W 230.W 220.W 200.W 190.W 190.W 150.W 150.W 140.W 120.W 1	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57958.0 57958.0 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 7.3	x	200 	400 		200 8	00 1000	a a
tation 280.W 270.W 260.W 250.W 250.W 230.W 230.W 220.W 210.W 200.W 190.W 190.W 150.W 150.W 150.W 150.W 120.W 120.W 120.W 120.W 20.W 2	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0 58126.1	Change -12.1 -23.5 8 -3.1 14.7 -5.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -7.3 -11.9	x x x	200 	400		200 8	00 1000	t a t
tation 280.W 270.W 260.W 250.W 250.W 230.W 230.W 220.W 210.W 200.W 190.W 190.W 150.W 150.W 150.W 150.W 120.W 120.W 120.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0 58126.1 58123.6	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5	x	200 	400		00 8	00 1000	
ation 280.W 270.W 260.W 250.W 250.W 230.W 220.W 220.W 200.W 200.W 190.W 190.W 150.W 150.W 150.W 150.W 120.W 120.W 120.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57921.2 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0 58126.1 58123.6 58117 2	Change -12.1 -23.5 8 -3.1 14.7 -5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -1.9 -2.5	x	200 	400		20 8	00 1000	
tation 280.W 270.W 260.W 250.W 230.W 230.W 230.W 230.W 200.W 200.W 190.W 190.W 150.W 150.W 150.W 120.W 1	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0 58126.1 58123.6 58117.3	Change -12.1 -23.5 8 -3.1 14.7 -3.1 14.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -6.3 :	x	200 	400		20 8		t of t
ation 280.W 270.W 260.W 250.W 230.W 230.W 230.W 220.W 200.W 200.W 200.W 200.W 190.W 190.W 180.W 150.W 150.W 150.W 120.W 120.W 100.W 100.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58025.5 58110.6 58130.7 58138.0 58126.1 58123.6 58117.3 58025.7	Change -12.1 -23.5 8 -3.1 14.7 -5.7 11.6 -14.9 -27.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -10.2 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.6 -1.5 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.7 -1.6 -1.7 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -5.7 -5.7 -1.7 -5.7 -1.5 -1.6 -1.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -5.7 -1.6 -5.7 -7.3 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.7 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5 -1.6 -1.5	x x x	200 	400		20 8	00 1000	
ation 280.W 270.W 260.W 250.W 250.W 250.W 220.W 220.W 200.W 200.W 200.W 190.W 190.W 190.W 150.W 150.W 120.W 120.W 120.W 120.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57958.0 57958.0 57958.0 57958.0 57958.0 57958.1 58021.3 58025.5 58110.6 58130.7 58138.0 58126.1 58123.6 58117.3 58025.7 57862.4	Change -12.1 -23.5 -3.1 -3.1 14.7 -3.1 14.7 -10.2 11.6 -14.9 -27.0 13.3 27.1 22.9 54.2 35.1 20.1 -11.9 -2.5 -2.5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	x x x	200 	400		20 8	00 1000	
ation 280.W 270.W 260.W 260.W 250.W 250.W 220.W 220.W 220.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57977.3 57875.0 57978.0 57971.3 57998.4 58021.3 58025.5 58110.6 58130.7 58138.0 58126.1 58123.6 58117.3 58025.7 57862.4 57862.4	Change -12.1 -23.5 -3.1 14.7 -3.1 14.7 -5.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -11.9 -2.5 -11.9 -2.5 -16.3 -91.6 -163.3	x x	200 	400 		200 8		
tation 280.W 270.W 260.W 250.W 250.W 250.W 220.W 210.W 200.W 200.W 200.W 190.W 190.W 150.W 150.W 150.W 150.W 120.W 120.W 150.W 200.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57875.0 57977.7 57880.7 57875.0 57958.0 57971.3 57998.4 58021.3 58025.5 58110.6 58130.7 58138.0 58126.1 58126.1 58123.6 58117.3 58025.7 57862.4 58146.4	Change -12.1 -23.5 8 -3.1 14.7 5 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -11.9 -2.5 -11.9 -2.5 -163.3 284.0 :	× × ×		400 		200 SI		
tation 280.W 270.W 260.W 250.W 250.W 230.W 230.W 230.W 200.W 190.W 170.W 150.W 150.W 150.W 120.W 20.W 120.W 20.W	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0 58126.1 58123.6 58126.1 58123.6 58117.3 58025.7 57862.4 58146.4 58080.1	Change -12.1 -23.5 8 -3.1 14.7 -5.7 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -10.2 -1.6 -1.6 -1.6 -1.9 -2.5 -1.0 -2.5 -1.0 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.7 -2.5 -1.0 -2.7 -2.5 -1.0 -2.5 -1.0 -2.7 -2.5 -1.0 -2.5 -1.0 -2.7 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.7 -2.5 -1.0 -2.5 -1.0 -2.7 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.1 -2.5 -1.0 -2.5 -1.1 -2.5 -1.0 -5.7 -1.0 -5.7 -1.0 -5.7 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -1.0 -2.5 -0.0 -2.5 -0.0 -2.5 -0.0 -2.5 -0.0 -2.5 -0.0 -0.0 -2.5 -0.0 -0.0 -0.0 -2.5 -0.0 -2.5 -0.0 -0.0 -0.0 -2.5 -0.0	x x x	200 	400 		20 8		
tation 280.W 270.W 260.W 250.W 250.W 230.W 230.W 230.W 200.W 190.W 190.W 150.W 150.W 150.W 120.W 100.W 100.W 200.W 200.W 1	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58075.5 58110.6 58130.7 58138.0 58126.1 58123.6 58127.3 58025.7 57862.4 58146.4 58080.1 57641.0	Change -12.1 -23.5 8 -3.1 14.7 -3.1 14.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -10.2 -1.6 -1.6 -1.6 -1.9 -2.5 -1.0 -2.5 -1.0 -1.0 -5.7 -1.1 -1.0 -5.7 -1.0 -5.7 -1.0 -5.7 -1.0 -5.7 -1.0 -5.7 -1.0 -5.7 -1.0 -5.7 -1.0 -5.7 -1.0 -1.0 -5.7 -1.0	x x x		400		20 8	00 1000	
tation 280.W 270.W 260.W 260.W 250.W 250.W 230.W 230.W 200.W 200.W 190.W 170.W 160.W 150.W 150.W 120.W 1	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.2 57921.2 57911.0 57922.6 57907.7 57880.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58025.5 58110.6 58130.7 58138.0 58126.1 58123.6 58127.3 58025.7 57862.4 58146.4 58080.1 57641.0 57027.0	Change -12.1 -23.5 8 -3.1 14.7 -3.1 14.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -163.3 284.0 -66.3 -439.1 -200	x x x	200 	400		20 8	00 1000	
ation 280.W 270.W 260.W 250.W 250.W 250.W 220.W 200.W 200.W 200.W 200.W 190.W 190.W 150.W 150.W 150.W 120.W 100.W 100.W 20.W 20.W 20.W 20.W 200.	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57971.3 57958.0 57971.3 57998.4 58021.3 58025.5 58110.6 58130.7 58138.0 58126.1 58123.6 58123.6 58127.3 58025.7 57862.4 58146.4 58080.1 57641.0 57607.2	Change -12.1 -23.5 8 -3.1 14.7 -3.1 14.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -163.3 284.0 -66.3 -439.1 -33.8			400		00 8		
ation 280.W 270.W 260.W 260.W 260.W 260.W 200.W 200.W 200.W 200.W 200.W 200.W 200.W 190.W 150.W 150.W 120.W 130.W 120.W 20.W 20.W 20	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57958.0 57958.0 57958.0 57958.0 57958.0 57958.0 57958.1 57875.5 58110.6 58130.7 58138.0 58126.1 58123.6 58117.3 58025.7 57862.4 58146.4 58080.1 57641.0 57607.2 57683.6	Change -12.1 -23.5 8 -3.1 14.7 -5.7 11.6 -14.9 -27.0 13.3 27.1 22.9 54.2 35.1 20.1 -1.9 -2.5 -163.3 284.0 -163.3 284.0 -33.8 -33.8 -33.8 -33.8 -34.2 -10.2 -2.5 -11.9 -2.5 -10.3 -2.5 -10.3 -2.5 -10.2 -11.9 -2.5 -10.3 -2.5 -10.3 -2.5 -10.3 -2.5 -10.3 -2.5 -10.2 -10.2 -2.5 -10.3 -11.9 -2.5 -10.3 -11.9 -2.5 -10.3 -2.5 -0.3 -10.3 -1.5 -1.6 -1.5			400		200 SI		
tation 280.W 270.W 260.W 260.W 260.W 260.W 260.W 200.W 200.W 200.W 200.W 200.W 190.W 100.W 100.W 20.W 20.W 20.	Mag Fld 57946.5 57934.4 57910.9 57910.1 57907.0 57921.7 57921.2 57911.0 57922.6 57907.7 57880.7 57875.0 57975.0 57975.0 57975.0 57978.0 57978.0 57975.5 5810.7 58126.1 58126.1 58126.1 58126.1 58126.1 58126.1 58126.1 58126.1 58126.1 58126.1 58126.1 58126.2 58117.3 58025.7 57862.4 58146.4 58080.1 57641.0 57607.2 57683.6 58203.6	Change -12.1 -23.5 -3.1 -3.1 14.7 -5.7 -10.2 11.6 -14.9 -27.0 -5.7 83.0 13.3 27.1 22.9 54.2 35.1 20.1 -11.9 -2.5 -163.3 284.0 -163.3 284.0 -33.8			400			00 1000	

