GEOLOGICAL AND GEOCHEMICAL REPORT

- on the -

ALLIES CLAIM

Kamloops Mining Division, British Columbia

GEOLOGICAL BRANCH ASSESSMENT REPORT

- for -

904 - 675 WEST HASTINGS STREET

VANCOUVER, B. C. V6B 1N2

Covering:

Allies (20 units)

Work Performed:

August 1, 1984 - January 14, 1985

Location:

- (1) 25 kilometres NW of Kamloops, B. C.
- (2) NTS Map No. 92 I/15 E
- (3) 50° 52'N, 120° 34'W.

Prepared by:

KERR, DAWSON AND ASSOCIATES LTD.

206 - 310 NICOLA STREET

KAMLOOPS, B, C. V2C 2P5

D. A. LEISHMAN, B. Sc.

J. M. DAWSON, P. Eng.

TABLE OF CONTENTS

																								Page	No
SUMMAR	RY	• . •		•	•	•	•	•	•	•	•	•	• .	•	•	•		•		•	•	•	•	1	
INTROD	OUCTION		• •		•	•	•	•	•		•		•	•						•	•	•	•	2	
PROPER	RTY			•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•		2	
LOCATI	ON AND	ACCE	SS		•	•		•		•	•	•	•	•	•	•		•				•	•	2	
PHYSIO	GRAPHY	AND	VEGI	ETA	ΥŢ	ON	1	•		•			•	•	•		•		•	•		•	•	5	
HISTOR	RY				•	•	•	•		•		•	•	•	•	•	•		•	•		•		5	
REGION	IAL GEOI	LOGY			•				•	•				•						•		•		7	
1984 P	ROGRAM	ME, F	HASI	3 1	ΙΙ	•				•	•	•					•	•			•			8	
INTR	RODUCTIO	ом .				•	•		•	•		•	•	•	•		•				•			8	
GEOC	CHEMICAL	L SUR	VEY	. •	•				•	•			•	•	•		•	•	•		•	•		9	
S	SAMPLING	G МЕТ	HOD	•	•	•				•			•	•	•		•	•	•	•	•	•		9	
·L	ABORATO	ORY M	ETH(DD	•	•											•			•				10	
P	PRESENTA	ATION	OF	RE	ESU	JLI	cs		•	•		•	•	•							•			10	
D	oiscuss	ION C	F RI	ESU	JLI	rs								•			•							11	
GEOL	LOGICAL	SURV	ΈY	•	•	•	•				•	•					•	•			•	•	•	13	
1	NTRODU	CTION	i .			•	•					•	•								•		•	13	
N	10. 1 SI	HAFT		•		•			•								•			•	•			13	
N	10. 2 AI	DIT				•						•	•							•	•			15	
N	10. 3 Al	TIC	•	•	•	•				•							•				•			15	
S	SOUTHWES	ST AD	TIC	•		•	•.		•	•	•					•	•					•		17	
Q	(UARTZ	FELDS	PAR	DY	KΙ	ES	((Car	nne	e 1 1	L (Cre	eel	ς,	L!	5+0	005	5)			•	•	•	20	
CONCLU	USIONS								•														•	, 21	
REFERI	ENCES .				•			•					•	•				•	•					22	

LIST OF FIGURES

			Pag	ge No.
FIGURE 249	-1 Location P	lan 1 c	cm to 87 km.	3
FIGURE 249	-2 Claim Map	1:5	50,000	4
FIGURE 249	-3 Geological Geochemica		1,000 In	Pocket
FIGURE 249	-4 Detailed S No. 1 Shaf	urface Plan t 1:4	400 In	Pocket
FIGURE 249	-5 No. 3 Adit		:	16
FIGURE 249	-6 Southwest	Adit		18
FIGURE 249	-6a Southwest	Adit		18
FIGURE 249	•	dspar Dykes reek, 5+00S)	;	19

* * * * *

APPENDICES

APPENDIX I	GEOCHEMICAL	AND ASSAY RESULTS
APPENDIX II	ROCK SAMPLE	DESCRIPTIONS
APPENDIX III	PERSONNEL	
APPENDIX IV	PROGRAMME CO	OSTS
APPENDIX V	WRITERS' CE	RTIFICATES

SUMMARY

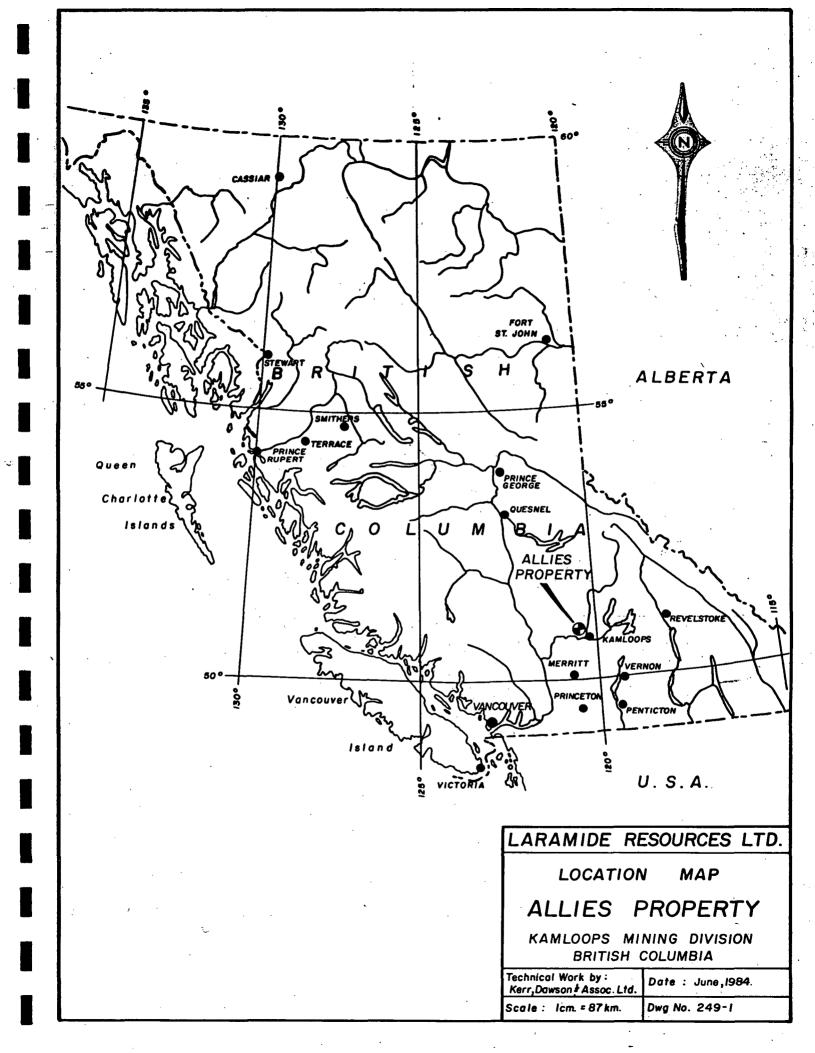
The Allies property consists of one 20 unit metric claim located in relatively moderate terrain approximately 25 kilometres northwest of the city of Kamloops, B. C. The claim covers a showing originally discovered in the early 1900's and has undergone extensive exploration (including underground drifting) in the late 1920's and early 1930's. Further attempts were made in the 1970's. The objective of these searches was to locate the bedrock source of high grade gold mineralization in large boulders of quartz feldspar porphyry. Both programmes failed. In the spring of 1984, Laramide Resources Ltd. embarked upon a systematic programme of exploration of the claim group. The second phase of this programme is described herein. It includes building of road access, trenching and sampling, geological mapping and geochemical surveys. Trenching by Laramide uncovered possible bedrock of mineralized porphyry that assayed .298 ounces gold per ton. However due to adverse climatic conditions and technical problems with trenching, the 1984 programme was curtailed in early November. Widespread values of anomalous gold in bedrock plus high grade gold values in float boulders make this property an exceptional exploration target.

