GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL AND DRILLING REPORT

ON THE KAM 1-4, 7, 15-24 AND JEFF 1-6 CLAIMS LOCATED IN THE KAMLOOPS MINING DIVISION N.T.S. 92-I-15W

LATITUDE: 50050'N; LONGITUDE: 120051'W

OWNED AND OPERATED BY
CANADIAN NICKEL COMPANY LIMITED

GEOLOGICAL BRANCH

13,618 PART,678

E. J. Debicki District Geologist B.C. and Yukon Canadian Nickel Company Limited April, 1985

Table of Contents

		<u>Page</u>
1.0	SUMMARY	1
2.0	INTRODUCTION	2
	2.1 Location, Access, Physiography2.2 Property Definition2.3 Previous History2.4 1984 Exploration Program	. 2 2 3 4
3.0	REGIONAL GEOLOGY	5
4.0	GEOLOGICAL SURVEYS	5
	4.1 Geological Units4.2 Structure4.3 Alteration and Mineralization	5 7 8
5.0	GEOCHEMICAL SURVEYS	10
	5.1 Rock Geochemical Survey5.2 Stream Sediment Heavy Mineral Concentrate S	11 Survey 13
6.0	GEOPHYSICAL SURVEYS	13
	6.1 Magnetometer Survey6.2 VLF-EM Survey6.3 Induced Polarization Survey	13 14 14
7.0	PERCUSSION DRILLING	15
8.0	CONCLUSIONS AND RECOMMENDATIONS	18
9.0	REFERENCES	19
10.0	STATEMENT OF EXPENDITURES	20
	10.1 KAM Claims 10.2 JEFF Claims	20 21
11.0	AUTHOR'S QUALIFICATIONS	

Tables

- Table 1 Percussion Drilling Program: Summary
- Table 2 Percussion Drilling Program: Overburden Samples and Goldwheel Heavy Mineral Concentrate Sampling and Evaluation

Appendices

Appendix A - Analytical Results Appendix B - Rock Sample Descriptions and Analytical Results Appendix C - Stream Sediment Heavy Mineral Sample Descriptions and Analytical Results Appendix D - Thin Section Descriptions Appendix E - Goldhound "Goldwheel" Specifications Appendix F - Magnetometer Specifications Appendix G - VLF-EM Survey, VLF Receiver Specifications Appendix H - IP Survey, IP Unit Specifications Appendix I - Percussion Drill Hole Logs, Boreholes 38878 to 38894 Figures Figure 1 Property Location Map Scale 1:250,000 Figure 2 Property Map Scale 1:50,000 All the following figures are in pockets at the back of this report Figure 3 Topography, Claim Locations, Grid Locations and Scale 1:20,000 Traverse Locations Figure 4 Geology Plan, Rock Sample Locations and Scale 1:5,000 Percussion Drill Hole Locations: Detail Area 1 - Sabiston Valley Grid (South) Figure 4a Rock Sample Survey - Gold Results Scale 1:5,000 Detail Area 1 - Sabiston Valley Grid (South) Figure 4b Rock Sample Survey - Silver Results Scale 1:5,000 Detail Area 1 - Sabiston Valley Grid (South) Figure 4c Rock Sample Survey - Arsenic Results Scale 1:5,000 Detail Area 1 - Sabiston Valley Grid (South) Figure 4d Rock Sample Survey - Antimony Results Scale 1:5,000 Detail Area 1 - Sabiston Valley Grid (South) Rock Sample Survey - Mercury Results Figure 4e Scale 1:5,000 Detail Area 1 - Sabiston Valley Grid (South)

Stream Sediment Heavy Mineral (Goldwheel)

Concentrate Survey: Sample Locations & Results Detail Area 1 - Sabiston Valley Grid (South)

Scale 1:5,000

Figure 5

Figure 6	Geology Plan and Rock Sample Locations Detail Area 2 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 6a	Rock Sample Survey: Gold, Silver, Arsenic, Antimony, Mercury Results Detail Area 2 - Sabiston Valley Grid (North)	Scale 1:5,000
Figure 7	Geology Plan and Rock Sample Locations Detail Area 3 - North of Sabiston Lake	Scale 1:5,000
Figure 7a	Rock Sample Survey: Gold, Silver, Arsenic, Antimony, Mercury Results Detail Area 3 - North of Sabiston Lake	Scale 1:5,000
Figure 8a	Magnetometer Survey Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 8b	Magnetometer Survey Detail Area 2 - Sabiston valley Grid (North)	Scale 1:5,000
Figure 9a	VLF-EM Survey Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 9b	VLF-EM Survey Detail Area 2 - Sabiston Valley Grid (North)	Scale 1:5,000
Figure 10a	IP/Resistivity Survey Line OOS Detail Area 2 - Sabiston Valley Grid (North)	Scale 1:5,000
Figure 10b	IP/Resistivity Survey Line 250S Detail Area 2 - Sabiston Valley Grid (North)	Scale 1:5,000
Figure 10c	IP/Resistivity Survey Line 2750S Detail Area 2 - Sabiston Valley Grid (North)	Scale 1:5,000
Figure 10d	IP/Resistivity Survey Line 3000S Detail Area 2 - Sabiston Valley Grid (North)	Scale 1:5,000
Figure 10e	IP/Resistivity Survey Line 5250S Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 10f	IP/Resistivity Survey Line 5500S Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 10g	IP/Resistivity Survey Line 5750S Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 10h	IP/Resistivity Survey Line 6000S Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 10i	IP/Resistivity Survey Line 6250S Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000
Figure 10j	IP/Resistivity Survey Line 6500S Detail Area 1 - Sabiston Valley Grid (South)	Scale 1:5,000

Figure 10k IP/Resistivity Survey Line 7500S
Detail Area 1 - Sabiston Valley Grid (South)

Figure 11a Percussion Drill Holes - Fence Diagram
Section 7000S
Detail Area 1 - Sabiston Valley Grid (South)

Figure 11b Percussion Drill Holes - Fence Diagram
Section 300W
Detail Area 1 - Sabiston Valley Grid (South)

1.0 SUMMARY

The KAM (260 units) and JEFF (6 unit equivalents) claim group, located approximately 40 km west-northwest of Kamloops, British Columbia in the Kamloops Mining Division was staked in 1983 and 1984 by Canadian Nickel Company Limited (Canico). Access to the property is from the Trans Canada Highway via the Copper Creek Road.

Geologically, the KAM/JEFF claim group is underlain by a NNW-SSE trending sequence of Late Triassic Nicola Group volcanics and interbedded sediments. Early Jurassic Ashcroft Formation conglomerate and sediments occur along the eastern portion of the property within a graben structure marked by fault contacts with the Nicola Group. Small bodies of Triassic-Jurassic syenite and diorite and Tertiary granodiorite intrude these sequences throughout the area. Eocene Kamloops Group volcanics cap all older units on the east and west edges of the claim group. Numerous mercury-rich alteration zones in the Nicola Group volcanics are associated with NNW-SSE trending en echelon faults parallel to Sabiston Creek and Carabine Creek. Narrow epithermal carbonate-quartz-barite veining in the south portion of the property, associated with extensive alteration and faulting, contain cinnabar and tetrahedrite. Minor mercury production is reported from these veins.

During 1984, exploration by Canico consisted of line cutting, prospecting, geological mapping, rock and stream sediment geochemical magnetometer, VLF-EM and induced polarization, geophysical surveys, and percussion drilling of 17 holes totalling 287.6 metres. Within the Nicola Group sequence, numerous zones of extensive alteration vary in size from 100 metres by 10 metres up to 1500 metres by 150 metres. Each zone is characterized by narrow veining and stockworks of carbonate-quartz-barite with varying amounts of cinnabar, surrounded by extensive carbonate, sericite, kaolinite alteration. Individual veins are up to 15-20 centimetres wide. The most significant vein - alteration zone has been traced for a length of 1500 metres and up to a width of 50 metres in the south portion of the KAM claims and through the JEFF claims. Carbonate-quartz-barite veining and stockworks containing cinnabar and tetrahedrite returned grab sample results up to 15 ppb Au, 24.2 ppm Ag, 8903 ppm As, 947 ppm Sb, 1.9% Hg, 3.34% Cu. Highly anomalous gold and mercury soil and stream sediment geochemical anomalies in 1982-1983, occur in the overburden north and along strike of this zone. Percussion drilling traced this zone northward under overburden. Rock samples were anomalous only in mercury. Other carbonate alteration zones on the property, including a second area evaluated by percussion drilling were also anomalous only in mercury. An induced polarization survey outlined resistivity lows corresponding to the alteration zones. An evaluation of the morphology of gold grains collected from overburden producing highly anomalous gold and mercury geochemical anomalies indicates a near source origin for the gold grains.

2.0 INTRODUCTION

This report covers the work done on the contiguous KAM and JEFF claim group during the periods June 15 - August 6; September 11-18 and September 25-26, 1984. The work program was completed by a five man Canico crew, a two man Amex Exploration Services Ltd. crew (linecutting), a three man Phoenix Geophysics Limited crew (induced polarization survey), a two man H.N. Horning Percussion Drilling Ltd. (percussion drilling), a one man Phil's Trucking crew (water truck), and two geological consultants. Accommodation for the program was provided by Lakeside Court (motel), located at Savona, B.C. Several of the contractors commuted from Kamloops, B.C. on a daily basis.

2.1 Location, Access, Physiography

The KAM/JEFF claims are located approximately 40 km west-northwest of Kamloops, B.C. (Figure 1). The claim group is centred on Eagle Hill and Sabiston Creek Valley immediately north from the west end of Kamloops Lake.

Access to the property is by the Copper Creek gravel road which leaves the Trans Canada Highway at a point 3 km west of Savona, B.C. An extensive network of secondary roads and abandoned logging trails provide access to most areas of the claim group. The central and eastern portions (Eagle Hill area) are the only areas with difficult access.

Elevations range from 350 metres at Kamloops Lake to 1435 metres on Eagle Hill. The terrain varies from moderate slopes to locally very steep slopes. The major valleys are generally U-shaped although the stream valleys entering Kamloops Lake are commonly steeply draining, deeply incised, and V-shaped. The claims are generally heavily wooded with spruce, pine, hemlock, aspen and birch. The south facing slopes along the north shore of Kamloops Lake are an open desert area of grass, sagebrush and cactus with some pine, mainly in the stream valleys. Due to low levels of precipitation most tributary drainages contain flowing water only in the early spring. Sabiston Creek and Criss Creek were the only streams with any appreciable consistent water flow. Temperatures ranged from day time highs of +38°C during June and July to night time lows of -3°C during mid September. Cattle ranching is common in the area with small herds of cattle on the open range being frequently encountered on the roads and trails on the claim group. Rattlesnakes are common throughout the southern portion of the claim group.

2.2 Property Definition

The KAM/JEFF claim group is located in the Kamloops Mining Division, claim sheet NTS 92-I-15W (Figure 2).

Canadian Nickel Company Limited (exploration subsidiary of Inco Limited) is owner and operator of the KAM/JEFF claims. The claim holdings consist of 15 Modified Grid System claims (KAM claims totalling 260 units) and 6 2-Post claims (JEFF claims totalling 6 unit equivalents).

Claim Name	<u>Units</u>	Record Number	Date Staked	Date Recorded
KAM 1 KAM 2 KAM 3 KAM 4 KAM 7 KAM 15 KAM 16 KAM 16 KAM 17 KAM 18 KAM 19 KAM 20 KAM 21 KAM 22	20(5Nx4W) 20(5Nx4E) 20(5Sx4W) 20(5Sx4E) 18(6Sx3W) 20(4Nx5W) 16(4Nx4E) 3(1Sx3E) 15(3Sx5W) 20(5Sx4E) 12(3Sx4W) 18(3Wx6S) 20(5Sx4E)	4478 4479 4480 4483 4491 4492 4493 4494 4495 4496 4497 4498	May 11-17, 1983 May 11-17, 1983 May 11-16, 1983 May 11-17, 1983 May 12-14, 1983 May 14-16, 1983 May 15-17, 1983 May 15, 1983 May 16-17, 1983 May 16-19, 1983 May 17-18, 1983 May 18-19, 1983 May 18-19, 1983 May 18-19, 1983	June 10, 1983
KAM 23 KAM 24	18(3S×6E) 20(5N×4E)		May 18-19, 1983 May 18-19, 1983	June 10, 1983 June 10, 1983
	260			
JEFF 1 JEFF 2 JEFF 3 JEFF 4 JEFF 5 JEFF 6	2-Post 2-Post 2-Post 2-Post 2-Post 2-Post	5481 F 5482 F 5483 F 5484 F	February 3, 1984 February 3, 1984 February 3, 1984 February 3, 1984 February 3, 1984 February 3, 1984	February 3, 1984 February 3, 1984 February 3, 1984 February 3, 1984 February 3, 1984 February 3, 1984

Foreign held Crown Grant claims L922 to L930 inclusive, lie within KAM 23 and 24. JEFF 1-6 claims lie within KAM 22, 23, and 24.

Most of the ground surrounding the KAM/JEFF claim group is staked. Principal claim holders are Placer Development, Asarco, and Mix Resources.

Grazing rights on much of the KAM/JEFF claims from the shore of Kamloops Lake to the height of land on the south facing slope is controlled by the Indian Garden Ranch. (Tunkwa Lake road, 4 km south of the Trans Canada Highway, phone 604-373-2542).

2.3 Previous History

Historically the area has experienced mineral exploration activities since the mid 1800's. The area was prospected for placer gold and some workings were established on Criss Creek near its confluence with Deadman River. The Criss Creek area was sporadically worked until the 1940's with only very limited production. Numerous mercury occurrences are located along the north shore of Kamloops Lake, the most notable of these occur on the Crown Grant claims about 1.5 km northwest of Copper Creek. This occurrence experienced some production between 1895-98 but operations were subsequently abandoned. The mercury occurs as cinnabar in quartz-carbonate hydrothermal vein systems within the Triassic Nicola Group volcanics. Much of the area was explored for copper in the early

1900's and again during the early 1970's. Copper mineralization is associated with a hydrothermal alteration zone in volcanic rocks of the Nicola Group. This occurrence has been explored sporadically since the 1800's and most recently in 1983 by Mix Resources Ltd. when some drilling and geophysical surveys were completed.

The numerous hydrothermal mercury occurrences in the area indicated that the area could have lode gold potential. To evaluate this possibility Canico conducted a reconnaissance stream sediment heavy mineral concentrate survey of the area during the fall of 1982. This survey resulted in the location of several sample sites that contained anomalous values of mercury and gold in heavy mineral concentrates. To further evaluate the lode gold potential of the anomalous sites Canico staked the KAM 1 - 24 claim group (404 units) and completed a program of stream sediment heavy mineral concentrate sampling, rock and soil sampling, geological mapping, prospecting, and limited VLF-EM and IP surveys during 1983. The JEFF 1-6 claims were staked in February 1984 upon the lapsing of the pre-existing HONDA claims. The KAM claim group was reduced to 15 claims (260 units) in 1984.

2.4 1984 Exploration Program

The 1984 Canico exploration program on the KAM/JEFF claims consisted of three phases.

During the first phase, June 15 - August 6, 1984, a four man Canico crew completed prospecting, geological mapping, rock sampling (282 samples), stream sediment heavy mineral concentrate sampling (9 samples), VLF-EM (20,075 metres) and magnetometer (21,075 metres) geophysical surveys. A consultant (B. Bamford) provided a geological evaluation of the property. Linecutting was completed by a two man crew contracted from Amex Exploration Services Ltd., Kamloops, B.C. Grid lines reached a maximum length of 2,000 metres east and west of the 8,575 metre long base line trending at 325 degrees (Sabiston Valley grid). Grid lines and base line were established by blazing, flagging and pickets. A total of 35,525 metres of grid was established. Contract induced polarization surveys (19,200 metres) was completed by a three man Phoenix Geophysics Limited crew.

During the second phase of the exploration program, September 11-18, 1984, contract percussion drilling program was completed by H.N. Horning Percussion Drilling Ltd. (2 man crew) totalling 287.6 metres in 17 vertical holes. A five man Canico crew collected and processed the large volume of sample material produced from the drilling (53 overburden samples and 45 bedrock samples). Phil's Trucking (one man crew) provided a contract water truck to haul water to the drill.

During the third phase of the exploration program, September 25-26, 1984, a consultant (M. Milner) and a three man Canico crew collected overburden samples from selected locations on the KAM claims. The heavy mineral fraction was isolated by panning and gold removed for morphological studies to determine angularity and possible source of origin. Overburden samples from the percussion drilling program were evaluated in the same manner.

Work on the KAM/JEFF claims was completed from accommodation at Lakeside Court located at Savona, B.C. on the south side of Kamloops Lake. Access to and from the property on a daily basis was by four wheel drive Chevrolet Suburbans.

Figure 3 outlines the grid location (Sabiston Valley grid) in relation to the KAM/JEFF claim boundaries.

3.0 REGIONAL GEOLOGY

The general geology of the KAM/JEFF claim area is outlined by G.S.C. Map 886A (Cockfield, 1948) and more recently by G.S.C. Open File Report 980 (Monger, 1984).

A sequence of NNW-SSE trending Late Triassic Nicola Group volcanics and interbedded sediments underlies much of the area. Early Jurassic Ashcroft formation conglomerate and sediments fill an inferred graben structure marked by fault contact boundaries parallel to Sabiston Creek and Carabine Creek. Small bodies of Triassic - Jurassic syenite and diorite, and Tertiary granodiorite intrude these sequences throughout the area. Eocene Kamloops Group volcanics cap all older units in the area. Numerous parallel NNW-SSE trending faults break up the continuity of the Triassic and Jurassic units which vary from gentle to steep dipping and locally overturned. The overlying and capping Kamloops Group volcanics are generally gently dipping and vary in thickness according to paleotopography.

4.0 GEOLOGICAL SURVEYS

The KAM/JEFF claim group is underlain predominantly by Late Triassic Nicola Group volcanics and sediments subdivided into six distinct lithologies (Units la, lb, lc-d, le, lf, li) and altered equivalents (Units lg, lh). Early Jurassic Ashcroft conglomerate and sediments (Unit 2) overlie the Nicola Group occupying much of the eastern portion of the claim group. A Triassic-Jurassic diorite-granodiorite intrusion (Unit 3) was mapped in the north portion of the property.

Geological mapping was carried out mainly on the Sabiston Valley grid. The results of this mapping is outlined on Figure 4 and Figure 6, covering the south and north portions of the grid, respectively. Several geological traverses were completed in the area north of Sabiston Lake (Figure 7). All geological mapping was at a scale of 1:5,000.

4.1 Geological Units

Late Triassic Nicola Group (Units la, lb, lc-d, le, lf, li)

Units la consists of a massive to moderately jointed fine to medium grained andesite. It is generally light to dark green in colour on fresh surface and weathers grey to black. The unit is gradational into Units 1b and 1c-d. Locally, the unit is brecciated.

Unit lb consists of fine grained to aphanatic plagioclase porphyry. It is green to reddish brown on fresh surface and weathers grey to green. The matrix is dark to medium green and surrounds primary plagioclase phenocrysts which occur as tabular laths less than 8 mm in length. Hematite is common within the matrix.

Unit lc-d is the most abundant unit in the map area. It consists of a tuff -agglomerate. It contains a green to dark green to reddish brown matrix on fresh surfaces and grey to green on weathered surfaces. The matrix is generally medium to coarse grained and the reddish brown colour is due to hematite. Tuff fragments are 2 mm to 32 mm in size whereas agglomerate clasts range in size from 32 mm to 20 cm. The agglomerate appears to derive its origin from Unit lb, plagioclase porphyry. The unit is moderately fractured and locally brecciated. One outcrop of agglomerate contained an interbed of limestone, locally brecciated with limestone fragments up to 15 cm in length. Most of the carbonate alteration on the claim group is hosted by Unit lc-d.

Unit le consists of mafic (basaltic) to ultramafic flows which are generally massive and medium grained. Weathered surfaces are dark grey to black and fresh surfaces are dark grey to dark green. Locally the unit weathers and into coarse particles, grus-like in nature. characteristically has good phenocryst development in the form of plagioclase, hornblende(?) after augite, and olivine. The plagioclase phenocrysts are equidimensional (1 cm by 1 cm) and locally altered to carbonate. hornblende phenocrysts, green in colour, extremely soft, and ubiquitous throughout the unit, appear to replace augite. Olivine phenocrysts which are normally slightly serpentinized are present in some areas, particularly in the more picritic phases. The matrix generally is composed of a high percentage of mafic minerals. Locally the unit is brecciated due largely to fracturing. This unit appears to be younger than Unit 1c-d but older than Unit 2 (Ashcroft Formation).

Unit If consists of fine grained, aphanitic, black to dark brown argillite. Locally the unit is light grey where it is crosscut by a carbonate stockwork. The unit is discontinuous and not widespread. It may be siliceous and brecciation is associated with fracturing or faulting.

Units lg and lh are altered equivalents of other Nicola Group units and will be discussed in the following section under Alteration and Mineralization.

Unit li is a fine to medium grained andesite dike. It weathers buff to white to grey and is buff to white on fresh surface. Feldspar phenocrysts, in varying amounts, are locally altered to clay (kaolinite). Within the matrix small brown patches probably represent residual weathering of original mafic minerals. The dike occurs in two localities on the Sabiston Valley grid, i.e. 8350S/175W and 8250S/725E (Figure 4).

Early Jurassic Ashcroft Formation (Unit 2)

Unit 2 consists of a multi-coloured, polymictic conglomerate containing lenses

of siltstone and minor sandstone. The conglomerate is clast supported comprised predominantly of well rounded quartzite, chert and quartz clasts varying in size from 2 mm to 15 cm. The matrix is medium to coarse grained, quartz rich (sandy), and dark red-brown in colour. The unit decomposes into characteristic rounded clast talus or rubble slopes.

The Ashcroft Formation occupies the eastern portion of the KAM/JEFF claim group. Geological mapping located the western edge of the unit on the Sabiston Valley grid (Figures 4 and 6) and traverses north of Sabiston Lake (Figure 7).

Intrusives: Triassic - Jurassic Diorite-Granodiorite (Unit 3)

Unit 3 consists of diorite-granodiorite stocks and plugs which intrude the Ashcroft Formation (Unit 2) north of Sabiston Lake (Figure 7). The unit is medium to coarse grained, massive, grey to pink white on fresh surface and grey to grey-white on weathered surface. It is generally equigranular but may be locally porphyritic. Varying magnetite content makes the unit weakly to strongly magnetic. No contact alteration of the intruded Ashcroft Formation was observed.

4.2 Structure

The Nicola Group volcanic-sedimentary sequence trends roughly north-northwest (325 degrees). Dips of the bedding are generally indistinguishable. Foliations are variable, moderate to steep dipping in either direction and generally strike parallel to the regional north-northwest trend. Locally small scale folding was observed with axial plane attitudes approximately parallel to the regional strike and dip trends. Units lc-d, and lf show a higher degree of fracturing than other units of the Nicola Group. The andesite dikes (Unit 1i) which are up to 100 metres wide trend 360 degrees. Dips of the dikes could not be determined. The dominant structural feature on the property and surrounding area is a series of parallel, en echelon major faults. On the KAM/JEFF claims, these faults trend at 332 degrees or at a roughly 7-10 degree oblique angle to the regional trend of the geology. The faults appear to be normal possibly with a strike slip (right lateral?) component. The amount of vertical or lateral displacement was not measureable. Several of the major fault axes are deeply eroded such that major south-southeast flowing drainages occupy the incised fault traces. Three of these are Deadman River, Sabiston Creek and Carabine Creek. This series of en echelon faults is interpreted by Warren, 1984, as the southern extension of the Pinchi Fault. On the KAM/JEFF claims, these en echelon faults and oblique splays appear to be channelways for hydrothermal fluids which created extensive carbonate-quartz-barite veins and stockworks carbonate-quartz-sericite-kaolinite alteration. anomalous mercury values are coincident with the veining, stockworks alteration. The faults, veining, and alteration appear restricted to the Nicola Group. However, sufficient work has not been carried out in the Ashcroft Formation to determine whether similar structural disturbance alteration is present. In one area of the Sabiston Valley grid, (8250S/045E) an outcrop of Unit 1f argillite appears to have been "injected" between the junction of cross-cutting faults. The unit is highly contorted and tightly folded.

The Ashcroft Formation shows the same north-northwest strike as the Nicola Group. However, dips of the bedding are measureable and vary from gentle to steep to locally overturned. Foliations are vaguely discernable and developed on a local scale. Pronounced, tight steeply dipping isoclinal folds appear to have formed prior to lithification of the conglomerates as there is no evidence of clast stretching or shearing. Small scale post-folding faults displace bedding several centimeters and often cut cobble size clasts. Larger normal faults parallel to the Sabiston Creek and Carabine Creek faults may be present as suggested by Monger, 1984, but were not observed in the conglomerate. The lower contact of the Ashcroft Formation with the Nicola Group was not observed. The differing dips of the bedding and apparent greater degree of folding in the Ashcroft Formation suggests an angular unconformity between the Ashcroft Formation and the Nicola Group. The western and eastern contacts of the Ashcroft Formation are marked by the Sabiston Creek fault and Carabine Creek fault, respectively (Monger, 1984). The preservation of a significant thickness of tightly folded Ashcroft Formation rocks, flanked to the west and east by older Nicola Group rocks, suggests the Ashcroft Formation was deposited in a down-dropped graben or half-graben structure. The Ashcroft Formation thins out to the south and disappears just north of the JEFF claims. A dominant, resistant ridge marked by Eagle Hill outlines the Ashcroft Formation on the KAM claims.

The diorite-granodiorite stocks and plugs on the KAM claims intrude Ashcroft Formation and Nicola Group rocks. These intrusives have not created a significant alteration halo within the wall rocks nor does significant deformation appear to have resulted from their emplacement. The intrusives are not deformed and are not foliated. Some displacement due to normal faulting may have occurred.

In general the structure of the KAM/JEFF claims may be summarized as a northnorthwest trending sequence of Nicola Group volcanic-sedimentary rocks cut by north - northwest trending normal faults. The central and eastern portions of the property are occupied by a possible graben structure filled with Ashcroft Formation sediments. Boundary faults, also trending north - northwest which occupy the Sabiston Creek and Carabine Creek mark the west and east contacts of the Ashcroft Formation with the Nicola Group.

4.3 Alteration and Mineralization

Restricted to the Nicola Group sequence and predominantly Unit 1c-d, ten zones of extensive hydrothermal mineralization and alteration (Unit 1g - Figure 4) is related to the fracture - fault systems. These zones occupy two predominant trends (350 and 325 degrees) and two less dominant trends (280 and 332 degrees). The 332 degree trending zone parallels the Sabiston Creek fault. Size of each of the alteration zones varies from 100 metres by 10 metres to 1500 metres by 150 metres. Most are poorly exposed and have been traced mainly in rubble outcrop, particularly in the central portion of the Sabiston Valley grid. Within each alteration zone, veining and stockworks of varying amounts of banded to massive mineralized dolomite-quartz-barite is cut by late stage unmineralized dolomite-kaolinite-quartz veining and stockworks. The larger

veins vary in size from 2 to 60 centimetres. The two stages of veining are contained within long alteration zones composed of carbonate-sericite-kaolinite-limonite. The intensity of alteration is variable but the more intense alteration tends to obliterate original rock textures. Preferential alteration of specific minerals occurs in less altered zones. The carbonate alteration is predominantly ankerite and dolomite. The ankerite produces the pervasive and ubiquitous rusty-chocolate brown colour on the weathered surfaces. Freshly broken surfaces are yellow-brown to buff in colour. Mercury content is anomalously high in many of these zones. Cinnabar, where visible, occurs along the margins of the dolomite-quartz-barite veining as disseminations and fracture fillings. Mauve to purple coloured partings (wallrock?) within the veining can be mistaken for cinnabar. Tetrahedrite as disseminations and massive clots can occur within the veining. Malachite and azurite is a common alteration of the tetrahedrite. A thin section description of one of these alteration zones is appended in Appendix D (sample RX 42297).

The distribution of the Unit 1g alteration is plotted on Figure 4.

The most significant veining - alteration zone located on the KAM/JEFF property trends 350 degrees for a length of 1500 metres and width of 50 metres. The zone outcrops intermittently starting at the south end of the JEFF (8400S/600W - Figure and terminating 4) 1500 metres (approximately 7200S/200E). The zone disappears under overburden to the south and north. A 10-12 centimetre wide dolomite-chert-quartz-barite vein and similar narrower parallel veins and stockworks dip steeply east. Locally, the vein contains cinnabar (1-2%) along the margins of the disseminations and fracture fillings. Minor disseminated tetrahedrite was noted. A 1-2 centimetre wide vein, parallel and about 4 metres west of the main vein, contains massive clots of tetrahedrite traced over a strike length of 1 metre. Three adits (one reported to be 30 metres long) and one trench were established on this vein system in the early 1900's. (Sabiston Property (10), Cockfield, 1948, pp 93-94). Late stage, unmineralized dolomite-kaolinite - quartz veins cut the earlier veining. Extensive alteration of the host Nicola Group plagioclase porphyry is up to 25 metres wide on either side of the veining. The alteration consists of kaolinite with patches and veinlike patches of ankerite-dolomite-limonite with minor sericite. The alteration produces a characteristic rusty-chocolate brown colour at surface. section descriptions of samples RX 38603, RX 46085 and RX 46087 are appended as Appendix D.

A second but distinctly different alteration zone (Unit 1h) was located at 8400S/125W (Figure 4). Intense argillic alteration of Nicola Group plagioclase porphyry dacite - andesite flows and breccias occur on the hangingwall of an east-dipping, 350 degree striking carbonate filled fracture zone containing small veinlets of cinnabar. The alteration zone consists of earthy and powdery clay, zones of intense silicification and brecciation (agglomerate?). The degree of alteration varies in intensity from complete clay alteration to clay alteration (kaolinite-sericite), with minor dolomite and muscovite, of the plagioclase phenocrysts. Groundmass alteration is similar. Replacement patches consist of quartz and/or dolomite with or without kaolinite. Complex veins of

quartz-ilmenite cut the rocks. The silicified (cherty) zones which parallel the 350 degree trending fracture zone are milky white to earthy pink in colour. Supergene weathering of pyrite to jarosite and goethite creates a gossan zone coincident with the alteration. This alteration zone was traced for about 210 metres. It disappears to the south under the CNR railroad and overburden and to the north under an outlier of overlying Ashcroft Formation. No alteration was noted in the Ashcroft Formation suggesting that the alteration event pre-dates or did not penetrate the Ashcroft Formation. Two thin section sample descriptions (samples RX 38628, RX 38629) from this zone are appended in Appendix D.

Within Units la and lb trace to less than 1% pyrite occurs as frostings and lenses on fracture surfaces. Several milky white quartz veins less than 5 cm wide in Unit lb contain specks of pyrite.

Minor epidote alteration is present in Unit 1c-d usually coincident with hematite which occurs in the matrix.

Throughout most of the units of the Nicola Group, carbonate (dolomite, calcite) veining and stockwork is common occurring as fracture fillings. Veining ranges from several millimetres up to 3 centimetres.

Within the Ashcroft Formation, the matrix of the conglomerate is largely hematitic or gossaned due to the presence of varying amounts of detrital pyrite grains. Pyrite content does not exceed 1%.

5.0 GEOCHEMICAL SURVEYS

The 1985 program completed exploration over the Sabiston Valley grid on the KAM/JEFF claims totalling 35,525 metres. A 8,575 metre long baseline, oriented at 325 degrees, was established from the CNR railroad (north shore of Kamloops Lake) to the south end of Sabiston Lake. Cross lines, at 250 metre spacing along the baseline, varied from 200 to 2000 metres on either side of the baseline. Three geological traverses were completed in the area north of Sabiston lake utilizing airphotos and pace and compass. The location of the grid and traverses are plotted on Figure 3. Rock and stream sediment, heavy mineral concentrate geochemical surveys were completed. A total of 282 rock samples and 9 stream sediment heavy mineral concentrate samples were collected. Percussion drilling generated 45 rock chip samples which were analyzed and 53 overburden samples from which the gold grains were extracted.

Geochemical rock, stream sediment heavy mineral concentrate and percussion drilling rock chip samples were submitted to Acme Analytical Laboratories Limited, Vancouver, British Columbia for analysis. Samples were analyzed for 30 elements utilizing the Inductively Coupled Plasma (ICP) technique, plus Au and Hg. A 0.5 gram -100 mesh crushed sample is digested with 3 mls. of 3:1:3 HCl to HNO $_3$ to H $_2$ O at 95° C for 1 hour and then diluted by 10 mls. of H $_2$ O and analyzed by the standard ICP technique. Gold was analyzed by fire assay and atomic absorption (FA + AA) utilizing a 10 gram sample which is ignited overnight at 600 C and is digested with hot dilute agua regia. The clear

solution obtained is extracted with methyl isobutyl ketone. For mercury, a 0.5 gram sample is digested with aqua regia and diluted with 20% HCl. Mercury in the solution is determined by cold vapour atomic absorption (AA), using a F & J Scientific Hg assembly. An aliquot of the extract is added to a stannous chloride/hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it is measured by AA. Several samples were re-analyzed by Bondar Clegg & Company Ltd. as check analyses.

Geochemical results are listed in Appendix A.

5.1 Rock Geochemical Survey

A total of 282 rock samples including 5 standards were collected from various locations throughout the KAM/JEFF claims. Rock sample locations are plotted on Figures 4, 6 and 7 and rock sample results for Au, Ag, As, Sb, Hg are plotted on Figures 4a-4e, 6a, 7a. Rock sample descriptions and analytical results are listed in Appendix B.

Significantly high analytical results were obtained from only one location on the KAM/JEFF claims. The 10-12 centimetre wide dolomite-chert-quartz-barite veins trending 350 degrees from 8400S/600W to 7200S/200E contain cinnabar on the outer margins of the veining as disseminations and fracture fillings and tetrahedrite as disseminations and massive clots. The highest values, obtained along the veining in the area of 8000S/430W (Figure 4), were up to 15 ppb Au, 24.2 ppm Ag, 8903 ppm As, 947 ppm Sb, 1.9% Hg, 3.34% Cu. Only Hg is highly anomalous throughout the rest of the vein structure. Minor mercury production is reported from three adits developed along this structure. This vein structure was projected north under overburden cover into the area where previous work (1982, 1983) outlined a stream sediment heavy concentrate value of 70,400 ppb Au and 380,000 ppb Hg (Sample SX 40179). Carbonate alteration with minor carbonate-quartz veining was located in two previously established trenches east of the sample site. A-80 mesh soil sample survey (1983) covered a small area around the anomalous sample site yielding values up to 110 ppb Au. A heavy mineral concentrate soil survey line (1983) consisting of 14 samples along line 7000S over the anomalous sample site produced values up to 51,000 ppb Au and 78,000 ppb Hg. All 14 samples were sporadically anomalous over the 700 metre length sampled. This area was percussion drilled in 1984 (see section on Percussion Drilling). Gold grains from the percussion drilling overburden samples were isolated from the heavy mineral concentrate. Morphological studies which evaluated angularily of the gold grains are reported in the section on Percussion Drilling.

Sampling of other carbonate rich alteration zones produced only high mercury values up to 190,000 ppb. Mercury is generally widespread through most of the alteration zones.

The intense argillic alteration zone located at 8400S/125W (Figure 4) produced values up to 10 ppb Au, 0.5 ppm Ag, 3160 ppm As, 98 ppm Sb, 156,000 ppb Hg. Small veinlets of cinnabar were noted in the narrow east-dipping vein structure.

At 6250S/860W (Figure 4), a Nicola Group pyroclastic tuff sample with a trace of fracture filled carbonate and disseminated pyrite ran 15 ppb Au, 721 ppm As. No explanation for the high arsenic was found.

In the area north of Sabiston Lake, one outcrop of Ashcroft Formation conglomerate cut by narrow diorite-granodiorite dikes ran 155 ppb Au, 92 ppm As, 220 ppb Hg. Resampling returned a value of 5 ppb Au.

Robert W. Bamford, geologist/geochemist consultant of Robert W. Bamford & Associates, Inc., Seattle, Washington was contracted for several days to provide an opinion on the significance of epithermal mercury-precious metal systems on the KAM/JEFF claims. Much of Bamford's expertise was gained during extensive work on the Hg-Au camp in the Clear Lake area, California which hosts Homestake's McLaughlin Au deposit. In summary Bamford concluded:

- 1. Lack of anomalous rock geochemical gold values indicates the Hg-rich epithermal system on the KAM/JEFF claim does not carry precious metals. Numerous Hg deposits in California are barren of Au-Ag. Those that do carry precious metals are weakly anomalous in Au (50-100 ppb) at all levels in the system.
- 2. Mercury associated with carbonate-rich veining is atypical of the California Au-Hg deposits.
- 3. There is a poor correlation of Au-Ag-As-Sb-Hg on the KAM/JEFF claims. This element association is common to most if not all epithermal Au-Ag deposits.
- 4. The presence of tetrahedrite with Ag-As-Sb-Cu values is not significant in Au-Ag epithermal deposit.
- 5. The veining systems on the KAM/JEFF claims are too widely spaced for an open pit mining operation.
- 6. The Au, Ag, As, Sb, Hg geochemical data does not warrant drilling of any of the exposed veining systems or carbonate alteration zones.
- 7. The origin of gold in the stream sediment heavy mineral concentrate samples collected in 1982 and 1983 has not been explained and warrants further work.
- 8. Percussion drilling of two overburden covered areas is warranted. These areas are sufficiently large to hide a minimum target size orebody of about I million tonnes. Bedrock samples should be analyzed for Au, Ag, As, Sb, Hg in an attempt to locate mineralization or haloes surrounding mineralization. These two areas include:
 - a. Line 7000S/100E-800E where the northward extension of the 1500 metre long highly anomalous fracture-filled vein system containing tetrahedite-cinnabar would project through. This is the area of the highest stream sediment heavy mineral concentrate results of 70,400 ppb Au and 380,000 ppb Hq.

b. Line 5500S/220W-420W where the Sabiston Creek Fault zone is hidden under fluvial fill of Sabiston Creek. Carbonate alteration occurs up to 250 metres on either side of the fault zone which is not exposed. A weak chargeability and low resistivity induced polarization anomaly occurs over this zone. Stream sediment heavy mineral concentrate sample results from Sabiston Creek which parallels and cuts through the Sabiston Creek Fault zone ran up to 30,600 ppb Au, 136,000 ppb Hg. (See following section on Stream Sediment Heavy Mineral Concentrate Survey).

The recommended percussion drilling was carried out (see section on Percussion Drilling).

5.2 Stream Sediment Heavy Mineral Concentrate Survey .

During 1984, nine stream sediment heavy mineral concentrate samples were collected from Sabiston Creek between 5250S and 8250S. The sampling was a continuation of similar sampling carried out in 1982 and 1983. The location and analytical results are plotted on Figure 5. Sample descriptions and analytical results are appended as Appendix C. A Goldhound Concentrating Wheel (Goldwheel) was utilized to isolate the heavy mineral fraction. Specifications are appended as Appendix E. At each sample site, Goldwheel approximately 20 kilograms of stream sediment are wet sieved using a 0.5 metre diameter -20 mesh stainless steel screen to obtain approximately 2-3 kilograms of material. This -20 mesh material is processed on the Goldwheel to yield approximately 50-100 grams of heavy mineral concentrate. The concentrate is dried, magnetic fraction is removed with a strong hand magnet and the remaining non-magnetic fraction submitted for ICP analysis (30 elements) and AA analysis for Au and cold vapour AA analysis for Hg as described in the section under Geochemical Surveys. Use of the Goldwheel is more efficient and removes operator error compared to normal panning techniques.

Results of the nine samples returned values up to 30,600 ppb Au, 1.0 ppm Ag, 31 ppm As, 7 ppm Sb, 136,000 ppb Hg. Highest values were in the vicinity of 5250S - 5500S. The Au and Hg values are highly anomalous. One standard was included with the 9 samples analyzed.

6.0 GEOPHYSICAL SURVEYS

During 1984, geophysical surveys on the KAM/JEFF claims were limited to the Sabiston Valley grid. Magnetometer and VLF-EM surveys were completed by Canico personnel. The induced polarization survey was completed under contract by Phoenix Geophysics Limited.

6.1 Magnetometer Survey

A total of 21,075 metres of magnetometer survey was completed by Canico personnel on the Sabiston Valley grid. The survey was carried out utilizing a Sharpe MF-1 Fluxgate Magnetometer to measure the relative vertical field strength in gammas. Corrections were made for diurnal and instrument drift by

reading base stations at one to two hour intervals. Survey readings were taken at 12.5 metre intervals along the grid lines. Specifications of the magnetometer are appended as Appendix F. Survey results are plotted on Figure 8a and 8b.

The results from the magnetic survey show a large number of very small amplitude anomalies. These anomalies are probably caused by boulders of ultramafic material that are buried near surface in the overburden. The more significant anomalies can be recognized as occurring over a larger width and they have in most cases a higher amplitude. They are responses from geological units containing a higher percentage of magnetite. These units are represented by the basalts and ultramafic volcanics. Some of these anomalies occur east of the baseline on lines 6500 and 7500S.

6.2 VLF-EM Survey

A 20,075 metre VLF-EM survey was conducted by Canico personnel on the Sabiston Valley grid using a transmitting station at Seattle, Washington (NLK) at 24.8 kHz. Tilt angles and total field strengths were recorded at each station. Survey readings were taken at 12.5 metre intervals along the grid lines. Specifications of the Crone "Radem" VLF receiver used for the survey are appended as Appendix G. Survey results are plotted as profiles on Figures 9a and 9b.

Several weak to medium strength conductor indications were recorded and in most cases could be traced over more than two lines. The tilt angle slopes of these cross overs are in most cases very steep indicating near surface sources. These conductors are probably caused by changes in overburden conductivity or shear zones in the bedrock. Topographic effects are influencing the level of tilt angle and field strength and produce, in some places, noisy results. None of the conductors appear to be of any significance.

6.3 Induced Polarization Survey

The induced polarization survey was carried out by a contracted three man Phoenix Geophysics Limited crew from Vancouver, British Columbia. The survey covered additional grid lines on the Sabiston Valley grid not surveyed in 1983. A Phoenix IPT-1 variable frequency, time domain and phase IP transmitter and IPV-1 variable frequency IP receiver were used for the survey (specifications outlined in Appendix H).

The induced polarization and resistivity survey produced subtle anomalies on nearly all of the lines. The chargeability anomalies are in the range of 1.5 to 3.0% frequency effect. A trend of elevated chargeability readings can be established between lines 5750S to 4W and 6500S to 10W. It may be a response to a low concentration of disseminated sulphides or to clay mineral in an alteration zone. No explanation could be found from surface mapping.

7.0 PERCUSSION DRILLING

During the period September 12-17, 1984, percussion drilling totalling 287.6 metres in 17 holes was completed. A truck-mounted, Atlas Copco percussion drill rig, generating 100 pounds per square inch pressure was contracted from Howard N. Horning Percussion Drilling Limited, Kamloops, B.C. A two-man crew operated the rig. Hole diameter was 1 7/8 inches. All holes were drilled vertically. A 1200 gallon water truck contracted from Phil's Trucking, Kamloops, B.C. hauled water from Sabiston Lake to each drill site.

A summary of the details of the drilling program is provided in Table 1. The location of the 17 drill holes are plotted on Figure 4. Drill logs and analytical results are appended in Appendix I. Two fences of holes were drilled, the Copper Creek Road section (Boreholes 38878 to 38887) and the Sabiston Creek logging road section (Boreholes 38888 to 38894). Each hole was drilled on the side or ditch of the road right-of-way.

For each drill hole, casing was driven to bedrock where possible. Overburden material from the first 3 metres of each hole was discarded as much of the material was roadbed fill. Overburden and bedrock chips flushed out of the drill hole were deflected by a casing sample collector into a 20 litre plastic pail lined with a plastic sample bag. A -10 mesh screen removed the chips greater than -10 mesh which was discarded. The -10 mesh material was retained for evaluation and analysis. Sample intervals were determined on the basis of water colour or lithology changes. Sample interval normally did not exceed 3 metres. Volume of a 3 metre sample interval did not exceed 20 litres. A total of 53 overburden and 45 bedrock samples were collected from the 17 drill holes. Volume and weight during each stage of the sample treatment process was recorded where possible.

