ASSESSMENT REPORT ON THE HALL CREEK GROUP OF MINERAL CLAIMS IN THE NELSON MINING DIVISION

GEOCHEMICAL REPORT

LOCATION:

L.C.P. (see Corner Jill 100) UTMG COORDINATES: 1:50,000 N.T.S. 82F/6 49°22.5'N, 117°15'E 5469000mN, 482000mE

OWNERS:

C.F. Graham P.O. Box 910 Merritt, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

13,534

Arizako Mines Ltd. 812-475 Howe St. Vancouver, B.C.

Noel Porter 200-2900 Simpson Rd. Richmond, B.C.

AUTHOR:

R.A. Wells, (Geologist)

DATE:

NOVEMBER, 1984.

TABLE OF CONTENTS

P	Α (G E	
INTRODUCTION	1		
DETAILED TECHNICAL DATA			
AND INTERPRETATION	6		
CERIFICATESA	fter	r 8	
APPENDICES			
GEOCHEMICAL SOIL RESULTSAp	_		
DETAILED COST STATEMENTAp	pend	dix	2
MAPS			
LOCATION MAPFi			
INDEX MAP (1:50,000)Fi	gur	e 2	
SOIL GOCHEMICAL GRID (1:5,000)	gure	e 3	

THE HALL CREEK GROUP

INTRODUCTION

The Hall Creek Group consists of crown grants, reverted crown grants, located/M.G.S. claims totalling the equivalent of 42 units. The specific claims and owners are as follows:

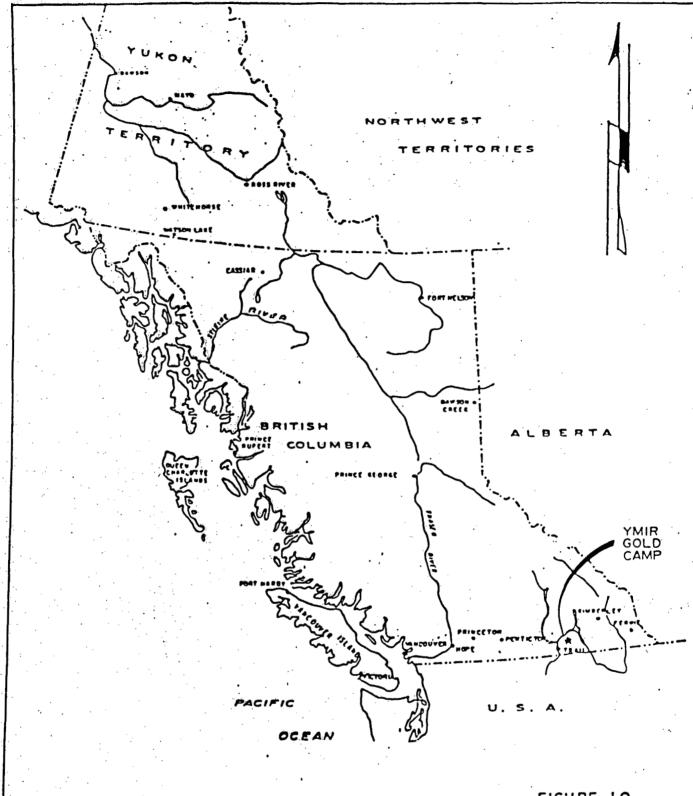
Bear C.G. Lot No. L14714(4) Owner: Noel Porter

Imperial R.C.G. record #1639(4)

Eclipse R.C.G. record #1640(4)

Bear #1 R.C.G. record #1641(4)

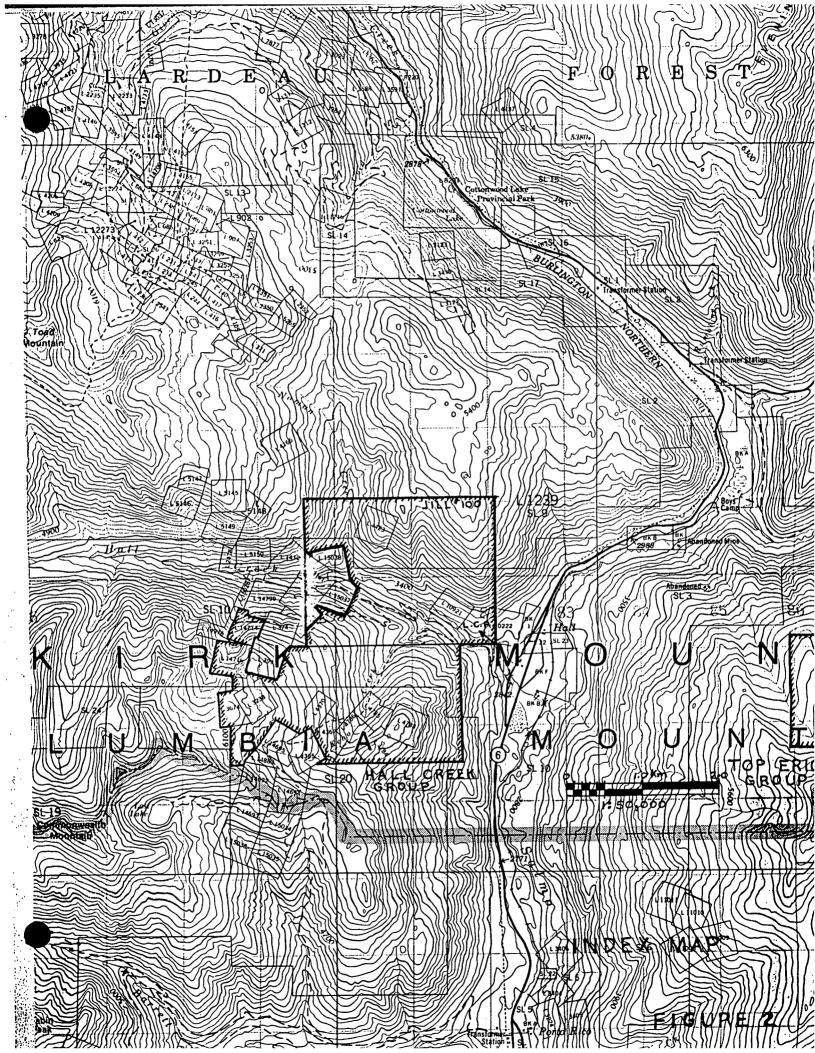
U.G. R.C.G. record #2190(4)


