84-1427-13375

GEOLOGICAL BRANCH ASSESSMENT REPORT

1984 ASSESSMENT REPORT

on the

SALTSPRING ISLAND CLAIMS

by

D.G. Mallalieu, Geologist G. Hendrickson, P. Geophysicist S. G. Enns, Geologist, Supervisor

Saltspring Island - Victoria Mining Division NTS 92B/11, 12, 13 14

Lat. 48°45'N Long. 123°30'W

Owned and Operated by: Kidd Creek Mines Ltd.

December 1984

Vancouver, B.C.

TABLE OF CONTENTS

	rage
SUMMARY	i
INTRODUCTION	. 1
Location, Access and Physiography	7
Property History	4
1984 Work Program	4
GEOLOGY	7
Regional Setting	7
Property Geology	11
Introduction	11
Lithology and Stratigraphy	12
Structure \ldots	14
Metamorphism	15
Veining, Mineralization	15
GEOPHYSICS	18
Introduction	18
Comments on Results of Airborne Survey	19
Data Presentation	19
Survey Procedure	20
Equipment	20
Discussion of Results	22

C

TABLE OF CONTENTS (Cont'd)

Pa	ige
GEOCHEMISTRY	24
Introduction	24
Soil sampling 2	24
Rock Sampling 2	25
Analytical Control	26
Results	26
Presentation	26
Soil Anomalies	27
Rock Sampling Results	80
Discussion	32
REFERENCES	3

APPENDICES

(

Appendix	A	Convention for the sample numbering system
Appendix	В	Lithological descriptions of mapped rock types
Appendix	С	Geochemical results
Appendix	D	Methods for determination of first and second order soil geochemical anomalies
Appendix	Е	Log probability plots of Cu, Pb, Zn, Mn, Ag, Au in Soil-Musgrove Anomaly Grid
Appendix	F	Whole rock geochemical analysis data
Appendix	G	Statement of expenditures - Saltspring Island
Appendix	Н	Statement of Qualifications (for Assessment Report Only)

LIST OF FIGURES

Figure	Title	Scale	Page
		•	
1	Location Map	1:125,000	2
2	Claims Location Map	1:50,000	5
3	Geological Sketch Map of Vancouver Island	1:250,000	8
4	Property Geology	1:10,000	pocket
5	Musgrave Grid Geology	1:2,000	pocket
6	Musgrave Conductor Location Map	1:10,000	pocket
7pl	Magnetic Profile near Power Line	1:2,000	pocket
7a-j	Musgrave Conductor Lines A-J	1:2,000	pocket
8	Soil Sample Locations in Musgrave Grid	1:2,000	pocket
9	Cu, Pb, Zn Soil Results on Musgrave Grid	1:2,000	pocket
10	Soil Results on Musgrave Grid	1:2,000	pocket

LIST OF PLATES

Plate	Title	Page	
1	The Saltspring Island Massive Sulphide project-area as seen looking south from Mount Maxwell	3	
2	Jaspilite	17	
3a	Feldspar-glomerophysic diabase	Appendix	в
3b	Black Shale encountered at the road metal quarry, displaying a section of a parallel fold?	Appendix	B
4a	Rhyolitic tuff displaying cherty interbeds and feldspar crystal rich interbeds	Appendix	B
4 b	Feldspar crystal tuff	Appendix	в
5a	Lapilli-block tuff	Appendix	в
5b	Lopilli-block tuff - intermediate composition clast displaying 2 cm thick reaction rim	Appendix	В
6	Interbedded felsic tuff and siltstone	Appendix	в

LIST OF TABLES

Table	Title	Page
	Claim Status	6
2	Table of Formations of Vancouver Island	9
3	Definition of Soil Geochemical Anomalies	28
4	Statistics on Soil Geochemical Results	28
5	Statistics on Rock Geochemical Results	28
6	Statistics on Reference Sample SB-B, Analyses by Acme Analytical Laboratories Ltd., Vancouver	29
7	Statistics on Reference Sample SB-B, Analyses by Bondar-Clegg, Ottawa	29
8	Anomalous Rock Samples	31

0

C

SUMMARY

This report presents results of 1984 fieldwork on the Saltspring Island massive sulphide project. The purpose of the project was to explore for volcanic-hosted polymetallic, massive sulphide deposits in the Sicker Group rocks using a Kuroko deposit exploration model. The nearby 1 million ton, polymetallic Twin J and Lenora deposit, and Westmin's 20 million ton Buttle Lake deposit occur in the Sicker Belt.

The project-area consists of 10 claims (122 units) located on southwest Saltspring Island, about 70 km southwest of Vancouver in the Strait of Georgia. The claims are wholly owned by Kidd Creek Mines Ltd.

Fieldwork carried out between May 8 and December 4, 1984, consisted of reconnaissance geological mapping followed by Questor's INPUT Mk VI airborne electromagnetic and magnetic survey. Ground follow-up of a series of moderate strength conductors led to detailed field work in the Fulford Harbour area. This work consisted of linecutting, detailed geological mapping, rock and soil sampling, and detailed EM and magnetometer surveys along the grid lines.

The claims are underlain by steeply dipping, isoclinally folded shales, siltstones and diabases of the Sediment-Sill succession, which overlie mafic flows and felsic to intermediate pyroclastic rocks of the Myra Both formations of late Silurian to Devonian Formation. age have been intruded by gabbro. In the northern part of claims a magnetite iron formation (of the the Myra Formation) occurs intermittantly along strike for 5 km; its southeastern extremity culminates in small, а rhodonite quarry.

i

In the Fulford Harbour area, results show that strong Zn soil anomalies are associated with a 2 km long magnetic conductor which forms part of the Musgrave zone. This conductor lies in felsic tuff and siltstone on the flank of a gabbro sill (?). No mineralization has been observed in outcrops or in float.

Elsewhere on the property, minor copper mineralization is present as chalcopyrite in veinlets and disseminations in quartz veins within or near the contact of gabbro. The only significant gold mineralization occurrs in a quartz vein located within an Ecological Reserve on the southernmost part of the island near Cape Keppel.

The 1984 exploration expenditures totalled approximately \$97,500 of which \$48,200 has been applied to assessment.

ii

INTRODUCTION

Location, Access and Physiography

The Saltspring Island Claims (48°45'N, 123°30'W, NTS: 92B/11, 12, 13 and 14) are located on southerwestern Saltspring Island, approximately 70 km southwest of Vancouver and 35 km north of Victoria within the Strait of Georgia (Figure 1).

Saltspring Island is about 29 km long and 11 to 16 km wide. The project area is restricted to the southwest part of the Island, an area of about 50 square km. It is bounded by Musgrave Road, on the northeast and by the sea on the southwest.

Access to the Saltspring Island is gained by ferry from either Tsawwassen or Horseshoe Bay on the mainland, or from Schwartz Bay or Crofton on Vancovuer Island. Ferries arrive at Fulford Harbour, Long Harbour, or Vesuvius. A small float plane base at Ganges provides charter service.

Five, moderately well maintained municipal gravel roads provide access to the network of old, unmaintained logging roads and trails, on the property.

Topography is moderate and undulatory. Elevation ranges from sea level to 700 m at Bruce Peak (Plate 1). Brucey Lake, one kilometre southeast of Bruce Peak, represents the only significant accumulation of fresh water. Most of the island is dry due to low annual precipitation

The thickness of glacial drift is variable. The southwestern part of the project-area displays drift

Plate 1. Project Area looking from Mt. Maxwell

thickness in excess of 2 m. Ridges and hills are devoid of overburden.

Δ

PROPERTY HISTORY

Two mineral claims (Mesabi and Gogebic) covered the magnetic iron formation on the northwestern slope of Mount Sullivan as early as 1918.

Between 1930 and 1940, a 20 m long adit was driven down-plunge of an auriferous quartz vein located about 1.3 km east of Cape Keppel on the southernmost part of the island.

Gold in quartz veins has been reported by islanders at Beaver Point on the easternmost part of the island. These latter two occurrences are not mentioned in literature.

1984 WORK PROGRAM

The Saltspring Island massive sulphide project was initiated to explore for a polymetallic massive sulphide deposit hosted in the volcanic Myra Formation of the Sicker Group.

The project-area (Figure 2) consists of 8 claims (116 units) staked in Feburary 1984, and 2 more (6 units) staked during the summer. The initial staking was carried out by Van Alphen Exploration Services Ltd. of Smithers, B.C., on behalf of Kidd Creek Mines Ltd. Claims status data is given in Table 1. All claims are wholly owned by Kidd Creek Mine Ltd. and lie in the Victoria Mining District.

Claim	Units	Record No.	Location Date	Record Date	*Expiry Date
†Salt 1	12	1168	02/23/84	03/08/84	03/08/88
Salt 2	16	1169	02/19/84	03/08/84	03/08/87
Salt 3	2	1170	02/19/84	03/08/84	03/08/87
† Bruce 1	20	1171	02/19/84	03/08/84	03/08/88
†Bruce 2	20	1172	02/23/84	03/08/84	03/08/88
Sul 1	20	1173	02/19/84	03/08/84	03/08/87
Sul 2	20	1174	02/16/84	03/08/84	03/08/87
Mus	6	1175	02/18/84	03/08/84	03/08/87
†Musgrave	1 2	1340	07/19/84	07/30/84	07/30/88
†Musgrave	2 4	1344	08/02/84	08/07/84	08/07/88

TABLE 1

* Pending acceptance of assessment work by Gold Commissioner's office.

† Comprise the Hope group

Two phases of exploration were conducted. The first phase, conducted from May 5 to June 5, consisted of regional geological mapping and a helicopter geophysical survey conducted by Questor Surveys Ltd. The propertyused in the evaluation wide geological data was of airborne geophysical conductors. This was followed up by the second phase of exploration, conducted between July 12 and December 4. The more significant airborne conductors were checked by ground geophysics which indicated that the Musgrave zone in the Fulford Harbour area is the most Here, 11 cut lines (horizontally interesting anomaly. chained) totalling 9 line-km were mapped in more detail and surveyed by HLEM and magnetometer. Selected lines crossing the conductor were covered by soil geochemistry.

7

GEOLOGY

Regional Setting

Saltspring Island occupies a small portion of the eastern margin of the Cordilleran Insular Belt. The Belt is a highly varied assortment of volcanic, sedimentary, metamorphic and plutonic rocks ranging in age from Paleozoic to Tertiary. The allochthonous nature for the Insular belt proposed by several authors (Jones, 1977; Monger and Price, 1979; Monger and Irvine, 1980) has been widely accepted.

The Sicker Group is exposed in three separate structural highs indicated in Figure 3. The Saltspring Project occurs within the Cowichan-Horne Lake Uplift, which extends from Vancouver Island across to Saltspring Island.

Figure 3

Geological sketch map of Vancouver Island.

LEGEND	
GROUP	MIDDLE TERTIARY
NTRUSIONS	EARLY TO MIDDLE TERTIARY
VOLCANICS	EARLY TERTIARY
ROUP	LATE CRETACEOUS
RLOTTE GROUP	LATE JURASSIC
FORMATION COMPLEX	EARLY CRETACEOUS
RUSIONS	EARLY AND (?) MIDDLE
GROUP	EARLY JURASSIC
GROUP	
FORMATION DRMATION	LATE AND (?) MIDDLE
FORMATION	
r [.]	PALEOZOIC
C COMPLEXES	JURASSIC AND OLDER
- 21 × 106 tons	2% Cu , 6% Zn 2.5 oz Ag, 0.06 oz Au
oduced 19 x 10 ⁶ Lb 738 x 10 ³ Stockpiled) Cu 02 Au 6•7% Zn
CAPE SCOTT, 92 74-8)	L - 102 I
92 K (IN PREPA	RATION), O.P. MAP 345
ND. 92 E (IN PRE	PARATION }
F (G.S.C. PAPER	68-50)
PERS 75-IA, p.21-	RK IN PROGRESS: -26 :
7-111, 77-1A, p. 2	287-294,}
E UPLIFT -HORNE LAKE U UPLIFT	PLIFT
MILES 20	40
and the second	In the Contract of Contract

	TABLE OF FORMATIONS OF VANCOUVER ISLAND												
	SEQUENTIAL LAYERED ROCKS CRYSTALLINE ROCKS.COMPLEXES OF POORLY DEFINED AGE												
	PERI	00	STAGE	GROUP	FORMATION	SYM-	AVE.	LITHOLOGY	NAME	BOL	P5/U	AGE	LITHOLOGY
U					ate Tert.volc's of Port McNeill	Tvs					T		
ō					SOOKE	mpTse	1	conglomerate, sandstone, shale			ļ		
2	- (EOCENE to	CARMANAH	HESQUIAT	eoTc	1,200	sandstone, siltstone, coglomerate					quartzdiarite trandhiemite
ž	Í		OLIGOCENE		ESCALANTE	eĨE	300	conglomerate, sandstone	/silicic	Tg Tab	ŀ	32-59	ogmatite, porphyry
5			ecriy EOCENE		METCHOSIN	еТм	3.000	basaltic lava, pillow lava, breccia, tuff	METCHOSIN SCHIST.GNEISS	TMn		47	chlorite schist, gneissic amphibolite
			ALESTRIC LITIA	, ,	GABRIOLA	UKGA	350	sandstone, conglomerate	LEECH RIVER FM.	JKi		38-41	phyllite.mica schist.greywacke. argillite.chert
				.	SPRAY	uKs	200	shale, siltstane	1				
					GEOFFREY	uKG	150	conglomerate, sandstone					
					NORTHUMBERLAND	υKN	250	siltstone;shale, sandstone					
		w	CAMPANIAN	NANAIMO	DE COURCY	uKDO	350	conglamerate, sandstone	1				
		<			CEDAR DISTRICT	uKco	300	shale, siltstone, sandstone					
		-			EXTENSION - PROTECTION	uKer	300	conglamerate,sandstone,shale, coal	1				
υ					MASLAM	uКн	200	shate, siltstone, sandstone	1				
12			SANTONIAN		COMOX	υKc	350	sandstone, conglomerate, shale, coal					
2			CENOMANIAN	DOLLERN	Canalamarata Unit	110	1	constamenta annuarka	1				
o		Σ	ALBIAN	CHARLOTTE	Siltstone-Shale Unit	1Kon	50	siltstone shale	(i	[
S		A R	ALANGRAN	CHARLOTTE	IONGARM	111	250	arevwarke consistentite sillstooe					
N N	U	900 2000	BARREMIAN	KYUQUOT	ONE TREE	IKot	500	situtore molifite conclomente	PACIFIC RIM COMPLEX	JKP			greywacke.orgillite.chert.basic
<	ŝ	ġ₹	CALLOVIA		KAPOOSE	UJK	1	anatoriet angint net congromer di e	ISLAND INTRUSIONS	10		141-181	granodiorite, quartz diorite,
1	2	512	TOARCIAN?		Volcanics	IJø	1,500	basaltic to rhyolitic lava, tuff, breccia, minor orgillite, greywocke	WESTCOAST silicic	PMns	264	43_102	quartz-feldspargneiss.
	3	N.	SINEMURIAN	DOMAINZA	HARBLEDOWN	IJн		argillite, greywacke, tuff	COMPLEX basic	PMnb		~~ ~~	hornblande-plagioclase gneiss.
1	U	w	NORIAN		PARSON BAY	UR PE	450	limestone.minor conglomerate.brectio					bolite
	SS	F	KARNIAN	VANCOUVER	QUATSINO	ulka	400	limestone		L _			1
1 .	X	-			KARMUTSEN	mulk	4,500	basalic lava, pillow lava, breccia, tuff	diabase sills	PRD			
	19	ž	LADINIAN		Sediment-Sill Unit	īds	750	metasilistone, diabase, limestone	metovolcanic rocks	PMmv			metavolcanic racks, minor meta-
<u>v</u>	Ϋ.				BUTTLE LAKE	CPB	300	limestone, chert	· · · · · ·	1			beorgevits (nuestione, and the
١ <u>ö</u>	N.N.N.				"NANOOSE"	CPS	600	metagreywacke.orgillite.schist.marble					
0	an.	1_]	SICKER	Sediment~ Sill Unit	PTds	500	metagreywacke,argillite diabase	SALTSPRING INTR]				metro conscionite metro contradio
	10		l		MYRA	PM	1,000	silicic tuff, breccia argillite	TYEE OTZ. PORPHYRY	Pg	>390		nte,metaquartz porphyry
à	DEV.				NITINAT	PN	2,000	basic breccia, tuff, lava, greenschist	WARK DIORITE GNEISS	Prib	>200	63-18	ahornblende-plagipclase gneiss quartz diarite, amphibalite

TABLE 2

(after Muller, 1981)

sedimentary rocks in aggregate thickness (Muller, 1981). The unit may be coeval with the Buttle Lake Formation or slightly older. It is estimated to be 500 m thick.