The 53 overburden samples were thoroughly washed to remove clay and very fine silt and sieved to -20 mesh. With the exception of Borehole 38881, the -20 mesh material for each sample was processed on the Goldwheel (Specifications appended in Appendix E) to remove the heavy mineral concentrate. The samples were dried and the magnetic fraction removed. The non-magnetic heavy mineral concentrate was panned by M. W. Milner, geologist/ geomorphologist consultant, utilizing a conical pan (batea) to isolate gold grains for morphological study. For Borehole 38881, the -20 mesh material from the five overburden samples was first panned by M. W. Milner to isolate the heavy mineral concentrate. The panned tailings were subsequently processed on the Goldwheel to produce a second heavy mineral concentrate. Gold grains, where present, were isolated from both the panned and Goldwheel heavy mineral concentrates. For each of the heavy mineral concentrates, weight of non-magnetic and (percentage of oxides, magnetic fractions, composition qarnets, silicates, zircons), number and character of gold grains and comments were recorded (Table 2). The reject material greater than -20 mesh and Goldwheel tailings (non-heavy mineral concentrate) have been stored at 7013S/582E on the Sabiston Valley grid. The magnetic and non-magnetic heavy mineral concentrates with gold grains removed have been stored in Canico's Surrey, B.C. warehouse.

TABLE 1 KAM/JEFF Claims, B.C.

Percussion Drilling Program Summary

September 1984

Borehole	Location	Depth	Overburden	Casing	Date	Elevation (m)	Comments
38878	7129S 595E	24.0 m	18.0 m	45 '	Sept. 12-13, 1984	729	
38879	7130S 558E	32.4 m	10.5 m	35 '	Sept. 13, 1984	730	Qtz-carbonate alteration.
38880	7098S 514E	27.0 m	16.5 m	45 '	Sept. 14, 1984	731	·
38881	7049S 497E	22.5 m	16.0 m	45 †	Sept. 14, 1984	734	
38882	7071S 468E	30.0 m	12.0 m	35 '	Sept. 15, 1984	734	Qtz-carbonate alteration.
38883	7126S 380E	7.5 m	< 3 m	18'	Sept. 15, 1984	731	
38884	7158S 282E	21.0 m	15 m	50 '	Sept. 15, 1984	727	
38885	7165S 171E	13.5 m	9 m	30 '	Sept. 15, 1984	727	
38886	7095S 072E	7.5 m	3 m ?	10'	Sept. 15, 1984	728	Qtz-carbonate alteration.
38887 ~	7000S 067E	4.8 m	2.8 m	10'	Sept. 15, 1984	732	
38888	5738S 417W	13.4 m	9.0 m	25 '	Sept. 16, 1984	742	
38889	5650S 358W	12.0 m	6.0 m	20'	Sept. 16, 1984	746	Disseminated py 1-5% 9.0 m - 10.5 m
38890	5602S 318W	7.5 m	1.5 m	10'	Sept. 16, 1984	746	Qtz-carbonate alteration.
38891	5549S 318W	7.5 m	3.0 m	20'	Sept. 16, 1984	744	•
38892	5480S 281W	13.5 m	9.0 m	40'	Sept. 16, 1984	747	·
38893	5404S 217W	21.0 m	21.0 m	65'	Sept. 16, 1984	752	Abandoned in OB; sand and gravel.
38894	5475S 193W	22.5 m	22.5 m	28'	Sept. 17, 1984	756	Abandoned in OB; sand and gravel.

Total: 287.6 m

Copper Creek Road section: 10 holes = 190.2 m Sabiston Valley logging road section: 7 holes = 97.4 m287.6 m

EJD:jb

September 21, 1984

The 45 bedrock chip samples were thoroughly washed to remove clay and silt. A 100-200 gram split was retained for examination under the binocular microscope (results included as part of logs in Appendix I). The remainder of the sample was submitted to Acme Analytical Laboratories Limited, Vancouver, B.C. for Au, Ag, As, Sb, Hg analysis. Results are appended in Appendix A and as part of the drill logs in Appendix I.

The objective of the percussion drilling program was to test bedrock in two overburden covered areas as recommended by consultant Robert W. Bamford (see Rock Geochemical Survey, Bamford conclusion number 8). Overburden was sampled and bedrock penetrated 3 - 4 metres with the exception of two holes which did not reach bedrock. The percussion drill utilized to carry out this program had its limitations, which are offset in part by cost-effectiveness:

- 1. Limited penetration capability in overburden, particularly sand and gravel where water return was lost and casing could not be driven ahead.
- Contamination of material from the upper portion of the drill hole falling into the portion being drilled.
- 3. Small size (less than 0.5 cm) of bedrock chips.
- 4. Difficulty in determining overburden bedrock contact.

On the Copper Creek Road section (Boreholes 38878 to 38887), three carbonatequartz alteration zones were penetrated. Two zones (Boreholes 38879 and 38882) represent the same alteration zone located in two bedrock trenches uphill from Borehole 38881. The third zone (Borehole 38886) at 709S/072E may represent the northward strike-length continuation of the Cinnabar-tetrahedrite mineralized epithermal carbonate-quartz barite veining traced 1500 metres from 8400S/600W to 7200S/200E before disappearing under overburden. Highest bedrock analytical results from the drilled section were 11 ppb Au, 0.4 ppm Ag, 133 ppm As, 25 ppm Sb, 50,000 ppb Hg. No explanation for the origin of the stream sediment heavy mineral concentrate values of 70,400 ppb Au and 380,000 ppb Hg located in the immediate area in 1982 and 1983 has been found. The high Hg values can be partially explained by the highly anomalous Hg values in bedrock. A fence diagram outlining drill holes on the Copper Creek road section is plotted on Figure 11a. Nicola Group volcanics - argillites and altered equivalents were intersected in all holes. A review of rock chips for the bottom two samples of Borehole 38884 indicates this hole did not penetrate bedrock as suspected during logging of rock chips in the field.

On the Sabiston Creek logging road section (Boreholes 38888 to 38894), bedrock intersections indicate that the carbonate-quartz alteration is not continuous across the Sabiston Creek Fault zone. Of the five boreholes which penetrated bedrock, only one intersected carbonate-quartz alteration (Borehole 38890). Disseminated pyrite (1-5%) was noted in Borehole 38889 in unaltered Nicola Group volcanics. The pyrite may account for the weak chargeability/low resistivity induced polarization anomalies generated on lines 5500S and 5750S across the Sabiston Creek Fault zone. No sulphide was noted in the other holes

on this section. Overburden was thinner than expected on the west side of the Fault zone averaging 1.5 metres to 9.0 metres. However, overburden on the east side of the Fault zone was greater than 22.5 metres thick as two drill holes (Boreholes 38893, 38894) failed to reach bedrock and were abandoned in overburden. Overburden material on the east side of the Fault zone consists of sand and gravel layers, which differs from the sand, clay and boulder till intersected in other holes on the property. Highest rock values were 4 ppb Au, 0.2 ppm Ag, 19 ppm As, 2 ppm Sb, 370 ppb Hg. The highly anomalous Au-Hg stream sediment heavy mineral concentrate values obtained in Sabiston Creek were not explained by the drilling. A fence diagram outlining the holes on the Sabiston Creek logging road section is plotted on Figure 11b.

In an attempt to determine the origin of high gold values in overburden on the KAM/JEFF claims, M. W. Milner, consulting geologist/geomorphologist was contracted for several days. Milner's study evaluated the chemistry and morphology of Au particles to determine possible origin, and pre-glacial and glacial history. Gold particles were separated from the heavy mineral concentrates of the percussion drilling overburden samples utilizing a conical pan (batea). Gold grains in each sample were counted and selected grains were evaluated under a Scanning Electron Microscope (SEM). None of the samples were analyzed in a laboratory. Several sections of overburden were looked at to determine glacial history.

The glacial history indicates two till sheets are present. A younger till (Wisconsin) consists of the Kamloops Drift originating from Fraser Glaciation 10,000 - 20,000 years ago. This grey, stoney till overlies the older till which is brown in colour and hard, reflecting oxidation and iron mobilization and contains plutonic clasts weathered to grus. The older Okanagan Centre till, occupies lower areas and is greater than 40,000 years old (Fulton, 1975).

In the Kamloops Lake area each glacial cycle of the Thompson River extended eastward down Kamloops Lake overdeepening the lake basin. Lateral moraines were deposited such as on the north shore of Kamloops Lake (south end of KAM/JEFF claims). As the ice level of the glacier rose above the level of valley, Thompson River - Kamloops Lake till (Thompson facies) was deposited. High level glaciers flowing south on the Porcupine Upland in valleys such as Deadman River and possibly Sabiston Creek transected the east-west glacier in Kamloops Lake. The Sabiston Creek hanging valley was created in this manner. At this time, till lithologies changed from Thompson facies to Interior facies accounting for the variation and mixing in tills on the KAM/JEFF claims. Correlation of tills on the KAM/JEFF claims with those on a regional scale was not possible.

A lack of gold in the lower till on the KAM/JEFF claims may be attributed to the fact that it is Thompson facies till (?) originating from major east-west glaciation. The upper till (Interior facies) is more locally derived in a NW-SE direction and has scoured the area north of Kamloops Lake. Higher elevations are free of till and fluvial erosion appears to have added the angular gold to the upper till and streams through a mixing process.

Milner's evaluation of the gold content and morphology of the KAM claims percussion drilling overburden samples concludes:

- 1. angular gold of Boreholes 38879, 38884, 38885 on the Copper Creek Road section is down ice or down hill from lode Au mineralization.
- 2. angular gold of Boreholes 38892, 38893, 38894 on the Sabiston Creek logging road section is too abundant and too evenly distributed to suggest placer concentration. Milner postulates a lode source 1-2 km away. Some worn flat grains suggest prior mixing of gold.
- 3. worn and flat gold is present in the glacial till suggesting mixing of near source and distant lode Au.

Milner's strong evidence for angular gold which is locally derived, points to an origin on the east side of Sabiston Creek and in particular on the northeast side of the Sabiston Valley grid. No detailed prospecting or geological mapping has been completed on that area where the Nicola Group volcanics are overlain by Ashcroft Formation conglomerates. This provides an obvious exploration target.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The 1984 exploration program on the KAM/JEFF claims consisted of geological, geochemical, geophysical surveys and percussion drilling. Much of the western portion of the property is underlain by a NNW-SSE trending sequence of Late Triassic Nicola Group volcanics-sediments. Early Jurassic Ashcroft Formation conglomerate-sediments occur along the eastern portion of the property within a graben structure marked by NNW-SSE striking fault contacts with the Nicola Group. Small bodies of Triassic-Jurassic syenite and Tertiary granodiorite intrude these sequences. Numerous mercury-rich alteration zones in the Nicola Group volcanics are associated with NNW-SSE trending en echelon faults parallel to Sabiston Creek and Carabine Creek. Narrow epithermal carbonatequartz-barite veining in the south portion of the property, associated with extensive alteration and faulting contain cinnabar and tetrahedrite from which previous minor Hg production is reported. The 1984 program was not successful in locating the source of highly anomalous gold values in stream sediment and soil sampling carried out in 1982 and 1983. An evaluation of the morphology of gold grains collected from the overburden indicates a near-source origin for the gold. The area east of Sabiston Creek where Nicola Group volcanics are overlain by Ashcroft Formation conglomerates is the obvious target area for the origin of this gold. No detailed prospecting or geological mapping has been completed in this area.

Further exploration consisting of prospecting, geological and geochemcial surveys, and backhoe trenching is recommended to locate the source of the angular gold grains located in overburden on the KAM/JEFF claims.

9.0 REFERENCES

- 1. Armstrong, J.E., 1966: Tectonics and Mercury Deposits in British Columbia; in Tectonic History and Mineral Deposits of Western Cordillera, CIMM Special Volume No. 8, pp 341-348.
- 2. Camsell, C., 1918: Mercury Deposits of Kamloops Lake; G.S.C. Summary Report 1918, part B.
- 3. Cockfield, W. E., 1948: Geology and Mineral Deposits of Nicola Map Area, British Columbia; G.S.C. Memoir 249, with G.S.C. Map 886A (Geology Map) and G.S.C. Map 887A (Mineral Map), Scale 1:253,440.
- 4. Fulton, Robert J., 1975: Quaternary Geology and Geomorphology, Nicola-Vernon Area, British Columbia, (82-L-W 1/2 and 92-I-E 1/2); G.S.C. Memoir 380, 50 p.
- Manson, W. O., 1984: Geological, Geochemical and Geophysical Report on the Kam 1-24 Claims, located in the Kamloops Mining Division, Canadian Nickel Company Limited; British Columbia Assessment Report.
- 6. Ministry of Energy, Mines and Petroleum Resources, 1982: National Geochemical Reconnaissance 1:250,000 Map Series, Ashcroft, British Columbia (N.T.S. 92-I), Regional Geochemical Survey; BC RGS-8-1981 and G.S.C. Open File Report 866.
- 7. Ministry of Energy, Mines and Petroleum Resources, 1984: MINFILE, N.T.S. 92-I-SE.
- 8. Ministry of Energy, Mines and Petroleum Resources, 1983: Assessment Report Index Map, N.T.S. 92-I-SE.
- 9. Monger, J.W.H., 1982: Geology of Ashcroft Map Area, Southwestern British Columbia; in Current Research, Part A, G.S.C. Paper 82-1A, pp. 293-297.
- 10. Monger, J.W.H., 1984: Bedrock Geology of Ashcroft (92-I) Map Area; G.S.C. Open File Report 980, Scale 1:125,000.
- 11. Stevenson, John S., 1940: Mercury Deposits of British Columbia; British Columbia Department of Mines Bulletin No. 5, 93 p.
- 12. Travers, W.B., 1978: Overturned Nicola Group and Ashcroft Strata and their Relation to the Cache Creek Group, Southwestern Intermontane Belt, British Columbia; Canadian Journal of Earth Sciences, Vol. 15, pp. 99-116.
- 13. Warren, H.V., Horsky, S.J., 1984: Biogeochemistry Indicates Mineral Anomalies along Southern Extensions of the Pinchi Fault; Western Miner, June, pp. 31-34.

10.0 STATEMENT OF EXPENDITURES - 1984

10.1 KAM CLAIMS

Salarios (Field)		
	\$2,331 4,444 2,700 1,120 2,915 750	\$14,260.00
Salaries (Administration, report writing,	and drafting)	
E.J. Debicki(admin.) 14 days @ 259 W.J. Saftic(drafting) 5 days @ 206 D. Walsh (drafting) 5 days @ 167 B. Satchelle(drafting) 5 days @ 140 R. Johnson(drafting) 2 days @ 217	3,626 1,030	6,625.00
	434	0,025.00
Personnel Expenses (Field) Accommodation Meals 118 man days @ 20/day	2,950 2,596	5,546.00
Transportation 1/2 ton toucks		
Truck rentals 2 - 1/2 ton trucks - 44 days @ \$45/day		3,960.00
Gasoline & Servicing		941.00
Analytical 9 HMC samples (ICP,Au,Hg) @ 15.75 256 Rock samples (ICP,Au,Hg) @ 15.75 45 Drill chips (Au,Hg,As,Sb,Ag) @ 18 6 Thin sections @ 7.00	4,032.00	5,032.50
Contract Geophysics		
IP Survey by Phoenix Geophysics Linecutting by Amex Expl. Services	11,120.00 6,669.00	17,789.00
Contract Drilling		•
Percussion drilling by Howard N. Horning Ltd.	5,178.00	
Water Haul - Phil's Trucking	1,350.00	6,528.00
Geological Consulting Services M. Milner	2,000.00	
B. Bamford	2,457.00	4,457.00
Miscellaneous	110.00	
Stationary & Safety Supplies Freight & Postage	116.00 47.00	
Phone	40.00	203.00
TOTAL		\$65,341.50

10.2 JEFF 1-6 Claims

Salaries

B. Booth 14 days @ \$101 \$1,414.00

14 days @ \$ 75 C. Bell 1,050.00 \$2,464.00

Personnel Expenses

Accommodations 600.00

Meals 28 man days @ 20 560.00 1,160.00

Transportation

Rental of 1/2 ton truck - 2 weeks 338.00

Analytical

26 rock samples (ICP, Au, Hg) @\$16 + \$4.00 shipping 420.00

Contract Geophysics

IP Survey (Phoenix Geophysics)
Linecutting (Amex) 800.00

760.00 1,667.00

Administration and Report Writing

4 days @ 259 E.J. Debicki 1,036.00

Total: \$7,085.00

11.0 AUTHOR'S QUALIFICATIONS

- I, EDWARD J. DEBICKI, of the City of Richmond, in the Province of British Columbia, HEREBY CERTIFY:
- 1. THAT I reside at 11351 Seahurst Road, Richmond, British Columbia, V7A 3P3
- 2. THAT I am a graduate of McMaster University, Hamilton, Ontario, with a degree of Bachelor of Science (1971).
- 3. THAT I am District Geologist, B.C. and Yukon, with Canadian Nickel Company Limited (subsidiary of Inco Limited) of Copper Cliff, Ontario, POM 1NO.
- 4. THAT I have practised my profession as a geologist since 1971, having worked in Ontario, Quebec, Northwest Territories, Yukon Territory and British Columbia.
- THAT I visited the property and that the work described in this report
 was carried out under my supervision on behalf of Canadian Nickel
 Company Limited.
- 6. THAT I am a Fellow of the Geological Association of Canada, a member of the Canadian Institute of Mining and Metallurgy and a member of Society of Economic Geologists.

DATED at Vancouver, British Columbia, this 8th day of April, 1985.

E.J. (Ed) Debicki

KAM Claims, British Columbia: N.T.S. 92-I-15W

/ PAGE 1 of 7

Percussion Drilling Program - September 1984

JREHOLE O	SAMPLE	N Depth Metres	Thickness Metres	WEIGHT OF OVERBURDEN		G	OLDW	HEEL	HEAV	Y MI	NERAL CONC	ENTRATE		
	NUMBER			SAMPLE (WET) Kgs.	WEIGHT OF NON-MAGNETIC		(EST	OSITION (% IMATES)	TES)			WEIGHT OF	COMMENTS	
					FRACTION (DRY) - gms.	OXIDES	GARNETS	DARK SILICATES		NUMBER	HOLE CHARACTER TOTAL	FRACTION (DRY)-gms.	= observations on dr concentrate as op- posed to panning.	
COPPER CR	EEK ROAD	SECTION												
38878	-01	1.5-3.0	1.5	2.0	22	24	25	25 green	Tr?	1	Ball with blade and "impression marks (see SEM 1A). Soft malle metal, Pb from	11	Soft grey (1%) (sludge) rock particles 25%.	
rrespond mbers.	-02	3.0-6.0	3.0	4.3	16	25	45	1 green + black	Tr.	0		3	Garnets dominate -02 to -04.] Pb?, trace hematite/limonite rock 30%.	
etc., co and SEM nu	-03	6.0-9.0	3.0	7.4	29	25	45	20 green + black	1	0		5 .	White zircon, garnet fragments are pale pink to brown, trace cinnabar, rock 10%.	
1, -02 abels	-04	9.0-12.0	3.0	4.5	22	25	45	20	Tr.	0		5	Trace Pb, pyrite + li- monite, cinnabar.	
Numbers i.e. -01 , $^{\prime}$ -02, etc., correspond to sample bag labels and SEM numbers.	-05	12.0-13.8	1.8	2.5	15	35	30	5 black		1	Mashed.Tested to verify that it was Au.	2	Boulder?, light tone (yellow brown), quartz, white + amber rock 30%, limonite stain.	
Numbe to sa	-06	13.8-15.0	1.2	2.9	4	- 50	~	-		0		6	Trace Pb, trace cinnabar, green volcanic + quartz, rock 50%.	
	-07	15.0-17.0	2.0	4.9	19	20	-	10		0		7	Rock 70%, grey-green, trace Pb, abundant fg cinnabar, magnetite + rock particles.	

KAM Claims, British Columbia: N.T.S. 92-I-15W

/ PAGE 2 of 7

Percussion Drilling Program - September 1984

	SAMPLE	N Depth Metres	Thickness Metres	OVERBURDEN		G O	LDW	HEEL	HEAV	Y M I	NE	RAL CONC	ENTR	АТЕ
	NUMBER			SAMPLE (WET) Kgs.	WEIGHT OF NON-MAGNETIC		(EST	POSITION (%)	(GOLD G		WEIGHT O	
		 			FRACTION (DRY) - gms.	OXIDES G	ARNETS	DARK SILICATES	ZIRCONS	NUMBER	HOLE TOTAL		FRACTION (DRY)-gm	
38878	-08 :	17.0-18.0	1.0	2.0	7	15	-	Tr.	Tr.	0	2		Tr.	Light coloured dike? light tone (whitish), quartz, cinnabar com- mon, barite, Native Hg + Au?
38879	-01	3.0-4.5	1.5	2.1	45	25	-	50 green + black	Tr.	1		Angular, very jagged, flat.	10	Dark (rock particles), trace Pb + cinnabar, rock particles 25%.
	-02	4.5-9.0	4.5	6.0	80	30	30	33 (green + black)		3		Flat, angular, "alluvial".	6	Light colour (quartz), rock 70%, trace cinnabar + Pb.
_	-03	9.0-10.7	1.7	4.4	30	30	30	(20?)		1	6		4	Abundant garnet. (20%? rock?).
880	-01	2.0-4.5	2.5	2.5	25	5	30	50	Tr.	0		(2 Cu? grains, ((thin wafers))	. 3	Limonite, rock 15%.
	-02	4.5-6.0	1.5	2.9	33	5	40	35	Tr.	0			4	Trace cinnabar, limon- ite + rock 20%.
	-03	6.0-9.0	3.0	4.8	47	15	40	25	Tr.	1		Barshaped.	11	Trace cinnabar, limon- ite + rock 20%. Oxides increasing downhole -04 to -06.
	-04	9.0-12.0	3.0	3.6	43	25	-	50 dark green	Tr.	2	-	(Smaller grain lost, Pt? Hg?). Mounted on KAm.		Abundant cinnabar, rock 25%.

KAM Claims, British Columbia: N.T.S. 92-I-15W

/ PAGE 3 of 7

Percussion Drilling Program - September 1984

JREHOLE NUMBER	OVERBURDE SAMPLE	N Depth Metres	Thickness Metres	WEIGHT OF OVERBURDEN		G	OLDW	HEEL 1	HEAV	VY MINE	RAL CONC	ENTRA	TE
	NUMBER			SAMPLE (WET) Kgs.	WEIGHT OF NON-MAGNETIC FRACTION (DRY) - gms.		(EST	OSITION (%) IMATES)			GRAINS	WEIGHT OF MAGNETIC	COMMENTS
·····						OXIDES	GARNETS	DARK SILICATES	ZIRCON	NS NUMBER HOL		FRACTION (DRY)-gms.	
38880	-05	12.0-15.0	3.0	3.8	34	25	_	50 green	Tr.	0		8	Epidote, pyrite 3%, coarse cinnabar, rock 23%.
	-06	15.0-16.5	1.5	1.8	17	25	Tr.	50 green + black	Tr.	0 3	(1 Ball Pt?)	4	Cinnabar, pyrite; rock 25%.
38881	-01	3.0-6.0	3.0	6.6	48	50	Tr.	40	Tr.	1* 0	Flat; other smaller flakes not reported. (not mounted)	20	Abundant cinnabar, trace pyrite, rock 10%, contamination?
	-02	6.0-9.0	3.0	3.7	43	50	-	40	Tr.	2 0		13	Abundant cinnabar, rock 10%. Contamination of m downhole, 20 grains to
	-03	9.0-12.0	3.0	2.9	23	50	Tr.	40	Tr.	0 1 (KAm)	Angular, knob- by limonite coating 80%.	6	Cinnabar present, rock 10%. Abundant oxides samples 01 to 03.
	-04	12.0-13.5	1.5	1.8	17	10	Tr.	70	Tr.	0 0	Balls Pt? py?	2	Rock 20%, pyrite.
	-05	13.5-16.0	2.5	2.3	6	30	-	50	Tr.	0 0 4		1 (Light tone rock + vein 20%. White to buff coloured vein material.
38882	-01	3.0-6.0	3.0	6.6	30 .	10	30	20	Tr.	0		5	Cinnabar, rock 40%, topaz? [garnets dominant].
	-02	6.0-9.0	3.0	4.8	53	20	10	30		0		10	Abundant cinnabar, rock 40% [oxides dominant].

PAGE 4 of 7

TABLE 2

KAM Claims, British Columbia: N.T.S. 92-I-15W

Percussion Drilling Program - September 1984

JREHOLE OVERBURDE		N Depth Metres	Thickness Metres	OVERBURDEN		G	OLDWI	HEEL I	HEAV	7 M J	NE	RAL CONC	ENTRA	TE
	NUMBER			SAMPLE (WET) Kgs.	WEIGHT OF NON-MAGNETIC FRACTION (DRY) - gms.	OXIDES		OSITION (%) IMATES) DARK SILICATES	ZIRCONS				WEIGHT OF MAGNETIC FRACTION (DRY)-gms	COMMENTS
38882	-03	9.0-10.5	1.5	2.0	37	20	10	30		0			6	Abundant cinnabar, rock 40% [oxides dominant].
	04	10.5-12.0	1.5	2.0	14	10	-	20		0	0		Tr.	Light tone (yellow brown), trace cinnabar; white, heavy, barite? or dolomite? 30%; rounded crystals, rock 30%, pyrite 10%.
38883	-	-	-	-	-	-	-	-	-	-	-	-	-	No samples.
38884	-01	3.0-6.0	3.0	5.9	30	20	10	25	Tr.	6		Angular, flat, fresh, hackly.	7 .	Rock 45% (brown + green).
	-02	6.0-9.0	3.0	3.6	18	20	20	20	Tr.	3		Angular, flat.	4	Rock 40%.
` .	-03	9.0-12.0	3.0	3.1	27	10	10	20		1		Flat, 1 grey? grain.	8	Rock 40%, 2 grey? grains, Pb?
	-04	12.0-15.0	3.0	4.8	42	10	30	20		2	12	Flat.	7	1 Pb? grain, rock 60%.
38885	-01	3.0-6.0	3.0	3.8	22	10	Tr.	40	Tr.	3		Angular, hack- ly (2 grains touching on mount KAm).	5 .	Pyrite 10%, rock 40%. 2 Cu grains.
	-02	6.0-9.0	3.0	7.0	19 ·	10	5	30		5	8	Angular, hackl	y. 5	1 Cu? grain, rock 55%.
38886	-	-	-	-	-	-		-	-	-	-		_	[No samples]

KAM Claims, British Columbia: N.T.S. 92-I-15W

PAGE 5 of 7

Percussion Drilling Program - September 1984

NUMBER SAMPLE	SAMPLE	Depth Metres	Thickness Metres	OVERBURDEN		G O	LDW	HEEL	HEAVY	мі	NEF	RAL CONC	ENTRA	TE	
	NUMBER			SAMPLE (WET) Kgs.	WEIGHT OF NON-MAGNETIC	OWIDES	(EST	OSITION (%			OLD GF		WEIGHT OF	COMMENTS	
			 		FRACTION (DRY) - gms.	OXIDES	GARNETS	DARK SILICATES	ZIRCONS	NUMBER	TOTAL	CHARACTER	FRACTION (DRY)-gms.		
38887	-01	1.5-3.0	1.5	3.2	18	5	2	13		0	0		5	2 Cu? grains, worn flat, weakly magnet- ic?. Green rock frag- ments 70% (like those in H 38888).	
SABISTON	CREEK ROAL	D SECTION	1												
38888	-01	3.0-6.0	3.0	4.2	27	5	2	13	Tr.	1			1	Cinnabar on pyrite crystals, rock 80%, 2 Cu grains, brownish- green rock fragments.	
	-02	6.0-9.0	3.0	3.8	15	5				0	1		Tr.	Pyrite 10%, rock 70%, greenish, much scrap metal.	
3889	-01	3.0-6.0	3.0	4.3	27	20	10	25	Tr.	1	1	Flat nature, tapered, lim- onite coating	5	Rock 25%, light tones 2 types.	
38890	_	<u> </u>	-	-	-	-	-	-	_	_	-	-	-	No samples	
38891	-	_	-		_	-	-	-	-	-	-	-	_	No samples	
38892	-01	3.0-4.0	1.0	2.0	50	20	10	20		0			5	Rock particles dominate -01 to -03 Rock 50%, amber silicates, iron-stained Pb?. Cinabar (dark).	

KAM Claims, British Columbia: N.T.S. 92-I-15W

.T.S. 92-I-15W / PAGE 6 OF 7

Percussion Drilling Program - September 1984

	SAMPLE	N Depth Metres	Thickness Metres	WEIGHT OF OVERBURDEN		G	OLDWI	RAL CONC	ÈNTRA	T E				
	NUMBER			SAMPLE (WET) Kgs.	WEIGHT OF NON-MAGNETIC FRACTION (DRY) - gms.	OXIDES		OSITION (% (MATES) DARK SILICATES	ZIRCONS N		OLD G	CHARACTER	WEIGHT OF MAGNETIC FRACTION (DRY)-gms.	COMMENTS
38892	-02	4.5-6.0	1.5	3.4	52	20	10	20		6	·· 	Angular.	11	Cinnabar (dark), rock 50%.
	-03	6.0-6.8	0.8	2.1	37	20	10	20		0	6	See: SEM Mount KAm.	7	Cinnabar (dark), rock 50%.
38893	-01	3.0-6.0	3.0	2.4	35	10	10	10		5		Angular, pale, hackly.	5	Rock 70%. Rock particles dominate -01 to -03.
	-02	6.0-9.0	3.0	5.3	40	10	10	10		2		Angular.	10	Rock 70%.
	-03	9.0-12.0	3.0	3.7	27	10	10	10		0			5 .	Rock 70%, cinnabar on pyrite.
\	-04	12.0-15.0	3.0	6.1	46	10	10	10		5		Angular.	12	1 Pb? grain, rock 70% gradational to increased garnets + oxides with depth.
	-05	15.0-18.0	3.0	10.1	31	10	30	10		4		Angular.	14	Rock 50%, maximum gar net content.
	-06	18.0-19.5	1.5	10.1	80	20	10	40	Tr.	6		Flat.	25	Rock 30%. 1 Cu?
	-07	19.5-21.0	1.5	6.4	30	20 .	10	40		1	23	Angular.	10	Specular hematite? 1 Cu?

TABLE 2

KAM Claims, British Columbia: N.T.S. 92-I-15W

/PAGE 7 of 7

Percussion Drilling Program - September 1984

Overburden Samples and Goldwheel Heavy Mineral Concentrate Sampling and Evaluation

JREHOLE TUMBER	OVERBURDEN SAMPLE	Depth Metres	Thickness Metres	OVERBURDEN		G	огрмн	EEL	HEAVY	M I	NEF	RAL CONC	ENTRA	Г Е
	NUMBER			SAMPLE (WET) Kgs.	WEIGHT OF NON-MAGNETIC FRACTION (DRY) - gms.	OXIDES	(ESTI GARNETS	SITION (% MATES) DARK SILICATES	ZIRCONS		OLD GF HOLE TOTAL	CHARACTER	WEIGHT OF MAGNETIC FRACTION (DRY)-gms.	COMMENTS
38894	-01	3.0-6.0	3.0	3.3	37	20	10	60	Tr.	1		Angular, trilo bate worn, gra lost.		Trace Pb + cinnabar, rock 10%. Rock fragments dominate down to sample -04.
	-02	6.0-9.0	3.0	7.2	30	20	10	40	Tr.	8		1 flat, 1 large, many small.	20	Rock 20%.
	-03	9.0-12.	0 3.0	3.8	64	40	-	40	Tr.	4		Angular, 2 fine, branch-ing form.	15	Rock 20%.
	-04	12.0-15.	0 3.0	7.0	58	40	-	30	Tr.	4		Angular, un- worn, hackly.	20 .	Rock 30%.
\	-05	15.0-18.	0 3.0	6.6	57	20	20	30	Tr.	13		Flat, angular.	12	Rock 30%, garnets obvious to bottom of hole.
	-06	18.0-21.	0 3.0	6.6	81	20	20	30		3		Angular.	8	Hg
	-07	21.0-22.	5 1.5	7.0	57	20	20	30		2	35	Angular, 1 questionable.	7	Rock 30%. Pb occurs as sludge.

^{*} H 38881 - Samples panned by M.W. Milner (left hand column from raw drill samples); tailings from M.W. Milner's panning for H 38881 processed on Goldwheel in normal manner (right hand column). All borehole overburden samples were, first, processed on Goldwheel to produce heavy mineral concentrate, second, magnetite removed by hand magnet, and, third, non-magnetic heavy mineral concentrate panned by M.W. Milner to yield gold grains.

Data compiled by E.J. Debicki from information provided by M.W. Milner.

APPENDIX A Analytical Results

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 MCL-MM03-M20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM.FE.CA.P.CR.M6.BA.TI.B.AL.MA.K.W.SI.ZR.CE.SN.Y.MB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: ROCK CHIPS AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. HG ANALYSIS BY FLAMELESS AA.

DATE RECEIVED: JULY 3 1984 DATE REPORT MAILED:

84 ASSAYER. N. S. EGG. DEAN TOYE. CERTIFIED B.C. ASSAYER

CANADIAN NICKEL PROJECT # 60817-14030 FILE # 84-

PAGE 1

SAMPLES	MO	CU	PB	ZN	A5	KI	£0	HN	FE	AS	· U	AU	TH	SR	CD	SB	81	٧	CA	P	LA	CR	M6	BA	TI	8	AL	NA	ť	٧	AUS	HS
	PPM	PPH	PPH	PPM	PPH	PPH	PPH	PPH	Z	PPM	PPH	PPM	PPH	PPH	PPN	PPH	PPM	PPM	Z	7	PPH	PPH	7	PPH	1	PPH	I	I	:	, PPN	PPB	PPB
A. 2020A		-	_							_	_		_			_					_					_		40				
RI 38288	1	37	3	21	.1	16	14	362	3.62	9	2	KD	2	182	ı	2	Z	88 1	Q.ZZ	.02	7	10	3.47	23	.01	2	. 49	.02	.02	2	2	90
81 2828 9	1	50	1	41	ı.	10	15	675	3.78	7	2	ХĎ	2	117	1	2	2	108	8.98	. 06	2	16	2.35	74	.01	3	.73	. 02	. 05	2	5	50
RI 38590	1	38	ı	41	1	11	.11	807	3.05	5	2	, KD	2	88	1_	2	2	82	9.72	.02	2	. 10	3.04	34	.03	3	. 65	.04	.04	2	5	50
STR A-1/AU 0.5	1	30	10		.3														-			-										
	•	•	•	100		30	13	1027	2.11	7	7	ND	2	. 37	1	Z	2	56	. 62	.10	7	64	.63	255	.10	6	2.06	.02	. 20	7	490	55

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HM03-H20 AT 95 DEG. C FOR DME HOUR AND 15 DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM.FE.CA.P.CR.MG.BA.TI.B.AL.MA.K.M.SI.ZR.CE.SM.Y.MB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK CHIPS AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE. HE ANALYSIS BY FLAMELESS AA.

July 10/84 ASSAYER. A. LEGIDEAN TOYE. CERTIFIED B.C. ASSAYER

											- 4		/	/	/					7												
									CAN	ADIA	N N	CKE	L I	PROJ	ECT	# 6	081	В	FILE	Ξ #	84-	1442	2							PA	GE	1
SAMPLES	MO PPH	CU PPM	PB PPM	ZN PPH	A6 PPN	NI PPM	CO PPM	MM PPM	FE 1	AS PPM	U PPM	AU PPM	TH PPN	SR PPM	CD PPN	SB PPH	BI PPM	V PPH	CA	P	LA PPN	CR PPM	M6 I	BA PPM	T	8 PPM	AL Z	NA Z	K I	N PPN	AUT PPB	#6 PP9
RI 38591	2	39	2	43	.1	18	10	870	3.25	7	2	ND	2	141	1	2	2	84	10.08	.04	2	28	2.33	104	.01	4	.33	.01	.04	2	5	950
RI 38592	1	26	1	42	.1	11	10	582	2.66	5	2	ND	2	102	1	2	2	62	7.07	.02	2	7	1.73	48	.01	4	.34	.01	.04	2	5	1200
RI 38593	1	79	6	57	.1	23	19	807	4.77	3	2	ND	2	52	1	2	2	124	4.67	. 05	2	17	1.42	127	.09	4	2.18	.04	. 05	2	5	200
RX 38594	2	10	1	åå	.2	27	14	907	2.97	6	2	NO	2	94	1	2	2		12.18	.01	2	3	1.01	340	.01	2	.16	.05	.01	2	5	320
RI 38595	1	22	é	40	.1	12	11	922	2.74	3	2	ND	2	35	1	2	2		5.97	.10	2	7	1.11	22	.13	7.	1.65	.02	.04	2	5	5
RI 38596	1	75	3	46	.2	16	10	331	2.05	4	2	NO	2	27	1	2	2	58	1.44	.09	3	30	1.02	32	.07	7	1.40	.03	.10	2	5	160
RI 38597	1	53	5	49	.1	26	14	562	3.13	2	2	ND	2	27	1	2	2	47	1.59	.08	2	17	1.51	41	.08	7	2.12	.03	.04	1	5	10
RI 38598	1	71	1	31	.1	14	8	367	2.01	7	3	ND	2	72	i	3	2	55		.03	2	22		34	.01	7	. 29	.01	.02	2	5	290
RI 38599	2	40	1	42	-1	15	11	556	3.19	8	2	ND	2	65	1	2	2			.06	2	20	1.26	50	.01	10	.29	.01	.05	2	5	800
RI 38600	2	25	1	51	.2	10	11	676	3.74	8	2	ND	2	96	1	2	2		8.01	.06	2		2.16	48	.01	11	.30	.01	.04	2	. 2	450
RI 42234	2	60	9	53	.1	19	15	716	3.99	5	2	ND	2	42	1	2	2	118	5.37	.05	2	15	1.34	22	.20	6	2.27	.04	.04	2	5	20
STD A-1/FA-AU	. 2	20	28	186	.3	26	11	1027	2.79	9	2	ND	3	37	1	2	2	56	. 62	.10	7	64	.63	255	.09	7	2.00	.02	.19	2	50	60

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

2 2 56 .62 .11 7 .64 .63 255 .10 8 2.05 .02 .18

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HNG3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

וט	AIE RE	-E1/	/EU:	JU	LY 10	1784	DATI	E RE	POR	T MA	ILEI)1	ייאק	Ω.	/	/	ASS	AYER	· •	YOU	rifie,	Z.DE	AN	TOY	E. C	ERTI	FIE	DB.	C. (45 <i>5</i>	IYER		
									•	CANA	DIAN	NI	CKEL	P	ROJE	ECT	# 60	818	1	FILE	. # E	34-1	498								PAG	Ε	1
SAMPLE		MQ PPM	CU PPM	PB PPM	IN PPN	A6 PPM	NI PPM	CO PPM	NN PPH	FE	AS PPM	U PPH	AU PPM	TH PPM	SR PPM	CD PPM	SB PPH	BI PPM	V PPM	CA I	P	LA PPH	CR PPM	M6 1	BA PPM	11	B PPM	al :	NA I	K :	¥ PPN	AU1 PP3	H6 PPB
RI-4223 RI-4223 RI-4223 RI-4223 RI-4223	6 7 8	2 1 1 1	55 55 6 39 25	3 1- 2 9	105 88 53 55 52	.4 .4 .5 .3 .3	15 11 10 5 4	17 17 8 9 7	1070 828 772 761 751	5.89 4.53 2.40 3.54 2.89	6 5 5	2 2 2 2 2 2	ND ND ND ND	2 2 2 2 2	52 43 286 111 108	1 1 1 1	2 2 2 2 2	2 3 2 2	50	6.35 15.90	.11 .09 .02 .07	6 6 2 2 2	1B 2	1.55 1.11 4.52 1.60 .72	374 143 46 102 144	.07 .04 .01 .01	8 4 . §	2.95 2.41 .:3 .90 1.53	.03 .02 .01 .02	.07 .12 .02 .08	2 2 2 2 2	5 5 5	340 520 230 110 140
RI-4224 RI-4225 RI-4225 RI-4225 RI-4225	5 i	1 1 1 1 2	16 15 17 28 27	- 3 2 2 1	52 60 93 33 61	.4 .2 .3 .1	5 5 19 9	7 8 13 8 10		3.28 3.62	4 2 20 18 22	2 2 2 2 3	ND ND ND ND	2 2 2 2 2	223 191 214 257 200	1 1 1 1	2 2 2 8 6	2 2 3 2 2	59 55 66	11.36 11.81 16.75 9.36 12.21	.03 .03 .01 .02	2 2 2 2 2	4 7	3.22 3.09 4.43 1.44 3.62	72 36 113 368 1116	.01 .03 .01 .01	15 15 10	.34 .90 .10 .52	.02 .02 .02 .01	.07 .04 .02 .03 .02	2 2 2 2 2		200 210 130 12000 8500
RI-4225 - RI-4226 RI-4226 RI-4226 RI-4226	50 51 52	2 7 - 2 1 1	52 31 12 24 22	3 5 1 2 1	60 62 35 54 36	.1 .1 .1 .1	15 15 7 9 17	16 15 6 12 11	975 913 1193		33 26 15 6	2 9 2 2 2	ND ND ND ND ND	2 2 2 2 2	109 189 87 193 249	1 1 1 1	2 11 2 2 2	2 2 2 2 2 3	93 93	8.24 11.03 10.15 11.59 12.29	.08 .02 .01 .06	2 2 2 8 2	6 2 7	1.29 2.08 2.66 1.76 3.75	296 1360 157 326 43	.12 .01 .01 .10	12 6	1.81 .51 .20 1.48 .50	.02 .01 .02 .01	.06 .02 .01 .04	2 2 2 2 2	5	2500 7300 4300 210 400
R1-4228 R1-4226 R1-4226 R1-4226 R1-4226	5 6 7	1 1 2 2 1	16 120 36 54 51	2 1 3 2 4	44 53 43 77 43	.1 .1 .1 .1	10 31 21 8 15	7 22 17 16 18			16 5 2 11 2	2 2 2 2 2	ND ND ND ND	2 2 2 2 2	88 116 152 57 42	1 1 1 1	2 2 2 2 2	2 2 2 2 3	97 97	8.18 11.68 10.09 6.62 7.17	.05 .05 .05 .08	8 7 7 6	49 50 10	1.62 1.72 1.62 1.15 1.64	267 269 184 302 25	.01 .01 .01 .05	11 11	.90 2.36 .81 2.27 3.76	.01 .02 .02 .03	.06	2 2 2 2 2	5	2900 150 290 1400 40
RX-4226 RX-4227 RX-4227 RX-4227 RX-4227	70 71 72	1 2 2 2 1	36 28 57 14 25	. 3 ! 4 3	65 56 49 47 45	.1 .1 .2 .2	14 21 21 16 11	18 21 18 15	1104 979 761 560 722	4.07 4.45 3.88	2 10 13 6 5	2 2 2 2 2	ND ND ND ND	2 2 2 2 2 2 2	43 113 121 287 200	1 1 1	2 47 2 2 2	3 2 2 3 3	127 156 78	7.50 9.04 9.05 15.50 11.23	.11 .05 .04 .01	5 7 4 2 2	27 47 10	2.00 2.21 2.05 5.72 3.91	47 34 31 76 123	.32 .01 .01 .01	14 11 19 5 11	4.19 .76 .81 .38 .34	.03 .02 .03 .03	30. 30. 20. 20.	2 2 2 2 2	5 5 5 5	40 520 40 50
RI-4227 RI-4227 RI-4227 RI-4227 RI-4227	15 16 17	1 1 1	40 7 15 41 18	3 4 3 3	47 45 41 59 42	.1 .2 .1	14 19 16 23 21	18 15 12 22 14	709 776 523 566 719	3.06	10 4 7 2 20	2 2 2 2 2 2	ND ND ND ND	2 2 2 2 2 2	110 168 174 56 276	1 1 1	2 2 2 2 2 2	2 2 3 3 2	119 57 139	7.97 11.67 13.21 5.99 11.66	.04 .01 .01 .08	2 2 2 3 2	17	2.16	52 20 123 50 12	.01 .01 .01 .18	15 7 6 13 6	.84 .32 .38 3.32 .40	.01 .02 .03 .05	.03 .03 .06	2 2 2 2 2 2	5 5 5 5	30 160 20 30 5
RI-4221 RI-4226 RI-4226 RI-4226 RI-4226	80 11 32	! ! ! 2	21 7 28 86 55	1 2 1 1	45 58 52 57 52	.1 .2 .2 .1	19 26 22 27 24	15 19 17 23 19	761 637 743	3.51 3.38 3.63 5.72 3.40	12 9 11 31 3	2 2 2 2 2 2	ND ND ND ND	2 2 2 2 2	117 157 128 74 101	1 1 1 1	2 2 2 32 2	2 2 3 2 3	100 92	10.60 13.81 12.09 7.20 5.79	.02 .01 .02 .08	2 2 2 2 3	9 38 . 71	3.40 4.96 3.96 1.11 1.60	67 7 22 38 40	.01 .01 .01 .03	7 5 4 15	.47 .29 .43 .87 2.45	.03 .04 .04 .01	.03 .01 .04 .08	2 2 2 2 2	5 5 5 5	5 5 5 10 5
RI-4228 RI-4228		1 1	16 17	. 3	55 77	1	3	4	754 768	3.10 3.21	2	2	ND ND	. 2	18 45	1	2	2	21 32	1.10	.07	. S	1.	.33	61 29	.05 .23	· 8	.94 2.10	.04	.03 30.	2 2	5	130

13 1029 2.77

1								•						(•	· .										
		·	: .						•	•		• •	٠						·· ,	•	• .			٠.				•			· .	
•		٠.	• •	٠					CANA	DIAN	MT	 CVEI		ROJI	-c-	# LC	818	-	LE									•		545		
					:.					DIF	147	LNEL			-61	# 6 0	010	F.	LE	# 8	4-1	478								PAC	3E 2	<u>c</u>
SAMPLE 1	PPN	PPN	PB PPH	PPM	A5 PPM	PPM	PPN -	PPH	FE	AS PPH	U PPH	PPM	TH PPH	SR PPH	CI) PPH	SB PPH	BI PPH	V PPM	CA Z	P	LA PPH -	CR PPH	M5	BA PPM	TI I	B PPN	AL I	NA :	K	W PPM	AU1 PPB	N6 PPB
RX-42286	1	43	6	49	.1	32	14	831	3.82	7	2	ND	2	100	ı	2	2	91 8	. 25	.08	18	. 59	1.56	284	.01	12	1.31	.04	.06	2	5	480
RX-42287	. 1	13	3	64	.1	1	4	1001	3.09	2	2	ND	2	80	1	2	2	19 7	55	.05	5		1.08	93	.01	11	. 33	.02	.05	2	5	70
RX-42288	1	19	7	- 51	.1	20	. 10	1084	2.74	2	2	ND	2	150	1	2	2	48 11.	60	.02	5	21	3.53	1365	.01	5	.27	.02	.04	2	5.3	5000
RI-42289	1	115	1	58	. 6	18	18	725	5.15	20	2	MD	2	25	1	2	2	154 1	.53	.13	9	3	2.05	32	. 35	13	2.86	.03	.06	2		140
RX-42290	1	67	1	52	.3	51	17	650	3.67	19	2	ND	2	28	1	2	2	108 2	96	-09	8	33	1.87	76	.27	9	2.09	.04	.06	2		300
RI-42291	1	29	1	42	.1	12	12	795	2.62	9	2	ND	2	57	1	7	2	60 - 11	. 23	.01	2	7	4.02	207	.01	6	.11	.02	.01	2	5 1	3000
RX-42292	. 1	57	4	55	.1	14	14	742	4.08	6	2	ND	2	80	1	2	2	112 7	.09	.11	11	12	.45	54	.01	12	. 99	.02	. 06	2		140
RI-42293	.2	29	1	88	.1	15	15	890	4,74	10	2	ND	2	75	i	2	. 2			.06	2		1.11	390	01	14	. 84	.01	. 05	7		2700
RX-42294	1	56	1	60	.1	21	18		4.50	32	2	MD	2	91	1	7	7			.09	3		1.43	28	.03	•	2.37	.02	.05	7		650
RI-42295	1	43	1 -	61	.3	13	12		4.01	31	2	ND	2	80	i	2	2	112 8		.08	3		1.30	41	. 19	14	3.16		.04	2		160
RX-42296	1	39	5	37	.2	53	12	751	2:80	13	2	ND	2	138	1	4	2	83 9.	.13	.04	2	167	2.06	82	.01	7	,42	.02	.03	7	5 (1300
RI-42297	1	21	. 8	46	. 3	32.	9	737.	2.77	11	2	NB	2	424	1	2	2	78 11		.03	2	24	3,42	25	.01	è	.38	.03	.04	2		3500
RI-42298	1	17	1	61	.1	2 "	4		3.11	3	2	ND	2	28	1	2	. 2			.06	ī	3	.29	109	.01	8	.83	.03	.06	2		260
RI-42299	1	49 -	3	34	.2	- 5	8		2.85	2.	2	ND	2 .	53	i	2	2			.06	i	7	.31	534	.01	g	.56	.02	.06	7		420
RX-42300	1	47	6	49	.2	4	11		3.42	2	2	ND	2	94	i	2	2			.07	7	4	.49	864	.01	11	.49	.02	.10	2		270
RX-45463	i	38	3	61	.i	3	8	718	3.16	4	2	ND	2	41	1	į	2	39 2	.51	. 07	7	9	.71	219	.06	b	1,34	. 03	.06	2	5	600
RX-45464	1	8	8	61	.1	27	12		2.99	2	2	ND	2	108	ī	2	2			.09	7	20	1.58		.01	Ä	.30		.04	,		120
STD A-1/AU 0.5		30	39	188	.3	36			2.80		•	MD	-	37	•	-	-			.10	•	65	.64	258	.10	•	2.08	.02	.19	-	490	50

STD A-1/AU 0.5

2 30 39 186

.3 36 13 1029 2.79

.852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

64 .63 255 .09

8 1.98 .02 .19

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH JML 3-1-3 HCL-HNO3-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.MA.K.W.SI.IR.CE.SW.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: ROCK CHIPS AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. HG ANALYSIS BY FLAMELESS AA.