Jill #100, located 20 units, record #3892(10): Owner

Arizako Mines Ltd.

The operator of the claim group is Arizako Mines Ltd. of Vancouver, B.C. The claim group is located 10 kilometers due south of Nelson, in the Nelson Mining Division. The east boundary of the claim group is located 500 meters west of the point where Highway #6 (Nelson - Salmo) crosses Hall Creek. The range in elevation is between 3000 - 5200 feet.

Access to the property is mainly by turning off Highway #6 to the west at a point 500 m south of the Hall Creek bridge. This main access road is gravel and requires 4-wheel drive to negotiate the grades. Several roads branch from this main road but post fire growth has rendered them generally impassable. One road was roughly brushed out almost to the west boundry of the property to temporarily provide access for 1984 field activities. The southwest corner of the claims can also be reached by 4-wheel drive gravel road using the 8 kilometer Barrett Creek - Lost Lake road which turns off of Highway #6 at a point 5 kilometers south of Hall Creek.


Vegetation over the area is almost exclusively post fire secondary growth consisting largely of poplars with extremely heavy growth of slide alder and devils club with the occasional

PROPERTY LOCATION

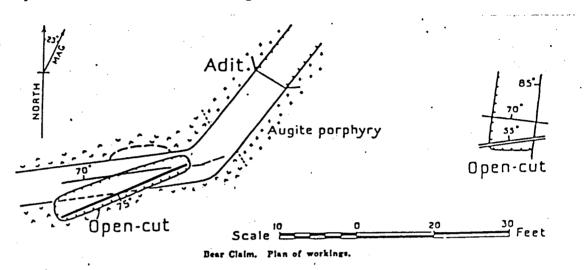
Scole

0 110 200 KM

remnant cedar. The terrain consists of $20-30^{\circ}$ slopes with limited outcrop which is somewhat more abundant on steep slopes, and higher elevations.

Within the claim group only the Bear Crown grant has a recorded history of earlier workings:

EXCERPT FROM MINISTER OF MINES 1937:


Bear Claim. Is registered in the name of Carl Peterson, of Hall Siding. It is situated on the south side of Hall Creek, lying to the west and south of the Fern. The property is reached by a branch trail from the end of the Hall Creek road, about $2\frac{1}{2}$ miles from the Nelson - Nelway Highway. The trail climbs approximately 1,200 feet in the distance of roughly 1 mile from the end of the road to the lowest workings, which are at an elevation of approximately 4,000 feet.

The ground covered by the claim has been burned over quite recently. The overburden is from 1 to 5 feet thick. Rock-exposures are quite good. The steep slope to Hall Creek is intersected by the almost precipitous slope to a small tributary west of the workings.

The bed-rock consists of augite porphyry of the Rossland volcanic group, intruded by dykes of porphyritic granite, a rock with a dark fine- grained ground-mass and light feldspar phenocrysts. The contacts are commonly very irregular.

The lowest workings, consisting of a short adit and two open-cuts, are at the eastern side of the claim close to the western boundary of the Fern. These workings are in porphyritic granite except for the portal of the adit which is in augite porphyry. Near the blacksmith-shop 150 feet to the west a 20-foot porphyritic granite dyke is exposed. Some distance farther west there is a shear striking about due north and dipping 60 degrees to the west. Just west of it

another dyke-segment is exposed, it is 15 to 20 feet wide and can be traced for 100 feet on a course of south 70 degrees west. These may be segments of the dyke in which the workings are found.

The two open-cuts and a short adit situated near the north-east corner of the claim are shown on the accompanying sketch-plan. These workings expose joints or fractures in the porphyritic granite varying considerably in dip and strike but having a general east-west trend and rather steep dips. There is some crushing of the wall-rock along them and some quartz is developed. The ledge-matter is rusty and partially decomposed, and may show fine free gold in considerable quantity. Three tons of ore from these workings shipped shortly before the property was examined in September, contained 9.65 oz. of gold and 0.94 oz. of silver. A sample of veinmatter mineralized with unaltered pyrite selected from the adit dump, assayed: Gold, 3.26 oz. per ton; silver 0.4 oz. per ton.

In the eastern cut two fractures are exposed.

Rusty sheared porphyritic granite and quartz about 8 inches thick, filling the more southerly fracture, contained a good deal of fine free gold. The adit-portal is about 30 feet to the west at approximately the same

The adit starts as a crosscut from the end elevation. of a 4-foot rock-cut. At 14 feet from the portal the working turns to follow a vein-fracture 25 feet at south 82 degrees west. The fracture dips about 70 degrees to It is weak crossing the adit, and may be the north. lost at the irregular contact of porphyritic granite with augite porphyry which lies to the north-east. contact is observed in the east wall of the adit just before the drift is reached. It appears to be offset a little to the south on the west wall, but as the ground is timbered this is not certain. At the floor of the drift, in the first few feet, the vein widened to about 10 inches of crushed wall-rock and quartz mineralized with pyrite. A few feet ahead it narrowed to 4 inches. In the face and last few feet it could not be distinguished definitely.