The Buttle Lake Formation marks the top of the Sicker Group. It is composed dominantly of limestone, commonly crinoidal with associated chert, greywacke, and argillite. The formation is about 150 to 450 m thick (Fleming <u>et al</u>, 1983). It has been dated by paleontology as Middle Pennsylvanian and Early Permian (Muller, 1980).

The Sicker Group has been deformed and metamorphosed primarily in the greenschist facies. Folding and tectonic fabrics are variably developed, however, schistose and lineated rocks are common.

Property Geology

Introduction

The Saltspring Island geology is comprised of lower Sicker Group formations including the Nitnat and Myra Formations, the Sediment-Sill succession and the Saltspring Intrusions. These are uncomformably overlain by the Cretaceous Nanaimo Group comprised of sandstone and conglomerate.

Reconnaissance geologic mapping covering about 50 square km (1:10,000 scale) was conducted over the project-area (Figure 4). An up-to-date B.C. Government Municipal Planning Services Division map of the same scale was used for ground control. Several pace and compass traverses were conducted in areas of poor access, and minor shoreline work was conducted along the western coastline of Saltspring Island, south of Burgoyne Bay. Detailed mapping (1:2,000 scale) was carried out over approximately 2.5 square km in the Fulford Harbour area (Figure 5). This was done to evaluate an airborne conductor known as the Musgrave zone. Cut lines were used for ground control.

The outcrop is abundant over much of the terrain but often bedrock is obscured by a thin veneer of ground vegetation. Hand stripping the vegetation reveals excellent quality bedrock exposure for mapping.

Lithology and Stratigraphy

Geology of the Saltspring project claims is shown at a scale of 1:10,000 on Figure 4. The more detailed geology (1:2,000) of the Musgrave anomaly is shown on Figure 5.

Five Formations were recognized on Saltspring Island. From oldest to youngest these Formations are: Myra Formation (map-unit 1), Saltspring Intrusion (map-unit 2), Sediment unit (map-unit 3), and the Mafic Intrusion (map-unit 4). All these Formations belong to the Sicker Group. The Youngest stratigraphic unit is the Extension-Protection Formation (map-unit 5) of the Nanaimo Group.

Lithological descriptions of the mapped units are given in Appendix B. The terms gabbro and diabase are used synonymously in this report.

The Sediment-Sill unit proposed by Muller (1980) has been divided into the Sediment unit (map-unit 3) and the Mafic Intrusion unit (map-unit 4).

Volcanic rocks of the Myra Formation (map-unit 1), occupy the northern part of the Saltspring project-area and are considered to be of greatest

exploration importance; the sedimentary rocks of the Sediment unit (map-unit 4), lie mainly in the south and west part of the project area.

Volcanic rocks consist of felsic to intermediate tuff/crystal tuff/lapilli tuff, minor massive felsic flows or hypabyssal intrusions and mafic flows. Felsic tuffs are commonly laminated with light green and pale white bands. Where thinly bedded, these bands are often undulatory.

Mafic volcanic rocks, mapped as andesite, basaltic-andesite, and basalt (map-unit 3 m) with one exception, are always in close proximity to rocks of the Intrusion (map-unit 4). Mafic A good portion may therefore actually represent a chill margin to a gabbro During mapping, medium- to course-grain size intrusion. was used as the main criteria for discriminating between these two units. If future evidence proves map-unit 3 m to be a chilled gabbro intrusion then it must be included with map-unit 4a.

The Mafic volcanic rock encountered on the north side of the Musgrave Conductor has distinctly different textural characteristics than the mafics encountered elsewhere in the Myra Formation and Sediment Sill unit. This rock-type may represent the older Nitinat Formation which lies along strike with it on the west side of Sansum Narrows.

The iron formation, on the west slope of Mount Sullivan, is hosted in chlorite schist and lapilli tuff. Jaspilite and bedded chert with thinly bedded magnetite and rare, thin (1-3 mm) pyrite bands are present on the east side of the project-area near the Holling's Rhodonite Quarry. All three occurrences are approximately on-strike

with one another and they represent a useful marker horizon.

The Sediment unit (map-unit 3) is composed predominantly of black shale. Medium-grained, dark green mafic volcanic rock is the subordinate lithology. The southwestern half of the project area is underlain by the Sediment unit.

Hypabyssal intrusions abound in the projectarea. The Saltspring Intrusion (map-unit 2) is a holocrystalline, leucocratic quartz porphyry. It is present on the north shore of Burgoyne Bay. The Mafic Intrusion unit (map-unit 4) consists of gabbro/diabase, feldspar-glomerophyric diabase and amphibole pegmatite plutons and sills. The unit occurs throughout the Myra Formation and Sediment unit.

Structure

The volcanic and sedimentary rock succession present on the Saltspring project is steeply dipping and is interpreted to be overturned and isoclinally folded, as shown by the schematic cross-section on Figure 4. Fold axes have a shallow plunge to the northwest.

succession generally strikes The northwest with a mean dip of 57° to the southwest. Bedding is common in the felsic tuffs and siltstones of the Myra deformation Soft sediment Formation. is. locally exemplified by load casts and slump structures. Angular shale rip-up clasts are locally present and suggest the presence of weak marine currents. Facing determinations are made difficult by fine-grain size in siltstone, the prevalence of laminate-type bedding and by the presence of minor fold structures. These determinations in laminated siltstones indicate bedding tops to the west, but the overall folding geometry is insufficiently known to relate them to fold limbs in the stratigraphy.

Schistosity in the shales of the Sediment unit (map-unit 3) is moderately well developed. Intersections of schistosity and subtle bedding are rare.

Two major faults occur in the project area. In the north, the Fulford Harbour Fault occupies the centre of the Burgoyne Bay-Fulford Harbour Valley and trends 120°. In the south, the Tzuhalem-Fault separates the Extension-Protection Formations from the Sediment The Tzuhalem Fault is northwesterly trending and unit. northeasterly dipping (Graves, 1960). It brings in small wedge of the Extension-Protection contact а Formation conglomerate (map-unit 5) of the Nanaimo Group with the Sediment and Mafic Intrusion units of the Sicker Group.

Elsewhere in the project-area, faulting was not perceived as a major feature.

Metamorphism

The Myra Formation, the Sediment and Mafic Intrusion units on Saltspring Island have been affected by low-grade greenschist facies metamorphism.

Contact metamorphism was noted adjacent to gabbroic intrusions. It predates regional metamorphism of sedimentary and volcanic rocks and resulted in locallized zones of silicification and bleaching of country rock near the intrusive contact.

Veining, Mineralization

A magnetite iron formation on the west slope of Mount Sullivan is indicated on Figure 4. It strikes to the northwest and is about 250 m in length and 50 m in

width. This showing consists of magnetite in bands up to 10 cm thick with interbeds (2.3 cm) of cherty material and dull red jasper. Soft sediment deformation has resulted in elliptical to oblate jasper clasts hosted in a granular magnetite. Specularite occurs locally in association with magnetite. Randomly oriented, barren white guartz veins (up to 2 cm in width) cut the iron formation at all angles. Neither they nor the host rock display enrichment base metals (Appendix C, samples in precious or AB Two samples of "solid iron ore" assayed 16811-AB 16817). by the Department of Mines (1918) revealed:

		Fe	S	P	Si	Ti
Sample	1	30%	Tr	0.28	53.3%	nil
Sample	2	39.58	Tr	1.02%	34 %	nil

The 1918 Annual Report of the Minister of Mines stated, "there are other outcroppings exposed by smaller open-cuts in which the mineralization is composed principally of pyrrhotite, with very little copper sulphide ore associated." These open cuts were not located.

An occurrence of jasper-hematite-rich mudstone siltstone (Plate 2) and magnetite-rich mudstone/siltstone, intermittently exposed over 1 km, was found by detailed mapping on the upper slopes of the Musgrave grid. This iron formation lies four kilometres to the southeast of and essentially along strike with the Mount Sullivan prospect. This occurrence, shown as IF on Figures 4 and 5, culminates 1 km farther to the southeast in a well known rhodonite deposit, the Hollings Rhodonite Quarry (Figure 4).

Plate 2

Jaspilite bifurcating barren - white quartz veins occupy spaces between tectonically brecciated Jasper fragments. Line E 8+60 - 8+70W DM-941-84-438 The exposure in the rhodonite quarry is about 20 m by 10 m. Exposed is massive, flesh pink rhodonite cut by randomly oriented, narrow, pale brown (rhodonite?) veinlets (5 to 10 mm, 2%). The hanging wall (?) consists of rhyolitic tuff and narrow beds (10 cm) of magnetite, jasper and medium green chert. Pyrite occurs as disseminations, exhibits bedding features and accounts for up to 10% of the rock.

Samples of pyrolusite-rhodonite from the quarry revealed low values in base and precious metals, but high values in Mn (19% to 21%) and Ba (5,500 ppm).

An auriferous quartz vein, located in the Ecological Reserve along Mountain Road near Cape Keppel, had an inclined adit sunk during the 1930's or 1940's. This vein plunges 32° to the north and contains significant Au values (2.0 to 3.4 ppm as indicated by samples AB 16822 to 16824, Apendix C). It lies close to the gabbro contact.

Massive, milky-white quartz veins, found sporadically on the claims, show close association to the margins of the gabbro. Vein widths range from 30 to 100 cm. The veins sometimes contain minor sulphides (less than pyrite, chalcopyrite, pyrrhotite).

GEOPHYSICS

Introduction

from initial airborne Results an electromagnetic survey, are covered separately in a contractor's report by Questor Surveys Ltd. (Konings, The airborne survey was done with the helicopter 1984). INPUT system. This report will cover the follow-up ground geophysical surveys with some comments on the relations to the airborne results.

A total of 9.5 kms of ground electromagnetic survey was completed. Ground magnetic surveys amounted to 6 km.

Comments on Results of Airborne Survey

A perusal of the airborne eletromagnetic and magnetic survey data combined with preliminary geological reconnaissance, indicated that zones 6C and 6D (referred to as the Musgrave conductors in this report) were the priority follow-up targets. Only the Musgrave conductors received ground geophysical surveys. Visual inspection of the area around airborne anomalies 37D and 7A strongly suggests cultural (man-made) sources. Anomaly 7A appears to be a well-grounded steel fence. Anomaly 37D appears to be a powerline, but may warrant a second inspection. Zone 13F appears to be of such limited size that follow-up is not warranted at this time.

Numerous, weak responses were recorded in the Sediment unit on the south side of the property. These are not of interest at this time due to the nature of the geology.

Data Presentation

The data is presented in profile form at a scale of 1:2,000, superimposed on the topography for each line (Figure 7a to 7k). This type of presentation can be regarded as a series of sections. Correlation between lines is at times tenuous due to the 200 meter line separation. A plan view of the Musgrave conductors' spatial position is provided at a scale of 1:10,000 (Figure 6).

All electromagnetic data is presented in percent of the primary field strength (at a scale of 1 cm = 20%).

Magnetic data is total field, as provided by the high resolution Scintrex Proton magnetometers. This data is generally plotted in profile form at a scale of 1 cm = 100 nanotesla.

Survey Procedure

Equipment

- 1 Apex Parametrics Maxmin II electromagnetic system
- 1 Apex Parametrics Maxmin III electromagnetic system

1 - Scintrex MP 3 magnetometer

 1 - Scintrex I.G.S.-2 data acquisition system configured to be a base-station magnetometer.

In the area of anomalies 6C and 6D the heavily forested hillside has dense undergrowth which necessitated line cutting. A grid of 10 lines, orientated N 40E and spaced approximately 200 metres apart, was established over zones 6C and 6D. This grid is known as the Musgrave conductor zone. These lines are perpendicular to the assumed strike of the Myra Formation rocks. The ten lines, labelled A to J, were chained independently of each In addition, anomaly D, on airborne line 10210S, other. had one line cut over it. Here, severe powerline noise prevented the collection of any meaningful electromagnetic however, the magnetic data was acceptable. data; Reinterpretation of this airborne anomaly shifted its location eastward toward the lower end of the cut line. This anomaly is too close to the power line to be confidently evaluated on the ground.

All cut lines were chained with corrections for the slope. These corrections ensure a station separation of 20 metres in the horizontal dimension. Topographical profiles of each line were also created to provide the information necessary for coil orientation

(horizontal coplanar coils) and to assist in the subsequent interpretation of the data.

Horizontal coplanar loop electromagnetic surveying was completed using various coil separations (80, 120 and 200 metres) and various fequencies (3555 HZ, 1777 Hz and 888Hz). The higher frequencies are necessary to detect and to resolve poor conductors. Electromagnetic readings were taken at 20-metre intervals along the lines and appropriate corrections for coil separation variations were applied to each in-phase reading.

The lighter, Maxmin II was used for the 80and 120-metre coil separation work. The more powerful Maxmin III was used for the 200-metre coil separation work to maintain good signal-to-noise ratio. Note that depth of investigation is primarily a function of coil separation.

Magnetic (total field strength) readings were taken at 10-metre intervals along all lines. During the course of the magnetic survey, a base station magnetometer was run continuously to monitor the diurnal shift of the earth's magnetic field. The portable magnetometer was used with the sensor attached to a tall staff to ensure magnetic objects created by on the against errors portable base station operator. Both the and magnetometers were total-field, microprocessor-controlled performing automatic diurnal instruments capable of corrections and plotting when connected to each other and to a suitable printer. The base field chosen for the survey was 56300 nanotesla.

Due to a minor malfunction of the base station magnetometer, the data for lines J, G and F were not automatically correctable. The diurnal change during the day that these lines were read was also monitored by the portable unit and found to be less than 20 nanotesla, thus the data was accepted.

Lines C and D have not yet received magnetometer coverage.

Discussion of Results

Due to the microwave and radio transmitters located in the centre of the property, a high level of electromagnetic noise exists in the survey area. Therefore, maintaining excellent signal-to-noise ratios in the H.L.E.M. work was important.

The airborne magnetic data shows that only a portion of the rocks mapped as gabbro/diabase have a high Some of the stronger airborne magnetic susceptibility. anomalies related to andesite flows. magnetic are the magnetic susceptibility of Clearly, these rocks depends on their magnetite concentration.

The Sullivan magnetite-jasper showing is not obvious on the airborne magnetic map, probably because of its small size and its proximity to the magnetic gabbro immediately to the south.

The poor quality airborne conductors necessitated the use of a ground technique sensitive to poor conductivity. The 3555 frequency of the Maxmin II on the horizontal coplanar loop mode is ideal for this job. surveying would also be effective but would. V.L.F. require extensive filtering to remove terrain effects.

The Musgrave conductor zone consists of two parallel conductors (#1 and #2) approximately 200 metres apart at the southeast end of the grid. These two conductors may converge farther to the southeast. The Iron Formation, Rhodonite Quarry and conductors are much each other in the southeast corner of the closer to Conductor #1 has received the most work to property. This conductor is over 2 km long. date. Airborne E.M. results suggest the zone probably doesn't extend more than about 200 metres NW of Line A. The Southeast extent is not known and further work is certainly warranted southeast of Line J.

Musgrave conductor #1 is narrow (1-2 metres in width) generally has weak conductivity. The and quadrature H.L.E.M. data suggest that that the width may be slightly better than indicated. The best conductivity thickness occurs on Lines E, F, G and H. The conductivity thickness products are around 1-5 siemens. The conductor is hosted in rocks varying from rhyolite tuff to black siltstone. A moderate-strength zinc and silver, soil geochemical anomaly is associated with the conductor.

The attitide of Musgrave conductor #1 is approximately 60° to the SW, however, at Lines F and G, the dip appears to change to steeply NE. Geology in this area indicates directional change and a thickening of the stratigraphy. The conductor is also directly associated with an interesting, moderate strength magnetic anomaly. Conductive, magnetic zones generally are indicative of pyrrhotite mineralization.

Musgrave conductor #1a, appears as a small distortion on the south flank of the Musgrave #1 profiles for Line B. The nature of this response suggests a very conductive non-magnetic, rod-shaped conductor of limited strike extent, perhaps the pinched-out nose of a fold.

This conductor lies in very silica-rich rock mapped as rhyolitic tuff.

Musgrave conductor #2 also lies in interesting geology, however, it has only been partially outlined on the ground and no soil geochemical work has covered it to date.

Overburden is less than 2 or 3 metres thick on the grid. Outcrop areas are frequent. The Musgrave conductors probably subcrop below the overburden.

The large coil separation work distorts shallow conductors. The limited amount of completed large coil separation work does not indicate that conductivity thickness improves at depth. If evaluation of the shallow conductors is encouraging, further large coil separation work will be warranted. This would, however, be based first on a re-evaluation of the existing INPUT data over the grid.

GEOCHEMISTRY

Introduction

Soil sampling

The geochemical soil survey conducted on the Saltspring project was of a supplementary nature to determine whether a base metal association was present with the Musgrave conductor. The sampling was selective, restricted to soil coverage of the conductor zone. 270 soil samples were collected.

Sampling of the B-Fe soil horizon was carried out at 20 m intervals along cut lines B through I on the Musgrave Grid (Figure 8). Samples were also collected at 30 m intervals along a pace and compass line bearing 315° about 100 m east of the Musgrave Road and along the road itself, in a direction paralleling the slope.