70.E 80.E 90.E 100.E 110.E 120.E 130.E 140.E 150.E 160.E 170.E 200.E 210.E 220.E 230.E 240.E 250.E 260.E 270.E	57715.2 57727.7 57731.2 57802.1 57900.8 57969.9 58017.2 57922.9 57860.2 57886.9 57905.2 57946.9 57914.3 57839.3 57853.2 57852.1 57852.1 57852.2 57849.6 57851.0 57834.3	58.2 12.5 3.5 70.9 98.7 69.1 47.3 -94.3 -62.7 26.7 18.3 41.7 -32.6 -75.0 13.9 -1.1 -14.2 14.3 -2.6 1.4 -16.7	: : : : : : : : : : : : : :	X		· · · · · ·	-x	· · · · · · · · · · · · · · · · · · ·	X			
280.E	57827.6	-16.7	1	•	××	•	•	•		. o .o	4 # #	
CINTRE> ase Fig ine:	< V1.3 1d 58000. 527.N Gri	Magneto *=Unc d: <i>LIZARO</i> 1	meter orrect	ed Data	·	Ser N ate:	0:9989 84/08	988. 9/14	Operat	or:	1.	-
Total	Field (Gam	mas)	0	20	* and and and an are and an	40		60	8	0	100	-
tation	Mag Fld	mas) Change	U ::	200	4	00		00	80	o 	1000	
280.W	57933.0		1		×			• • • •			•••••	
270.W	57943.7	10.7	:			• x	•				6 :	
260 W	57954.1	10.4	:	•			• x	•				
250.W	57948.6	-5.5	:	•		•	×.	•			o :	
240 W	57957.2	8.6	1	•			•	×.			• :	
230.W	37952.6 57952 0	-4.6	1	•		•	• X	•		•	• :	
210.W	57951 4	U.6 _1 0	1	•		•	• X	•		•	• :	
200 W	57962.8	11.4	1	•		•	۰X	•		•	• :	
190.W	57971.1	8.3	• 1	•		•	•	• X	M ¹	•	় :	
180.W	57986.3	15.2	:			•	•	•	x	•	9:	
170.W	57990.2	3.9	:				•	:		• X • V	ų:	
160.W	57985.0	-5.2	:			•		•		. x	5 .	
150.W	57990.4	5.4	•			•	•			• X	~	1
140.W	57980.1	-10.3	:	•		•	•	•		x	Q :	1
120 W	57993.7 59014 A	13.6	:	•		•	•			•	x ò	
110.W	58025.4	20.7	:0	X .		•	•	•		•	1	ģ
100.W	58103.8	78.4		•	x	•	•	•			:	6
90.W	58251.3	147.5		Construction of the second sec	o	•		•		•	0	Ċ
80.W	58646.5	395.2	-					• •		•	:	1
70.W	59084.8	438.3	: 0			. ^		. 0		• • • • •		
60.W	59038.7	-46.1	0	•		х.		- 		• •	.	
50.W	57409.0	-1629.7	×	•		0					1	
940.W	55730.5	-1678.5 ;	:		×				o		-	
30.W	57194.5	1464.0		••••		•	•	•			x :	
20.W	37763.0								· · · · · · ·		-	
	57005 0	160.0 ;		•		•	•	• X	0-	•	:	
0.	57925.2 57860 8	162.2 :		•	×	•	•	• *	U .		;) ;	
0. 10.E	57925.2 57860.8 57925.8	162.2 : -64.4 : 65.0 :		•	×	•	•	• × • ×	U .	, נ ע		

