$$
\begin{gathered}
85-186-13576 \\
4186
\end{gathered}
$$

```
GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT
    ON THE
KING, KING #l to KING #4, AND MO CLAIMS
                        AND
    L1448, Ll449 CROWN GRANTS
    OSOYOOS MINING DIVISION, B.C.
        82E-4E, 5E GEOLOGICALERANCH
```


FOR

AND

STRATA ENERGY CORPORATION (OPERATORS)

BY
GRANT CROONER, B. SC., FGAC
GEOLOGIST

OWNER - GRANT CROONER

TABLE OF CONTENTS

Page
SUMMARY AND RECOMMENDATIONS (front)
INTRODUCTION
General 2
Location and Access 2
Physiography 2
Property and Claim Status 2
History and Previous Work 4
EXPLORATION PROCEDURE 5
GEOLOGY
Regional Geology 7
Claim Geology 7
Mineralization 8
GEOCHEMISTRY 11
VLF-EM SURVEY 13
CONCLUSIONS AND RECOMMENDATIONS 17
REFERENCES 19
CERTIFICATE OF QUALIFICATIONS 20
APPENDIX
Interpretation of EM DataFraser Filter Technique by D.C. Fraser
Certificate of Analysis
Detailed Cost Statement

ILLUSTRATIONS

Figure		Page
1.	Location Map	1
2.	Claim Map, Scale 1:50000	3
3.	Compilation, Scale l:5000	pocket
4.	Geochemistry - Au, Ag, Scale 1:2500	pocket
5.	Geochemistry - Cu, Pb, Scale l:2500	pocket
6.	Geochemistry - Grid A, Scale l:2500	12
7.	VLF-EM SURVEY, In-phase and Quadrature Raw Data, Scale 1:2500	pocket
8.	VLF-EM SURVEY, Fraser Filter Data, Scale l:2500	pocket
9.	VLF-EM SURVEY, In-phase and Quadrature Raw Data - Grid A, Scale 1:2500	15
10.	VLF-EM SURVEY, Fraser Filter Data, Grid A, Scale 1:2500	16

The Orofino Mountain property consists of the Mo, King, and King \#l through King \#4 mineral claims covering 74 units in the Osoyoos Mining Division. Two Grown Grants, L 1448 and L 1449 are also included in the property. The property is located 20 kilometers south of Penticton, B.C.

Mineralization consists of quartz veins with related gold values. Significant gold values have been indicated at the Upper and Lower King Adits, Independence Adit, Orofino adit, adit at L-0 and $12+00 \mathrm{~W}$, and shaft at $L O$ and $3+70 \mathrm{~W}$. In addition, sampling of the Grandoro dump has indicated some of this material could possibly be processed profitably. From 1930 to 1940 the Grandoro and the King Property had been mined independently of one another. These two properties, for the first time held under option by one group of companies, has the potential of outlining a considerable amount of gold-silver ore from the workings and ore dumps.

The present program consisted of soil sampling, a VLF-EM survey and rock sampling. The soil sampling program outlined the known mineralized areas, and possible extensions of these zones. The VLF-EM survey indicated a number of conductors, some of which appear to be associated with the known mineralized zones.

Recommendations are as follows:

To continue the Phase I program, consisting of prospecting, rock sampling, soil sampling and VLF-EM surveying over areas of the property not previously investigated.

A Phase II program, consisting of rehabilitation of workings, and trenching and/or diamond drilling of mineralized zones, should be carried out simultaneously with the Phase I program.

Cost Estimates are as follows:
Phase I:

Establishment of Grid	\$5,000.00
Geochemical Survey	4,000.00
Geochemical Analysis	8,000.00
Geophysical Survey (VLF-EM)	5,000.00
Engineering and Supervision	5,000.00
Total	27,000.00
Contingency	3,000.00
	$30,000.00$

Phase II:

Rehabilitation of Workings Trenching and Sampling	\$12,000.00
	12,000.00
Drilling and Sampling, l,000 ft. © $\$ 30.00$ per foot	$30,000.00$
Supervision	10,000.00
Total	\$64,000.00
Contingency	6,000.00
Total Phase II	\$70,000.00

Respectfully submitted,

INTRODUCTION

General

Field work was carried out on the property by the author and one field assistant from October 6 to October 19, 1984.

The orientation VLF-EM survey carried out in July of 1984 was continued on the property. As well soil sampling was carried out over the main showings. Some rock sampling was also carried out on old workings and dumps.

Location and Access

The property is located 7 kilometers southeast of Twin Lakes, on Orofino Mountain (figure 1) in southern B.C. The claims lie between $49^{\circ} 14^{\prime}$ and $49^{\circ} 16^{\prime}$ north latitude and $119^{\circ} 39^{\prime}$ and $119^{\circ} 42^{\prime}$ west longitude.

Access is via highway 3 A turning onto a secondary road approximately 24 kilometers from Penticton. An all weather 2 wheel drive logging road leads to the claim area, with a network of logging roads and skid trails covering the entire claim area.

Physiography

The property is located in the Okanagan Highlands. Topography varies from rolling hills to steep slopes. Elevation varies from 1,000 meters to 1,600 meters above sea level.

Most areas are timbered with larch, spruce, fir, or pine. Bunch-grass and sagebrush cover the open areas.

Property and Claim Status

The Orofino Mountain Property consists of 6 mineral claims totalling 74 units and 2 Crown Grants (figure 2). The mineral claims are owned by Grant Crooker of Keremeos, B.C., with DRC Resources Corporation and Strata Energy Corporation, \#1250-800 West Pender Street, Vancouver, B.C., V6C 2V6 having an option on the property. The Crown Grants are also under option to DRC Resources and Strata Energy.

Claim	Units	Record Numbers	Expiry Date
MO	2	135	Oct. 15, 1989
King	16	1386	May 8, 1986
King \#l	16	1398	June 5, 1985
King \#2	16	1461	Aug. 31, 1985
King \#3	16	1462	Aug. 31, 1985
King \#4	8	1630	Nov. 12, 1987
Crown Grants		Lot Number	
Orofino		1448	
Independence		1449	

History and Previous Work

The Orofino Mountain gold camp dates back to the late 1890's when the Fairview Camp was being developed. The Orofino Camp is only 7 kilometers from the Fairview Area, and has similiar geological conditions.

There are two properties covered by this report. These are the King and Grandoro (figure 3). Most of the activity in the camp was from 1930 to 1940.

At the Grandoro considerable underground development was carried out. This includes several adits, a tunnel, and a winze leading to a lower level. The workings are not accessable at this time. A limited amount of diamond drilling was carried out in the 1930 's, but no records are available. Minister of Mines Reports indicate the following production from the Grandoro:

| Year | Tonnage | Grade |
| :--- | ---: | ---: | :--- |
| 1932 | 76 | $\$ 20.00$ per ton |
| 1933 | 220 | $1.77 \mathrm{oz} /$ ton gold |
| 1935 | 10.000 | $0.50 \mathrm{oz} /$ ton gold |
| 1941 | 251 | $0.69 \mathrm{oz} /$ ton gold |

Examination of the BCMM annual reports gives a sketchy picture of the underground workings at the Grandoro (figure 3).