-					•	•			T MA		•	•				# 60		,		: # 1										PAC		1
SAMPLE	MO PPM	CU PPH	PB PPM	ZX PPM	A6 PPH	NI PPH	CO PPM	HN PPH	FÉ 1	AS PPM	U PPM	AU PPM	TH PPM	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA Z	P	LA . PPM .	CR PPM	M6 I	BA PPN	TI Z	B PPN	AL I	NA I	K 1	¥ PPM	AU1 PPB	#6 PPB
RI-45465	3	34	1	126	.1	30	16	826	4.33	721	2	ND	4	61	1	2	2	113	2.10	. 13	5	53	1.53	12	.29	13	3.26	.03	.06	2	15	60
R1-45466	. 1	14	. 2	57	1	14	. 9	625	2.55	15	2	ND	2	30	ı	2	2	46	1.81	.06	6	5	.58	24	.20	10	1.83	.04	.02	2	5	130
RI-45467	2	59	1	42	.1	- 10	18	714		12	. 2	ND	2	26	1	2	2	114		.11	3	22		41	.27	-	2.90	.04	.04	. 2	5	10
RI-45468 RI-45479	2	. 65.	2	43 36	!	17	15	609	3.84	. 5.	2	ND	2	104	1	3	2		7.66	.03	2	23	2.62	- 40	.01	10	. 42	.02	.05	2	5	80
KA-4J4/7	2	. 03	1	38	.1	16	15	459	3.19	5.	2	. ND	2	102	1	4	2	106	8.29	.03	2	26	2.26	. 931	.01	10	.42	.01	.06	2	•	90
RI-45480	2	30	2	41	.2	16	13	,513	3.39	5.	. 2	ND	2	138	1	4	2	106	11.35	.01	2	12	3.78	38	.01	3	.22	.02	.03	2	-5	40
RI-45481	2	44	1	34	.1	15	15	487		9	2	ND	2	144	1	4	. 2	99		.02	2	23	2.61	1518	.01	7		.02	.05	2	5	120
RI-45482	2	59	1	52	٠.١	40	20		1.63	5	2	ND	2	155	1	2	` 2	125	7.62	.06	2	102		58	.17		3.59	.14	.09	2	5	5
RX-454B3 RX-454B4	2 2	65 29	1	59 47	.1	25 10	19 13	800	4.50 4.10	4	2 2	ND ND	3	163 215	1	2 2	2	162	6.41	.07	4	59	2.06	67	. 25		3.05	.17	.09	2 2	5 5	5 5
RATTUTOT		21	4	•	• 1	10	13	11113	*. 10		4.	עות.	3	713	r	2	<u> </u>	172	6.28	.07	٠ 6	22	1.11	91	. 28	٥	3.38	.24	.08	4	3	3
. RI-45485	3	63	1	63	.1	56	29	1318	6.50	4	. 2	ND	3	-130	1	2	2	153	2.89	.08	3	176	2.11	34	. 15	4	3.33	.09	.11	2	5	5
RI-45486	2	58	2	60	.1	24	20	1064		11	2	ND	3	84	1	2	2	123	2.04	. 09	4	39	2.43	37	.24	8	3.00	.09	.07	2	5	10
RI-45487	2	63	1	58	.1	27	20	1004		16	2	ND	3	160	- 1	2	2	170	6.50	.09	7	92	2.44	35	.29		3.34	.16	.10	2	5	5
RI-45488	2	57	1	49	.1	21	16		3.32	10	2	ND	2	69	1	2	2	111		.13	2	28	1.83	27	.22	9		. 05	.04	2	5	30
RI-45489	2	45	1	49	.1	18	18	1727	3.10	. 9	2	ND	2	47	1	2	2	104	9.43	.09	3	13	1.23	148	.24	12	2.52	.05	.05	2	2	60
RI-45490	3.	70	1	54	.2	40	22	1066	3.82	9	2	ND	3	49	1	2	2	140	8.84	.09	3	23	1.79	52	. 29	. 14	2.48	.04	.06	2	5	10
RI-45491	2	48	1	71	1.	17	. 19		4.93	15	2	ND	4	39	. 1	2	3	151	1.45	.10	4	18	1.65	29	. 33	12		.04	.06	2	5	280
RX-45492	2	28	3	37	1.	19	13	816		8	2.	MD	2	93	1	6	2		7.27	. 05	3	29	2.32	31	.01	8	.56	.03	.03	2	5	100
RI-45493 RI-45494	2	6	3	33 44	.2	18 17	14	606 424		6	2	ND OK	2 2	129 238	1	6	2 2		10.42 11.58	.02	7		3.18	21	.01	4	. 42 . 28	.02	.02	2 2	5	90 300
	4	3	,	22	•4	17	11	141	2.35	22		עא	4	230	1	′	4	32	11.38	. 02	. 4	9	4.18	11	.01	,	• 40		.01	4	J	200
RX-45495	2	4	1	39	.1	16	12	484	2.71	5	2	ND	. 2	127	1	7	2	85	10.15	.01	2	18	3.27	9	.01	. 2	. 38	.03	.01	2	5	180
RI-45496	2	108	4	59	.1	10	. 19	823		25	2	ND	2	87	1	2	2	155		.16	4	23	1.44	83	.21	11	2.28	.34	.11	2	5	20
RI-45497	2	73	!	51	-,1	48	21		4.24	8	2	ND	2	100	!	3	2	110		.09	6	60	1.64	828	.01.	8	.46	.02	.04	2	5	1300
RI-45498 RI-45499	2 3	117 105	1	64 53	1. i	12 14	19 18	/93 684	4.79	16 13	2	ND ND	3 2	60 107	1	2	2 2	176		. 19	b	31	1.15	75	.24		1.54	.09	.06	2	5	80
7776	,	103	1	J	• 1	17	10	007	4.17	13	2	ΑU	4	107	1	4	2	138	2.61	.14	4	23	1.01	55	.18	Y	2.15	. 24	.09	2	3	270
RX-45500	2	154	t	63	.1	13	20		4.94	10	2	ND	ż	67	1	2	2	168	1.22	.21	5	39	1.19	41	. 22	17	1.66	.09	.07	2	5	30
RI-46013	2	8	1	64	-1,	76	20		3.44	2	2	ND	2	17.6	1	5	2		11.75	.02	2	73		113	.01	3	.20	.03	.01	2	5	90
RX-46014	2	10	1	22	.1	77	17	869		4	2	MD	2	214	1	6	2	43		.02	2	79	2.68	1455	.01	. 7	. 19	.02	.02	2	5	20
RI-46015 RI-46016	. 2	43 Z	2	50 77	.1	85		1179			2	ND	3 2	173	. !	7	2		9.49	.08	2		2.48	221	.01	. 15	.41	.02	.10	Z	5	50
MY-400ID	3	,	1	11	.2	. 42	15	.1337	3.94	. •	2	MD	2	164	1	3	,2	/1	11.89	.04	2	24	3.88	484	.01	3	.18	.02	10.	2	5	290
RY-46017	2	2	5	82	.2	48		1068		2	2	ND	2	156	t	2	2	52	12.45	.02	. 5	62	4.05	101	.01	2	.11	.02	.01	2	. 5	110
RX-4601B	2	16	4	67	-1	2	5	997		3	2	MD	2	69	. 1	2	2		1.98	.06	- 11	2	.30	1222	.01	3.	.77	.03	.09	. 2	5	50
RI-46019	2	95	2	59	.1	23	24	752		27	2	ND	4	120	1	2	2	158		.10	7		1.21	32	.34		3.30	.03	.04	2	5	490
11-44020 M-4-1-1	2	23	4	69	!	19	- 13	889	3.91	20	2	ND	3	95	1	2	2	78	6.97	.12	?	40	1.05	47	10	7	2.06	.02	.06	?	5	140
E1-46E21	3	83	1.	68	.1	20	. 21	8/4	4.48	.10	. 2	KB	3	43	1	2	3	. 104	2.31	,11	6	8	1.56	57	. 25	12	3.34	.06	.07	2	. 5	10
RY-46022	. 2	39	1	49	. 1	16	15.		3.62	9	2	ND	2	106	1 -	4	2	135	7.28	.06	2	38	2.17	29	.01	8	. 48	.01-	:02	2	5	390
R1-46023	2.	15	7	44	.2	13	. 11		3.30	16	2	ND	2	215	1	. 4	2	97	11.36	.02	2		3.47	42	.01	5		.04	.01	2	5	460
510 A-1/6H 0 5	7	7.0	70	191	7	4.5	17	1070	7 70		-	46	*	77			•	81	12	4.6	7			-						-		

3 37 1

	. C					· -				·		٠.				<u></u>					· •											\supset	٠.
				• •		•							•	•							٠.	. :	• •			• ;		٠.	•	٠.	. •		
		•				•																											
										CANA	DIAN	I NI	CKEL	. Р	ROJE	ECT	# 6	0818	1	FILE	# :	B4-1	521								PAG	3 E	2
	SAMPLE	NO- PPH	CU PPH	PB PPH	ZN PPH	A5 PPN	NI PPM	CD PPM	IM PPN	FE	AS PPH	U PPM	AU- PPM	TH PPN	SR PPN	CB PPH	SB PPM	BI PPM	PPI	7 CA	P %	LA PPH	CR PPM	M6 Z	BA PPM	71 2	B PPM	AL Z	MA	K Z	# PPM	AU2 PPB	H6 PPB
	RX-46024	2	28	. 2	43	.3	11	12	650	2.77	9	2	ND	2	102	1	7	,	120	7.43	.04	3	5	1.79	179	.01		.40	.02	.01	. 7	5	620
	R1-46025	1	19	3	30	.1	8	8		1.93	2	2	ND	2	128	i	5	2	7		.06	2	9	1.53	19	.01	Ā	.49	.02	.01	7	5	440
	RI-46026	2	23	4	42	.2	11	12	793	3.29	5	,	ND	,	420	i	- 1	2		11.90	.03		-	3.78	14	.01	į	. 26	.03	.01		Š	560
	RX-46027	ī	34	1	29	.1	7	8	504		8	2	ND	2	118	i	9	2	12	å.20		2	30	1.69	15	.01	ĭ	. 36	.01	.01	2	5	510
	RI-46028	1	122	. 3	- 12	.3	7	2	474	.73	6	2	ND	2	350	1	4	2		16.65	.01	. 2	2	.30	30	10.	4	.11	.01	.05	2	5	80
	RX-46029	2	29	. 3	. 43	.2	12	13	655	3.24	6	2	ND	2	149	1	5	2	91	11.52	.04	2	57	3.36	12	.01			.03	.01	7	5	920
	RI-46030	2	31	1	51	.,	7	13	921	3.96	9	. 3	ND	7	47	i	,	,	158		.07	. 2		1.13	40	.24	12	1.79	.05	.06	,	5	
•	RX-46031	7	29	- 1	53	.1	16	18	915			,	ND	,	65	• •	,	,		5.44	.05	•	16	.57	60	.03	22	.91	.01	.14	,	_	13000
	RI-46032	•	147	i	57	.;	14	12	871		28	• •	ND	,	249	•	20	,		13.35	.01	,	10	3.81		.01		.16	.02	.01	,		62000
	RX-46033	3	22	4	39	.3	16	17		3.62	15	- 2	ND	2	97	1	2	2		7 7.03		2	20	.87	296	.15	15	2.35	.03	.02	:	5	
	RX-46034	3	6	1	59	.5	13	15	1000	3.53	3	. 2	ND	2	214	1	5	2	69	7 13.18	.01	7	5	4.18	55	.01		.20	.03	.03	,	5	1200
	RX-46035	3	30	2	51		14	16			7	,	ND .		109	i	. ,	•		7 10.80	.06	,	16	.93	165	.01	ġ	1.18	.02	.07	÷	5	100
	RX-46036	,	6	,	42	.2	10	13	1127	3.05	;	;	ND	,	175	i	î	,		11.72	.01	,		3.72	1145	.01	ı	.20	.02	.01	,	•	230
	RX-46037	,	35	i	54	.2	21	21	6B0	4.96	7	,	MD	,	71	•	7	2		5.72			22	1.34	78	.02	10	2.08	.02	.12	-	. 5	80
	RX-46038	2	79	5	49	.1	22	17		2.68	9	2	ND	2	39	1	2	2	129			2			32	.15		1.44	.05	.04	2	5	60
	STD A-1/AU 0.5	. 2	29	39	188	.3	36	13	1039	2.82	10	2	ND	3	37	1	2	. 2	57	7 .63	.11		65	64	258		8	2,00	.02	.20	. 2	490	60

STD 5-1/AU 0.5

95 124 117 186 32.2 153

60

490 3.18 119

115

37 166 125

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM.FE.CA.P.CR.MG.BA.TI.B.AL.MA.K.W.SI.ZR.CE.SN.Y.MB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: ROCK CHIPS AU& ANALYSIS BY AA FROM 10 GRAM SAMPLE. HG ANALYSIS BY FLAMELESS AA.

July 19/84 ASSAYER. A. C. D. K1..DEAN TOYE. CERTIFIED B.C. ASSAYER JULY 16 1984 DATE REPORT MAILED: DATE RECEIVED: PAGE 1 CANADIAN NICKEL PROJECT # 60823 & 60818 FILE # 84-1591 HS SAMPLE MO CU PB A6 NI CO FE AS U AU TH SR CD 58 ٧ CA LA CR MG BA TI B AL ĸ ¥ AUS ZN MM BI PPN PPB PPB PPK PPM PPM 1 Z PPM PPM I 1 PPH PPM PPH PPM PPM PPM PPM PPH PPM PPM PPM 3 1.97 .02 130 RX-46039 1073 3.94 57 29 1.26 .09 12 1.07 .02 2 3 14 70 72 7 41 231 3.17 .08 18 2.00 268 .35 21 3.34 .04 .03 RY-46040 3 82 .1 13 16 947 6.99 2 ND 2 1 2 3 17 30 RI-46041 2 89 12 19 1080 7.54 2 ND 2 67 1 2 2 166 4.26 .11 19 13 1.25 550 .02 5 1.70 .02 .06 5 3 64 .1 5 160 22 77 98 6.15 45 2.54 12 .27 B 2.02 .03 .04 RI-46042 2 58 50 .1 117 1105 3.76 2 ND 2 2 .13 12 130 RI-46043 96 .1 59 20 870 5.4B 35 2 175 3.28 .17 17-32 3.02 21 .39 38 4.29 360 RI-46044 58 53 25 3.33 585 7 .38 .09 40 .2 17 5 515 2.37 29 2 2 .01 9 1.14 .01 .01 .30 5 130 RI-46045 13 2 MD 51 9.61 .02 6 3.65 428 .01 7 .01 2 .1 10 5 1012 4.29 **520** 53 301 13 . 49 .01 .13 5 RI-46046 2 51 55 .2 28 577 2.71 27 28 2.72 .02 10 .51 .01 35 10 1.55 185 .74 .01 . 15 900 RI-46047 3 46 2 82 .1 22 15 857 5.21 2 ND 2 94 2 2 84 3.80 .09 12 .01 16 668 3.31 580 RI-46048 2 28 55 14 8 20 2 Mil 2 175 69 6.30 .03 16 2.60 36 .01 6 . 46 .01 .05 2 2 Ь RI-46049 2 19 59 .2 11 799 3.41 17 2 140 53 8.52 . 35 .01 .05 500 6 2 .02 11 3.37 86 .01 3 RI-46050 139 40 2 83 5 15 1198 6.94 2 2 30 2 3 184 2.05 .21 25 5 1.60 25 . 42 14 2.82 .03 .05 2 5 RI-46051 130 72 50 2 3 7 12 722 5.45 2 2 3 49 153 3.99 .19 19 7 1.29 22 . 34 44 4.19 .03 .04 RI-46052 71 78 31 17 733 6.07 5 72 3 .1 2 3 152 2.61 . 20 20 26 2.58 165 .03 .06 5 1300 2 . 41 6 2.76 RI-46053 70 3 82 .1 27 17 949 5.95 2 2 71 2 2 141 4.20 .19 19 45 2.60 152 .01 2 2.98 .04 .10 320 RI-46054 3 84 66 38 17 1014 4.BS .2 14 94 154 4.21 . 16 68 1.60 72 6 1.20 .05 .06 5 200 .01 RI-46055 2 40 31 8 1268 3.86 2 2 81 10.22 .08 16 4.45 350 .01 2 .34 .02 . 05 2 480 RI-46056 2 64 10 13 1018 4.64 2 ND 3 63 .1 è 1 2 2 112 3.63 .11 14 13 1.45 27 .01 . 62 .02 .07 2 5 1000 Ь RI-46057 2 31 73 .1 11 10 896 3.90 2 ND 2 99 2 2 2 102 9.56 .05 ě 5 4.17 29 .01 2 .32 .02 .03 2 5 500 RI-4605B 72 2 16 15 1071 4.86 128 5.48 .06 7 24 2.20 54 .01 11 . 48 .01 .14 2 570 RI-46059 2 60 .2 10 1540 3.65 59 10.17 .04 1 4.34 1752 .01 .32 .02 . 10 5 7400 6 RI-46060 23 83 130 3 .2 6 1248 4.85 2 79 10.73 .04 10 3 4.08 40B .01 2 .30 .01 .04 2 5 1400 RI-46061 3 25 93 6 1192 4.87 .1 5 ND 3 49 2 32 1.98 .09 17 1 .79 108 .44 .05 290 2 .01 3 .06 2 5 RI-46062 1 65 1 75 .1 14 14 1027 4.91 3 2 59 2 75 3.51 .10 17 27 1.63 534 .01 9 2.32 .02 .09 2 5 460 RI-46063 55 65 16 1121 4.41 2 21 87 2 154 5.81 .1 2 2 .11 13 2.19 .28 5 2.97 .09 160 RI-46064 2 16 60 . 2 27 13 916 4.25 2 175 55 13.76 .02 6 6.13 5 190000 .01 2 . 26 .02 RI-46065 2 4 7 56 16 11 654 3.66 2 MT 2 244 2 2 73 12.56 .02 2 6 5.43 22 .35 .02 .01 5 470 RI-46066 27 52 192 1 19 13 452 4.66 2 ND 2 5 124 5.26 .08 .1 2 21 2.23 107 .01 12 1.26 5 1100 .02 .13 2 RI-46067 2 58 50 25 17 B98 4.41 12 ND 99 .13 . 1 2 2 155 5.00 8 26 1.98 89 .08 15 1.49 .03 .11 2 5 110 R1-4606B 10 53 21 13 810 3.66 79 13.15 .02 2 9 5.65 126 .01 2 .34 .02 5 300 .04 2 RI-46069 2 39 38 18 12 629 3.04 150 . 2 3 5.54 .03 33 2.19 260 2 26 .01 .73 .01 .11 RI-46070 71 19 15 557 4.74 2 2 66 . 1 13 2 64 2 2 93 3.50 .14 13 12 1.03 241 .01 10 1.23 .03 .13 5 1500 RI-46071 16 2 22 5 518 2.54 8 2 KD 198 2 .2 4 2 1 2 2 29 12.19 .03 2 4 5.29 1649 .01 2 . 45 .08 .02 2 5 740 21 43 1.79 22 2 ND 61 RI-46072 3 1 .2 3 2 437 2 2 22 4.60 .04 7 2 1.18 199 .01 2 .43 .02 .11 2 3 220 RI-46073 15 1 63 5 743 2.98 14 2 . 1 5 2 2 55 4.66 .08 5 1.45 157 .01 3 .71 .01 2 5. 100 RI-46074 2 13 2 49 5 12 1451 3.83 .2 2 2 298 2 50 11.93 .02 2 2 4.28 2135 .01 2 . 23 240 .01 .06 7 5 RI-46075 70 67 18 2 96 5 1 9 855 5.64 ND 3 2 104 3.15 .11 18 6 1.29 185 .01 4 .77 .02 .19 2 3000

90

83 97 58 .62

.13 135

64 .58 132

.07

164 1.45

.20 .19

71 505

								CAI	I DAV	AN N	ICK	EL	PRO	JECT	#	6082	23 &	60	818	F	LE	# 8	4-15	91						P	AGE	2
SAMPLES	MO PPM	CU PPM	PB PPN	ZN PPH	A6 PPM	MI PPM	CO PPM	MN PPN	FE Z	AS PPM	U PPM	AU PPM	TH PPN	SR PPM	CD PPM	SB PPM	BI PPM	V PPM	CA I	P	LA PPM	CR PPM	M5 :	BA PPH	TI I	B PPM	AL I	RA	. :	W PPM	AU1 PPB	H6 PPB
RI-46076	4	30	4	57	.6	22	13	1287	5.08	8	2	ND	3	297	i	3	3	70	11.15	.04	5	20	4.11	938	.01	5	. 35	.02	.07	2	5	4500
RX-46077	4	70	4	68	.3	9	19	632	5.92	4	2	ND	3	220	1	2	2	77	2.66	. 14	9	2	1.15	111	.01	15	.92	.01	.27	2	5	340
RI-46078	4	28	5	60	.3	6	13	2248	7.32	3 -	2	ND	3	184	. 1	2	2	76	11.39	.04	11	5	2.81	779	.01	2	.52	.01	.06	2	5	130
RX-46079	3	72	2	65	.2	5	15	811	5.18	2	2	ND	4	107	1	2	2	91	3.81	.18	19	4	1.16	721	.01	10	1.45	.02	.16	2	5	240
RI-46080	2	8	6	55	.2	4	10	1050	3.91	2	2	MD	2	410	1	2	2	66	14.92	.02	2	1	5.48	349	.01	2	.18	.01	.03	2	5	120
RI-46081	2	71	4	88	.1	7	17	882	5.26	2	2	ND	3	80	1	2	2	117	2.58	.15	14	5	1.74	307	.01	11	2.37	. 02	.12	2	5	540
RI-46082	3	15	6	53	.2	20	5	688	2.99	19	2	ND	2	184	1	2	2	42	12.97	.04	2	26	6.11	27	.01	4	. 29	.02	.02	2	5	250
RX-46083	2	8	4	21	. 1	- 4	3	246	1.21	6	2	ND	2	14	1	2	2	18	1.30	.05	6	4	.37	28	.01	2	.41	.06	.02	2	5	40
RI-46084	2	94	1	44	.2	9	13	1387	3.57	22	2	ND	2	131	1	2	2	116	8.32	.20	7	9	1.21	198	.01	4	.69	.05	.07	2	5	8200
RX-46085	1	653	9	66	.8	30	10	783	2.37	102	6	MD	2	188	1	223	2	106	7.05	.03	2	39	3.08	391	.01	2	.29	.01	.02	2	5	350000
STD S-1	90	124	115	186	34.5	152	79	490	3.18	129	129	35	166	125	82	82	92	58	.62	.13	128	58	.58	132	.07	145	1.45	. 20	.18	66	•	-

STD A-1/AU 0.5

98 125

185 35.3

153

82

484 3.16

129

109 38 179 128

117

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 FRAM SAMPLE IS DIGESTED WITH JML 3-1-3 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SW.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: ROCK CHIPS AU# ANALYSIS BY AA FROM 10 GRAM SAMPLE. HG ANALYSIS BY FLAMELESS AA.

ASSAYER. N. ALP. DATE RECEIVED: JULY 23 1984 DATE REPORT MAILED: ..DEAN TOYE. CERTIFIED B.C. ASSAYER PAGE CANADIAN NICKEL PROJECT # 60826 FILE # 84-1723 1 SAMPLEO NS. MO CU PB ZN A6 MI CO KN FE AS U AU TH SR CD SB 91 ٧ CA P CR MG BA Ħ AUT LA PPB PPB PPM PPM PPM 7 PPM PPM PPM PPM PPM PPM ĭ PPM PPH PPM PPH PPH PPM PPM PPM RI-38601 637 3.98 125 5.07 .13 112 2.52 234 13 .62 .01 .12 2 1500 15 .2 12 12 2 160 2 .01 40 - 5 6 RI-38602 29 225 81 7.14 .03 453 .23 .01 . 05 72000 264 74 .4 10 760 2.20 46 2 ND 2 95 2 34 3.21 .01 8 2 2 5 7000 RI-38603 58 2 43 . 2 46 13 883 4.15 11 2 ND 2 166 5 2 138 5.66 .19 10 97 2.70 210 .04 16 .69 .02 .14 2 5 RI-38604 25 44 27 14 707 3.15 11 2 ND 2 191 2 95 12.68 .02 20 5.86 808 .01 9 . 25 .02 .03 2 7400 .1 2 RI-38605 3 6.49 56 18 Q 594 3.16 281 53 16.76 .01 2 17 .29 .03 .05 2 140 .1 2 2 2 .01 2 250 RI-38606 .1 16 421 2.73 3 50 16.16 .01 2 1 6.50 17 .01 2 . 28 .03 .04 RI-38607 44 13 583 56 15.08 .01 5.71 .25 .03 .02 2 5 120 44 .1 10 2.85 2 ĦD 2 207 2 2 11 .01 6 160 RI-38608 38 47 .1 18 11 1113 3.52 6 2 ND 2 138 2 57 11.00 .08 4 4.06 683 .01 11 .58 .03 .15 2 5 RI-38609 5 38 .03 . 90 235 13 .02 .08 2 270 12 49 .1 4 349 2.22 10 2 ND 2 7 12 2.01 2. .01 .40 2 RI-38610 12 64 13 8 1313 3.75 2 ND 2 256 2 2 55 19.74 .02 2 3 5.67 155 .01 8 .04 .04 170 31000 RY-38411 86 49 25 12 877 3.95 28 2 2 191 2 94 14.94 .01 2 21 5.60 27 .01 . 33 .04 .04 .1 RI-38612 59 .1 26 15 847 3.17 В 2 ND 2 361 2 2 87 10.86 .02 2 6 4.03 2143 .01 2 .12 .01 .02 5 210 2000 RI-38613 19 81 23 13 1102 ND 466 .21 .01 .02 2 2 .1 4.19 12 2 2 2 2 112 14.06 .01 2 2 5.08 173 .01 2 5 3800 RI-38614 92 3 49 .1 13 11 1295 3.58 13 2 ND 2 100 2 2 101 6.75 .18 4 33 1.99 585 .02 15 .72 .03 .07 5 1 RI-38415 100 54 .1 9 10 979 4.12 15 2 ND 2 85 2 7 103 5.79 .17 5 20 1.32 348 .02 7 1.21 .03 .15 2 420 270 RI-38616 12 . 82 78 . 1 12 878 4.56 2 81 9.77 .10 10 3.86 192 .01 10 .04 .10 RY-38617 93 45 .1 21 14 500 3.81 12 2 ND 2 62 2 120 4.91 .14 3 50 1.29 153 .15 70 2.44 .04 .05 130 RI-38618 52 36 920 2 .12 1.38 7 1.80 .80 .07 120 .1 10 В 2.87 11 2 ND 203 2 7 89 15.26 18 16 5 4 .19 2 15 1.83 RI-38619 2 54 58 .1 13 817 4.92 28 7 ND 2 37 2 142 1.92 .19 8 20 104 . 24 15 1.68 .06 .08 2 100 RI-38620 53 37 5 654 3.09 ND 2 88 2.93 . 19 8 3 1.12 109 16 .72 .05 .14 170 .1 2 .01 RI-38621 42 123 23 2113 3.74 1051 45 14.64 .03 1 5.72 2158 .07 1200 2 . 1 2 2 2 .01 .16 .02 2 5 RI-38622 18 65 .1 27 11 844 2 5 22 2 2 39 .45 .07 18 51 . 75 70 .13 13 1.67 .02 .21 2 420 5 33934 15 19000000 5 533 33 3.05 5 NO 2 146 9471 94 7.50 75 3.25 67 . 29 .04 2 RI-38623 24.2 51 902 8903 2 .01 3 .01 2 .01 RI-46086 67 67 .1 17 9 1125 3.39 181 2 ND 2 260 16 74 9.64 .04 15- 3.32 192 2 . 21 .01 .06 2 5 19000 2 .01 2 2200000 RX-46087 352 3 55 . 3 29 14 887 3,80 41 2 2 346 39 2 140 11.69 .02 2 12 5.21 362 .01 2 .27 .02 .06 2 RI-46088 62 4.76 173 139 5.20 35 3,54 .63 31 19 2 2 .11 87 .01 .04 .12 14000 RI-46089 2 101 64 .1 31 18 825 5.21 25 2 ND 2 169 2 179~5.09 .17 5 38 3.07 91 .01 9 .65 .03 .12 2 5 18600 RI-46090 106 41 .1 20 8 758 3.48 29 2 ND 2 236 1 22 3 105 8.91 .01 2 13 3.96 107 .01 2 .26 .01 .06 2 64000 1 5 59 32 4.92 2 ND 2 174 107 5.08 RI-46091 2 106 . 1 18 993 40 11 2 .15 20 2.82 60 .01 9 .01 .17 2 66000 t .66 5 35 2 327 RI-46092 11 11 2011 1.32 2 2 2 48 20.18 .01 2 1 3.31 2126 .01 3 .15 .01 .01 1300 RI-46093 29 .59 7 32 .1 540 1.57 2 83 2 23 3.40 .06 11 . 48 661 .01 2 .04 .03 5 14000 RI-46094 897 2 51 13.70 8 40 .1 11 6 2.73 5 2 ND 508 2 2 .02 4 2 5.43 248 .01 2 .17 .02 .02 2 5 1500 27 43 ND 2 132 RI-46095 2 .1 16 7 59B 2.83 3 2 1 2 2 11 2.51 .09 17 1.13 325 .01 2 .61 .04 .04 2 5 4000 RI-46096 22 41 .1 9 10 1037 3.72 9 2 ND 2 189 2 71 13.55 .03 2 4.73 733 700 2 2 .01 .23 .01 .02 2 5 2 RI-46097 56 54 13 10 773 3.53 12 ND 2 .1 2 165 i 2 2 98 11.19 .05 3 6 4,18 689 .01 3 . 35 .03 .02 2200 RI-4609B 2 6462 149 109 5.51 4.1 66 21 791 3.68 1764 2 2 150 1546 2 101 2.54 4500000 1 .05 3 246 .01 .41 .01 .06 2 5 RI-46099 147 3.53 3 61 . 1 67 19 1020 3.78 56 2 ND 2 191 1 13 2 108 7.07 .06 3 105 689 .01 .41 .02 .04 2 5 55000 Ł RI-46100 1 104 4 109 10 16 1519 3.54 22 2 ND 2 - 2 .1 244 5 96 11.06 1 .04 2 2 4.86 805 .01 2 . 28 .02 .04 2 15 380000

88 83 97

57 .56

.13 139

63 .58

124 .08

172 1.50

.24 .22

70 505

852 E.HASTINGS ST. VANCOUVER B.C. VAA 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH JML J-1-3 HCL-HNOJ-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN.FE.CA.F.CR.M6.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: ROCK CHIPS AUX ANALYSIS BY AA FROM 10 GRAM SAMPLE. H6 ANALYSIS BY FLAMELESS AA.

					6 1984							V [CKE			ECT	# 5	0828	5	FILE	E #	84-	178	3							PA	GΕ	1
SAMPLE	MO PPN	CU FPM	PB FPM	ZN PPM	AG PPM	NI PPM	CO PPM	MN PPM	FE	AS FPM	U PPM	AU PPM	TH PPM	SR PPM	CD FPM	SB PPM	BI PPM	V PPM	CA Z	P	LA PPM	CR PPM	MG I	BA PPM	TI	B PPM	AL I	NA :	K I	W PPM	AU E	MG PPS
RX-38624	2	23	6	51	.4	14	18	1527	3.94	2	2	ND	2	814	ı	2	2	69	20.41	.03	2	6	5.00	1905	.01	10	.18	.03	.08	2	5	60
RX-33825	1	84	b	89	.5	13	16	1212	4.38	43	2	ND	7	166	1	2	8	129	13.37	.04	2	5	3.99	759	.01	17	.33	.03	.04	2	5	7
RX-38626	2	45	6	49	. 2	7	13	1622	3.74	15	2	ND	2	627	1	2	2	86	17.1B	.09	3	7	.89	1845	.01	35	.46	.02	.16	2	5	180
RX-38527	1	8	12	83	. \$	36	17	1379	3.55	4	2	ND	2	1678	1	2	3	23	14.88	.01	2	2	5.05	2036	.01	9	.24	.02	.08	2	5	780
RX-38628	1	33	11	22	.2	7	2	318	1.63	13	2	MD	2	135	1	ó	2	14	1.21	.01	7	i	.65	313	.01	11	.42	.01	.14	2	5	150
R1-38629	2	38	4	65	.3	12	2	85	7.00	1848	- 2	ND	2	163	1	8	2	66	.17	.08	5	14	. 16	70	.01	17	. 49	. 12	.23	:	5	7900
RX-38630	1	37	2	56	. 2	28	8	708	1.76	33	2	ND	2	65	1	5	2	31	2.48	.04	4	10	.71	62	.01	Ģ	.47	.01	.13	2	5	9600
RI-38631	4	7	4	5	.1	2	1	14	1.02	1577	2	ND	2	19	1	18	2	b	.04	.04	3	3	.02	28	.01	14	.27	.01	.08	1	5	22000
KI-38632	1	12	1	8	. 1	6	1	46	. 87	40	2	ND	2	24	1	4	2	13	.14	.03	4	9	. 02	16	.01	ę	.38	.01	.07	2	5	56000
RI-38622	1	23	2	32	.3	19	4	543		17	2	ND	2	76	1	2	2	32	2.26	.06	6	12	.79	49	.01	15	.49	.01	.11	2	5	740
RX-38634	1	6	13	103	.2	28	13	2479	4.06	45	2	ND	2	395	1	2	7	27	13.53	.01	2.	1	4.23	61	.01	2	.36	.01	.04	7	5	6200
RI-38635	1	30	4	38	.4	17	5	593	2.09	9	2	ND	2	93	1	2	2	37	2.70	.06	6	13	1.07	59	.02	10	.49	.01	.11	7	5	425
RX-38636	1	è	7	89	.3	34	13		2.57	3	2	ND	2	419	1	2	4		11.77	. 04	2		3.97	260	.01	7	.21	.01	.07	2	5	260
RI-38637	i	12	9	176	.3	62	24			26	2	ND	2	67	1	2	10		13.51	.02	2	13	3.67	34	.01	3	.22	.01	.04	:	5	4400
RX-38638	2	109	274	103	.4	97	10			19	2	ND	2	14	i	4	2	28	.17	.07	10	110	.51	88	.05	9		.02	.08	3	15	60
R1-38639	1	57	2	60	.1	16	11	699	3.93	2	2	ND	2	109	1	2	14	117	1.45	.10	10	16	2.23	199	. 29	14	1.53	.10	.15	7	10	41
RY-38640	4	8	10	79	.3	11	13	1673	2.83	3	21	ND	2	894	1	2	2	30	20.46	.01	2	1	6.00	158	.01	5	.16	.01	.06	2	5	156000
RX-38641	1	24	5	41	.1	39	15		1.83	43	2	NB	2	94	1	4	2		2.00	.04	4	9	. 65	81	.01	17	.37	.01	.10	2	5	5400
RX-38642	1	В	10	48	. 1	17	6		2.74	710	. 2	ND	2	101	1	34	2		1.25	.01	3	4	. 41	159	.01	19	. 22	.04	.08	2	5	5900
RI-38643	1	21	4	55	.1	60	25		2.32	34	2	ND	2	100	1	3	2		1.84	.05	4	14	.61	123	.01	21	,41	.01	.10	2	5	9400
RI-38644	1	6	9	109	.3	48	17	1379	3.51	5	7	ND	2	718	i	2	10	43	8.97	.01	2	. 3	2.43	1705	.01	10	.19	.01	.06	2	5	480
RI-38645	1	178	8	76	.1	23	20	1481	5.83	22	2	ND "	2	80	1	2	2	74	. 32	.04	ė	15	.18	1423	.01	17	.79	.01	.07	7	5	70
RX-38646	i	82	11	117	.3	34		4105		195	. 2	ND	2	224	1	2.	_	57	1.08	.51	9	10	. 34	212	.01	32	1.21	.02	.16	2	5	27
RX-38647	5	27	6	8	.2	7	1		5.29	1986	2	ND	2	73	1	78	2	16	.24	.01	4	1	.14	171	.01	28	.24	.03	.08	2	5	1160
RX-38648	. 2	55	6	46	.2	6	8	1972		32	3	ND	2	643	1	9	2		20.11	.08	5	i	.37	1734	.01	18	.37	.01	.14	2	5	1200
RX-38649	2	12	15	51	. \$	12	10	1008	2.93	12	4	ND	2	540	i	2	2	44	19.43	.03	2	2	4.26	801	.01	15	.26	.02	.13	2	10	2000
STD S-1/AU 0.5	96	123	120	184		154	81		3.16	121	111	37	178	127	83	81	98	59	.56	.12	136	63	. 58	123	.07		1.50	. 23	.22	69	500	90

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.N.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: ROCK AND CONC AUS ANALYSIS BY AA FROM 10 GRAM SAMPLE. H6 ANALYSIS BY FLAMELESS AA.

