Province of British Columbia

Ministry of Energy, Mines and Petroleum Resources

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

date statement of exploration and development filed . February. 18, 1985. y year of work . 1984 PROPERTY NAME (S)
. . BAY. 品

COMmOdities present Cu. Ho

\qquad
biC. MINERAL inventory numbers), if known
$92<$ 135

 92, . 94-100; Cove :17-20; Coir Fr. © . Cork Fr; Ben Fr; Bar Fr; Art 10Fr; Long Fr.

owner (s)

(1)
UTAH MINES LTD.
(2)
GORDON MELBOURNE

MAILING ADDRESS

$$
\text { BOX } 370
$$

. CoO. LADNER DOWNS
. PORT. HARDY . B. C. . YON. IPO.
2100. - 700 . WEST, GEORGIA STREET.

OPERATOR(S) that is, Company paying for the work)
(1)
. . UTAH. MINES. LTD.

ASSESSSM.ENTT.R.E.P.O.R.T

MAILING ADDRESS

> BOX. . 370
> PORT. HARDY, VOl iPO; $: B$. C.

SUMMARY GEOLOGY lithology, age, structure, alteration, mi

The area is underlain by the Upper Triassic to Lower Jurassic volcanic and sedimentary succession of the Vancouver and Bonanza Groups and the Cretaceous sedimentary cover. Mid= Jurassic granodioritic'stocks (Quatse-Stock); and quartz -feldspar porphyry -dykes. cut. the succession.... Hydrothermal. alterations. and.mineralizatjon. are. associated. with the porphyry dykes in the Bonanza tuff. . The succession dips gently to the southwest. Four prominent fracture directions are present on the property at $020^{\circ}, 060^{\circ}, 090^{\circ}$ and $130^{\circ}, \cdots$ The dykes are present along the 060° and 130° fracture directions. . . Hornblende (feldspar.). porphyry. dykes. and. sills. in. the area. are. believed. to. be co-magmatic. with the references to previous work
Assessment Reports, \#5265, \#7427, \#11366, and Report on Diamond Drilling Sunset Group, October, 1984.
page
INTRODUCTION 2
PROPERTY DESCRIPTION 2
PHYSIOGRAPHY 2
ACCESS 2
PREVIOUS WORK 2
OBJECTIVES 3
WORK PERFORMED 3
RESULTS - Diamond Drilling 4
RESULTS - Percussion Drilling 5/6
DISCUSSION 7
CONCLUSIONS 7
COST SUMMARY 8/9/10
STATEMENT OF QUALIFICATIONS 11
Maps

1. Index Map 1:50000 1
2. Claim Group Map with Hole Locations 1:12000
Back Pocket
3. Detail Hole Location Map 1:4800
Back Pocket
Core Logs and Assays Back Pockets

INTRODUCTION
Between the 18th of July and 16 th of August, 1984, two diamond drill holes and six percussion drill holes totalling 246.7 meters (809.5 feet) and 481.9 meters (1581 feet) respectively were drilled within the limits of the Sunset Group of claims. This formed part of the drilling program in the area in 1984 carried out in exploration for a near surface porphyry copper molybdenum deposit. Some weak copper and molybdenum mineralization was previously encountered in the area along with quartz-feldspar porphyry dykes and associated hydrothermally altered rocks favourable for an Island Copper type deposit.

PROPERTY DESCRIPTION

The Sunset Group (Map 2) consists of 77 two-post claims contiguous to the west boundary of the Utah Mines Ltd., Island Copper Mine mineral leases. The property measures approximately 3.6 km east-west by 6.7 km north-south.

PHYSIOGRAPHY

The area is characterized by low, rolling hills with maximum relief of 120 meters. Stephen's Creek fed from Joe's Lake through Stephen's Swamp, cuts across the group and drains into Coal Harbour. The low ground around the swamp has a maximum width of about 600 meters.

ACCESS

Access to the area is by paved road from Port Hardy located some 8 km to the north and by the paved mine access road. A number of logging roads suitable for two-wheel vehicles cross the area.