Soil horizon development is excellent in the vicinity of the Musgrave Anomaly Grid. The B-Fe horizon is commonly as little as 2 cm below the organic-rich A horizon and in some places, is up to 40 cm thick.

Soil sampling was carried out by using a soil mattock. Collecting sixty to seventy samples per man-day was considered good progress.

Samples were collected in Kraft paper envelopes, partially dried at room temperature, and delivered to Acme Analytical Laboratories Ltd. (Acme), Vancouver. The samples were dried at 60°C, sieved to -80 mesh and analysed. All pulp and oversize were retained.

The -80 mesh fraction was analysed as follows:- a 0.500 g sample was digested with 3 ml of a 3:1:3 solution of HCl-HNO3-M2 at 95°C for one hour and diluted to 10 ml with water. The solution was then analysed by inductively coupled plasma (ICP) for Aq, Cu, Using the same sample preparation as Pb, Zn and Mn. above, Atomic Absorption Spectrometry (AA) analysis was performed for Au on alternate samples. A larger sample (10 g) was used in this case.

Rock Sampling

Rock geochemical sampling is mainly restricted to the outcrops found on the Musgrave Anomaly Grid, but 26 samples were collected from sites scattered across the project area. A total of 74 rock samples was collected. Locations are plotted on the geology map (Figures 4 and 5).

Sample masses ranged from 0.5 to 4 kg of unweathered material. All samples were pulverized to -100 Cu, Pb, Zn, Ag and Mn were analysed by ICP and AA mesh. was used to analyse for Ba and Au. Acme performed major oxide whole rock analyses by ICP on two samples. X-Ray Assay Laboratories Limited (X-RAY) of Don Mills, Ontario, performed whole rock analysis by X-ray fluorescence (XRF) and 35-element analysis by neutron activation (NAA) and direct current plasma analysis (DCP) on 5 samples (Appendix C).

Analytical Control

Analytical control was maintained through the use of Kidd Creek's internal standard SB-B for each batch of twenty soil samples submitted. Comparisons between Acme's ICP results and the Bondar-Clegg's AA results are presented in Tables 5 and 6, which show that the Mn analysis by ICP read consistently higher than the accepted standard value given in Table 6.

Results

Presentation

The location of all soil geochemical samples is shown on Figure 8. Soil geochemical results are presented on Figures 9, 10.

Geochemical results for rock and soil are listed in Appendix C and statistics are condensed in Tables 3 to 5. Lithology for rock samples may be determined from the geology maps (Figures 4 and 5). Computer print-out reports for whole-rock analysis are given in Appendix F.

The methods used for the determination of "strong" and "weak" soil geochemical anomaly thresholds are discussed in Appendix D.

Soil Anomalies

The most significant geochemical soil anomaly consists of three related weak to strong Zn anomalies which lie along the Musgrave Road between Lines H and J. (Figure 9). These anomalies carry values ranging between 400 and 1100 ppm Zn. The strongest of the anomalous soil zones on Line J is open to the southwest. This group of In soil anomalies also shows a few scattered, weak Cu and Ag values, and is associated directly with the EM conductor. It is underlain at this locality by a narrow band of black siltstone, near its contact with feldspar crystal tuff to the northeast and gabbro to the southwest. Several smaller Zn soil anomalous zones are scattered northwest along the same conductive horizon as shown in Figure 9. These soil anomalies show similar weak Cu and Ag association here and there. No cultural contamination was noted during the soil survey so that the Zn anomalies are presumed to reflect zinc and related possibly weak Cu-Aq mineralization associated with the conductive zone.

A single Pb anomalous sample (60 ppm) at about 34+00W, Line G, is accompanied by a weak Cu (165 ppm) and a strong Mn (6642 ppm) anomaly. It occurs within centimetres of the magnetite iron-formation.

The only strong Au anomaly (50 ppb) indicated by a single sample is located about 80 m south of 27+20W, Line C. It is associated with a strong Zn sample (702 ppm) and overlies rhyolitic tuff along the extension of

Tal	ole 3 Defi	nition of Soil	Geochemical	Anomalies
		Strong	Weak	Background
Ag	(ppm)	> 1.6	> 0.7	0.3
Au	(ppb)	> 60	> 20	7
Cù	(ppm)	> 200	> 100	36
Mn	(ppm)	> 500	>3500	880
Pb	(ppm)	> 50	n/a	10
Zn	(ppm)	> 600	> 300	110

Table 4 Statistics on Soil Geochemical Results

	n	max	min	X	Ø	σ
(ppm)	225	1.5	0.1	0.3	0.3	0.2
(ppb)	110	50	5	6	7	5
(ppm)	226	207	10	43	36	27
(ppm)	226	6446	231	1050	880	771
(ppm)	227	47	1	12	10	8
(ppm)	226	1151	27	172	110	175
	(ppm) (ppb) (ppm) (ppm) (ppm)	n(ppm)225(ppb)110(ppm)226(ppm)227(ppm)226	nmax(ppm)2251.5(ppb)11050(ppm)226207(ppm)2266446(ppm)22747(ppm)2261151	nmaxmin(ppm)2251.50.1(ppb)110505(ppm)22620710(ppm)2266446231(ppm)227471(ppm)226115127	nmaxminx(ppm)2251.50.10.3(ppb)1105056(ppm)2262071043(ppm)22664462311050(ppm)22747112(ppm)226115127172	nmaxminx&(ppm)2251.50.10.30.3(ppb)11050567(ppm)226207104336(ppm)22664462311050880(ppm)2274711210(ppm)226115127172110

Table 5 Statistics on Rock Geochemical Results

	n	max	min	x	8	ď
(ppm)	68	1.9	0.1	0.3	0.1	0.2
(ppb)	66	3400	5	6	5	4
(ppm)	59	5480	9	117	100	133
(ppm)	66	1874	1	35	13	51
(ppm)	68	32	1	8	6	8
(ppm)	66	153	2	52	45	38
	(ppm) (ppm) (ppm) (ppm) (ppm)	n (ppm) 68 (ppb) 66 (ppm) 59 (ppm) 66 (ppm) 68 (ppm) 68 (ppm) 66	nmax(ppm)681.9(ppb)663400(ppm)595480(ppm)661874(ppm)6832(ppm)66153	nmaxmin(ppm)681.90.1(ppb)6634005(ppm)5954809(ppm)6618741(ppm)68321(ppm)661532	nmaxminx(ppm)681.90.10.3(ppb)66340056(ppm)5954809117(ppm)661874135(ppm)683218(ppm)66153252	nmaxminxbg(ppm)681.90.10.30.1(ppb)663400565(ppm)5954809117100(ppm)66187413513(ppm)6832186(ppm)6615325245

n=number of samples max = maximum value min = minimum value = arithmetic mean Х Ø = median

Table 6		Stati Ana	stics on lysis by	Referenc Acme Ana Vancouve	Sample SB-B Lytical Laboratories Ltd , B.C.			
		n	max	min	x	Ø	σ	
Ag	(ppm)	12	0.3	0.1	0.15	0.1	0.07	
Au	(ppb)	9	5	5	-5	5	0	
Cu	(ppm)	12	194	122	175	182	20	
Mn	(ppm)	12	408	259	343	348	38	
Pb	(ppm)	12	37	20	27	25	6	
Zn	(ppm)	12	98	60	85	87	10	

Table 7Statistics on Reference Sample SB-BAnalyses by Bondar-Clegg, Ottawa

		n	max	min	X	Ø	σ
Ag	(ppm)	15	0.1	<0.1	<0.1	-	
Au	(ppb)			-			
Cu	(ppm)	15	168	157	163	·	4
Mn	(ppm)	15	270	255	263	-	6
Pb	(ppm)	15	28	22	25	· · · ·	2
Zn	(ppm)	15	81	75	78	-	2
the Musgrave conductor. A weak single sample Au anomaly (30 ppb) at 2+40W, Line E, is accompanied with a weak Cu anomaly (101 ppm). It overlies rhyolitic tuff and a westerly dipping EM conductor.

Several Mn anomalous soil samples were taken between 30 and 130 m east of the Musgrave Road on Lines D and E. They are isolated, small anomalies, the strongest of which at 2+20E on Line E is 20 m downslope from weak Cu and Au values in soil. The source of anomalous Mn in soil is unknown. Immediately downslope of a thin magnetite iron formation on the upper part of Lines I and F, Mn displays values of 4275 ppm and 6642 ppm, respectively. Α weak Cu anomaly (165 ppm) is associated with Mn on Line F. Two isolated Cu anomalous samples occur about 20 m upslope of the occur about 20 m upslope of the iron formation on The samples were taken in proximity to diabase, Line I. and so could reflect chalcopyrite mineralization in quartz veins.

Rock sampling results

Most of the rock samples were collected to determine the presence of base, precious metal and manganese content.

Two significant findings emerged. The iron formation contains locally anomalous Mn content with no base metal association and possibly Ba-enrichment.

The quartz vein upon which an adit was driven in the Cape Keppel area contains significant Au and minor Cu values.

The anomalous samples with explanations are listed in Table 8.

30

APPENDIX B

LITHOLOGICAL DESCRIPTIONS OF MAPPED ROCK-TYPES

Unit 5a Polymictic conglomerate

Polymictic conglomerate was mapped northeast of Cape Keppel on the north side of South Mount Tuam Road. Matrix-supported clasts (2 to 40 cm, 50%) are rounded and consist of chert, diorite and jasper magnetite. The matrix is beige to light green, and psammitic in nature. Granules of quartz, shale and sandstone (<4mm, <20%) are randomly distributed throughout the fine-grained Jasper clasts (35%) are composed of angular groundmass. jasper fragments (<10 m, 40%), supported in a massive, grey-white cryptocrystalline quartz-magnetite matrix.

Bedding is rare.

Unit 5b Siltstone

Siltstone is a black to dark grey, fine-grained gritty textured rock. Locally, dark and light-grey bedding is displayed on fracture/joint facies. It is locally calcareous, with carbonate existing as aphanitic interstitial grains (<2%).

Unit 4a Gabbro/Diabase

Gabbro/diabase of the mafic intrusion unit is medium green, and fine- to coarse-grained. massive, Plagiocalse and actinolite (0.5-10 mm, 50:50) phenocrysts are subhedral blocky to euhedral lath-like. They are randomly distributed throughout a fine-grained subophitic of identical mineralogy. Massive textured matrix minor interstitial will contain equigranular phases anhedral plagioclase and actinolite.

TABLE 8. ANOMALOUS ROCK SAMPLES

	Sample	Result	Location	Remarks
AB	16819	1203 ppm Cu	southwest project-area on MUS claim.	Reflects copper content of weak, malachite- mineralized quartz vein material. Negligible precious metal content.
AB	16822	4298 ppm Cu 20.0 ppm Ag 3400 ppb Au	east of old adit beside Mountain Road, near Cape Keppel.	Quartz vein material with pyrite and malachite. Presence of Au and minor Ag indicated.
AB	16823	1074 ppm Cu 12.5 ppm Ag 2000 ppb Au	southwest wall of adit, same locality.	Minor disseminated pyrite and chalcopyrite. Presence of Au and minor Ag indicated.
AB	16824	3209 ppm Cu 9.4 ppm Ag 125 ppb Au	face of same adit.	Barrent white quartz material. Presence of copper indicated.
AB AB	16905 16906	211600 ppm Mn 186466 ppm Mn	Hollings Rhodonite Quarry	Samples of rhodonite with pyrite, magnetite and quartz. Base and precious metals absent. Ba content indicated in last sample.
AB	16907	191000 ppm Mn 5480 ppm Ba	same	
AB	16925	4744 ppm Mn	upper end of Line E on Musgrave Grid.	Jaspilite, white quartz-bearing iron formation. No oxide of suphides of Fe noted
AB	16926	2964 ppm Mn	same	but Mn content indicated.
AB	16943	1247 ppm Cu 65 ppb Au	upper end of Line H on Musgrave Grid.	Quartz vein material with minor suspected chalcopyrite. Weak precious metal associatio indicated.
AB	16944	1874 ppm Cu 1.9 ppm Ag	same.	

O

Discussion

Comparison of statistics of soil and rock geochemical results show the similarity of mean values for Ag, Au, Cu and Pb (Cu values are similar when the maximum values of 1874 and 1247 ppm attributed to chalcopyrite in quartz veins are eliminated), suggesting that metal values in soils reflect low metal values in rock. The difference and between Zn background levels in soil rock is attributed an approximate threefold hydromorphic to enrichment of Zn in the soils.

Mallalieu

S. G. Enns

REFERENCES

- FLEMING, J., WALKER, R., and WILTON, P., 1983. Mineral Deposits of Vancouver Island: Westmin Resources (Au-Ag-Cu-Pb-Zn), Island Copper ((W-Au-Mo), Argonaut (Fe) in Field Trip 9: Guidebook, Geological Association of Canada - Mineralogical Association of Canada -Canadian Geophysical Union, Joint Annual Meeting, Victoria, British Columbia. p. 5-19.
- GREEN, G.R., OHMOTO, H., DATA, J., AND TAKAHASHI, T., 1983. Whole-Rock Oxygen Isotope Distribution in the Fukazawa-Kosaka Area, Hokuroko District, Japan and Its Potential Application to Mineral Exploration. Econ. Geol. Mon. 5, p. 395-411.
- GROVES, W.O., 1960. The General Geology of the Mt. Tuam Area, Saltspring Island, British Columbia. Unpublished B.Sc. thesis, University of British Columbia, Vancouver, B.C.
- JONES, D.L., SILBERLING, N.J. and HILLHOUSE, J.W., 1977. Wrangellia - A displaced terrane in northwestern North America. Canadian Journal of Earth Sciences, V. 14, p. 2565-2577.
- KALOGEROPOULOS, S.I., and SCOTT, S.D., 1983. Mineralogy and Geochemistry of Tuffaceous Exhalites (Tetsusekiei) of the Fukazawa Mine, Hokuroko District, Japan. Econ. Geol. Mon. 5, p. 412-432.
- KONINGS, N.J., 1984. Electromagnetic and Magnetic survey, Kidd Creek Mines Ltd. Saltspring Island 1984 AEM, Questor Surveys Ltd., Project # 26H19.
- MONGER, J.W.H. and PRICE, R.A., 1979. Geodynamic evolution of the Canadian Cordillera-progress and problems, Canadian Journal of Earth Sciences, V. 14. p. 2565-2577.
- MULLER, J.E., 1980. The Paleozoic Sicker Group of Vancouver Island, Geological Survey of Canada, Paper 79-30.
- MULLER, J.E., 1981. Insular and Pacific Belts in Field Guide to Geology and Mineral Deposits, Geological Association of Canada - Mineralogical Association of Canada - Canadian Geophysical Union, Joint Annual Meeting, 1981, Calgary, Alberta. p. 316-334.

- SLOAN, W., 1919. Annual Report of the Minister of Mines for the Year Ending 31st December, 1918. Mining Operations for Gold, Coal, Etc. in the Province of British Columbia. p. 299-300.
- TSTUTSUMI, M., and OHMOTO, M., 1983. A Preliminary Oxygen Isotope Study of Tetsusekiei ores associated with the Kuroko Deposits in the Hokuroko District, Japan. Econ Geol Mon 5, pp 433-438.

APPENDIX A CONVENTION FOR THE SAMPLE NUMBERING SYSTEM

(

APPENDIX A

CONVENTION FOR THE SAMPLE NUMBERING SYSTEM

The convention for designating rock samples from the Saltspring Island Massive Sulphide Project-area is based on a sequence of four sets of letters and numbers. A typical sample e.g., DM-941-84-180 is discussed below:-

DM-sampler First and last initial of the sampler. DM - David Mallalieu TM - Tim Huttemann

941 - Project Number 941 designates the project

84 - Year 1984 specifies the year of sampling

180 - Sample Number - <u>180</u> represents the number within a series.

The exception to this convention is where only one letter and one number is present e.g. E-13. This designates the sampler (Enns) and the number of a sample within a series.

APPENDIX B

C

LITHOLOGICAL DESCRIPTIONS OF MAPPED ROCK-TYPES

Unit 4b Feldspar-glomerophyric diabase

Feldspar-glomerophyric diabase (Plate 3a) is a fine-grained, medium dark green, massive rock in which glomerophyric textures are generated by the clustering of individual plagioclase phenocrysts into rosettes (1-2 cm <20%)) or snowflake patterns. The groundmass is composed predominantly of fine-grained actinolite and isolated, equant greenish-white (1-2 mm, 7%) plagioclase. This lithology often occurs near the diabase/gabbro contact and may be a contact phase.

Unit 4c Amphibole pegmatite

Amphibole pegmatite is a massive black rock composed of random oriented euhedral to subhedral (5-15 mm) amphibole laths (50-80%) locally dusted with red powdery hematite. Plagioclase is white, anhedral to subhedral lath-like (2 mm) and interstitial to amphibole.