70.E 57813.1 70.E 57807.3 80.E 57872.3 90.E 57900.2 100.E 57906.9 110.E 57896.3 120.E 57891.1 130.E 57922.9 140.E 57941.1 150.E 57968.1 160.E 579968.2 170.E 57978.9 180.E 57999.2 190.E 57950.6 200.E 57959.7 230.E 57959.7 230.E 57955.8 240.E 57923.5 250.E 57915.0 260.E 57920.5 270.E 57900.6 280.E 57917.2	-53.7: -5.8: 65.0; 27.9 x 6.7: -10.6: -5.2: 31.8: 18.2: 27.0: -7.9: 18.7: 20.3: -48.6: -3.9: -3.9: -3.9: -3.9: -3.9: -3.5: -19.9 x 16.6: -5.2: -19.9 x 16.6: -5.2: -10.6: -3.2: -3.5: -3.9: -3.5: -19.9 x 16.6: -5.2: -10.6: -3.2: -3.5: -3.9: -3.5: -19.9 x 16.6: -5.2: -10.6: -3.2: -3.5: -3.9: -3.5: -10.6: -3.5: -10.6: -3.5: -3.5: -10.6: -3.5: -3.5: -10.6: -3.5: -	× × × ×	× × ×	· · · · · · · · · · · · · · · · · · ·	× × ×	×		
--	--	------------------	-------	---------------------------------------	-------	---	--	--

LIZARD GRID (GRIDI) PROFILE. DDH PROFILE

n

SCIN Base Line	TRE Fi	X		.3 58(00 N.	O. Gri	Ma d: 2/	gneto *=Uno 2ARD. (ome cor	ter recte Jot	ed Da	ta	2.	Ser i Date	No:9 : 84	98988 /06/1	3. 6 0	perat	or :	1	•
x To o To	tal tal	L F	Fi€ Fi€	eld eld		Gam Gam	mas) mas)		0 0		200 2000			400 4000		600 6000)	80 800	0	100 1000	0
20	0.5	KW	. 57	199 199	o.	9	Ulla	nge	ü . 1			• • •	a ü 1		••••	• • • • •		.	1 Q		×
19	0.9	ŚW	57	797	5,	0	-	15.9	1						•		1		ļ	×	1
18	0.9	εW	57	796	7.	9		-7.1	2		•			•					þ	×	đ
17	0.9	BW.	58	302:	L .	8		53.9	:×		•			•	•	•			¢		1
16	0.9	βW N M	58	306	D.,	8		39.0	2	×	•			•	•	•	•		Ŷ		2
15	0.¥ n 0	с IV ти/	35	3002	2. n	6	-	38.2	×		•			.•	•	•	1		1		1
· 14	0.3 0 4	010 Qu/	50	2020	J. 2	1	. 1	10.2	. i X		•			•	٠	•	, *		Ĵ.		1
12	ດີສ	ŚW	58	308	3.	8		11.7		Ĵ	•			•	•	•			ľ.		•
11	0.9	W	58	808	3.	7		1	:	Ţ	:								r i		:
10	0.9	BW	58	312	2.	2		38.5	:		κ.								. .		:
9	0.1	W	58	303	З.	9		83.3	1 3	+				•			,		¢ .		8
8	0.1	W	57	280	7.	6	-2	31.3	:		•						,	e e	×		:
7	0.1	3 W	57	·61	1.	3	-1	96.3	1			1.0000000000000000000000000000000000000	Carrier and the second second	and the second	and the second		X	d	*		:
6	0.9	ΒW	58	868	5.	8	10	74 🖧	erritteringen anverlige innen	ne z Pricher Breiten (her Beder Ber Nach der Sterne Bereiten (her Bereiten) Martin (her Bereiten (her Bereiten) Martin (her Bereiten (her Bereiten) (her Bereiten (her Ber Bereiten (her Bereiten (hereiten (her Bereiten (her Bereiten (her Bereiten (her Ber	anna ann ann ann ann ann ann ann ann an	1945-0369/1947+	rastronista di mara	******	antali eta antaliana A		フ		• >		
5	0.8	5W 4	58	337:	5.	6	-3	10.2	:					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					• /		8
4	0.8	ы <i>VV</i> н м/	30	5133	э. >	5	-2	40.0	:		× •			•	•	•	•		٠f		:
2	0.4 0.1	εW	56	21 99	۲. R.	1	. –	85.6	:	,				•	•	•	1		1		ă a
1	0.1	N	58	3280	э.	8		82.7	•			and the second second	x	•					:Ľ		ų.
-	ο.	-	58	3282	2.	2		1.4	:				J				,				:
1	0.0	E.	58	315	1.	6	-1	30.6	:			-		•							
2	0.1	18	57	268s	9.	8	-4	61.8			•						×	q			2
3	0.1	E	57	74	5.	3		56.5	1		•			•	.•			- × \Q	•		:
4	0.0	E.	58	306	4.	2	3	18.4	:	×	•			•	•	•	1		P		3
5	0.0	E.	57	790:	ι.	7	-1	63.0	:		•			•	•	•			Ŷ	х	2
6 7	0.0 0 9		58	3023	L .	2	1	19.5	: X		•			•	•	•			٩		
Q	0.19	н Е. 1 Е	50	SUU. 21 72	L . 2	4 n	1	13.8 70 C	×					•	•	•			٩		:
9	0.M	E.	58	2000	2 . 7	2	-1	70.0	• •					•	•	•			~		
10	0.4	ηE.	57	2910	3.	8	-	89.9	î					•		•			ζ.	×	•
11	0.1	E	57	288	3.	4		27.4	:						-			ď	ŗ,	ĸ	:
12	0.1	E.	57	290	в.	1		24.7	:								-	1	0	x	:
13	0.1	E	57	'92(Ο.	9		12.8	;		•				,		,		\$	x	:
_ 14	0.1	Ê.	57	294:	1.	3		20.4	\$.					•			ı		þ	×	5
)15	0.1	E	58	3010	5.	7	-	75.4	ŧ×		•			•		-	ı		φ		:
16	0.5	Ë.	58	3042	2.	7		26.0	: :	×	•				•		,		¢		;
17	0.0	E.	57	2998	з.	3	-	44.4	:		•			•	•				¢	:	×
18	U.Ø		57	93:	L.	2		67.1	1		•			•	•	•			Ŷ	×	:
13	ບ.⊮ ດ ⊭	12	5/	938 7001	ฮ. า	2		17.0	:		•			•	•	•			1	×	:
20	0.8	<i>L</i> ,	37	221	۰.	2	-	17.3	:		•			•	•	•			C)	х	ĩ