PREVIOUS WORK
The north half of the group has been a focus of recent exploration activity around Island Copper Mine. Work has involved line-cutting, geochem soil surveys, I.P., mag and VLF geophysical surveys, geological mapping and diamond drilling. This supplemented work performed in the 1960^{\prime} s in the original Island Copper exploration activities. Reports submitted for assessment credit on recent work are:

1) Geologic Report on Sunset Group, G.L. Holland, June, 1983 (\#11366)
2) Drilling on Sunset Group, J.A. Fleming, May, 1984
3) Drilling on Sunset Group, J.A. Fleming and G.L. Holland, October, 1984.

The previous work indicated that quartz-feldspar porphyry dykes, hydrothermal alteration minerals (e.g. chlorite, sericite, silica, garnet) and low grade, spotty copper and molybdenum mineralization are present in the north half of the group in the Bonanza volcanics. The area round $W-8$ had a single station IP. anomaly and spot geochem copper highs that were unexplained. Holes E-60 and E-61 were drilled on an east-west trending mag anomaly falling between the northwest corner and Bay Lake anomaly centers. They intersected low grade copper and molybdenum associated with quartz-pyrite veins, brown biotite alterations and silicification in the Bonanza fragmental andesites. In addition, a number of narrow quartz-feldspar porphyry dykes were intersected indicating the presence of a dyke system and perhaps underlying stock in the area.

OBJECTIVE

The objective of all drilling was to intersect a near surface porphyry copper-molybdenum mineral deposit, or at least favourable rock types and alterations to guide future exploration in the area. The percussion holes were drilled to fill the gaps between existing drill holes. Hole E-62 was a follow-up hole to E-60 and E-61 testing the mag anomaly while hole W - 8 was a drill test of I.P. and geochem spot anomalies in the Stephen's Swamp area.

WORK PERFORMED

The following drill holes were completed on the group:

Hole	Claim	Claim\#	Mine Grid Coordinates		Elev. (Meters)	
			North	East	Above SL	Length
A) D.D. Holes						
W-8	Bay 55	17759	11792	13712	71.0 M	294' (89.6M)
E-62	Bay 60	17764	14042	17294	61.0 M	515.5(157.1)
b) Percussion Holes						
WP-2	Bay 56	17760	15799	15427	85.7	300 (91.4)
-5	Bar FR	27500	16809	17038	62.2	110 (33.5)
-6	Bay 59	17763	16557	16722	60.1	300 (91.4)
-7	Bay 58	17762	14707	15991	54.6	300 (91.4)
-10	Cove 20	18123	14234	15620	54.3	300 (91.4)
-11	Cove 18	18121	12819	16871	70.1	271 (82.6)

Drill core from Holes W-8 and E-62 were logged, photographed and measured for recovery, $R Q D$ and magnetic susceptibility. The core was split and sampled in ten foot intervals. All samples were assayed for copper and molybdenum. Hole E-62 had several forty-foot composite samples assayed for gold. The drill core is stored on racks in the upper core shack at the Island Copper Mine site.

The percussion samples were collected at the drill with a 12 volt splitter box with an 8:1 sample split ratio. Percussion drilling was performed with water. After being dried at room temperature a portion of each sample was screened using 8, 20 and 50 mesh screens. Enough material starting with the coarse faction was affixed to a card with contact cement to fill a 5 by 5 cm square. These chip cards were used for logging. A binocular microscope with 20X and $40 x$ powers was used to log the chips. The cards are stored in the upper core shack at the Island Copper Mine site.

The core was logged by G.L. Holland and the percussion chips were logged by G.A. Clarke. Both are staff geologists employed by Utah Mines Ltd.

Hole E-62
The hole penetrated 44.8 meters (147 feet) of overburden. From 44.8 meters to 83.2 meters (273 feet) the hole intersected moderately to strongly fractured, dark green to brownish, weakly to moderately chlorite and magnetite, and weakly biotite, silica and epidote altered andesite. Chlorite and magnetite alterations are pervasive with the others fractured controlled. Fractures are about 40-50 percent healed, with pyrite ($2-3$ percent) and quartz-carbonate as main fracture fillings. Minor molybdenum and chalcopyrite are associated with the quartz and quartz-carbonate veins. Silicification increases with depth.