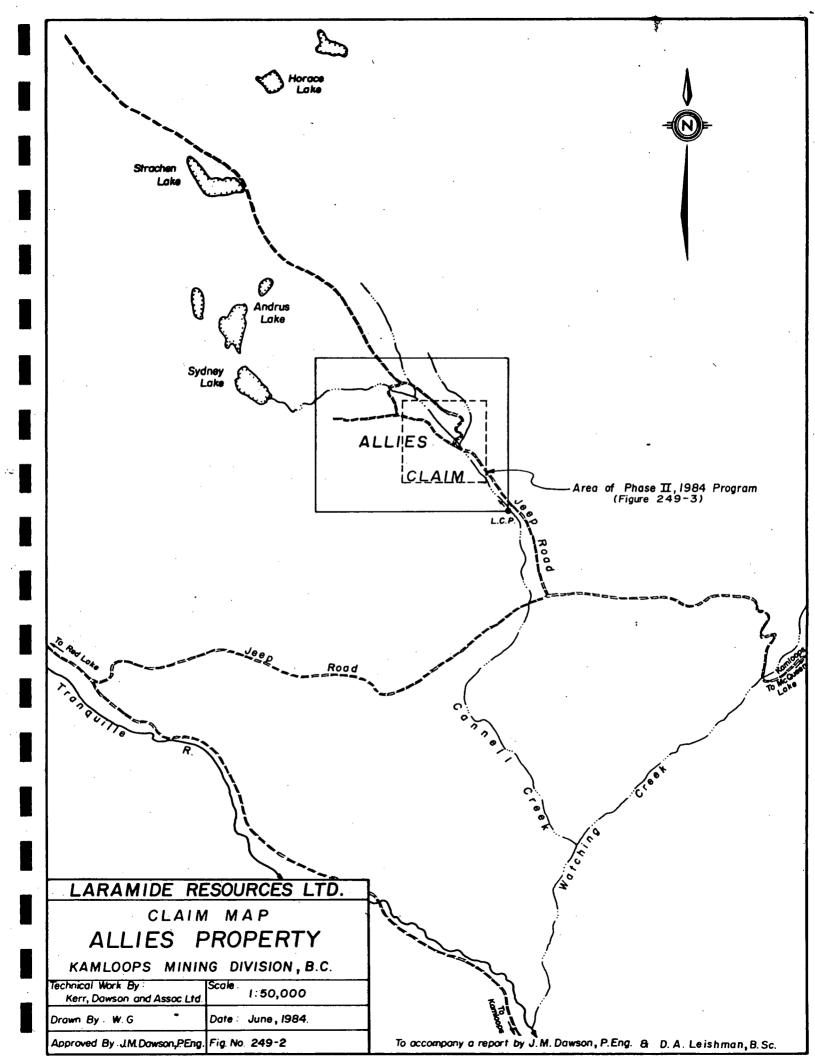
INTRODUCTION:

This report describes the second phase of an exploration programme carried out on the Allies property during 1984. This phase of exploration consisted of construction of road access, trenching, geological mapping and sampling, and geochemical soil and drainage sampling.

PROPERTY:

The Allies property consists of one 20 unit metric claim.


Claim Name	Record No.	Tag No.	Expiry Date
Allies	3617	68481	June 23, 1987


The registered owner of this claim is Laramide Resources Ltd.

LOCATION AND ACCESS:

The property is located in south central British Columbia about 25 kilometres northwest of the city of Kamloops at the southern edge of the Bonaparte plateau. The approximate geographic center of the claim is at 50° 52' north latitude and 120° 34' west longitude.

The claim is accessible from Kamloops as follows: take the Bachelor Hills turnoff from North Kamloops and proceed via good gravel road for about 15 kilometres to McQueen Lake; from here a poor quality dirt road leads westerly for about 10 kilometres via Pass Lake and Watching Creek to Cannell Creek. A poor quality jeep road leads up Cannell Creek for about 3 kilometres to the main showing on the property.

PHYSIOGRAPHY AND VEGETATION:

The claim lies just at the southern edge of the Bonaparte Plateau. A gently rolling upland area with elevations in the 4,800 to 5,000 foot range is bisected by the northwest-trending valley of Cannell Creek. Elevations in this valley vary from about 3,900 feet a.s.l. at the southeast corner of the property to near 4,800 feet a.s.l. at the north and west claim boundaries.

The property is heavily wooded by mature spruce, fir and pine in the valley of Cannell Creek. Upland areas and southerly-facing slopes are generally more open and predominately forested by lodgepole pine with occasional meadows.

HISTORY:

This property is first mentioned in the 1924 Annual Report of the B.C. Minister of Mines. Presumably it had been discovered a few years before this by prospectors working up Tranquille River and Watching Creek looking for the source of placer gold found in those creeks. Samples of material grading as high as 1.42 oz Au per ton were obtained from quartz stringers in a number of large blocks of silicified feldspar porphyry thought at first to be outcrops.

Over the next few years a considerable amount of prospecting and trenching had not established dimensions of the showing or even if the discovery material was in place.

In 1933-34 an extensive programme of underground exploration was carried out in an attempt to find and delineate the source of the gold-bearing porphyry. At least 3 shafts and 5 adits totalling approximately 800 lineal feet were driven at several locations and although several occurrences of similar porphyry intrusions were located in place the source of the high grade float at the discovery or No. 1 shaft was not found.

The property lay dormant until 1968 when minor trenching was done near some of the original workings.

In 1972-73, the property was controlled by Bon-Val Mines Ltd. and magnetic and VLF electromagnetic surveys as well as geochemical soil sampling was carried out. Bon-Val Mines was reorganized as Yamoto Industries Ltd.

In 1976, an extensive programme of geochemical soil sampling was undertaken with some 800 samples being analysed for gold and copper. Results showed only a few isolated gold highs, undoubtedly because of the heavy overburden.

In 1978, three diamond drill holes totalling 162.5 meters were bored near the No. 1 Shaft. Logs reported barren "serpentine" in all holes with no porphyry or quartz veins encountered.

In 1984, title to the property was awarded to Laramide Resources Ltd. in a dispute over previous assessment work.

In the spring of 1984 a detailed exploration programme was commenced on the subject property. This work consisted of grid lay-out, prospecting and detailed geological mapping.

REGIONAL GEOLOGY:

Regionally the property lies within the Intermontane Belt of central British Columbia. In the area of the Allies claim group the oldest units are the Triassic Nicola Volcanics which are bounded on the west (and unconformably overlain) by the Kamloops Group (Tertiary). A still younger "Plateau Basalt" of Tertiary age overlies much of the above in the higher elevations north of Kamloops Lake.

On the Allies property a window of Nicola Volcanics is exposed beneath a cover of this "Plateau Basalt". Intruding these volcanics are dykes of quartz feldspar porphyry of Cretaceous(?) age. On the Allies claim mineralized quartz veins carrying anomalous values in gold are associated with these dykes. It is for this reason an exploration programme was initiated by Laramide Resources Ltd.

1984 PROGRAMME - PHASE II:

INTRODUCTION:

This phase of the 1984 programme began by the construction and upgrading of access roads within the claim area. Roads were constructed so as to facilitate access to all areas of the older workings and to expose as much bedrock as possible. A D-6 cat with ripper was used for this work.

Upon completion of this work all fresh exposures of quartz feldspar porphyry and their host units were mapped and sampled.

A reconnaissance soil survey was also completed along the road system, silt and pan samples were taken along Cannell Creek and other drainages. Representative samples of mineralized float were also collected downstream and downslope of the No. 1 Shaft.

Upon completion of the above, a track-mounted backhoe capable of digging a pit to 7 metres was brought onto the property. It was planned to use this machine to uncover bedrock near the No. 1 Shaft. However technical problems and climatic conditions prevented the completion of this work.

Detailed plans, sketches and descriptions of the work completed is included in the following sections.