DATE RECEIVED: JULY 30 1984 DATE REPORT MAILED:

aug 1/84

ASSAYER . .. DEAN TOYE. CERTIFIED B.C. ASSAYER

								CAN	IAD I A	M N	ICKE	EL	PRO.	JECT	#	6081	8-66	0826) 1	FILE	# 1	84-1	833							PA	GE	1
SAMPLE	MO PPM	CU PPN	PB PPM	ZN PPH	A5 PPN	NI PPM	CO PPH	HH PPH	FE	AS PPM	U PPM	AU PPM	TH PPM	SR PPH	CD PPM	SB PPM	BI PPH	V PPM	CA Z	P I	LA PPM	CR PPN	76 I	BA PPM	TI I	B PPM	AL I	NA :	K :	N PPM	AUT PPB	HG PPB
SI-70729	5	37	130	36	.2	. 28	9	763	12.14	12	2	2	5	41	1	2	2	446	. 48	.08	12	82	.58	1683	.32	6	. 48	.01	.03	15 1	182 0 0 1	10000
SI-70730	4	28	10	42	1.0	52	11	928	8.53	9	2	13	. 5	55	1	2	2	296	. 85	.08	12	68	1.22	1607	. 29	11	.87	.03	.05	7 :	30600 1	36000
51-70731	4	32	11	50	.3	49	13	504	7.66	31	2	ND	2	88	1	7	2	211	1.11	.08	8	55	1.46	1444	. 15	21	1.38	.04	.08	10	110	50000
SI-70732	2	19	8	28	.2	40	9	444	4.25	10	2	ND	3	56	1	2	3	119	. 97	.08	9	45	1.14	571	.14	11	. 95	.03	.07	2	3150	12000
SI-70733	2	18	11	28	.1	34	9	463	4.17	5	2	ND	3	['] 68	1	2	3	113	1.18	.08	9	32	1.05	842	.13	12	.97	.03	.07	2	4360	6200
SI-70734	2	18	5	30	.1	82	13	693	6.13	7	2	MD	6	30	1	2	2	156	.44	.06	16	49	1.71	821	.16	6	.56	.01	.03	2	370	18000
SI-70735	2	15	6	26	.1	150	19	819	5.63	3	2	ND	8	28	1	2	3	107	. 45	. 07	17	54	3.04	493	.14	5	.61	.02	.03	4	780	11000
SI-70736	3	12	8	20	.1	133	17	879	5.12	4	2	ND	14	22	1	2	3	84	.31	.06	28	43	2.71	700	.14	3	. 47	.01	.02	3	220	22000
SI-70737	2	17	2	21	.1	28	9	1308	7.20	2	2	2	14	17	1	2	2	185	.24	.05	24	45	.78	672	.21	4	. 55	.01	.02	6 2	20300	44000
SI-70738	1	9	13	22	.1	13	3	159	1.06	7	2	MD	2	12/	ı	2	2	21	1.97	.05	10	25	1.63	52	.03	6	.54	.01	.04	2	5	. 90
RI-38650	2	77	. 8	69	.1	14	16		5.57	22	2	KD	2	58	1	2	2		1.39	.18	5	8	2.01	99	.19	21	2.78	.42	.06	2	5	1100
RI-38651	2	60	6	73	.1	22	19	1015	5.41	12	2	ND	2	539	1	5	2	145	5.62	.20	5	6	2.20	41	.02	14	. 48	.02	.14	2	5	15000
RI-38652	2	22	7	78	.1	20	14	1138	4.30	10	2	KD	2	305	1	2	2	77	10.37	.07	2	3	4.32	249	.01	8	.30	.02	.08	2	5	14000
R1-38653	2	41	796	82	.1	25	17	1268	4.57	24	2	ND	2	279	1	3	2	96	8.88	.14	5	4	3.33	219	.01	38	. 45	.04	.09	2	5	1200
RI-38654	1	17	19	65	.1	14	6	652	2.96	12	2	KD	2	226	1	2	2	42	7.74	.04	2	1	3.28	76	.01	8	.21	.01	.07	2	5	4000
R1-38655	2	24	17	70	.1	17	13	1075		7	2	ND	4	201	1	7	2	131	5.99	.31	30	13	2.48	48	.02	10	. 67	.01	.06	2	5	620
RX-38656	2	26	10	77	.1	15	12	886	3.91	11	2	ND	2	362	1	2	2		10.09	.05	2	1	3.92	140	.01	6	.21	.01	.08	2	5	9000
RI-38657	1	17	5	20	.2	49	8	1618		5	2	MÐ	2	447	i	2	2		10.67	.01	2	57	5.35	1820	.01	4	.16	.01	.02	2	5	5800
RI-38658	1	7	14	28	.1	12	2	191	1.96	2	2	KD	2	23	1	2	2	36	.46	.06	5	71	.42	84	.08	5	.90	.02	.06	2	5	40
RI-38659	2	20	6	52	.2	12	6	836	3.60	9	2	MD	2	131	1	2	2	52	12.28	.04	3	11	4.69	75	.06	8	. 66	.02	.02	2	5	260
RI-38660	2	106	2	60	.1	22	17	743	5.05	2	2	MD	2	42	1	2	2		2.32	.19	6		2.26	82	. 28		2.50	.04	.06	2	5	130
RI-38661	2	94	4	66	ı.	38	18	887	5.28	. 2	2	ND '	- 2	45	1	2	2		2.64	.15	6		2.52	21	.33	27	3.76	.77	.09	2	5	140
RI-38662	2	97	2	84	.1	11	14	995	5.77	2	2	MD	2	44	1	2	2		4.02	.15	9		1.65	51	.43		3.13	. 16	.14	2	5	90
RI-38663	3	41	3	43	.3	133	20	1622	4.30	9	4	ND	2	52	1	2	4	91	5.79	.13	9		1.62	73	. 23	9	1.71	.10	.11	2	5	30
RI-38664	2	7	7	64	.7	74	17	1362	5.27	6	2	ND	2	104	1	2	2	141	6.49	.11	6	47	2.38	52	.27	11	2.60	.14	.17	2	5	20
RI-38665	1	15	17	64	.1	26	11	891	2.31	5	2	MD	4	18	1	2	2	. 41	.46	.07	14	45	.72	55	.09	7	1.44	.02	.16	2	5	30
STD S-1/AU 0.5	94	123	116	193	34.5	150	80 -		3.16	116	106	37	162	125	78	74	94	57	.56	.13	122	62	.58	120	.07		1.47	.20	.17	66	510	110

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-3 KCL-MNO3-M20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML MITH WATER.
THIS LEACH IS FARTIAL FOR Mn.Fe.Ca.P.Cr.Mg.Bá.Tí.B.Al.Na.K.W.SI.Ir.Ce.Sn.Y.Nb and Ta. Au DETECTION LIMIT BY ICP IS 3 pps.
- SAMPLE TYPE: ROCK CHIPS AUX ANALYSIS BY AA FROM 10 GRAN SAMPLE. HG ANALYSIS BY FLAMLESS AA.

DATE RECEIVED: OCT 3 1984 DATE REPORT MAILED: Oct 12/84 ASSAYER. A. CALLA. DEAN TOYE. CERTIFIED B.C. ASSAYER

CANADIAN NICKEL PROJECT # 50818 FILE # 84-2876 PAGE 1 SAMPLES 55 Sr 008 DDE 000 pps I ope ope RY-38901 430 2.78 RI-38902 25 .51 .08 38 1.05 325 2 1.92 427 2.74 106 RI-38903 30 B3 .55 .09 11 37 1.07 291 .10 5 1.76 RI-38904 26 74 11 968 4.08 2 109 2.98 .13 41 1.59 36 .35 16 2.86 .04 .07 200 RI-38905 26 14 1051 4.21 14 134 3.90 15 2.72 .14 28 1.46 40 RI-38906 15 1058 4.45 55 158 4.38 .09 22 1.68 STD C 27 1075 3.79 37 17 33 49 16 15 19 60 .44 .12 56 .88 180 .07 37 1.71 .07 .14

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.M.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK CHIPS AU* ANALYSIS BY AA FROM 10 GRAM SAMPLE. HG ANALYSIS BY FLAMELESS AA.

ASSAYER. A. ALLI. DEAN TOYE. CERTIFIED B.C. ASSAYER DATE RECEIVED: AUG 9 1984 DATE REPORT MAILED: PAGE 1 CANADIAN NICKEL PROJECT # 60817 % 60818 FILE # 84-2044 SAMPLE CO KN FE AS AU TH SR CD SB CA P CR MS BA Ħ H6 CU PB AG Ni Ü BI V LA PPB PPB Z PPM PPN PPM PPM PPM PPH PPH PPN 1 PPM PPM 1 PPM PPM PPN 5 1600000 RX38666 326 1056 2.61 28 209 23 5 193 7.91 .01 9 4.04 1208 .01 .01 R138667 7 1.52 512 .01 . 45 .02 . 07 5 15000 46 15 1671 5.23 3517 5 ND 2 238 2 94 9.68 .08 2 1 .10 5 27000 122 126 4.72 7 1.34 213 .01 . 54 .03 8138448 69 101 . 1 7 15 1351 6.61 29 5 ND 2 11 .12 3 5 2 1 1 6 1000 RX38669 176 57 .2 31 15 882 2.24 27 5 ND 2 389 1 2 117 8,26 .08 2 34 4.45 181 .01 2 . 38 .01 .01 2 5 .05 552 .01 . 20 .01 5 100000 R138670 41 1.12 3160 5 ND 2 18 60 .10 2 2 RX38671 2 . 1 135 24 1062 4.92 2 115 7.12 195 3.60 49 .02 .01 500 R138672 55 50 .1 136 25 998 5.07 14 5 ND 2 125 3 116 6.43 .11 6 143 3.87 134 .01 14 1.34 .01 .12 730 2 27 92 47 112 .59 53 1.18 401 2 2.07 2 155 220 R138673 34 73 1.1 - 5 468 3.05 5 ND 2 2 2 .10 .11 .11 . 93 8 RX38674 22 3 70 .2 21 13 685 4.36 8 5 ND 2 65 2 2 119 1.65 .21 9 65 2.07 390 .10 3 1.94 .08 .52 2 5 450 1 RX38675 .1 30 15 356 4.55 2 5 ND 2 97 . 2 182 .87 . 35 22 61 1.37 426 . 24 6 1.08 100 RX38676 32 27 285 4.50 56 1.32 3 1.13 500 R138677 33 1 .1 22 15 283 4.88 6 5 2 210 199 1.34 . 52 31 40 1.33 775 . 29 8 1.65 .19 . 83 7 110 28 15 419 4.25 ND 67 158 .86 . 36 23 50 1.55 611 . 25 2 1.04 . 09 .63 5 200 R138678 35 59 . 1 4 5 2 2 2 2 2 1 50 R138679 22 2 45 .1 38 19 501 5.23 2 5 ND 2 222 2 2 234 1.17 . 33 10 75 2.22 436 .14 2 1.57 .21 . 33 2 5 176 .91 . 35 45 1.29 1066 2 1.42 .16 .74 5 110 R138680 29 30 16 371 4.72 5 ND 2 153 22 .30 2 158 . 38 25 .91 2 .95 60 R138681 2 47 32 13 321 3.95 7 5 2 75 .84 82 645 . 23 .10 470 3.95 ND 2 163 .88 . 35 22 78 1.11 705 .32 2 1.34 . 13 .83 2 100 RX38682 28 53 .1 23 16 2 5 2 101 ı RX38683 11 79 .4 22 8 545 3.42 83 5 ND 2 144 125 .90 .10 6 40 1.07 666 .14 2 2.85 .25 1.12 40 2 35 47 54 .19 .07 23 32 .76 173 .08 2 2.48 .04 .45 70 RX38684 45 4 76 .2 53 13 290 3.74 5 ND 4 24 ł 2 2 2 5 119 . 72 . 28 30 18 1.01 343 .22 . 12 30 R138605 366 3.81 5 8 1.14 R138686 52 583 3.02 21 92 . 29 .08 77 1.19 473 . 16 2 1.97 .07 1.00 91 . 20 .07 73 1.08 337 .15 .05 1.01 50 RX38687 21 .2 535 2.90 θ 5 16 2 1.94 67 1.70 RI38688 29 3 .3 29 17 423 3.74 36 5 ND 2 297 1 10 2 129 1.62 . 26 14 965 . 26 2 3.57 .38 1.24 2 5 260 66 R138689 23 7 88 .2 42 17 832 5.02 ò 5 ND 2 103 1 2 2 144 1.97 .30 15 105 2.66 310 .16 2 2.57 .11 .40 2 5 50 37 23 85 . 25 58 .97 206 2 1.73 RX38690 . 1 25 5 302 2.88 5 2 .10 9 RX38691 71 .2 31 443 3.97 20 5 . 05 . 88 2 2.35 .06 70 . 1 101 2.37 R138692 91 37 13 1010 4.52 11 5 ND 2 70 2 116 2.17 . 26 17 70 .01 2 2.35 . 02 .09 2 5 60 5 ı R138693 14 4 54 .1 34 7 421 2.68 10 5 ND 2 21 1 8 2 70 .34 .08 8 69 1.06 194 .06 2 1.58 .03 .41 7 5 30 .14 R138694 1 114 278 104 .4 101 11 369 2.15 15 5 ND 2 13 1 6 3 31 .08 8 104 .51 98 .04 2 1.15 .01 .07 2 5 100 165 125 78 73 88 57 .56 .12 122 . 58 121 113 181 32.3 150 483 3.16 119 96 36 64 . 07 162 1.43 STD S-1/AU-0.5

852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE 253-3158

DATA LINE 251-1011

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HND3-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.M.SI.IR.CE.SM.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: PULP

DATE RECEIVED: AUG 3 1984 DATE REPORT MAILED:

aug 8/84 ASSAYER. A Solf DEAN TOYE. CERTIFIED B.C. ASSAYER

CANADIAN NICKEL PROJECT # 50818 FILE # 84-1521 (Re)

PAGE 1

SAMPLES U AU TH SR CD SB BI V CA P LA CR I PPH PPH PPH PPH PPH PPH PPH PPH PPH

RI 45465 1 38 7 127 .1 34 10 853 4.58 793 2 ND 2 66 1 2 18 111 2.87 .16 6 57 1.89 38 .34 20 3.30 .04 .07 3

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH: (604) 253-3158 COMPUTER LINE: 251-1011 DATE REPORTS MAILED LUC

DATE RECEIVED AUG 3 1984

ASSAY CERTIFICATE

SAMPLE TYPE : PULP

DEAN TOYE, CERTIFIED B.C. ASSAYER

CANADIAN NICKEL PROJECT# 60818 FILE# 84-1521 R & 84-1723 R

SAMPLE AU · OZ/T .001 45465 .001 38623 46100 .001

Bunds -Cirge & Cumpany Led 130 Pemberton Xvs. Nor'h Vancouver, B.C. Canada V7P 285 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

DATE:

REPORT: 124-2826

FROM: CANADIAN NICKEL COMPANY

17-SEP-84 PROJECT: NONE GIVEN

SUBRITTED BY: E. DEBICK

LOWER

DRDER ELEMENT DETECTION LIMIT EXTRACTION METHOD SIZE FRACTION SAMPLE TYPE SAMPLE PREPARATIONS

O1 Cu 1 PPM MULT ACID TOT DIG Atomic Absorption -100 PREPARED PULP AS RECEIVED, NO SP

)1	Cu		PP#		ACID	TOT	DIG	 Atomic Absorption		-100
	2	Zn		PPH		ACID	TOT	DIE	 Atomic Absorption .		-100
	13	ЙÜ		FFR		F. IV	101	HE	 Rionic Absorbijon		- 1 (1)
_1		A5	2	PFA	RULT	ACID	101	DIG	Colourimetric		-100
- {)5	Нg	Ş	PPB	HAO3	-HCL I	HOT E	XTE	 Cold Vapour AA		-100
		Sh	. , .	PFA		ACID	TOT	DIG :	Atomic Absorption		-100
		Au 💮	- 5	PPB	AQUA	REGI	A .	yerri. Edda	Fire Assay AA		-100
ř.,	18	5b	. 2	PPR		K F			X-RAY Fluorescence	V	-100

REPORT COPIES TO: MR. E. J. DEBICKI

INVOICE TO: MR. E. J. DEBICKI

Bondar-Clegg & Company Ltd.

130 Pumberton Kve.

North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

<u>. </u>	REPORT: 124-	2626							_ [PROJECT: NONE SIVEN	FAGE 1
	SARPLE NUMBER	ELEMENT UNITS	Cu PPB	Zn FPA	Ag PPR	As PP#	Hg PPB	St PFM	Au PPA	Sh PPM	NOTES
	P RX 38602 P RX 38623 P RX 38629 P RX 38646 P RX 38647		. 250 > 20000 40 53 25	84 590 76 115 12	0.2 25.0 > <0.1 > <0.1 <0.1 >	60 > 1000 > 1000 > 230 1000 >	5000 5000 5000 440 5000	3.5	5 15 <5 <5 <5	195 6500 33	
	P RI 42257 P RX 42260 P RI 42270 P RX 45465	,	27 30 27 32	45 83 65 157	<0.1 <0.1 <0.1 (0.3)	25 25 35 1000	5000 5000 350 130	0.6	<5 5 <5 25	20 210 105	

PR	(X 	46086	i,	44	100	0.1	210 > 5000	√5 	32
Y	X	46087		330	88	⟨0.1	57 > 5000	₹5	59
F	ĭ	46090 -		105	54	<0.1	35 > 5000	. 15	32
F	XΣ	46098	•	685¢	171	4.23	1000 > 5000	₹5	1800
PA	Ä	46100		55	66	₹0.1	25 > 5000	₹5	. , 22

Bonder-Orgg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Certificate of Analysis

REPORT: 624-2826

FROM: CANADIAN NICKEL COMPANY DATE:

24-SEP-84

PROJECT: NONE GIVEN

SUBMITTED BY: E. DEBICKI

METHOD

SIZE FRACTION SAMPLE TYPE

SAMPLE PREPARATIONS

01 Au

02

.002 OPT Αq

.02 OPT

LOWER ORDER ELEMENT DETECTION LIMIT EXTRACTION

> -150 -150

PREPARED PULP

PROJECT: NONE GIVEN

AS RECEIVED, NO SP

PAGE

Ol PCT

REPORT COPIES TO: MR. E. J. DERICKI

INVOICE TO: MR. E. J. DEBICKI

Bondar-Clegg & Company Ltd.

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Certificate of Analysis

REPORT: 624-2826

SAMPLE ELEMENT

UNITS

Αu OPT OPT

Ag

Cu PCT NOTES -

P RX 38623

NUMBER

4.20

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 P/ `NE 253-315B DATA LINE 251-1011

STD C/FA-AU

DATE RECEIVED: SEPT 18 184

DATE REPORT MAILED: (

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: P.DRILL AU++ ANALYSIS BY FA+AA FROM 10 GRAM SAMPLE. HG ANALYSIS BY FLAMELESS AA.

ASSAYER: ASSAYER TOYE. CERTIFIED B.C. ASSAYER

CANADIAN NICKEL	PROJE	CT #	60818-	14030	FILE #	84-2667	FAGE	1
SAMPLE#	AG PFM	AS FPM	SB PPM	AU** PPB	HG PPB			
RX-38773	.2	17	25	2	31000			
RX-38774	. 1	13	3	1	2700			
RX-38775	. 1	16	5	2	900			
RX-38776	. 1	15	2	2	800	•		
RX-38777	. 1	9	3	2	1800			
112 30777	• 1	7	3		1800			
RX-38778	. 1	9	3	1	1500			
RX-38779	. 1	15	3	3	700			
RX-38780	. 1	21	3	2	1400			
RX-38781	. i	16	4	1	440			
RX-38782		. 13	14	2	16000			
11X 33782	• •	. 15	7.4	~	18000	• *		
RX-38783	. 1	16	3	. 4	1600			
RX-38784	. 1	19	2	6	1200			
RX-38788	. 1	44	6	1	9500			,
RX-38789	.2	46	6	11	7800			
RX-38790	.3	49	5	2	6300			
55, 75	• ~	- 7	-	_	6300			
RX-38791	.2	54	3	1	4000			
RX-38792	. 1	41	6		10000			
RX-38793	.2	40	6	2	50000			
RX-38794	. 1	35	2	ī	1300			
RX-38795	.2	37	2	i	240			
	• •	υ,	-	•	240			
RX-38796	. 1	22	2	.1	3900			
RX-38797	. 1	13		1	1300			
RX-38798	. 4	104	2		260			
RX-38799	. 4	98	<u> </u>	2 2	160			
RX-38800	. 1	11	2 2 2 2	2	7100			
				. ~	, 100			
RX-38801	. 1	8	2	1	800			
RX-38802	.2	9	2 2 2	ī	9300			
RX-38803	. 1	2	2	1	80			
RX-38804	. 1	11	2	ī	130			
RX-38805	. 2	19	2	ī	230			
5.4. 7000.								
RX-38806	. 1	5	2	1	370			
RX-38807	. 1	14	2	1	120			
RX-38808	. 1	15	2	1	130			
RX-38809	. 1	7	2 2 2 2 2 2	1	150			
RX-38810	. 1	2	2	1	130	•		
51V 75544		_						
RX-38811	. 1	5	.2	1	120			

·• ·		•								
					. •					
	CANADIAN NICKEL	PROJE	ECT #	60818-	14030	FILE	#	84-2667	PAGE	2
	SAMPLE#	AG	AS	SB	AU**	HG				
		PPM	PPM	PPM	PPB	PPB				
	RX-38812	.2	15	2	4	100				
	RX-38813	. 1	13	2	2	20				
	RX-38814	. 1	12	2	1	180				
	RX-38815	. 1	12	2	1	330				
	RX-38816	. 1	12	8	5	11000				
	RX-38817	. 1	18	5	3	6800				
	STD C/FA-AU	6.2	42	15	54	1300				

•

•

. .-

ACME ANALYTICAL LABORATORIES LTD. 852 E.HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE 253-3158 DATA LINE 251-1011

DATE RECEIVED: DCT 1 1984

DATE REPORT MAILED: Oct. 10/8%

GEOCHEMICAL ICP ANALYSIS

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.N.SI.ZR.CE.SN.Y.NB AND TA, AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: DRILL CHIPS AUT ANALYSIS BY AA FROM 10 BRAM SAMPLE. HG ANALYSIS BY FLAMELESS AA.

ASSAYER: W. SHADEAN TOYE. CERTIFIED B.C. ASSAYER

CANADIAN NICKEL	PROJEC	CT # 60	0818-14	4010	FILE 4	84-2852	FAGE
SAMPLE#	AG PPM	AS PPM	SB PPM	AU* PPB	HG FFB		
RX 38785	. 1	75	2	5	3800		
RX 38786	.3	133	2	5	2300		
RX 38787	. 1	87	2	5	2200		

APPENDIX B

Rock Sample Descriptions and Analytical Results

	C		, .							(
T0.44500					DBO IECT	KAM Claims GEOLOG		R+	d an	D B	aath		
TRAVERS				-					Yan	<u> </u>	JULII		—
N.T.S	<u>92-1</u>			_	AREA				 _				
SAMPLE		AMPLE TY	/PE	SAMPLE LENGTH,	LATITUDE, LONGITUDE	SAMPLE DESCRIPTION	RES	ULTS	(р.р.п		/oz.p	er ton)	_
NUMBER	RX Rock, Talus	<u>SX</u> Stream Silt,	Grab, Chip,	WIDTH	and ar	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	St PF
	1	Soil	Channel	South	East/West		Hg					}	
RX 38588	Rock		Chip	7950S	1750W	Carbonate altered rock with vein material	5	0.1	9	37	5	51	2
						from the centre of the alteration zone, rock	90						
						unit is rust brown to orange on weathered							
						surfaces, carbonate vein is 10-20 cm wide,							
						alteration zone contains a minor quartz com-							
						ponent, micro carbonate veinlets are pervas-							
				,	<u> </u>	ive throughout the zone, the outcrop is high	17						
						fragmented, no pyrite is visible, cinnibar							
	1					(HgS) may be present.							
RX 38589	Rock		Chip	7925S	1750W	As above.	5	0.1	7	50	1	41	2
							50						
RX 38590	Rock		Chip	7910S	1750W	As above.	5	0.1	5	38	1	41	2
							50						
RX 38591	Rock		Grab	5250s	0+60W	Angular float (carbonate alteration), outcro	5	0.1	7	39	2_	43	_2
						is rubbled, fine-grained, orange/brown to	95						
						grey/green on fresh surface weathers to a							
					~	rust-orange brown. Carbonate veins-micro-							
						veinlets occur throughout. Ankerite is a				<u> </u>		1	
						common constituent which may be causing the							
						gossaned appearance. Quartz is a minor con-							
						stituent. Carbonate veins range from less							
						than 1 mm to 4 cm in width. The carbonate							
						consists mainly of dolomite. Pyrite occurs							
						in minor disseminations.							
)												
RX 38592	Rock		Grab	5225	0+70W	As Above.	5	0.1	5	26	1	43	_2
							1200						
	1	1	1	1	ī			1	1	1	1	1 7	1

TRAVERS	E NUMB	ER		_	PROJECT _	KAM Claims GEOLO	GIST(S) <u>B</u>	rian	R. Be	oth		—
N.T.S	92-I	-15		-	AREA	L 5250 South DATE	Ju1	y 2.	1984				
SAMPLE	S	AMPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	R	ESULTS	(р.р.г	n. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	PF	u Ag b ppm g	As ppm		Pb ppm	Zn ppm	Sb ppi
RX 38593	Rock		Chip	5225	0+85W	Nicola volcanic andesite, medium grained,		5 0.	1 3	79	6	57	2
						dark green on fresh surface, weathers grey-	. 20	0					
						green. Carbonate occurs along fractures							
						composed of calcite. Pyrite occurs as dis-						;	_
						seminated zones and along fractures (1%).							
RX 38594	Rock		Grab	5250S	630W	Angular carbonate altered float fine-grains yellow-pink on fresh surface, weathers rust	- 32	5 0.	2 6	10	1	66	2
				ļ		brown. No pyrite. Carbonate occurs as do	ľ		+	ļ			
						mite with minor calcite along microfracture	s.						—
RX 38595	Rock		Grab	5250S	800W	Agglomerate: fine-grained, dark green mati		5 0.	1 3	33	6	40	2
						is epidote rich. Clasts range in size from		5	 	 			
						0.50 cm to 4 cm. Carbonate (calcite) occur along fractures.	's						
													<u> </u>
RX 38596	Rock		Chip	5300S	1000W	Augite andesite porphyry, fine-grained, palto light green on fresh surface, weathers	e 16	5 0. 0	2 4	75	3	46	2
						grey to black. The outcrop is generally	_		<u> </u>				<u> </u>
						massive. Augite phenocrysts range from 2- in diameter. No sulphide was observed.	mm						
RX 38597	Rock		Grab	5485S	825W	Augite andesite porphyry, fine-grained, pal	e	5 0.	1 2	53	5	49	_2
	<u> </u>					to light green matrix on fresh surface,	11	0	<u> </u>	ļ			—
						weathers grey to black, outcrop is massive.							<u>—</u>
		ļ		ļ. ·		Augite phenocrysts range from 2 mm to 1 cm				ļ			_
						in diameter. Slightly magnetic.		-					-
RX 38598	Rock		Grab	5400s	530W	Angular (rubbled) carbonate alteration fine grained, orange-rust brown on both fresh &	29	5 0.	1 7	21	1	31	3
				 		weathered surfaces. Carbonate is common al		_	1			1	
	 		 			fractures and as veins. The veins commonly	_	\top	1				
	 	 				consist of dolomite & calcite along microfi		es					

	\mathbf{C}									(\rightarrow		
TRAVERS	SE NUME	FR			PROJECT	KAM Claims GEOLOGI	ST(S)	Br	ian	R. B	ooth		
N.T.S		-		_	AREA								
SAMPLE	s	AMPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(р.р.л	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ar U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	Ag ppm	As	Cu	Pb ppm	Zn	Sb pp
RX 38599	Rock		Grab	5425S	465W	Angular (rubbled) carbonate alteration fine grained, orange-brown on both fresh and weathered surface. Carbonate is common as vein	5 800	0,1	8	40	1	42	2
						(dolomite) and as microfracture fillings (calcite). Ankerite is also common.							
RX 38600	Rock		Grab	5475S	460W	Angular (rubbled) carbonate alteration fine grained, rust brown to orange brown on both weathered and fresh surfaces. Carbonate veins occur as dolomite and minor calcite.	5 450	0.2	8	25	1	51	2

	C					\mathbf{C}				(
TRAVERS	E NUMB	BER			PROJECT _	KAM Claims GEOLG	GIST(S)	B ₁	ian	R. B	ooth		!
N.T.S	92-1	_15					July						
SAMPLE	S	AMPLE TY	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RE	SULTS	(p.p.n	n. /%	/oz. p	per ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	Ag ppm	As	Cu	Pb ppm	Zn ppm	Sb pp
RX 42234	Rock		Chip	5425S	100W .	Andesite-basalt, fine-medium grained, med-			5	60	9	53	2
						ium to dark green on fresh surface, weather grey to black, carbonate occurs along fracture (calcite), weakly magnetic.	rs 20						
RX 42235	Rock		Chip	5970S	Baseline	Andesitic volcanic, fine to medium grained	. 5	0.4	6	55	 3	105	<u>_</u> ,
					JASCIANE	light-medium green on fresh surface, weath ers grey-black. Outcrop relatively massi in nature. Contains tuffaceous (lapilli) horizons. Pyrite occurs as disseminations	- 340 ve						
			,			(less than 1%).							
RX 42236	Rock		Chip	60158	35W	Andesite volcanic, fine to medium grained, medium green on fresh surface, weathers green-grey black. Contains ankerite rich carbonate veinlets ranges from less than 1 mm to 1 cm in width. No sulphide was observed.				55	1	88	2
RX 42237	Rock	 '	Grab	6065S	40W	Carbonate alteration, angular (float) fine			3	6	2	53	_2
					Rep. taken	grained, light to medium grey in color on fresh surface, weathers to rust orange bro to black. The float sample is rich in car bonate (calcite) but has been slightly sil cified. Small vugs are present that are rich in calcite. Float sample was located on moderate slope.	- i-						
		<u> </u>		 		· · · · · · · · · · · · · · · · · · ·		<u> </u>				 	

an.	C		. •			\mathbf{C}							
TRAVERS	SE NUMB	ER		_	PROJECT	KAM Claims GEOLOGI	ST(S).	Br	lan	R. B	ooth		
N.T.S	92 - I	-15		_	AREA	L 5750S DATE	July	3, 1	984				
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(p.p.n	. / %	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt,	Grab, Chip,	LENGTH, WIDTH AREA	and fec U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	1	As	Cu	Pb ppm	Zn	Sb ppr
	 	Soil	Channel	South	East/West		ppb	T					
RX 42238	Rock	ļ	Grab	6100s	43W	Carbonate alteration fragments (float) fine		0.3	5	39	9	55	_2
						to medium grained, rust brown on both fresh and weathered surfaces. There is minor carbonate veining (dolomite, calcite). Veir lets range in size from less than 1 mm to	ļ						
						5 mm. No sulphide was observed.							
RX 42239	Rock		Chip	6120S	35W	Nicola volcanic andesite, medium to fine grained, medium green on fresh surfaces, weathers grey-brown to black. Contains ankerite rich carbonate veins ranging	140	0.3	4	25	4	52	2
						from fracture fillings to veinlet (5 mm).							
RX 42240	Rock		Grab	61308	55W	Carbonate alteration angular float, fine grained rust brown on both weathered and fresh surfaces. Carbonate vein (4 cm) has mauve color to vein. Vein was slightly sil-	200	0.4	4	_16	3	52	_2
						1ceous.							

	C										(
TRAVERS	E NUMB	ER		_	PROJECT	KAM Claims	EOLOGIS	ST(S)_	Br	ian	R. B	ooth		
N.T.S				-	AREA	- (0000	ATE	July						
SAMPLE	S	AMPLE TY	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(р.р.т	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA	LONGITUDE and ac U.T.M.	Rock type, lithology, character of soil, stream silt, e Formation Mineralization, etc.	tc.	Au ppb Hg	Ag	As	Cu	Pb ppm	Zn ppm	Sb pp
RX 42255	Rock	00	Grab	South 6080S	East/West 85W	Angular carbonate float.		ppb 5	0.2	2	15	2	60	2
101 11111								210	0.2					
RX 42256	Rock		Grab	6000S	95W	Angular carbonate alteration blocks, i	ine	5	0.3	20	17	3	93	
						grained, rusty orange brown on fresh s face to rusty orange brown black on we ed surface, strike/dip: 1480/88-90°E	ur- ather-	130						
						vein, the blocks may be in place within rubble, no sulphides were observed.								
RX 42257	Rock		Grab	6000S	445W	Displaced carbonate altered Nicola vol outcrop, fine to medium grained, color fresh surface is rust brown to grey, w	r on	1200	0.1 0	18	28	2	33	8
						rust brown to white, carbonate (local cification) veins are common and range size from less than 1 mm to 10 cm. Du	in		<0.1 (Bc	25 ndar			45	20
•			·			displacement of boulders by road const								
	<u> </u>					tion no attitude could be obtained on								
						veins.								\vdash
RX 42258	Rock		Chip	5980S	460W	Outcrop of altered (carbonate + quartz cola volcanic, fine to medium grained,	•		0.1	22	27	1	61	6
	<u> </u>					brown white grey on fresh surface, wea	thers				ļ			
						to rust brown, carbonate quartz brecci	ated							
	<u> </u>					veins occur. Orientation of vein diff	icult							
						to obtain (believed to be 315 ⁰), sulphi	de les	.	ļ					<u></u>
						than 1%. Rust stain is believed to be	assoc	 						
				<u> </u>		iated with ankerite.								-
	 								<u> </u>	ļ				_
	 	 		 						-				

	C						•				(<u> </u>		
TRAVERS	E NUMB	ER		_	PROJECT	KAM Claims GEO	LOGIST	(s)_	Br	ian	R. B	ooth		
N.T.S	92-1	<u>-15</u>			AREA	L 6000S DATE		July	198	4				
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(p.p.m	. / %	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	4-	Au	Ag ppm		Cu	Pb ppm	Zn ppm	Sb
RX 42259	Rock		Chip	5950S	460W	Altered carbonate outcrop, fine grained,		5		33	52	3	60	_2
	NOCK		OHIP	37305	700%	rust brown on fresh and weathered surface. Unit is relatively more massive, no pyri		2500						
						was observed. Some quartz occurs in the							Ĺ	
						sample in the form of silicification and veins.								
RX 42260	Rock		Grab	5950S	460W	Quartz, carbonate vein, 5 cm in width, c		5	 ~	26	31	5	62	11
	 					cite, minor dolomite, quartz-silicificat	Lon,			0.5			- 00	27.0
						major vein appears to be cross-cutting.				25			83	<u>21</u> 0
	1							5000		ndar		(g)		-
RX 42261	Rock		Grab	5980S	. 460W	Quartz-carbonate brecciated vein, attitue could not be obtained, 5-10 cm wide, contains abundant quartz, no sulphide.		<u>5</u> 4300	 	15	12		35	2
RX 42262	Rock		Grab	6025S	523W	Rubble-outcrop mix of slightly carbonate	1	5	0.1	6	24	2	54	2
			·			altered volcanic to carbonate altered vo canic, fine to medium grained, rust occu- on fresh and weathered surfaces with whi	rs	210						
						along fracture surfaces, no sulphides obved.								
RX 42263	Rock		Grab	5700S	550W	Rubbled, angular, carbonate alteration f	Loat	5	0.1	7	22	1	36	2
						fine to medium grained, rust brown on franches and weathered surfaces, no sulphides. A	1	400						
	•					ite is common, calcite and dolomite are			<u> </u>					
						major constituents of the carbonate alte	ca-							
								_						
														

TRAVERS	E NUMBI	ER		_	PROJECT	KAM Claims GEOLOG	ST(S)	В1	ian	R. B	ooth		
N.T.S	92 - I	-15		_	AREA	L 6000S DATE		y 198					
SAMPLE	SA	MPLE TY	(PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RE:	SULTS	(p.p.r	n. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	Ag ppm	As	Cu	Pb ppm	Zn ppm	Sb ppi
RX 42264	Rock		Chip	5750S	460W	Rubbled outcrop of carbonate alteration.	5	0.1	16	16	2	44	2
						fine grained, rust-orange brown on fresh	2900		<u> </u>	l			
						and weathered surfaces, ankerite is a major							
						component, some veinlets exhibit an episodi	2						
						nature, no quartz is present.							
RX 42265	Rock		Chip	5820S	80W	Slightly altered Nicola volcanic to carbon- ate, fine to medium grained, fresh surface	5 150	0.1	5	120	1	53	2
						is pale green to rust brown, weathers yello	V+						
						rust orange brown, outcrop is surrounded by							
						angular carbonate alteration fragments.							
RX 42266	Rock		Chip	5800S	80W	Carbonate altered volcanic rock, fine to me	1 5	0.1	2	36	3	43	2
		-				ium grained, rust brown to orange on fresh	290						
			-			surface, carbonate with ankerite occurs as							
						fine veinlets. Disseminated pyrite is present (less than 1%).	_						
RX 42267	Rock		Chin	5800S	75W	Carbonate altered angular blocks and part-	5	0.1	11	54	2	77	2
			• 			ially carbonate altered Nicola volcanic.	1400						
						fine to medium grained, rust brown to green							
						on fresh surface to rust brown to grey on							
						weathered surface, unit is only partially							
						carbonate altered as primary volcanic fea-							
						tures are still present. Ankerite is commo	1						
RX 42268	Rock		Chip	6030S	1040W	Nicola volcanic, andesite-tuff, fine-medium	5	0,1	2	51	4	43	2
						grained, medium green, rock is aphanitic to							
						phaneritic, contains minor amygdaloidal							
						zones (filled with carbonate), no sulphide		<u> </u>	<u> </u>				
, ,						was observed, rock was non-magnetic, carbon	-						
						ate vein which strikes at 128° was present,							
						continued	1	1					

	C								\mathbf{C}										
TRAVERSE NUMBER					PROJECT	KAM Claims GEOLO	SIST(S) Brian R. Booth												
N.T.S	92-I			_	AREA	L 6000S DATE													
SAMPLE	s	AMPLE T	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RE	SULTS	(р.р.п	n. /%	/oz. p	er ton)							
NUMBER	RX Rock, Talus	Stream Silt,	Grab, Chip,	LENGTH, WIDTH AREA	LONGITUDE and or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Ai ppl	ı Ag	As	Cu	Pb ppm	Zn ppm	Sb ppi						
		Soil	Channel	South	East/West		H pp	<u> </u>				ļ	 						
RX 42268	Rock	ļ	Chip	6030S	1040W	cont'd:			ļ	_			<u> </u>						
	<u> </u>	<u> </u>				rocks tend to be carbonate rich.	_				ļ		-						
RX 42269	Rock		Chip	5900S	1205W	Nicola volcanic, andesitic crystal to lith	c :	0.	L 2	36	2	65	2						
						tuff, medium grained, medium to light gree	40		<u> </u>		<u> </u>	<u> </u>							
						in color, sample is rich in pumice fragmen	s												
						rock is non-magnetic, minor disseminated			<u> </u>		<u></u>		<u></u>						
						pyrite (less than 1%) is present.			ļ			ļ	_						
	 	 	0 1	60500	1/0017	Cool of the classical National and a state to		5 0.	10	28	2	56	47						
RX 42270	Rock		Grab	6050S	1400W	Carbonate altered Nicola volcanic, fine to	520		1 10	20	 3	36	 						
	 	 	 		-	medium grained, rust-orange brown on fresh			0.5			(-	105						
	 	ļ		 		surface, weathers the same with white carb						65	<u>1</u> 05						
	<u> </u>					ate rich coatings; dolomite rich veins occ	1r 330	(501)	nar	creg	8 .)	 	 						
						throughout the float ranging from 4 cm to	-1-		+			 	 						
				 		less than 1 mm in width, float is sub-angu	Lar.		 	 		 	 						
RX 42271	Rock		Grab	6030S	1505W	Carbonate alteration of Nicola volcanic, f	ine :	5 0.	L 13	57	1	49	_2						
						grained, rust-orange brown on fresh surfac	4		<u> </u>	ļ	ļ	<u> </u>	—						
						weathers rust-orange brown to black, carbo	느					 	┼—						
						ate microveinlets are pervasive throughout			_	ļ	ļ	ļ	 						
		_l				the unit. Ankerite is a major component,				ļ	ļ	<u> </u>	<u> </u>						
						minor disseminated pyrite (less than 1%) o	<u>:- -</u>		<u>. </u>	ļ	<u> </u>	<u> </u>	<u> </u>						
						curs in sample, outcrop is non-magnetic,			<u> </u>	ļ	ļ	ļ	<u> </u>						
						chip was taken from wallrock over a 5 m ar	ea				ļ	 	<u> </u>						
RX 42272	Rock	-	Grab	6030S	1515W	Carbonate vein, contains mauve layers whic	1	5 0.3	2 6	14	4	47	2						
	1.00.0					may represent hematite stained areas or fi	- 1												
	1					earthy cinnibar, also contains minor green													
	-					zones. Strike/dip: 130°/20°E. Vein is													
		 	1			3-4 cm in width, no sulphide apparent.			1										
			1																
		- I	1	1	ŀ	1	1		1	1	1	ı	1						

	C				\mathbf{C}													
TRAVERS	SF NUMA	ER			PROJECT	KAM Claims GEOL	GIST	GIST(S) Brian R. Booth										
N.T.S				_			July 1984											
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION				(p.p.m	. / %	/oz. p	er ton)					
NUMBER	RX Rock, Talus	SX Stream Silt,	Grab, Chip,	LENGTH, WIDTH AREA	LONGITUDE and ar U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	P	Au pb		As	Cu	Pb ppm	Zn	Sb pp				
-	 	Soil	Channel	South	East/West		P	Hg pb						\vdash				
RX 42273	Rock		Grab	6055S	1518W	Carbonate alteration vein material mauve		5	0.1	5	25	3	45	2				
		ļ		ļ		colored zones (hematite) are present thro		10										
	ļ					vein and surrounding wall rock. Strike/d	lp:											
	ļ					50/850W, parallel to fracture, vein is 6-	LO											
	-					cm in width. No sulphides are present.	-							_				
RX 42274	Rock		Chip	6055S	1518W	Carbonate alteration of Nicola volcanic.	ine	5	0.1	10	40	3	47	2				
						grained, rust-orange brown on fresh surfa-	es	30										
						to rust-orange brown to black on weathered												
						surfaces. Carbonate consists mainly of	Ī											
						dolomite, calcite, ankerite												
DV / 2275	Rock		Grab	6075S	1535W	Carbonate altered vein, mauve patches and	+	 5	0.1	j	7	1	45					
RX 42275	KUCK	<u> </u>	GLAD	00733	TOOM			.60	0.1				43					
	 			†		lenses are present through the vein and	╌┤┸	<u>ou</u>						\vdash				
	 			l		wall rock. Strike/dip: 120-140 ^o /74 ^o W.	,						 	 				
						Vein is from 4-6 cm wide, vein pinches and swells.												
			<u> </u>															
RX 42276	Rock		Grab	6085S	1540W	Carbonate vein cutting carbonate altered		5	0.2	7	15	4	41	_2				
						Nicola volcanic, mauve layers are present	in	20						 				
	.					the vein. Vein is 3-6 cm wide, contains			ļ					—				
	-					dolomite and calcite.			-					-				
RX 42277	Rock		Grab	6025S	1555W	Tuffaceous Nicola volcanic, fine to medium	+		0.1	2	41	3	59					
42277	ROCK		OLGD_	00235	42221	grained, light-medium green in color, no		30	V									
						sulphide present, carbonate veins (calcite								\vdash				
	1					common as fracture fillings.	7											
								\equiv										
	 	ļ					_			<u> </u>				 				
	 						-+						 	+				
	 													\vdash				
	1	1	T						T	Γ		T	T	T-				

TRAVERSE NUMBER								\mathbf{C}									
				PROJECT	KAM Claims GEOL	OGIST(S	: 1	Bri	ian I	R. Bo	ooth						
N.T.S.		-15			AREA		Jul										
SAMPLE		AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		_			. /%	/oz.p	er ton)	_			
NUMBER	RX Rock, Talus	SX Stream Silt,	Grab, Chip,	LENGTH, WIDTH AREA	LONGITUDE and or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	A PP	u b p	Ag opm	As	Cu	Pb ppm	Zn ppm	Sb ppi			
	<u> </u>	Soil	Channel	South	East/West		PE	-	0.1	- 00	7.0			— _			
RX 42278	Rock	<u> </u>	Grab	5970S	1720W	Carbonate vein cutting carbonate altered		5	0.1	20	18	3	42	2			
	 		· · · · · · · · · · · · · · · · · · ·			Nicola volcanics, contains lenses of pink		?									
						and mauve material. Strike/dip: 3250/70		\dashv									
	1					Vein is 3 cm in width, contains dolomite,		+									
	1 .	<u> </u>				calcite and is slightly siliceous.		+						\vdash			
DV /2270	Rock	 	Grab	5990S	1725W	Carbonate vein cutting carbonate altered		5	0.1	12	21	1	45	2			
RX 42279	ROCK		GIAD	39903	1725W	Nicola volcanics, contains zones and lens of mauve colored material, vein is 4-8 cm		5	0.1	14		Ł	42				
	 					wide, vein is composed of carbonate (dolo		\neg									
						mite, calcite) zones and is locally brec- ciated.		寸									
	 	 				Clateu.		\dashv					 				
RX 42280	Rock		Chip	5980S	1710W	Carbonate vein in angular float block clo	1		0.2	9	7	3	58	_2			
	<u> </u>	 				to outcrop, vein contains mauve-pink zone		5					 				
•						and brecciated fragments. Vein is compose of calcite and dolomite.	ed	\perp									
RX 42281	Rock		Chip	6015S	1740W	Carbonate vein, Strike/Dip??, vein is 3 c	m		0.2		28	1	52	2			
						wide, chip of RX 42280.		5						<u> </u>			
	<u> </u>			ļ				\dashv									
RX 42282	Rock		Chip	6015S	1740W	Sample of wall rock, fine grained, rust		5	0.1	31	66	3	57	32			
						brown-orange on fresh and weathered surfa	ces 1	.0					-				
RX 42283	Rock		Grab	6000S	1770W	Nicola volcanic rock, fine to medium grai	ned	5	0.1	3	55	4	52	_2			
						medium green on fresh surface, weathers		5									
						green to black. Epidote present along fr	ac-						<u> </u>				
						tures. Outcrop is fragmental.		_						 			
	 	 						\dashv					 	 			
		<u> </u>						\dashv					 	 			
	 	-						\dashv						 			
				ļ										-			

	C		, .		\mathbf{C}												
TRAVERSE	E NUMP	JER			PROJECT _	KAM Claims GEOLOGIS	sT(S).	Br	ian_	R. B	ooth						
N.T.S		_			AREA			July, 1984									
SAMPLE		AMPLE TY	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(p.p.n	n. /%	o /oz. ŗ	per ton)	, 				
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA		Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	Ag ppm	As	Cu	Pb ppm	Zn	Sb				
RX 42284	Rock		Chip	6285S	80E	Quartz-feldspar porphyry flow (andesitic- basaltic), fine-grained green matrix surround-	5	0.2	2 4	16	4	55	2				
						ing white-buff yellow white quartz and feld-											
						spar phenocrysts, outcrop weathers grey-green feldspar laths reach a length of 6 mm and the quartz phenocrysts reach 1 cm in diameter											
						Disseminated pyrite (1%) was observed, minor white quartz vein parallel to fractures was part of sample.											
RX 42285	Rock		Chip	6290S	50W	Andesite-basalt to quartz-feldspar porphyry, fine to medium grained, green on fresh sur-	5	0,1	2	17	3	77	2				
						face, weathers grey-brown. Outcrop is mas- sive in appearance. Pyrite occurs as dis-											
						seminated grains (4%). Carbonate occurs a- long fractured surfaces as calcite.											
RX 42286	Rock		Chip	6275S	100W	Carbonate altered Nicola volcanic, fine grained, yellow-brown to green on fresh surface, weathers yellow to brown. Carbonate veinlets occur throughout but are less abundant.	480		7	43	6	49	2				
RX 42287	Rock		Grab	6280S	130W	Carbonate alteration (angular float) fine	5	0.1	2	13	3	64	F ₂				
NA 7220/	NOCK					grained, rust brown on both fresh and weathered surfaces. No sulphide observed.	70										
RX 42288	Rock		Grab	L 6250S		Angular carbonate altered float, fine grained white to rust brown. Sample taken of vein material (dolomite and minor calcite and ankerite).	5 3500	0.1	2	19	7	51	2				

TRAVERSE NUMBER										July 1984										
N.T.S. 92-I-15			- Deamble				RESULTS (p.p.m. /% /oz.					25 122	_							
SAMPLE NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	SAMPLE LENGTH, WIDTH AREA South	LATITUDE, LONGITUDE and or U.T.M. East/West	SAMPLE DESCRIPTION Rock type, lithology, character of soil, stream silt, etc Formation Mineralization, etc.	ε.	Au	Ag ppm	As	Cu	Pb ppm	Zn ppm	Sb pp						
RX 42289	Rock		Chip	6270S	555W	Nicola volcanic, fine-grained, grey to b	lack	5	0.6	30	115	1	58							
						on both surfaces, disseminated sulphide curs throughout (less than 1%).		140												
RX 42290	Rock		Chip	6250S	550W	Ditto RX 42289.		5	0.3	19	67	1	52	2						
		ļ						300	-				<u>.</u>	 						
RX 42291	Rock		Grab	6210	540W	Carbonate alteration (angular float) fir grained, white-pink on fresh surface, we ers orange brown to black. Carbonate is	eath-			9	29	1	42	7						
						mon as dolomite, calcite and ankerite.														
						occurs within the network, trace pyrite present (less than 1%).														
RX 42292	Rock		Grab	6490S	605W	Angular carbonate altered Nicola volcani (float), fine-grained, rust-orange brown	on	· 5	0.1	6	57	4	55	2						
						both fresh and weathered surfaces. Carb veinlets and microveinlets are common.	onate													
RX 42293	Rock		Grab	6470S	605W	Ditto RX 42292.		5 2700	0.1	10	29	1	68	2						
RX 42294	Rock		Grab	64558	605W	Ditto RX 42292.		5 650	0.1	32	56	1	60	2						
RX 42295	Rock		Chip	6480S	580W	Carbonate altered, volcanic, fine-graine rust-brown to green on fresh surface, we	•	5 160	0.3	31	43	1	61	2						
	ļ	ļ			ļ	ers grey to black. Carbonate alteration			<u> </u>					 						
		 		 		less intense. Area represents the outer			 				ļ	-						
	 	 	1	 		fringe of the alteration zone. Outcrop			 		 			+						
	 	 				fragmental, veinlets range from 1-3 mm i width and are randomly oriented.	<u>n</u>		 		1									
	 	 	 	1		and are removally or removed			†		†		1							

C . . .