LIZAKL OKIU (GRID1) PROFILES

0

			و هذی ایند بدی علم جای دی بری بری دن .					
SCINTREX	K V1.3	Magneto	meter					
Base Fig	eld 58000	. ×≖Unc	orrected	Data	Ser No	998988		
Line:	100.5 G	rid: LIEARD 1	. Job:	1.	Date: 8	84/06/1	5 Operato	r: 1.
								و عليه وعن حيد عند بين مان مان اله خان أنه في الما من ا
v Total	Field (G	emm a e)	-800	-400	_	0	400	900
o Total				-4000	_	0 +	4000	000
Ctation	Man Clu		-8000	-4000		0 +	4000	8000
Station	riag rit	u unange						* * * * * * * * * * *
200.W	57978.7			•	•	• •	•	9 X;
190.W	57992.4	13./	1	•	•	• •	•	• ×
180.W	58004.5	12.1	:	•	•	х.	•	• •
170.W	58020.0	15.5	:	•	•	•× •	•	φ :
160.W	58063.5	43.5	1	. •	•	• × •	•	φε
150.W	58052.9	-10.6	1	•		•X •		• • • • •
140.W	58194.0	141.1	:	•		• ×		
130.W	58100.2	-93.8	8			. × .		0 1
120.W	58061.1	-39.1				. x .	-	6 2
110.W	58076.9	15.8	1	_		. X .		
100.W	57870.7	-206.2	•		•	• ~ •		
90.W	57966.1	95.4	•	•	•	• •	•	
90 W	500005	62 A	•	•	•	• •	•	
70	50020.3	02.7		8	•	•X •	•	9
60 M	50020.7	1.0		•	•	•X •	•	9 1
- 60 .W	30029.7	1.0	1	•	•	•x •	•	Q 1
M. UC	5/925.0	-104.7	•	•		• •	•	¢ × i
40.W	58231.6	306.6	:	•	•	• •>	۰ ×	হ ঃ
30.W	59394.1	1162.5	:	•	•	• •	· × .	0.1
20.W	62425.1	3031.0	:	•	•) x .	1
10.W	58736.2	-3688.9	1	•	· •			X 0
Ο.	56963.6	-1772.6	1	•		• •	, a	Ø X:
10.E	57740.1	776.5	:					* :
20.E	57839.1	99.0	:	•				ox :
30.E	57886.0	46.9	:	•				d X :
40.E	57917.2	31.2	:		-			d x :
50.E	57860.7	-56.5	1				•	
60.E	57311.4	-549.3	1			• •	· ·	
70.E	57914.4	603.0	•	•	•	• •	^ ·	
80 F	57902 0	-12.4	•	•	•	• •	. •	V X I
90 E	57966 6	6A 6	:	•	•	.• •	•	ψ x :
100 5	50000 4	67.0		•	•	• •	•	e x:
110.0	50020.4	33.8		•	•	•× •	•	o t
110.5	3/9/0.8	-49.6	•	•		• •	•	φx:
120.E	5/900.9	-69.9	:	•	•	• •	•	¢ × :
130.E	57936.0	35.1	:	•	•	• •		φ×:
140.E	58002.0	66.0	:	•	•	× .		jo 🔹 .
150.E	57750.7	-251.3	:	•	•		•	* :
160.E	57865.5	114.8	:		•	• •		òx:
170.E	57926.8	61.3	:		•			6 X :
₽ 180.E	57921.9	-4.9	:				-	o x :
190.E	57922.4	0.5	:		-		•	
200.E	57952.7	30.3	:	-			•	J îvi
			-	-	-	•	•	~ ^1