The "Orofino Adit" is actually a winze which was sunk to the 150 foot level. From here drifts were driven 250 feet
east and 200 feet west, with crosscuts 50 feet each way from the west drift. The east drift is reported to follow the vein for its entire length, although some sections were low grade. In the west drift only a 50 foot length of vein is reported.

The "Independence Adit" is actually a tunnel having been driven through the mountain for approximately 250 meters. From the amount of material on the dump, the Independence Adit was the main working level, and probably intercepted the lower workings of the Orofino Adit.

At the King only a small amount of work has been carried out. Two adits were driven, along with a winze. In the lower King adit some stoping was carried out, with production estimated at 2,000 tons. The grade is not known.

During 1981, 1983 and 1984 geological and geophysical surveys were carried out on the property. This work included geological mapping, prospecting, sampling and geochemical surveying and VLF-EM surveying.

EXPLORATION PROCEDURE

The October 1984 program consisted of establishing 2 grids, geochemical soil sampling, rock sampling, and continuing the VLF-EM survey.

On the main grid, the baseline is north-south, with a length of 900 meters. The nine crosslines are 100 meters apart, and the lines are 900 meters long to the west and from 1,200 to 1,600 meters long to the east. Fifteen kilometers of line were added to the main grid.

At grid A, the baseline is north-south, with a length of 400 meters. The five crosslines are 100 meters apart and extend 300 meters to the east and west. Three kilometers of line were established at Grid A. Stations were established at 20 meter intervals on all lines.

Eighteen kilometers of VLF-EM surveying were carried out, with readings taken every 20 meters.

Grant Crooker, B.Sc. geologist carried out the survey using a Geonics EM-16 receiver. The VLF transmitter was NLK at 24.8 KHz . This transmitter was used due to its good signal strength and orientation to the geological structures.

The EM-16 measures In-phase and Quadrature components of vertical magnetic field as a percentage of horizontal primary field. (That is tagent of the tiltangle and ellipticity.) Both values are given in percentages.

Field procedure requires to always face the same direction when taking readings. When approaching a conductor the readings will be positive, and when leaving a conductor the readings will be negative.

The EM-16 is rotated in the vertical plane until a minimum signal is obtained. This reading is the "In-phase" and gives the tiltangle in degrees and the tangent of the tiltangle expressed as percent. Once this minimum signal is obtained, the "Quadrature" knob is rotated until the signal minimum is obtained. This reading is approximately the ratio of the quadrature component of the vertical secondary field to the horizontal primary field.

The VLF-EM can pick up conductors caused by electrolytefilled fault or shear zones and porous horizons, graphite, carbonaceous sediments, lithological boundaries as well as sulphide bodies.

The In-phase and Quad-phase raw data were plotted as percentages on figures 7 and 9 at a scale of 1:2500.

The Fraser filter method was then applied to the In-phase data, and the results plotted at a scale of $1: 2500$ of figures 8 and 10 .

Geochemical soil sampling (194 samples) was carried out on the property. On the main grid, 5 lines were sampled, with samples taken at 40 meter spacings, increasing to 20 meter spacings over showings and conductors. The soil samples were generally taken at a depth of $10-15$ centimeters in the brown "B" horizon. All samples were placed in soil geochemical bags for shipment to the laboratory.

The samples were all analyzed for copper, lead, silver and gold by Rossbacher Laboratory Ltd., Burnaby, B.C. Laboratory technique for analysis consists of preparing samples by drying at $75^{\circ} \mathrm{C}$ and sieving to minus 80 mesh. Copper, lead, and silver are analyzed by nitric perchloric digestion, while gold is analyzed by aqua-regia digestion. Concentrations of elements are determined by atomic absorption.

The geochemical data was plotted at a scale of 1:2500 on figures 4, 5 and 6.

Thirty-two rock samples were taken in mineralized areas and from dumps. The samples were assayed for gold and the results were plotted on figure 3 at a scale of 1:5000.

GEOLOGY

Regional Geology

The gold showings in the Orofino Mountain area occur in an area about 4 square miles in extent. The area is underlain by irregular, easterly trending belts of greenstone, sedimentary rocks, and highly altered rocks of uncertain origin.

These rocks are intruded by bodies of diorite, granodoirite and granite. The Oliver Granite extends into the Fairview area. On the north and west Tertiary volcanics of considerable thickness are faulted against older rocks.

Claim Geology

The oldest rock underlying the Orofino Mountain gold prospect are quartzites of the Kobau Quartzite (Unit 0 ,
figure 3) of Carboniferous age. The quartzites are generally massive and vary from grey to blue-grey in color.

Triassic quartzites of the Shoemaker Formation (Unit l, figure 3) form two relatively narrow bands which strike west and northwest across the King and King \#2 claims. The quartzites vary from massive to thinly bedded and are light grey in color.

Unit 2 consists of altered rocks of uncertain origin. This rock type varies from massive coarse grained hornblende gabbro and biotite diorite to finer grained biotite schist.

Unit 3 is qenerally a pinkish, medium grained diorite containing hornblende and biotite. This unit is often difficult to distinguish from Unit 2.

The granite of unit 4 is generally light grey, porphyritic and coarse grained. Biotite and hornblende are the main mafic constituents.

Unit 5 is a light grey granitic dike.
Unit 6 is a medium grained, grey granodiorite with hornblende predominating over biotite.

Weathered vesicular basalt of the Marron Formation of Eocene or Oligocene age forms Unit. 7. This unit is faulted against older rocks on the north and west sides of the claim block.

Mineralization

Mineralization on the Orofino Mountain Property consists of quartz veins in which pyrite, chalcopyrite, galena, and free gold occur. The mineralization is similiar to that which occurs in the Fairview gold camp to the south of the claim block.

The quartz veining appears to be associated with the granite which extends from Fairview to Orofino Mountain. Most veins in the area occur within one mile of the contact of the
granite with older rocks. The quartz veins are associated with shear zones, and are up to 1.5 meters wide.

Rock samples were collected at a number of showings and dumps (figure 3) on the property with the following results:

Sample	Width	Gold		Material
No.	(m)	ppb	oz/ton	
T-100	grab	-	0.001	quartz
T-101	grab	-	0.001	rusty shear
T-102	"	-	0.001	quartz, pyrite
T-103	"	-	0.003	quartz, pyrite
T-104	"	-	0.001	quartz
T-105	dump	-	0.367	quartz, pyrite
T-106	"	-	0.10	wallrock, pyrite
T-107	grab	-	0.078	quartz, vugs
T-108	"	-	1.75	quartz, vugs
T-109	float	-	0.001	quartz, vugs
T-110	"	-	1.127	quartz, vugs
01	dump	4,800	0.141	quartz, pyrite
02	"	30	-	wallrock
04	grab	46,200	1.35	vugs, quartz
84-k-001	grab	-	0.008	quartz
" 002	"	-	0.082	wallrock, pyrite
" 003	"	-	0.010	wallrock, pyrite
" " 004	"	-	0.014	quartz
" 005	0.60	-	0.160	quartz, pyrite
" 006	0.45	-	0.130	quartz, vugs
" " 007	0.45	-	0.122	quartz, vugs
" 008	0.60	-	0.066	quartz, vugs
" " 009	0.60	-	0.006	white quartz
" 010	0.60	-	0.010	white quartz
" 011	0.80	-	0.146	quartz, pyrite
" " 012	1.0	-	0.012	quartz, pyrite
" " 013	dump	-	0.038	quartz, wallrock
" " 014	"	-	0.254	quartz, wallrock
" " 015	"	-	0.070	quartz, wallrock
" " 016	1.2	-	0.026	rusty quartz
" " 017	0.8	-	0.010	rusty quartz
" " 018	dump	-	0.126	quartz, pyrite

Samples $T-100$ to $T-104$ were taken from a series of shafts and trenches 200 meters southeast of the southeast corner of L 1449. The veins are sparsely mineralized and returned only trace amounts of gold.