GEOCHEMICAL SURVEY:

SAMPLING METHOD:

Soil samples were taken at 25 metre intervals along all the road cuts with sample depth ranging from 0.3 to 5.0 metres (from the surface). A total of 177 "soil" samples were taken with sample sites flagged and labelled. The reasons for taking samples at such depth was due to poor soil development and a thick veneer of glacial overburden (boulders, till and clay) covering the survey area.

Stream sediment samples were taken along the two major drainages on Figure 249-3 with a sample interval of 25 metres. It was virtually impossible to collect a true "silt" sized sample. Most stream samples consisted of fine to coarse sand. A total of 50 stream samples were taken with sample sites numbered and flagged.

Seven pan samples were also taken, 5 from Cannell Creek and 2 from a westerly drainage. Locations and values obtained are plotted on Figure 249-3.

In conjunction with the above a group of 20 samples (AL 01 - AL 020) of quartz feldspar porphyry were collected from the stream bed south and east of the No. 1 Shaft, (Figure 249-4). These samples of float ranged in size from 10 centimetres to several metres. The amount of quartz veining varied from nil to 50%. Sulphide mineralization was also variable. These samples were of at least 2 kilograms weight.

All soil and stream samples were collected in waterproof kraft envelopes and upon completion of the survey they together with the rock samples were taken to Kamloops Research and Assay Laboratory Ltd. and analysed for gold (and silver where appropriate).

LABORATORY METHOD:

The soil, stream and pan samples were dried and sieved (-80 mesh stainless steel). A 20 gram sample was then taken and fire assayed. A measured quantity of silver was added to collect the gold in a bead. The bead was cleaned and then digested in solution with the solution read by atomic absorption. Results were then calibrated to parts per billion and tabulated.

All rock samples (AL 01 - AL 020) were fire assayed with results given in ounce/ton of gold.

PRESENTATION OF RESULTS:

All soil samples locations are plotted on Figure 249-3 with samples yielding greater than 5 parts per billion gold labelled individually. No statistical analysis was completed on the soil results due to the inhomogenity of the sample medium and the irregular distribution and density of sample sites.

Silt samples were plotted in a similar way with sample values greater than 5 parts per billion noted. The sample population (50) was considered too small for a meaningful statistical analysis.

Panned sample locations and results (in ppb gold) are also plotted on Figure 249-3.

Sample sites of porphyry float (AL $01-AL\ 020$) are plotted on Figure 249-4. Individual results are tabulated in Appendix I.

DISCUSSION OF RESULTS:

Soils:

A total of 23 samples returned values greater than 5 and up to 1130 parts per billion gold in the soils. (Figure 249-3).

The 3 higher values returned all were found near the area of the Southwest Adit (350, 520, 1130 parts per billion respectively). Several anomalous(?) values were also found near the central part of the map area (base line 2+00S). Other values greater than 5 parts per billion had a relatively erratic distribution. Surprisingly there were really no values of significance found near the area of No. 1 Shaft.

Because of the erratic distribution of sample results, it appears "soil" sampling might not be a totally reliable indicator of mineralized bedrock.

Stream Sediments:

Values of up to 1270 parts per billion gold were found in the stream samples. A total of 10 samples (all in Cannell Creek) returned values greater than 50 parts per billion gold. Despite the tight sample spacing (25 metres) it is clearly seen on Figure 249-3 that gold distribution in stream sediments is variable and erratic. The highest value, 1270 ppb gold is found near 0+25S; 0+50E on Cannell Creek, 130 metres south of the No. 1 Shaft. However the sample immediately to the north returned only 20 ppb gold while the sample to the south a value of 110 ppb gold was obtained. Other high values were found near 2+25S in the stream (995 ppb gold) while on either side of this particular sample values of only 5 ppb gold were obtained. Other interesting results were found just east of the No. 1 Shaft and near L5+00S adjacent to some recent trenching (Figure 249-3).

Panned Concentrates:

Panned samples returned values from less than 5 ppb to 3755 ppb gold. Three samples returned values greater than 1000 ppb gold. Significantly, the highest value obtained was taken just southeast of the No. 1 Shaft. An intermittent drainage from the area of the Southwest Adit returned low values (samples CWSL-2, CWSL-4). The values described for pans are panned concentrates and were not weight normalized. Flecks of "free gold" were seen in two of the panned concentrates examined under a binocular microscope.

Mineralized Float:

Assay results of the samples of float ranged from less than .001 ounces gold per ton to .446 ounces gold per ton with silver values never exceeding .44 ounces per ton. These samples combined with 2 taken previously by J. M. Dawson averaged .10 ounces gold per ton. Sample material was both veined and massive with sulphide content ranging from trace to several percent. Four of these samples (AL 11, 14, 15, 17) were found to contain coarse gold (Appendix I).

GEOLOGICAL SURVEY:

INTRODUCTION:

Upon completion of the road building and trenching, all exposures were mapped and sampled where considered appropriate.

Five areas on Figure 249-3 were extensively trenched and sampled. These were the No. 1 Shaft, the No. 2 and No. 3 Adits, the Southwest Adit and the exposure west of Cannell Creek near line 5+00S.

All data was plotted on Figure 249-3 and 249-4. Also detailed sketches of various exposures were made (Figures 249-5 through Figure 249-7). The geology on Figure 249-3 is transferred from J. M. Dawson's geological report. It is revised where necessary. Seen on Figure 249-3 are numerous areas noted as subcrop. Invariably this indicates areas where numerous fragments of what appears to be the basal section of the plateau basalt (Unit 1b) with volcanics (Unit 3) are found. Extensive and deep trenching would be necessary to prove or disprove their proximity to true bedrock. There were never any fragments of porphyry associated with these subcrops.

NO. 1 SHAFT:

Work completed near the No. 1 Shaft is plotted on Figure 249-4 (1:400 scale). This work was completed in two phases. During the first phase a D-6 cat was used to dig two trenches, one trending N75 $^{\circ}$ E from Sample No. 85853 to Sample No. 85852 and a second trending N20 $^{\circ}$ W from the centre of the first trench (Figure 249-4).

This second trench reached a depth of close to 3.0 metres where subcrop(?) of the basal section of the basalt/greenstone was encountered.

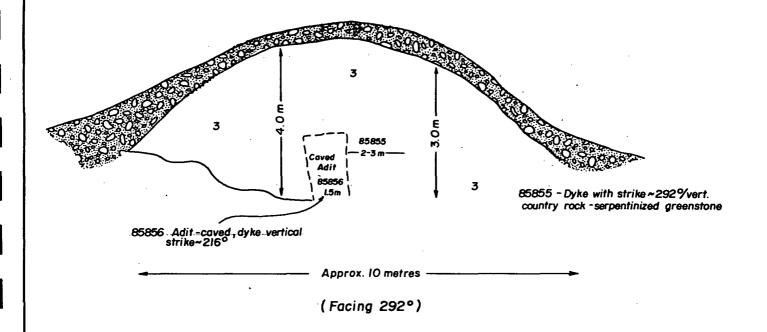
Here a very highly oxidized and silicified breccia was sampled but insignificant values in gold were encountered.

The first trench although not as deep as the second cut highly altered and oxidized clay and overburden. Large fragments of quartz feldspar porphyry were encountered at the bottom of this trench. One 3 metre chip sample (suspected outcrop) returned a value of 650 ppb gold. Two other samples of float (85853, 85858) returned 840 and 25 ppb gold respectively.

A fourth grab sample (85857) of quartz feldspar porphyry (float) with veining taken from an older trench 30 metres west of the base line returned a rather spectacular value of .324 ounces gold per ton.

A backhoe was brought onto the property to deepen the above trenches to bedrock. The trench containing sample 85851 was deepened and a depth of 6 to 7 metres was reached at the north end. Two samples were taken (DAL 022 and DAL 023) at the south end of the trench. A large fragment of quartz feldspar porphyry (DAL 023) was taken at about a 3 metre depth. This fragment was heavily veined with several percent pyrite and minor chalcopyrite. Low but significant values of gold and silver were obtained (.048 and .05 ounces respectively). A second sample of porphyry (DAL 022) taken at the bottom of the trench of probable bedrock (.298 and .44 ounces respectively).