Almost vertically above the drift and 17 feet higher is a cut on the surface, which for its length of 20 feet, exposes a rusty fracture one-half inch to 2 inches wide, striking south 65 degrees west and dipping about 75 degrees to the south in contrast with the northerly dips of the other mineralized fractures or joints. jection of the drift fracture at this level would be south of the cut, and the projection of the fracture in the cut to the level of the drift would be south of the Two series of joints are exposed in the cut; drift. south of the fracture parallel joints strike about north 20 degrees west and dip 80 degrees to the east. of the fracture joints strike from 40 to 60 degrees east of north and dip north-westerly at about 60 degrees. Overburden obscures the relationship of the mineralized fractures in the adit and cut above it with those in the cut to the east.

Up the hill from these workings, about 350 feet to the south and at an elevation of roughly 5,150 feet, there are several cuts over a distance of 50 feet. The

most northerly exposes shearing 4 feet wide, striking about north 20 degrees east and dipping 80 degrees to the west in the augite porphyry. On the hanging-wall side 10 inches of quartz containing a little chlorite is exposed. Due south 40 feet there is a cut 8 feet long following 4 to 5 inches of very rusty quartz lying on sheared greenstone. The strike is north 40 degrees east and the dip 55 degrees to the north-west. A sample of the rusty quartz assayed: Gold, 4.0 oz. per ton; silver, 0.4 oz. per ton. Westerly about 300 feet on the steep slope to the tributary creek a few cuts have been made exposing a very narrow vein."

Immediately east of Bear claim is the old Fern Mine Workings. Production records are incomplete but past production, most of which was mined to 1902, is estimated at approximately \$200,000 based on the old gold price of \$20.67 per ounce. The Fern mine consists of a northeast trending quartz-filled fissure which cuts the predominant country rock (augite porphyry) and closely follows a dike of granite porphyry. The ore consisted of pyrite accompanied by some chalcopyrite and free gold in the quartz gangue.

The country rock in the vicinity of the claims consists largely of dark green, dense to schistose, augite porphyry which is considered to be part of the Rossland volcanic group. These volcanics are cut by two types of dikes. One is a granite porphyry which is characterized by white phenocrysts of orthoclase sit in a dark, dense ground mass. The other is a dense, dark green, basic dike which is difficult to distinguish from the augite porphyrite. A major contact between the Rossland Volcanics and the Nelson Intrusives occurs near the southwest boundary of the claim group.

Exploration in the past has concentrated on locating and tracing gold-bearing quartz fissure-fills which occur in several locations in the Rossland Volcanics locally. In

an attempt to relocate old overgrown workings known to occur in the dense vegetation and to search for other similar gold bearing structures a brief soil geochemical program was initiated on the claim group. A total of 243 soil samples were collected and shipped to Kamloops Research and Assay for lead/zinc analyses.

DETAILED TECHNICAL DATA AND INTERPRETATION

During the month of September 1984, the author and 2 soil geochemistry assistants traversed 3 areas of the claim group. In these areas the dense vegetation and shallow overburden which rarely exceeds 2.0 meters suggested that soil geochemistry could prove to be a valuable exploration tool. The sampling procedure consisted of excavating a hole generally 20 - 30cm in depth with a digging tool, well into the B-horizon and collecting 100 - 200 grams of soil which in each case was stored in appropriately labelled standard brown paper soil bags. The soil analyses results for the two elements, lead and zinc were plotted on a composite grid plan (see figure 3). Each of the 3 areas sampled will be discussed in turn.

Area 1: Bear Claim Area

To gain 4-wheel drive access to the general area, 3 kilometers of road was brushed off by bulldozer. The dense post fire vegetation and inclement weather hampered field activities. At the end of the road 5 north - south flagged soil lines were constructed at 100 meter intervals with soil sample sites at a 25 meter spacing along each line. Two caved adits were noted in the northwest corner of the grid which are likely some of the Bear claim workings, although the author believes that the workings described in the Minister of Mines report must be somewhat south and west of the 1984 soil grid.

The soil results indicate that zinc is too subtle to use as an effective tracing element for the gold-bearing veins. Some lead values occur up to 3 times background.

Conclusions and Recommendations - Area 1

The anomalous lead sites should be prospected for cause. All of the samples will be analysed for copper to verify if a gold-copper relationship occurs and also to check on a copper - lead comparison. The resulting anomalous copper values will be run for gold. The old workings which are known to occur on the 1984 grid should be examined in greater detail. Initially the dump can be sampled and surface locations of the worked structures can be examined and traced where possible. If warranted the old workings can be rehabilitated to facilitate sampling and geological mapping at a later date. Old overgrown roads were noted while traversing the grid area: these roads are likely How access roads to old workings and should be traced out. Additional grid extension and soil sampling will be contingent upon the above follow-up results.

Area 2: Keno Creek Area

The second area was chosen to test an accessible central area of the claim group. This area is densely vegetated with thin overburden and a paucity of outcrop. Six north - south lines, 100 meters apart were flagged and soil sampled at 25 meter sites. The 95 soils collected were analysed for lead and zinc, and the results are plotted on figure 3.

Conclusions and Recommendations - Area 2

The Pb/Zn anomalies tend to be subtle and it is recommended that the same 95 soils be analysed for copper prior to any attempted follow-up (a similar approach to area 1).