A medium to coarse grained quartz-feldspar porphyry with quartz eyes to 4 - 6 mm was intersected from 83.2 to 86.1 meters (273-282.5 feet) with weak chlorite-sericite alterations. Pyrite occurs associated with mafic phenocrysts and in fractures to two percent.

Below the dyke to the end of the hole is andesite similar to that above the dyke but with moderate to strong silicification and moderate chloritization, with a moderately developed quartz stockwork and weakly developed quartz-carbonate stockwork. Quartz-moly veins are common with chalcopyrite also present.

A quartz healed fault zone extends from 91.4 to 94.4 meters (300-310 feet) with individual shears at 25° to 40° to the core axis. Another zone extends from 43.8 to 147.5 meters ($472-484$ feet).

The hole averaged $0.11 \% \mathrm{Cu}$ with a range of $0.04-0.24 \% \mathrm{Cu}$, and $.011 \% \mathrm{Mo}$ with a range of $0.004-0.027 \%$ Mo.

Hole W-8
The hole hit bedrock at 8.5 meters (28 feet) and intersected 81.1 meters (266 feet) of dark green to purple, to pale green-reddish, weakly to very weakly chlorite, magnetite, epidote and sericite altered volcanic breccia (formational) with locally weak to moderate hematite alteration. Several sections of andesite porphyry 1.8 to 5.5 meters ($6-18$ feet) thick occur within the volcanic breccia. The fracture density is low with calcite, pyrite and epidote as the main fracture fillings. Pyrite runs less than one percent and there is no visible chalcopyrite or molybdenite.

RESULTS - Percussion Drilling

The logs are summarized below and grades summarized in Table 1.
Hole WP-2
The overburden depth was 23.2 meters (76 feet). The chips from the hole indicate that the hole intersected moderately to strongly chlorite, magnetite altered andesite with weak to moderate epidote alteration. Black (primary ?) biotite flakes are found throughout. Main vein materials are quartz, carbonate, pyrite and zeolite, and locally some pyrobitumen (gilsonite ?). The sulphide content ranges from one to three percent with minor chalcopyrite noted.

Hole WP-5
Bottomed in overburden at 35.1 meters (110 feet).
Hole WP-6
Overburden was 21.3 meters (70 feet) thick. A grey-green, weakly to moderately chlorite-sericite altered andesite was encountered from 21.3 to 82.3 meters ($70-270$ feet) with mixed dark and light alterations to the end of the hole. Black biotite flakes and brown biotite (?) both are present. Main veins or fracture fillings are pyrite, zeolite, calcite and epidote. Minor hematite was noted from 82.3 meters (270 feet) to the end of the hole. Chalcopyrite and molybdenite are common with total sulphides ranging from less than one percent to five percent. Minor galena was noted at 33.5 meters (110 feet).

Hole WP-7
The hole intersected 30.6 meters (100 feet) of overburden. Medium to dark green-grey to brownish chlorite-sericite altered andesite extends to 54.8 meters (180 feet). The brownish alteration (biotite ?, garnet ?) is weak to moderate with possibly some primary biotite present. The rock is lighter in colour with increased quartz-sericite alterations to the end of the hole with a high quartz content from 67.1-73.1 meters (220-240 feet) indicating a possible intrusive. Pyrite content varies from one to four percent. Main veins or fracture fillings are pyrite, calcite and pink zeolite.

Hole WP-10

The hole intersected 23.2 meters (76 feet) of overburden. From there to 51.8 meters (170 feet) the rock is a medium grey-green to brownish, chlorite, sericite, biotite (?), garnet (?), epidote altered andesite. The pyrite content is high at five to ten percent. From 51.8 to 76.2 meters (170-250 feet) the rock is more siliceous, possibly an altered intrusive. The calcite content is moderate to locally high. From 76.2 (250 feet) to the bottom the rock is moderately to strongly sericite and moderately chlorite altered andesite.