CINTREX V1.3 Magnetometer

x Total o Total Station	Field (Gam Field (Gam Mag Fld	mas) mas) Change	-800 -8000	-400 -4000	- 0 + - 0 +	400 4000	800 * 8000 ~~
420.W 410.W 400.W 390.W	57931.9 57933.0 57934.5 57932.0	1.1 1.5 -2.5	: : :	• 2 * • •	· · ·	•	· • × : • • × : • • × : • • × :
370.W 360.W	57963.1 57994.0	24.3 30.9		•	· · ·	•	· • * : • • * :
350.W 340.W 330.W	58004.9 58028.6 58019 7	10.9		•	· · · · · ·	•	• • • • •
320.W 310.W	58030.5	10.8	1	•	· · · · · · · · · · · ·		· • • •
300.W 290.W	58054.3 58061.1	17.1	5			•	
280.W 270.W	58079.2 58108.6	18.1 29.4	:	*	· · *	•	• • • •
250.W	58242.6 58426.2	35.2 98.8 183.6	g . 2 •		• • •	×·	· • • •
230.W 220.W	58135.8 57850.9	-290.4	* I I	•	• • *	·	
210.W 200.W	57654.5 57584.0	-196.4 -70.5	2	e . o	• •	•	X
190.W 180.W	57812.5 57692.7 57760 1	228.5 -119.8		•	• •		
160.W 150.W	57837.1 57895.9	77.0		•	• •	•	
140.W 130.W	57938.1 58004.2	42.2 66.1			*	•	
120.W 110.W	58214.9 58204.8 58109 4			•		×.	
90.W 80.W	57992.1 57971.1	-117.3			• • ×	•	. o : • • ×
70.W 60.W	57966.3 57978.8	-4.8 : 12.5 :				-	• • ×:
50.W 40.W 30.W	57974.9 58106.0 58212 4	-3.9 : 131.1 :			• *	•	• ×:
20.W 10.W	58669.7 58423.8	356.3 :	•		•	• X	
0. 10.E	58014.0 58037.1	-409.8 : 23.1 :		-			
20.E 30.E 40.E	58001.0 57973.4 58182 2	-36.1 :	:		*	• •	• • • • • • • • • • • • • • • • • • •
50.E	58110.0 58104.1	-73.3 :	•	•	• • ×	× .	ф : с :
70.E 80.E	57859.2 57803.0	-244.9 : -56.2 :	-	•	• •	• •	• • × • • • • • • • • • • • • • • • • •
90.E 100.E	57872.7 57839 6	50.0 : 19.7 :	•	•	•	• •	•× : • × :
120.E 130.E	57856.4 57877.0	16.8 :	•	•	•	· · ·	ex :
140.E 150.E	57990.0 57938.8	113.0 : -51.2 :		•	•	· · ·	0 X : 0 X ·
160.E	57985.7 57966 0	46.9 :	•		•	• •	o x

210.	E 57861.	6 -268.7	1		•	•	•		e' 1
220.	E 58079.	5 217.9				. x	-		
230	F 58022	5 -57.0		•			-	i I	:
240	F 58069	8 47 3		•	•	•	•	• 1	•
250	F 57945	2 -124 6		•	•	• •	•	· · · ·	
200. R 260	E 57000	1 10		•	•	•	•	• •	X #
0^{200}	E 37992.			•	•	•	•	• • •	×
~ 270.	E 37961.	2 -30.9	:	•	•	•	•	• •	XI
280.	E 57957.	.2 -4.0	:		•	•	•	. 0	X I
	. • • .								
			میں بینے میں دین ہیں میں اس بینے ہے۔ ر						
SCINTR	EX V1.3	Magneto	meter						
Base F	ield 5800)0. *=Unc	orrected	Data	Ser No	:99898	8.		
Line:	100.N	Grid: LIZARD1	. Job:	1.	Date:	84/06/	15 Opera	ator:	1.
		na anta anta anta anta anta anta anta a							
🗙 Tota	l Field ((Gammas)	-800	-400	-	- 0 +	400	800	
o Tota	l Field ((Gammas)	-8000	-4000		- 0 +	4000	8000	
Statio	n. Mag F	Id Change	1 1						:
200.	W 58224.	.9 -	:	•			• X	. 0	1
190.	W 58235.	.0 10.1	:		•		. X		1
180.	W 58133.	2 -101.8	1	-	-	- x "			
170.	W 58084.	2 -49.0	•	•	•		•		
160	W 58091	7 75	:	•	•	• 0	•	• 1	:
150	N 57007	7	•	•	•	• ^	•	· I.	*
140	N 07007. U 67001	207.0		•	•	•	•		
1 20	W 37091.	a 176 3	1	•	•	•	•	· <u> </u>	
130.	W 37714.	-1/6.3	•	•	•	•	•	• ל	1
120.	W 57781.	0 66.1	• • • • • • • • • • • • • • • • • • •	•	. e .	•	•	•	
110.	W 28086.	9 305.9		•	•	• X * *	•	• •	1
100.	W 58016.	0 -70.9	:	•	•	×	•	• ¢	1
90.	W 57965.	5 -50.5	:	•	•	1	•	• •	XI
80.	W 58043.	.3 77.8	:	•	•	.x.	•	• ¢	:
70.	W 57551.	7 -491.6	1	•		•	•	¥• ¢	2
60.	W 58540.	3 988.6	:	•			•	k. 0	:
50.	W 58972.	9 432.6	:	•				. ``	. * X :
40.	W 58840.	4 -132.5	:					. xő	· •
30.	W 57952.	1 -888.3	:					. 0	XI
20.	W 57917.	8 -34.3	1						× :
10.	W 57907.	3 -10.5						5	
0.	58201	6 294.3			-		•		
10	F 58495	3 293.7		•	-	•	~ v		
20	F 58962	6 467 3	•	•	•	•	•	• •	
20.	F 58298	2 -664 4		•		•	•	• 2	
40	C 50250.	0 1202 6	:		•	•	• ^	• •	·····
	E 50066	2 _215 5		•	•	•	•	^ _	2:
50.	E 50900.	5 -010.0		•	× •	•	•	•	XI
	E J/242.	0 -1010.0		•	•	•	•	. 0	X #
70.	E 37938.	-11.3	•	•	•	•	•	• 9	X I
80.	E 38033.	7 33.7 C 77 0	•	•	•	• X	•	• •	1
90.	E 58111.	6 77.9	2	•	•	• X	•	•	:
100.	E 58044.	4 -67.2	1	•	•	• X	•	• 9	5
110.	E 57823.	0 -221.4	:	•	٠	•	•	• ¢×	;
120.	E 57532.	8 -290.2	:	•	•	•	• ×	ः ९	:
130.	E 58041.	9 509.1	3	•	•	• ×	•	• 9	:
140.	E 58048.	3 6.4	:	•	•	• X	•	• Q	:
150.	E 57942.	4 -105.9	:	•	•	•	•	. •	X:
160.	E 57571.	3 -371.1	:		•	• .	•	х. q́	1
170.	E 57811.	0 239.7	1	• .	•	•		. `+	:
)180.	E 57902.	5 91.5	:			•	•	. 0	x :
5 190.	E 57901.	4 -1.1	:	•		•	•	. 0	x :
200.	E 57922.	4 21.0	:				•		x :
210.	E 57935.	6 13.2	:					. 0	× :
220	E 57900	35.0	-	-	-		-		XI
- 107 B			-	•	•	-	•	- 4	