Units 3s Blackshale-siltstone

The blackshale-silststone is a fine-grained fissile, to weakly fissile, dull black rock. It is thinly bedded. When in close proximity to diabase sill, silicification of this rock results in the 'bleaching' to a pale green-white.

Carbonate occurs as individual grains (<0.5 <5%) randomly distributed throughout or as rare, mm " narrow veinlets (1-6 mm) accounting for up to 40% of the parallel cleavage. rock. Veinlets are aligned to Minor pyrrhotite and pyrite (totalling <2%) occur locally as disseminations and blebs. Pyrite accounts for up to 5% of the mode as smears on fracture surfaces. Graptolite? or plant debris(?), fossils were encountered on a road quarry about 2 km south of Bruce Peak (EM 941-84-033).

Plate 3a Feldspar-glomerophyric diabase TH-941-84-006

3 -

Plate 3b

Black Shale encountered at the road metal quarry. Section of a parallel fold? DM-941-84-033

Unit 3p Muscovite Schist

Muscovite schist was intersected on the south side of Musgrave Road in the vicinity of the road quarry (DM-941-84-033). It is a fine-grained, pale green, highly lustrous, schistose rock. A rusty weathered unknown metallic mineral (1 mm, <2%) is randomly distributed throughout. It is stretched into the plane of schistosity.

Unit 3g Greywacke, psammite

Greywacke is a massive, fine-grained grey to grey-green rock composed of detrital quartz, feldspar and calcite. Rock fragments are not evident.

Psammite is a light grey, fine-grained rock containing minor (<1%) fragments of feldspar (10 mm) hosted in a quartz-rich groundmass. Orange-weathered, needle-like (3 x 0.2 mm, 5%) mica grains defines a slight schistosity.

Unit 3c Marble and impure carbonate

Marble is massive, а fine-grained, transluscent white rock exhibiting a rough "scaley" fracture surface. The rock effervesces vigorously upon exposure to HC1. Impure carbonate is a fine-grained, (<0.1 mm) grey to grey-green rock with a gritty texture. Bedding is defined by subtle colour variations and by 5 to 10 mm thick, pale white siliceous interbeds. The rock reacts only slightly to HCl.

Unit 3i Lapilli tuff

Lapilli tuff was recognized in only one locality within the Sediment unit. It was intersected immediately west of Mount Tuam near the eastern property boundary of the Tibetan Buddhist retreat.

- 4 -

It is a medium green, slightly chloritic, massive, intermediate to mafic-composition rock. Randomly distributed throughout are anhedral white feldspar crystals (1 to 2 mm, 2 to 3%) and lithic clasts of felsic composition (1 by 2 cm, <5%). Lapilli are aligned parallel to a mild deformation fabric.

Unit 3m Mafic volcanic rocks

Mafic volcanic rocks are massive, fine- to coarse-grained and dark green. Only rarely is a slight foliation evident. Greenish-white, anhedral sub-equant to subhedral lath-like plagioclase phenocrysts (1 to 3 mm, randomly distributed throughout to 78) are а 1 Matrix is subophitic textured. fine-grained groundmass. It is composed of subhedral lath-like amphibole (green to <2 mm, 40-50%) partially enclosing plagioclase black) laths.

Flow textures and fabrics are conspicuously absent.

Unit 3d Dacite

Dacite is a massive, buff-white weathering unit. The fresh surface is light greenish, composed of a fine-grained aggregate of quartz, feldspar and amphibole. A lineation is defined by acicular, dark grey amphiboles (1 by 10 mm) aligned parallel to a weak foliation.

Unit 2a Quartz porphyry

Quartz porphyry of the Saltspring Intrusion is a leucocratic granitoid rock occupying the north shore of Burgoyne Bay.

Grey to light-blue subhedral equant quartzeyes (3 to 5 mm, 5%) and anhedral fine-grained hornblende and biotite clots (5mm, 5 to 15%) are randomly distributed throughout a fine-grained grey to white quartz-feldspar matrix.

Unit 1t Rhyolitic tuff

Rhyolitic tuff is a pale white to pale green, fine-grained to cryptocrystalline, finely laminated, cherty rock. Needle-like plagioclase crystallites (0.1 by 1 mm) are rare. Crystallites are off-white, aligned parallel to bedding and locally account for up to 5% of the mode.

The best example of rhyolitic tuff exhibiting laminated bedding is on Line B; east side of Musgrave Road (Plate 4a). Beds, 3 cm thick contain white, elliptical feldspar crystals (1.5 by 4 mm, 25%) alternate with beds 4 cm thick devoid of crystals (cherty interbeds). Grading in crystal-rich beds is not evident.

Unit 1x Feldspar crystal tuff

Feldspar crystal tuff is encountered north of the Musgrave Road and is most evident in the vicinity of the eastern half of the Musgrave Grid.

It is a grey fine-grained moderately schistose to massive intermediate composition rock. Randomly distributed throughout are equant to elliptical, creamwhite plagioclase crystals (1 mm, 20%) on elongate, off-white, feldspar-rich lapilli (2 by10 mm, 10%), aligned parallel to schistosity (Plate 4b). Minor equant quartz crystals (<1 mm, <1%) are disseminated throughout.

Unit 1p Chlorite-sericite schist, chlorite schist

Chlorite-sericite schist and chlorite schist are gradational units. They are usually in close proximity to feldspar crystal tuff.

- 6 -

Plate 4a

Rhyolitic tuff. Cherty inter-beds dominate the photograph. Fine, white feldspar crystals dominate the second and third interbeds form the top. Line B 3+00W 25 m S DM-941-84-458

Plate 4b Feldspar crystal tuff E-13 The rock is pale-green, lustrous, aphanitic, and strong to weakly schistose. Rarely highly diffuse, elongate feldspar crystals (2 by 4 mm) account for up to 10% of the mode.

Unit li Lapilli tuff, lapilli-block tuff

Lapilli tuff, lapilli-block tuff was encountered in three areas within the Myra Formation: a) the western slopes of Hope Hill

b) the northern and western slopes of Bruce Peak andc) the western and northern slopes of Mount Sullivan

The rock is monolithic in all localities except in location (a), where its heterolithic nature is displayed (Plates 5a, b). The matrix of the rock is dark green, medium-grained, moderately chloritic to finegrained grey. Sausseritized feldspar crystals (3 mm, 7%) are randomly distributed throughout. Composition ranges from mafic to intermediate.

Lapilli are buff-white, about 3 cm in diameter rounded to angular and account for 5 to 7% of the rock. Elliptical blocks, up to 100 cm in length and 15 cm in width (25%) are buff-white to grey-green and aligned parallel to a mild schistosity. Locally, (Hope Hill) a grey reaction 1 m 4 cm thick, surrounds the blocks.

Clasts intermediate are to mafic in composition. Mafic clasts are composed of fine-grained, lath-like actinolite and feldspar. Anhedral feldspar 15%) crystals (3mm, are randomly distributed throughout.

Plate 5a Lapilli block tuff. Heterolithic pyroclastic flow. DM-941-84-022.

Plate 5b Lapilli-block tuff Intermediate composition clast of tuffacoeus origin. It exhibits a 2 cm thick reaction rim.

Unit 1q Quartz-feldspar-phyric rhyodacite to rhyolite

Quartz-feldspar-phyric rhyodacite to rhyolite is a massive grey green to pale-white, fine-grained rock. Cream-white, subhedral blocky to anhedral plagioclase phenocrysts (3 mm, 10%) and locally subhedral quartz phenocrysts (1 mm, <2%) are randomly distributed throughout.

Randomly oriented, barren, white quartz veins (<100 cm) are locally present.

Unit 1d Dacite

Dacite is a massive grey to light-green, fine-grained, aphyric to feldspar phyric rock. Subhedral lath-like to blocky feldspar phenocrysts (1 mm, 3%) are yellowish-green and randomly distributed throughout.

Unit 1m Mafic volcanic rocks.

Mafic volcanic rocks are, for the most part, identical in composition and texture as those described in Unit 3m.

The mafic volcanic rock encountered on the Musgrave Grid is massive, fine-grained, grey with a slight mauve tinge. Anhedral, grey to transluscent grey feldspar phenocrysts (1 mm, 2%) are distributed through a non-chloritized matrix. Flow textures and fabrics are conspicuously absent.

Outcrop is typically rubbly and exposure is poor.

Unit 1a Amphibolite

Is a massive, blue-green, moderately chloritic rock. Amphibole is subhedral lath-like (< 1 cm, 80%), randomly oriented throughout. Feldspar is anhedral, equant, and interstitial to amphibole. It is up to 5 mm in diameter. It displays a greenish-white rim and dark green core. It locally accounts for 50% of the rock.

Amphibolite likely represents a metamafic flow.

Unit 1s Siltstone

Siltstone is a fine-grained blocky, massive to moderately fissile rock. It is thinly bedded and is 'bleached' to a pale green-white when in proximity to diabase sills.

Interbeds (< 1 cm) of grey to black siltstone (50%) and white, fine-grained felsic tuff (50%) locally exhibit graded bedding (Plate 6). Angular rip-up clasts of siltstone (3 x 15 cm, 15%) encompased in felsic tuff was encountered in one locality.

"Pillow-like" concretionary structures up to 50 cm in diameter were recognized in a single outcrop east of Burgoyne Bay.

Unit 1c Impure carbonate

Impure carbonate was encountered in a single outcrop on the Musgrave Grid. It is fine-grained, sugary textured, siliceous rock exhibiting diffuse thin, white and blue-black (4 cm) bedding. It is moderately calcareous.

The rock is likely related to interbedded siltstone and felsic tuff.

Plate 6 Interbedded felsic tuff and siltstone displaying graded and cross bedding. Line 1 3+10E E-1

APPENDIX C GEOCHEMICAL RESULTS

C

KIDD CREEK MI	INES	PROJE	.01 - 0	741	FILE #	84-351
SAMPLE#	Cu	РЪ	Zn	Ag	Mn	Ац*
	ppm	ppm	ppm	ppm	ppm	ррб
SA-20995 SA-20996 SA-20997 SA-20998 SA-20998	20 38 43 17 19	6 20 14 31 23	93 100 112 377 106	.3 .1 .1 .2	289 921 1129 1305 474	16
SA-21000 SA-21001 SA-21002 SA-21003 SA-21004	22 62 50 29 20	21 21 20 20 18	105 930 184 66 62	.4 .9 .1 .1	1447 1686 1365 937 1310	
SA-21005 SA-21006 SA-21007 SA-21008 SA-21009	15 23 108 57 40	15 5 30 25 16	58 71 993 573 259	.1 .2 1.5 .5	614 775 2783 1678 755	$\frac{1}{1 \frac{1}{1}}$
SA-21010	50	14	283	.4	651	
SA-21011	32	22	320	.3	2382	
SA-21012	40	15	560	1.2	631	
SA-21013	38	11	275	.4	756	
SA-21014	189	30	87	.2	357	
SA-21015	35	18	263	.5	1275	$\frac{3}{1}$
SA-21016	54	19	593	.8	2978	
SA-21017	42	15	212	.4	1142	
SA-21018	34	12	298	.4	1253	
SA-21019	14	18	628	.2	921	
SA-21020	46	12	54	.95	506	
SA-21021	46	16	71	.5	465	
SA-21022	29	17	57	.2	1352	
SA-21023	17	9	91	.2	1502	
SA-21023	47	24	103	.2	4275	
SA-21025 SA-21025 SA-21027 SA-21028 SA-21028	37 30 40 35 20	10 15 12 11 11	50 91 114 105 86	.2 .1 .3 .3	474 2263 2691 923 1803	3 - 5 - 5
SA-21030	51	16	101	.4	2223	-
SA-21031	218	12	75	.4	2321	3
STD C/AU 0.5	61	41	130	5.8	1123	500
SA-21032	119	8	48	.1	808	-
SA-21033	43	29	108	.1	1794	-
SA-21034	165	31	75	.2	326	-
SA-21035	67	14	109	.3	1623	1
SA-21035	90	17	132	.5	1014	-
SA-21037 SA-21038 STD C/AU 0.5	40 165 56	15 60 40	175 136 118	.1 .6 5.8	2638 6642 1041	1

(

(

8

KIDD GREEK	MINES	FROJE	CT #	941	FILE #	84-3229
SAMPLE#	Cu	FЬ	Zn	Ag	Mn	Au*
	ppm	ppm	ppm	ppm	ppm	ррЬ
SA-20976	22	12	167	.2	1000	
SA-20977	17	13	197	. 1	1668	5
SA-20978	23	1	110	. 1	1082	
SA-20979	21	12	135	. 1	708	5
SA-20980	34	22	187	.3	992	
SA-20981	17	6	53	. 1	231	5
SA-20982	29	17	759	. 1	872	
SA-20983	37	6	888	.2	1136	5
SA-20984	182	25	78	. 1	354	-
SA-20985	21	3	227	.3	456	5
SA-20986	52	5	44	.5	295	• <u>-</u>
SA-20987	195	2	110	.2	624	5
SA-20988	38	23	137	.3	2782	-
SA-20989	34	17	63	. 1	600	
SA-20770	41	5	84	. 4	905	-
SA-20991	91	1	55	. 1	775	5
SA-20772	62	4	35	. 1	780	
SA-20993	62	7	35		792	5
SA-20994	60	2	34	.1	790	- ·
STD C/AU 0.5	62	38	127	6.6	1080	505

Ô

0

O

KIDD CREEK	MINES	FRUJE		741	FILE #	84-022
SAMPLE#	Cu ppm	Fb ppm	Zn ppm	Ad Wdd	Mn ppm	Au* ppb
SA-20939 SA-20940 SA-20941 SA-20942 SA-20943	42 31 48 39 98	15 1 9 1 7	101 64 195 73 116	.7 .3 .3 .3 .8	1635 398 632 809 1043	5 - 5 - 5
SA-20944 SA-20945 SA-20946 SA-20947 SA-20948	194 104 24 32 19	23 9 5 5 9	87 144 46 57 42	.1 .5 .2 .1 .2	370 1507 355 298 372	5
SA-20949 SA-20950 SA-20951 SA-20952 SA-20953	30 51 29 24 46	4 8 12 11 7	73 79 54 69 53	. 1 . 1 . 1 . 2	501 777 495 1133 474	5 - 5 - 5
SA-20954 SA-20955 SA-20956 SA-20957 SA-20958	42 38 25 33 27	3 5 12 5 19	61 90 81 66 63	.2 .1 .2 .2 .1	808 1053 1315 341 580	5-5-
SA-20959 SA-20960 SA-20961 SA-20962 SA-20963	34 16 33 20 32	9 1 7 9 8	75 54 53 54 109	.1 .3 .2 .4	953 785 385 725 686	5 - 5 - 5
SA-20964 SA-20965 SA-20966 SA-20967 SA-20968	191 25 27 22 36	20 2 19 10 1	89 111 131 154 75	. 2 . 1 . 2 . 1 . 1	355 1023 1567 2722 726	រ ហ្វ ។
SA-20969 SA-20970 SA-20971 SA-20972 SA-20973	30 12 17 48 61	5 7 2 13 4	63 170 102 114 85	. 1 . 2 . 1 . 2 . 1	438 921 549 862 1398	5 - 5 - 5
SA-20974 SA-20975 STD C/AU 0.5	69 32 51	5 8 38	158 158 125	.2 .1 5.3	1359 916 1057	- 5 510

(

C

KIDD CRE	EK MINES	PROJE	ECT #	941	FILE #	84-3229
SAMFLE#	Cu ppm	Fb ppm	Zn ppm	Ag ppm	Mn ppm	Au * ppb
SA-20702 SA-20703 SA-20704 SA-20705 SA-20705	17 164 26 29 26	14 24 11 12 6	58 77 73 73 58	.4 .3 .2 .1 .2	1210 342 812 719 574	וטו
SA-20907 SA-20908 SA-20909 SA-20910 SA-20911	43 47 60 46 82	13 9 3 7 23	111 130 255 203 372	.3 .4 .5 .2 .4	3534 2314 2295 1015 6446	5 - 5 - 5
SA-20912 SA-20913 SA-20914 SA-20915 SA-20916	31 31 63 20 17	11 12 9 8 17	190 61 58 41 70	.2 .1 .2 .1 .1	487 1563 594 286 1404	5-5-
SA-20917 SA-20918 SA-20919 SA-20920 SA-20921	37 35 38 132 19	8 14 12 7 9	60 59 93 57 41	.1 .2 .3 .9 .3	549 1668 1442 712 298	5151
SA-20922 SA-20923 SA-20924 SA-20925 SA-20925	48 122 49 70 22	7 20 10 13 4	129 60 161 90 44	.4 .2 .5 .4 .3	1875 259 718 1194 508	ן נא <u>ו</u>
SA-20727 SA-20728 SA-20729 SA-20730 SA-20731	40 24 16 21 25	11 16 11 12 7	119 78 66 81 67	.3 .1 .2 .2 .1	2154 775 419 597 421	5
SA-20732 SA-20733 SA-20734 SA-20735 SA-20736	29 20 35 10 19	8 14 17 9 8	105 89 158 55 45	.4 .2 .1 .1	447 1528 1617 601 812	- 63 - 63 -
SA-20937 SA-20938 STD C/AU 0	30 22 .5 58	2 7 38	40 48 123	.1 .1 5.5	268 550 1067	5