Hole WP-11

Overburden in 24.7 meters (81 feet) thick. A medium to dark green, weakly silicified, chloritized and seriticized, weakly to moderately porphyry magnetite altered porphyritic andesite extends to 61 meters (200 feet). The rock to the end of the hole is lighter coloured with weak to moderate quartz-sericite alterations and spotty magnetite alteration. Main veins or fracture fillings are pyrite ($2-10$ percent), calcite and pink zeolite.

Table 1

	$\mathrm{Cu}(\%)$			Mo (\%)	
Hole	Mean	Range		Mean	Range
WP-2	0.04	$0.02-0.09$		0.002	$0.001-0.010$
WP-6	0.14	$0.10-0.20$		0.017	$0.006-0.032$
WP-7	0.10	$0.07-0.17$		0.013	$0.004-0.044$
WP-10	0.03	$0.01-0.06$		0.001	$0.001-0.003$
WP-11	0.09	$0.05-0.16$		0.002	$0.001-0.004$

DISCUSSION

The percussion holes showed evidence of weak to moderate and locally strong hydrothermal alterations (e.g. chlorite, magnetite, silica, sericite, biotite), that indicates the intrusive/hydrothermal system carries through from the Bay Lake area to the northwest. Two of the holes had siliceous sections (WP-7 and WP-10) that may be chips of intrusive rock. Hole WP-10 also had a high pyrite content to ten percent. Hole WP-6 had the highest average copper and moly grades at $0.14 \% \mathrm{Cu}$ and 0.017% Mo.

Hole E-62 was drilled to test for eastward continuity to mineralization and the porphyry intersected in hole E-61. It confirmed the continuity of the intrusive system, alterations and weak mineralization.

Hole W-8 lying to the south is removed from the mineralized intrusive system. Silicification and magnetite alteration of Bonanza fragmental andesites to the east could be related to a deeper, undetected stock/dyke.

CONCLUSIONS

The program found evidence of the dyke system extending from the Bay Lake area through to the northwest part of the group with related hydrothermal alterations and weak copper and moly mineralization. It did not intersect a near surface prophyry copper-moly deposit and has significantly reduced the discovery potential for such deposit in the area.

COST STATEMENT

HOLES W-8 AND E-62

Contractor Charges
A. Diamond Drilling Contractors

Overburden

130^{\prime} @ $\$ 16.75$
\$2,177.50
47' @ \$17.50
822.50
$\$ 3,000.00$
Rock
617 ${ }^{1}$ @ $\$ 16.75$
\$10,344.75
15.5 © $\$ 17.50$
271.25
$\$ 10,606.00$

Field Costs
6 Hours © $\$ 60 /$ Hour
32.5 Hours @ $\$ 50 /$ Hour
16.0 Hours @ $\$ 25 /$ Hours
\$ 360.00
1,625.00
400.00
\$ 2,385.00
Other Charges
Casings and Shares
Mobilization
Core Boxes 36 © $\$ 5.36$
\$ 520.63
404.00

Supplies, Freight

$$
192.96
$$

$\$ 2,041.32 \$ 18,032.32$
B. Other Contractors

1) D-6 Cat and Operator

Move and Prepare Site $27 \frac{1}{2}$ Hours © $\$ 60 /$ Hour.
\$ 1,650.00
Build Cat Trails $\quad 1,440.00$
Standby - 8 Days @ \$120/Day 960.00
2) Low Bed and Highboy

Trailers, Tractor and
Operator -
Move D-6 Cat and Drill from
Sites $12 \frac{1}{2}$ Hours @ $\$ 65.00 \$ 812.50$