APPENDIX K

SUMMARY OF PROJECT COST AND STATEMENT OF EXPENDITURES FOR ASSESSMENT

	PROJECT AND PROGRAM COS	ST - 1	984
Pro	ject: Lizard Claims	Project # 95	0 AFE <u>#_E-329</u>
01	Salaries and Wages	CDN\$	13,635.46
02	Fringe Benefits		
03	Camp Expense		5,439.14
04	Shipping and Storage		
05	Travel Expenses		334.00
06	Management	· .	
07	Office and Technical Supplies		117.35
08	Communications		30.01
11	Geological Programs		69.75
12	Geophysical Programs		
13	Geochemical Programs		3,456.51
14	Photogrametry		
15	Drafting, Publications and Maps		
16	Assaying Charges		20.75
17	Auto Operation and Maintenance		1,620.46
18	Aircraft Charter - Fixed Wing		
19	Aircraft Charter - Helicopter		
21	Equipment Purchases and Maintenance		
22	Heavy Equipment Contracting		
23	Surveying and Line-cutting		
24	Drilling and Logging		
25	Exploration Mining		
28	Metallurgical Testing		
29	Bulk Sampling		
30	Consultants		
60	Legal Expenses		
61	Property Acquisition - Purchase		· · ·
63	Property Acquisition - Staking		3,927.99
65	Government Fees		800.00
66	Option Payments		ang ma dha dhan yang kan dha ang mang kan dhang dha ng dan sa
68	Tolls and Trespass Charges		
	Other		
	TOTAL		29,451.41
APPENDIX K

STATEMENT OF EXPENDITURES FOR ASSESSMENT

SUMMARY OF WORK: Geological mapping, geophysical survey, geochemical sampling.

PERIOD OF WORK: June 6 to August 30, 1984 **COSTS:**

Personnel

D. Mallalieu, geologist 37 days @ \$88/day	3,256.00	
T. Huttemann, assistant 37 days @ \$72/day	2,664.00	
G. Enns, geologist 4 days @ \$192/day	768.00	
G. Hendrickson, geophsycist 5 days @ \$192/day	960.00 7,648.00	7,648.00
Room and Board		

83 man-days @ \$37.50

Transportation

Redhawl	k Rental	ls, Bui	rnaby			
Toyota	Diesel	4x4-5	wks @	250	1,250	
Fuel					300	
					1.550	1.550.00

Geochemical Analysis

Acme Laboratories, Vancouver,

195 soil and silt samples for Cu,Pb,Zn,Ag,Au and Ba @ \$11.60 2,262.00

43 rocks samples for Cu,Pb,Zn,Ag,Au and Ba @ \$13.75 591.25 2,853.25 2,853.25

XRay Lab, Don Mills, Ont.

8 rock samples for major oxide and multi-element analysis plus preparation @ \$42.00

336.00

3,112.50

APPENDIX K STATEMENT OF EXPENDITURES FOR ASSESSMENT

Thin Sections

Vancouver Petrographics, Fort	Langley, B.C.	
22 thin sections @ \$7.75	170.75	
1 oversize section @ 45.00	45.00	
	215.00	215.00

Report Preparation

750.00

16,000 of this work to applied to: Lizard I Rec. No. 4943 (Nov) 4 years 10,000 Lizard 2 Rec. No. 4944 (Nov) 3 years 6,000

APPENDIX L

STATEMENTS OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

NAME: David Mallalieu ADDRESS: 701 - 1281 West Georgia, Vancouver, B.C. V6E 3J7 EDUCATION: B.Sc. - Honours Geology, 1983 Carleton University

EXPERIENCE:

May-Sept 1981	Mattagami Lake Exploration Ltd. Junior Geological Assistant
May-Sept 1982	Mattagami Lake Exploration Ltd. Senior Geological Assistant
April-Dec 1983	Billiton Canada Ltd Vancouver Senior Geological Assistant
May-Dec 1984	Kidd Creek Mines Ltd. Geologist

STATEMENT OF QUALIFICATIONS

NAME: S. G. Enns ADDRESS: 701 - 1281 West Georgia, Vancouver, B.C. V6E 3J7 EDUCATION: B.Sc. - Honours Geology 1967 University of Manitoba

> M. Sc. - Economic Geology 1971 University of Manitoba

EXPERIENCE:

Geol. Assist.	Manitoba Mines Branch -	1964 (field season)
Geol. Assist.	Sherritt Gordon Mins -	1965 (field season)
Geol. Assist.	Amax Exploration Inc	1966-70 (field season)
Geologist	Cerro Mining of Canada-	1971
Geologist	Hudson's Bay Oil & Gas-	1972
Geologist	BP Minerals Canada -	1973-75
Geologist	BP Alaska Exploration -	1975-79
Geologist	Amax of Canada -	1979-81
Geologist	Kidd Creek Mines Ltd	1982 - present

STATEMENT OF QUALIFICATIONS

NAME: Tim Huttemann ADDRESS: 701 - 1281 West Georgia, Vancouver, B.C. V6E 3J7 EDUCATION: B.Sc. - III year, applied mathematics University of British Columbia

EXPERIENCE:

Summer	81	Newmont - geological, geophysical assistant
Summer	82	Newmont - geological, geophysical assistant
Summer	83	Kidd Creek Mines - geophysical assistant
Summer	84	Kidd Creek Mines - geophysical, geological assistant.