Area 3: Southwest Claim Area

This area was chosen to be explored because of possible economic mineralization which might occur near a known granite/volcanic contact. Prospecting by the author in the area traversed did not disclose mineralization in the granites. The volcanics (and possible Ymir metasediment pendants) tend to be highly limonitic in the vicinity of the contact. No mineralization was observed except pyrite. The 63 soils were collected by 100 meter spaced contour traverses with the usual 25 meter soil sites. The soils were analysed for lead and zinc and the results are plotted on figure 3.

Conclusions and Recommendations - Area 3

Zinc again appears to give a poor response and is not recommended in future surveys on the claim group. Some lead anomalies are noted near the contact area with values of 3 times estimated background. Background values are expected to be somewhat variable due to lithologic variations. The author recommends that these 63 soils be analysed for copper and in turn specific resulting copper anomalies could be tested for a gold response. Follow-up would consist initially of prospecting and hand-trenching the more favorable anomalous sites.

APPENDIX 1

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

	GEOCHEMIC	20 1 100	REFORT	, · _
		חב בחם	KEI PKI	PAGE 7 / 7
1/001 1/0	FILE NO G-1192	FB	ZN	THUE TY
KRAL WU.	IDENTIFICATION	LD		
231	7+00W L2	17. 0	105. 0	
535	7+25W	23. 0		
233	7+504 7+504	23. 0 30. 8	106. 0	END OF NEW VICTOR (FOURTH OF JULY)
 574 577 577	0+00 L0 UG	50. 0	56. 0	
		22. 0	64. Ø	
235	0+25N	21. 0	86. 0	Beginning of U.G. Soils
236	0÷50N			9
237	0÷75N	21, 0	60. 0	
238	1+00N L0	20. 0	85. Ø	
533	1+25N	30. 0	61. 0	
240	1+50N	30. 0	87. O	•
241	1+75N	14. 0	62. 0	
242	2+00N L0	13. 0	117. 0	·
243	2+25N	21. 0	120. 0	
244	2+50N	25. 0	122. 0	
245	2+75N	23. 0	127. 0	
246	3+00N F0	19. 0	100. 0	
247	3÷25N		76. 0	
248	3+50N	22. 0	114. 0	
249	3÷75N	16. 0	75. 0	
259	4+00N L0	19. 0	<i>30.</i> 0	
251	4÷25N	20. 0	111. 0	
252	4+50N	- 22, 0	76. 0	·
253	4÷75N	30. 0	87. Đ	
254	5+00N L0	33. 0	3 3. 0	
255	0+00N L1	22. 0	74. 0	• •
256	0+25N	48. 0	102. 0	
257	0+50N	31.0	72. 0	,
258	9+75N	17. 0	65. 0	•
259	1+00N L1	42. 6	64. 0	,
260	1+25N	36. 0	66. Ø	
261	1÷50N	41. 0	67. O	
262		37. 0	<i>9</i> 3. 0	
263	2+00N L1	32. 0	69. O	•
264	2+25N	42. 0	66. Đ	
260	2+50N	41. 0	90. O	
266	2+75N	57. 0	72. 0	
267 267	3+00N L1	26. Ø	82. Ø	
		16. 0	83. Ø	
268 268	3+25N 3+50Y			
263	3÷50N	11. 0	60. 0	
279	3÷75N	12. 0	77. 0	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

		CHL LND	KEFUKI	
MODE NO	FILE NO G-1192 IDENTIFICATION	FB	ZN	
NEUE NO.				
271	4+00N L1	17. 0	74. 0	
272			71. 0	
273		11. 0		
274		16. 0	64. O	
275		11. 0	78. 0	
276		41. 0	75. O	
277	0+25N	42. 0	100. 0	
278		11. 0	75. 0	
279	94758	21. 0	87. 0	
280	1+80N L2	17. 0	60. O	
281		16. 0	86. Ø	
282	1+50N	26. 0	75. 0	
283	1+75N	40. 0	111. 0	
264		16. 0	76. 0	
285	2÷25N	13. 0	76. 0	
286	2+58N	19. 0 14. 0	60. O	
287	ラキア型M		60. O	
286	3+00N L2 3+25N 3+50N	32.10	91. 0	
289	3+25N	38. 0	195. 9	
290		32. 0	72. 0	
291	3+75N	29. 0	61. 0	
292		21. 0	78. 0	
293		50. 0	117. 0	
294		19. 0	69. 0	
295	0÷75N	13. 0	90. O	
236	1+00N L3	23. 0	67. 0	
297		16. 0	83. Ø	
298		19. 0	79. Ø	
299	1+75N	15. 0 19. 0	90. 0 at a	
300		19. 0 19. 0	91. 0 86. 0	
301 500	2 (2014	20. 0	72. 0	
302°		20. 0 16. 0	113. 0	
304		21. 0	100.0	
305		21. 0 28. 0	70. 0	
396 200		25. 0	97. 0	٠
307 307		24. 0	79. 0	
396 396	0+25N L4	11. 0	63. 0	
303 303	0+50N	6. 0		
310		12. 0	63. 0	
210	D 1 1 CH	v		