Samples T-107 and T-108 were taken from an adit and trenches which have been mined, 100 to 200 meters north of the

MO claim and within the mineral reserve. Values of 0.078 and 1.75 oz . gold per ton were returned. The vein strikes $\mathrm{S} 53^{\circ} \mathrm{E}$ and dips 60° to 75° east, and although located off the property, there is an excellent possibility the vein extends onto the property.

Sample 04 (1.35 oz gold per ton) was a grab sample taken from high grade material located at the Lower King Adit. This assay confirms the high gold values from previous assays from this area.

Samples $84-\mathrm{K}-001$ to $84-\mathrm{K}-004$ were taken from a shaft. located at $1-0+3+75 E$. The shaft is 5 meters deep, and exposes a vein 1.0 meter wide on the surface. Below the surface the vein narrows and becomes veinlets within a shear zone. The shear zone strikes $\mathrm{N} 42^{\circ} \mathrm{E}$ and is vertical. This orientation is almost exactly the same as a conductor indicated by the VLF-EM survey. The quartz is sparsely mineralized and returned only low (0.008 and 0.014 oz. gold per ton) values. The wallrock however, is strongly chloritized and contains up to 5% pyrite. One sample of this material assayed 0.082 oz . gold per ton, which is significant.

Samples $84-\mathrm{K}-005$ to $84-\mathrm{K}-008$ were taken from an adit located at L-IN+12+00E. The adit is approximately 17 meters long, and follows a quartz vein. The vein strikes $N 83^{\circ} \mathrm{W}$ and dips $23^{\circ} \mathrm{S}$. It varies from 0.30 to 0.60 meters wide, is rusty and vuggy and contains massive pyrite. The samples assayed $0.160,0.130,0.122$ and 0.066 oz . gold per ton respectively. These assays are significant, and the structure requires further investigation.

Two samples, 84-K-009 and $84-\mathrm{K}-010$ were taken from a trench located between $L-5 N$ and $L-6 N$, at $5+20 \mathrm{~W}$. The vein is from 0.30 to 0.70 meters wide, strikes $N 66^{\circ} \mathrm{W}$ and is vertical. The samples gave only trace amounts of gold.

Samples $84-K-011$ and $84-K-012$ were taken at the portal of the Upper King Adit. One sample gave an assay of 0.146 oz.gold per ton.

Samples $84-\mathrm{K}-016$ and $84-\mathrm{K}-017$ were taken from the surface of the orofino vein. Assay results were 0.026 and 0.010 oz . gold per ton respectively.

The following samples (T-105, T-106, 01, 02, 84-K-014, 015) were taken from the dump at the Independence Adit. Values ranged from a trace to 0.367 oz . gold per ton. with an average of 0.155 oz . gold per ton. In addition a sample taken from the Orofino dump ($84-\mathrm{K}-018$) gave a value of 0.126 oz . gold per ton, and a sample taken from the Upper King dump (84-K-013) gave a value of 0.038 oz . gold per ton. The assay values indicate the material on the dumps may be of high enough grade to process profitably.

GEOCHEMISTRY

A total of 194 soil samples were taken and analyzed for copper, lead, silver and gold (figures 4, 5, 6). As chalcopyrite and galena are associated with the gold mineralization in the area, copper and lead were used a pathfinders for gold.

Gold

Background values for gold is 10 ppb , and values greater the 10 ppb were considered anomalous. Ten values were anomalous.

At $1-0$ and $0+80 \mathrm{~W}(6,200 \mathrm{ppb})$ and $0+60 \mathrm{~W}(3,900 \mathrm{ppb})$, two highly anomalous values were returned. Both of these values came from Lower King dump.

Four values along L-ls were anomalous ($8+60 \mathrm{E}(100 \mathrm{ppb}$), $10+40 \mathrm{E}(9,400 \mathrm{ppb}), 10+60 \mathrm{E}(30 \mathrm{ppb})$ and $10+80 \mathrm{E}(20 \mathrm{ppb}))$. The value at $8+60 \mathrm{E}$ is south of the Independence Adit, while the other 3 values are adjacent to the Orofino Adit.

At $\mathrm{L}-25$ and $9+80 \mathrm{E}$ a value of 90 ppb was returned. This may indicate an extension of the Orofino vein. Along $L-O+50 \mathrm{~S}$, $0+80 \mathrm{~W}(20 \mathrm{ppb})$ and $0+40 \mathrm{~W}(30 \mathrm{ppb})$ were anomalous. These samples were taken adjacent to the high grade trench at the Lower King Adit.

At $L-6 \mathrm{~N}$ and $1+80 \mathrm{w}$, a value of 200 ppb was obtained. This may indicate a vein covered by overburden.

Silver

Background for silver was calculated to be 0.32 ppm , and values twice background (0.64 ppm) were considered anomalous.

Four values were anomalous, and in all but one instance coincident with the anomalous gold values. The coincidental values are at $L-0$ and $0+80 \mathrm{~W}, 0+60 \mathrm{~W}$, and $L-1 S$ and $10+40 \mathrm{E}$. Samples s-l (l.4 ppm) is located below the trench between $L-5 N$ and $L-6 N$, at $5+20 \mathrm{~W}$.

Lead

Background for lead was calculated to be 11.8 ppm , and values twice background (23.6 ppm) were considered anomalous. Only two values were anomalous, (L-1S and 9+00E (24 ppm) and $10+40 \mathrm{E}$ (284 ppm)), and these are coincident with anomalous gold values.

Copper

Background for copper was calculated to be 49 ppm, with values twice background (98 ppm) considered anomalous. Six values were anomalous, again generally coincidental with the anomalous gold values.

Anomalous values along $L-0$ and $9+40 \mathrm{E}$ (100 ppm) and $9+60 \mathrm{E}$ (ll6 ppm) possibly indicate an extention of the Independence Vein.

At L-lS and $2+60 \mathrm{E}$ a value of 214 ppm was obtained, and this highly anomalous value should be investigated.

The geochemical sampling at Grid A (figure 6) did not indicate any anomalous values.

VLF-EM SURVEY

The Fraser filter was applied to all In-phase readings
to allow contouring of the data. The results were contoured at 10 percent intervals (figures 3,8 and 10).

A large number of conductors were found during the course of the survey. Some appear to be associated with known mineralized structures, while no explanation is obvious for others.

The highest readings of over 100% were obtained along L-5, at $1+20 \mathrm{~W}$ and $0+40 \mathrm{E}$. This anomaly occurs over a tailings pond, and would appear to be caused by sulphides in the tailings.