 \mathbf{C}

TRAVERS			1	_	PROJECT _		GEOLOGIS				R. Bo	ooth		
N.T.S	92 - I	-15		The state of the s	AREA	L 6500S	DATE	July	1984					
SAMPLE	S	AMPLE T	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(p.p.rr	. /%	/oz.p	er ton	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, a Formation Mineralization, etc.	etc.	Au ppb Hg ppb	Ag ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	S1 PI
RX 42296	Rock		Chip	6430S	575W	Carbonate altered volcanic, fine-grain	ed,	5	0.2	13	39	5	37	4
						rust-orange brown to green, weathers r	ust-	4300						
						brown to black. Carbonate occurs as m	icro-							
						veinlets to veins ranging from 4 mm -	8 cm in							
						width. Carbonate occurs as dolomite a	nd cal-							
						cite.								
										ļ				
RX 42297	Rock		Chip	6425S	575W	Carbonate (quartz minor) vein cutting	the	5	0.3	_11	21	8	46	1
						alteration zone, fine-grained, yellow	to	3500	<u> </u>					<u> </u>
						buff white. Quartz occurs as microvei				ļ				<u> </u>
						Vein was 6-8 cm in width. Strike/dip:	155°/							_
						75°W and is parallel to fracture syste	m. No							_
				ļ		sulphide was present. Thin Section.		L						
								<u></u>	 					↓
RX 42298	Rock		Chip	6540	120W	Partially altered quartz-feldspar porp	hyry	5	0.1	3	_17	1	61	2
				ļ		fine-grained, green matrix, weathers h	rown	260	<u> </u>					
	1					to black. Phenocrysts consist of roun	ded							
				<u> </u>	ļ	quartz-feldspar phenocrysts.		ļ	<u> </u>	ļ				
			<u> </u>	ļ					ļ	ļ			<u> </u>	—
RX 42299	Rock		Chip	6500	85W	Carbonate altered volcanics, fine-grai	ned,	5	0.2	2	49	3	34	 2
					ļ	rust-brown to green on fresh surface,		s420	ļ	ļ				1-
		ļ		ļ		rust-brown to grey. Disseminated pyri		ļ		ļ				
	<u> </u>					grains occur (less than 1%). Carbonat	e occur	-	ļ	<u> </u>			<u> </u>	<u> </u>
	<u> </u>		<u> </u>	ļ		as veinlets and microveinlets consisti	ng of		<u> </u>					
	ļ		ļ. <u> </u>			dolomite and calcite.			<u> </u>	ļ			ļ	ــــــــــــــــــــــــــــــــــــــ
	<u> </u>				ļ	,	· · · ·	ļ						
RX 42300	Rock		Chip	6470S	60W	Carbonate alteration contact with fres	·	1	0.2	2	_47	6	49	1_2
						volcanic quartz-feldspar porphyry. Fi		270	ļ	<u> </u>			ļ	-
		ļ	ļ	<u> </u>	<u> </u>	grained, rust orange-brown on fresh su		 					ļ	4
			<u> </u>	 		weathers grey black to rust brown. Ca			<u> </u>				<u> </u>	
	ļ			 		veinlets range from less than 1 mm - 5			<u> </u>		<u> </u>		ļ	4
	<u> </u>		ļ	 	ļ	width, compositionally the veins are d	olomite	<u> </u>		ļ				1
	1		l	1		and calcite.		1	<u>L</u>	1	l		1	1

 \mathbf{C}

	C									(
TRAVERSI	F NUME	IFR			PROJECT_	KAM Claims GEOLOG	(2)T21	B 1	rian	R. P	ooth		ļ
N.T.S	92-I				AREA			y 198					
SAMPLE	S	AMPLE TY	YPE.	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION				n. /%	o /oz. r	per ton)	<u>,</u>
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA	LONGITUDE and by U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	Ag ppm	1	Cu	Pb ppm	Zn	Sb ppi
RX 45463	Pock	30	Chip	South 6450S	East/West 50W		1		1 4	38	3		├ , '
	NUCA		CHIP	.04,003		Ouartz-feldspar porphyry, fine-grained, gree on fresh surface, green to grey on weathered surface. No pyrite observed.				36	3	61	
RX 45464	Rock		Chip	6450S	45W	Carbonate alteration of Nicola volcanics fin	ie 5	0.1	1 2	8	8	61	
						to medium grained, brown to orange on both	420						匚 '
	<u> </u>	<u> </u>			1	surfaces. Highly fractured and sheared in		<u> </u>	'	<u>'</u>	'		'
	<u> </u>	<u></u>	<u> </u>	'		outcrop. Carbonate veins and veinlets occur				<u> </u>			'
	Ĺ'	['	<u> </u>			ļ		<u>'</u>	<u> </u>		<u> </u>
RX 45465	Rock	<u> </u>	Chip	6250S	855W	Tuffaceous volcanic, medium grained, light	15	0.1	1 721	34	<u> </u>	126	2
	<u> </u>	<u> </u>	1	<u> </u>	1	green to grey on fresh surfaces, weathers	60			'			
	Ĺ		<u></u>		<u>[</u>	grey to black. Carbonate is minor, pyrite	0.00	0.1	793	38	1	127	2
	<u> </u>				<u> [</u>	occurs as disseminations and as minor frac-	02/1	on ((Rean	alys	is) (Au ass	ayed
	<u> </u>			<u>'</u>	<u> </u>	ture fillings (less than 1%).			31000				
	['								ndar		1		
RX 45466	Rock		Chip	6275S	1160W	Tuffaceous volcanic, fine-medium grained,	5		1 15			57	2
				<u> </u>		light grey-green on fresh surface, weathers	130			'			
						grey to black. Outcrop is generally massive				'			
					<u></u>	Carbonate veinlets (2 mm); pyrite occurs as			'	<u> </u>			
				<u></u>	<u>'</u>	disseminations (less than 1%).	- 1:			<u> </u>	<u> </u>		_
RX 45467	Rock		Chip	6315S	1260W	Tuffaceous volcanic, fine-medium grained,	5	0.1	12	59	1	42	2
	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	light grey-green on fresh surface, weathers	10			<u> </u>	<u> </u>	لــــا	<u></u>
					1	grey-black. Outcrop is massive, pyrite occu	rs			<u> </u>	'		
						as disseminations.				'			
	Ĺ			'					'	'			
RX 45468	Rock		Chip	6195S	1555W	Carbonate altered volcanics, fine grained,	5	0.1		43	2	43	3
	<u> </u>				1	rust-orange brown on fresh surface, weathers			<u> </u>	'	'		
	<u> </u>	ļ. <u>.</u>		<u> </u> '	 '	rust-orange brown to black. Carbonate veins			<u> </u>	'	<u> </u>		
					↓ '	and veinlets are common. Carbonate breccia-			<u> </u> '	<u>'</u>	 '	<u> </u>	1
	<u> </u>			<u> </u>	 '	ted zones occur and consist of dolomite and			'	<u>'</u>	<u> </u>	1	1_
	<u> </u>			<u> </u> '	<u> </u>	calcite.			'	'	<u> </u>	<u> </u>	<u></u>
1	1		1	,	1 '	1			'	1	1 '	1	1

TRAVERSE NUMBER				_	PROJECT _	•	EOLOGIST				R. B	ooth		_
				SAMPLE	LATITUDE,	SAMPLE DESCRIPTION					/%	/07 D	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and av U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc Formation Mineralization, etc.	·	Au		As	Cu	Pb ppm	Zn ppm	Sb ppr
RX 45479	Rock		Chip	6185S	1550W	Carbonate alteration of Nicola volcanics		5	0.1	5	65	1	36	4
						(footwall), fine-grained, rust-orange br		90						
					•	on fresh surface weathering rust to blac	1							
						Carbonate occurs as veinlets and microve								
						in volcanics.								
	1					TH VOICEMIZED								
RX 45480	Rock		Grab	6185S	1550W	Carbonate vein, 12 cm in width, fine-gra	ined.	5	0.2	5	30	2	41	4
AM 12100	, MOUNT		0.00	0_000		vellow to earthy pink to mauve color, we		40						
						ers orange to rust brown. Vein is compo		40						
						of dolomite and minor calcite and quartz								
						The state of the s					, .			
RX 45481	Pock	<u> </u>	Chip	6185S	1550W	Carbonate alteration of volcanics (hangi	ne	5	0.1	9	44	1	34	4
WW 4 14UI	I ROCK		- Child	01030	1330	wall) fine-grained, rust orange brown on		120						
	1					fresh surface, weathers rust brown. Sam		4 E V						
						contains several small carbonate veinlet								
						parallel to major vein.								
RX 45482	Rock		Chip	6240S	1800W	Tuffaceous volcanic, medium-fine grained	1.	5	0.1	5	59	1	52	_2
						green on fresh surface, weathers grey-gr	•	. 5						
						fragments are less less than 2 mm. Pyri	7 1							
						occurs as disseminations and patches (le	ess							
						than 1%).								
	<u> </u>								<u> </u>					
RX 45483	Rock		Chip	6250S	1860W	Tuffaceous volcanic, medium grained, gre	een on	5	0.1	9	65	1	59	_2
- KA 92302	ROCK		VALUE OF THE PROPERTY OF THE P	02300	1	fresh surface, weathers grey to black.		5						
·						crop is massive. Minor pyrite occurs (1								
RX 45484	Rock		Chip	6265S	2015W	Agglomerate to volcanic breccia, fine-gr	ained	5	0.1	8	29	1	47	2
						green matrix (probably andesitic in comp		5						
						tion). Clasts and fragments are varicol								
						and range in size from less than 1 cm -	3 cm							
						in diameter.								
			1											_

	C									(\sim		
TRAVERS	E NUMB	ER		_	PROJECT _	KAM Claims GEOLOG	IST(S)	Br	ian	R. B	ooth		
N.T.S	92-1	-15		_	AREA	6250S, 6500S DATE	July	1984				***************************************	
SAMPLE	s	AMPLE T'	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RE:	SULTS	(p.p.n	n. /%	/oz. ç	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channei	LENGTH, WIDTH AREA	LONGITUDE and or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	ppb Hg	Ag ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	Sb ppi
DY /5/05	D1-	3011	 	South	East/West	Acclements to male and leaves a male male	ppb	0.1	4	63	1	63	- ,
RX 45485	Rock	-	Chip	6500S	2035W	Agglomerate to volcanic breccia, medium to coarse grained. Fragments reach a size of	5		4	0.3	. .	103	 -
	<u> </u>	ļ · · · · · · · · · · · · · · · · · · ·				3-4 cm but are generally from 0.50 mm to 1 c		1	<u> </u>	†		1	
		<u> </u>				The unit is generally green on fresh surface		1					
						and weathers grey to green.							
						and weathers grey to green.							
RX 45486	Rock		Chip	6495S	1840W	Ditto RX 45485.	5	0.1	11	58	3	60	2
101 13 100	1.00.			1			10						
	,												
RX 45487	Rock		Chip	6525S	1780W	Andesite to basalt, fine to medium grained,	5	0.1	16	63	1	58	_2
						green on fresh surface, weathers grey to	5						
	ļ					black. Sample contains hematitic zones, mir	01						
						carbonate fracture fillings and veinlets.		↓	ļ	 		<u> </u>	
	<u> </u>						_	 		ļ	ļ	 	-
RX 45488	Rock	<u> </u>	Chip	6525S	1625W	Ditto RX 45487.	5	0.1	10	57	1	49	1 2
	ļ	<u> </u>	ļ				30_	+		 	 	 	├-
	 	 		(5000	1555		5	+	9	1,-	—	+	├ 。
RX 45489	Rock		Chip	6500s	1555W	Ditto RX 45487.	60	0.1	1 9	45		49_	1-2
							1.00	+				†	<u> </u>
RX 45490	Do ala		Ch 4-	6495S	1350W	Tarilli tuff to acclements, mailing to accura	_ 5	0.2	9	70	—	54	
KA 45490	ROCK	1	Chip	04935	T330M	Lapilli tuff to agglomerate, medium to coars grained, green on fresh surface, weathers gr			1 -	1 70		134	
	<u> </u>	-	 	·		to black. Carbonate occurs as veins and vug		+		†		†	<u> </u>
						filling.		1	1	1			
		†						1		1			
RX 45491	Rock		Chip	6520S	1080W	Tuff, medium grained, light to yellow green,	5	0.1	15	48	1	71	2
141 42421	ROCK		ULLE	10.72.00		weathers grey-black. Carbonate occurs as	280	$\neg -$					
						veinlets and as vug filling. Fragment size				1		1	
	1	1				ranges from 3 mm - 3 cm in diameter.							
	<u> </u>												
										,			
										<u> </u>			
				1	I		i	1	1	1		1	1

	TRAVERSE NUMBER					\mathbf{C}								
TRAVERS	E NUMB	ER		_	PROJECT _	KAM Claims GFO	LOGIS	T(S).	Br	ian	R. B	ooth		
N.T.S	92-1	-15	•		AREA	6500S 6000S DAT	_		1984					
SAMPLE	s	AMPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(p.p.n	1. /%	/oz.p	er ton))
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and by U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	-	Au	Ag ppm	As	Cu	Pb ppm	Zn	Sb pp
RX 45492	Rock		Grab	5910S	1400W	Angular carbonate altered Nicola volcanic	-	<u>5</u>	0.1	8	38	3	37	6
						float, fine grained, orange-rust brown on fresh surface, weathers rust brown to bla Carbonate veins are minor, microveinlets	ck. are	100						
						pervasive. Carbonate consists mainly of cite.						-	·	
RX 45493	Rock		Grab	5895S	1385W	Angular carbonate vein material (float) f grained, white to buff. Contains minor p to mauve lenses. Carbonate (calcite) mic veinlets are pervasive. Quartz occurs in minor proportions as silicification.	ink ro-	90	0.2	6	6	3	44	6
RX 45494	Rock		Grab	5880S	1380W	Angular carbonate (float) vein material, grained, white on fresh surface, weathers rust orange brown; contains minor pink z		5 300	0.2	22	5	3	33	
						KAM/.IEFF Claims				<u> </u>				<u> </u>
RX 45495 R	Rock		Grab	5885S	1375W	Angular carbonate vein material (float), fine-grained, white-pink-mauve on fresh s face, weathers rust brown (ankerite). Ca bonate veinlets are also present. Vein c sists largely of dolomite and minor calci	r- on-	5 180	0.1	5	4	1	39	7
RX 45496	Rock		Chip	6485S	450E	Nicola volcanic with minor tuffaceous hor medium to coarse grained, dark green on f surface, weathers grey-black. Pyrite occas minor disseminations (less than 1%).	cesh		0.1	25	108	4	59	2
			,											<u> </u>

	TRAVERSE NUMBER												
TRAVERSI	E NUMB	ER			PROJECT	KAM/JEFF Claims GEOLOGIS	ST(S)_	Вт	ian	R. B	ooth		
N.T.S		-15	•			6000S. 6500S. 7250S. 7500S DATE							
SAMPLE	S	AMPLÉ T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(р.р.п	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and a U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au ppb Hg ppb	ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	Sb ppm
RX 45497	Rock		Grab	6495S	150E	Angular carbonate altered Nicola volcanic.	5	0.	8	-73	1	51	<u>3</u>
						fine-grained, rust orange brown to grey green on fresh surfaces, weathers rust orange brown Carbonate veinlets and microveinlets are com-	ļ)		-			
						mon.					: 		
RX 45498	Rock		Chip	7225S	360E	Nicola volcanic andesite, fine-grained, grey- green on fresh surface, grey on weathered. Sample contains plagioclase phenocrysts.	60	1	16	117	1	64	2
RX 45499	Rock		Chip	7450S	215E	Nicola volcanic andesite, fine-grained, grey green matrix on fresh surface, grey to black on weathered. Contains crystalline plagio-	1		13	105	1	53	2
RX 45500	Rock		Chip	7660S	385E	Clase and epidote. Nicola volcanic, fine-grained, grey green on	5	0.1	10	154	1	63	
	NOCK		Onip	70005	3031	fresh surface, weathers grey-black. Sample contains plagioclase phenocrysts (laths) and crystals of hornblende often pyroxene. Pyrite occurs in minor amounts (less than 1%)	30				-		
				 				↓	ļ			 	-

	C					\mathbf{C}						\mathbb{C}		
TRAVERSE	E NUMB	ER			PROJECT _	KAM/JEFF Claims GEO	LOGIS'	T(S)_	Br	ian	R. B	ooth		
N.T.S		-15	•			•	Έ					-		
SAMPLE	S	MPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	····	RES	ULTS	(p.p.n	1. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	<u>SX</u> Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		Au ppb Hg ppb	Ag ppm	As	Cu	Pb ppm	Zn	Sb ppn
RX 46013	Rock		Chip	6790S	105W	Carbonate (minor quartz) vein cutting al Nicola volcanics, fine-grained, buff whito yellow, weathers brown to rust brown. Finely disseminated pyrite is present in	tered te	5 90	0.	2	8	1	64	5
						trace quantities. Veins is 6-8 cm wide has an attitude of Strike/dip: 150-160° 75°E, cinnabar may be present in earthy within the vein.	and /40-							
RX 46014	Rock		Chip	6790S	105W	Quartz vein; Strike/dip: 160°/40°E. The sample was taken from a trench. Vein pinand swells, the width ranges from 2-4 cm	nches	5 _20	0.		10	1	22	6
RX 46015	Rock		Chip	6790S	105W	Carbonate altered Nicola volcanic (foot to vein), fine-grained to medium grained pink to mauve on fresh surface, contains bundant carbonate veinlets surrounded by	a-	5 50	0.	6	43	2	50	7
RX 46016	Rock		Chip	6790S	105W	San envelopes. Hanging wall above trench of carbonate a		5		2 6	3	1	77	3
						tered Nicola volcanics generally dolomitrich and containing minor carbonate breczones.		290						
RX 46017	Rock		Grab	6785S	95W	Carbonate vein, Strike/dip: 150°/62°E, ting carbonate altered volcanics. The vertices and swells from a width of 3 cm 10 cm.	ein	5 110	 '''	2 2	2	5	82	2

TRAVERS				-	PROJECT		OLOGIS1				R. Вс	oth		
SAMPLE		AMPLE T		SAMPLE	LATITUDE,	SAMPLE DESCRIPTION					/%	/oz.pe	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	1	Au	Ag	As ppm	Cu	Pb ppm	Zn ppm	Sb ppi
RX 46018	Rock		Chip	6750S	125W	Nicola volcanic feldspar porphyry flow.		.5	0.1	3	16	4	67	2
						grained, green-grey matrix, weathers bro		50						
					•	grey. Feldspar phenocrysts are tabular generally less than 5 mm in length.								
RX 46019	Rock		Chip	6735S	725W	Carbonate altered Nicola volcanic (outcr	rop	5	0.1	27	95	3	59	2
						is rubbled), fine-grained, rust orange to on fresh surface, weathers rust brown. bonate occurs as veinlets and microveinless.	Car-	490					•	
		,				consisting of dolomite and minor calcite								
RX 46020	Rock		Chip	6700S	1100W	Nicola volcanic agglomerate, medium to ograined, green to grey on fresh surface,			0,1	30	23	4	69	_ _ 2 _
•						thers grey. Outcrop is generally massiv	ve.							
RX 46021	Rock		Chip	6740S	1535W	Nicola volcanic agglomerate, medium-grai	-	5 10	0.1	10	83	1	68	2
						grey to green on fresh surface, weathers grey to black, generally massive.	5							_
RX 46022	Rock		Chip	6900S	1250W	Carbonate altered Nicola volcanic, fine-		5	0.1	9	39	1	49	4
						grained, rust brown in color, weathers trust brown color, Volcanics are highly		390						
						fractured and contain minor pyrite (less	s							
						than 1%). Sample taken from trench.								
RX 46023	Rock		Chip	6900S	1250W	Carbonate-quartz vein cutting carbonate	· ·			16	15	2	44	4
						tered Nicola volcanics, fine-grained, bu white to brown on fresh surface, weather	rs	460						
				ļ		brown. Vein contains up to 1% dissemina								
	<u> </u>					pyrite. Main vein contains small lenses quartz which exhibit slight episodic nat								

	TRAVERSE NUMBER					\mathbf{C}							
TRAVERS	E NUMB	ER		_	PROJECT	KAM/JEFF Claims GEOLOGIS	ST(S)-	Вт	ian	R. B	ooth		
N.T.S	92-1			_	AREA	·							
SAMPLE	S	AMPLE T	′PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(p.p.n	1. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt,	Grab, Chip,	LENGTH, WIDTH AREA	LONGITUDE and or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au ppb	Ag ppm	T	Cu	Pb ppm	Zn ppm	Sb ppn
		Soil	Channel	South	East/West		Hg ppb		ļ				
RX 46024	Rock		Chip	6900S	1250W	Carbonate altered Nicola volcanics, fine-		0.3	9	28	2	43	7
				<u> </u>		grained, highly fractured, brown to green on	1		 				
				_		fresh surface. Carbonate veins and veinlets	l .	ļ	ļ	· ·		 	
			·			common. Pyrite occurs as disseminated grain	\$		ļ			 	
						(less than 1%).	ļ	<u> </u>	├	ļ			—
								<u> </u>	 		-	 	
_RX_46025	Rock		Chip	6880S	1270W	Carbonate altered Nicola volcanic, fine-	5	0.1	2	19	3_	30	5
			ļ			grained, buff white-yellow-grey on fresh	440		 				
	<u> </u>					surface, weathers orange rust brown. No	├		-			 	
	<u> </u>			<u> </u>		pyrite observed.			 	ļ		├	
	 	ļ							╁				— .
RX 46026	Rock		Chip	6880S	1270W	Quartz-carbonate vein, which cuts altered	<u> </u>	0.2	5	23	4	42	 4
	 					Nicola volcanics, vein is fine-grained, buff	560			ļ		 	
	<u> </u>					white to yellow and has an attitude of	}		-			 	
						Strike/dip: 110°/72°N.	├ ─					 	
				60000	107011	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.1	8	34	1	29	— 8
RX 46027	Rock	<u> </u>	Chip	6880S	1270W	Carbonate altered Nicola volcanics (foot wal to vein), fine-grained, rust brown on both	610	1	1 8	74		- 63	"
	<u> </u>					fresh and weathered surfaces. Carbonate	0.0						
***************************************						veinlets and microveinlets are common.		 					
	 					VCIIIICO GIA MICEVYCIIICO GIA COMMON		<u> </u>					_
RX 46028	Rock		Chip	6900S	1250W	Ouartz vein which cuts altered Nicola volcan	5	0.3	6	122	3	12	4
NA 40020	ROCK		CHIP	0,000	123011	ics. The vein is approximately 2-3 cm wide	80						
						and contains up to 1% pyrite. Several small							
	<u> </u>		<u> </u>			veinlets are also present and are less than		1					
		<u> </u>		·		1 cm wide.							
			1										
RX 46029	Rock		Chip	6950S	1200W	Carbonate alteration of Nicola volcanics	5	0.2	6	29	3	43	5
						fine-grained, rust brown-white on fresh sur-	920						
	<u> </u>					face, weathers rust-brown to black. The out							
						crop is highly fractured. Minor carbonate							
						(dolomite) veinlets are present within the							
	1					sample.							

	TRAVERSE NUMBER			-		•	OLOGIS				R. Bo	ooth		
				SAMPLE	LATITUDE,	SAMPLE DESCRIPTION					/%	/oz.pe	r ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc Formation Mineralization, etc.		Au	Ag	As ppm	Cu	Pb	Zn ppm	Sb ppr
RX 46030	Rock		Chip	7000S	235W	Plagioclase porphyry, fine-grained, gre	en		0.2	9	31	1	51	 2
AGE TOUS	ROOM		<u> </u>			(dark) matrix surrounding fine feldspar		10						
	 	····				phenocrysts. The phenocrysts range fro								
						4 mm - 3 mm in length, Outcrop weather								
						grey to black.						· · · · · · · · · · · · · · · · · · ·		
						ELEY LU DIGLA								
RX 46031	Rock	•	Chip	6995S	270W	Carbonate altered Nicola volcanics, fin	ie-	5	0.1	4	29	1	53	2
100 400 54	<u> </u>		0	<u> </u>		grained, rust brown on fresh surface, w		1300						
						thers rust orange brown. Unit is highl								
						fractured and sheared. Carbonate (dolo	- 1							
				<u> </u>		occurs as veinlets.							·····	
				ļ										
RX 46032	Rock		Grab	6995S	270W	Carbonate vein (dolomite) with minor si	lici-	5	0.4	28	147	4	57	
- KA 480.32	RUCK	-	GLAD	02225		fication, fine-grained, pink to yellow		6200			77 11			
				 		white on fresh surface, weathers yellow		<u> </u>	·					
	<u> </u>			<u> </u>		rust brown. Veins attitude is Strike/d								
	·			<u> </u>		$140^{\circ}-130^{\circ}/60^{\circ}-66^{\circ}$ E, it is $10-30$ cm wide								
						contains up to 1% pyrite.	. and							
				<u> </u>		CONTRACTOR OF TO TO DYLLE.								
RX 46033	Rock		Chip	6995S	270W	Altered Nicola volcanic (plagioclase po	rphyry	7) 5	0.3	15	22	4	39	₂
141 40033	1000					fine grained, medium green on fresh sur		900						
				 		weathers brown. Many of the plagioclas		700						
				 	ļ,									
		 	 	· · · · · · · · · · · · · · · · · · ·		phenocrysts are shattered. Minor veinl of calcite are also present.	ers							
		 		<u> </u>	 	or carcice are also present.			 					
		 	 	71650	20.511				0.5	3	6		59	5
RX 46034	Rock		Grab	7165S	325W	Carbonate (dolomite) vein (with some qu				3			- 39	
			ļ	<u> </u>		fine-grained, rust brown, yellow to pin		1200						
				 		fresh surface, weathers rust brown. Th			 					
	 	1		 		vein appears slightly banded. Vein Str			 					
	 	 		 	 	dip: 115°/60°E and is 5-10 cm in width			-	 				
	 	 	 	<u> </u>					 					-
			 	 	 				 	 				
		 	 	+	-				 			\vdash		
		. *												

	TRAVERSE NUMBER					\mathbf{C}							
TRAVERS	E NUMB	ER		_	PROJECT _	KAM/JEFF Claims GEOLOG	ST(S).	B ₁	rian	R. B	ooth		
N.T.S	92-I	-15		_	AREA	•							
SAMPLE	S	AMPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	I RES	SULTS	(p.p.n	. /%	/oz.p	er ton)	-
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	Ag ppm	T	Cu	Pb ppm	Zn ppm	Sb ppi
RX 46035	Rock		Chip	7140S	340W	Slightly altered Nicola volcanic, fine-grain		0.3	3 2	30	2	51	
- Tur 40033	NOCK		ONIP	71400		ed, rust brown to green to mauve, sample weathers rust brown to grey. The carbonate	10	7		20		- 31	<u> </u>
						alteration is less intense. Original volcan	_						
						ic signatures are relatively intact.							
RX 46036	Rock		Grab	7140S	340W	Carbonate-quartz breccia vein cutting altere Nicola volcanics, fine-grained, carbonate	d 23	0.2	2 2	6	2	42	4
						vein material surrounds quartz breccia frag-							
				ļ		ments. Vein has an attitude of Strike/dip:		ļ	ļ				
						20/650E with a width of 2-4 cm. Manganese	ļ	ļ	ļ				
						stain is common. There are lenses of pink t	- L	ļ	-				
	<u> </u>					mauve material within sample,	-		 				
RX 46037	Rock		Chip	7140S	340W	Carbonate altered Nicola volcanic, fine-graied, brown on fresh surface, weathers rust	n- 80	0.2	2 3	35	1	54	3
						brown. Sample contained minor carbonate	1-"						
						veinlets less than 1 cm in width.							_
RX 46038	Rock		Chip	7750S	130E	Augite andesite, fine-grained, dark green on		0.1	9	79	5	49	2
						fresh surface, weathers grey. Unit is generally massive and contains up to 1% pyrite.	60						_
RX 46039	Rock		Chip	7335S	145W	Lapilli tuff, medium grained, green to olive	1	0.1	2	40	1	94	2
	· · · · · · · · · · · · · · · · · · ·					green on fresh surface, weathers grey to	130	-					
		<u> </u>		 		brown. Outcrops are generally moderately fractured. Pyrite occurs as disseminations	+		 				
		<u> </u>				and films (less than 1%).	1	 	 				
						and IIIms (less than 1%).	1	 	 				,
RX 46040	Rock		Chip	7210S	205W	Lapilli tuff to agglomerate, medium to coars		0.1	7	72	9	83	_ 2
	 	<u> </u>				grained, green to reddish fragments ranging	. 70	1					_
						from 5-32 mm in size. Pyrite occurs as disseminations in some fragments.							

PROJECT KAM/JEFF Claims GEOLOGIST(S) Brian R. Booth TRAVERSE NUMBER _ 92-I-15 AREA . 7250S, 7750S July 1984 N.T.S. DATE ___ SAMPLE LATITUDE, SAMPLE SAMPLE TYPE SAMPLE DESCRIPTION RESULTS (p.p.m. / % /oz. per ton) LÈNGTH, LONGITUDE Rock type, lithology, character of soil, stream silt, etc. NUMBER RX SX Au Ag As Cu Pb Zn Sb MIDTH and New Formation Rock, Stream Grab, ppb ppm ppm ppm ppm ppm ppm AREA U.T.M. Mineralization, etc. Talus Chip, Sill, Hg daa Soil Channel South East/West RX 46041 7245S 235W Carbonate altered Nicola volcanic, fine-grain-Rock Chip 0. 64 89 ed, rust brown color on fresh surface, wea-30 thers rust brown. Carbonate veinlets are present. Carbonate alteration is not intense but tends to be locallized. RX 46042 7280S Rock Chip 550W Basaltic unit, fine-grained matrix, grey to 0.1 56 50 green on fresh surface, weathers grey to 160 black. Altered pyroxene phenocrysts are present. 5 0.1 RX 46043 Rock Chip 7250S 855W Andesitic flow, medium-grained, green on fresh surface, weathers grey green. 130 RX 46044 7155S Rock Chip 945W Carbonate alteration zone, fine-grained, red-0.2 29 58 dish-rust brown on fresh surface to black. 360 weathers rust brown to yellow brown. is highly fragmental and contains abundant carbonate. RX 46045 Rock Chip 7155S 945W Quartz-carbonate vein breccia, fine-grained, 0.1 light-brown grey, contains minor disseminated 130 pyrite (less than 1%). Breccia fragments appear to be silicified argillite. Strike/ dip: $355^{\circ}/52^{\circ}W$ and is 10-25 cm wide. RX 46046 Rock Chip 7155S 945W Quartz-carbonate breccia zone (hanging wall) 0.2 27 55 fine-grained, rust brown to black, weathers 620 rust brown. Carbonate veinlets and microveinlets are common.

TRAVERS	E NUMB	ER		_	PROJECT _	KAM/JEFF Claims GEOLOG	IST(S).	Br	ian	R. Bo	ooth		
N.T.S				_		7250S DATE							
SAMPLE	S	AMPLE T	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(р.р.п	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and by U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	Ag ppm	1	Cu	Pb ppm	Zn	Sb pp
RX 46047	Rock		Chip	7140S	942W	Footwall of vein cutting carbonate altered	5	0.1	35	46	2	.82	2
						Nicola volcanics, fine-medium grained, rust-	900						
					•	reddish brown color on fresh surface, weathe yellow brown.							
RX 46048	Rock		Chip	7140S	942W	Quartz-carbonate vein breccia, fine-grained,	5	0.1	20	28	1	55	_2
						white-grey to brown on fresh surface, wea-	580						<u></u>
						thers rust brown. Highly siliceous, pyrite		<u> </u>					<u> </u>
						occurs as lenses, disseminated grains and							
-						frostings 1-2%. Strike/dip: 355°/55°W and							
						has a width of 10-30 cm.				•			
													
RX 46049 Roc	Rock		Chip	7140S	942W	Hangingwall of quartz-carbonate breccia zone fine-grained, containing white siliceous	5 500	0.2	17	19	3	59	_2
	١.					breccia fragments. Grey to brown on fresh							
						surface, weathers rust brown. Pyrite occurs							
						less than 1%.							
													<u> </u>
RX 46050	Rock		Chip	7525S	930W	Sheared Nicola volcanic andesite, medium to	5	0.1	2	139	8	83	2
						coarse grained, green to dark grey on fresh surface, weathers grey-black. Highly sheare	40						
						and fragmented. Slickensides were observed.							L_
RX 46051	Rock		Chip	7530S	810W	Andesite-basaltic flow, medium grained, ligh	t - 5 50	0.1	2	130	3	72	2
						grev. Composed of plagioclase phenocrysts u	D						
						to 1 cm in diameter. Unit is massive.							
RX 46052	Rock		Chip	7500S	625W	Agglomerate (Nicola group), medium to coarse	5	0.1	5	71	4	78	2
						grained fragments, green to grey on fresh	1300						
						surface, weathers grey. Fragments range from 1 cm - 3 cm.							
			 	 		т сш - у сш.	1	+	 				<u> </u>

	C					\mathbf{C}					(
TRAVERS	E NUMB	ER		_	PROJECT _	KAM/JEFF Claims GEO	LOGIST(s)	Br	ian]	R. B	ooth		
N.T.S	92-1	-15	•	_	AREA	7500S DATE	<u>J</u>	ıly	198	4				
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RESU	LTS	(p.p.m	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soit	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	P	Au .	Ag	As ppm	Cu	Pb ppm	Zn ppm	Sb ppi
RX 46053	Rock		Chip	7450S	560W	Slightly altered volcanic agglomerate, fir			0.1	2	70	3	82	
			CHIP	74505		medium grained, green on fresh surface, we there grey to brown. Slight rust brown co	ea- 3	20			-,0		<u> </u>	
						or caused by the presence of less than 1%								
RX 46054	Rock		Chip	7530S	545W	Tuff, fine-grained, grey to huff white on		5 (0.2	14	84	8	66	
						fresh surface, weathers orange brown, App	1	00					·	
						to contain crushed pumice fragments. The								
						unit is highly fragmental. Pyrite occurs	as							
						disseminated grains less than 1%.								<u> </u>
RX 46055	Rock		Chip	7425S	510W	Tuff, fine-grained, brown on fresh surface	2.	5 (0.1	2	40	1	31	2
						weathers rust brown, fine carbonate veinle	-	30						
						are present. Alteration is not intense.		\perp						<u> </u>
	ļ		-4.4					_						
RX 46056	Rock		Chip	7615S	400W	Footwall sample of quartz-carbonate vein.			0.1	6	68	5	64	2
	}		ļ 			fine-grained, light brown on fresh surface		000					 	
						weathers rust brown. Carbonate is common							 	
						along fractures and as veinlets. Outcrop highly fractured and fragmental.	18. 	士						
DV /6057	D1-		Chip	7615S	400W		_	5 (0.1	2	31	3	73	<u> </u>
RX 46057	Rock		CHID	70135	400W	Quartz-carbonate vein sample, fine-grained white to yellow on fresh surface, weathers	· 1		U . I				/3	
	†					rust brown to yellow brown. The vein is	· //	" 	_					
	 					30-40 cm wide. Strike/dip: 80°/55°S. A		+						
	 			<u> </u>		few mauve zones were observed. Vein is ex		\dashv						_
	 					posed over a 10-12 m area.	`							
	 			† · · · · · · · · · · · · · · · · · · ·		booke over a 10 12 m area.		_						
	† -	 		 				-						
								\top						
						c								
	1,	•	1	•	•		1	1		1 7	. 7		,	1

N.T.S. 92-I-15				_	PROJECT	KAM/JEFF Claims GEO	.ogis	T(S)_	Br	ian]	R. Bo	ooth		
				_			<u>J</u>	uly	1984					
SAMPLE		AMPLE TY	(PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(p.p.m	. /%	/oz.p	er ton)	_
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		Au	Ag	As ppm	Cu	Pb ppm	Zn ppm	Sb ppi
RX 46058	Rock		Chip	7615S	400W	Sample was taken from hangingwall of larg	e	5	0.1	6	84	2	68	_2
					-	carbonate vein, fine-grained, rust brown yellow brown on fresh surface, weathers rebrown-yellow brown. Highly fragmental arfractured.	to ust	570						
RX 46059	Rock		Chip	7610S	390W	Small quartz-carbonate vein cutting carbo ate altered Nicola volcanics. Strike/dip 110°/70°S, 2-5 cm wide.		5 7400	0.2	2	18	1	60	_2
RX 46060 Ro	Rock		Chip	7570S	400W	Small quartz-carbonate vein cutting carbo ate alteration zone, fine-grained, banded yellow-brown white on fresh surface, weat	hers	5 1400	0.2	9	23	1	83	2
						yellow brown. Strike/dip: 110°-100°/60° 5-7 cm in width.	s,							
RX 46061	Rock		Chip	7490S	250W	Ouartz-carbonate brecciated vein, fine-gred, grey to white, weathers rust brown. Minor carbonate veinlets are present. Momentum size 10 cm. Attitude unknown.		360	0,1	5	25	1	93	2
RX 46062	Rock		Chip	7500S	148W	Nicola agglomerate, fine-grained, highly sheared and fractured, green on fresh surface, weathers grey-green. Carbonate verare present in outcrop parallel to major fractures.	<u>-</u>	5 460	0.1	3	65	1	75	4
RX 46063	Rock		Chip	7495S	1605W	Nicola agglomerate, medium-grained, green grey on weathered surface. Green on free Fragments reach 20 cm in diameter but gen ally range from less than 1 cm - 5 cm.	sh.	5 160	0.1	2	55	5	65	2

 \mathbf{C}

	C					\mathbf{C}					(\supset		
TRAVERS	E NUMB	ER		_	PROJECT	KAM/JEFF Claims GEO	LOGIS	ST(S)_	Br	ian	R. B	ooth		
N.T.S	92-1	-15	·	_	AREA	7500S. 7750S DAT	E	July	1984					
SAMPLE	s	AMPLE T	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(p.p.m	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and a U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.			Ag ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	Sb pp:
RX 46064	Rock		Grab	7660S	1500W	Angular carbonate alteration float (from trench), fine-grained, buff white to yel on fresh surface, weathers rust brown.	Low	5 1900	0.2 00	2	16	1	60	_2
			·			had a minimum thickness of 10-15 cm. Cibar is present as fine crystals and film	ma-							
						along fracture surfaces. No outcrop was exposed in trench.						•		
RX 46065	Rock		Chip	7780S	1515W	Quartz-carbonate vein cutting altered Nivolcanics. Vein is fine-grained, yellow	to	<u>5</u> 470	0.1	2	4	2	56	2
						buff white on fresh surface, weathers rubrown to black. Vein Strike/dip: 158°/and varies in width from 45-55 cm.								
RX 46066	Rock		Chip	7780S	1515W	Hangingwall to quartz-carbonate vein. R		5 1100	0.1	4	27	1	52	5
						surface, weathers brown to green. Alteris not intense. Small veinlets are presup to 5 cm in width.								
RX 46067	Rock		Chip	7745S	1300W	Footwall of 6-8 cm carbonate vein, fine- grained, reddish brown on fresh surface, weathers rust orange brown to black. The		5 110	0.1	12	58	1	50	2
,						weathers fust orange brown to brack. In wallrock is relatively unaltered and exh its original volcanic texture (agglomeri	ibit	1						
RX 46068	Rock		Chip	7745S	1300W	Vein (quartz-carbonate) cutting altered cola volcanics, fine-grained, yellow to white. Vein strike/dip: 164 ⁰ /48 ⁰ E and 6-8 cm wide. Locally brecciated.	nuff		0.2	3	10	4_	53	2
						f Locally Diecciated.								