FAGE 8 / "
'U.G. 50145

	RAMLUUFS KES	HEMICAL				LIV.				
	FILE NO G-1							PAGE	314	
KRAL NO.	IDENTIFICATI		6	ZN		-				
311	1+00N L4		.5. 0	52. 0						
312	1+25N		.3. 0	61 . €						
213	1÷50N		.5. 0	54. €		,				
314	1+75N		.3. 0	137. 8						
315	2+00N L4		.5. ฮ	72. e						
316	2+25N		3. 0	57. €						
317	2+59N		:ଡ. ଡ	66. €			,			
318	0+00 L5		2. 0	72. 9			•			
319	9÷25N		. 4 . 0	79. 6					,	
259	0+50N		.6. 0	66. 6					•	
321	0÷75N		.7. 0	75. 8						
322	1+00N L5		2. 8	44. 8						
323	1+25N		.4. 0	61. 8						
324	1+50N	1	1.0	77. 6		.,				
252	1+75N	. 1	l2. 0 -			•				
. 326	2+00N L5	1	lo. o	42. 9					•	
327	2+25N		9. 0	- 56. 9		,	=ND	٥.5	IJ. G.	
 328	2+50N		10.0	<u>73. (</u>			- 275	OF .	J. 4.	_
323	/0+00 L1 H		\$1. 0	157. (TO	p - 6	enic	50163	
-330	0+25N		27. 0	127. (, 0	•			
331	9÷59N		28. 0	112. (
332	/ 0÷75N		l6. 0	97. (,		
333	1+00N L1		la. 0	122. (•				
334	1+25N		SS. 0	68. (÷	
: 335	∫ 1÷50N	1	L3. 0	136. (•				
336	1+75N	á	20. 0	122. 0	9					
337	2+00N L1	- 2	21. 0	142. (
336	2+25N		\$3. 0	66. 6	3					
339	2+50N	16	99. 9	410. (9					
349	2÷75N	Ţ	71. 0	326. (9					
341	3+80N L1		74. 0	323. (9				,	
342	3+25N		SS. 0	129. (а					
343	3+50N		31. 0	60. i	9					
344	3+75N		19. 0	118. (a					
345	4+00N L1		L8. 0	67. (
346	4+25N		18. 0	102. (
347	4+50N		12. 0	144. (9					
346	4+75N		19. 0	98. €	3					
343	5+00N L1	7	26. 0	60. <u>(</u>	9	,				
350	5+25N		28. 0	83. (

KAMLOGES I	RESEARCH &	ครรคษ	LABORATORY	LTD.
G	FOCHEMICAL	188	REPORT	

	THE LAB REPURT	PAGE 12 / 🕏
FILE NO G-1192 KRAL NO IDENTIFICATION	FB ZN	ride acry
KRML NO. IDENTIFICATION		
431 /3+25N	28. 0 38. 0	
432 3+50N	16. 0 26. 0	
423 \ 2+75N	25. 0 32. 0	
434) 4+00N L2E	24. 0 34. 0	
435) 4+25N	42.0 , 23.0	
436 14+50N	14. 0 26. 0	
437 / 4+75N	20. 0 34. 0	
438 \ 5+00N L2E	17. 0 36. 0	•
439 /0+00 L4.	51. 0 135. 0	
440 √ 0+25E	29. ଡ ା 109. ଡ	•
441 \ 0÷50E	24. 0 102. 0	
442 \ 0+75E	67. 0 121. 0	
443) 1÷00E L4	60.0 122.0	
444 < 1+25E	38. 0 128. 0	
445 \1+50E	31. 0 145. 0	•
446)1+75E	39. 0 159. 0	
447 / 2+00E L4	66. 0 203. 0	•
448 (2+25E	53. 0 158. 0	End of TOP-ENIC SOILS
449 \2+50E	<u>53.0 106.0</u> 32.0 30.0	
217 2+303 L1E BEAR	32. 0 30. 0	HALL CREEK GROUP
217 2+505 LIE BEAR 218 2+755	32. 0 30. 0 27. 0 67. 0	HALL CREEK GROUP BEAR CLAIM
217 2+303 LIE BEAR 218 2+735 219 3+003 LIE	32. 0 30. 0	
217 2+303 LIE BEAR 218 2+735 219 3+003 LIE	32. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+235	32. 0 90. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0	
217 2+303 L1E BEAK 218 2+735 219 3+005 L1E 220 3+235 221 3+505 222 3+733 223 4+005 L1E	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0	
217 2+303 L1E BEAK 216 2+735 219 3+005 L1E 220 3+235 221 3+305 222 3+733 223 4+005 L1E 224 4+235	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+235 221 3+505 222 3+738 223 4+005 L1E 224 4+235 223 4+508	32. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+235 221 3+505 222 3+735 223 4+003 L1E 224 4+235 223 4+505 226 4+733	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0 35. 0 75. 0 18. 0 66. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+235 221 3+503 222 3+735 223 4+005 L1E 224 4+235 223 4+505 226 4+733 227 3+003 L1E	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0 35. 0 75. 0 16. 0 66. 0 20. 0 46. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+235 221 3+503 222 3+735 223 4+005 L1E 224 4+235 223 4+503 226 4+735 227 3+003 L1E 228 0+00 L0	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0 35. 0 75. 0 16. 0 66. 0 20. 0 46. 0 11. 0 67. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+255 221 3+505 222 3+736 223 4+005 L1E 224 4+235 223 4+505 223 4+733 227 5+005 L1E 228 0+00 L0 229 0+255	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0 35. 0 75. 0 16. 0 66. 0 20. 0 46. 0 11. 0 67. 0 20. 0 60. 0	
217 2+303 L1E BEAK 218 2+735 219 3+005 L1E 220 3+235 221 3+305 222 3+733 223 4+005 L1E 224 4+235 223 4+505 225 4+733 227 5+005 L1E 228 0+00 L0 229 0+305	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 23. 0 42. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0 35. 0 75. 0 18. 0 66. 0 20. 0 46. 0 11. 0 67. 0 20. 0 64. 0 22. 0 64. 0	
217 2+303 L1E BEAK 218 2+735 219 3+005 L1E 220 3+235 221 3+305 222 3+736 223 4+005 L1E 224 4+235 223 4+505 225 4+735 226 4+735 227 5+003 L1E 228 0+00 L0 229 0+255 230 0+505 231 0+755	32. 0	
217 2+303 L1E BEAK 218 2+735 219 3+005 L1E 220 3+235 221 3+305 222 3+733 223 4+003 L1E 224 4+235 223 4+505 226 4+733 227 3+003 L1E 228 0+00 L0 229 0+235 230 0+505 231 0+735 232 1+005 L0	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0 35. 0 75. 0 16. 0 66. 0 20. 0 46. 0 11. 0 67. 0 20. 0 64. 0 19. 0 99. 0 272. 0	
217 2+303 L1E BEAK 218 2+735 219 3+003 L1E 220 3+235 221 3+505 222 3+736 223 4+005 L1E 224 4+235 223 4+508 226 4+735 227 5+003 L1E 228 0+00 L0 229 0+505 230 0+505 231 0+756 232 1+005 L0 233 1+255	32. 0 30. 0 27. 0 67. 0 26. 0 63. 0 19. 0 61. 0 14. 0 42. 0 35. 0 66. 0 31. 0 43. 0 35. 0 75. 0 16. 0 66. 0 20. 0 46. 0 11. 0 67. 0 20. 0 64. 0 19. 0 100. 0 99. 0 272. 0 20. 0 63. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+235 221 3+303 222 3+735 223 4+005 L1E 224 4+235 223 4+305 226 4+735 227 5+005 L1E 228 0+00 L0 229 0+235 230 0+505 231 0+735 232 1+005 L0 233 1+235 234 1+503	32. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+255 221 3+505 222 3+736 223 4+005 L1E 224 4+235 223 4+505 226 4+733 227 5+009 L1E 228 0+00 L0 229 0+255 230 0+505 231 0+755 232 1+005 L0 233 1+255 234 1+506 235 1+736	32. 0	
217 2+303 L1E BEAR 218 2+735 219 3+005 L1E 220 3+235 221 3+303 222 3+735 223 4+005 L1E 224 4+235 223 4+305 226 4+735 227 5+005 L1E 228 0+00 L0 229 0+235 230 0+505 231 0+735 232 1+005 L0 233 1+235 234 1+503	32. 0	