Unfortunately problems with the backhoe did not allow for the extension of this trench or testing of other target areas. A D-8 cat rented from Weyerhaeuser was then brought in to deepen the area south of samples DAL 022 and DAL 023. Unfortunately due to extreme wet clay conditions encountered, it was not possible to expose bedrock. One sample (DAL 021) of a porphyry boulder was sent for assay but returned insignificant values. Trenching with the D-8 cat was terminated due to the possiblity of getting stuck in the clay.


NO. 2 ADIT:

The area surrounding the No. 2 Adit was exposed (Figure 249-3). A very highly altered massive serpentized greenstone was exposed over a width of 20 metres at 90° to the Adit. This greenstone was soft and friable and was easily trenched. Two possible outcrops of quartz feldspar porphyry were exposed. The northernmost exposure appeared to be in a shear contact with the enclosing greenstones. However altered greenstones slumping onto the feldspar porphyry prevented a proper examination of this contact. One grab sample (No. 85869) returned only 10 ppb gold. The direction of this shear contact appears to be approximately 266°.

A second exposure of feldspar porphyry lies 15 metres to the southeast of the above. Large blocks of porphyry form a small knob. No veining was seen in these porphyry blocks. It is possible these blocks of porphyry are not "in situ" but mined waste from the original exploration adit.

NO. 3 ADIT:

The area of the No. 3 Adit was exposed by trenching (Figures 249-3, 249-5). Two samples were taken of the dyke material. There was very little veining with no sulphides. The porphyry dyke appears to be in shear contact with the enclosing, very altered serpentized greenstones. Figure 249-6 was sketched facing 292° . A true strike of the dyke appears to be approximately 290° . Neither of the 2 samples taken returned significant values in gold (Sample No. 85855, 85856).

LEGEND

Overburden

☐ Basalt

2 Feldspar porphyry

3 Volcanic greenstone

To accompany a report by D.A.Leishman, B.Sc.

LARAMIDE RESOURCES LTD.

ADIT NO. 3

ALLIES PROPERTY

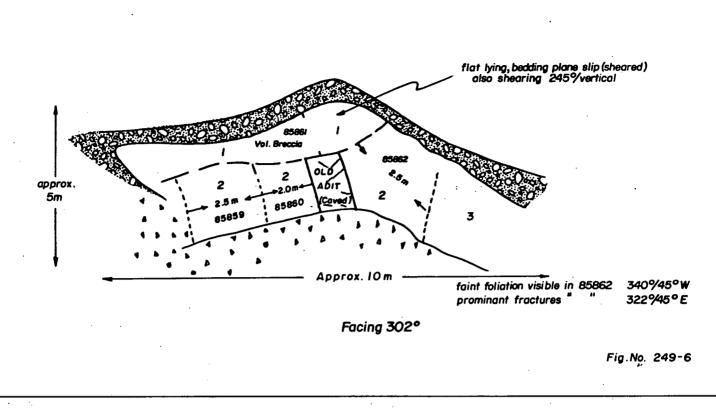
Kamloops Mining Division, B. C.

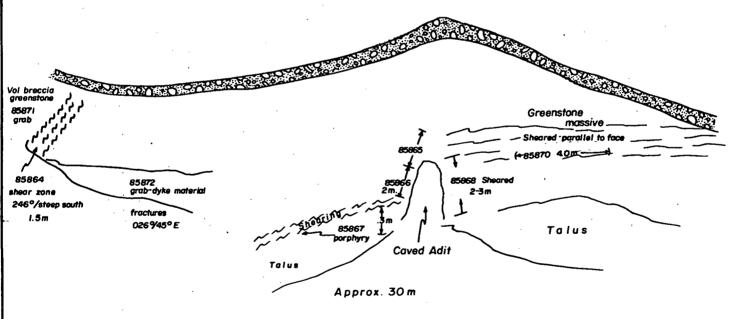
Technical Work By: Scale: Kerr, Dawson and Assoc. Ltd

 Drawn By : W. G.
 Date : Jan., 1985.

 Approved By : D.A.L.
 Fig. No. 249-5

SOUTHWEST ADIT:


The area around the southwest adit was extensively trenched. Two old adits were exposed and are shown on Figures 249-6 and 249-6a. Both the quartz feldspar porphyry dykes and the enclosing volcanics in this area have undergone a significant amount of shearing and disruption. Consequently a true attitude of the dyke rocks was not obtained. A significant amount of faulting of the overlying basalt was observed by J. M. Dawson to the south of this area.


In Figure 249-6 three samples of dyke material were taken near an old adit. Anomalous values of gold were obtained from 145 to 760 ppb. An overlying unit (basal section of basalt) returned an insignificant value in gold.

A second area (Figure 249-6a) was sampled extensively. Here the dyke material and enclosing volcanics were extensively sheared and fractured. Significant amounts of malachite were also seen in these shears though most of the malachite was seen in or adjacent to the dyke rocks.

Significant values (1050 and 745 ppb) of gold were obtained from samples 85865 and 85866 in a shear zone just above the old adit. Significant veining with minor sulphides (pyrite) with some malachite was observed in these samples. Although this shear extended to the northeast and contained highly visible malachite, gold values were non-existent (Sample No. 85870). More massive (less sheared) feldspar porphyry dyke rocks returned significantly lower values in gold (Sample Nos. 85867, 85869, 85872).

Although no ore grade material was found in this area the anomalous gold values are significant. Copper mineralization (malachite) seems to be confined to the dyke units and areas immediately adjacent. The shearing has resulted in a secondary distribution of the copper mineralization.

LEGEND

Facing 235°
SOUTHWEST ADIT

Overburden

Receit

☐ Basalt

2 Feldspar porphyry

3 Volcanic greenstone

్షాజ్ఞఞ Shearing

A . Talus

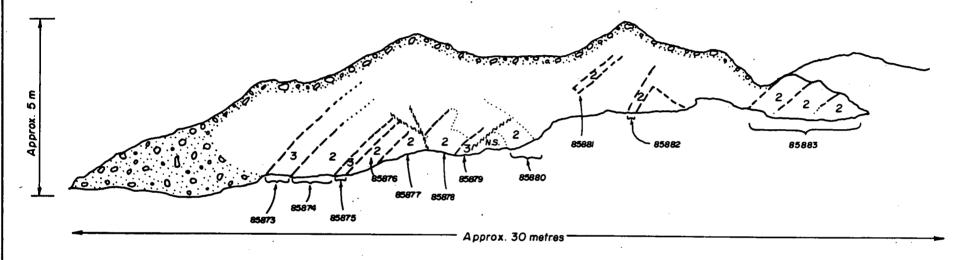
To accompany a report by D.A. Leishman, B.Sc.

LARAMIDE RESOURCES LTD.

SOUTHWEST ADIT

ALLIES PROPERTY

Kamloops Mining Division, B. C.


Technical Work By:
Kerr, Dawson and Assoc. Ltd.

Drawn By: W.G.

Approved By: D.A.L.

Fig. No. 249-6,6A

Fig. No. 249-6A

Facing~249°(sketch from road)

en en en	LEGEND	SAMPLE NO. 85873	GOLD (ppb) <5		
	Overburden	74	125		
	Basalt	75 · 76	∢5 30	LARAMIDE RI	ESOURCES LTD.
2	Feldspar porphyry	77 78	1032 120	QUARTZ-FEL	DSPAR DYKES
3	Volcanic greenstone	79 80	< 5 210	· '	PROPERTY og Division, B. C.
~~%%%	Shearing	81 .82 .83	185 35 145	Technical Work By: Kerr, Dawson and Assoc Ltd	Scale:
		85		Drawn By: W.G.	Date: Jan.,1985.
	•	To	accompany a report by D.A.Leishman, B.Sc.	Approved By: D.A.L.	Fig. No. 249-7

QUARTZ FELDSPAR DYKES (Cannell Creek, L5+00S)

Numerous narrow (true width less than 1 metre) quartz feldspar porphyry dykes were exposed in an area just west of Cannell Creek, (Figure 249-7). These dykes trend approximately 300° and have a steep to moderate dip to the south. There also appears to be a minor displacement and dragging of the dykes along 030° shear zones. Quartz veining with minor disseminated pyrite are found within the dykes. The quartz veins trend approximately 030° and dip to the northwest.