Conductor A occurs near the Lower King Adit and associated workings. The conductor is weak, but appears to sub parallel the vein. The conductor is probably caused by a shear zone associated with the veining. If this is the case, the shear zone extends to the north and south of the known extent of the shear zone.

Conductor B occurs near the Upper King Adit, and the conductor is weak. However the conductor parallels the direction of shearing within the adit. The vein occurs within a shear zone with graphite. The conductor again extends north and south from the area of showing, and thus the vein and shearing may extend in both directions.

Conductors C occurs near a shaft located at L-O and $3+60 E$, and is weak. However the conductor parallels a shear zone, with associated veining and pyrite exposed in the shaft.

Conductor D is a broad, weak conductor near the Grandoro Showing. The conductor sub-parallels the northwest to southeast strike of the veins. The conductor may indicate shearing or faulting, associated with the quartz veining.

No obvious explanation is available for the other conductors.
Several conductors were indicated at Grid A (figure 10), but no explanation is obvious for the conductors. The conductors at $L-0$ and $0+50 \mathrm{~W}$ passes through the area where gold bearing quartz float was found, but geochemical sampling did not indicate anomalous values.

CONCLUSIONS AND RECOMMENDATIONS

The geochemical survey indicated the anomalous gold, silver, lead and copper values are generally coincidental, and successfully outlined the existing mineralized zones. At the Grandoro Showings the sampling also indicated extensions of the veins systems.

No broad geochemical anomalies were found, even over areas which have had significant gold production. This may be at least inpart due to the extremely arid conditions, which prevent broad dispersion of the elements.

Copper would appear to be the most useful element to use as a pathfinder, in conjunction with gold for geochemical surveys on the property.

The VLF-EM Survey indicated a number of conductors on the property. Conductors A, B, C and D appear to be associated with previously known mineralized quartz veins and shear zones. The conductors may indicate extensions of these zones.

The rock samplina, alona with the previous exploration programs have shown a number of mineralized quartz veins exist on the property. These mineralized zones which contain significant gold values definitely warrant trenching and/or drilling. The Upper and Lower King Adits, Independence Adit, Orofino Adit, adit a $L-0$ and $12+00 \mathrm{~W}$, and shaft at $L-0$ and $3+70 \mathrm{~W}$ all require further investigation.

Recommendations are as follows:
To continue the Phase I program, consisting of prospecting, rock sampling, soil sampling and VLF-EM surveying over areas of the property not previously investigated.

A Phase II program consisting of rehabilitation of working, and trenching and/or diamond drilling of mineralized zones should be carried out simultaneously with the Phase I program.

Cost estimates are as follows:

Phase I

Establishment of grid	\$5,000.00
Geochemical Survey	4.000.00
Geochemical Analysis	8.000.00
Geophysical Survey (VLF-EM)	5,000.00
Engineering and Supervision	5,000.00
Total	\$27,000.00
Contingency	$3,000.00$
Total Phase I	\$30,000.00

Phase II

Rehabilitation of Workings	\$12,000.00
Trenching and sampling	12,000.00
Drilling and Sampling, 1,000 Feet	
@ $\$ 30.00$ per foot	30,000.00
Supervision	$10,000.00$
Total	\$64,000.00
Contingency	6,000.00
Total Phase II	\$70,000.00

Respectfully submitted,

REFERENCES

Bostock, H.S. - Geological Survey of Canada, Map 341A - Keremeos, 1940.

Bostock, H.S. - Geological Survey of Canada, Map 627A - Okanagan Falls, 1941.
B.C.D.M. - Annual Reports for 1896, 1898, 1900, 1916, 1923, 1929, 1930, 1932-1936, 1938, 1941 and 1959.
B.C.D.M. - Bulletin \#20, Lode - Gold Deposits of B.C.

Cairnes, B.C. - Geological Survey of Canada, Map 538A - Kettle River West Half, 1940.

Cockfield, W.E. - Geological Survey of Canada, Memoir 179, Lode Gold Deposits of Fairview Camp, Camp McKinney and Vidette Lake Area, and Dividend - Lakeview Property near Osoyoos, 1935.

Crooker, Grant - Geological Report on the King, King \#l, King \#2, King \#3 and MO Claims and L1448 and Lll49 Crown Grants, December ll, 1981.

Crooker, Grant - Geological and Geochemical Report on the King, King \#1 to King \#4 and MO Mineral Claims, August, 1983.

Crooker, Grant - Geophysical Report on the King, King \#l to King \#4 and MO Mineral Claims, August, 1984.

Fox, P.E. and Topham, S.L. - Geochemical Report on the Twin Lakes Claims, British Columbia, Osoyoos Mining Division, November 27, 1980 (assessment Report No. 8585).

Geonics Ltd. - EM-16 Operating Manual.
Sookochoff, L. - Geochemical Report on a Preliminary Soil Sampling Survey on the Twin Lakes Property of Cripple Creek Resources NPL), September 12, 1973.

CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, B.Sc., Geology of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

1. That I graduated from the University of British Columbia
in 1972 with a Bachelor of Science degree in Geology.
2. That I have prospected and actively pursued geology prior to my graduation and have practiced my profession since 1972.
3. That I am a member of the Canadian Insitute of Mining and Metallurgy.
4. That I am a Fellow of the Geological Association of Canada.
5. That I am the sole owner of the MO, King, King \#l, King \#2, King \#3, and King \#4 mineral claims.

Dated at Vancouver, British Columbia this 30the day of November, 1984.

Grant F. Crooker, B. Sc., FGAC Geologist

EM16 SPECIFICATIONS

MEASURED QUANTITY	In-phase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).
SENSITIVITY	In-phase : $\pm 150 \%$
	Quad-phase : ± 40 \%
RESOLUTION	$\pm 1 \%$
OUTPUT	Nulling by audio tone. In-phase indication from mechanical inclinometer and quad-phase from a graduated dial.
OPERATING FREQUENCY	15-25 kHz VLF Radio Band. Station selection done by means of plug-in units.
OPERATOR CONTROLS	On/Off switch, battery test push button, station selector switch, audio volume control, quadrature dial, inclinometer.
POWER SUPPLY	6 disposable 'AA' cells.
DIMENSIONS	$42 \times 14 \times 9 \mathrm{~cm}$
WEIGHT	Instrument: 1.6 kg
	Shipping : 4.5 kg

NOTES ON VLF TRANSMISSIONS

FIELD PROCEDURE

Orientation \& Taking a Reading

The direction of the survey lines should be selected approximately along the lines of the primary magnetic field, at right angles to the direction to the station being used. Before starting the survey, the instrument can be used to orient oneself in that respect. By turning the instrument sideways, the signal is minimum when the instrument is pointing towards the station, thus indicating that the magnetic field is at right angles to the receiving coil inside the handle.(Fig.11).

To take a reading, first orient the reference coil (in the lower end of the handle) along the magnetic lines. (Fig. 12) Swing the instrument back and forth for minimum sound intensity in the speaker. Use the volume control to set the sound level for comfortable listening. Then use your left hand to adjust the quadrature component dial on the front left corner of the instrument to further minimize the sound. After finding the minimum signal strength on both adjustments, read the inclinometer by looking into the small lens. Also, mark down the quadrature reading.