KAMLOGE'S RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REFORT FILE NO G-1192

HALL CREEK GROUP Bear Claim. FAGE 13:4

	FILE NO G-1192		
KRAL NO.	IDENTIFICATION	PB -	ZN
238	_2÷505	60. O	104. 0
239	37205	23. 0	44. 0
240	3+505	19. 0	72. 0
241	3+755	24. 8	74. 0
242	4+005 L0	24. 0	63. 0
243	4+255	53. 0	107. 0
244	4÷ 5 05	29. 0	69. 0
245	4÷755	23. 0	61. 0
246	5÷005 L0	21. 0	66. 0
247	0+00 Li	13. 0	63. 0
248	9+255	21. 0	110. 0
249	0÷503	25. 0	72. 0
250		25. 0	72. 0
251	1+005 Li	18. 0	66. Ø
252	1+255	15. 0	65. 0
253	1+505	13. 0	81. 0
254	1÷755	24. 0	102. 0
255		20. 0	93. 0 60. 0
256	2+255	20. 0	69. 0 70. 0
257	2+505 0:555	21. 0 24. 0	
258 258	2+753	24. 0 25. 0	62. 0
259	3+005 L1	23. 0	64. 0
260 261	3+255 3+505	21. 0 16. 0	67. 0
261	5+755	15. 0	55. 0
262	3₹735 4÷005 L1	15. 0	53. 0
263 264	4+255	16. 0	55. 0 56. 0
263 263	4+505	16. 0	66. Ø
266	4+755	13. 0	61. 0
267		15. 0	77. 0
268	0÷09 L2	22. 0	72. 0
269		19. 0	70. 0
270		33. 0	82. 0
271	1+005 L2	23. 0	70. 0
272	1+255	18. 0	72. 0
273	1+505	61. 0	65. 0
274		14. 0	49. 0
275	2+005 L2	17. 0	54. 0
276	2+755	6. 0	71. 0
277	3+005 L2	3. 0	73. 0

KAMLOGAS RESEARCH & ASSAY LABORATORY LTD.

		KRAL NO.	GEOCHEMICA FILE NO G-1192 IDENTIFICATION	L LAB	REFORT		PAGE	14 / 7	•
		278 279	3+255 3+503	3. 0 7. 0	75. 0 65. 0				. •
		21 <i>3</i> 280	3+755	31. 0	5 5. 0				
		281	4+005 L2	10. 0	32. 0				
		282	4+255	22. g	66. Ø				
		283	4+505	36. 0	103. 0				
		264	4+755	13. 0	41. 0				
		285	5÷005 L2	14. 0	43. 0				
		266	1÷259 L3	28. 0	73. 0				
		287	1+505	20. 0	80. O				
		288	1+755	17. 0	105. 0	•			
		, 289	2+005 L3	13. 0	63. O				
		290	2+255	19. 0	76. O	į			
		291	2+505	12. 0	63. O				
		292	2+753	17. 0	42. 0				
•		293	3+003 L3	36. 0	40. 0				
		294	3÷255	17. 0	35. 0				
		295	3+505°	13. 0	56. 0				
	٠.,	296	3+755	73. 0					
		297	4÷005_L3	17. 0	60. 0				
•		296	4+255	. 17. 0	35. 0		,		
		299	4+503	15. 0	36. 0	•			
	•	399	4+755	22. 0	26. 0	End of Bear	Soile	(HALL CREEK GROUP)	
		301	5+005 L3	16. 0	36.0				
		302	ର÷ଶର L⊎S DUMAS	35. 0	62. 0	FOURTH OF	Lucy	(DUMAS CLAIMS)	
		202	ଡ∻25⊮	26. 0	73. 0				
		304	0+50N	27. 0	53. 0				
		205	0+75W	37. 0	62. 0				
		306	1+00W L05	46. 0	69. 0				
		297	1+25W	25. 0	5 5. 0				
		398	1÷50W	20. 0	63. 0				
		309	1+75回	31. 0	80. Ø				
•		310	2+00W L 0 S	20. 0	<i>33.</i> 0				
		311	2+25W	23. 0	54. 0				
		312	2÷59M	22. 0	39. 0				
		313	2+75W	33. 0	20. 0				
		314	3+06W L05	25. 0	21. 0				
		315	3+65W	24. 0	21. 0				
		316	3+30W	19. 0	42. 0				
		317	Strong Strong	20. 0	34. 0	;			