A total of 11 samples (85873 to 85883) were taken of porphyry dyke rock and the enclosing volcanic greenstone. Gold values obtained in units of the porphyry varied from 30 to 1032 ppb. The host volcanics returned non-significant gold values.

Though gold values in the porphyry dykes did not approach ore grades, they were significantly anomalous. The significance of this is the area of anomalous gold values in quartz feldspar porphyry has been increased.

CONCLUSIONS:

Mapping of the exposed outcrops of feldspar porphyry indicates these dyke rocks have a strike direction of approximately 290° as opposed to a previously indicated direction of north 20° east. Anomalous values in gold (to 1 ppm) are found within outcropping veined quartz feldspar porphyry dykes in at least two widely separated localities on the Allies claim, (Southwest Adit and Cannell Creek, 5+00S). In addition, ore grade mineralization was located as float (and possibly outcrop) in the immediate area of the No. 1 Shaft. It appears that the bedrock source of the "high grade" mineralization will likely be located 50 to 75 metres west of the No. 1 Shaft.

Respectfully submitted,

KERR, DAWSON AND ASSOCIATES LTD.,

Douglas A. Leishman, B. Sc.

Doughs A. Leishman

Geologist.

Kamloops, B. C.

January 14, 1985.

REFERENCES

Cockfield, W. E.

Geology and Mineral Deposits of Nicola Map Area, British Columbia, G.S.C. Memoir 249, 1965.

Dawson, J. M.

Geological Report on the Allies Claim, Kamloops Mining Division, B. C., Laramide Resources Ltd., Vancouver, B.C. Assessment Report.

Monger, J. W. H.

Bedrock Geology of the Ashcroft (92/I) Map Area, O.F. 980, G.S.C. 1984.

APPENDIX I

GEOCHEMICAL AND ASSAY RESULTS

B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT - KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 -- TELEX: 048-8320

GEOCHEMICAL LAB REPORT

Kerr, Dawson & Associates Ltd. Suite 206 Nicola Place 310 Nicola Avenue Kamloops, B.C.

PROJECT 249

September 27, 1984 DATE ____ ANALYST_

V2C 2P5 G-1187 FILE NO. _ ppb ppb IDENTIFICATION Kral # Identification Αu Au 85851 L5 31 **DAL 025** L5 L5 85852 650 32 **DAL 026** Ļ5 85853 840 33 DAL 027 11 34 L5 85854 L5 DAL 028 11 35 **DAL 029** L5 85855 L5 11 85856 L5 36 DAL 030 5 37 **DAL 031** L5 DAL 001 L5 50145 L5 **DAL 002** L5 38 **DAL 032 DAL003** L5 39 **DAL 033** L5 10 **DAL 004** L5 40 DAL'034 L5 DAL 035 L5 11 **DAL** 005 L5 41 L5 **DAL 006** L5 42 DAL 036 43 **DAL 037** Ľ5 13 **DAL 007** L[:]5 14 **DAL 008** L5 44 **DAL 038** L5 L5 45 20 15 **DAL 009** DAL 039 DAL 040 **DAL 010** L5 46 L5 16 47 L5 DAL 011 L5 DAL 041 48 DAL 042 L5 **DAL 012** L5 18 49 L5 19 L5 DAL 043 **DAL 013** 50 L5 DAL 044* 50 20 DAL014 L5 51 DAL 045 L5 21 DAL015 22 5 **DAL 016** L5 52 DAL 046 23 **DAL 017** 5 53. DAL 047 5 L5 24 **DAL 018** L5 54 DAL 048 L5 55 DAL 049 50 25 **DAL 019** 26 **DAL 020** L5 56 DAL 050 L5 L5 57 L5 27 DAL 021 DAL 051 28 DAL 022 L5 58 DAL 052 L5 29 **DAL 023** L5 59 DAL 053 5 5 30 180 60 **DAL 054 DAL 024**

GEOCHEMICAL LAB REPORT

	٠.									
Fil	LE NO. <u>G-1187</u>	·				PAGE	2 ·			_
NO.	IDENTIFICATION	ppb Au			KRAL NO.	IDENTIFICATION	ppb Au			
1	DAL 055	5			91	DAL 08 5	5			
2	DAL 056	L5		,	92	DAL 086*	L5			
3	DAL 057	L5			93	DAL 087	L5			
4	DAL 058	10			94	DAL 088	L5			
5	DAL 059	L5			95	DAL 08 9	L5			
6	DAL 060	5			96	DAL 090	10			
7 .	DAL 061	L5			97	DAL 091	L5			
В	DAL 062	L5			98	DAL 092	10			
9	DAL 063	L5		,	99	DAL 093	L5			
0	DAL064	L5			100	DAL 094	L5			
11	DAL 065	L5			101	DAL 095	5			
2	DAL 066	L5			102	DAL 096	L5			:
3	DAL 067	L5			103	DAL 097	5			
4	DAL 068	L5			104	DAL 098	5			
5	DAL069	L5	·		105	DAL 099	5			
6	DAL 070	L5			106	DAL 100	10			
7	DAL071	L5		,	107	DAL 101	L5			
8	DAL 072	L5			108	DAL 102	L5			
9	DAL 073	L5			109	DAL 103	L5			
0	DAL 074	L5			110	DAL 104	L5			
1	DAL 075	L5			111	DAL 105	L5			
2	DAL 076	L5			112	DAL 106	L5			
3	DAL 077	L5			113	DAL 107	Ĺ5 ~~	<u>.</u>		
4	DAL 078	L5	,		114	DAL 108	L5			
5	DAL 079	L5			115	DAL 109	L5			
6	DAL 080	L5			116	DAL 110	25			
7	DAL 081	40			117	DAL 111	L5			
8	DAL 082	5			118	DAL 112	L5			
	DAL 083	L5			. 119	DAL 113	L5			
	DAL 084	5			120	DAL 114	L5		<u> </u>	

GEOCHEMICAL LAB REPORT

F	FILE NO G-1187 PAGE 3									
RAL NO.	IDENTIFICATION	ppb Au			KRAL NO.	IDENTIFICATION	ppb Au			
121	DAL115	L5			151	DAL 145	5			
122	DAL 116	L5			152	DAL146	L5			
123 [·]	DAL117	L5			153	DAL 147	L5			
124	DAL118	L5			154	DAL 148	5			
125	DAL119	L5	1		155	DAL 149	L5			
126	DAL120	L5			156	DAL 150	5			
127	DAL121	L5			157	DAL151	L5			
128	DAL122	L5			158	DAL 152	L5			
129	DAL 123	240			159	DAL153	L5			
130	DAL 124	100			160	DAL154	L5			
131	DAL 125	235			161	DAL155	L5			
132	DAL 126	20			162	DAL156	L5			
133	DAL 127	10			163	DAL157	L5			
134	DAL 128	5			164	DAL 158	L5			
135	DAL 129	30			165	DAL 159	L5			
136	DAL 130	5			166	DAL 160	L5			
137	DAL 131	L5			167	DAL 161	290			
138	DAL 132*	L5			168	DAL 162	5			
139	DAL 133	L5			169	DAL 163	L5			
140	DAL 134	1130		<u>.</u>	170	DAL 164	10			
141	DAL135_	10			171	DAL 165	L5			
142	DAL 136	5			172	DAL 166*	L5			
143	DAL 137	L5			173	DAL 167	240		-	
144	DAL 138	350			174	DAL 168	L5			
145	DAL 139	L5			175	DAL 169	5	ļ		
146	DAL 140	L5			176	DAL 170	L5	_		
147	DAL 141	L5			177	DAL 171	L5			
148	DAL 142	L5			178	DAL 172	L5			
149	DAL 143	5		, !	179	DAL 173	L5			
150	√ DAL 144	L5			180	DAL 174	95	,		

GEOCHEMICAL LAB REPORT

	FILE NO G1187					PAGE _	4		
KF L NO.	DENTIFICATION	ppb Au						_	
181	DAL 175	L5							
82	DAL176	L5				,		•	
83	DAL 177	520							
			·					·	
-	L means "Less th	an"							
, .	* Pulverized			·				·	
	Au Method: -80	Mesh							
	Fire Atom	Assay ic Abysor	ption						
,				·		·			
Ī				,					
									,
·									
								·	
		·							
		i.							
					**************************************				,
									-
	·				·		· · ·		

B.C. CERTIFIED ASSAYERS

KAMLOOPS

RESEARCH & ASSAY

LABORATORY LTD.