TOTAL CONTRACTOR COSTS:
\$22,894.82

COST STATEMENT

PERCUSSION HOLES WP－2，．5，6，7，10， 11

Percussion Drilling Contractors

Overburden
502 ft ．＠$\$ 7.80 / \mathrm{ft}$ ．
Rock
$\overline{1079} \mathrm{ft}$ ．＠$\$ 7.80 / \mathrm{ft}$ ．
$\$ 8,416.20$

$$
\$ 12,331.80
$$

Field Costs
25．5 Hours © \＄95／Hour
\＄2，422．50
800.00

16．0 Hours＠$\$ 50 /$ Hour
125.00
\＄3，347．50
Other Costs
Casings，Shoes
Mob／Demob－ 6 Holes 0 $\$ 300 / \mathrm{Hole}$
Bags
Water Truck Drivers
\＄1，028．69
1，800．00
32.37

Water Truck Drivers $\quad 272.25$
$\$ 3,133.31$
$\$ 18,812.61$
Other Contractors
1）D－6 Cat and Operator
Site Prep． 1 Hour＠$\$ 60$ ．
60.00

2）Lowbed Trailer，Tractor and Operator
Move Cat 1 Hour © $\$ 62.50 \quad 62.50$
3）Water Truck and Operator
Supply Water to Drills
7.3 Hours＠$\$ 35 /$ Hour 256.45

4） 980 Loader and Dump Truck
Load Gravel and Prepare Site
2 Hours＠\＄91／Hour
182.00