TRAVERSE NUMBER			_	PROJECT	KAM/JEFF Claims GE	OLOGIS	T(S)_	Br	ian I	В. Вс	oth		 -	
N.T.S	92-1	-15		_	AREA	7750S, 7500S	TE	uly .	<u> 1984</u>					
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION		RES	ULTS	(p.p.m	/%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and/sc U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc Formation Mineralization, etc.		Au ppb Hg ppb	Ag ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	Sb pp:
RX 46069	Rock		Chip	7745S	1300W	Hangingwall of carbonate vein, fine-gra	ined,	5	0.2	3	39	1	38	_2
						reddish brown to purple on fresh surface weathers rust brown. Alteration is mortense.	•	260						
RX 46070	Rock		Chip	7640S	1010W	Carbonate altered Nicola volcanics, fingrained, rust brown on fresh surface, your orange brown on weathered. Unit is ext	ellow	5 1500	0.1	13	71	,2	.66	_2
	 					ly fragmental.					$\neg \uparrow$			
RX 46071	Rock		Chip	7640S	1010W	Quartz-carbonate vein sample, fine-grai buff white to yellow on fresh surface, thers rust brown. Carbonate consists 1 ly of dolomite.	wea-	5 740	0.2	8	16	2	53	2
RX 46072	Rock		Chip	7560S	1010W	Altered Nicola volcanic, fine-grained, to black on fresh surface, weathers rus brown. Pyrite is present as fine disse ations (less than 1%).	t	5 220	0,2	33	21	1	43	2
RX 46073	Rock		Chip	7560S	1010W	Carbonate altered, Nicola (argillite) f grained, grey to black brecciated. Sam contains abundant pyrite 1-2%.		5 100	0.1	14	15	1	63	2
RX 46074	Rock		Chip	7560S	165W	Small quartz veins which cut sheared Ni agglomerate. Veins are 3-5 cm wide and strike/dip 130°/80°E. No sulphide obsewithin the veins or surrounding wallroc	rved	5 240	0.2	2	13	2	49	_2

. | .

C

	C												
TRAVERS	E NUMB	ER			PROJECT	KAM/JEFF Claims GEOLO	IST(S)	Br	ian	R. B	ooth		
N.T.S	^^ ~		·	-	AREA	•							
SAMPLE	S	AMPLE T	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RE:	SULTS	(р.р.п	. / %	/oz.p	er ton)	
NUMBER	<u>RX</u> Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au ppb Hg	ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	Sb pp
RX 46075	Rock		Chip	7555S	160W	Wallrock to vein, sheared Nicola volcanic,	5	0.1	9	70	1	67	2
						medium to fine-grained, rust brown to yell	w 300						
					•	brown to green on both fresh and weathered surfaces.							
RX 46076	Rock		Chip	7555S	160W	Sample obtained from 3 quartz-carbonate ve	ns 5	0.6	8	30	.4	57	_3
. 						which average 3 cm in width cutting foliat (sheared) Nicola agglomerate. The veins	d 450	 				•	
						are relatively evenly spaced over 0.5 m							
	1					area. The veins are in random directions.							
						No sulphide observed.							
RX 46077	Rock		Chip	7555S	160W	Wallrock (agglomerate) taken from the west	5	0.3	4	70	4	68	_2
			<u> </u>	-		side of carbonate/quartz veins, reddish	340	 	_				
	 	 			-	brown to yellow brown on both fresh and weathered surfaces. Outcrop is highly fra			 				
		 				tured.	=	 	 				
			<u> </u>	+		tureu.	+	 				`	
RX 46078	Rock		Chip	7630S	240W	Quartz-carbonate vein cutting altered Nico	1		3	28	5	60	_2
			-			group agglomerate. Alteration surrounding		-	├	<u> </u>			
			 			the vein is not intense. Vein was 2 cm wi		 					├
						strike/dip: 158 ^o /58 ^o W. No sulphide obser	ed.						
RX 46079	Rock		Chip	7655S	490W	(Footwall) Carbonate altered Nicola volca	_ 5	0.2	. 2	72	2	65	2
						ic agglomerate, fine-grained, rust brown t	240	<u> </u>	ļ				
		ļ	ļ	ļ		green on fresh surface, weathers yellow br	wn.	ļ	ļ				_
-,	 	<u> </u>	<u> </u>	-		No obvious mineralization observed.	_		ļ				<u> </u>
DV //000	<u> </u>	-	01-2-	76550	40011	(Wata) Carl angle (marks) and 5.7 marks	5	0.2	2	8	6	55	
RX 46080	KOCK		Chip	7655S	490W	(Vein) Carbonate (quartz) vein, 5-7 cm wid buff to vellow brown on fresh surface, wea			+	├ °	- 6	رر	
	 	1	 	†		thers orange rust brown. Vein appears to		\dagger				ļ	
	 					slightly episodic in nature. Strike/dip:	, <u>e</u>	 	 				\vdash
	<u> </u>	1.	 	<u> </u>		20°/90°.		+	 	ļ			_
** ** * * * * * * * * * * * * * * * * *	 	+	 	 	 	40 7 70 .		+	 	-			

	C					\mathbf{C}				(\searrow		
TRAVERS	E NIIMB	FD			PROJECT	KAM/JEFF Claims GEOLOG	ST(S)	Br	ian]	R. Bo	ooth		
N.T.S						1.7500S 8000S DATE							
SAMPLE		AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(p.p.m	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt,	Grab, Chip,	LENGTH, WIDTH AREA	LONGITUDE and or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au ppb Hg	Ag ppm		Cu ppm	Pb ppm	Zn ppm	Sb ppn
		Soil	Channel	South	East/West		ppb						
RX 46081	Rock		Chip	7655S	490W	Carbonate altered Nicola volcanic (agglom-	5	0.1	2	71	4	68	2
						erate), fine-medium grained, reddish brown	540	<u> </u>					
					•	to green on both fresh and weathered sur-		<u> </u>					
						faces.		<u> </u>					
							_	<u> </u>					
RX 46082	Rock		Chip	7630S	665W	Carbonate (dolomite) vein cutting partially	5	0.2	19	15	6	53	2
]				altered Nicola volcanic, vein is 4 cm wide	, 250	ļ					
						strike/dip: 160 ⁰ /75 ⁰ W. No sulphide was							
						observed in vein material.		ļ					
								<u> </u>	ļ				
RX 46083	Rock		Chip	8000S	905W	Sample of a small cherty horizon within the	5	0.1	6	8	4	21	2
	<u> </u>					Nicola volcanic agglomerate. Fine-grained.	40						
						grey to black, aphanitic, exhibits slight		ļ					
						brecciation. No sulphides. May be assoc-		ļ					
						iated with lens of argillite which has beer	<u> </u>	-					
	<u> </u>			<u> </u>		silicified.							
				<u> </u>				ļ					
RX 46084	Rock	ļ	Chip	7995S	710W	Carbonate altered Nicola volcanic, fine-	5	 	22	94	1	44	2
	ļ		 -			grained, reddish brown to yellow brown on	8200	<u> </u>					
						both fresh and weathered surfaces. No veir		 					
	ļ				ļ	material was observed. Gossan and hematite	- 	ļ					
	ļ				ļ	stain occur along fracture surfaces.							
	ļ				ļ		+	 					
RX 46085	Rock		Chip	7950S	425W	Quartz (minor carbonate) vein introduced	5_		102	653	9	66	<u>2</u> 23
	ļ	ļ				along a fault zone (shear zone). Located	<u> 8500</u>	o lo					
	ļ		ļ		ļ	above old filled adit. Vein is 15-30 cm		<u> </u>	ļ				_
		ļ	<u> </u>	<u> </u>	ļ	wide and contains cinnabar close to wall-		ļ					
	<u> </u>			<u> </u>		rock margin, tetrahedrite occurs as fine di		 	ļ			ļ	
				 		seminations concentrated mainly to the veir		<u> </u>	 				
	<u> </u>	 		-	•	boundaries, Thin Section,	-	+	 				
	-	 	 	 			+	1	 				
	 	 	 	 			-}	 	ļ				-

	C					\mathbf{C}				(
TRAVERS	F NUMB	FR			PROJECT	KAM/JEFF Claims GEOL	GIST(S	B	rian	R. B	ooth		
N.T.S	92-1		,	-			Ju1						
SAMPLE		AMPLE T	(PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION				n. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	At	Ag ppm	As	Cu	Pb ppm	Zn ppm	Sb ppr
RX 46086	Rock		Chip	8365S	600W	Carbonate altered Nicola volcanic, fine-		5 0.	1 181	67	1	67	<u>1</u> 6
						grained, rust orange brown on weathered s	ur-1900	od					
						face, buff to light brown on fresh surfac	e. <5	0.1	210	44		100	32
						No mineralization was seen.	500	00 (Bo	ndar	Cles	g)		-
RX 46087	46087 Rock Chip			8320S	570W	Vein sample from adit, veins are 2-4 cm wide. Strike/dip: 140°-154°/90°-85°E.		5 0.	3 41	352	3	. 55	39
	46087 Rock Chi					Veins are parallel to the major fracture system which strikes at roughly 160°. The	e						
						veins contain cinnabar as disseminated			+			 	-
	<u> </u>	 		 		grains concentrated along the margin of t	ne		 	 		 	
				<u> </u>		vein. Cinnabar also occurs as films or frostings along fracture surfaces. Tetra			+	ļ	 	 	
		ļ				hedrite is present as small disseminated			 	<u> </u>	 	 	
	 					grains. Many of the tetrahedrite grains		_	+	ļ	 		\vdash
	 					have veins of malachite. Thin Section.		_	<u> </u>				
						mave verms of marachites. This Section.							
RX 46088	Rock		Chip	8320s	570W	Footwall sample to vein RX 46087, fine to		5 0.	1 24	62	2	54	_2
	<u> </u>		ļ			medium-grained carbonate altered volcanio	. 140	od	ļ		ļ	 	
						yellow brown on both fresh and weathered				↓	<u> </u>		—
						surfaces. Carbonate veinlets are present					<u> </u>	ļ	<u> </u>
						throughout the rock which also tends to b	e		<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>
		 				highly fractured.			 	<u> </u>	 	 	
RX 46089	Rock		Chip	8320S	570W	Footwall to vein RX 46090 which strikes a	_	5 0.	1 25	101	1	64	_2
						long the top of adit. The footwall is ru	st-186	od	ļ		<u> </u>	<u> </u>	
						yellow brown on both fresh and weathered					<u> </u>	<u> </u>	<u> </u>
	ļ					surfaces. The sample may also represent				<u> </u>	 	ļ	—
						hanging wall to vein RX 46088. No minera			_	ļ	ļ	 	
	<u> </u>	-	<u> </u>	 		ization was present within the alteration	•		-	 	-		₩
	 	 					 	+-		┼	 		+-
	 	 	 					-	-	 	 		+

TRAVERSE NUMBER									٠				
TRAVERS	E NUMB	ER			PROJECT	KAM/JEFF Claims GEOLOG	ST(S)-	Br	ian	R. B	ooth		
N.T.S				_		L 8250S DATE							
SAMPLE	S	AMPLE T'	(PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(р.р.п	. /%	/oz.p	er ton))
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENGTH, WIDTH AREA South	LONGITUDE and ac U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		ppm	As ppm	Cu ppm	Pb ppm	Zn ppm	Sb pp:
RX 46090	Rock		Chip	8320S	570W	Carbonate vein, strike/dip: 1620/800E,	5		29	106	1	41	22
						it is 7-10 cm wide and is buff to yellow	54000						
					•	brown in colour. Minor silicification is	_15	〈 ∩ 1	35	105		54	32
						also present. Malachite stain observed.	5000	(Bo	ndar	1.00	1		
RX 46091	Rock		Chip	8320S	570W	Hanging wall to RX 46090, carbonate altered Nicola volcanic (ankerite), fine-grained,	5 6600		40	106	1	59	11
						buff to yellow to black on both fresh and			 				—
						weathered surfaces. Outcrop is extremely			ļ			<u> </u>	
*****						fragmental and may be the centre of the		<u> </u>					<u> </u>
						fracture.							
		ļ					.				-	L	
RX 46092	Rock		Chip	8260S	535W	Nicola agglomerate, fine-medium grained ma-	5	0.1	9	_11	1	35	2
						trix, purple to green on both fresh and	1300					<u> </u>	
						weathered surfaces. Fragments range in siz	e	<u> </u>	ļ				<u> </u>
						from less than 2 cm to more than 10 cm. Th	e		ļ				
						outcrop has been filled along fractures by							<u> </u>
						numerous carbonate veinlets (mainly of cal-	_}	ļ	<u> </u>			ļ	
		-				cite).	 	ļ	ļ				—
							_	ļ		ļ	<u> </u>		<u> </u>
RX 46093	Rock		Chip	8140S	555W	Carbonate altered Nicola volcanic, fine-	5	1	6	29	1	32	2
		ļ				grained, reddish brown on fresh surface,	14000	1					↓
		ļ				weathers yellow to orange brown. Carbonate		ļ	ļ				
						veinlets and microveinlets are common con-							
		ļ				sisting of dolomite and calcite (ankerite).		<u> </u>					↓
		ļ					1	ļ					<u> </u>
RX 46094	Rock	<u> </u>	Chip	8140S	555W	Carbonate (minor quartz) vein, 2-4 cm wide.	5	0.1	5	8	1	40	2
		<u> </u>	<u> </u>			Appears to have been brecciated. White to		-		ļ 	ļ		—
	ļ	}				yellow brown on fresh and weathered surface		 	 		 		
	<u></u>	 				Vein strike/dip: 12°/70°-90°E. Pyrite was		-					-
	_	 	ļ			observed in trace quantities.		 	 	ļ			┼
		-	 	 			+-	 	 	ļ	 	 	+
	ı	J	1	1 -	1		1	1	1	l l	1	í	1

~	C						٠			/)		
TRAVERSI	E NUMBI	ER		_	PROJECT	KAM/JEFF Claims GFOL	OGIST(S)	Brian	ı R.	Booth		
N.T.S	92-I-1	L5		_	AREA		July						
SAMPLE	SA	MPLE TY	PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION				n. /%	/oz.p	er ton)	
NUMBER	RX Rock,	<u>SX</u> Stream	Grab,	LENOTH,	LONGLYUDE	Rock type, lithology, character of soil, stream silt, etc. Formation		u Ag b ppm	T	T	Pb ppm	Zn ppm	Sb
	Talus	Silt, Soil	Chip, Channel	AREA South	U.T.M. East/West	Mineralization, etc.	H	g b					
RX 46095	Rock		Chip	_8140S	555W	Carbonate altered Nicola volcanic, fine- grained, yellow brown on fresh surface,	400	5 0. 0	1	2.7	2	43	2
	•					weathers rust orange brown. Sample conta							
						surfaces.							
RX 46096	Rock		Chip	8075S	510W	Carbonate (quartz) vein cutting altered l cola volcanics. Vein is 30 cm wide. St	ike 70	5 0.	1 9	33	1	41	2
						/dip: 170°/72°E. The vein contains trace of pyrite less than 1%. No cinnabar was	s	1					
						observed.							
RX 46097	Rock		Chip	8060S	500W	Silicified zone within alteration assemb Sample is buff to grey, fine-grained, wa	1- 220	5 0. 0	1 12	56	4	54	2
	<u> </u>					rock. Breccia fragments are also present zone. Pyrite is minor (less than 1%).	in						
RX 46098	Rock		Chip	8000s	440W	Sample taken from adit. Quartz-carbonate vein, ranges in width from 5-15 cm, vein		5 4.	1176	6462	4	149	<u>15</u> 46
						strike/dip: 180°/80°E. Cinnabar and te hedrite grains occur disseminated within	ra- <	5 4.			·	171	<u>18</u> 00
						vein less than 1%. Malachite stain rims the tetrahedrite grains.					55 /		
RX 46099	Rock		Chip	8025S	450W	Quartz-carbonate veins network containing			1 50	147	3	6	13
						brecciated quartz fragments. The vein strike/dip: 160°-165°/60°-70°E, width ve		100				ļ	
						from 10-20 cm. Sample was collected from several small yeins.	1		-				
													_
	-		·						1				

-	TRAVERSE NUMBER					\mathbf{C}				(<u>)</u>		
TRAVERS	E NUMB	ER		_	PROJECT _	KAM/JEFF Claims GEOLOGI	ST(S).	E	rian	R.	Booth		
N.T.S				-	AREA								
SAMPLE	S	AMPLE T	YPE	SAMPLE	LATITUDE	SAMPLE DESCRIPTION	RES	ULTS	(p.p.n	i. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGLTUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	T		i		Pb ppm	Zn ppm	Sb
RX 46100	Rock		Chip	7985S	430W	Quartz-carbonate veinlets, strike/dip: 60°/	15	0.1	22	104	4	109	5
						65°-85°E. Sample was collected from small	88000						
	<u> </u>		ļ	<u> </u>		adit. Cinnabar observed as disseminated		<0.1				66	22
				ļ		grains. The vein cuts altered Nicola volcan-							_
						ics.	AU =	0.0	01 o	2/to1	as:	ay)	-
			<u>L</u>	 			+		-				\vdash
				<u> </u>			+	 					-
							+		<u> </u>				_
							1	 					
							1						_
)	
								<u> </u>	ļ				
	ļ		,	ļ					ļ	ļ	L		<u> </u>
							- [├	ļ				├-
					<u> </u>		 	 		 			
							 	-	 				
	ļ		ļ				+	 	 	 		 	-
	 			 			 						
							†	†	<u> </u>	ļ	·		
								† • •					
				 			†	 	 	 		<u> </u>	
							Ĺ						
	<u> </u>						—	ļ		<u> </u>			
	ļ						 					<u> </u>	<u> </u>
	ļ		<u> </u>	 			 	 					_

GEOLOGIST(S) Brian R. Booth KAM/JEFF Claims TRAVERSE NUMBER ____ PROJECT ___ July 1984 92-I-15 AREA ... T. 8000S DATE ____ NTS SAMPLE LATITUDE RESULTS (p.p.m. / % /oz. per ton) SAMPLE TYPE SAMPLE SAMPLE DESCRIPTION LONGLTUDE LENOTH, Rock type, lithology, character of soil, stream silt, etc. NUMBER RX SX Cu Pb ppm ppm Au Ag As ppb ppm ppm Sb WIDTH. and / or Zn Formation Grab. Rock. Stream ppm ppm AREA U.T.M. Mineralization, etc. Talus Silt. Chip. Hg ppb East/West Soil Channel South Footwall to vein RX 38602 (plagioclase 5 0:2 7945S 400W RX 38601 Rock Chin porphyry), fine-grained, altered, highly 1600 fragmental yellow brown on fresh surface. weathers rust-orange brown. Sample contains large plagioclase phenocrysts which have been altered to carbonate. Ouartz-carbonate vein which cuts altered 264 7945S RX 38602 Rock Chip 400W 7200b Nicola volcanic. The vein strike/dip: $160^{\circ}-190^{\circ}/60^{\circ}-80^{\circ}E$, varies in width from 5 0.2 6d 25d 11-25 cm. Both cinnabar and tetrahedrite 84 195 grains are present as disseminations within 5000 (Bondar Clede) the vein (less than 1%). Hanging wall to quartz-carbonate vein RX 50.27945S 400W Rock Chip RX 38603 38602. Plagioclase porphyry, altered by 7000 carbonate, purple-mauve to grey on both fresh and weathered surfaces. Sample is slightly sheared. Thin Section. Ouartz-carbonate vein, strike/dip: 1450/900 5 0.1 RX 38604 7940S 455W Rock Chip width ranges from 2-3 cm. Vein cuts altered 7400 Nicola volcanics. Pyrite is present in trace quantities. Carbonate vein (minor quartz) cutting small 5 0.1 RX 38605 Rock Chip 7850S 1540W 56 140 carbonate alteration zone. Vein strike/dip: 170°/55°W and varies in width from 35-40 cm. The vein is vellow brown to buff on fresh surface, weathers orange-rust brown (differential weathering is well developed).

	C				,	C .	٠				(<u> </u>		
TRAVERS	E NUME	SER			PROJECT	KAM/JEFF Claims GFO	DLOGIST	(9)_	В	rian	R.	Booth		/
N.T.S				•••	AREA		re							
SAMPLE		AMPLE TY	YPE	SAMPLE	LATITUDE,		- -				. /%	/oz.p	er ton)	,—
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA		Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	را	Au	Ag	As	Cu	Pb ppm	Zn ppm	Sb
RX 38606	Rock		Chip	7840S	1575W	Carbonate vein cutting small zone of carb ate altered Nicola volcanics, sample is f grained, yellow brown to buff on fresh su	bon- fine-	5	0.1	3	3	1	46	_2
			3			face, weathers to rust-orange brown. No visible mineralization.								
RX 38607	Rock		Chip	7890S	1560W	Carbonate vein cutting a small zone of cabonate alteration of Nicola volcanics. Twein is 20 cm wide, strike/dip: 170°/55° No mineralization was observed.	The :	5 120	0.1	4	44	1	44	_2
RX 38608	Rock		Chip	8105S	. 815W	Carbonate alteration zone cutting Nicola volcanic agglomerate, fine-grained, yello brown on fresh surface, weathers rust ora	ow ange	5 160	0.1	-6	38	1	47	2
						brown. Carbonate veinlets are common (do mite and calcite) less than 1 cm wide.								
RX 38609	Rock		Chip	7960S	1150W	Altered Nicola volcanic, equigranular, hi sheared, white grey to brownish red on bo fresh and weathered surfaces. Rust occur along fracture surfaces.	oth /	5 270		10	12	1	49	_2
RX 38610	Rock		Chip	7885S		Altered Nicola volcanic containing quartz carbonate vein. The vein is 10-15 cm wid strike/dip: 160°/45°W. Vein is buff on fresh surface, weathers rust brown. Vein	ie, '	5 420	0.1	9	12	1	64	_2
RX 38611	Rock		Chip	7965S		Carbonate-quartz vein, strike/dip: 20°/8 60 W. Vein is 2-8 cm in width and containminor malachite stain and tetrahedrite al	lns 3	5 3100	0.1	28	86	1	49	2
	 '	<u> </u>				vein margins.								

. .	C					C					(
TRAVERS	F NUMB	FR			PROJECT _	KAM/JEFF Claims GEO	u ogis	T(S)_	в	rian	R.	Booth		
N.T.S				<u>-</u>	AREA			July						
SAMPLE	S	AMPLE T	/PE	SAMPLE	LATITUDE.	SAMPLE DESCRIPTION		RES	ULTS	(p.p.m	. /%	/oz.p	er ton)	
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGLTUDE ond / or U.T.M.	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		Au	Ag ppm	As	Cu	Pb ppm	Zn ppm	Sb ppr
RX 38612	Rock		Chip	8220S	750W	Carbonate (quartz) vein cutting carbonat altered Nicola volcanics, fine-grained, to buff white on fresh surface, weathers yellow brown. No mineralization observe	white rust	210	0.1	8	7	1	59	2
RX 38613	Rock		Chip	8250S	620W	Small carbonate vein close to major frac Vein is 2-4 cm in width. Strike/dip: 17 90°. The vein is cutting altered Nicola volcanics. Pyrite was observed in trace	00/	5 3000	0.1	12	19	1	81	2
RX 38614	Rock		Chip	7555S	535E	amounts less than 1% as disseminations. Altered Nicola volcanics, fine to medium grained, yellow brown on both fresh and weathered surfaces. Small carbonate and		5 3800	0.1	13	92	3	49	2 2
				75050		quartz veinlets are present. Sample was taken from trench.								
RX 38615	Rock		Chip	7525S	535E	Carbonate altered Nicola volcanic, fine medium grained, yellow brown on both fre and weathered surfaces. Outcrop is mode ly fractured. Sample was collected from trench. No mineralization was discovere	sh rate- old	420		15	100	1	54	2
RX 38616	Rock		Chip	7985S	50E	Nicola volcanic, fine-grained, purple to equigranular, moderately fractured. Car ate veinlets are present along fractures	on- in	P	0.1	10	65	3	78	2
						the form of calcite. Gossan stain is prent on outcrop surfaces.	es							
	+	+	 	 	1			1	 	1	 		†	\vdash

-	C				•										
TRAVERS	E NUMB	ER		-	PROJECT	KAM/JEFF Claims GEO	.OGIS	ST(S)_	Е	rian	R.	Booth			
N.T.S	92-1-	15		_	AREA	7500S 8000S DATE				,					
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE	SAMPLE DESCRIPTION		RES	ULTS	(p.p.rr	. /%	/oz.p	er ton)		
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab.	Stream Grab, Silt, Chip,	SAMPLE LENGTH, WIDTH, AREA South 8015S	LONGLTUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		Au ppb Hg ppb	Ag	As	Cu	Pb ppm	Zn ppm	 Sb
RX 38617	Rock		Chip	8015S	200E	Augite porphyry (andesite-basalt), fine- grained, dark grey to green on fresh surf Augite phenocrysts are weathered to horn		130	0.1	12	93	3	45	2 	
						Fine elongate plagioclase phenocrysts are also present.									
RX 38618	Rock		Chip	7995S	470E	Agglomerate (locally brecciated) contains fragments of limestone which may reach 10 cm in size. Sample was taken of a mixtur limestone and volcanic fragments.		120	0.1	11	52	6	36	²	
RX 38619	Rock		Chip	8000S	. 670E	Nicola volcanic agglomerate, fine to medigrained, green to grey on fresh surface. Clasts (fragments) range from 3-10 Cm, fresh tend to be volcanic porphyry in original contents.	ag- gin	100	0.1	28	54	1	. 58	2 	
						Pyrite occurs as disseminated grains (lesthan 1%).	s								
RX 38620	Rock		Chip	8010S	685E	Carbonate alteration of Nicola volcanic, grained, rust yellow brown on both fresh weathered surfaces. Carbonate veins and veinlets are minor. Outcrop is highly fractured.	and		0.1	5	53	1	37	2	
RX 38621	Rock		Chip '	79958	685E	Ouartz vein cutting altered Nicola volcan vein is 2 cm wide, strike/dip: 3250/900. Small carbonate alteration envelope surrothe vein. Pyrite is present in trace amo (less than 1%).	unds	1200	0.1	8	42	4	123	2 	

GEOLOGIST(S) Brian R. Booth KAM/JEFF Claims TRAVERSE NUMBER _ PROJECT ____ 92-I-15 AREA'_ т. 8000S DATE ___ July 1984 N.T.S. LATITUDE. RESULTS (p.p.m. / % /oz.per ton) SAMPLE SAMPLE TYPE SAMPLE/ SAMPLE DESCRIPTION LONGLTUDE LENOTH, Rock type, lithology, character of soil, stream silt, etc. NUMBER <u>SX</u> WIDTH, Au Ag As ppb ppm ppm Cu Pb and / or Sb Zn **Formation** Rock. Stream Grab, ppm ppm ppr ppm AREA U.T.M. Mineralization, etc. Talus Silt. Chip. Hg ppb Soil Channel East/West South G.C. Sample #75 - Standard. 8 RX 38622 Rock Chip 0.1 18 14 420 1524.2890333934 533 RX 38623 Rock Chip 8000S 440W High graded sample from quartz carbonate 19000000 vein network which cuts altered Nicola vol- $Au = 0.001 \log/ton (assay)$ canics. Sample was collected from a high grade pod of tetrahedrite (up to 10% sul-1525.01000 2000 <u>590 650</u> phide). (Bondar Clegg) Cu=4.2% 5000l 0.4 23 51 RX 38624 Rock Chip 8100S 10E Ouartz-carbonate vein, fine-grained, vellowbrown to buff white on fresh surface, wea-60 thers rust brown. Sample contains more calcite than other carbonate veins on claims. Disseminated pyrite is present less than 1%. 0.5 43 69 RX 38625 Rock Chip 8095S 10E Silicified volcanic tuff, fine-grained to 84 medium grained, grey to white on fresh surface, weathers rust yellow brown. Pyrite occurs in trace amounts less than 1%. 8250S Altered Nicola volcanics, fine-grained, rust 45 49 15W 5 0.2 15 RX 38626 Rock Chip vellow brown consisting of small carbonate 1800 quartz veinlets. Unit is not pervasively altered by carbonate. Pyrite is present in traces less than 1%. 8225S 83 Sample of small quartz vein 3-4 cm wide. 5 0.4 8 12 RX 38627 Rock Chip 90W slight episodic nature. Calcite is also 7800l present in sample. Vein strike/dip: 1540/ 60°E. The vein cuts slightly altered agglomerate.

-	C		·				•)		
TRAVERS	E NUMB	ER		···	PROJECT_	KAM/JEFF Claims	GEOLOGIS	ST(S)_	E	rian	R.	Booth		
N.T.S	92-1-1	.5		_	AREA	L 8250S	DATE	July	7 198	34				
SAMPLE	S/	MPLE T	YPF	SAMPLE	LATITUDE	SAMPLE DESCRIPTION					/%	/oz.p	er ton)	_
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGLTUDE and/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, e Formation Mineralization, etc.	itc.			As ppm		Pb ppm	Zn ppm	Sb pp
RX 38628	Rock		Chip	8250S	80W	Clay altered andesitic dykes, white i	n col-	5	0.2	13	33	11	33	
						our, fine-grained, on both fresh and		1500						
			;			thered surfaces. Feldspar phenocryst								
						also altered to clay (kaolinite). Py								
						cubes have been weathered out of the		•						_
RX 38629	Rock		Chip	8310S	100W	Clay altered Nicola agglomerate, fine	-grain-	5	0.3	1868	38	4	65	8
						ed, white to yellow brown on both fre	sh and	7900						
						weathered surfaces. The plagioclase								_
						crysts within the volcanic fragments	have	< 5	0.1	1000	40		76	33
						been altered to kaolinite. Thin Sect	ion.	5000	(Bor	dar	Cleg	2)		
										,				
RX 38630	Rock		Chip	8345S	100W	Footwall of vein cutting altered aggle	omerate	5	0.2	33	37	2	56	<u> </u>
						(RX 38631). Fine pink to reddish brow		9800						
						weathers buff to rust brown. Sample								
				1		partially silicified. Sample also con								_
						quartz phenocrysts.								
- · · · · · · · · · · · · · · · · · · ·														
RX 38631	Rock		Chip	8345S	100W	Vein (silicified and brecciated), find	e	5	0.1	1577	7	4	5	18
						grained, carbonate poor, pink to buff	white	28000						
						on both fresh and weathered surface.								
						Strike/dip: $155^{\circ}-160^{\circ}/90^{\circ}$. Vein is	10-15 c	n						
						wide. Sample was collected over a 1.		1						
RX 38632	Rock		Chip	8345S	100W	Hanging wall to vein (RX 38631), fine	to	5	0.1	40	12	1	8	
						medium grained, clay altered Nicola v		T						
						Sample is buff white to pink on fresh								_
						face, weathers to a gossan brown.								
	1													
														 I

· -	C					C	,				(
TRAVI	ERSE NUME	ER		_	PROJECT _	KAM/JEFF Claims G	EOLOGIS	T(S)_	В	<u>rian</u>	R.	Booth									
N.T.S.	92-I-	15		_	AREA		ATE														
SAMPL	.E S	AMPLE T	YPE	SAMPLE	LATITUDE	SAMPLE DESCRIPTION		RES	ULTS	(p.p.m	. / %	/oz.p	er ton)	,							
NUMBE		SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGITUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Mineralization, etc.	B.	Au ppb Hg ppb				Pb	Zn ppm	Sb							
RX 3863	3 Rock		Chip	8390S	130W	Footwall to vein sample (RX 38634), fine grained, slightly altered agglomerate, alteration consists largely of clay.		5 740	0.3	17	23	2	32	2							
RX 3863	4 Rock		Chip	8390S	130W	Quartz-carbonate vein, 3-6 cm wide, stridip: 140°/50°W, cutting clay altered Niagglomerate. Sample contains minor cinmineralization as minor grains.	cola	5 6200	0.2	45	6	13	103	2							
RX 3863	5 Rock		Chip	8390S	130W	Hanging wall to vein (RX 38634), fine to medium grained, clay altered Nicola aggl ate. The degree of alteration is varial The majority appears to be the alteration	omer-		0.4	9	30	4	38	2							
R <u>X 3863</u>	5 Rock		Chip	8415S	150W	plagioclase phenocrysts to kaolinite. Quartz-carbonate vein, strike/dip: 15000 vein is 5-7 cm in width. The vein cuts ly argillically altered Nicola volcanic lomerate. No sulphide mineralization was	high- agg-		0.3	3	6	7	89	2							
RX 38637	7 Rock		Chip	8470S	170W	Silicified zone cutting argillically alt Nicola agglomerate, fine-grained, white yellow brown on both fresh and weathered	to sur-	4400	0,3	26	12	9	176	2							
RX 3863	3					faces. Zone appears to pinch and swell. is 3-10 cm wide and strike/dip: 160°/80 Trace pyrite is present less than 1%. G.C. #41- Standard.		15 60	0.4	19	109	274	103	4							

•

	C							· C									
TRAVERS	E NUMB	ER		_	PROJECT _	KAM/JEFF Claims GE	OLOGIS	T(S)_	В	rian	R. 1	Booth					
N.T.S	92-I-	15		-	AREA		TE										
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE.		1		er ton)								
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGLYUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.						Pb ppm	Zn ppm	Sb			
RX 38639	Rock		Chip	8390S	265W	Nicola agglomerate, fine to medium grain			0.1	2	57	2	60	2			
						green to reddish brown on both fresh and weathered surfaces. Carbonate occurs as		40									
 	ļ					fracture fillings. No alteration accom	panie										
· · · · · · · · · · · · · · · · · · ·						the veining.								<u> </u>			
RX 38640	Rock		Chip	8440S	265W	Carbonate vein system parallel to fract			0.3	3	8	10	79	2			
	ļ			ļ		system. Strike/dip: 160°/90°. 10-15 c		1560	00				<u> </u>				
						wide. Vein is mauve to white on both f								 			
						and weathered surfaces. No sulphide min	neral	•						├ ─			
				ļ		ization was observed.								├-			
RX 38641	Rock		Chip	8445S	60W	Footwall to vein (RX 38642) altered agg	1 om-	5	0.1	43	24	5	41	4			
ALL MANAGEMENT						erate. Locally brecciated, medium grain		5400	<u> </u>					<u> </u>			
						grey to buff white. Feldspar phenocrys		23,00									
						within fragment have been altered to cla											
·						(kaolinite). No sulphides were observe											
RX 38642	Rock		Chip	8445S	60W	Quartz-carbonate vein, 5-7 cm wide, str		5	0.1	710	8	10	48	34			
						dip: 1320/600E. Fragments are present		5900						L			
						within silica. Vein has a grey to pink or. The margins of vein are gossaned.								_			
RX 38643	Rock		Chip	8445S	60W	Altered Nicola volcanic, medium-grained highly fragmental. Gossan is present ma		5 8400	0.1	34	21	4	55	3			
						due to the weathering of sulphide grain		0400									
RX 38644	Rock		Chip	8405S	050W	Small quartz vein enveloped by argillic	al-	5	0.3	5	6	9	109	2			
						teration in both hanging wall and footwa	a11.	480									
						The vein is 4 cm wide, strike/dip: 140°											
						The argillic alteration is mainly restr	icted										
	 					to the feldspar phenocrysts.											
	ł	j	1	1	1		L						, ,	i .			

GEOLOGIST(S) Brian R. Booth KAM/JEFF Claims PROJECT ____ TRAVERSE NUMBER ____ L8250S DATE July 1984 92-I-15 AREA __ N.T.S. _ SAMPLE SAMPLE TYPE SAMPLE LATITUDE! RESULTS (p.p.m. / % /oz. per ton) SAMPLE DESCRIPTION LONGLTUDE LENOTH, Rock type, lithology, character of soil, stream silt, etc. NUMBER RX SX Au Ag As Cu Pb ppb ppm ppm ppm ppm WIDTH. ord / or Zn Sb Formation Rock. Stream Grab. DDM ppr AREA U.T.M. Mineralization, etc. Talus Silt. Chip. Hg East/West Soil Channel South 8280S Altered agglomerate, close to the contact RX 38645 Rock Chip 40E 0.122 178 between 2 fracture systems (one strike 100° 700 and 2nd at 160°). Unit is highly fractured, blue grey in colour and contains gossan (rust) patches. 0.3 195 RX 38646 Rock Chip 8250S 045E Highly altered argillaceous interbed, finegrained, highly sheared and contorted. The zone (interbed) is located at the intersec-<5 k0.1 230 tion of 2 fault zones. The unit appears to have been injected into the junction between 440 (Bondar (legg) the 2 fault structures. No sulphides were observed in sample. 0.2 1986 Highly silicified contact zone between the 8225S RX 38647 Rock Chip. 050E Ashcroft conglomerate and an argillically 1160b altered andesitic dyke, fine-grained, grey to black. Locally gossaned due to presence k0.1 1000 25 of less than 1% pyrite. The zone is 15-20 cm/5000 (Bonday Clege) in width. 0.2 32 55 RX 38648 Rock Chip 8190S 090E Nicola agglomerate, fine to coarse grained. light to dark green with occasional reddish 1200h fragments. Unit is relatively massive and doesn't contain carbonate fracture filling. RX 38649 Rock Chip 8075S 125E Ouartz breccia zone (minor carbonate) intro- 10 0.4 12 duced along fault zone. Breccia fragments 2000 range in size from 1-7 cm. The zone pinches and swells

GEOLOGIST(S) Brian R. Booth KAM/JEFF Claims PROJECT __ TRAVERSE NUMBER ____ 8250S, 8000S 92-I-15 AREA _ July 1984 DATE ___ N.T.S. ___ SAMPLE LATITUDE. RESULTS (p.p.m. / % /oz. per ton) SAMPLE SAMPLE TYPE SAMPLE DESCRIPTION LONGLTUDE LENOTH. Rock type, lithology, character of soil, stream silt, etc. NUMBER RX SX Au Ag As ppb ppm ppm Cu Ph WIDTH. ond / or Zn Sb Formation Rock. Stream Grab. ppm ppm DDM ppm AREA U.T.M. Mineralization, etc. Talus Silt. Chip. Hg ppb Soil Channel East/West South 8250S 585E Gossan zone close to contact between andes-0.1 22 77 8 69 RX 38650 Rock Chip ite dyke and Ashcroft conglomerate. Zone is 1100 cut by numerous little quartz veinlets less than 1 cm in width. Footwall to vein (RX 38652), fine-grained. 12 60 73 0.18075S 710E RX 38651 Rock Chip h sood carbonate altered Nicola agglomerate, rust vellow brown on fresh surface to rust orange brown to black on weathered. Carbonate occurs as veinlets and microveinlets composed mainly of dolomite, calcite and ankerite. Hematite stain was also observed. Carbonate (quartz) vein cutting carbonate 10 8075S 710E 78 Chip RX 38652 Rock altered Nicola volcanics. Vein strike/dip: 14000 $160^{\circ}/72^{\circ}$ E and is 3-5 cm wide. Locally the vein contains breccia fragments (less than 1 cm). Hanging wall sample to RX 38652. Carbonate 5 0.1 24 41 8075S 710E RX 38653 | Rock Chip alteration, fine-grained, rust-orange brown 1200 on both fresh and weathered surface. Hematite stain is also present. 0.1 12 65 Carbonate-quartz vein. Vein strike/dip: 8105S 710E RX 38654 Rock Chip $160^{\circ}/80^{\circ}$ E and is 5-6 cm wide. The quartz 4000 occurs as angular fragments, supported by a carbonate (dolomite) matrix. Ankerite may also be present.

	C					C	C											
TRAVERS	F NUME	3ER			PROJECT	KAM/JEFF Claims GEOLO	GIST(S).	<u>F</u>	<u>3riar</u>	1 R.	Booth							
N.T.S					AREA	8000S 2750S DATE		ly 198										
SAMPLE		AMPLE TY	YPE	SAMPLE	LATITUDE,			SULTS	(p.p.r	n. /%	6 /oz. pe	er ton)	_					
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGLTUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.		Ag ppm	As ppm			Zn ppm	Sb					
RX 38655	Rock		Chip	8105S	709E	Sample was taken of altered (carbonate) Ni-		0.1	1 7	24	17	70	7					
	ROCA			02033	70,2	cola volcanic which is cut by numerous silca rich veinlets (less than .5 cm). The	i- 620											
	<u> </u>	/		 '	 '	unit is grey to white in colour. The vein-		 		 '	↓	 '	├					
	<u> </u>	 	<u> </u>	 '	<u> </u>	lets are reddish brown to mauve.		+	 	 '	+	\vdash	 					
-RX 38656	Rock	 	Chip	8105S	708E	Siliceous zone containing carbonate altered	1 5	0.1	1 11	26	10	77	$\overline{2}$					
. NY JOOJO	RUCK	<u> </u>	CHIP	01035	7001	fragments. Unit is rust orange brown to	9000	+	+		1		<u> </u>					
				 		black on weathered surface and is vellow g		1	 									
						on fresh surface.												
	 					on Trees. equation	1				1							
RX 38657	Rock		Chip	8110S	.709E	Quartz-carbonate vein, strike/dip: 160°/70°	,_ 5	0.2	<u>,</u> 5	17	5	20	2					
	 '	<u> </u>		<u> </u>	<u> </u>	80°E, green to white colour on fresh surface	:e 5600	4	 	 '	1							
	<u> </u>	1	1	 '	<u>'</u>	Vein is 10 cm wide. The quartz occurs as	_	+			+		+					
	 '	<u> </u>		 		angular breccia fragments within the carbon	1-	+	 	 	1							
<u> </u>	<u> </u>	-		<u> </u>		ate rich matrix.	_	+	+	 			_					
1	<u> </u>	1	 			 	+-	+	+	+		H	-					
RX 38658	Rock	-	Chip		 	G.C. #88 - Standard	1,0	0.1	1 2	7	14	28	12					
	 	1	-		 	+ :	40	+	+	 	 		 					
RX 38659	Rock		Chip	2765S	1460W	Carbonate altered Nicola volcanic float	+-5	0.2	2 9	30	6	52	2					
KA JOUJA	ROCK	 	CHIP	27035	14004	(angular), fine-grained, rust yellow brown	260		†									
	 	 	 	1		on fresh and weathered surfaces. Sample is	· · · · · · · · · · · · · · · · · · ·	1	†		1							
						locally silicified. Carbonate occurs as		1										
<u> </u>	 	 	 			veinlets and microveinlets consisting large	a1 v	+	1									
	 	 	 	 		of ankerite, dolomite and calcite.	-	1	1	1	† <i></i>							
	†					OF WHITE STREET STREET		1		1								
RX 38660	Rock		Chip	2725S	1015W	Tuff-andesitic, medium to coarse grained,	5	0.1	2	106	2	60	2					
****						green on fresh surface, weathers grey-green	1. 130											
						Augite and plagioclase rich. Locally the	T_{-}											
						unit is brecciated.					'							

· -	C									(<u> </u>								
TRAVERS	F NUMB	FR			PROJECT	KAM/JEFF Claims GEOLOG	et/e\	В	rian	R. 1	Booth								
N.T.S				_	AREA	2725S, 00S DATE													
SAMPLE		AMPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RESULTS (p.pm. /% /oz.per ton)												
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGLPUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	T	Ag ppm				Zn	Sb ppn						
RX 38661	Rock		Chip	2750S	950W	Andesite-basalt, medium to coarse grained.	5	0.1	2	94	4	66	2						
						green on fresh surface, grey-green on weathered surface. Unit is massive. Carbonate veinlets are minor and not associated with alteration.	140												
								ļ	ļ				<u> </u>						
RX 38662	Rock	<u>.</u>	Chip	2740S	870W	Massive andesite, fine-grained, slight gos- san stain is present along fracture surface. Sample is green on fresh surface, weathers grey-green.	5 90	0.1	2	97	2	84	2						
RX 38663	Rock		Chip	00S	.925W	Andesitic volcanic, fine-grained, green to	5	0.3	, 9	41	3	43	2						
				<u> </u>		dark green on fresh surface, weathers grey.	30						_						
						Unit is massive and contains minor carbonate as zones and veinlets. Pyrite is present in trace quantities (less than 1%).	I .												
RX 38664	Rock		Chip	00S	1060W	Nicola volcanic, fine-grained, dark green or	1 5	0.2	6	7	7	64	2						
					100VII	fresh surface, weathers grey to green. Uni is generally massive and lacks alteration.	1												
RX 38665	Rock		Chip			G.C. #75 - Standard.	30	0.1	. 5	15	17	64	2						
RX 38666	Rock		Chip	7985S	430W	Sample of quartz-carbonate vein material, 5-7 cm wide, strike/dip: 18°/55°E. Cinna- bar was present as small disseminated grain	1600	0.2	28	326	4	92	23						
						along with minor tetrahedrite.													