912 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL LAB REPORT

Kerr, Dawson & Associates Ltd. Suite 206 Nicola Place 310 Nicola Avenue Kamloops, J B.C. V2C 2P5

DATE <u>October 1, 1984</u>

PROJECT 249

ANALYST_____

•	FILE NO.		الراسان المحاصورا		<u>C1 249</u>	FILE NO. G-11	93		
HEAL NO.	'> / バデ丹・ IDENTIFICATION	nz SEDI	1115.075				ppb		
1		Au			Kral No.	Identification	Au		·
	DAL 178	65			31	DAL 208	20		
	179	L5		- !	32	209	40	·	
3	100	270			. 33	210	320		
4	181	10			34	211	70		
5	182	L5.			35	212	110		
6	183	L5			36	213	20		
7	: 184	L5			37	214	. 5		
B	185	L5			38	215	5 :		
9	186	L5			39	216	5		
10	DAL 187	30			40	DAL 217	5		
11 :	188	5			41	218	10		
12	189	10			42	219	L5		
13	190	L5			43	220	L5		
14	191	L5	·		44	221	L5		
15	192	20			45	222	L5		
16	193	20	·		46	223	L5		
17	194	5			47	224	L5		
18	195	L5			48	225	L5		
19	196	995			49	226	L5		
20	DAL 197	L5			50	DAL 227	45		
 21	198	25							
22	199	160				L means "Less th	an"		
23		L.5		54					
24	201	10				Au Method: -80			
.5	202	55				Fire	Assay ic Absoı	ption	
16	203	5							
7	204	10							
8	205	20							
9	206	110						<u> </u>	
0	DAL 207	1270						 	

B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL LAB REPORT

Kerr, Dawson & Associates 206-310 Nicola St., Kamloops, B.C. V2C 2P5

DATE September 10, 1984.

ANALYST G 1170

FILE NO. __ Project #249 ppb IDENTIFICATION Aυ CWESL 1 1125 CWSL 2 L5 3755 CWSL 3 4 CWSL 4 70 CWSL 5 250 CWSL 6 1330 CWSL 7 L5 140 CWSL Rock means "less than" Au Method: -80 mesh Fire assay Atomid absorption

B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL LAB REPORT

Kerr, Dawson & Associates Ltd. Suite 206 Nicola Place 310 Nicola Avenue Kamloops, B.C. V2C 2P5

DATE	<u>October</u>	<u>1,</u>	<u> 1984</u>		
ANALYST_					
	C_1191			•	

l' F	FILE NO.						FILE NO.	G-1′	191	· .	
AL NO.	IDENTIFICATION	ppb Au								-	
1	85857	G10000		·							
2	85858	25									
3	85859	145	•							_	
4 .	85860	760				,					
5	85861	L5									
6	85862	655									
7	85863	L5									
8 .	85864	L5									
9	85865	1050									
10	85866	745									
11	85867	L5.									
12	85868	325									
13	85869	. 10					Rock Geochem:	Cre	ush enti	re samp	le
14	85870	L5						Sul Pu	-sample verize	if ned	essary grinder –100 mes
15	85871	L5									-100 mes
16	85872	60			1		Au Method:		re Assay omic Abs	orption	
17	85873	L5						,			
18	85874	125			Щ						
19	85875	L5			Щ			, '			
20	85876	30									
21	8 5 8 7 7	1032									
22	85878	120						·			
23	85879	L5			∭						
24	85880	210			₩	•					
25	85881	185			$\parallel \parallel$						
26	85882	35			∭						, , , , , , , , ,
27	85883	145			\parallel						
					\parallel						
	L means "Less	than"									
	G means "Greate	er than"			Ш						

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

Certificat	te No. <u>K-6720</u>
Date	October 22, 1984

Kamloops, B.C : V2C 2P5

Suite 206 Nicola Place, 310 Nicola Street,

TO Kerr, Dawson and Associates Ltd.,

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No.	Marked	Au	Ag					
		ounces/ton	ounces/ton					
1 2 3 4 5 6 7 8 9	AL 01 02 03 04 05 06 07 08 09 AL 10	.032 .001 L.001 L.001 .084 .008 L.001 .001 .138	.35 .32 L.01 L.01 .09 .09 L.01 L.01 .11		,			,
11 12 13 14 15 16 17 18 19 20	11 12 13 14 15 16 17 18 19 AL 20	*.181 .014 .060 *.446 *.059 .124 *.155 .024 .004	.44 .05 .17 .29 .26 .11 .26 L.01 .09			* have b gold. S		found to

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged. Hann

Registered Assayer, Province of British Columbia

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

O _Kerr.	Dawson and Associates Ltd.,		
		Certificate No.	K-6720
· · · · ·		Date	

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No.	Marked	Percent	Au	Combine	d Au			 ,	
		Weight	ounces/ton	ounces/t	pn	<u> </u>			
	17911 -100 mesh +100 mesh		.17 218.75	.181					
	17914 -100 mesh +100 mesh		.444 13.125	.446					
	17915 -100 mesh +100 mesh		.052 58.69	.059			,		
	17917 -100 mesh +100 mesh		.144 142.63	.155					
	L means "less t	han"					,	,	

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged. Al Bran

Registered Assayer, Province of British Columbia

Kerr, Dawson and Associates Ltd.,

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

K-6766

Certificate No.

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

	Suite 206 Nicola Place,			Oct.modio vio.							
-							Date	Novemb	November 8, 1984		
	310 Nicola Street, Kaml	oops, B.C. V2	C 2P5								
•	· · · · · · · · · · · · · · · · · · ·			Project	#249			*			
	UPLICUP LELLLY that the fo	ollowing are the resul	ts of assays made	ade by us upon the herein described				samples			
Kral No.	Marked	Au	Ag								
		ounces/ton	ounces/ton							ļ	
1 2 3	DAL 021 DAL 022 DAL 023	L.001 .298 .048	.01 .44 .05								
				,				·			
									·	·	
										·	
			,							·	
	·										
	[1							

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Al from

NOTE:

Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

70 <u> </u>	Suite 206 Nicola Place, Kamloops, B.C. V2C 2P	310 Nicola Áv	ATTENTION:	MR. D. LEI	_	donovibad	Date_	Octob	G-1191 er 1, 19	84
Kral No.	Marked	Au	s or assays mad	Je by us upon	trie riereiri	described		Şâ	amples	
		ounces/ton								
	85857	.324					-			
								·		<u> </u>
										:
	·									
									·	
							·			
			1	1		ĺ				

Registered Assayer, Province of British Columbia

APPENDIX II

ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

Sample No.	Description
85851	Subcrop - basal section basalt, breccia with very silicified fragments, predominantly pale beige cherts - oxidized.
85852	3 metre chip sample - outcrop(?), quartz feldspar porphyry with quartz veins to 5 centimetre width and pink feldspar veinlets. Stockworks type veining 1-2% disseminated pyrite in host and veins plus knots of chalcopyrite to .5 centimetre diameter (0.5-1% chalcopyrite).
85853	Probably float, grab sample, as above.
85854	Subcrop - basal section basalt, totally oxidized 1 metre chip sample.
85855	Quartz feldspar porphyry dyke, sharp contact with enclosing greenstones(?), fractured 290°/V, no sulphides or significant veining, chip 2.3 metres.
85856	Quartz feldspar porphyry, as above, collapsed adit - chip over 1.5 metres.
85857	Quartz feldspar porphyry - wall of old trench(?), probably not in situ, grab sample.
85858	Highly oxidized volcanic breccia, basal section basalt, grab from wall of trench in situ(?).
85859	Quartz feldspar porphyry, totally fractured with feldspar altering to clay giving bleached appearance. 1-2% quartz veins with trace only pyrite, chip 2.5 metres.
85860	Similar to above though highly oxidized on surface, 2.0 metres.
85861	Breccia - totally oxidized, basalt and greenstone fragments (to 0.5 metres), flat shearing parallel to strata, also shearing 245°/V, 1 metre face sample.
85862	Quartz feldspar porphyry – as 85859 and 85860, totally oxidized along surface and within fractures, 2.5 metre chip, fractures $322^{\circ}/45^{\circ}$ West with trace pyrite, faint foliation $340^{\circ}/45^{\circ}$ West dip.