While travelling to the next location you can, if you wish, keep the instrument in operating position. If fast changes in the readings occur, you might take extra stations to pinpoint accurately the details of anomaly.

The dials inside the inclinometer are calibrated in positive and negative percentages. If the instrument is facing 180° from the original direction of travel, the polarities of the readings will be reversed. Therefore, in the same area take the readings always facing in the same direction even when travelling in opposite way along the lines.

The lower end of the handle, will as a rule, point towards the conductor. (Figs. 13 \& 14) The instrument is so calibrated that when approaching the conductor, the angles are positive in the in-phase component. Turn always in the same direction for readings and mark all this on your notes, maps, etc.

THE INCLINOMETER DIALS

The right-hand scale is the in-phase percentagelie. Hs/Hp as a percentage). This percentage is in fact the tangent of the dip angle. To compute the dip angle simply take the arctangent of the percentage reading divided by 100 . See the conversion graph on the following page.

The left-hand scale is the secant of the slope of the ground surface. You can use it to "calculate" your distance to the next station along the slope of the terrain.

(1) Open both eyes.
(2) Aim the hairline along the slope to the next station to about your eye level height above ground.
(3) Read on the left scale directly the distance necessary to measure along the slope to advance 100 (ft) horizontally.

We feel that this will make your reconnaissance work easier. The outside scale on the inclinometer is calibrated in degrees just in case you have use for it.

PLOTTING THE RESULTS

For easy interpretation of the results, it is good practice to plot the actual curves directly on the survey line map using suitable scales for the percentage readings. (Fig.15) The horizontal scale should be the same as your other maps on the area for convenience.

A more convenient form of this data is easily achieved by transforming the zero-crossings into peaks by means of a simple numerical filtering technique. This technique is described by D.C. Fraser in his paper "Contouring of VLF-EM Data", Geophysics, Vol. 34, No. 6. (December 1969) pp958-967. A reprint of this paper is included in this manual for the convenience of the user.

This simple data manipulation procedure which can be implemented in the field produces VIF-EM data which can be contoured and as such provides a significant advantage in the evaluation of this data.

GEONICS LIMITED

CONTOURING OF VLF-EM DATA

By
D. C. Fraser

Reprinted From
GEOPHYSICS
Vol. XXXIV, No. 6, December 1969

CONTOURING OF VLF-EM DATA \dagger

D. C. FRASER*

Prospecting for conductive deposits with ground VLF-EM instruments has recelied considerable impetus with the recent developreent of lightueight receivers. The large geologic rusise component, which results from the relatively hightransmitted frequency, has caused some critics to avoid use of the technique. Those who routinely perform surveys with a ILF.EM unit find that, in some areas, a -degree peak-to-peak anomaly can be significant, whereas anomalies having amplitudes in excess of 100 degrees may occur as well. Consequently, there is a dynamic range plotted on a field map.

I data manipulation prucedure is descriled which transforms noisy noncontourable data into less noisy contourable data. thereby eliminating the dynamic range problem and reducing the noise problem. The manipulation is the result oi the application of a difference operator to transform zero-crosings into peaks, and a low-pass smoothing operator to reduce noisc. Experience has shown that field personnel can routinely perform the calculations which simply involve additions and subtractions.

introdection

VLF-EM data can be exceedingly ditiocult to interpret because a large geologic noise component can result from the reiusively hightransmitted
 can yield useless data unless special care is taken both in sursey procelure and in tata premena. tion.

The purpuse of this paper is to dercrite the survey procedure and the method of data presentation in uec by the hecril Mining Cirnup and to illustrate the adsuntaze oi this approacth.

VLF-EM GROUND SURVEY PROCEDI'RE AND DATA TREATMENT

The primary fifld
VLF-F,M transmiter tatione are licaled at several points around the gloter. The herodiast at frequencies close $(1) 20,14 n)$ H/, which is low compared to the nurmal bromkant hand. The purpose sif the etations is to allow gosernmental communication with submurines. and the low frequency allows ame perietration oi the confuc.
tive ocean water. Skin depth is approximately 3.0, \bar{P} meters, where P is the resistivity of a homogeneous halfspace in ohm-m, on the assumption that the irequency is $30,000 \mathrm{~Hz}$ and that the halfipace is magnetically nonpolarizable. Consequently, depth of exploration is severely restricted for werburden resistivities less than 200 ohm-m.
Since the area tu be prospected normally is of considerable distance from the transmitter stations, the primary field is uniform in the area, allowing rather simple mathematics to be used in anomaly prediction and analysis.

Suricy procidure and duta treatment

The survey procedure first consists of selecting a transmitter station which provides a field approximately parallel to the traverse direction, i.e., approximately perpendicular to the expected strike of a conductor. The following points relate to the method oi data treatment.

1. Readings should be taken ciery 50 ft , as will be shown beluw.
2. Transmitter stations should not be changed
\dagger Manuscript reccived lay the Editor Mprii 2\&, 1469, revised manuscript receivet lugust 18, 1969.

- Keevil Mining Group I, imited, (jemphysical Engineering \& Surveys Linuted. Teck Corporation Limited, Toronto, Ontario, Canida.

Contouping VLF-EM Data

for 2 given block of ground, to avoid distortion in the contour presentation. Hence, fillin lines should be run with the same transmitter station as other lines in the block. The field direction of this station should be shown on the data map.
3. List the dip angle' data in tabular form, as follows:
a) list in the direction of north (top of paper) to south, or from west to east;
b) designate south or east dips as negative; and
c) perform calculations as shown in Table 1.
Thus, the filtered output or contourable quantity simply consists of the sum of the observations at two consecutive data stations subtracted from the sum at the next two consecutive data stations. The theoretical basis for this procedure will be described below.
4. The right-hand column (filtered data) is
${ }^{2}$ This paper assumes that dala is recorded as for the Crone Radem which defines a north-dipping feld as a sooth "dip" on the instrument. This convention was chosen because a souith reading is interpreted as arising from a conductor to the south.
suitable for contouring. Normally, negative values are not contoured since, being caused by dip angle flanks, they do not aid interpretation but only confuse the picture. The positive values generally are contoured at 10-unit intervals, and the zero contour is shown only when it brackets an anomaly. In quiet areas, 5 -unit contours may be meaningful.

Example

Figure 1 presents dip-angle data, according to the Crone convention, in the vicinity of the Temagami mine of Copperfields Mining Corporation Limited in Ontario. This figure illustrates that several conductors are present yiedding large dip angles. A complex pattern has resulted which requires some thought to interpret properly.
Figure 2 presents the filtered data in contoured form where only the 0,20 , and $\$ 0$ contours are shown for simplicity. The conductor pattern is immediately apparent, even to exploration personnel untrained in VLF-EM interpretation. The three anomalies correlate with a zone of nearly massive pyrite and two brecciated fault zones. Depth to bedrock is 15 ft .