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

HALL CREEK GROUP

FILE NO G-1192 PAGE 18 / \$

KRAL NO.		ICATION	FB .	ZN
222	ଶ÷ଶଶ	L0 HALL	21. 0	31. 0
223	8÷25		20. 0	52. 0
224	9÷59		20. 0	30. 0
225	0+7'5		21. 0	38. 0
226	1+00	F9	22. 0	41. 0
227	1+25		27. 0	40. 0
228	1÷50		22. 0	43. 0
229	1÷73		25. 0	47. 0
529.	2÷00	LØ	44. 0	69. 0
231	2+25		25. 0	51. 0
232	2+50		23. 0	27. 8
533	2÷75		21. 0	47. 0
2341	3+99	LO	27. 0	50. 0
235	3+50		24. 0	36. 0
236	3+75		22. 0	27. 0
237	4+98	LO	19. 0	28. 0
236	4+25		17. 0	23. 0
239	4+50		19. 0	30. 0
240	4+75		20. 0	42. 0
241	5+00	LO	21. 0	25. 0
242	ଡ÷ଉତ	L1	92. 0	102. 0
243	0÷25		34. 0	70. 0
244	9÷59		47. 0	86. 0
245	0+75		43. 0	65. 0
246	1+00	LI	94. 0	63. 0
247	1+25		80. 0	127. 0 90. 0
248 249	1÷59 1÷75		61. 0 39. 0	36. 0
24 <i>3</i> 250	2+00	Li	105. 0	36. 0 37. 0
25i	2+25	LI	34. 0	56. 0
252	2+50		60. O	60. 0
253	2+75		28. Ø	31. 0
254	2+00 3+00	L1	21. 0	48. 0
255	3+25	LI	22:10	40. 0 61. 0
256 256	3+50		26. 0	52. 0
257	3+75		23. 0	48. 0
256 256	3+10 4+00	: :	22. 0	35. 0
259	4+25	turals.	22. 0 30. 0	72. 0
209 260	4÷50		31. 0	51. 0
261	4+75		21. 0	53. 0
201	7110		CI. U	J. U

treet No	KAMLOOFS RESEARCH GEOCHEMIC FILE NO G-1192 IDENTIFICATION		LABORATORY REPORT	RY LTD. PAGE 19 / #	
TRAIL NO.		,		_ _	
262	5+00 L1	40. 0	67. 0		
263	0+00 L2	13.0	61. 0		
264	0+25	21. 0	41. 0		
265	9+59 2+35	18. 9	61. 0 66. 0		
266	@÷75 ••••	26. 0	66. 0 66. 0		
267	1+00 L2	22. 0 23. 0	73. 0		
263 - 263	1+25 1+50	43. 0	100. 0	•	
279 279	1+75 1+75	23. O	63. O		
271	2+00 L2	40. 0	176. 0		
272	2+25	22. 0	65. 0	,	
273	2+50	16. 0	61. 0		
274	2+75	17. 0	78. 0	•	
275	3+00 L2	13. 0	90. Đ	1	
276	3+25	14. 0	.62. 0		
277	3+50	11. 0	<i>9</i> େଥ _ି		
276	3+75	20. 0	70. 0		
279	4+00 L2	34. 0	64. 0		
280	4÷25	23. 0	77. 0		
281	4+50	15. 0	61. 0		
282	4+75	31. 0	47. 0	END OF HALL CREEK GROUP	
 203	5+00 L2	25. 0	66. 0		
264	9÷99 L9 D. B.	22. 0	166. 0	FOURTH OF JULY	
285	0+25E	16. 0	103. 0	DAY BREAK CLAM	
266	9÷59 E a÷5ec	17. 0 16. 0	143. 0 117. 0	· ·	
287 288	0+75E 1+00E L0	17. 0	139. 0		
269		17. 0	176.0		
290 290		15. 0	164. 0		
291		18. 6	198. 0		
292		15. 0	183. 0		
293		17. 0	172. 0	·	
294	2+50E	33. 0	144. 0		
295	2+75E	20. 0	214. 0		
296	3+00E L0	34. 0	225. 0	•	
297	3+25E	31. 0	237. 0		
238	3+505	33. 0	307. 0		
299		34. 0	201. 0		
300	4÷00E L0	31. 0	153. 0		
301	4+25 <u>E</u>	24. 0	155. 0		

APPENDIX 2

DETAILED COST STATEMENT

GEOLOGIST - R. Wells	
3 days fieldwork @ \$225/day	
l day mobilization/demobilization	47 050 00
2 days maps and report preparation	\$1,350.00
ASSISTANTS- (soil samplers)	
R. Mitchell, and F. Klages	
5 man days soil sampling plus	
2 man days mobilization/demobilization	
@ \$120.00 per	\$840.00
FOOD AND ACCOMODATION	
4 days for 3 men @ \$35/day	\$420.00
4-WHEEL DRIVE VEHICLE ← FUEL	
@ \$70/day for 4 days	\$280.00
SOIL GEOCHEMICAL ANALYSES -243 SOILS	
Pb/Zn analyses @ \$3.50/soil	\$850.00
D-6 BULLDOZER - to brush out 5km of	
4-wheel drive access road	
16 hours minimum @ as per attached	\$1,952.00
TOTAL	\$5,692.00

(Amount to be applied to assessment: \$4,200.00).