Haul Gravel
$5 \frac{1}{2}$ Hours＠\＄55／Hour 302.50

TOTAL CONTRACTOR COSTS：
\＄19，676．06
＝ニニニニニニニニニ

UTAH COSTS

Diamond Drilling

Core House Labour	\＄ 600.00	
Supervision and Core Logging	1，100．00	
Co．Overhead © 25% Supervision and Labour	425.00	
```Core Storage 632 feet @ $0.40/ft.```	250.00	
Sample Assays		
65 ＠\＄10／Sample	650.00	
Percussion Drilling		
Core House Labour	\＄ 200.00	
Supervision and Chip Logging	1，700．00	
Co．Overhead＠ $25 \%$ Supervision and Labour	475.00	
Sample Assays 108 ＠\＄10／Sample	1，080．00	
		\＄3，455．00
Report Preparation		400.00

TOTAL COST OF PROGRAMS
$\$ 6,880.00$
\＄49，450．88
ーニニニニニ＝＝＝＝

I submit that I am qualified to prepare and present this report for assessment credit. My qualifications are as follows:

1) I have a B.Sc., (Major Geology) 1971 from McGill University.
2) I have been employed as a geologist continuously since June, 1968, and am presently Chief Geologist, Island Copper Mine, Utah Mines Ltd.
3) I have been a Fellow of the Geological Association of Canada since 1974.

J.A. Fleming, B. Sc., Chief Geologist.

Island Copper Mine Utah Mines Ltd.




ac: : $\quad \omega \mathrm{P}-2$

focr: WP-6


Assay tag.	Fuorkxé	ilag.	RQD	$\% \mathrm{Cu}$	$\% M_{0}$	$\% \mathrm{l}^{\prime} \mathrm{b}$	$\% Z_{n}$	$\% \mathrm{Fe}$	\% C.	$\%$ \%	Ppm Au	prm $A_{4}$					
	$70 \cdot 90$																
	80-90																
	90-100																
376	100-110			.17	. 015			6.4	1.47	2.01							
377	110-120			. 09	.009			6.2	1.77	2.31							
378	120-130			.14	. 004			6.5	1.69	4.14							
379	$130-140$			. 08	. 007			6.0	1.88	2.01							
380	140.150			.13	. 004			5.9	1.85	2.97							
381	$150-160$			, i3	. 009			6.1	1.73	3.25							
382	160-170			. 11	006			6.4	1.67	2.92							
343	$170 \cdot 180$			.12	. 027			5.6	1.57	2.47							
384	180.190			. 11	. 013		1	5.8	1.76	3.04							
385	19-200			. $/ 1$	,009			5.8	1.60	3.01							
386	200-210			. 10	. 041			5.8	1.38	3.02							
387	210-220			. 09	. 044			5.6	1.38	2.18							
388	220-230			. 09	. 020			6.1	1.28	3.75							
389	230-240			. 07	. 012			5.7	1.44	3.66							
390	240-250			. 08	. 004			6.7	1.09	6.80							
391	250-260			. 07	. 007			6.0	1.32	5.48							
392	260.270			, 11	.009			6.6	1.08	5.66							
343	270-280			. 12	. 007			6.6	1.16	4.71							
394	200-290			. 09	. 006			6.3	1.32	4.28							
395	$290 \cdot 300$			. 078	. 004	. 001	, 01	5.67	1.39	4.01							
			$\bar{x}$	.10	.013												
$(d)$																	
																'	


Assar TAG.	Foorate	blag.	R.OD	$\% c_{0}$	$\% M_{0}$	$\% \mathrm{~Pb}$	$\% Z_{n}$	\% Fe	\% C.		Ppom Au	Prom $A_{4}$					
322	76-80			.01	.cc1	.001	.02	6.0	2.26	1.41							
323	80-20			.01	. 001	1002	. 01	5.4	2.30	4.27							
324	90-100			. 03	. 001	. 004	. 01	60	1.38	6.35							
325	100-110					.002	. 02										
289	110-120			. 05	. 001	. 003	. 01	7.4	1.29	11.4							
290	$120+130$			03	. 001	. 002	. 01	6.2	1.96	897							
291	$130-140$			. 06	. 001	. 001	.01	6.1	1.94	7.81							
292	140-150			. 05	. 001	. 002	.01	6.9	1.25	8.59							
293	$150-160$					. 002	. 01										
294	$160 \cdot 170$			. 01	. 001	. 003	. 01	5.7	1.42	6.02							
245	$170 \cdot 180$			. 02	. 001	. 002	. 01	6.1	1.08	7.03							
296	$180+90$			02	. 001	. 002	. 01.	6.4	0.92	8.57							
297	190-200			. 02	. 001	. 003	. 01	5.2	2.09	4.82							
298	200-210			. 01	.001	1003	. 01	6.2	0.76	7.83							
299 -	210-220			,02	. 001	.003	. 01	54	1.28	4.32							
300	220-230			. 02	. 003	.001	. 01	4.7	1.14	3.08							
351 -	$250-240$			.02	. 001	. 002	. 01	6.1	0.96	8.82							
352	240.250			. 06	. 001	.002	. 01	8.1	0.40	11.79							
$353-$	250-260			. 03	001	.002	101	6.9	1.34	5.45							
354'	260-270			. 06	. 001	. 004	.03	8.3	1.03	10.84							
355	270-280					. 002	, 01										
356	29.290			. 05	. 001	.003	-01	8.1	0.86	12.65							
38400	290.300			.02	. 001	. 002	. 01	6.5	1.84	5.56							
			$\bar{x}$	.03	-001												
	(23)																
																${ }^{\prime}$	

4OLE: WP.II




## Hore: E-62

ASSAT TIAG.	Fuertase	inac	R ( 412	\% 6	\% M	KPb	$\% z_{n}$	L Fe	\% C..	\% S	Pram.	come	${ }_{\text {coup }}^{\text {and }}$				
447	${ }^{4,3} 440$	1.20	27.5	. 09	. 013	003	0	7.1	1.39	4.15							
448	4	2.30	26.1	11	. 1004	,003	01	7.0	1.54	3.86							
449	450.460	3.74	14.9	. 08	. 004	003	01	7.1	1.39	4.08							
450	460.470	5.46	9.9	. 08	. 003	.003	- 01	7.4	1.54	3.16							
451	400430	2.00	11.5	. 14	. 017	.003	. 01	6.7	1.57	4.85			0.22/				
452	480490	4.44	2.9	. 07	. 019	. 003	-1	6.9	1.85	1.52			025				
453	450-500	1.47	15.4	. 12	. 018	. 003	. 01	6.4	125	1.93			)				
454	5so-50	5.14	40.5	06	.008	.003	01	6.4	1.66	3.55							
455	510.55 .5	6.65	36.0	04	. 003	.003	$\bigcirc 1$	7.3	1.84	1.83							
			$\bar{\square}$	. 11	. 011												


