In practice, all the data of Figures 1 and 2 are

Table 1. Example of calculmioss

Fig. 1. Hip angle data in the vicinity of the Temafarri mine. The arrow thetines the VIIF F.M primary field direction rom the transmitiet at Seatle, Wratington.
placed un a single map. The alove example illu.. trates that this very simple one-dimensiunal filtering scheme yields a practical and effective appruach to VLF.E.Al data handling

The filter improves the resolution oi anumalies. therely, making them easier to recognize. In inflection on the dip profile from a conductor subordinate to a larger one vields a pusitive peak, thereby emphasizing the presence of such a conductor. Figure 3 illustrates this effect where nine line were run over an SP (self-potential) anomaly in the Temafimi area. The dip-angle anomaly is very pourly resulved due to the regional south dips prutuced by an areally large conductor to the south of the map area. The contoured VLF-EM data yields a clearly defined anomaly which was lucated over the negative center of the SP.

THE FILTER AND ITS EFFECT ON ANOMALIES

The filter operstor

hllowing criteria

1. It must phase shift the dip-angle data by 90 degrees so that crossovers and inflections will be transiormed into peaks to yield contourable quantities.
\therefore It must completely remove dc and attenuate long spatial wavelengths to increase resolu. tion oi local anomalies.
2. It must not exaggerate the station-tostation random noise
3. It must be simple to apply so that field personnel can make the calculations without difficulty.

The first two criteria are met by using a simple difference operator, i.e.

$$
M_{:}-M_{1}
$$

where $M_{\text {: }}$ and M_{z} are any two consecutive data points.

The third criterion is met by applying a smoothing or low pass operator to the differences, i.e.

Fic. 2. Filtered data computed from the map of Figure 1.
$\frac{1}{1}\left(M_{2}-M_{1}\right)+\frac{1}{2}\left(M_{3}-M_{2}\right)+\frac{1}{4}\left(M_{1}-M_{3}\right)$,
where M_{1}, M_{2}, M_{3}, and M_{4} are any four consecutive data points. The filtered output then is

$$
\begin{aligned}
\frac{1}{1}\left(M_{2}-M_{1}\right)+ & \frac{1}{2}\left(M_{3}-M_{2}\right)+\frac{1}{4}\left(M_{1}-M_{3}\right) \\
& =\frac{1}{4}\left[M_{3}+M_{1}-M_{1}-M_{2}\right]
\end{aligned}
$$

The final criterion is enhanced by eliminating the constant, so that the plotted function becomes

$$
f_{2 ., ~}=\left(M_{3}+M_{1}\right)-\left(M_{1}+M_{2}\right),
$$

which is plotted midway between the $M_{\text {: }}$ and M_{3} dip-angle stations.

This filter has its frequency (wavenumber) response displayed in Figure f, for a station spacin: of 50 ft . Its characteristics are as follows:

1. All frequencies are shifted by 90 degrees.
2. Noise having a wavelength equal to the station spacing and de bias are completely. removed.
3. Maximum amplitude occurs for wavelengths of 250 ft , or five times the station spacing.

The frequency (wavenumber) response of the filter is shown for a station spacing of 50 ft , because this is the most suitable spacing for defining sulfide bodies within a lew hundred feet of surface. This will be demonstrated below.

The dike model

A conducting dike in a VLF-EM field will produce a secondary induction field from eddy currents maintained in it by the primary fietd. These eddy currents will tend to flow in such a manner as to form line sources concentrated near the outer edges of the dike since the field is uniform (Figure 5a). This dike may be replaced by a loop of wire of dimensions traced out by the main current concentration in the dike. The secondary field geometry of the loop and dike then will be practically identical, as has been shown by Fraser (1966), Parry (1966), and Parry et al (1965). This

Fraser

Fic. 3. Dip-angle (upper map) and filtered data (lower map) over a small grid in the Temagami area. The arrow defines the ILF-EM primary field direction from the transmitter at Balboa, Panama.
allows a mathematical model of a dike to be constructed because the field from a line source is known.

For brevity, only a dike which is large in depth extent and in length will be considered herein. Only the top line source of Figure 5 a will contribute to the measured dip angles because the other current line sources are very far away.

The horizontal $H s_{x}$ and vertical Πs_{s} secondary fields are (Figure 5 b)

$$
\begin{aligned}
& H s_{z}=k H_{0} \frac{z}{x^{2}+z^{2}} \\
& H s_{z}=k H_{0} \frac{x}{x^{2}+z^{2}}
\end{aligned}
$$

where k is a positive constant having the dimension of leagth and is related to the conductivity and dimensions of the dike, and where H_{0} is the primary VLF-EM strength at the dike. The measured dip angle is

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left[\frac{H_{o_{0}}}{H s_{z}+H_{0}}\right] \\
& =\tan ^{-1}\left[\frac{k x}{k s+x^{2}+x^{2}}\right]
\end{aligned}
$$

Model dip profiles can be computed for various depths a only by assuming a value for k.

As a means of testing the effect of the filter operator, a single k value was chosen to yield a
,

Fic. 5. (a) A sheet in a uniform primary field will have maximum current concentrated near its edges. (b) A line source, corresponding to the upper current concentration in (a), yields a secondary magretic feld of cylindrical shape.
maximum dip angle of 35 degrees when depth \mathbf{z} to top of dike (or line source) was 100 it . Figure 6 illustrates the dip angle and filtered profiles for this case for a station spacing of 50 ft and for several depth values.
The following are the main characteristics of these dike and filtered anomalies:

1. Peak-to-peak angles vary from 93 degrees for $x=50 \mathrm{ft}$ to 25 degrees for $z=500 \mathrm{ft}$. Filtered peaks vary from 118 degrees for $z=50 \mathrm{ft}$ to 8 degrees for $z=500 \mathrm{ft}$. Thus, the filter amplifies near-surface anomalies and attenuates deep-source anomalies. There is neither amplification nor attenuation when \& is 100 ft .
2. On the basis of anomaly resolution and usual noise levels, dip angle data can detect dikelike conductors in a resistive medium to a
depth of 500 ft , while filtered data can detect such bodies to a depth of 300 ft . Conductors in the upper 200 ft generally will be more easily recognized on the filtered data.
VLF-EM data commonly is measured at $100-$ ft intervals in Canade. A change in the sample interval from the 50 ft recommended herein to 100 ft causes the passband curve of Figure 4 to shift to the left, such that the peak is at 2×10^{-4} cpf rather than 4×10^{-2} cpf. Similarly, the anomaly curves of Figure 6 remain correct in shape provided all distance dimensions are doubled. Consequently, detection of conductors to a depth of 500 ft , when utilizing the filter operator, might appear facilitated by use of a 100 - ft station interval rather than a 50 -ft interval. However, anomalies from near-surface conductors will have poorly defined waveforms for a 100-ft

Fic. 6. Dip-angle (dasbed) and filtered (solid) curves for model dike and sphere for several depths of burial, where s is depth to top of dike and to center of sphere.

Page 77

Fraser

data station interval, and will alias as deeper conductors. This "geologic noise" will somewhat confuse the contoured output. Generally, a comparison of the $50-\mathrm{ft}$ data station dip angle profiles with the contoured filtered output suffices to indicate approximate depth to source and to allow recognition of sources deeper than 300 ft .