AUTHOR'S CERTIFICATE

I, Raymond A. Wells, of Merritt, British Columbia, do hereby certify that:

- I am a geologist employed by Scope Exploration Services Ltd., P.O. Box 1101, Merritt, British Columbia.
- 2. I am a graduate of the University of British Columbia with a B.Sc. Degree in Geology (1976).
- 3. I have practised my profession since graduation. My previous employers include Trigg, Woollett and Associates of Edmonton, Pan Ocean Oil Ltd., of Calgary, and Cordilleran Engineering of Vancouver.
- 4. Recent clients include London Silver Corporation of Vancouver, Lawrence Mining Corporation and Goldrich Resources Inc. of Vancouver, B.C.
- 5. This assessment report is based on research and field activities conducted during 1984.

Respectfully submitted,

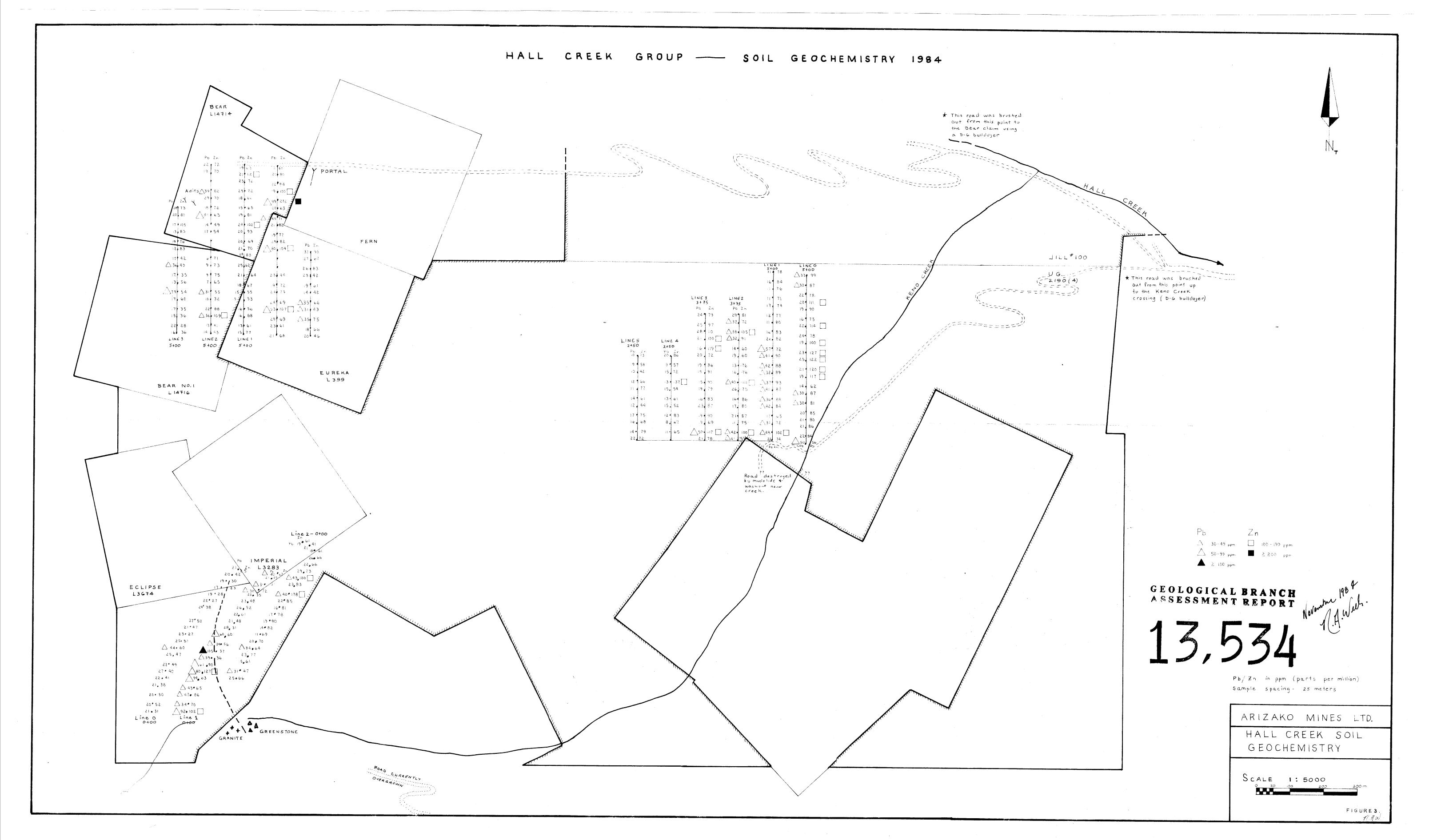
Raymond A. Wells,

November, 1984.

STATEMENT OF QUALIFICATIONS

I, Rick Mitchell, have been employed in exploration field work for 5 years. During this time I have gained extensive experience in geochemical techniques and grid preparation under the direction of seasoned field personnel.

Rick Mitchell


Rick Mitchell

STATEMENT OF QUALIFICATIONS

I, Fred Klages, have been employed in exploration field work for 12 years. During this time I have gained extensive experience in geochemical techniques and grid preparation under the direction of seasoned field personnel.

Fred Klages.

Fred Mayes