85863	Thin flat lying sequence of quartzite/dolomite/volcanic tuff(?), trace disseminated pyrite.
85864	Shear zone - greenstone, silicified with chlorite alteration, 246 /steep south dip, minor carbonate veining, 1.5 metre chip.
85865	Shear zone - greenstone(?), 146°/steep west dip, 5% carbonate veining, 180°/60° west with quartz malachite stain, no fresh sulphides, oxidized.
85866	Similar to above, with quartz veins to 10 centimetre width, disseminated pyrite with trace chalcopyrite, faint foliation, bedding(?), parallel to veining as above, 2 metre face sample.
85867	Quartz feldspar porphyry, trace chalcopyrite and malachite, only .3 metre exposed at base outcrop.
85868	Sheared greenstone - as above, 2-3 metre face sample.
85869	Quartz feldspar porphyry - massive, silicified, coarse grained, minor carbonate veining, no sulphides, contact (?) shearing 266 /steep north dip.
85870	Greenstone(?), highly sheared and oxidized chip sample along strike (4 metres), no sulphides (pyrite or chalcopyrite), shearing 115°/V.
85871	Greenstone(?), flat lying, trace chalcopyrite, grab sample.
85872	Feldspar porphyry – fracture $026^{\circ}/45^{\circ}$ east, grab sample, no strike direction.
85873	Greenstone(?) wall rock, silicified in contact with dyke jointing 002°/45° West, contact with dyke 302°/steep northeast, 1 metre.
85874	Quartz feldspar porphyry dyke 297°/V, 1.5 metre.
85875	Volcanic wall rock - 1.0 metre sample, strong jointing $016^{\circ}/50^{\circ}$ west, 3-4/metre, chilled contact with dyke.
85876	Quartz feldspar porphyry – $297^{\circ}/V$, 0.7 metre wide, shearing $032^{\circ}/\text{steep}$ west to vertical, quartz veining sub parallel to shearing.

85877	Quartz feldspar porphyry - totally fractured and oxidized, chip 0.7 metre, strong shearing 055°/V.
85878	Quartz feldspar porphyry - chip 1.0 metre, 304°/V, 321°/V contacts with shearing.
85879	Greenstone(?) - strong jointing 305°/V, 1.0 metre chip.
85880	Quartz feldspar porphyry - as 85878 - along strike shearing 030 /70 northeast - strong, face sample.
85881	Quartz feldspar porphyry - strike 312°/V strong jointing 222°/70° northwest.
85882	Quartz feldspar porphyry - 316°/V shearing 226°/60-80°northwest.
85883	Quartz feldspar porphyry – veining $236^{\circ}/30-40^{\circ}$ NW fracture $316^{\circ}/V$ – with vein material strong jointing $219^{\circ}/60-70^{\circ}$ NW.

APPENDIX III

PERSONNEL

PERSONNEL

J. M. Dawson, P. Eng.	Geologist	August 1, 22, 27, September 9, 10, October 9, 30, 31, December 18, 19, 1984.	10 days
D. A. Leishman, B. Sc.	Geologist	September 13, 14, 15, 16, 17, 18, 19, 20, 21, October 12, 14, November 1, 2, 3, 4, December 12, 13, 14, 1984, January 8, 9, 11, 14, 1985.	21½ days
W. Gruenwald, B. Sc.	Geologist	August 25, October 18, (½ day), 1984, January 14, 1985.	2½ days
R. Henderson	Technician	August 17-30, September 10-12, 1984.	17 days
W. Dawson	Technician	August 17-31, September 3-7, 1984.	20 days
B. Cross	Technician	September 8-13, 1984.	6 days

APPENDIX IV

PROGRAMME COSTS

PROGRAMME COSTS

LABOUR:

J. M.	Dawson, P. Eng. 10 days @ \$350/day	\$ 3,500.00	
W. Gr	ruenwald, B. Sc. 2½ days @ \$275/day	687.50	
D. A.	Leishman, B. Sc. 21½ days @ \$300/day	6,450.00	
R. He	enderson 17 days @ \$200/day	3,400.00	
W. Da	uwson 20 days @ \$200/day	4,000.00	
B. Cr	oss 6 days @ \$200/day	1,200.00	\$ 19,237.50
EXPENSES	& DISBURSEMENTS:		•
(a)	Contract bulldozer work (Sept.)	8,473.75	
(b)	Truck rental	2,930.00	
(c)	Assays and geochemical analyses	2,241.25	
(d)	Room and Board	1,468.30	
(e)	Chain saw rental	1,051.61	
(f)	Miscellaneous field equipment	266.95	
(g)	Drafting	482.75	
(h)	Telephone, xerox, secretarial, blueprints, courier	324.90	
(i)	Contract bulldozer and excavator work (OctNov.)	4,654.88	24 007 20
•			21,894.39
TOTAL PR	OGRAMME COSTS:		\$ 41,131.89

APPENDIX V

WRITERS' CERTIFICATES

JAMES M. DAWSON, P. ENG.

Geological Engineer

#206 - 310 NICOLA STREET • KAMLOOPS, B.C. V2C 2P5 • TELEPHONE (604) 374-0544

CERTIFICATE

I, JAMES M. DAWSON, of Kamloops, British Columbia, Do Hereby Certify That:

- (1) I am a geologist employed by Kerr, Dawson and Associates Ltd. of Suite 206 310 Nicola Street, Kamloops, B. C.
- (2) I am a graduate of the Memorial University of Newfoundland, B. Sc. (1960), M. Sc. (1963), a fellow of the Geological Association of Canada and a Member of the Association of Professional Engineers of British Columbia. I have practised my profession for 22 years.
- (3) I am the co-author of this report which is based on an exploration programme carried out on the subject property under my direct supervision.

KERR, DAWSON AND ASSOCIATES LTD.,

J. M. DAWSON

BRITISH

COLUMBIA

COL

James M. Dawson, P. Eng.

Geologist.

Kamloops, B. C.

January 14, 1985.

KERR, DAWSON AND ASSOCIATES LTD.