As an aside, some geophrsicists have claimed that a reasonable dike model depth estimate can be obtained directly as half the distance between dip angle peaks, because the vertical field $\boldsymbol{H}_{s_{z}}$ peaks at $x= \pm 2$. However, this formula is not applicable to dip-angle data, as can be seen by the dike curves of Figure 6. For this example, the formula provides erroneous depth estimates of $150,200,325,425$, and 625 for true depths of 50 , $100,200,300$, and 500 ft .

The sphere model

A conducting sphere in a VLF.EM field will produce an anomaly according to equations in Ward (1907). For a traverse directy over a sphere having its center at depth 2 , and run in the direction of the primary field H_{0}, the anomaly is,

$$
\begin{aligned}
& H s_{z}=k H_{0} \frac{\left(2 x^{2}-z^{2}\right)}{\left(x^{2}+z^{2}\right)^{s / 2}} \\
& H s_{z}=k H_{0} \frac{3 x z}{\left(x^{2}+z^{2}\right)^{5 / 2}}
\end{aligned}
$$

where k is a positive constant which saturates at $R^{\mathbf{3}} \cdot 2$, where R is the sphere radius, and where quadrature is ignored. The measured dip angle as a function of station location x is (where x is zero directly over the sphere center),

$$
\begin{aligned}
\alpha & =\tan ^{-1}\left(\frac{H s_{2}}{H s_{z}+H_{0}}\right) \\
& =\tan ^{-1}\left[\frac{3 k x z}{k\left(2 x^{2}-z^{2}\right)+\left(x^{2}+z^{2}\right)^{2}-2}\right]
\end{aligned}
$$

Model dip profiles can be computed for various depths 2 only by assuming a value for k. The sphere curves of Figure 0 assume a saturated k. value for a sphere radius of 50 ft . Obviously, a sphere having its center at a depth of greater than twice its radius generally will not be detectable. However, the flier operator aids in the recognition of a spherical conductor because it amplifies the anomaly, for the small sphere sizes
usually encountered in nature, assuming data spacing is 50 ft .

TOPOGRAPHIC EFFECT

Whittles (1969) recently described a topographic effect which may arise when surveying with VLF-EM in mountainous regions. The spatial wavelengths which result from the phenomenon he describes are greatly attenuated by the filter and generally do not appear on the contoured maps. Whittles advocates the use of first derivatives to remove the topographic effect. The filter operator described herein uses the first difference (i.e., the discrete first derivative) as one of its components.

additional applicattons

The simplicity of the calculations allows practical application of the filter to any form of ground geophysical data which yields zero-crossings over tragets, such as vertical loop EM and Afmag. However, it is difficult to justify the use of the filter un vertical loop EM data because neither dynamic range of anomalies nor geologic noise is large. In Afmag, utilization of the filter is not recommended because of the varying direction of the primary field.

Airborne VLF-EM systems, which measure parameters yielding zero-crossings over targets, are being marketed. If the data were collected on magnetic tape, a computer could be used to apply the filter, thereby allowing contouring of the data. However, in this situation more sophisticated filter operators should be employed.

If the filter is to be applied to data other than ground ILF-EM, the sample interval should be selected to ensure that the passband of the filter is correct relative to the frequency components of the anomalies sought.

CONCIUSIONS

A consideration of geologic noise and conductor shapes illustrates that VLF-EM data should be collected at 50 -ft intervals, and that the described filter operator should be employed. The filtered data, when contoured, provides a data presentation which simplifes interpretation. The filter also amplifies anomalies from near-surface, highly conducting ore pods which is an important feature in several mining districts such as at Tribag and Temagami, both in Ontario, and in Louvicourt Township of Quebec.

Chemex Labs Ltd.

212 Brooksbank Ave. North Vancouver, B.C. Canada

V7J 2C1
Telephone:(604) 984-0221
Telex
043-52597

CERTIFICATE OF ASSAY

TO: DYNAMIC RESOURCES CORPITRATION INC.
1250-800 W. PENDER ST. VANCOUVER, 3.C. V6C 2V6

CERT. : A8417563-001-A INVOICE \# : 18417563
DATE : 14-iNOV-84
P.O. \# : NONE

CC: RDSSBACHER LABS
CORRECTED COPY

Sample description	$\begin{aligned} & \text { Prep } \\ & \text { code } \\ & \hline \end{aligned}$	$\begin{gathered} A U F A \\ O Z / T \\ \hline \end{gathered}$					
34 KOOL	214	1.008	--	--	--	--	--
34 K 002	214	9.082	--	--	--	--	--
$34 K 003$	214	0.010	--	--	--	--	--
34 KO 04	214	0.014	--	--	--	--	--
$34 \mathrm{KOO5}$	214	0.160	--	--	--	--	--
34 K 006	214	0.130	--	--	--	--	--
$94 \mathrm{KOO7}$	214	0.122	--	--	--	--	--
$34 \mathrm{KOO8}$	214	0.066	--	--	--	--	--
34 KOOF	214	0.006	--	--	--	--	--
54 KOLO	214	0.010	--	--	--	--	--
34×011	214	0.146	-	--	--	--	--
$34 \mathrm{KO12}$	214	0.012	--	--	--	--	--
- $34 K 013$	214	0.038	--	--	--	--	--
$84 \mathrm{KO14}$	214	0.254	--	--	--	--	--
$34 \mathrm{KOL5}$	214	0.070	--	--	--	--	--
84 KOLS	214	0.026	--	--	--	--	--
$34 \mathrm{KO17}$	214	0.010	--	--	--	--	--
34 KOLJ	214	0.126	--	--	--	--	--
24P001	214	0.014	--	--	--	--	--
34 PO 02	214	0.024	--	--	--	--	--
34 P003	214	0.006	--	--	--	--	--
340004	214	0.008	--	--	--	--	--
349005	214	0.016	--	--	--	--	--
34 PO 06	214	0.010	--	--	--	--	--

M品 CERTIFICATE OF ANALYSIS

TO: DFC FESOUFCES LTD.
1250-800 W.FENDEF ET. VANCOUVEF:E. C
FFOJECT NO: G. CFOOFEF

CERTIFICATE NO: $84435-1$
INVOICE NO: 50.4
DATE ANALYEED: NOV. 5.1984
FILE NAME: GC485

Massmacher LaBqRATORY LTD.

 CERTIFICATE OF ANALYSIS

 CERTIFICATE OF ANALYSIS}

TO: DFC FESOUFCES LTD. 125O-SOO W, FENDEF ST. VANCOUVEF:B.C.

CEFTIFICATE NO.: $84485-2$
INVOICE NO.: 5O64
DATE ANALYSED: NOV. 5.1984
FILE NAME: GC4ES

2225 S. SFRINGER AVENUE BURNABY: B.C. VSE SN1 TEL: (604) 299-6910

TO : DRC RESOURCES LTD. 1250-BOO W. FENDER ET. VANCOUVER:E.C.