GEOLOGIST(S) Brian R. Booth KAM/JEFF Claims PROJECT ___ TRAVERSE NUMBER 8000S, 8250S, 7500S DATE August 5, 1984 92-I-15AREA _ N.T.S. __ LATITUDE. SAMPLE SAMPLE TYPE SAMPLE SAMPLE DESCRIPTION RESULTS (ppm. / % /oz.per ton) LONGLTUDE LENOTH, Rock type, lithology, character of soil, stream silt, etc. NUMBER RX SX Au Ag As ppb ppm ppm WIDTH. ond / or Cu Pb Formation Zn Sb Rock. Stream Grab. ppm ppm DDM ppi AREA U.T.M. Mineralization, etc. Talus Silt. Chip. Hg ppb East/West Soil Channel South RX 38667 5 0.1 3517 46 Rock Chip 8025S 470W Chip sample taken of altered and fractured 75 Nicola volcanics. Chip was taken 5 x 2 m 15000 area along creek near adits. Sulphide (pyrite) was observed (less than 1%). Chip sample of highly sheared, fractured 8025S RX 38668 Rock Chip 470W 5 0.1 69 101 and altered rock, taken over a 2 x 0.5 m 27000 area along creek near adits. Chlorite may be a major constituent within the sample. RX 38669 8165S 240W Quartz-carbonate vein material, strike/dip: 27 176 Rock Chip 5 0.2 57 650/600N. sulphides were present (pyrite) пооо less than 1%. Vein is cutting relatively unaltered Nicola volcanic agglomerate. 5 0.1 3160 RX 38670 Rock Chip 8345S 100W Chip sample taken of silicified zone near 8 60 samples RX 38630-32. Cherty in nature. rooodo surrounded by argillic alteration. Minor pyrite was observed (less than 1%). RX 38671 Rock Chip 7375S 555W Carbonate altered Nicola volcanic agglomer-5[0.1]47 ate, fine to medium grained, light yellow 500 brown to green. Alteration is less intense than other areas of claims. No significant dolomite vein was encountered. Chip 4 x 4 m area.

	C		,											
TRAVERS	E NUMB	ER		_	PROJECT	KAM/JEFF Claims GEOL	OGIS	T(S).	В	rian	R.	Booth		
N.T.S	92-1-	15			AREA	7500S. traverse #1 DATE			ıst 1					
SAMPLE	S	AMPLE TY	r PE	SAMPLE	LATITUDE.	SAMPLE DESCRIPTION		RES	ULTS	(0.01	n. /%	/oz.p	er ton)	_
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LONGLYUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.			Ag ppm		Cu	Pb ppm	Zn	Sb ppn
RX 38672	Rock		Chip	7375S	555W	Carbonate altered Nicola volcanic, fine - grained, light yellow brown to green on		5 730	0.1	14	55	1	50	2
						fresh surface and weathered surface. Pyr	ite							
						was observed in trace quantities (less th	an		ļ	ļ				
						1%). Alteration is not intense.			ļ	<u> </u>				
				!	<u>Distance</u>				 					
RX 38673	Rock		Chip	Traverse #1	90 m	Ashcroft conglomerate, coarse-grained, hi siliceous clasts and siliceous matrix. Clasts range in size from less than 1 cm		155 220	h.1	92	34_	_8_	73	2
						plus 5 cm. Unit is generally massive and	1							
						extremely cherty. Minor volcanic dyke ma								
						erial was included in the sample.							,	_
RX 38674	Rock		Chip	Traverse	295 m	Granodiorite, medium-grained, massive equ		_	0.2	8	22	_3_	70	2
				#1		granular. 30-40% hornblende (mafics (bio		450		 	├			
						tite?), plagioclase 30%, Kspar 10-20%, quartz 10%. No alteration was observed a	nd							
						no sulphide mineralization,			-	 	-			
RX 38675	Rock		Chip	Traverse	545 m	Diorite, massive, medium-grained, grey to		5	0.1	2	35	1	63	2
				#1		brown on fresh surface, grey on weathered		100						
						No alteration observed and no sulphides w								
	<u> </u>			<u> </u>		present. Magnetite occurs as an accessor	у		 	 			·	
				 		mineral.		i	 	+				_
RX 38676	Rock		Chip	Traverse #1	580 m	Diorite, massive, grey to black on both f and weathered surface. Relatively unalte				8	32	4	_59	2
				1/ 1		ed. Sulphide is present in trace quantit			1	1		 		
						locally.				ļ				
	<u> </u>			<u> </u>					 	 		-		-
				 					-	+-		 		-
							/							

TRAVERSE NUMBER #1					C	,						
E NUMBI	ER#	1	_	PROJECT	KAM/JEFF Claims GEOLOG	ST(S)	<u> </u>	Brian	R.	Booth		
92-1-1	5		_	AREA Tra	verse #1 (North Sabiston Lake) DATE	Augi	ıst 1	984				
SA	MPLE TY	/PE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RE	SULTS	(p.p.n	n. / %	/oz.p	er ton)	
Rock, Stream Silt, Chip, Channel Traverse Distance 77 Rock Chip Traverse 793 m Diorite to granodiorite, medium to compare the compared to the					Rock type, lithology, character of soil, stream silt, etc. Formation	Au ppb	Ag ppm	As	Cu	Рb	Zn	Sb ppn
Rock		Chip	Traverse #1	793 m	Diorite to granodiorite, medium to coarse grained, phaneritic. Biotite rich. No alteration. Massive intrusion.			6	33	1	56	2
Rock		Chip	Traverse #1	920 m			0.1	4	35	1	59	2
Rock		Chip	Traverse #1	1143 m	Diorite to granodiorite, grey to brown, massive, no sulphide and no alteration.	·		2	22	2	45	2
Rock		Chip	Traverse #1	.1400 m	Granodiorite to diorite, medium to coarse- grained, grey to white on fresh surface, grey on weathered. Hornblendes have been replaced by biotite.	5 110	0.1	. 2	29	1	60	2
Rock		Chip	Traverse #1	1685 m	Granodiorite to diorite, medium to coarse grained, grey to white on fresh surface.	60	0.1	2	42	2	47	2
Rock		Chip	Traverse #1	2080 m	Granodiorite to diorite, medium to coarse grained, grey to white on fresh surface, weathers grey. Rock is equigranular, phaneritic and is biotite rich.			2	28	1	53	2
	Rock Rock Rock Rock Rock Rock	SAMPLE TY RX Rock, Stream Silt, Soil Rock Rock Rock Rock Rock	SAMPLE TYPE RX Rock, Stream Silt, Soil Rock Chip Rock Chip Rock Chip Rock Chip Rock Chip Chip	SAMPLE TYPE RX Rock, Stream Talus Silt, Soil Channel Traverse Rock Chip Traverse #1 Rock Chip Traverse	SAMPLE TYPE SAMPLE TYPE RX Rock, Stream Talus Silt, Soil Channel Rock Chip Traverse 920 m Rock Chip Traverse 1143 m #1 Rock Chip Traverse 1400 m Rock Chip Traverse 1685 m Rock Chip Traverse 2080 m Rock Chip Traverse 2080 m	SAMPLE TYPE SAMPLE TYPE Rock Streem Grab, Soil Chonnel Traverse Chip Traverse C	SAMPLE TYPE SAMPLE LATITUDE: LENGTH; LOGSTODE SAMPLE DESCRIPTION RELATIONS Model of Formation Mineralization, etc. August Reck Siream Soil Channel Traverse 10 Model of Formation Mineralization, etc. August Reck Chip Traverse 143 m Diorite to granodiorite, medium to coarse grained, planeritic. Sive, no sulphide and no alteration. Soil Reck Chip Traverse 1400 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1400 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1400 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Granodiorite to diorite, medium to coarse 5 Reck Chip Traverse 1685 m Reck Traverse 1685 m Reck Traverse 1685 m Traverse	SAMPLE TYPE SAMPLE TYPE RX SX SX Channel Rock, Sill, Soil Chip Traverse Traverse	SAMPLE TYPE SAMPLE TYPE RX SX SX SY Chonnel Rock Chip Traverse 793 m Diorite to granodiorite, medium to coarse Frained, phaneritic, grey on both fresh and weathered Surface. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- surface. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- surface. Rock Chip Traverse 793 m Diorite to granodiorite, medium to coarse Surface. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- surface. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- surface. Rock Chip Traverse 143 m Diorite to granodiorite, grey to brown, mas- sive, no sulphide and no alteration. Rock Chip Traverse 793 m Diorite to granodiorite, medium to coarse surface. Rock Chip Traverse 1400 m Granodiorite to diorite, medium to coarse- sive, no weathered. Hornblendes have been replaced by biotite. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- sive, no sulphide and no alteration. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- sive, no sulphide and no alteration. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- sive, no sulphide and no alteration. Rock Chip Traverse 793 m Diorite to granodiorite, grey to brown, mas- sive, no sulphide and no alteration. Rock Chip Traverse 793 m Diorite to diorite, medium to coarse- sive, no sulphides or alter- ation were seen. Rock Chip Traverse 793 m Rock type, lilhology, character of soil, stream sill, etc. Au Au Au Ag As Pph Ab Pph	SAMPLE TYPE SAMPLE SAMPL	SAMPLE Type	SAMPLE TYPE SAMPLE TYPE SAMPLE SAMPLE

N.T.S	92-1-	15		-	AREAT	raverse #2, 2 (North of Sabiston Lake) DATE	July/	Augu	st 1	984			
SAMPLE	S	AMPLE T'	YPE	SAMPLE	LATITUDE,	SAMPLE DESCRIPTION	RES	ULTS	(р.р.т	. / %	o /oz. po	ar ton))
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA Traverse	LONGLTUDE ond/or U.T.M. Distance	Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au ppb Hg ppb		As ppm	Cu ppm	Pb ppm	Zn ppm	S
RX 38688	Rock		Chip	2	930 m	Hornfels, fine-grained, grey to black con-	5	0.3	36	29	3	66	10
						taining fine plagioclase phenocryst. Matrix	260						
						is aphanitic, are generally biotite rich. No							_
						sulphide observed.			ļ				<u> </u>
RX 38689	Rock		Chip	3	050 m	Granodiorite to granite, medium to coarse	5	0.2	6	33	7	88	-
141 30005		grained, white to buff white green on fre					50	V.2	1				
						surface, weathers grey to white.	- 50						
						surface, weathers grey to white.							
RX 38690	Rock		Chip	3	167 m	Ashcroft conglomerate, medium to coarse	5	0.1	37	20	4	38	2
141 30030						grained, siliceous. Clasts range from less	30						
					,	than 0.5 cm to 5 cm in diameter. Minor gos-			<u>. </u>				
			san stain occurs along fractures.								 		
RX 38691	Rock		Chip.	3	565 m	Ashcroft conglomerate and minor hornfels.	5	0.2	20	29	9	71	1 2
						fine to medium grained, grey to black on both	70						
						weathered and fresh surface. No sulphide was							\prod
						observed. Manganese stain is common along							
						fracture surfaces.	_		ļ				\sqsubseteq
DV 20602	D. J.		C) t		5/5		5		-	- 00	5		
RX 38692	Rock		Chip	3	565 m	Granodiorite to granite, medium to coarse		14.1	11	30_	 > 	91	+2
	 	<u> </u>				grained, massive white to grey green on fresh	80	 	 				\vdash
			<u> </u>	}		surface, weathers white to grey. Contains		 	 				
						zones of hematite and pyrite stain.		 					\vdash
RX 38693	Rock		Chip	3	650 m	Ashcroft conglomerate, fine to coarse-grained	5	0.1	10	14	4	54	8
						grey to white on fresh surface, weathers grey	30		L				<u> </u>
						Clasts generally are less than .2 cm but loc-							
						ally may be more than 2 cm (graded bedding).							
						No significant alteration or fluid movement							
						was observed.				I		1	

 \mathbf{C}

- C						C	•				(
TRAVERS	E NUMB	ER2		_	PROJECT _	KAM/JEFF Claims GE	OLOGIS	T(S)-	В	rian	R.	Booth		
N.T.S	92-1-	15			AREA	Traverse #2 DA	ŤE	July	Augu	ist 1	984			
SAMPLE	S	AMPLE TY	/PE	SAMPLE	LATITUDE	SAMPLE DESCRIPTION		RES	ULTS	(p.p.m	. / %	/oz . p	er ton))
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA Traverse	LONGLAUDE and or U.T.M.	Rock type, lithology, character of soil, stream silt, etc Formation Mineralization, etc.		Au ppb Hg ppb			Cu ppm	Pb	Zn ppm	St
RX 38683	Rock		Chip	2	290 m	Ashcroft conglomerate (hornfelsed). The		5	0.4	83	35	7.1	79	2
						conglomerate is coarse grained, siliceous and grey on both fresh and weathered sur Hornfels is grey to black, fine-grained.	s face.	40						
						anitic, moderately fractured and contain manganese and hematite stain along surfa No evidence of fluid (hydrothermal) acti	ces.							
						close to contact.								—
RX 38684	Rock		Chip	2	308 m	Hornfels along the contact between the Acroft conglomerate and the diorite intrufine-grained, aphanitic, black to grey of	sive.	5 70		47	45	4	76	2
			-			both fresh and weathered surfaces. Mind gossan stain occurs along some of the fr ture surfaces.								
RX 38685	Rock		Chip	2	648 m	Diorite to granodiorite, medium to coars grained, grey to white on fresh surface, weathers grey. No alteration or sulphid were observed.		5 30	0.1	3	24	5	69	2
RX 38686	Rock		Chip	2	575E	Diorite, medium-grained, massive grey to light grey on both fresh and weathered s faces. No alteration or veining observe	ur-	5 60	0.4	8	21	1	52	2
RX 38687	Rock		Chip	2	640 m	Ashcroft conglomerate, medium to coarse grained, cobbles range in size from 1-10 Generally the unit is siliceous and rela	cm.	5 50	0.2	8	21	1	46	2
						ly unaltered.								
	 	1		 	 				 	 			—	+

C

, par	TRAVERSE NUMBER3					C	\mathbf{C}							
TRAVERS	F NUMB	FR	3 .		PROJECT	KAM/JEFF Claims	GEOLOGI	ET(E)	В	rian	R. 1	Booth		
N.T.S				-	•	averse 3 (North Sabiston Lake)	DATE							
SAMPLE		AMPLE TY	(PE	SAMPLE		SAMPLE DESCRIPTION	UAIL				/%	/oz p	er ton)	_
NUMBER	RX Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA Traverse	LATITUDE, LONGLTUDE ond/or U.T.M. Distance	Rock type, lithology, character of soil, stream s Formation Mineralization, etc.	ilt, etc.	f				Pb ppm	Zn ppm	Sb
RX 38694						G.C. #41 - Standard.		5	0.4	15	114	278	104	6
								100						
								 						<u> </u>
								 						_
								1						
										L				
				<u> </u>				 						
	<u></u>		1	<u> </u>				 	 					-
				<u> </u>				 	<u> </u>	 				
	-			 				 	 	 				—
	 													
	ļ				<u> </u>			 	<u> </u>					

GEOLOGIST(S) Brian R. Booth PROJECT KAM/JEFF Claims TRAVERSE NUMBER ____ 92-T-15 AREA Traverse #1 & Resample of RX 38673 N.T.S. _ September 18, 1984 DATE LATITUDE. SAMPLE SAMPLE TYPE SAMPLE SAMPLE DESCRIPTION RESULTS (p.p.m. / % /oz. per ton) LONGLTUDE LENGTH. Rock type, lithology, character of soil, stream silt, etc. NUMBER RX SX Au Ag As ppb ppm ppm WIDTH, Pb and / or Cu Sb Zn Formation Rock. Stream Grab. ppm ppm ppm ppn AREA U.T.M. Mineralization, etc. Chip, Talus Silt. Hg ppb Soil Channel Traverse Distance Small dvke (volcanic) dioritic?, medium 19 13 0+80 m E 0.1 RX 38901 Rock 134 Chip grained, buff to green on fresh surface, wea-230 thers grey. Dyke is cutting Ashcroft conglomerate. The dyke strike is approximately 870/dip ?. Pyrite occurs as disseminated grains within groundmass (less than 1%). Dyke is fairly massive and exhibits joint patterns. RX 38902 Chip 195 l Rock Ashcroft conglomerate close to contact with dioritic dyke, coarse-grained, grey on both 40 fresh and weathered surface. Sample is highly siliceous and contains chert cobbles. RX 38903 Chip. Resample of anomalous sample RX 38673 (115 5 0.1 106 28 10 Rock 66 ppb Au). Some dyke material as described a-110 bove and some of the Ashcroft conglomerate. 6250S 865W RX 38904 Rock Chip Tuff to epiclastic breccia, medium-grained. 75 grey green to blue green on fresh surface. 200 weathers grey. Fragments reach 2 cm in diameter. Fine sulphides are present as films, small zones or pods and disseminated grains (up to 1%). Sulphide is mainly pyrite but may contain arsenopyrite as well. Rock is moderate to highly siliceous and contains minor carbonate (calcite veinlets). $10 \text{ m} \times 10 \text{ m} \text{ chip.}$

••	C					\mathbf{C}									
TRAVERS	E NUMB	ER		_	PROJECT	KAM/JEFF Claims	GEOLOG	ST(S).	В	rian	R.	Booth			
N.T.S				_		Resample of RX 38673	DATE								
SAMPLE		AMPLE T	YPE	SAMPLE		SAMPLE DESCRIPTION							er ton)	, 	
NUMBER	<u>RX</u> Rock, Talus	SX Stream Silt, Soil	Grab, Chip, Channel	LENOTH, WIDTH, AREA South	LATITUDE, LONGLIUDE ond/or U.T.M. East/West	Rock type, lithology, character of soil, stream silt Formation Mineralization, etc.	, etc.	···	Ag ppm			Pb ppm	Zn ppm	Sh	
RX 38905	Rock		Chip	6265S	865W	Ditto RX 38904.		5 90	0.1	14	45	8	72	2	
RX 38906	Rock		Chip	6255S	880W	Ditto RX 38904.		5 120	0.2	18	64	4	65	2	

APPENDIX C

Stream Sediment Heavy Mineral Samples Descriptions and Analytical Results

LOCATION				STRE	AM CHARA	CTERIST	ICS			SAMP	LE CHAR	ACTERIS	TICS	
LATLONG GRID CO-ORDS N/S 52+50 - E/W 2+90W SAMPLE LOCATION DESCRIPTION name, road name, signs, cult markers, etc.) Sample taken in Sabiston	(ie. cr	eek	DIRECT STREAM GRADIE AREA O STREAM ary, s	ION OF VELOC NT CATEG econda N OF S	FLOW 1 CITY (ie. Medium Moderate CHMENT BA CORY (ie. Try tribu Main SAMPLE IN TO CENTRE	DEPTH	20 cm south medium, squar	slow) e km) ibut-	DR WEIGH SAMPL % SAMPL EA MO DI SAMPL	T SIEVE T OF SA E COMPO ORGANIC	X 5%			
GOLDWHEEL SAMPLE CHARACTI Z MAGNETITE Z SAND Z HEAV 25 20 80 WEIGHT OF FINAL SAMPLE 10 ADDITIONAL OBSERVATIONS (ie identified, colour, etc.) Garnet, olivine, quartz, augite, obsidian, epidote calcite. RESULTS Au Ag p.p.b. p.p.m	MINERA minera magneti hornb	LS ls lende,	gravelOVERAL	BE STR, swam Wet, s L RATI modera TS Zn	was no	(ie. we sand REAM (i, poor)	e. exce went we blem du	llent,	MO FA PO ADDIT th an aveceling.	DERATE_ IROR_ IONAL C	vield of			lay
18200 0.2	12	2	130	36	37	15	110000	5	28	1	41	•		

LOCATION	STREAM CHARACTERISTICS	SAMPLE CHARACTERISTICS.							
N.T.SLAT	STREAM DIMENSIONS - WIDTH 1 - 1.5 cm - DEPTH 20 cm DIRECTION OF FLOW North to south STREAM VELOCITY (ie. fast, medium, slow) Medium GRADIENT Moderate AREA OF CATCHMENT BASIN (ie. square km) STREAM CATEGORY (ie. main, main tributary, secondary tributary) Main POSTION OF SAMPLE IN STREAM In centre DISTANCE UPSTREAM FROM ACCESS	SAMPLE PREPARATION DRY SIEVE WET SIEVE - AT SITE X - AT WHEEL WEIGHT OF SAMPLE 5 kg SAMPLE COMPOSITION % ORGANIC Less than 5% % SILT, CLAY 10% SAMPLE COLLECTION EASY MODERATE X DIFFICULT SAMPLE QUALITY EXCELLENT							
GOLDWHEEL SAMPLE CHARACTERISTICS Z MAGNETITE % SAND % HEAVY MINERALS 25 20 80 WEIGHT OF FINAL SAMPLE 25 g ADDITIONAL OBSERVATIONS (ie. minerals identified, colour, etc.) Gold flake, cinnabar, quartz, horn-blende, garnet, magnetite, "gold", obsidian, augite, epidote, carbonate, olivine. RESULTS Au Ag As Sb	COMMENTS a problem. Gold flake is flat sub-angular. Pb Zn Cu W Hg Mo	GOOD X MODERATE FAIR POOR ADDITIONAL COMMENTS n a good yield of magnetite. Clay was not t, size of pin head, has quartz and is Ni Cd Sr							
	p.p.m. p.p.m. p.p.m. p.p.b. p.p.m. 1 10 42 28 7 136000 4								

LOCATION	STRE	AM CHARAC	TERIST	CS			SAMP	LE CHARA	ACTERIS	TICS.	
N.T.SLAT	STREAM DIMEN DIRECTION OF STREAM VELOC GRADIENT AREA OF CATC STREAM CATEC ATY, seconda POSTION OF S DISTANCE UPS 90 DESCRIBE STR	SIONS - NO	WIDTH 1 DEPTH 2 Orth to fast, 1 te SIN (ie main, 1 tary) STREAM	- 1.5 20 cm south medium, square	slow)	DR WE WEIGH SAMPL % SAMPL EA MO DI SAMPL EX GO	E PREPA Y SIEVE T SIEVE T OF SA E COMPO ORGANIC SILT, C E COLLE SY DERATE FFICULT E QUALI CELLENT	RATION - AT S - AT W MPLE SITION Less LAY CTION	ITE HEBL 5 kg than 5		
MAGNETITE % SAND % HEAVY MINERALS	OVERALL RATI	ING OF STI ate, fair Moderation Sample in small	REAM (10, poor) te had a fa	e. exce	llent,	FA PO ADDIT netite v not dis	IRORIONAL C	OMMENTS Clay an	nd silt		esent
110 0.3 31 7	11 50		10	50000	4	49	1	88	-		

SAMPLE	NUMBER	SX	70732	

LOCATION	STREAM CHARACTERISTICS	SAMPLE CHARACTERISTICS.						
N.T.SLAT LONG GRID CO-ORDS N/S E/W SAMPLE LOCATION DESCRIPTION (ie. creek name, road name, signs, culvert or post	STREAM DIMENSIONS - WIDTH 1 m - DEPTH 1ess than 15 c DIRECTION OF FLOW Southeast STREAM VELOCITY (ie. fast, medium, slow) Medium CRADIENT - 100	SAMPLE PREPARATION DRY SIEVE WET SIEVE - AT SITE X - AT WHEEL WEIGHT OF SAMPLE SAMPLE COMPOSITION						
Sample taken from Sabiston Creek at L 6000S.	GRADIENT Less than 10° AREA OF CATCHMENT BASIN (ie. square km) STREAM CATEGORY (ie. main, main tributary, secondary tributary) Main POSTION OF SAMPLE IN STREAM Centre of creek DISTANCE UPSTREAM FROM ACCESS	% ORGANIC 10 % SILT, CLAY 30 SAMPLE COLLECTION EASY MODERATE DIFFICULT X SAMPLE QUALITY EXCELLENT						
GOLDWHEEL SAMPLE CHARACTERISTICS % MAGNETITE % SAND % HEAVY MINERALS 25 20 80 WEIGHT OF FINAL SAMPLE 35 g ADDITIONAL OBSERVATIONS (ie. minerals identified, colour, etc.) Quartz, hornblende, garnet, olivine.	DESCRIBE STREAM BED (ie. wet, dry, gravel, swamp, etc.) Wet silt. clay. gravel OVERALL RATING OF STREAM (ie. excellent, good, moderate, fair, poor) Excellent	GOOD						
Quartz, hornblende, garnet, olivine, augite, epidote, magnetite, cinnabar. RESULTS Au Ag As Sb	Sample was easily wheeled with amount of clay and silt. Pb Zn Cu W Hg Mo	with good yield of magnetite. No significa						
		p.p.m. p.p.m. p.p.m. 40 1 56						

		LOCATI	ON				STREA	M CHARAC	TERISTI	CS			SAMP	LE CHARA	ACTERIS'	rics.						
	D CO-ORDS	LC	NG			/) 	IONS - V - I FLOW	DEPTH_Le	ess than	ı <u>15 c</u> m.	DR	y sieve	RATION - AT S	<u> </u>							
nam	PLE LOCATION ie, road name kers, etc.) Sample take L 6500S.	e, signs	PTION (ie. cre	post	AREA OF CATCHMENT BASIN (ie. square km) STREAM CATEGORY (ie. main, main tributary, secondary tributary) Main POSTION OF SAMPLE IN STREAM Centre of creek DISTANCE UPSTREAM FROM ACCESS							- AT WHEEL WEIGHT OF SAMPLE SAMPLE COMPOSITION % ORGANIC 15 % SILT, CLAY 40 SAMPLE COLLECTION EASY MODERATE DIFFICULT X SAMPLE QUALITY EXCELLENT									
% N WEI	GOLDWHEEL SA AAGNETITE % 25 IGHT OF FINAL DITIONAL OBSECTIONAL CO. Quartz, hor	SAND 20 L SAMPLI ERVATION Lour, e	80 E 40 NS (1e.	MINERAL g minera	LS — — Is											,						
SAMPLE NUMBER 5x73733	cinnabar (t		garnet,	olivin	e	Pb p.p.m.	Zn	Cu	W	Hg	Мо	N1	Cď	Sr p.p.m.		presen	nt.					

370

LOCATION	STREAM CHARACTERISTICS	SAMPLE CHARACTERISTICS
LATLONG	STREAM DIMENSIONS - WIDTH 1-2 m - DEPTH Less than 15 cm DIRECTION OF FLOW Southeast	SAMPLE PREPARATION DRY SIEVE WET SIEVE - AT SITE X
- E/WSAMPLE LOCATION DESCRIPTION (ie. creek name, road name, signs, culvert or post markers, etc.)	STREAM VELOCITY (ie. fast, medium, slow) Medium GRADIENT 10°	- AT WHEEL WEIGHT OF SAMPLE 4 kg SAMPLE COMPOSITION
Sample taken at L 7000S at Sabiston Creek main.	AREA OF CATCHMENT BASIN (ie. square km) STREAM CATEGORY (ie. main, main tribut- ary, secondary tributary)	% ORGANIC 5 % SILT, CLAY 35 SAMPLE COLLECTION EASY
	Main POSTION OF SAMPLE IN STREAM Centre of creek DISTANCE UPSTREAM FROM ACCESS	MODERATE DIFFICULT X SAMPLE QUALITY
GOLDWHEEL SAMPLE CHARACTERISTICS Z MAGNETITE Z SAND Z HEAVY MINERALS	DESCRIBE STREAM BED (ie. wet, dry, gravel, swamp, etc.)	EXCELLENT GOOD MODERATE X FAIR
25 20 80 WEIGHT OF FINAL SAMPLE 35 g ADDITIONAL OBSERVATIONS (ie. minerals identified, colour, etc.)	OVERALL RATING OF STREAM (ie. excellent, good, moderate, fair, poor)	ADDITIONAL COMMENTS Abundant clay in stream.
Quartz, hornblende, augite, calcite, obsidian, magnetite, epidote, garnet, olivine, fledspar, cinnabar (trace).	Sample had good magnetite yie	ld. Little clay or silt present.
RESULTS Au Ag As Sb	Pb Zn Cu W Hg Mo	Ni Cd Sr p.p.m. p.p.m. p.p.m.

LOCATION	STREAM CHARACTERISTICS	SAMPLE CHARACTERISTICS
N.T.S. LAT. LONG.	STREAM DIMENSIONS - WIDTH 1 m - DEPTH 40 cm	SAMPLE PREPARATION DRY SIEVE
GRID CO-ORDS N/S	DIRECTION OF FLOW Southeast STREAM VELOCITY (ie. fast, medium, slow)	WET SIEVE - AT SITE X - AT WHEEL
SAMPLE LOCATION DESCRIPTION (ie. creek name, road name, signs, culvert or post markers, etc.) Sample taken from L 7500S on	Medium GRADIENT 10-20° AREA OF CATCHMENT BASIN (ie. square km)	WEIGHT OF SAMPLE 7 kg SAMPLE COMPOSITION 5
Sabiston Creek.	STREAM CATEGORY (ie. main, main tribut- ary, secondary tributary)	% SILT, CLAY 30 SAMPLE COLLECTION EASY
	Main POSTION OF SAMPLE IN STREAM Centre to side DISTANCE UPSTREAM FROM ACCESS	MODERATE X DIFFICULT SAMPLE QUALITY EXCELLENT
GOLDWHEEL SAMPLE CHARACTERISTICS % MAGNETITE % SAND % HEAVY MINERALS 25 20 80	DESCRIBE STREAM BED (ie. wet, dry, gravel, swamp, etc.) Wet silty gravel	GOOD X MODERATE FAIR POOR
WEIGHT OF FINAL SAMPLE 20 g ADDITIONAL OBSERVATIONS (ie. minerals identified, colour, etc.) Ouartz. hornblende, olivine, garnet,	OVERALL RATING OF STREAM (ie. excellent, good, moderate, fair, poor) Excellent	ADDITIONAL COMMENTS
augite, epidote, magnetite, cinnabar (trace).	Bank material may be present. Little clay of silt present.	Fair magnetite yield in wheeling.
RESULTS Au Ag As Sb	Pb Zn Cu W Hg Mo p.p.m. p.p.m. p.p.m.	Ni Cd Sr p.p.m. p.p.m. p.p.m.

LOCATION	STREAM CHARACTERISTICS	SAMPLE CHARACTERISTICS.
N.T.SLAT LONG GRID CO-ORDS N/S	STREAM DIMENSIONS - WIDTH 2 m - DEPTH 5 cm DIRECTION OF FLOW southeast	SAMPLE PREPARATION DRY SIEVE
SAMPLE LOCATION DESCRIPTION (ie. creek name, road name, signs, culvert or post markers, etc.) Sample taken at L 8000S 7+75W on Sabiston Creek (main).	Medium GRADIENT 10-20° AREA OF CATCHMENT BASIN (ie. square km) STREAM CATEGORY (ie. main, main tributary, secondary tributary) Main	- AT WHERL WEIGHT OF SAMPLE SAMPLE COMPOSITION Z ORGANIC Z SILT, CLAY SAMPLE COLLECTION EASY X MODERATE
GOLDWHEEL SAMPLE CHARACTERISTICS Z MAGNETITE Z SAND Z HEAVY MINERALS 25 20 80 HEICHT OF FINAL SAMPLE 20 20	Centre (and side) DISTANCE UPSTREAM FROM ACCESS DESCRIBE STREAM BED (ie. wet, dry, gravel, swamp, etc.) Wet gravel	DIFFICULT SAMPLE QUALITY EXCELLENT X GOOD MODERATE FAIR POOR
WEIGHT OF FINAL SAMPLE 30 g ADDITIONAL OBSERVATIONS (ie. minerals identified, colour, etc.) Quartz, hornblende, olivine, garnet, augite. epidote, magnetite, obsidian, cinnabar (trace).	COMMENTS in the sample.	additional comments ood. There was little clay or silt
RESULTS Au Ag As Sb p.p.b. p.p.m. p.p.m. p.p.m.	Pb Zn Cu W Hg Mo p.p.m. p.p.m. p.p.b. p.p.m.	N1 Cd Sr p.p.m. p.p.m. p.p.m.

LOCATION	STREAM CHARACTERISTICS	SAMPLE CHARACTERISTICS.
N.T.S. LAT. LONG.	STREAM DIMENSIONS - WIDTH 2 m - DEPTH 5-10 cm	SAMPLE PREPARATION DRY SIEVE
GRID CO-ORDS N/S - E/W SAMPLE LOCATION DESCRIPTION (ie. creek name, road name, signs, culvert or post markers, etc.) Sample taken from approximately L 8250S on Sabiston Creek.	STREAM VELOCITY (ie. fast, medium, slow) Medium to slow GRADIENT 0 - 10° AREA OF CATCHMENT BASIN (ie. square km) Large STREAM CATEGORY (ie. main, main tributary, secondary tributary) Main POSTION OF SAMPLE IN STREAM Centre and small bars. DISTANCE UPSTREAM FROM ACCESS	WET SIEVE - AT SITE X - AT WHEEL WEIGHT OF SAMPLE 5 kg SAMPLE COMPOSITION Z ORGANIC Less than 5% Z SILT, CLAY 10-15 SAMPLE COLLECTION EASY X MODERATE DIFFICULT SAMPLE QUALITY
GOLDWHEEL SAMPLE CHARACTERISTICS Z MAGNETITE Z SAND Z HEAVY MINERALS 25 30 80 WEIGHT OF FINAL SAMPLE 30 g ADDITIONAL OBSERVATIONS (ie. minerals identified, colour, etc.) Quartz, olivine, hornblende, garnet, evolute, enidete, magnetite, cippable.	DESCRIBE STREAM BED (ie. wet, dry, gravel, swamp, etc.) Wet gravel (+ silt). OVERALL RATING OF STREAM (ie. excellent, good, moderate, fair, poor) Excellent	EXCELLENT X GOOD MODERATE FAIR POOR ADDITIONAL COMMENTS
augite, epidote, magnetite, cinnabar (trace), obsidian. RESULTS Au Ag As Sb	COMMENTS The yield of magnetite in the or silt present during wheeli	ng.
RESULTS Au Ag As Sb p.p.b. p.p.m. p.p.m. p.p.m.	Pb Zn Cu W Hg Mo p.p.m. 2 1 17 6 44000 2	Ni Cd Sr p.p.m. p.p.m. 38 1 17

APPENDIX D

Thin Section Descriptions

Vancouver Petrographics Ltd.

JAMES VINNELL. Manager JOHN G. PAYNE. Ph. D. Geologist

Report for: Ed Debicki,

Canadian Nickel Co. Ltd., 512 - 808 Nelson Street, VANCOUVER, B.C., V6Z 2H2

8887 NASH STREET FORT LANGLEY, B.C. VOX IJO

PHONE (604) 888-1323 Invoice 4681 August 1984

Samples: 6 samples, RX series, Nicola Gp. Volcanic

rocks, Veins, Hg-property

Summary:

Thin sections were stained for carbonates. This stain may not be definitive (see note in 46087). Volcanic rocks show a variety of alteration types, with variation in some between phenocrysts and groundmass. Many of the alteration minerals (especially clay-mica) are extremely fine grained, and identification is not always possible. In general, kaolinite is identified by very low birefringence and low relief (R.I. slightly greater than epoxy); and sericite is identified by higher birefringence and similar R.I.

- porphyritic andesite flow or dike: phenocrysts altered to sericitekaolinite, minor patches of pure kaolinite, and patches and veinlets of dolomite. Groundmass of lathy plagioclase is mainly altered to sericite-kaolinite-dolomite. Secondary patches consist of coarser, crustiform sericite with minor quartz and dolomite. Late veinlets are of dolomite t quartz.
- 38628 porphyritic dacite flow: plagioclase phenocrysts completely altered to sericite-kaolinite with minor dolomite and muscovite; groundmass is moderately altered to sericite-kaolinite. Replacement patches consist of quartz and/or dolomite, with or without minor kaolinite.
- dacite breccia: fragments of several varieties of dacite, and of 38629 quartz phenocrysts from one of the types in a sparse, extremely fine grained kaolinite. Plagioclase phenocrysts are replaced by kaolinite; biotite by Ti-oxide-sericite, and hornblende? by sericite. Groundmass plagioclase is slightly to moderately altered to kaolinite-sericite in one type of fragment with a coarser grained groundmass, and is completely altered to kaolinite in a second type with an extremely fine grained groundmass. The rock is cut by complex veins of quartz-limonite.
- brecciated andesite: very strong ankerite replacement of fragments, with minor "relic" zones of kaolinite-semiopaque. These are set in a groundmass of cherty quartz with minor ankerite. Interstitial patches and veinlets of ankerite formed in cavities.
- 46085 brecciated chert with dolomite and quartz replacement; fragments of chert and coarse dolomite in groundmass of quartz and lesser dolomite; tetrahedrite concentrated as disseminated grains in one corner of the hand sample; late veinlets are of kaolinite ± quartz
- altered andesite (dolomite-kaolinite-limonite), Lout by banded vein zone with central very fine grained dolomite ± quartz, and outer zones of coarser, more irregular dolomite with scattered quartz, cinnabar, and Mineral X (possibly barite). Late veins of dolomite and of kaolinite with minor quartz associated with dolomite/

SAMPLE PREPARATION FOR MICROSTUDIES . PETROGRAPHIC REPORTS . SPECIAL GEOLOGY FIELD STUDIES . DIC

The sample contains very abundant phenocrysts of plagioclase from 1 mm to 1 cm in size. These are completely altered to an extremely fine grained aggregate of sericite-kaolinite, with scattered patches of pure kaolinite, and minor to abundant veinlets and patches of dolomite. Minor phenocrysts are of altered mafic (to opaque-kaolinite). The groundmass is a uniform aggregate of lathy plagioclase (altered mainly to sericite-kaolinite and/or dolomite, and interstitial plagioclase?-mafic minerals? altered completely to dolomite-semiopaque/opaque. The rock contains secondary patches dominated by crustiform aggregates of sericite with minor dolomite and quartz. A few discontinuous veins consistof dolomite quartz.

phenocrysts
plagioclase 35-40%
mafic 0.3
groundmass
plagioclase laths 30-35
interstitial grains 20-25
secondary patches 5-7
opaque minor

Plagioclase phenocrysts are subhedral to euhedral in outline, and from 1 mm to 1 cm in length. Most are elongate prismatic. Plagioclase is completely replaced by an extremely fine grained (0.002-0.005 mm) aggregate of sericite and lesser kaolinite (distinction is not positive), with scattered patches up to 0.15 mm in size of extremely fine grained kaolinite (0.005 mm). Sericite locally forms coarser grains aggregates, mainly along borders of grains or along fractures. Some grains contain minor to moderately abundant very fine grained patches and veinlets of dolomite. Towards the borders of many grains are very fine patches of limonitic groundmass more or less uniformly distributed throughout the zones.

Mafic phenocrysts are equant and average 0.1-0.2 mm in size. They are completely altered to opaque along grain borders and fractures, and to extremely fine grained kaolinite ± sericite in the cores and between fractures.

The groundmass is relatively uniform, consisting of unoriented plagioclase laths averaging 0.1-0.15 mm in length, with anhedral interstitial material. Plagioclase is mainly altered to sericite/kaolinite as in the phenocrysts, with a moderate number of grains also containing patches of dolomite. The interstitial material is replaced mainly by dolomite and brown semiopaque to opaque.

Opaque forms a few equant grains averaging 0.1 mm in size.

Secondary patches are up to 0.5 mm in size. They consist of aggregates of sericite showing subparallel flakes in slightly radiating, crustiform aggregates averaging 0.03-0.05 mm in grain length. Each patch contains several such sericite aggregates, with interstitial patches of dolomite or quartz.

The rock is cut by a vein up to 1 mm wide of very fine grained, anhedral to subhedral dolomite with much less very fine grained quartz. A lens 1 mm long by up to 1 mm wide consists of extremely fine to very fine grained, irregular quartz. The rock contains moderately abundant medium to coarse plagioclase phenocrysts in a very fine grained groundmass dominated by plagioclase, with secondary patches dominated by dolomite and/or quartz. Plagioclase phenocrysts are completely altered, mainly to sericite/kaolinite, with minor dolomite and muscovite. The groundmass is partly altered to sericite/kaolinite and partly relatively fresh. Coarser sericite-muscovite flakes are common. Secondary or interstitial patches consist of coarser grained quartz and/or dolomite with or without patches of kaolinite.

phenocrysts 8-10% plagioclase groundmass 50-55 plagioclase sericite/kaolinite 30-35 trace opaque Ti-oxide trace replacement patches (or interstitial) (partly replaced by limonite) 3- 4 dolomite quartz 1-13 kaolinite 0.3 Mineral X minor

Plagioclase forms equant to stubby prismatic phenocrysts averaging 0.3-1 mm in size. They are completely replaced by extremely fine grained sericite/kaolinite (0.002-0.005 mm), with scattered coarser sericite flakes, a few muscovite flakes up to 0.2 mm long, and scattered patches of dolomite. Commonly the altered grain is rimmed by a thin zone in which the alteration minerals were removed from the section (either during weathering and alteration, or section preparation).

The groundmass is dominated by an anhedral aggregate of slightly interlocking plagioclase grains averaging 0.05-0.07 mm in size, with interstitial patches and subhedral prismatic grains composed of extremely fine grained sericite/kaolinite.

Sericite/muscovite forms disseminated flakes averaging 0.1 mm in length both in plagioclase and in sericite/kaolinite patches, but more common in plagioclase.

Opaque forms scattered equant, anhedral grains averaging 0.1-0.15 mm in size. Ti-oxide forms a very few deep orange-brown grains up to 0.1 mm long.

The rock contains irregular to lensy coarser grained patches up to 1.5 mm in size. These are dominated by coarse, anhedral dolomite grains, some of which contain inclusions of prismatic? plagioclase altered to sericite/kaolinite. Borders of some of these patches consist of extremely fine grained kaolinite. Other patches are dominated by very fine to fine grained quartz with much less patches of extremely fine grained kaolinite. A few patches of dolomite-sericite may be secondary after mafic phenocrysts.

Dolomite is irregularly altered to limonite, which masks the carbonate with a light to deep orange-brown color.

Mineral X forms an anhedral, irregular grain 0.6 mm in size in one patch with quartz. It is interstitial to quartz and has the following optical properties: colorless, moderately high relief (R.I. 1.60-1.65), low birefringence (about that of quartz), no obvious cleavage. One possibility is topaz.

The sample contains large to small fragments of a few varieties of dacite, and fragments of quartz phenocrysts in an extremely fine grained groundmass. Alteration is variable. Plagioclase phenocrysts are altered to kaolinite with minor sericite and limonite. Biotite is replaced by Ti-oxide-sericite. Hornblende? is replaced by sericite. The groundmass of fragments is variable from very fine to extremely fine. The rock is cut by late veins of quartz-limonite.

fragments
porphyritic dacite 70-75%
non-porphyritic, cherty dacite 2-3
quartz grains 1-2
groundmass 15-20
veins
quartz-limonite 3-4

Large fragments are of a variety of porphyritic dacite flows. The major type contains abundant subhedral to euhedral plagioolase phenocrysts up to 1 mm in size, and scattered rounded to elongate quartz phenocrysts up to 1.5 mm long. Some contain biotite phenocrysts up to 1.5 mm long, and a few contain subhedral hornblende? phenocrysts up to 0.3 mm across. Plagioclase is completely replaced by extremely fine grained (0.005 mm) aggregates of kaolinite. In some fragments, some pheoncrysts also contain wispy flakes and lenses of sericite. Biotite is completely altered to Ti-oxide-sericite aggregates, with Ti-oxide abundant enough to almost completely mask sericite. Hornblende is altered to pseudomorphs of sericite. The groundmass is a very fine grained aggregate of equant, anhedral, plagioclase, slightly to moderately altered to kaolinite-sericite. One fragment contains a euhedral zircon grain 0.1 mm long. Opaque forms a few anhedral grains up to 0.1 mm in length.