GEOLOGICAL BRANCH ASSESSMENT REPORT 13,362

QUATERNA	RY IT
29	Blocky basalt flows
PLEIST	OCENE AND RECENT
28	Till, gravel, clay, silt, alluvium, (few if any bedrock exposures)
PLEIST	OCENE OR RECENT
27	Basaltic cinder cone (incorporates cobbles of older rocks)
TERTIARY	
26	26a, basaltic arenite, conglomerate breccia, rubble, basaltic flows, locally pillowed; 26b, extinct basaltic volcanoes, basaltic flows and cinder deposits
TERTIARY	NE AND/OB PLIQCENE
25	Plateau lava; olivine basalt, basalt andesite, related ash and breccia beds; basaltic arenite; 25a, olivine gabbro plugs
MIOCE	NE
24	DEADMAN RIVER FORMATION: shale, sandstone, tuff, diatomite, conglomerate, breccia
OLIGO	CENE
23	Andesite, dacite, felsite, related tuff and breccia; greywacke, shale; miner lightle and conglomerate
EOCEN	NE AND (?) OLIGOCENE KAMLOOPS GROUP (21, 22)
22	SKULL HILL FORMATION: dacite, trachyte, basalt, andesite, rhyolite, related breccias
EOCE	NE
21	CHU CHUA FORMATION: conglomerate, sandy shale, arkose, coal
CRETACEO	US
20	RAFT AND BALDY BATHOLITHS AND SIMILAR GRANITIC ROCKS: biotite quartz monzonite and granodiorite; minor pegmatite, aplite, biotite-hornblende, quartz monzonite; 20a, quartz diorite, diorite, granodiorite (may include some clider reacted). Db aplite lause a cuesta
APTIA	N AND/OR ALBIAN
	JACKASS MOUNTAIN GROUP
19	Greywacke, shale, siltstone; minor arkose and lenses of pebble conglomerate
JURASSIC	(?)
18	Shale, grit
17	Chert-pebble conglomerate, greywacke
JURASSIC	
SINEM	Porphyritic augite andesite breccia and conglomerate; minor andesite,
16	arenite, tuff, argillite, and flows (may include some 11; 16a, isolated areas of hornblende andesite (may be all or partly intrusive)

Andesitic arenite, siltstone, grit, breccia and tuff; local granite bearing conglomerate, greywacke; minor argillite and flows (may include some 11)

LEGEND

RHAET	IAN OR HETTANGIAN	
14	THUYA AND TAKOMKANE BATH hornblende-biotite quartz diorite monzonite, gabbro, hornblendite monzonite and granodiorite	OLITHS AND SIMILAH GRANITIC HOCKS: and granodiorite, minor hornblende diorite, ; 14a, diorite and syenodiorite; 14b, leuco-quartz
13	13a, fine- to medium-grained, 13b, medium-grained, creamy-bu svenite and monzonite	pink to brown and grey syenite and monzonite; iff, locally coarsely porphyritic (K-feldspar)
TRIASSIC		
KARN	IAN AND NORIAN NICOLA GROUP	
11	Augite andesite flows and brecci 11a, includes minor 3 and 10	a, tuff, argillite, greywacke, grey limestone;
10	Black shale, argillite, phyllite, silt	tstone, black limestone
PERMIAN	AND/OR TRIASSIC	
	Serpentinite and serpentinized n	eridotite
9	Serpentinite and serpentinized p	enotite
LATE	PERMIAN (?) EARLY AND/OR M PAVILION GROUP (7,8)	IDDLE TRIASSIC
8	Tuff, chert, argillite, limestone, g	reywacke, andesitic and basaltic flows
7	Chert, argillite, siltstone; minor t	uff and limestone
PERMIAN	ALUPIAN CACHE CREEK GROUP (4 to 6)	
6	MARBLE CANYON FORMATION minor argillite, tuff, andesitic an	l: massive limestone, limestone breccia and chert; d basaltic flows
WOLF	CAMPIAN TO GUADALUPIAN	
5	Argillite, basaltic flows, tuff, chert, limestone	12 12a, quartzite, quartz-phyllite, quartz- granule conglomerate, argillite, phyllite, calcareous phyllite, marble, greenschist, greenstone; 12b, dark grey and black
4	Basic volcanic flows, tuff, ribbon chert, limestone, argillite	argillite, siltstone, phyllite, minor limestor (Metamorphic equivalents 1, 2, 3, 10)
PENNSYLV	ANIAN AND PERMIAN	
3	Volcanic arenite, greenstone, arg basaltic and andesitic flows, arr small bodies of 16a	gillite, phyllite; minor quartz-mica schist, limestone, phibolite, conglomerate and breccia; includes
MISSISSIP	PIAN AND/OR LATER SLIDE MOUNTAIN GROUP	
2	FENNELL FORMATION: pillow I greenschist, argillite, chert, mind	ava flows, greenstone, foliated greenstone, or amphibolite, limestone, breccia
WINDERMI	ERE OR CAMBRIAN AND LAT	ER
1	Feldspathic quartz-mica schist, siliceous phyllite, quartz-hornbl greenstone, amphibolite	locally garnetiferous, micaceous quartzite, black ende-mica schist, marble, chlorite schist,
011110	WAR METAMORPHIC COMPLEY	
SHUS	Michaelus quartra faldenathia	naiss quartz-mica schiet amphibolita micacapus
A	quartzite, pegmatite	molos, quarte moa somat, ampinounte, moaceous