CERTIFICATE No: 84485 - 3
invoice No.: 5064
DATE ANAL. YSED: NOV. 5. 1734

FILE NAME: GC485

$\begin{aligned} & \text { FFE } \\ & \text { FIX } \end{aligned}$	Sample Nave	$\begin{array}{r} F F W \\ \mathrm{Cu} \end{array}$	FFM Ag	$\begin{gathered} \mathrm{FFM} \\ \mathrm{FD} \end{gathered}$	FPE Al
5	115-3+80 E	49	0.2	14	10
5	$4+20 \mathrm{E}$	44	0.2	16	10
5	$4+60 \mathrm{E}$	5	0.4	8	10
5	$5+00 E$	\%	$)_{\text {¢ }}$	8	10
S	$E+40$ E	5	$0_{0} 2$	10	10
5	$5+80$ E	64	O. 2	10	10
5	$6+20 E$	40	0.2	10	10
5	$6+60 \mathrm{E}$	4 \%	02	10	10
5	$7+00 \mathrm{E}$	48	0.2	10	10
5	$7+40$ E	42	9	12	10
5	$L 15-7+80 \mathrm{E}$	54	0.4	8	10
5	$8+20 \mathrm{E}$	42	-14	10	10
9	Q+60 E	5	0.4	8	100
()	9+00 E	44	O. 2	24	10
3	$9+20 E$	90	$\mathrm{O}_{4} 4$	14	10
9	$9+40 E$	69	0.2	12	10
5	$9+60 \mathrm{E}$	40	0.2	12	10
5	9+80 E	Te	0.2	14	10
5	$10+00 \mathrm{E}$	3	0.2	$\cdots 12$	10
5	$10+20 E$	es	9. 4	16	10
5	$15-10+40 \mathrm{E}$	110	2.0	284	7400
5	$10+60 \mathrm{E}$	1 \%	0.2	18	30
5	$10+80 \mathrm{E}$	60	O. 4	12	20
5	$11+20$	\%	0.2	10	10
9	125- $2+00$	$\underline{6}$	9.6	12	10
S	$2+60 \mathrm{~W}$	42	0.4	12	10
5	$2+20 \mathrm{~W}$	44	O. O	14	10
5	$1+80 \mathrm{~W}$	24	9. 4	1.3	10
	$1+60 \mathrm{~W}$	Mresma			
- 9	$1+49 \mathrm{~W}$	20	$\mathrm{O}_{2} 2$	10	10
3	L25-1+20 4	3	\%.2	12	10
5	$1+60 \omega$	44	O. 2	12	10
5	$0+80 \mathrm{w}$	6	\%2	18	10
5	$0+60 \mathrm{w}$	74	$\mathrm{O}_{4} 2$	10	10
- 6	$0+40 \mathrm{w}$	69	92	10	10
- 5	$0+2 \mathrm{w}$	46	O.2	12	10
	$0+6$	MTS ${ }^{\text {a }}$			
9	$0+20 \mathrm{E}$	S2	0.2	14	10
	$0+40 \mathrm{E}$	48	O.2	10	10

GSSEACHER LAEDRATORY LTD.
 CERTIFICATE OF ANALYSIS

TD: DRC FESOURCES LTD. 1250-900 W. FENDEF ST. VANCOUVEF:B.C.
FROJECT NO: : G. CROORER

CERTIFICATE NO.: 84485 - 4
INUOICE NO. : 5064
DATE ANALYSED: NOV.5. 1984
FILE NAME: GC4B5

GSSEACHER LABQRATGFY LTD-
 CERTIFICATE OF ANALYSIS

2225 5. SFRINGER AVENUE gurnaby, b.C. USE SN1
TEL : (604) 299 - 5910
TO : DRC FESOURCES LTD. 1250-800 W. FENDEF ST. VANCOUVEF:B.C.

CERTIFICATE NO: 84435 - 5
INVOICE No. : 5064
date analyceo: nov. 5.1984

FILE NAME: GC485

GBSBACHER LABQRATGRY LTD. CERTIFICATE DF ANALYSIS

TO: DRC RESOURCES LTD.

FFOIECT NO: G: CFODKEF

FFE FIX	SAMFLEE NAME	FFM	$\begin{array}{r} \text { FFM } \\ \text { AQ } \end{array}$	$\begin{gathered} \text { FFM } \\ F B \end{gathered}$	$\begin{array}{r} \mathrm{FFE} \\ \mathrm{Au} \end{array}$
5	$14-0+20 E$	28	O. 4	12	10
5	$0+\mathrm{O} \mathrm{O}$	2	0.4	10	10
5	$0+40 \mathrm{E}$	2	0.4	12	10
5	O+50 E	\%	0.4	10	10
9	$0+60$	4	0.4	1%	10
5	LA - O+TOE	46	0. 4	14	10
5	$5-901$	114	1.4	18	10
5	S-002	72	0.4	16	10
5	$2 \mathrm{~N}+2+8 \mathrm{O}$	74	0.6	12	10
5	EL $+1+90$	Q 2	0.5	10	10
5	$E L+2+003$	6	0.4	12	10
A	01	46	2.6	85	4900
A	02	14	0.6	18	30
(Q3	1.0	1.4	20	6400
\square	94	14	29.9	20	45290

CEFTIFICATE NO: $94485-6$
INVOICE NO: 5064
DATE ANALYCED: NOU:5:1984
FILE NAME: GC4BS

2225 S. SFRINGER' AVENUE EURNABY, B.C. VSB SNI
TEL : (604) 299-6910
$1250-800$ W.FENDEE ST.
VANCOLIVEF: B . C .

WAGES

l Geologist, G. Crooker $16 \frac{1}{2}$ days @ $\$ 300.00$ per day Oct. 6-10, 12-17, 18-1/2day,

Nov. 1, 2, 5, 8, 21, 1984
$\$ 4,950.00$
1 Geologist, J. Kruzick 5 days @ $\$ 300.00$ per day Oct. 6-10, 1984
$1,500.00$
1 Field Assistant, Cal Green 5 days @ $\$ 150.00$ per day Oct. 12-16, 1984

ACCOMMODATIONS
1 Geologist 17 days @ $\$ 30.00$ per day Oct. 6-10, 12-18, 1984 Nov. 1, 2,5,8, 21, 1984 510.00

1 Geologist,
5 days @ $\$ 30.00$ per day Oct. 6-10, 1984

1 Field Assistant
5 days @ $\$ 30.00$ per day
Oct. 12-16, 1984
150.00

MEALS

1 Geologist
17 days @ $\$ 30.00$ per day
Oct. 6-10 12-18, 1984
Nov. 1, 2, 5, 8, 21, 1984
510.00

1 Geologist
5 days at $\$ 30.00$ per day
Oct. 6-10, 1984
150.00

1 Field Assistant
5 days @ $\$ 30.00$ per day Oct. 12-16, 1984
150.00

TRANSPORTATION

Vehicle Rental (Ford 3/4 ton 4X4)
12 days @ $\$ 48.00$ per day
oct. 6-10, 12-18, 1984
576.00

Gasoline 276.50
INSTRUMENT RENTAL
EM-16 17 days @ $\$ 22.00$ per day Oct. 2-18, 1984 375.00
SUPPLIESHipchain thread, flagging, geochem bags,etc.155.51
FREIGHT 20.00
ANALYSIS
202 soil samples ($\mathrm{Au}, \mathrm{Ag}, \mathrm{Pb}, \mathrm{Cu}$)@ $\$ 7.30$ per sample

$$
1,474.60
$$24 rock samples (Au)@ $\$ 10,50$ per sample 252.00

PREPARATION OF REPORT
Secretarial, draughting, reproduction,Research, etc.$2,500.00$