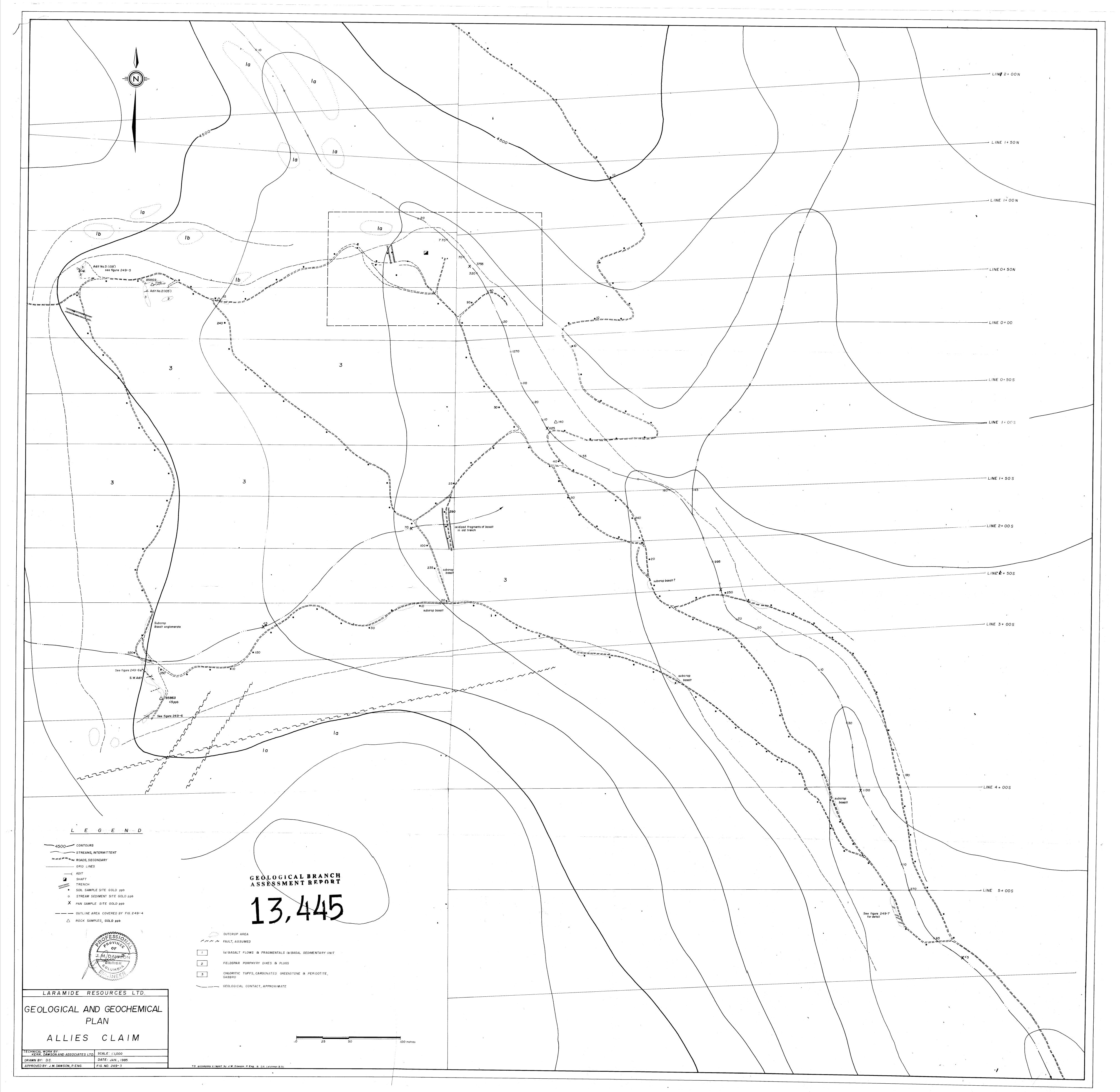
Consulting Geologists and Engineers

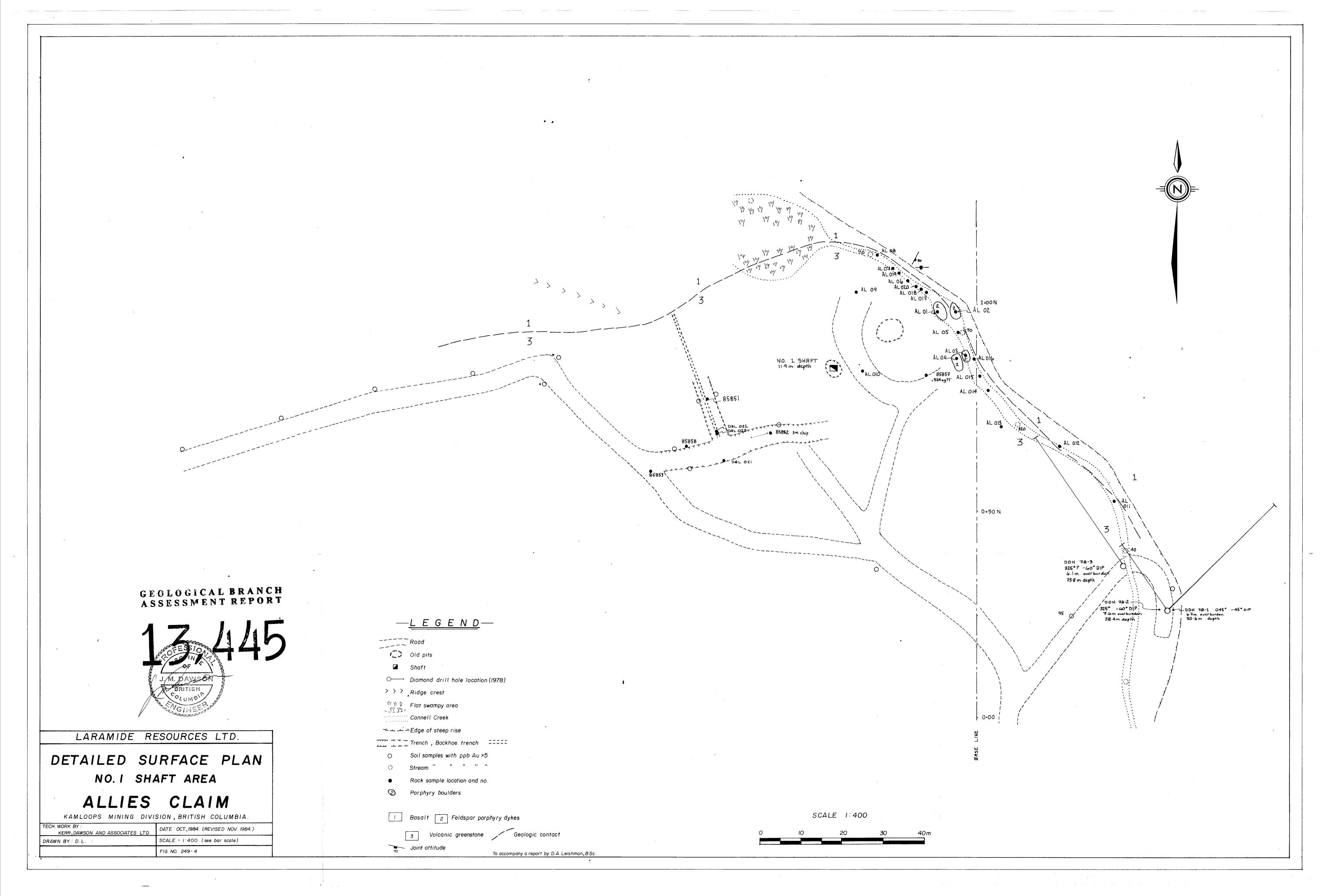
No. 206 - 310 NICOLA STREET • KAMLOOPS, B.C. V2C 2P5 • TELEPHONE (604) 374-0544

CERTIFICATE

- I, DOUGLAS A. LEISHMAN, of Kamloops, British Columbia, Do Hereby

 Certify That:
- (1) I am a geologist employed by Kerr, Dawson and Associates Ltd. of Suite 206 310 Nicola Street, Kamloops, B. C.
- (2) I am a graduate of the Northern Alberta Institute of Technology, Exploration Technology (Minerals Option), 1971, Edmonton, Alberta.
- (3) I am a graduate of the Imperial College of Science and Technology, Royal School of Mines, London, England, B. Sc. (Hons.) Mining Geology, 1981. I have been actively involved in mineral exploration since 1971.
- (4) I am the co-author of this report which is based on an exploration programme carried out by myself.


KERR, DAWSON AND ASSOCIATES LTD.,


Daughs A. Laihman

Douglas A. Leishman, B. Sc. (Hons.) Geologist.

Kamloops, B. C.

January 14, 1985.