Rock outcrop
Geological boundary (approximate)
Bedding, tops unknown (inclined, vertical)
Bedding (as shown on cross-sections)
Schistosity, cleavage (horizontal, inclined, vertical)
Foliation (as shown on cross-sections)
Lineation (horizontal, inclined)
Fault (approximate, assumed)
Thrust fault (approximate, assumed)
Anticline (defined, approximate)
Syncline (defined, approximate)
Fossil locality
Mineral occurrence

MIN	ERALS
Coal Coal	Molybdenite mo
Copper Cu	Silver Ag
Diatomite diat	Volcanic ash ash
Gold Au	Zinc Zn
Lead Pb	

Geology by R.B. Campbell and H.W. Tipper 1964, 1965

To accompany Memoir 363 by R.B. Campbell and H.W. Tipper

Geological cartography by the Geological Survey of Canada

Base-map compiled by the Department of Lands, Forests and Water Resources, British Columbia, 1966. Produced by the Surveys and Mapping Branch, 1969

Magnetic declination 1970 varies from 23°23' easterly at centre of east edge to 23°36' easterly at centre of west edge. Mean annual change decreasing 3.3'

Copies of the topographical edition of this map may be obtained from the Map Distribution Office, Department of Energy, Mines and Resources, Ottawa

15

MAP 1278A GEOLOGY BONAPARTE LAKE BRITISH COLUMBIA Scale 1:250,000

 Miles
 4
 8
 12
 Miles

 Kilometres
 6
 0
 6
 12
 18
 Kilometres

_____ L E G E N D _____

+	Stream sediment sample (1984)
•	Soil sample (1978)
4/57/6	Cuppm/Pbppm/Znppm/Bappm
50	First order soil anomaly
45	Second order soil anomaly
50	First order stream sediment anomaly
*	Duplicate analysis
	GEOLOGICAL BRANCH ASSESSMENT PEROPT
	HOURDOWSHI MOPUKI
	17 7/9
	15 567
	Kidd Creek Mines Ltd.
	LIZARD CLAIMS
	GEOCHEMISTRY (1984) & SELECTED SOIL GEOCHEMISTRY (1978)
	TS 92P/16 Proj. 950
	WORK BY DRAWN BY DATE, NOV 21 / 1984
	DM/TH ER DATE: NOV. 2171904
	20 0 20 40 60 80 m.
	SCALE IN METRES 1 10,000

Figure: 16b

G N	
John	
(L_1)	
Y	
\sim	
\sim	
1	
	+ Stream sediment sample (1984)
	Soil sample (1978)
	0.1/5/45 Ag ppm / Au ppb/ Ba ppm
	1.5 First order soil anomaly
	1.8 First order stream sediment anomaly
	* Duplicate analysis
	Noto : Cingle values denote Aa only
	Note - Single values denote Ag only
	GEOLOGICAL BRANCH
	ASSESSMENT REPORT
	17 760
	12 201
	エンノンレー
	Kidd Creek Mines Ltd
	LIZARD CLAIMS
	GEOCHEMISTRY (1984) & SELECTED
	SOIL GEOCHEMISTRY (1978)
	Ag, Au, Ba
	WORK BY DRAWN BY
	DM/TH ER DATE: DEC. 3/1984
	20 0 20 40 60 80 m
	SCALE IN METRES 1 = 10,000
	Figure 16c
	rigule: IOC

Intrusive Rocks

·**

2g Ib

Eagle Bay Formation

Rhyolite sills/dykes

2a Quartzite, Quartz-wacke, Impure quartzite, Quartz-granule conglomerate 2 b Phyllite, Graphitic phyllite, Andalusite-biotite-muscovite schist, Cordierite-muscovite-biotite-schist, Biotite-quartz schist, Impure carbonate 2 c Quartz-muscovite schist, Chlorite-quartz-muscovite schist 2d Feldspar-quartz crystal tuff Lapilli-block tuff 2 e 0.0 . 2f Block-ash flow

EGEND-

Fennel Formation

۱a	Basalt

Ic Siltstone

<u>SYMBOLS</u>

the second of the

	Whole rock analysis
\bigcirc	Outcrop defined
C=0	Outcrop - position approximate
x	Debris
Þ	Geological contact - defined
do l	Geological contact - interpreted
	Geological contact (formational) - interpreted
+ + + ?+	Strike and dip of bedding (horizontal, inclined, vertical, dip no specified)
53	Tops of bedding - inclined
+11 ?1	Strike and dip of gneissosity, cleavage, foliation (horizontal, inclined, vertical, dip not specified)
55	Plunge of minor folds
×32	Pitch of a line in the plane of gneissosity, cleavage, foliation
+ - +	Antiformal axis - defined, assumed
	Plunge of fold axis
++	Synformal axis - defined, assumed
man	Fault (defined, approximate, assumed)
+	Sample locations, stream sediment

GEOLOGICAL BRANCH ASSESSMENT REPORT

	Z	ZLO	
	7.	206	
Ki	idd Cre	ek Mines Li	td.
	LIZAR	D CLAIMS	
×.			
× 1	CEC	NOCY	
* 	GEC	DLOGY	
*	GEC	DLOGY	
NTS 92 P/ 16	GEC	DLOGY	Proj.95
NTS 92 P/ IE	GEC DRAWN BY	DLOGY	Proj.95
NTS 92 P/16 WORK BY DM	GEC DRAWN BY ER	DATE: JAN. 7, 1985	Proj.95
NTS 92 P/ IE WORK BY DM 20	GEC DRAWN BY ER 0 20	DLOGY DATE: JAN. 7, 1985 40 60	Proj.950 80 m

Debris Geological contact-defined, approximate hypothesized. Bedding-(horizontal,inclined,vertical) Schistosity,gneissosity,cleavage,foliation -(horizontal,inclined,vertical) Jointing-(horizontal,inclined,vertical)

WN BY		DECEMBER	10 1004	
DGM	DATE :		10, 1984	1,5
20	40	60	80 m	
1 :	1000	Nov (195	Provide under stand marketing of the	
		NAMES OF STREET, STREET		