.1

0

0

C

KIDD CREEK	MINES	PROJ	ECT #	941	FILE #	84-322
SAMPLE#	Cu ppm	Fb. ppm	Zn ppm	Ag ppm	Mn ppm	Au* ppb
SA-20845 SA-20845 SA-20847 SA-20848 SA-20849	65 64 23 37 45	1 13 4 5 6	190 1151 78 57 214	.3 .2 .2 .1 .4	1299 1445 467 381 1177	5-5-5
SA-20870 SA-20871 SA-20872 SA-20873 SA-20874	42 43 54 189 34	8 10 12 25 8	252 245 137 93 266	.2 .2 .2 .1 .3	879 486 1492 378 1371	5 5 5
SA-20875 SA-20876 SA-20877 SA-20878 SA-20879	60 107 144 38 49	7 10 16 5 9	110 115 87 93 83		681 1078 1021 647 1041	5 - 5 - 5
SA-20880 SA-20881 SA-20882 SA-20883 SA-20883	37 26 26 51 41	1 6 10 22 10	54 204 89 133 58		397 776 614 1350 743	- 5 - 5 -
SA-20885 SA-20886 SA-20887 SA-20888 SA-20888 SA-20889	82 51 14 19 24	11 1 4 33 12	112 54 36 101 113	.2 .1 .3 .2 .3	1182 389 315 402 455	5 - 5 - 5
SA-20870 SA-20871 SA-20872 SA-20873 SA-20873	37 68 47 170 58	7 18 14 37 27	63 100 83 87 198	.2 .3 .2 .1 .5	353 1197 1458 332 3760	- 5 -
SA-20895 SA-20896 SA-20897 SA-20898 SA-20898	55 39 52 26 62	16 21 25 14 2	244 277 312 210 202	.5 .4 .7 .2 .7	5024 3189 1128 2245 4381	ច - ច - ច
SA-20900 SA-20901 STD C/AU 0.5	90 207 59	5 10 41	93 105 129	.3 .5 5.5	1108 1234 1038	

ò

(

C

C

KIDD CR	EEK MINES	PROJE	ECT #	941	FILE #	84-3229
SAMPLE#	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Mn ppm	Au x ppb
SA-20828 SA-20829 SA-20830 SA-20831 SA-20832	66 58 29 31 25	18 3 29 14 9	183 60 117 112 100	- 7 - 3 - 4 - 3 - 1	508 320 2583 1313 561	5
SA-20833 SA-20834 SA-20835 SA-20836 SA-20837	147 37 34 25 32	25 6 12 13 8	79 49 27 41 179	.2 .2 .3 .1	311 256 493 261 283	5 5 5
SA-20838 SA-20839 SA-20840 SA-20841 SA-20842	37 89 119 52 19	12 12 19 22 7	423 326 728 624 148	.4 .8 1.2 .3	1281 1055 1475 1904 752	- 5 - 5 -
SA-20843 SA-20844 SA-20845 SA-20845 SA-20846 SA-20847	47 101 47 43 37	22 11 11 4 3	487 603 299 137 123	.5 .6 .3 .5	2452 517 332 347 282	5 - 5
SA-20848 SA-20849 SA-20850 SA-20851 SA-20852	25 48 44 47 36	24 9 25 14 12	275 170 853 83 153	.3 .7 .3 .3	1327 542 1590 326 742	- 19 -
SA-20853 SA-20854 SA-20855 SA-20855 SA-20857	166 49 54 25 34	22 13 8 19 10	83 460 558 231 500	- 1 - 6 - 4 - 2 - 3	317 2900 - 914 1600 - 713	ហ - ហ - ហ - ហ
SA-20858 SA-20857 SA-20860 SA-20861 SA-20862	25 23 30 35 32	9 14 19 22 6	579 727 409 295 296	. 1 . 1 . 2 . 4 . 1	664 1182 1437 1488 1043	5
SA-20863 SA-20864 STD C/AU (53 65 0.5 61	12 5 38	151 230 129	.1 .1 5.7	1075 1054 1040	5 - 490

C

KIDDCRE	EK MINES	PROJ	ECT # '	941	FILE #	84-3229
SAMFLE#	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Mn ppm	Ац* ррб
SA-20775 SA-20775 SA-20777 SA-20778 SA-20778 SA-20779	68 35 181 66 23	11 5 37 11 11	105 64 84 93 47	.1 .2 .1 .2	1616 583 329 1219 470	<u>ទ</u> ាសារ ទាសារ
SA-20780 SA-20781 SA-20782 SA-20783 SA-20783	66 62 22 20 62	13 12 19 10 10	74 125 81 48 83	.2 .1 .2 .1 .2	1097 1172 2675 592 664	5
SA-20785 SA-20786 SA-20787 SA-20788 SA-20789	41 29 20 21 36	4 15 8 6 12	61 55 51 67 58	. 2 . 1 . 1 . 4 . 1	524 398 581 419 396	5 - 5 - 5 - 5
SA-20790 SA-20791 SA-20792 SA-20793 SA-20793	33 31 21 24 24	8 9 13 7	58 55 54 74 61	. 1 . 1 . 1 . 1	502 334 376 560 1017	5 - 5 -
SA-20795 SA-20796 SA-20797 SA-20798 SA-20799	13 23 191 22 40	2 11 28 14 10	54 141 91 108 214	.1 .1 .1	881 1265 366 909 1511	មេរស
SA-20800 SA-20817 SA-20818 SA-20819 SA-20820	23 31 47 44 40	12 9 5 9 15	111 134 102 70 94	• 1 • 1 • 1 • 1 • 1	764 2134 921 927 1182	5 5
SA-20821 SA-20822 SA-20823 SA-20824 SA-20825	58 84 27 30 25	20 9 18 14	125 122 64 121 97	.2 .1 .2 .1 .1	1236 1230 475 838 726	5 - 5 - 5
SA-20826 SA-20827 STD C/AU 0	102 101 .5 61	17 9 41	195 186 128	.2 .5 5.5	2069 1028 1035	

 \bigcirc

C

C

KIDD CRE	EK MINES	FROJI	ECT #	941	FILE #	84-3229
SAMFLE#	Cu ppm	F'b ppm	Zn ppm	Ag ppm	Mn ppm	Ац* ррь
SA-20738 SA-20739 SA-20740 SA-20741 SA-20742	26 49 62 34 63	8 4 21 22 32	62 81 371 428 618	.2 .5 .5 .4 .4	582 787 1180 788 1158	- 5 - 5 -
SA-20743 SA-20744 SA-207 45 SA-20746 SA-20747	35 100 56 35 43	13 47 20 12 6	118 535 199 110 221	. 5 . 2 . 4 . 6 . 1	471 2004 1190 1030 656	5 - 5 - 5
SA-20748 SA-20749 SA-20750 SA-20751 SA-20752	66 81 67 86 51	21 28 17 13 30	438 702 123 130 110	.1 .7 .1 .2 .3	639 1182 436 865 822	50 - 5 -
SA-20753 SA-20754 SA-20755 SA-20756 SA-20757	87 67 37 30 190	21 15 7 14 34	121 128 71 243 97	.1 .2 .1 .1 .2	1878 1241 859 1435 408	10 - 5 - 5
SA-20758 SA-20759 SA-20760 SA-20761 SA-20762	28 66 31 42 27	20 20 12 15 9	241 165 185 605 196	.3 1.5 .4 .3	1333 522 905 1254 608	- 10 - 5
SA-20763 SA-20764 SA-20765 SA-20766 SA-20767	27 31 33 38 38	16 18 8 12 24	154 383 285 510 647	.2 .2 .2 .4 .1	586 1872 1448 2776 2442	64 F CU
SA-20768 SA-20769 SA-20770 SA-20771 SA-20772	20 30 35 18 40	1 12 3 31 29	171 137 91 61 116	.3 .1 .3 .2	1125 472 556 1262 2079	15
SA-20773 SA-20774 STD C/AU 0.	- 33 37 5 - 62	8 10 42	69 261 130	.1 .1 5.7	628 904 1055	5 - 485

ſ

C

		KIDD	CREEK	< P	ROJECT	# 941	FILE	# 84-1	893	Total
	SAMPLE#		CU PPM	PB PPM	ZN F'F'M	AG PPM	MN FFM	AU* PPB	BA* FPM	C %
	AB-16906 AB-16907 AB-16908 AB-16909 AB-16910		1 31 7 10	24 32 9 3 6	46 85 31 25 26		186466 191000 1740 2853 386	01 01 01 01	150 5480 150 250 170	
	AB-16911 AB-16912 AB-16913 AB-16914 AB-16915		19 13 4 2 5	4 2 5 3 27	47 45 26 52 129	.8 .4 .3 .3 .3	751 360 187 205 323	<u>ទេ ទេ ទេ</u> ទេ	150 160 150 160 100	
• • •	AB-16916 AB-16917 AB-16919 AB-16920 AB-16921		126 10 11 4	1 2 9 18 4	26 31 78 76 67	. 6 . 1 . 3 . 1 . 1	385 343 515 733 315	ម ទាម ទាម ទា	100 150 160 120 120	
	AB-16922 AB-16923 AB-16924 AB-16925 AB-16926		3 182 18 4 4	15 7 3 7	107 43 58 6 3	• 1 • 3 • 9 • 1 • 1	284 472 517 4744 2964	មទទ	150 90 200 140 230	
C	AB-16927 AB-16928 AB-16929 AB-16933 AB-16935		4 20 2 95 1	0 N N N N	65 39 11 38 2	. 1 . 3 . 4 . 1	1206 342 164 584 47	5 5 5 10 5	1020 60 50 170 60	
	AB-16936 AB-16937 AB-16938 AB-16939 AB-16940		17 1 10 29 15	4 11 13 10 12	4 17 35 64 45	. 4 . 1 . 2 . 2 . 4	250 185 173 217 267	ទាទា ទាទា ទាទា	720 100 170 150 170	-
	AB-16941 AB-16942 AB-16943 AB-16944 AB-16945	. 1	151 30 247 874 114	1 8 9 9	50 62 20 32 40	.4 .1 1.0 1.9 .1	557 568 183 225 479	5 5 5 5 5 5 5 5	100 60 50 40 50	
	AB-16946 AB-16947 STD S-1/AU-0.	5	44 179 124	9 9 118	94 65 185	.3 .8 33.5	614 888 480	5 5 520	30 40 -	.54

(

KIDD CREEK PROJECT # 941 FILE # 84-1972

CU	PB	ZN	AG	AU*	BAX
PPM	PPM	F'F'M	FFM	FFB	PPM
24 7	11 31	44 153 12	. 6 . 1 . 1	ម្លាម	410 150 75
	CU	CU PB	CU PB ZN	CU PB ZN AG	CU PB ZN AG AU*
	PPM	PPM PPM	PPM PPM PPM	PPM PPM PPM PPM	PPM PPM PPM PPM PPB
	24	24 11	24 11 44	24 11 44 .6	24 11 44 .6 5
	7	7 31	7 31 153	7 31 153 .1	7 31 153 .1 5
	6	6 3	6 3 12	6 3 12 .1	6 3 12 .1 5

ACME ANALYTICAL LABORATORIES LTD.

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HN03-H20 AT 95 BEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR "HN.FE.CA.P.CR.NG.BA.TI.B.AL.NA.K.N.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LINIT BY ICP IS 3 PPR. - SAMPLE TYPE: ROCK CHIPS AUI ANALYSIS BY AA FROM 10 GRAM SAMPLE. 11

.

.

DATE	ECEIN	VED:	MA	Y 29 1	1984 I	DATE	REF	ORT	MAI	LED	:	920	al 4	4/B	4 f	SSA	YER.	. /	i d	i i je	C DEF	N T	OYE.	CE	RTIF	IED	в.с	. A	SSAY	ER		
									KIDI) CR	EEK	MIN	ES	PRC	JEC	r #	941	F	ILE	* 8	4-08	399								PA	GE	1
SAMPLES	ND PPH	CU PPN	PB	ZN PPH	A6 PPM	ni Pph	CD PPN	hn Pph	FE	AS PPN	U PPM	au Ppm	th Ppm	SR PPH	ED PPM	SB PPM	BI PPM	V PPH	CAZ	F Z	LA PPN	CR PPM	M6 7	ba PPM	TI Z	B PPM	AL Z	na Z	K	N PPM	AUX PPB	
AB-16819	1	1203	4	29	1.7	11	7	227	2.16	4	2	MD	- 2	6	1	2	2	37	.64	.05	2	17	.46	32	.07	10	. 71	.01	.01	2	Ē	
AB-16820	1	499	. 1	98	. 5	5	18	561	6.37	6	- 2	ND	. 2	25	2	2	2	62	1.10	.25	6	1	. 69	384	.25	4 -	2.11	.02	.10	2	5	
AB-16821	1	506	1	102	.4	3	17	727	6.87	3	2	KD	3	25	2	2	2	43	1.26	.31	11	1	. 67	490	.20	7	2.22	.03	.09	2	Ē	
AB-16822	1	4298	2	65	20.4	5	4	159	1.62	3	2	10	2	- 3	4	2	2	6	.27	. 01	2	1	.11	41	.01	15	.23	.01	.01	2	3400	
AB-16823	1	1074	1.	20	12.5	6	3	47	.98	2	3	2	2	1	1	2	3	6	.01	.01	2	5	.04	19	.01	11	.06	.01	.01	2	2000	
AB-16824	1	3209	2	81	9.4	14	19	233	1.31	2	2	KD	2	8	5	2	. 2	9	1.74	.01	2	5	.13	20	.01	9	.24	.01	.01	2	125	
AB-16825	1	36	5	43	3	3	1	334	2.06	4	6	ND	2	6	1	2	2	20	.05	. 02	2	17	.58	90	.05	11	1.00	.01	.02	2	5	
AB-16825	1	47	15	109	.3	53	15	720	4.34	28	2	ND	- 3	29	1	2	2	60	.83	. 08	4	35	. 99	94	.01	2	2.72	.01	.02	2	5	
STD A-1	1	30	39	186	.4	- 36	13	1050	2.80	9	2	ND	2	37	2	2	2	56	.62	.10	7	64	.63	255	.10	7	2.06	.01	.20	2	-	

	KIDD CREEK	MINES	PROJEC	CT # 94	I FI	LE #	84-0839
	SAMPLE#	CU	PB	ZN	AG	BA*	AU*
	· · · · · · · · · · · · · · · · · · ·	PPM	PPM	PPM	PPM	PPM	PPB
	AB-16802	34	7	83	.3	159	15
	AB-16803	115	1	51	. 1	. 15	5
	AB-16804	3	1	2	. 1	12	5
	AB-16805	188	1	103	.3	10	5
	AB-16806	39	3	115	.2	29	5
	AB-16807	41	5	106	. 1	29	5
	AB-16808	.34	5	124	.2	49	່ 5
	AB-16809	6	1	10	. 1	15	5
	AB-16810	194	1	73	1	54	15
	AB-16811	3	2	4	. 1	10	บ
	AB-16812	5	1	3	. 1	10	5
	AB-16813	2	1	4	. 1	9	5
	AB-16814	7	2	91	. 1	9	5
	AB-16815	3	1	3	. 1	9	5
	AB-16816	6	3	68	. 1	10	5
	AB-16817	3	4	13	. 1	10	5
•	AB-16818	24	1	97	. 1	34	5
	STD A-1/AU 0.5	5 30	39	186	.3		510

Ţ

(

KIDD CREEK PROJECT # 941 FILE # 84-1545

SAMPLE#	CU	PB	ZN	AG	AU*	BA*	MN
	FFM	PPM	FFM	PPM	FPB	FFM	FPM
AB-16905	9	16	79	. 2	127 1)	630	211600
STD A-1/AU 0.5	30	39	186	.3	515		

KIDD CREEK MINES PROJECT # 941 FILE # 84-3229

SAMPLE#		Cu	F'b	Zn	Ag	Mn	Au*	Ea*
		pp _m	ppm -	ppm	ppm	ppm	ppb	ppm
AB-18572		24	26	15	4	302	20	16
AB-18573		57.	11	11	. 5	123	- 5	-
AB-18574		28	15	92	.2	310	5	
AB-18575		51	3	11	. 2	200	5	
AB-18576		19	12	71	. 1	463	5	-
AB-18577		15	14	56	. 1	577	5	
AB-18578		21	1	58	. 1	806	5	
AB-18579		11	5	73	. 1	825	5	
AB-18580		٤7	చ	132	. 1	652	5	
STD C/AU	0.5	51	43	126	5.7	1094	470	-

APPENDIX D

METHODS FOR DETERMINATION OF FIRST AND SECORD ORDER SOIL GEOCHEMICAL ANOMALIES

APPENDIX D

METHODS FOR DETERMINATION OF FIRST AND SECORD ORDER SOIL GEOCHEMICAL ANOMALIES

Soil geochemical first and second order threshold values and background values were determined on semi-quantitative basis. Cumulative а frequence distribution plots (Appendix E) were inspected for the significant breaks presence of in the curve. The intersection of the 2.5, 5.0 and 50.0 percent ordinates with the curve were also noted.

Initially if the significant break in the curve occurred within the top 2.5 percent of the population or less, it was accepted as the threshold value for first order (strong) anomalies. Lower, second order (weak) threshold values were then set at values coincident with geochemical values associated with the 5.0 percent ordinate.

Median was considered to closely represent background levels.

Where these values do not accurately reflect strong and weak anomaly threshold values, threshold values were adjusted to more realistic values by visual inspection.

Threshold values were not determined on rock geochemical data, as simple statistics given in Table 5 sufficed for presentation and most information purposes.

APPENDIX E

LOG PROBABILITY PLOTS OF Cu, Pb, Zn, Mn, Ag, Au IN SOIL MUSGRAVE ANOMALY GRID

COM FREQ %

T____

APPENDIX F WHOLE ROCK GEOCHEMICAL ANALYSIS REPORTS

==== KIDD CREEK MINES LTD -----=== KIDD CREEK MINESITE COMPUTER SYSTEM ===

REFORT #2000

SAMPLE ID # AB16805	WHOLE ROCK GEOCHEMICAL ANALYSIS	PRINTED 21-NOV-84 08:33:42
LAB REPORT # 84-0839 TOWNSHIP : NTS : 092B11 UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE	FIELD NUMBER : DM94184034PROJECT # 941LOT : 0 CONCESSION :PROVINCE : BRITISH COLUMBIA PROJECT : SALTSPRING BASE METALGRID COORDINATES :E : 462460.0 N : 5399325.0 EL :	0.0

NORMS

18.19

15.33

10.87

0.00

0.00

0.00

4.62

3.72

0.00

0.00

0.54

0.00

0.00

0.00

0.00

0.00

0.00

26.20

0.79

2.10

42.67

FIELD NAME : METAMORPHIC , MAFIC , MEDIUM, SCHIST, NO COMMENT, NO COMMENT. FINAL NAME : ALTERATION : MINERALIZATION : DISSEMINATED AND BLEBS, <1% , PYRITE. FORMATION :

NORMALIZED

ANHYDROUS WT %

52.12

15.45

10.73

4.21

8.70

5.37

0.22

0.19

2.54

0.24

0.22

0.00

0.00

0.00

0.00

0.00

0.00

0.00

100.00

NORMALIZED

ANHYDROUS CATION %

50.71

17.72

3.08

8.74

9.07

7.78

0.42

0.23

1.86

0.20

0.18

0.00

0.00

0.00

0.00

0.00

0.00

0.00

100.00

SAMPLED BY : D.MALLALIEU ANALYZED BY : ACME

WT %

46.92

13.91

14.53

0.00

7.83

4.83

0.20

0.17

2.29

0.22

0.20

0.00

0.00

0.00

0.00

0.00

0.00

4.50

90.02

SI02

AL203

FE203

FE0

CAO

MGO

NA20

K20

TI02

P205

MNO

NIO

C02

H20+

H20-

TOTAL

LOI

CR203

S

DATE : 11-MAY-84 DATE : 30-MAY-84

> Q ĉ

OR

AB

AN

LC

NE

ΚP

AC

DI

HE

EN

FS

FO

FA

WO

LN

MT

IL

CR

HM

AP

P0

NS

KS

RU

AG

0L

0PX

CPX

AB*

NORMS	CLA	SSIFIC	TIONS	S AND I	NDICE	S		
18.19	NA20	+K20	0.41	S102		52.12	SUBALKALINE	
1.17	OL*	42.27	NE*	2.70	Q*	55.03	SUBALKALINE	
42.67	CPX	2.94	OL	0.00	OPX	97.06	SUBALKALINE	
0.00	Α	2.02	F	71.54	м	26.43	THOLEITIC	
0.00	AL20	3 :	15.45	NORM	PLAG	95.32	THOLEITIC	
0.46 0.33	AN	92.88	AB*	4.56	OR	2.55	K-RICH SERIES	
15.33 10.87	CI		35.34	NORM	PLAG	95.32	BASALT	
0.00								

PAGE 1

JENSEN HIGH IRON THOLEIITIC BASALT AL 45.02 FE 35.22 MG 19.76

COLOR INDEX : 35.34 HASHIMOTO INDEX : 38.37

ANALYTICAL

TECHNIQUE :

TRACE ELEMENTS (P.	P.M.)	AU PT	(P.P.B.)
--------------------	-------	-------	----------

COMMENTS : WHOLE ROCK ANALYSIS PERFORMED BY ICP

MODERATELY CHLORITIC MAFIC, CACO3 VEINLETS PARALLEL TO FOLIATION.

==== KIDD CREEK MINES LTD ==== === KIDD CREEK MINESITE COMPUTER SYSTEM ===

PAGE 1

REPORT #2000

ANALYZED BY : ACME

PRINTED 21-NOV-84 WHOLE ROCK GEOCHEMICAL ANALYSIS 08:35:29 SAMPLE ID # AB16810 ********** _____ LAB REPORT # 84-0839 FIELD NUMBER : DM94184066 PROJECT # 941 LOT : 0 CONCESSION : TOWNSHIP : PROVINCE : BRITISH COLUMBIA PROJECT : SALTSPRING BASE METAL NTS : 092B12 GRID COORDINATES : E : 461980.0 N : 5399175.0 EL : 0.0 UTM ZONE : 10 SAMPLE TYPE : GRAB SAMPLE FIELD NAME : VOLCANIC, MAFIC , MEDIUM, GNEISSIC, MASSIVE , TECTONIZED. FINAL NAME : ALTERATION : MINERALIZATION : DISSEMINATED AND BLEBS, 1-5%, NO COMMENT. FORMATION : ANALYTICAL SAMPLED BY : D.MALLALIEU DATE : 16-MAY-84 DATE : 30-MAY-84

TECHNIOUE :

3102 47.90 49.54 47.36 0 6.86 NA20+K20 2.62 SIO2 AL203 17.21 17.80 20.06 C 0.00 0 SIO2 2.62 SIO2 FEO 0.00 8.25 6.59 AB 20.32 0L* 18.94 NE* 33.53 Q* CA0 10.75 11.12 11.39 AN 38.69 CFX 59.29 0L 0.00 OFX MGO 3.16 3.27 4.66 LC 0.00 A 14.57 F 67.24 M K20 0.41 0.42 0.52 KP 0.00 AI203 17.80 NORM PLAG P205 0.22 0.23 0.18 DI 7.85 AN 62.81 AB* 32.99 OR NI0 0.00 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG C203 0.00 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG C4203 0.00 0.00 0.00 FA <th></th> <th>WT %</th> <th>NORMALIZED ANHYDROUS WT %</th> <th>NORMALIZED ANHYDROUS CATION %</th> <th></th> <th>NORMS</th> <th>CLASSIFICATIONS AND INDICES</th>		WT %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION %		NORMS	CLASSIFICATIONS AND INDICES
AL203 17.21 17.80 20.06 C 0.00 12.1 17.80 20.06 C 0.00 18.94 $NE*$ 33.53 $0*$ FEO 0.00 8.25 6.59 AB 20.32 $0L^*$ 18.94 $NE*$ 33.53 0^* GO 0.00 8.25 6.59 AB 20.32 $0L^*$ 18.94 $NE*$ 33.53 0^* MGO 3.16 3.27 4.66 LC 0.00 A 14.57 F 67.24 M NA20 2.12 2.19 4.06 NE 0.00 A 14.57 F 67.24 M K20 0.41 0.42 0.52 KP 0.00 $AL203$ 17.80 $NORM$ $PLAC$ P205 0.22 0.23 0.18 DI 7.85 AN 62.81 AB^* 32.99 R S 0.00 0.00 0.00 FS 3.79 CI 31.05	S102	47.90	49.54	47.36	Q	6.86	NA20+K20 2.62 SIO2 49.54 SUBALKALINE
TE205 12.50 12.50 12.50 12.50 12.50 12.51 15.55 QR FEO 0.00 8.25 6.59 AB 20.32 32 CA0 10.75 11.12 11.39 AN 38.69 CFX 59.29 0L 0.00 OFX MGO 3.16 3.27 4.66 LC 0.00 A 14.57 F 67.24 M NA20 2.12 2.19 4.06 NE 0.00 A 14.57 F 67.24 M K20 0.41 0.42 0.52 KP 0.00 AL203 17.80 NORM PLAG P205 0.22 0.23 0.18 DI 7.85 MN0 0.20 0.21 0.17 HE 5.53 AN 62.81 AB* 32.99 OR S 0.00 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG CR203 0.00 0.00 0.00 FA 0.00 Inc.94 A 10.00 Inc.94 A	AL203	17.21	17.80	20.06	C OP	0.00	01+ 18 94 NE+ 33 53 0+ 47 53 SUBALKALINE
CA0 10.75 11.12 11.39 AN 38.69 CFX 59.29 0L 0.00 OPX MGO 3.16 3.27 4.66 LC 0.00 A 14.57 F 67.24 M NA20 2.12 2.19 4.06 NE 0.00 A 14.57 F 67.24 M TIO2 2.62 2.71 1.95 AC 0.00 AL203 17.80 NORM PLAG P205 0.22 0.23 0.18 DI 7.85 AN 62.81 AB* 32.99 OR S 0.00 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG CR203 0.00 0.00 0.00 FA 0.00 JENSEN THOLEIITIC ANDESITE H20+ 0.00 0.00 0.00 IL 3.90 JENSEN THOLEIITIC ANDESITE H20- 0.00 0.00 OL OL AL 54.97 FE 32.27 MG H20- 0.00 0.00 OL OL OL	FEO	0.00	8.25	6.59	AB	20.32	
MGO 3.16 3.27 4.66 LC 0.00 A 14.57 F 67.24 M MA20 2.12 2.19 4.06 NE 0.00 A 14.57 F 67.24 M T102 2.62 2.71 1.95 AC 0.00 AL203 17.80 NORM PLAG P205 0.22 0.23 0.18 DI 7.85 AN 62.81 AB* 32.99 OR S 0.00 0.00 EN 5.39 AN 62.81 AB* 32.99 OR S 0.00 0.00 F 0.00 CI 31.05 NORM PLAG CR203 0.00 0.00 0.00 FA 0.00 Its and the analysis analysis and the analysis analysis analysis an	CAO	10.75	11.12	11.39	AN	38.69	CFX 59.29 OL 0.00 OFX 40.71 ALKALINE
NA20 2.12 2.19 4.06 NE 0.00 A 14.57 F 67.24 M K20 0.41 0.42 0.52 KP 0.00 Alloo Alloo <td>MGO</td> <td>3.16</td> <td>3.27</td> <td>4.66</td> <td>\mathbf{LC}</td> <td>0.00</td> <td></td>	MGO	3.16	3.27	4.66	\mathbf{LC}	0.00	
K20 0.41 0.42 0.52 KP 0.00 TIO2 2.62 2.71 1.95 AC 0.00 AL203 17.80 NORM PLAG P205 0.22 0.23 0.18 DI 7.85 AN 62.81 AB* 32.99 OR S 0.00 0.00 0.00 EN 5.39 AN 62.81 AB* 32.99 OR CR203 0.00 0.00 O.00 FS 3.79 CI 31.05 NORM PLAG CR203 0.00 0.00 FO 0.00 CO	NA20	2.12	2.19	4.06	NE	0.00	A 14.57 F 67.24 M 18.19 THOLEITIC
T102 2.62 2.71 1.95 AC 0.00 AL203 17.80 NORM PLAG P205 0.22 0.23 0.18 DI 7.85 AN 62.81 AB* 32.99 OR S 0.00 0.00 EN 5.39 CI 31.05 NORM PLAG CR203 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG CQ2 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG CQ2 0.00 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG H20+ 0.00 0.00 FA 0.00 JENSEN THOLEIITIC ANDESITE H20- 0.00 0.00 O.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 NS 0.00 NS 0.00 NS 0.00 NS 0.00 NS 0.00 AF 0.00 0.00 0.00<	K20	0.41	0.42	0.52	KP	0.00	
MNO 0.22 0.23 0.15 DI 7.85 NIO 0.20 0.21 0.17 HE 5.39 NIO 0.00 0.00 EN 5.39 NIO 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG C203 0.00 0.00 FA 0.00 CI 31.05 NORM PLAG C02 0.00 0.00 FA 0.00 JENSEN THOLEIITIC ANDESITE H20+ 0.00 0.00 0.00 KO AL 54.97 FE 32.27 MG L0I 2.00 0.00 0.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 NS 0.00 KS 0.00 NS 1.02 VOTAL 96.68 100.00 100.00 CR 0.00 NS 1.05 NS 0.00 NS 0.00 NS 0.00 0.00 NS 0.00<	T102	2.62	2.71	1.95	AC	0.00	AL203 17.80 NORM PLAG 65.57 CALC-ALKALINE
S 0.00 0.00 0.00 EN 5.39 NIO 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG CR203 0.00 0.00 FO 0.00 FO 0.00 C02 0.00 0.00 FA 0.00 JENSEN THOLEIITIC ANDESITE H20+ 0.00 0.00 0.00 IL 3.90 JENSEN THOLEIITIC ANDESITE H20- 0.00 0.00 0.00 IL 3.90 JENSEN THOLEIITIC ANDESITE H20- 0.00 0.00 IL 3.90 JENSEN JENSEN JENSEN TOTAL 96.68 100.00 IC 0.00 KS 0.00	MNO	0.20	0.21	0.18	HE	5.53	AN 62.81 AB* 32.99 OR 4.20 AVERAGE SERIES
NIO 0.00 0.00 FS 3.79 CI 31.05 NORM PLAG CR203 0.00 0.00 0.00 FO 0.00 FO 0.00 C02 0.00 0.00 0.00 FA 0.00 JENSEN THOLEIITIC ANDESITE H20+ 0.00 0.00 0.00 IN 0.00 AL 54.97 FE 32.27 MG L0I 2.00 0.00 0.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 RU 0.49 PO 0.49 PO 0.00 NS 0.00 RU 0.00 AG 0.00 <	S	0.00	0.00	0.00	EN	5.39	
CR203 0.00 0.00 FO 0.00 C02 0.00 0.00 0.00 FA 0.00 H20+ 0.00 0.00 0.00 WO 0.00 JENSEN THOLELITIC ANDESITE H20- 0.00 0.00 0.00 LN 0.00 AL 54.97 FE 32.27 MG LOI 2.00 0.00 0.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 NS 0.49 PO 0.49 PO PO 0.00 NS 0.00 RU 0.00 AG 0.00 RU 0.00 AG 0.00 OL 0.00 OL 0.00	NIO	0.00	0.00	0.00	FS	3.79	CI 31.05 NORM PLAG 65.57 BASALT
C02 0.00 0.00 FA 0.00 JENSEN THOLELITIC ANDESITE H20+ 0.00 0.00 0.00 WO 0.00 JENSEN THOLELITIC ANDESITE H20- 0.00 0.00 0.00 LN 0.00 AL 54.97 FE 32.27 MG LOI 2.00 0.00 0.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 NS 0.00 NS 0.49 PO 0.00 NS 0.00 NS 0.00 NS 0.00 NS 0.00 AG 0.00 NU 0.00 AG 0.00 OL 0.00	CR203	0.00	0.00	0.00	FO	0.00	
H20+ 0.00 0.00 0.00 NO 0.00 JENSEN THOLEIITIC ANDESITE H20- 0.00 0.00 0.00 LN 0.00 AL 54.97 FE 32.27 MG L0I 2.00 0.00 0.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 HASHIMOTO INDEX : 21.72 AP 0.49 PO 0.00 NS 0.00 KS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18	C02	0.00	0.00	0.00	FA	0.00	
H20- 0.00 0.00 0.00 LN 0.00 AL 54.97 FE 32.27 MG L0I 2.00 0.00 0.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 HASHIMOTO INDEX : 21.72 AP 0.49 FO 0.00 NS 0.00 KS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18	H20+	0.00	0.00	0.00	WO	0.00	JENSEN THOLEIITIC ANDESITE
LOI 2.00 0.00 0.00 MT 4.60 IL 3.90 TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 HASHIMOTO INDEX : 21.72 AP 0.49 PO 0.00 NS 0.00 KS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18	H20-	0.00	0.00	0.00	LN	0.00	AL 54.97 FE 32.27 MG 12.76
TOTAL 96.68 100.00 100.00 CR 0.00 COLOR INDEX : 31.05 HM 0.00 HASHIMOTO INDEX : 21.72 AP 0.49 PO 0.00 NS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18	L01	2.00	0.00	0.00	MI.	4.60	
HM 0.00 HASHIMOTO INDEX : 21.72 AP 0.49 PO 0.00 NS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18	TOTAL	96 69	100 00	100.00	1L -	0.00	COLOD TNDEY . 31 05
AP 0.49 PO 0.00 NS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18	TOTAL	30.00	100.00	100.00	нм	0.00	HASHIMOTO INDEX · 21 72
PO 0.00 NS 0.00 KS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18					AP	0.49	
NS 0.00 KS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18					PO	0.00	
KS 0.00 RU 0.00 AG 0.00 OL 0.00 OFX 9.18					NS	0.00	
RU 0.00 AG 0.00 0L 0.00 0FX 9.18					KS	0.00	
AG 0.00 OL 0.00 OFX 9.18					RU	0.00	
0FX 9.18				1	AG	0.00	
064 9.16					UL OPV	0.00	
("PX 1337					CPY	13 37	
AB* 20.32					AB*	20.32	
TRACE ELEMENTS (P.P.M.) AU.PT (P.P.B.)	TRACE E	LEMENTS	(P.P.M.) AU.PT	(P.P.B.)			

COMMENTS : WHOLE ROCK ANALYSIS PERFORMED BY ICP

MAFIC VOLCANIC WITH SLIGHT GNEISSIC FABRIC, METALLIC MINERAL MAYBE ILMENITE?

==== KIDD CREEK MINES LTD ==== === KIDD CREEK MINESITE COMPUTER SYSTEM ===

REPORT #2000

TOWNSHIP :

NTS : 92B14

UTM ZONE : 10

SAMPLE ID # AB16918 LAB REPORT # 22063

WHOLE ROCK GEOCHEMICAL ANALYSIS

****** ______ FIELD NUMBER : DM94184418 PROJECT # 941 LOT : 0 CONCESSION : PROVINCE : BRITISH COLUMBIA PROJECT : SALTSPRING BASE METAL GRID COORDINATES : E : 465311.0 N : 5399255.0 EL : 0.0 SAMPLE TYPE : GRAB SAMPLE

PAGE 1

08:36:56

PRINTED 21-NOV-84

FIELD NAME : VOLCANICLASTIC, FELSIC, ASH, TECTONIZED, LOOK AT COMMENTS FILE. FINAL NAME : ALTERATION : METAMORPHOSED , SERICITIZATION, MODERATE. MINERALIZATION : NIL ,NIL. FORMATION :

SAMPLED ANALYZE	BY : D.M. DBY : XR	ALLALIEU AL	DATE DATE	: 21-JUL-8 : 24-AUG-8	4 4	ANALYTICA TECHNIQUA	L E : X-RAY FLUO	RESCENCE		
	WT %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATIO	N %	NORMS	CLASSIFICATION	NS AND INDICES	3		
SI02	75.00	77.51	74.40	Q	55.07	NA20+K20 2.50	SI02	77.51 \$	SUBALKALINE	
AL203	9.72	10.05	11.37	С	6.25	07.1 10.01 MD	0 15 04	70.05	TIT A F WAF THE	
FE203	4.75	2.04	1.47	OR	7.29	UL* 12.01 NE	* 9.15 Q*	/8.85	SUBAUKALINE	
FEO	0.00	2.59	2.08	AD	3 04		0.00 0PX 1	00.00	SUBALKALINE	
MGO	0.81	7 76	5 38	LC	0.00	CFA 0.00 OD	0.00 012 1			
MA20	1.27	1.31	2.44	NE	0.00	A 23.42 F	41.36 M	35.22	THOLEITIC	
K20	1.15	1.19	1.46	KP	0.00					
T102	0.47	0.49	0.35	AC	0.00	AL203 10.05	5 NORM PLAG	19.94 5	THOLEITIC	
P205	0,18	0.19	0.15	DI	0.00					
MNO	0.05	0.05	0.04	HE	0.00	AN 13.50 AB	* 54.18 OR	32.32	K-RICH SERIES	
S	0.00	0.00	0.00	EN	10.76				- 1 <i>- 1 - 1 - 1</i>	
NIO	0.00	0.00	0.00	FS	2.06	CI 15.7	3 NORM PLAG	19.94	DACITE	
CR203	0.00	0.00	0.00	FO	0.00					
C02	0.00	0.00	0.00	F'A	0.00	TENGEN CALC-	ATVALTNE BASAL	יתי		
H20+	0.00	0.00	0.00	WU T N	0.00	AL SA GA FR	19 04 MC	26 02		
H20-	0.00	0.00	0.00	Lin MT	2 21	VP 24.24 LP	12:04 113	20,02		
LOI	4.4/	0.00	0.00	TT.	0.70					
TOTAL.	96.76	100.00	100.00	ĈŔ	0.00	COLOR INDEX :	15.73			
291111	20170	200700		HM	0.00	HASHIMOTO INDE	X: 69.72			
				AP	0.40					
				PO	0.00					
				NS	0.00					
				KS	0.00					
				RU	0.00					
				AG	0.00					
				0L ODV	12 02					
				CPX	14.03					
				AB*	12 21					
TRACE E	LEMENTS	(P.P.M.) AU, PT	(P.P.B.)	TID.	12.01					
съ	10.00+PF	30.00±5R	110.00:Y	30.00:2R	50.00:NB	10.00:AU	-20.00:SC	0.	14:C0 8.	.00:
NT	12.00 CI	18.00:2N	58.00:AS	-2.00:SE	-3.00:BR	-1.00:RB	30.00:SR	-500.	00:M0 -5.	.00:
AG	-0.50:CI	-0.20:SB	-0.20:CS	-0.60:BA	3200.00:LA	7.90:CE	21.00:ND	10.	00:SM 3.	.80:
EU	1.00:YE	3.00:LU	0.39:HF	0.10:TA	-1.00:W	-3.00:PB	10.00:BI	-0.	50:TH 0.	.90:
U	0.80:									

COMMENTS : SPS300/70SW

PALE GREEN WELL FOLIATED RHYODACITIC TUFF. SERICITIC CLEAVAGE SURFACES NON MINERALIZED

==== K I D D C R E E K M I N E S L T D ==== === KIDD CREEK MINESITE COMPUTER SYSTEM ===

REPORT #2000

SAMPLE ID # AB16930	WHOLE ROCK GEOCHEMICAL ANALYSIS	08:38:21
LAB REPORT # 22063 TOWNSHIP : NTS : 92B14 UTM ZONE : 10 SAMPLE TYPE . CDAB SAMPLE	FIELD NUMBER : DM94184445PROJECT # 941LOT : 0 CONCESSION :PROVINCE : BRITISH COLUMBIAPROJECT : SALTSPRING BASE METALGRID COORDINATES : E : 464395.0 N : 5400610.0 EL :	0.0

FIELD NAME : PLUTONIC,MAFIC OR MELANOCRATIC,MEDIUM,EQUIGRANULAR,MASSIVE ,LOOK AT COMMENTS FILE. FINAL NAME : ALTERATION : MINERALIZATION : NIL ,NIL. FORMATION :

SAMPLED BY : D.MALLALIEU ANALYZED BY : XRAL DATE : 26-JUL-84 DATE : 24-AUG-84 ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE PAGE 1

	WI %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	*	NORMS	CLASSIFICATION	S AND INDICE	S		
SI02	47.70	48.79	45.54	Q	0.00	NA20+K20 2.74	SI02	48.79	SUBALKALINE	
ALZ03	18.60	19.03	20.93	U OD	0.00	07.4 C 70 NE-4	67 12 04	26 00		
FEZUS FFO	8.75	2.70	4 39	DR AB	22 54	0L* 0./9 NE*	57.13 Q×	30.09	AURALINE	
CAO	15.20	15.55	15.55	AN	40.10	CPX 94.57 OL	5.43 OPX	0.00	ALKALINE	
MGO	4.07	4.16	5.79	LC	0.00	0111 91100, 01				
NA20	2.57	2.63	4.76	NE	0.75	A 18.33 F	53.84 M	27.83	THOLEITIC	
K20	0.11	0.11	0.13	KP	0.00					
TI02	1.14	1,17	0.82	AC	0.00	AL203 19.03	NORM PLAG	62.77	CALC-ALKALI	NE
P205	0.11	0.11	0.09	DI	20.09					
MNO	0.12	0.12	0.10	HE	9.44	AN 62.12 AB*	36.84 OR	1.04	K-POOR SERI	ES
S	0.00	0.00	0.00	EN	0.00					
NIO	0.00	0.00	0.00	FS	0.00	CI 35.70	NORM PLAG	62.77	BASALT	
CR203	0.00	0.00	0.00	FO	1.15					
C02	0.00	0.00	0.00	FA	0.54			0.700		
H20+	0.00	0.00	0.00	WO	0.00	JENSEN CALC-A	LKALINE ANDE	SITE		
H20-	0.00	0.00	0.00	LN	0.00	AL 61.70 PE	41.43 MG	1/.0/		
LOI	1.54	0.00	0.00	MT.	2.85					
momat	07 76	100.00	100.00	10	1.04	COLOD INDER .	25 70			
TOTAL	97.70	100.00	100.00	LIM	0.00	USCUTMOTO INDEV	33.70			
				Г11°1 Л D	0.00	HASHIMUIU INDEA	19.04			
				PO PO	0.24					
				NG	0.00					
				KS	0.00					
				RÜ	0.00					
				AG	0.00					
				OL.	1.70					
				OPX	0.00					
				CPX	29.53					
				AB*	23.79					
TRACE	ELEMENTS	(P.P.M.) AU,PT	(P.P.B.)							
CR	100.00:RB	20.00:SR	350.00:Y -	10.00:ZR	60.00:NB	10.00:AU	-20.00:SC	27	7.00:C0	27.00:
NI	72.00:CU	47.00:ZN	64.00:AS	4.00:SE	3.00:BR	1.00:RB	-20.00:SF	2 -500	0.00:MO	-5.00:
AG	-0.50:CD	-0.20:SB	1.30:CS	-0.50:BA	200.00:LA	5.80:CE	22.00:NE) 10	0.00:SM	2.70:
EU	1.40:YB	2.00:LU	0.27:HF	2.00:TA	-1.00:W	-3.00:PB	22.00:BI	- ().50:TH	0.70:
U	-0.50:									

COMMENTS : MASSIVE MESOCRATIC GABBRO/DIORITE NON MINERALIZED

KTDD CREEK MINES LTD ==== ----

.

			=== KID ==== v I D	DCREEKM	INESTTE COMPU	TER SYSTEM ===	
REPORT	#2000		1020			PAGE PRINTED 21-NOV-	1
SAMPLE	ID # AB16	931	M	HOLE ROCK	GEOCHEMICAL	ANALYSIS 08:39:	22
LAB REF TOWNSHI NTS : 9 UTM ZON SAMPLE	PORT # 220 IP : 2B14 JE : 10 TYPE : GR	AB SAMPLE	FIELD LOT : GRID C	NUMBER : 0 CONC 00RDINATE	DM94184457 ESSION : S : E :	PROJECT # 941 PROVINCE : BRITISH COLUMBIA PROJECT : SALTSPRING BASE METAL 464509.0 N : 5400718.0 EL : 0.0	
FIELD N FINAL N ALTERAT MINERAT FORMATI	IAME : VOL IAME : FION : NOT LIZATION : ION :	CANICLASTIC, FELS VISIBLE. NIL ,NIL.	IC,ASH,BEDDED,HOMO	GENEOUS ,	LOOK AT COMME	INTS FILE.	
SAMPLEI ANALYZE	DBY: D.M EDBY: XR	ALLALIEU AL	DATE : DATE :	26-JUL-8 24-AUG-8	4 4	ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE	
	WT %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	*	NORMS	CLASSIFICATIONS AND INDICES	
S102	95.00	95.37	93.84	Q	85.76	NA20+K20 1,29 SI02 95.37 SUBALKALINE	
AL203 FE203	2.24	2.25	0.25	OR	0.32	OL* 0.42 NE* 7.21 Q* 92.38 SUBALKALINE	
CAO	0.00	0.00	0.31	AB	0.47	CPX 57.53 OL 0.00 OPX 42.47 ALKALINE	
MGO NA20	0.31 1.23	0.31 1.23	0.46 2.36	LC NE	0.00 0.00	A 67.51 F 16.14 M 16.35 CALC-ALKALINE	
K20 TI02	0.05	0.05 0.11	0.06 0.08	KP AC	0.00 0.00	AL203 2.25 NORM PLAG 3.87 THOLEITIC	
P205 MN0	0.02	0.02	0.02	DI HE	0.74 0.00	AN 3.77 AB* 93.72 OR 2.51 K-POOR SERIES	
S	0.00	0.00	0.00	EN FS	0.54	CI 1.57 NORM PLAG 3.87 RHYOLITE	
CR203	0.00	0.00	0.00	FO	0.00		
H20+	0.00	0.00	0.00	WO	0.00	JENSEN CALC-ALKALINE DACITE	
H20- LOI	0.00	0.00	0.00	MT	0.00	AL 76.30 FE 10.20 MG 13.36	
TOTAL	99.61	100.00	100.00	CR	0.03	COLOR INDEX : 1.57	
				hm Ap	0.25	HASHIMOTO INDEX : 19.15	
				PO NS	0.00		
				KS RU	0.00 0.06		
				AG OL	0.00		
				OPX	0.54		
TRACE I	ELEMENTS	(P.P.M.) AU,PT	(P.P.B.)	AB*	11.78		
CR	10.00:RE	-10.00:SR	70.00:Y -	10.00:ZR	-10.00:NE	B 10.00:AU -20.00:SC 2.50:CO 1.00:	
NI AG	7.00:CU	3.50:2N	9.50:AS	-2.00:SE 0.05:BA	-3.00:BF 200.00:LA	R -1.00:RB -20.00:SR -500.00:MO -5.00: A 1.10:CE 3.00:ND -10.00:SM 0.50:	
EU U	-0.20:YE	-1.00:LU	0.07:HF	-1.00:TA	-1.00:W	-3.00:PB 4.00:BI -0.50:TH 1.10:	

COMMENTS : SP0285/79SW.PC106/76NE WELL BEDDED CHERTY TUFF.RHYODACITIC TO RHYOLITIC IN COMPOSITION

א דיימהמייזים	+2000		=== K I == KI	DD CRI DD CREEK M	EEK MIN INESITE COMPUT	ESLTD ==== FER SYSTEM ===	PAGE
SAMPLE 1	D # AB169	32		WHOLE ROCK	GEOCHEMICAL /	ANALYSIS	PRINTED 21-NOV-8- 08:40:2
LAB REPO TOWNSHIE NTS : 92 UTM ZONE SAMPLE T	DRT # 2206 ? : 2B14 E : 10 FYPE : GRA	3 AB SAMPLE, THIN SH	FIELD LOT : GRID	NUMBER : 1 0 CONCI COORDINATE:	DM94184458A ESSION : S : E :	PROJECT # 941 PROVINCE : BRITISH COLUMBIA PROJECT : SALTSPRING BASE METAI 464540.0 N : 5400755.0 EL :	0.0
FIELD NA FINAL NA ALTERATI MINERALI FORMATIC	AME : VOLC AME : ION : NOT IZATION : ON :	CANICLASTIC, FELS: VISIBLE. NIL ,NIL.	IC, ASH, BEDDED, HOM	OGENEOUS ,	LOOK AT COMMEN	NTS FILE.	
SAMPLED ANALYZEI	BY : D.MP D BY : XRP	ALLALIEU AL	DATE	: 26-JUL-8 : 24-AUG-8	4 4	ANALYTICAL TECHNIQUE : X-RAY FLUORESCENCE	
	WT %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATIO	N %	NORMS	CLASSIFICATIONS AND INDICES	
SI02 AL203 FE203 FE0 CA0 MG0 NA20 K20 TI02 P205 MN0 S NI0 CR203 C02 H20+ H20- L0I TOTAL	77.40 11.30 3.33 0.00 0.12 0.45 0.38 3.32 0.46 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00	80.03 11.68 2.03 1.27 0.12 0.47 0.39 3.43 0.48 0.07 0.02 0.00	77.85 13.40 1.48 1.04 0.13 0.67 0.74 4.26 0.35 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00	Q C ORB AN LC EP C DI ENS FO A ON LTL R MP OSS UGL XX A O OPXX *	62.10 8.33 21.32 3.70 0.15 0.00 0.16 0.00	NA20+K20 3.83 SI02 80.03 S OL* 1.51 NE* 3.31 Q* 95.18 S CPX 0.00 OL 0.00 OPX 100.00 S A 51.77 F 41.93 M 6.30 S AL203 11.68 NORM PLAG 3.86 S AN 0.59 AB* 14.72 OR 84.69 S CI 4.23 NORM PLAG 3.86 S JENSEN THOLEIITIC RHYOLITE AL 79.01 FE 17.02 MG 3.98 COLOR INDEX : 4.23 HASHIMOTO INDEX : 88.29	SUBALKALINE SUBALKALINE SUBALKALINE SUBALKALINE SHOLEITIC CHOLEITIC C-RICH SERIES RHYOLITE
TRACE EI CR NI AG EU II	10.00:RB 4.00:CU -0.50:CD -0.20:YB 2.20:	(P.P.M.) AU,PT -10.00:SR 25.00:ZN -0.20:SB 1.00:LU	(P.P.B.) -10.00:Y 43.00:AS -0.20:CS 0.14:HF	-10.00:ZR -2.00:SE -0.50:BA 1.00:TA	20.00:NB -3.00:BR -150.00:LA -1.00:W	30.00:AU 0.20:SC 3. -1.00:RB -20.00:SR -500. 2.50:CE 12.00:ND 10. -3.00:PB 10.00:BI -0.	20:CO 1.00: 00:MO -5.00: 00:SM 1.70: 50:TH 5.10:

COMMENTS : SP0123/42NE PC297/59SW BEDDED FELDSPAR XTAL RHYODACITIC TO RHYOLITIC TUFF INTERBEDDED WITH HOMOGENEOUS CHERTY TUFF

REPORT	#2000	24	=== KII	D CREEK M	INESITE COMPUT	TER SYSTEM ===	PRINTED	PAGE 21-NOV-8 08:42:0
SAMPLE .	1D # AB169)34	N 	HULL RUCK	GEOCHEMICAL A	WHISTS		
LAB REPO TOWNSHII NTS : 92 UTM ZONI SAMPLE :	ORT # 2206 P : 2B14 E : 10 TYPE : GRA	33 AB SAMPLE	FIELD LOT : GRID C	NUMBER : 0 CONC 00RDINATE	E-13 ESSION : S : E :	PROJECT # 941 PROVINCE : BRITISH COLUMBI PROJECT : SALTSPRING BASE 465189.0 N : 5399938.0 EL :	A METAL 0.0	
FIELD N FINAL N ALTERAT MINERAL FORMATI	AME : VOLO AME : ION : PERV IZATION : ON :	CANIC,FELSIC,FIN /ASIVE ,SILICIFI NIL ,NIL.	E,FELDSPAR PORPHYR CATION,STRONG.	ITIC, MASS	IVE.			
SAMPLED ANALYZEI	BY : D.M. D BY : XR	ALLALIEU	DATE : DATE :	27-JUL-8 24-AUG-8	34 34	ANALYTICAL TECHNIQUE : X-RAY FLUORESC	ENCE	
	WT %	NORMALIZED ANHYDROUS WT %	NORMALIZED ANHYDROUS CATION	*	NORMS	CLASSIFICATIONS AND INDICES		
SI02	76.80	77.32	71.58	Q	32.48	NA20+K20 7.74 SIO2 77.3	2 SUBALKALINE	1
FE203	1.17	1.18	0.82	OR	12.50	OL* 1.28 NE* 35.89 Q* 62.8	3 SUBALKALINE	:
CAO	0.00	0.38	0.38	AN	1.44	CPX 0.00 OL 0.00 OPX 100.0	0 SUBALKALINE	[
MGO NA20	0.52	0.52	0.72 10.10	LC NE	0.00 0.00	A 83.02 F 11.37 M 5.6	1 CALC-ALKALI	NE
K20	2.10	2.11	2.50	KP	0.00	AT 203 12 48 NODM PLAC 2 7	7 CALC-ALKALT	NE
P205	0.07	0.07	0.06	DI	0.00			TEG
MNO S	0.03	0.03	0.02	EN	1.44	AN 2.25 AD* /0.5/ UR 15.4	V AVERAGE SEA	
NIO CP203	0.00	0.00	0.00	FS FO	0.00	CI 2.31 NORM PLAG 2.7	7 RHYOLITE	
C02	0.00	0.00	0.00	FA	0.00			
H20+ H20-	0.00	0.00	0.00	LN	0.00	AL 88.58 FE 6.72 MG 4.7	0	
LOI	0.62	0.00	0.00	MT	0.00			
TOTAL	99.33	100.00	100.00	CR HM AP PO NS KS RU	0.00 0.82 0.15 0.00 0.00 0.00 0.17	COLOR INDEX : 2.31 HASHIMOTO INDEX : 30.50		
				AG OL OPX CPX AB*	0.00 0.00 1.44 0.00 50.51			
TRACE E	LEMENTS	(P.P.M.) AU,PI	(P.P.B.)			· · · · · · · · · · · · · · · · · · ·	·	
CR NI AG EU U	10.00:RB 3.00:CU -0.50:CD 1.40:YB 2.20:	30.00:SR 11.00:ZN -0.20:SB 3.00:LU	290.00:Y 57.00:AS -0.20:CS 0.56:HF	20.00:ZR -2.00:SE 1.60:BA 5.00:TA	140.00:NB -3.00:BR 1300.00:LA -1.00:W	20.00:AU -20.00:SC -1.00:RB -20.00:SR - 21.20:CE 46.00:ND -3.00:PB 10.00:BI	5.90:C0 500.00:M0 10.00:SM -0.50:TH	3.00: -5.00: 3.80: 5.10:

¢

COMMENTS : SPS310/99 POSSIBLE THIN FLOW, FELDSPAR-PHYRIC RHYODACITE

P

APPENDIX G STATEMENT OF EXPENDITURES SALTSPRING ISLAND

Ć

MONTHLY PROJECT EXPENSE REPORT

PROJECT:	Saltspring Base Metal	PROJECT	NO. 941	AFE NO.	E-323
OFFICE:	Vancouver	MONTH:	December,	1984	

TOTAL TO DATE

BUDGET ITEM

01 Salaries and Wages \$34,525.69 03 Camp Expense 5,858.23 05 Travel Expenses 1,133.79 07 Office and Technical Supplies 511.16 80 Communications 38.96 11 Geological 59.75 12 Geophysical 36,944.80 13 Geochemical 4,671.55 14 Photogrammetry 5.35 17 Auto Operation and Maintenance 2,911.00 21 Equipment Purchase and Maintenance 46.00 23 Surveying and Line Cutting 990.00 63 Property Acquisition - Staking and Surveying 6,960.00 65 Government Fees 2,521.00 TOTAL \$97,177.28

APPENDIX G STATEMENT OF EXPENDITURES SALTSPRING ISLAND

(

CLAIMS:	Sul 1, Sul 2, Mus, Salt 1, 5 1, Bruce 2, Musgrave 1, Mus	Salt 2, Salt 3, grave 2.	Bruce
MINING DIVISION:	Victoria		
NTS:	92B/11, 12, 13, 14		
SUMMARY OF WORK:	Geophysical mapping and airl	oorne geophysica	1
PERIOD OF WORK:	May 5 to June 13, 1984		
COSTS:			
A. GEOPHYSICAL SUR	VEY		
AIRBORNE EM AND MAG	NETOMETER SURVEY - INPUT SYS	TEM	
Questor Surveys	, Mississauga, Ontario	36,944.80	
PERSONNEL			
G. Hendrickson May 14-16, June	Geophysicist 11-13 6 days @ \$192/day	1,152.00	
ROOM AND BOARD			
6 man-days @ \$4	0/day	240.00	
		38,336.80	38,336.80
B. GEOLOGICAL MAPP	ING: 1:10,000 scale 50 km ²		
PERSONNEL			
D. Mallalieu, g May 5, 8-31, J	eologist une 1-5 30 days @ \$ 88/day	2,640.00	
T. Huttemann, g May 8-31, June	eological assistant 1-5 29 days @ \$ 72/day	2,080.00	
ROOM AND BOARD			
59 man-day days	@ \$40	2,360.00	
TRANSPORTATION			
8 ferry crossin Toyota diesel 4x4	gs @ 24.25 a month at \$1,000	194.00 1,000.00	
Diesel fuel 0	\$60/wk	240.00	
		8,514.00	8,514.00
TOTAL: Geop	hysical Survey and Geologica	1 Mapping	\$46,850.80

\$36,600 of this cost to be applied to:

Sul 1 Sul 2 Mus Salt 1 Salt 2 Salt 2	20 20 6 12 16	units units units units units units		Record Record Record Record Record	No. No. No. No.	1173 1174 1175 1168 1169	Feb Feb Feb Feb Feb	33333	years years years years years	000000	6,000 6,000 1,800 3,600 4,800
Bruce 1 Bruce 2 Musgrave Musgrave	20 20 1 2 2 4	units units units units	· · ·	Record Record Record Record	NO. No. No.	1171 1172 1340 1344	Feb July August	3 3 3 3	years years years years	0 0 0 0	6,000 6,000 600 1,200

The excess \$10,250.80 to be transferred to Kidd Creek Mines Ltd. PAC account.

CLAIMS:	Hope Group Comprised of Bruce 1, Bruce 2, Salt 1, Musgrave 1, Musgrave 2.
MINING DIVISION:	Victoria
NTS:	92B/11, 12, 13, 14
SUMMARY OF WORK:	Linecutting, detailed geological mapping, geochemical sampling, ground geophysical surveying.
PERIOD OF WORK: COSTS:	July 12 to November 2, 1984

A. LINECUTTING AND GRID CHAINING: 9 1-km, 20 m stations, horiz. chaining PERSONNEL

D. Mallalieu, July 12-16, 23	geologist -24, Oct 22-26	12 days	0	\$88/day	\$1,056.00	
T. Huttemann, July 12-16, 23	geological ass -24	istant 7 days	0 :	\$72/day	504.00	
G. Hendrickson July 14–16, Oc	, geophysicst t 24-26	7 days	0	L92/day	1,152.00	
S. Enns - geol July 23-24, Oc	ogist t 22-26	7 days	0 1	192/day	1,344.00	
F. Renaudat, t Oct 22-28, 27	echnical assis	tant 5 days	0	90/day	450.00	
an a					4,506.00	\$4,506.00
ROOM AND BOARD						
36 man-days @	\$40/day				1,440.00	1,440.00
TRANSPORTATION					•	
Toytoa diesel Redhawk Rental	4 x 4 2 w s, Burnaby, B.	eeks 0 \$ C.	250,	/week	500.00	
Diesel fuel	0\$	60/week	÷.,		120.00	
					620.00	620.00
TOTAL COST	: Linecutting	and grid				\$6,566.00
\$6,400 of this cos	t to be applie	d to:				
Bruce 1 20 uni Salt 1 12 uni	ts Record ts Record	No. 117 No. 116	2 8	F F	eb 1 year eb 1 year	@ 4,000 @ 2,400

B. GROUND GEOPHYSICS: HLEM and Magnetometer surveys - 9 1-km PERSONNEL

G. Hendrickson, geophysicst				• 1. A.
July 17-18, Oct 27	3 days @	192/day	576.00	
T. Huttemann, geological ass July 17-18, 20, 24, 25	istant 5 days 0	72/day	360.00	
D. Mallalieu, geologist July 17-18, 20,	3 days @	88/day	264.00	
S. Enns - geologist July 25	1 day @	192/day	192.00	
F. Renaudat, technical assis Oct 26	tant 1 day 0	90/day	90.00	
· · · · · · · · · · · · · · · · · · ·	- v	\$	1,482.00	\$1,482.00
ROOM AND BOARD				
13 man-days @ \$40/day			520.00	520.00
TRANSPORTATION				
Toyota diesel 4 x 4 1 w Redhawk Rentals, Burnaby, B.	veek @ \$250 C.)/week	250.00	
Diesel fuel @ \$	60/week		60.00	
			310.00	310.00
TOTAL: Ground Geophysics				\$2,312.00
C. GEOCHEMICAL SAMPLING: soil a	and rock geo	ochemistr	y	
PERSONNEL				
F. Renaudat, technical assis Oct 28-29	tant 2 days @	90/day	180.00	
S. Enns, geologist Oct 29-31	3 days @	192/day	576.00	
D. Mallalieu, geologist Oct 30, Nov 1-2	3 days @	88/day	264.00	
		\$	1,020.00	\$1,020.00
ROOM AND BOARD				
8 man-days @ \$40		1	320.00	\$ 320.00

 \bigcirc

TRANSPORTATION

O

C

Toyota diesel 4 x 4 Redhawk Rentals, Burr	1 week @ \$250/week naby, B.C.	250.00	
Diesel fuel	@ \$60/week	60.00	
		\$ 310.00	\$ 310.00
GEOCHEMICAL ANALYSIS			
Acme Analytical Labor	ratory, Vancouver, B.C.		
230 soil for Cu,Pb,Zr 115 soil for Au @ 4.0 69 rock for Cu, Pb,	n,Ag,Mn @ 4.60 00 Zn, Ag @ 6.75	1,058.00 460.00 465.75	
og rock for Au, Ba	e 7.00	403.00	¢0 //// 75
TOTAL	1 Comultur	\$2,400./5	\$2,400./5
IUIAL: Geochemic	cal Sampling		\$4,110.75
D. GEOLOGICAL MAPPING: 1	1:2,000 scale over 2.5	km ²	
PERSONNEL	· · ·		
D. Mallalieu, geologist July 19, 21–22, 25–27,	t Oct 27-29 9 days @ 88	/day 792.00	
S. Enns - geologist July 26-27, Sep 27, Oct 27-28, Nov 1	t 19, 8 days @192/d	ay 1,536.00	
T. Huttemann, geologica	al assistant		
July 22, 26-27	3 days @ 72	/day216.00	
		\$2,544.00	\$2,544.00
ROOM AND BOARD			
20 man-days @ \$40/day	/	800.00	800.00
TRANSPORTATION			
Toyota diesel 4 x 4 Redhawk Rentals, Burr	1 week @ \$250/wee naby, B.C.	k 250.00	
Diesel fuel	@ \$60/week	60.00	
8 ferry crossings @	24.25	194.00	
		504.00	504.00
REPORT PREPARATION		750.00	750.00
TOTAL: Geologica	al Mapping		\$4,598.00

TOTAL COST: Ground geophysics, geochemical sampling and Geological Mapping \$11,026.75

\$5,200 of this cost to be applied to:

.

Bruce 2	20 units	Record No. 1172	Feb	1 year 0 4	4,000.00
Musgrave 1	2 units	Record No. 1340	July	1 year 0	400.00
Musgrave 2	4 units	Record No. 1344	Aug	1 year 0	800.00

The excess \$5,826.75 to be transferred to Kidd Creek Mines Ltd. PAC account.

APPENDIX H

STATEMENTS OF QUALIFICATIONS

(

「大学のない」というないないないので、このないのでは、

10 m 10 m

NAME OF GROOM

NAME: S. G. Enns ADDRESS: 701 - 1281 West Georgia, Vancouver, B.C. V6E 3J7 EDUCATION: B.Sc. - Honours Geology 1967 University of Manitoba

> M. Sc. - Economic Geology 1971 University of Manitoba

Geol. Assist.	Manitoba Mines Branch -	1964 (field season)
Geol. Assist.	Sherritt Gordon Mins -	1965 (field season)
Geol. Assist.	Amax Exploration Inc	1966-70 (field season)
Geologist	Cerro Mining of Canada-	1971
Geologist	Hudson's Bay Oil & Gas-	1972
Geologist	BP Minerals Canada -	1973-75
Geologist	BP Alaska Exploration -	1975-79
Geologist	Amax of Canada -	1979-81
Geologist	Kidd Creek Mines Ltd	1982 - present

NAME: David Mallalieu ADDRESS: 701 - 1281 West Georgia, Vancouver, B.C. V6E 3J7 EDUCATION: B.Sc. - Honours Geology, 1983 Carleton University

May-Sept 1981	Mattagami Lake Exploration Ltd. Junior Geological Assistant
May-Sept 1982	Mattagami Lake Exploration Ltd. Senior Geological Assistant
April-Dec 1983	Billiton Canada Ltd Vancouver Senior Geological Assistant
May-Dec 1984	Kidd Creek Mines Ltd. Geologist

NAME: Tim Huttemann ADDRESS: 701 - 1281 West Georgia, Vancouver, B.C. V6E 3J7 EDUCATION: B.Sc. - III year, applied mathematics University of British Columbia

Summer	81	Newmont - geological, geophysical assistant
Summer	82	Newmont - geological, geophysical assistant
Summer	83	Kidd Creek Mines - geophysical assistant
Summer	84	Kidd Creek Mines - geophysical, geological assistant.

NAME:	Frank	Renaudat				
ADDRESS:	701 -	1281 West	Georgia,	Vancouver,	B.C.	V6E 3J7

Summer	1981	Kidd Creek Mines Ltd. Geochemical sampler, gridding
Summer	1982	Kidd Creek Mines Ltd. Gridding, geochemical sampler
Summer	1983	Kidd Creek Mines Ltd. Sampling, geophysical assistant
Summer	1984	3 weeks, geophysical assistant soil sampling

47 Lan Vancouver Island 4 68 0 fm livan Process 16811,12,13, 14,15,16, 40 SUL 1 14 049 SUL 2/ 040 040 Q_40-350 SEDIMIT × 035 035 (40) AB1694 A816946 MUS **4**a Geological Schematic Cross Section A - B