Another type of fragment has abundant plagioclase phenocrysts as in the first type, set in an extremely fine grained (0.003-0.005 mm) groundmass of kaolinite with dusty opaque.

Less abundant fragments contain an extremely fine grained, cherty? groundmass averaging 0.003-0.005 mm in grain size, with scattered phenocrysts of biotite. Another type is a slightly coarser variety of cherty dacite, with grains averaging 0.01-0.02 mm in size, and with minor biotite phenocrysts up to 0.2 mm in size.

One fragment has a variable extremely fine to very fine grained groundmass of sericite-kaolinite, with moderately abundant replacement patches of fine to medium grained quartz.

Quartz crystal fragments average 0.2-0.5 mm in size; these were probably derived from the phenocrysts in the porphyritic dacite.

The groundmass is an extremely fine grained (0.002-0.003) aggregate of kaolinite and dusty opaque. Because of the grain size, identification is tentative.

The rock is cut by a major vein zone and a few minor ones of very fine to extremely fine grained quartz, with bands, generally along the borders of veins, of limonite. Limonit also forms extremely fine grained spots throughout the rock, commonly in kaolinite-altered plagioclase phenocrysts.

RX 42297

Brecciated Andesite, replacement by Ankerite; Breccia groundmass is Cherty with late Ankerite

The rock contains abundant fragments of altered volcanic rock (probably andesite) ranging up to a few mm in size. Most are strongly to completely replaced by ankerite-semiopaque in a variety of textures. Relic feldspars? are altered to kaolinite?.

These are set in a groundmass dominated by extremely fine grained chert, with scattered irregular disseminations of ankerite. Late patches of fine grained ankerite are interstitial to patches of chert, and probably filled cavities.

altered rock fragments (ankerite-semiopaque) 40-45% relic textures preserved - fragments 1- 2 groundmass

10-12

chert 40-45% ankerite 2-3 late cavity fillings

ankerite

The fragments average 1-3 mm in size, with abundant finer fragments locally. They are equant and angular, and dominated by extremely fine grained (0.02-0.04 mm) aggregates of ankerite with minor to moderately abundant dusty to very fine grained semiopaque-opaque (limonite, Ti-oxide). Ankerite texture varies from fragment to fragment; in some slightly coarser, subhedral grains are set in an extremely fine grained groundmass.

A few fragments show relic textures, in part outlined by semiopaque, and in part outlined by patches of kaolinite? These textures suggest that the parent rock was andesitic.

The groundmass of the fragments is an extremely fine grained aggregate of chert (0.002-0.005 mm), with scattered irregular patches of ankerite and with disseminated dusty opaque-semiopaque. Many rock fragments less than 0.5 mm across are very irregular in outline within the chert groundmass.

The rock contains late cavity fillings, mainly in the cores of patches of chert, but also including a few fractures in ankeritic fragments. These cavities are filled with fine grained (0.1-0.2 mm) ankerite.

RX 46085

Brecciated Chert with Dolomite and Quartz Replacement Patches and Groundmass; late veinlets of Kaolinite. Minor Tetrahedrite.

The rock contains wipsy equant to elongate fragments of chert in an irregular breccia with patches and lenses of dolomite, and of quartz with minor dolomite. The rock contains local concentrations of disseminated tetrahedrite. Late veinlets are dominated by kaolinite with minor quartz.

chert, cherty argillite	8-10%
dolomite	40-45
quartz	40-45
tetrahedrite	0.1
veinlets	
kaolinite	1- 11
quartz	minor

The original rock was an extremely fine grained, banded chert to cherty argillite, with moderately abundant dusty opaque, in places giving the rock a light to medium brown color in thin section. Patches of this rock type are up to several mm long, and commonly have ragged borders against replacement dolomite-quartz.

Dolomite occurs in a variety of textures. It forms fine to medium grained patches up to a few cm in size. Some of these contain minor to locally moderately abundant fine grained quartz. One spherulitic aggregate contains a ragged core of dolomite 0.4-0.5 mm in size, with quartz grains averaging 0.05-0.1 mm in size growing outwards in a diffuse radiating pattern. Dolomite also occurs in much finer grained aggregates with very fine grained quartz; the ratio of quartz to dolomite varies widely, but in general, quartz is more abundant. Some of these zones cut across bedding in the chert. Grain size of quartz ranges from that of the chert fragments up to 0.05 mm. Banding of dolomite-rich layers and lenses probably reflects layering in the original cherty rock, with preferential replacement by dolomite along some layers.

Tetrahedrite occurs as ragged, equant patches up to 0.3 mm in size. Outlines of grains are very irregular against groundmass minerals.

The rock is cut by several late veinlets up to 0.3 mm in width composed mainly of very fine grained (0.02 mm) kaolinite flakes, with a few slightly coarser, subhedral prismatic quartz grains.

RX 46087

Altered Andesite (Dolomite-Kaolinite-Limonite) cut by Banded vein zone: Dolomite-Cinnabar-Quartz-Mineral X, and Dolomite-Quartz. Late veins contain Dolomite, Kaolinite, and minor Quartz.

The host rock is completely replaced by irregular aggregates of extremely fine to very fine grained kaolinite with patches and veinlike zones of dolomite-limonite. Sericite and dusty opaque are minor phases.

The earliest? vein zone is very fine grained dolomite with minor quartz. Later vein material along the same structure consists of coarser dolomite with scattered cinnabar, quartz, and Mineral X. Late veins consist of dolomite or kaolinite-dolomite with minor quartz.

rock kaolinite	10+15%
dolomite	20-25
limonite	1- 1
sericite	minor
central part of	f vein
dolomite	25-30
quartz	2- 3
outer parts of	vein
dolomite	20-25
cinnabar	0.5
quartz	0.3
Mineral X	0.5
late veins	
dolomite	2- 3
kaolinite	0.5
quartz	minor

The rock is dominated by extremely fine to very fine grained aggregates of flakey kaolinite with patches and veinlike zones of very fine grained dolomite. Limonite is common with dolomite (and may include some Ti-oxide). Sericite occurs locally with kaolinite. The distinction between dolomite in this section and ankerite in 42297 is based only on the presence of pink stain in the latter and abesnce in the former. Textures are very similar, and it may be that the stain test is not definitive.

The central part of the vein is dominated by extremely fine to very fine grained dolomite, with scattered coarser dolomite grains and single grains and patches of extremely fine grained quartz.

The outer parts of the vein are more irregular in texture, partly because of inclusions of altered host rock. Dolomite grades up to 1 mm in grain size, and is particularly coarse along one border with the host rock. Here it contains an irregular, bright red grain 0.5 mm across of cinnabar. Elsewhere, dolomite shows a much wider variation in grain size. In the band on the other side of the central dolomite-quartz band, finer grained dolomite contains moderately abundant, very irregular grains of cinnabar averaging 0.05-0.15 mm in size. Quartz forms scattered grains up to 0.5 mm in size. Mineral X occurs as several closely spaced grains. One is an elongate prism 1.5 mm in length; others are more equant with irregular prismatic outlines. The mineral has the following optical properties: colorless, R.I. about 1.60-1.65, birefringence about 0.010, optically positive (uniaxial or possibly biaxial with a low angle), length slow. No uniaxial minerals fit these properties; biaxial minerals are barite and possibly topaz. Barite is the most probable choice.

The rock contains late veins up to 2 mm wide (in hand sample) composed of dolomite or very fine grained kaolinite with much less dolomite and minor quartz; generally quartz and kaolinite occur in different parts of the veins.

APPENDIX E

Goldhound "Goldwheel" Specifications

GOLDKOUND

Goldhound International, Inc. 660 West 17th Street #39 Costa Mesa, CA 92627 714/646-4446

AUTOMATIC PANNERS AND CONCENTRATORS

Since 1977

Throughout the world, prospectors, geologists, lab technicians and professional miners depend on Goldhound for reliable, efficient concentration of ores and samplings.

Our rugged, portable wheels clean and concentrate in one quarter the time required with conventional methods. The Goldhound is easy to operate with effective results obtainable the first time used.

The Goldhound is excellent for cleaning black sands and recovering mercury from concentrate, post amalgamation.

- Recover gold, silver, platinum, tungsten and other heavies to minus 300 mesh.
- Also recovers precious stones.

Econo 12 Volt

Stainless 110 Volt 4 Lead

Stainless 12 Volt 2 Lead

- The Goldhound 18s are available with either a heavy duty 12V electric motor for auto battery operation or 110V electric motor.
- The Goldhound breaks down into three major pieces for ease of storage and transportation.
- Introduced in early 1981, the industrial duty 36" machines have achieved the same reputation as the 18" with those who require industrial grade capacity and production.

Industrial 36"

FEATURES

FULLY ADJUSTABLE FRAME

HEAVY DUTY 110V OR 12V MOTORS

25-50 LBS PER HR 2 LEAD CAPACITY

50-100 LBS PER HR 4 LEAD CAPACITY

FULLY IMMERSIBLE 12V OR 110V WATER PUMP INCLUDED

STURDY, LIGHTWEIGHT LEGS ARE COLLAPSIBLE FOR EASY TRANSFER

ADJUSTABLE WATER FEED

ADJUSTABLE BOWL SPEED AND ANGLE

EACH GOLDHOUND BACKED BY MANUFACTURERS WARRANTY

110 Volt Stainless

A partial list of customers using Goldhounds around the world:
Falconbridge Mines Canada, Dominican Republic, Norway
Dinamin S.A. Venezuela
International Nickle Co. Canada
RTZ Group, Great Britain Riofinex: Saudi Arabia
North Carolina State University
Houston International Minerals Division of Bechtel Inc.
JCI Minerals Johannesburg, S.A.

Marshall Earth Resources, Houston Tx.

Mations Research Malaysia
Minatome S.A. Paris, Saudi Arabia
Sydvaranger, Oslo Norway

12 Volt DC.18"-2 lead riffle pad plastic bowl & water pump 25-50#/hr. capacity Econo-line	399.00
12 Volt DC 18"-2 lead riffle pad & water pump 25-50#/hr. capacity Stainless bowl	549.00
110 Volt AC 18"-2lead riffle pad variable speed & 110V water pump 25-50#/hr. capacity Stainless bowl	599.00
12 Volt DC 18"-4 lead riffle pad & water pump 50-100#/hr. capacity Stainless bowl	659.00
110 Volt AC 18"-4 lead riffle pad w/variable speed 110V water pump 50-100#/hr. capacity Stainless bowl	699.00
110 Volt AC 36"-15 lead Industrial Duty 1/2 ton/hr. capacity Machine line	3,650.00

Make checks payable to: Goldhound International, Inc. 660 W. 17th St., Bldg. #39 Costa Mesa, CA 92627 714-646-4446

APPENDIX F

Magnetometer Specifications

- 1. Range Switch
- 2. Meter
- 3. Main Switch
- 4. Level
- 5. Battery Pack
- 6. Battery Connector

- 7. Silica Gel
- 8. Protection Cap
- 9. Latitude Adjustment Control Fine
- 10. Latitude Adjustment Control Coarse
- 11. Carrying Strap

MODEL MF-1 FLUXGATE MAGNETOMETER

E. J. SHARPE INSTRUMENTS OF CANADA LIMITED P.O. Box 279, Willowdale, Ontario

MODEL MF-1 FLUXGATE MAGNETOMETER

Operation of the Meter

1.) Remove all magnetic objects from operator's person, e.g. keys, coins, buttons, etc. Zippers should be non-magnetic,

2.) Connect Battery Cable, Figure 6, to magnetometer receptacle on bottom of main housing. This connection must be secured by lock-ring.

3.) Attach battery pack (Fig. 5) either in back pocket or on belt behind operator.

- 4.) Switch on Main Switch (Fig. 3) to first position, which is the battery check. Indicating meter needle should rest within red arc. Replace batteries if reading below red arc.
- 5) Latitude Adjustment To adjust the latitude setting to read 0 gammas is a simple operation. a. After indicating meter needle (fig. 2) shows voltage okay, switch Main Switch (Fig. 3) to next position which is the positive reading with the Range Switch (Fig. 1) set at

the 100K step. (100,000 gamma range) b. If needle goes full arc to left past O, switch main switch (Fig. 3) to last position

which is the negative reading range.

- c. Figures 10 and 9 indicate the latitude adjustment controls Coarse control is Fig. 10 and Fine control is Fig. 9. If scale reading is more than \pm 7,000 gammas rotate coarse control (Fig. 10) in steps of 7,000 and switch range down to more sensitive range until scale is reading less than \pm 7,000 gammas. Remove protection cap on fine control (Fig. 8) by pulling straight off. Then rotate fine control switch (Fig. 9) until scale reading is 0 gammas. Check reading by switching main switch from positive to negative (or vice versa) to ensure O reading both polarities. Replace fine control protection cap.
- 6.) Calibration This meter is calibrated at the factory prior to delivery. Field tests show that only by severe misuse (i.e. constant dropping, rough handling, improper shipping) can the calibration of this instrument be effected. It is therefore not necessary to recalibrate in the field and if through misuse calibration becomes necessary, the meter should be returned to the factory. *All parts are guaranteed against defect for a period of one year and will be replaced free of charge.

*This guarantee does not apply to batteries or the connecting cable.

7.) Trouble Shooting - Under normal conditions the only field problem will be batteries or the connecting cable. If after completion of step (4) under "Operation of the Meter" the meter still does not indicate voltage, check cable for faulty connection or broken cable. If after this procedure, meter still does not indicate current, return unit immediately to your supplier or directly to the factory.

Regional Latitude Settings

Normally each unit is pre-set at the factory for the Northern Hemisphere. However, if the unit is required for Equatorial or Southern Hemispheric regions, the unit will be pre-set at the factory for these areas. If a unit is going from one of the above regions to another, reset instructions will be supplied on request.

Field Procedure

1.) Select Base Control station. This station should be selected in relation to one or both of two things

1. General magnetic background (i.e. not anomalous) if possible.

Accessibility in relation to area being surveyed.

- 2.) Set magnetometer to read between 0 and 200 gammas. (For contouring and to avoid small negative readings, an arbitrary value of 1000-800 gammas should be added to all readings.
- 3.) For effective diurnal control, control stations should be permanently marked and readings should be taken at the same height and location each time; a simple method is to have the control stations' pickets hammered into the ground with the top about waist height. Rest the probe end of the magnetometer on the top of the picket. In barren country, a mound or large piece of rock or some other material should be used.

4.) Continue survey the same as any other method of magnetic surveying.

5.) Remove and replace Silica-Gel (Fig.7) when deteriorated. The silica gel is located in the removable probe housing.

The Silica bag should not be placed on the bottom of the probe housing. 6.) Do not pass powerful magnet closer than 1 foot to instrument.

7.) During winter operation, batteries should be kept in pocket or under parka.

***Warning: - Do not leave batteries in battery case when unit is being stored. Always be be sure meter is turned off after use. Disconnect battery cable when meter not in use.

APPENDIX G

VLF-EM Survey VLF Receiver Specifications

CRONE GEOPHYSICS LIMITED

3607 WOLFEDALE ROAD, MISSISSAUGA, ONTARIO, CANADA.

Phone: 270-0096

This is a rugged, simple to operate, ONE MAN EM unit. It can be used without line cutting and is thus ideally suited for GROUND LOCATION OF AIRBORNE CONDUCTORS and the CHECKING OUT OF MINERAL SHOWINGS. This instrument utilizes higher than normal EM frequencies and is capable of detecting DISSEMINATED SULPHIDE DEPOSITS and SMALL SULPHIDE BODIES. It accurately isolates BANDED CONDUCTORS and operates through areas of HIGH HYDRO NOISE. The method is capable of deep penetration but due to the high frequency used its penetration is limited in areas of clay and conductive overburden.

The DIP ANGLE measurement detects a conductor from a considerable distance and is used primarily for locating conductors. The FIELD STRENGTH measurement is used to define the shape and attitude of the conductor.

SPECIFICATIONS

Source of Primary Field:

VLF Communication Stations 12 to 24 KHz

Number of Stations:

7 switch selectable

Stations Available: The seven standard stations are Cutler, Maine, 17.8; Scattle, Washington, 18.6; Collins, Colorado, 20.0; Annapolis, Md., 21.4; Panama, 24.0; Hawaii, 23.4; England, 16.0. Alternative stations which may be substituted are: Gorki, Russia, 17.1; Japan, 17.4; England, 19.6; Australia, NWC, 22.3 KHz.

Check that Station is Transmitting:

Audible signal from speaker.

Parameters Measured and Means:

- (1) DIP ANGLE in degrees, from the horizontal of the magnetic component of the VLF field. Detected by minimum on the field strength meter and read from an inclinometer with a range of $\pm 80^{\circ}$ and an accuracy of $\pm 16^{\circ}$.
- (2) Field Strength (total or horizontal component) of the magnetic component of the VLF field. Measured as a per cent of normal field strength established at a base station. Accuracy $\pm 2\%$ dependent on signal. Meter has two ranges: 0 300% and 0 600%. Switch for "keyed" or "F.S." (steady) signal.
- (3) Out of Phase component of the magnetic field, perpendicular in direction to the resultant field, measured without sign, as a per cent of normal field strength. This is the minimum reading of the Field Strength meter obtained when measuring the dip angle. Accuracy $\pm 2\%$.

Operating Temperature Range:

 -20° to $+110^{\circ}$ F.

Dimensions and Weight:

 $3.5" \times 7.5" \times 10.5" - 6 \text{ lb.}$

Shipping:

Foam lined wooden case — shipping wt. — 15 lb.

Batteries:

2 of 9 volt: Eveready 216, Burgess 2U6, Mallory M-1604

Average life expectancy — 3 weeks to 3 months dependent on amount of usage.

Units Available on a Rental or Purchase Basis. Contract Services Available for Field Surveys.

APPENDIX H

IP Survey
IP Unit Specifications

Variat Frequency, Time Domain and Phase IP Transmitter

- Reliable: Backed by twenty years experience in the design and worldwide operation of induced polarization and resistivity equipment
- Versatile: Can be used for resistivity, variable frequency
 IP, time domain IP or phase angle IP measurements
- Stable: Excellent current regulation
- Lightweight, portable
- Wide selection of power sources
- Low cost

Transmitter Configurations

PHOENIX GEOPHYSICS LIMITED

Geophysical Consulting and Contracting, Instrument Manufacture, Sale and Lease.

Head Office:

200 Yorkland Blvd., Willowdale, Ontario, Canada M2J 1R5 Tel.: (416) 493-6350 Telex: 06-986856 Cable: PHEXCO TORONTO

Vancouver Office:

214 - 744 West Hastings Street, Vancouver, B.C., Canada V6C 1A6

Tel.: (604) 669-1070

Denver Office: 4891 Independence St., Suite 270, Wheat Ridge, Colorado, 80033, U.S.A. Tel.: (303) 425-9393 Telex: 450690

Timing Options

INTERNAL TIMING BOARD

There are two available internal timing boards. Both have the same internally mounted crystal oscillator with a stability of 50 PPM over the imperature range – 40°C to +60°C.

Model A :

STANDARD FREQUENCY SERIES
Frequency domain mode

±DC, .062, .125, .25, 1, 2 and 4 Hz.

Time domain mode

2 sec +, 2 sec off, 2 sec -, 2 sec off. Simultaneous transmission mode

.25 and 4.0 Hz standard, other pairs available.

OPTIONAL FREQUENCY SERIES (change link on board)
Frequency domain mode

+DC, .078, .156, .313, 1.25, 2.5, and 5.0 Hz.

Time domain mode

1.6 sec +, 1.6 sec off, 1.6 sec -, 1.6 sec off.

Simultaneous transmission mode

.313 and 5.0 Hz standard, other pairs available.

Model B

The main difference between this timing board and the model A board is that the duty cycle is variable. Frequency domain operation is obtained by setting the duty cycle to 100% and selecting any of nine binary frequencies from 1/64 Hz to 4 Hz. Various time domain waveforms may be obtained by choosing any of the nine frequencies and a duty cycle of 25%, 50% or 75%. The standard 2 sec +, 2 sec off, 2 sec -, 2 sec off time domain waveform is chosen by selecting a duty cycle of 50% and a frequency of .125 Hz.

EXTERNAL HIGH PRECISION CRYSTAL CLOCKS

The IPT-1 may be driven by external high precision crystal clock modules such as the CL-1 and transmitter driver or CL-2 and transmitter driver. These clock modules were designed for use as a time reference between the IPT-1 or IPT-2 transmitters and the Phoenix IPV-2 phase IP receiver. The aging rate of the CL-1 clock module is 5×10^{-10} /day (0.11 mrad/hr at 1 Hz) and the stability of the CL-2 clock module is 10^{-7} /day (2.26 mrad/hr at 1 Hz). These clock modules weigh 7.5 kg., however space is provided for as much as 5 kg of additional internal batteries for operating the CL-1 oven heated clocks all day at -40°C. Clock modules produced by other manufacturers of induced polarization receivers are also compatible with the IPT-1.

EXTERNAL ISOLATED CABLE DRIVE

The isolated cable drive option allows the IPT-1 to be driven by the timing circuitry of the IPV-3 spectral IP receiver. The maximum distance allowed tween transmitter and receiver is 500m. For efficient spectral IP field surveying, the distance between the transmitter and receiver is always maintained one electrode interval. Thus the maximum convenient electrode interval, using the isolated cable drive option, is 500m. The IPV-3 measures the current plus six voltage dipoles (n=1,6) simultaneously.

Console

Ammeter Ranges

30 mA, 100 mA, 300 mA, 1A, 3A and 10A full scale.

Meter Display

A meter function switch selects the display of current level, regulation status, input frequency, output voltage, control voltage and line voltage.

Current Regulation

The change in output current is less than 0.2% for a 10% change in input voltage or electrode impedance.

Protection

The current is turned off automatically if it exceeds 150%

full scale or if it is less than 5% full scale.

. Internal Power Module:

BPS-1 DRY CELL BATTERY POWER MODULE

Output Voltage

90V, 180V and 360V.

Dutput Current

1 mA to 1A maximum.

Output Power

Recommended maximum output power is 30 watts. Absolute maximum output power is 100 watts.

Power Supply

8x45V dry cell batteries (Eveready 482, Mallory 202 or equivalent). Normal field operation, with low output power, results in an average battery life expectancy of one month. Operation with the absolute maximum output power

results in much shorter battery life.

Control Supply

4 x 6V lantern batteries (Eveready 409, Mallory 908 or equivalent) connected in series/parallel are used to provide the 40 to 70 mA at 12V required for the control circuitry. Average battery life expectancy is six months.

Operating Temperature: 0°C to +60°C.

BPS-2 RECHARGEABLE BATTERY POWER MODULE

Output Voltage

50V, 106V, 212V, 425V, and 850V.

Output Current

3 mA to 3A.

Output Power

: Maximum output power is 300 watts. Above this output power a protective cut-out is engaged to prevent battery and

circuit damage.

Batteries

4 x 12V rechargeable gell cell batteries connected in series/parallel have a capacity of 9 A-hr. External batteries (such as car or motorcycle batteries) may also be used. A special cord and plug are provided for this mode of operation. An adaptor cord connects the 12V batteries in parallel with the 12V charging unit.

Operating Temperature : -40°C to +60°C. Below 0°C the capacity of the batteries is significantly reduced (by 70% at -40°C).

AC 3000 TRANSFORMER POWER MODULE

75V, 150V, 300V, 600V and 1200V.

Output Voltage Output Current

3 mA to 10A.

utput Power

Maximum continuous output power is 3KW with MG-3 motor generator, 2KW with MG-2 motor generator and 1KW with MG-1 motor generator.

Input Power

Three phase, 400 Hz (350 to 1000 Hz), 60V (50V to 80V) is standard. Three phase, 400 Hz (350 to 1000 Hz), 120V (100V to 160V) is optional.

Current Regulation

Achieved by feedback to the alternator of the motor generator unit.

Operating Temperature

-40°C to +60°C.

Thermal Protection

Thermostat turns off at 65°C and turns back on at 55°C internal temperaturé.

AC 3003 TRANSFORMER POWER MODULE

Same as AC 3000 except for:

Output Voltage

: 44V, 87V, 175V, 350V and 700V.

Frequency Range

: DC to 3000 Hz under external drive (all other power modules have a maximum frequency of 5 Hz).

(Note: AC 3003 is not intended for extended time domain operation)

General

Dimensions

 $20 \times 40 \times 55$ cm $(9 \times 16 \times 22$ in).

Weight

13 kg (29 lb) with BPS-1. 13 kg (29 lb) with BPS-2. 17 kg (37 lb) with AC-3000.

Standard Accessories

Pack frame, manual, At least one of the four possible power modules is required. The transformer power modules in turn require one of the three external 1KVA, 2KVA, 3KVA, motor generators and a

18 kg (40 lb) with AC-3003. connecting cable.

Motor Generators

There are three motor generators, differing in weight and power, which can be used with the transformer power modules. All three supply three phase, 400 Hz (350 to 600 Hz), 60V (45V to 80V). The voltage is regulated by feedback from the transmitter.

MG - 1:

This lightweight unit is designed for easy portability in areas of moderately high resistivity. It is well suited for massive sulfide exploration in Northern Canada, Europe and Asia, as well as general IP and resistivity surveys in rugged, mountainous areas around the world. The motor is a 4-cycle Briggs and Stratton which produces 3 HP at 3600 rpm. The dimensions of the unit, including packframe, are 40 x 45 x 60 (16 x 18 x 24 in). Total weight is 25 kg (55 lb).

₩ MG-2:

2KVA motor generator. This versatile unit is adequate for the vast majority of IP and resistivity surveys conducted worldwide. It is light enough to be carried by one man, yet powerful enough for most survey requirements. The motor is a 4-cycle Briggs and Stratton which produces 5 HP at 3600 rpm. The dimensions of the unit, including packframe, are $40 \times 45 \times 60$ cm $(16 \times 18 \times 24 \text{ in})$. Total weight is 34 kg (75 lb).

MG-3:

3KVA motor generator. This two-man portable unit is designed for surveys in areas which require additional power. The motor is a 4-cycle Briggs and Stratton which produces 8 HP at 3600 rpm. The unit is mounted in a square frame with dimensions $40 \times 48 \times 75$ cm $(16 \times 19 \times 29 \text{ in})$. Total weight is 55 kg (120 lb).

- Backed by twenty years experience in the manufacture and worldwide distribution of variable frequency induced polarization equipment
- Simple design and operation, extremely high reliability
- High sensitivity, yet high tolerance to natural and cultural electrical noise
- Rugged, lightweight, low power drain, excellent temperature specifications
- Low cost

A completely new line of induced polarization and resistivity equipment has been designed by the people who pioneered the variable frequency induced polarization method twenty years ago. In 1956 the professional staff of McPhar Geophysics Ltd., under the direction of Dr. P.G. Hallof and Mr. J. Sevenhuysen, developed the first variable frequency induced polarization field system. From then, until March, 1975 (when the owners elected to terminate the business of McPhar Geophysics), these variable frequency IP systems set the standard around the world for reliability and

dependable field data. During this period, almost two hundred and fifty systems were manufactured and put into service on a world-wide basis. In April 1975, the senior geophysicists and engineers from the former company, organized Phoenix Geophysics Limited in order to continue to provide the mining industry with the very best geophysical instrumentation available. These new IP systems have been designed to be the easiest to operate, the lowest in price and the most reliable in the industry.

Specifications

Input	Impedance
Input	Protection

: 2 Megohms

: The input is protected from excessive voltages by a 10,000 ohm fuse resistor.

Operating Frequencies: + DC, 0.125, 0.25, 1.0, 2.0 and 4.0 Hz are standard. ± DC, 0.156, 0.313, 1.25, 2.5 and

Frequency Selection

5.0 Hz may also be used. : A front panel switch is used to select F1 or F2. These two frequencies may be set internally to

Voltage Ranges Voltage Display

any of the desired operating frequencies. :1mv, 10mv, 100mv, 1v, and 10v full scale.

: A ten-turn precision dial potentiometer is used to balance the input signal. Since the readability of the dial is 0.025% of full scale, adequate resolution is maintained with voltage levels as low as a few microvolts.

Polarizability Display

: After the input voltage is balanced, the transmitter and receiver are switched to low frequency. The meter used for balancing now automatically displays FE in percent. Resolution is 0.1% over the range -5.0 to \pm 20%. An optional high resolution display may be chosen to provide additional 0.025% resolution over the range $-1\frac{1}{2}$ to +6%. The meter is also used as a battery test.

Filters

: A double pole notch filter attenuates 50-60 Hz by 60 db. A low pass filter attenuates frequencies above the selected operating frequency by 18 db per octave. A telluric filter attenuates all frequencies below 0.125 Hz by 12 db per octave.

Damping

: Minimum damping is used for the high frequency voltage level adjustment. The damping for the FE measurement is continuously selectable.

Calibration

: An internal 0.05 ohm $\pm 1.0\%$ resistor allows precise calibration of the system under all conditions.

Instrument Noise

: 0.05% of reading for 1mv and all higher voltage levels. 0.2% of reading for 100 microvolt voltage level. 1.0% of reading for 10 microvolt voltage level.

Operating Temperature: -40°C to +60°C.

Temperature Drift

The voltage drift is less than 2.0% and the FE drift is less than 0.1% over the entire operating temperature range.

Batteries

: Any 12V to 27 DC power supply may be used. Two 9V transistor radio batteries connected in series will provide one month normal field operation (battery drain is 4.5 mA).

Non-conductive, high impact resistant plastic.

Dimensions

*With cover - 10 x 13 x 22 cm (4 x 5 x 9 in).

Weight

1.1 kg (2.5 lb) including cover, batteries and carrying strap.

PHOENIX GEOPHYSICS LIMITED

Geophysical Consulting and Contracting, Instrument Manufacture, Sale and Lease.

Head Office: 200 Yorkland Blvd. Willowdale, Ont., Canada M2J 1R5. Tel: (416) 493-6350 310 - 885 Dunsmuir St. Vancouver, B.C., Canada V6C 1N5. Tel: (604) 684-2285

4690 Ironton St. Denver, Colorado, U.S.A. 80239. Tel: (303) 373-0332

Survey Accessories

Accessory Packsack : Trapper Nelson #3 packboard with packsack.

Receiver Transport Case : Aluminum, foam lined, 13 x 32 x 44 cm

 $(5 \times 13 \times 17 \text{ in}).$

Stake Electrodes : Mild steel rods with hard tapered end,

1.6 cm (5/8 in) diameter, 75 cm or 120 cm (30 or 48 in) long.

Foil Electrode Material : Heavy duty industrial aluminum foil,

0.0025 cm x 46 cm x 137 m (0.001 in x

18 in x 450 ft).

Field Wire : Black, low friction, polyethylene plus

nylon jacket. Four copper plus three steel strands. Tensile strength 40 kg (90 lb). Total resistance 76 ohm/km (23 ohm/ 1000 ft). External diameter 0.213 cm

(0.083 in).

Geo Reel : Two speed aluminum winder with

packstraps, $35 \times 40 \times 50$ cm

(14 x 16 x 20 in).

Geo Reel Spool : Capacity for 3000m (10,000 ft) of field wire.

Speedwinder : Aluminum winder, 20 x 25 x 30 cm (8 x 10 x 12 in).

Speedwinder Spool : Capacity for 600m (2000 ft) of field wire.

Porous Pots : Plastic with porous asbestos bottom. Coiled copper

wire makes contact with saturated copper

sulfate solution.

Copper Sulfate : 450 g (1 lb).

Multimeter : Resistance, voltage and current.

Tool Kit : Soldering iron, wrenches, screwdrivers.

Radios : Transmitter-receivers (3 watts).

APPENDIX I

Percussion Drill Hole Logs Boreholes 38878 to 38894

								1									
•	INCO LIM	ITED FIELD	EXPLORATIO	N	BORE	HOLE LOG	DAT	E PROCE	SSED	JANUA	 RY 24.	1985			PAG	E 1	
** * *	: 1													CHK*D		•	
7	BOREHOLE	PROPERTY	PROP#_LE			IMUTH DI				DEPAR METRE		LEVATION ETRES		COMPL			
7	38878-0	KAM CLAIMS	S	URF	24.00	-90	00	S	7129.	E 5	95.	729.	09 12 8	34 09 1	3 84		
1	LOGGED B	Y J.G.ROQUE	NTS	# 92	2 I 15W C	OUNTRY IS	CANADA	PROV/	STATE	IS B.C.	i	GRD BRNG	IS .	SHT#	ANOME		
•	•	R ● AU, AG, A	S.SB.HG		· · · · · · · · · · · · · · · · · · ·					.,							
1			N DRILL HO LTD. COPPE			HOWARD HOR											
, ^	DEPTH METRES	LENGTH SAM	PLE MIN			DESCRIP	TION						ELEMENT HG PPM				
<i>ነ</i> ገ	0.0 1.50	0.0 1.50			NOTE OVE	NO SAMPLE RBURDEN IS ABOUT 1M N	WELL EXP	POSED IN				÷					
์ ว		The same states of the same of	AT THE COLUMN STREET,	and an and an artists	E. MATRIX S & A FEW	IS SAND & BOULDERS & SEDIMEN	CLAY WIT	H COBBL	general section of the con-			man manifest over a street of the second of					
ำ	3.00	1.50	01	TILL	SUBANGULA X. DCCASSI	R PEBBLES, ONAL COBBL CONTAINS	MOSTLY CL	LCANIC	I	N/A	NZA	N/A	N/A	N/A			
์ ว	6.00	3.00	02		SAND & CL	AY MATRIX, ULAR PEBBL	SOME SUBR	OUNDED		NZA	N/A	N/A	N/A	N/A	M Vago, A. James and Maler are are		
์ ว	9.00	3.00	03 1		ANGULAR T	O SUBANGUL Are quartz			R	N/A	N/A	N/A	N/Ä	N/A			
	11.80	2.80	04	TILL	AS ABOVE.	WATER COLO TO BROWN.				N/A	N/A	N/A	N/A	N/A	and the second s		
•	12.00	0.20	04	CL AY		HT BROWN.	HMC CONTA	INS 1 A	IJ	N/A	N/A	N/A	N/A	N/A			
7	13.80	1.80	05 (SANDY CLA	Y.ABUNDANT Brown). H				N/A	N/A	N/A	N/A	_N/A	Manager and the second	an een en bûldigerejt gegendelsjer	
า า	15.00 17.00	1.20		TILL	ANGULAR & DARK GREY MOSTLY VOI ROCK FLOUI	SUBANGULA MATER RET LCANIC PEB R_INDICATI	URN. SAND BLES WITH NG COBBLE	Y MATRI:		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A			
ำ	18.00	1.00	08		SANDY CLA	NË QUARTZ Y. LUMPY L Size mate	IGHT BROW	IN CLAY		N/A	N/A	N/A	N/A	N/A			
ำ	19.80	1.80 RX03	8773	VOLC	BEDROCK. TUFF, MEDI TO RUST Y	NICOLA VOL UM GREEN C ELLOW CARB	CANIC,AND HIPS (90% ONATE ALT	ERATION	Υ .	0-200	17-000	25.000	31.000	2.000	,		
7						MÉ CHĪPS A Argillite. Ets			A			,					
	21.00	1.20 RX03	9816 1	AOFC		BOVE. MOST Mpy Clay &					12.000		11-000	5-000			
I	24.00	_3.00 RX03	B817	AOFC.		BOVE. CINN				0.100	18.000	5.000	6.800_	3.000_			
1												80	REHOLE #	38878-	O PAG	6 1	

BOR EHOLE # 38878-0 DATE PROCESSED JANUARY 24, 1985 PAGE 2 DEPTH LENGTH SAMPLE MIN ROCK DESCRIPTION ANG ELEMENT ELEMENT ELEMENT ELEMENT DEG AG PPM AS PPM SB PPM HG PPM AU PPB METRES METRES A FEW CARBONATE VEIN CHIPS. FOOT, OF HOLE NOTE SYMBOLS USED ARE * AFTER ASSAY VALUE INDICATES VALUE FOR LOST CORE WAS CALCULATED FROM ADJACENT SAMPLES - IN FRONT OF ASSAY VALUE INDICATES THE VALUE IS LESS THAN

BOREHOLE # 38878-0

I	C		\mathbf{C}			<u>C</u>	
		·					
,	BOR EHOLE # 38878-0		DATE PROCESSED	JANUARY 24, 1985		PAGE 3	
. T	FROM TO LENGTH METRES METRES METRES	CK TYPES MNZN ROCK					
۲)	1.50 11.80 10.30 11.80 13.80 2.00	TILL CLAY TILL CLAY VOLC			••		,
~)					The second secon		'
7							÷
~)							
~)							
)					- programme and a program of the control of the con		
″)					,		
γ					•		
γ	· · · · · · · · · · · · · · · · · · ·						
····)				· · · · · · · · · · · · · · · · · · ·	. , there is well as it is self in the self in the contract of		
\sim		•					
						1	
<u>^</u>)					•		 -
\sim		•				,	
7		AL 1, 21, MARY SPECIAL STATE OF THE SPECIAL SP					
^	•			·	·		
7)				· · · · · · · · · · · · · · · · · · ·			
1							Í
					BOR EHOLE #		

INCO LI	MITED FI	ELD EXPL	ORATIO	N	BOR	EHOLE	F06	DATE	PROCESSED	AUNAL	RY 24	. 1985					PAG	E 1
			,												S CHK*I			
BOR EHOL	E PROPER	TY PRO	P# LE	VEL	DEPTH A	ZIMUTH	DIP	CO-DRD	LATITUDE	DEPAR	TURE	ELEVA	TION	STARTE	D CO!	IPLET	ΕD	
							DEG MIN		METRES	METRE		METRE		MQ DY		DY Y		
38879-	O KAN CL	ALMS	· S	URF	32-40	;	-90 00	,"	\$ 7130	. E 9	58.	•	730.	09 13	84 . 09), 13-6	34	
LOGGED	BY J.G.R	OQUE	NTS	92	I 15W	COUNTR	Y IS CAN	ADA .	PROV/STATE	IS B.C.	•	GRD	BRNG	15	SHT#	,	MOM	
SSAY F	OR . AU.	AG, AS, SB	.HG		· •													
								TS G PERCUS 2 CLAIM.										** *** *** **
	LENGTH	SAMPLE	MIN	ROCK		DE	SCRIPTIO	N		ELEMENT AG PPM								
0.0	0.0				COLL AR		AND	40 044	<u></u>									, sales de l'arte de 1950 de 1950 esta
3.00	3.00							MAZ DN . NOITANIM										
4.50	1.50	01		TILL_	SANDY CL	AY HAT	RIX WITH	A FEW R	OUNDED	N/A	N/A	<u>N</u>	/A	N/A	N/A			
			:		TO SUBRO 2 au gra		PEBBLES.	HMC CON	TAINS				•					
5.40					NO RETUR	N. NO				,			.,					c. emmen et man in .c
9.00	3.60	02	•					BBLES. S Ins 3 Au		N/A	N/A	.N	/A	N/A	N/A			v
10.50		03		TILL	SAME AS				1	N/A	N/A		/A	N/A	N/A			
10.70	0.20	03	•					ROWN ROCI E till &		N/A	N/A	N	/ A	N/A	N/A			
		•		(ERS. SAN DUR. HMC	D SIZE		L WITH R				•						 -
_11.40 14.40		RX038774	····		LOST RET BEDROCK.		A ANDESI	TE-TUFF.	GREEN	0.100	13-0	00 3	.000	2.700	1-000) .		
			,	ĺ	GREY C D, YELLOW	HLPS (1011. CAI Brown Ch	REGNATE .	ALTERE: 1, WHI									
				(CLAY IN	SCREEN	. WATER	S (20%). Return Ci O Brown	HANGED									
17.40	3.00	RX038775	. 1		-BROWN.			REEN CHI		0.100	16-04	00 5	.000	0.900	2.000	`		
11070	J.00				- CARBON	ATE AL	TERED, R	UŠT YELLI	OM TO	2.100	.500	. ,						a serencia in
								DISH BROI Carbonati				,		,				
					CHIPS 12		· mufie,											
20.40		RX038776		IOLC I	AS ABOVE		,			0.100			-000	0.800	2.000			
23.40		RX038777 RX038778			AS ABOVE HICOLA A		E-TUFF. !	REDDI SH-	BROWN	0.100 0.100	9.00	00 3	-000 -000	1.800	2.000			
			· · · · · · · · · · · · · · · · · · ·		TO GREEN DWN CARB	CHIPS DNATE	(55%). Alteratio	YELLOW RI ON CHIPS HIPS (15)	UST BR (308)							a same	:	A CALABOR MAN AND A TO
29.40	3.00	RX038779	. 1	NOTC	IT BROWN VICOLA A	WATER NDESITI	RETURN. E-TUFF. I	REDDI SH-I	BROWN	0.100	15.00	00 3	-000	0.700	3.000)		
			,	1	3081 PR	EDOMINA PS (10	ATE. WHI! ONIM . (3	TE CARBOI R CARBON	NATE NTE					riman ni, ritu (unium mi	is was no violence.		* p. 1	

April 1997

BOR 6HOLE 6 38879-0

PAGE

1

BOREHOLE	# 36	879-0	· · · · · · · · · · · · · · · · · · ·	* · · · · · · · · · · · · · · · · · · ·		DAT	E PROCESSED	JANUARY 24.	1985	,			PAGE 2
DEPTH METRES	LENGTH METRES	SAMPLE	MINROC	(58).	GRAY MA		N. AT 28.2M TO	DEG AG PPM	TELEMENT I AS PPN	ELEMENT SB PPM	ELEMENT. HG PPN	ELEMENT AU PPB	
32.40	3.00	RX038780	VOL :	C NICOL/ (45%) CHIPS CARBON TE VEI	ANDESI & FRESH (40%) P IATE ALT	ITE-TUFF. I GREEN CH PREDOMINAT	REDDISH-BROWN IPS COLOURED E. RUST BROWN WHITE CARBONA	. ,	21.000	3.000	1-400	2.000	, unated
NOTE SYM	• AF	TER ASSA	Y VALUE II F ASSAY	NDICATES VALUE IN	VALUE	FOR LOST The Valu	CORE WAS CALC E IS LESS THAN	CULATED FROM	ADJACENT	SAMPLES	*		
						· · ·							
												·	
				:					. , <u></u>				
						١,							
		,	,									_	
									,				:
المناسبة المناسبة													
		****	***************************************							BOR	EHOLE #	38879-0	PAGE 2

$\mathbf{C}_{\mathbf{L}}$		1 * of the Management of the State of the St	e de l'adorde de la constant de la c			C
BOREHOLE # SUMMARY OF FROM	38879~0 MINERAL I ZAT TO	ION AND RO Length	CK TYPES MNZN ROCK	DATE PROCESSED JANUARY 240 1985		PAGE 3
#ETRES 0.0 3.00 4.50 5.40 10.70	METRES 3.00 4.50 5.40 10.70 11.40 32.40	METRES 3.00 1.50 0.90 5.30 0.70 21.00	TILL VOLC		•.*	
	,		•		·	
		·	1			
· .						
		3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -				
					•	PAGE 3

. .

ACO FIM	ITED FI	ELD EXPL	LORATI	ON	BOREHOLE LOG	DATE PROCE	SSED	JANUAR	Y 24.	1985			PAC	GE 1
		•			· · · · · · · · · · · · · · · · · · ·	s e servició sua expansión tendente e so		,				CHK" D. s.		the second of the second
10 EUN: E	80 0850	TV 800		EVEI	DEPTH AZIMUTH DIP	CO-DED LAT	THINE	DEPART	118E E	LEVATION	STARTED	COMPLI	FTED	
JK ENUL E	PAUPEN	.J.T	JF B	1	METRES DEG MIN DEG MIN	SYSTEM MET	RES	METRES	, ME	IETRES	MO DY Y	R MO D	YR	
8880-0	KAN CL	AIMS		SURF	27.00 -90 00	, , . , S ,	7098.	E 51	4.	731.	09 14 8	14 .09 14	84	
					2 I 15W COUNTRY IS CANA	,				GRD BRNG			ANOM	
		AG, AS, SI						Y						· · · · · · · · · · · · · · · · · · ·
					COMMENT	•								
					RILLED BY HOWARD HORNING OPPER CREEK ROAD SECTION	PERCUSSION					•		•	•
EPTH		SAMPLE	MIN	ROCK	DESCRIPTION		ANG	ELEMENT	ELEMEN	IT ELEMENT	ELEMENT	ELEMENT	-	
ETRES .	METRES					-	DEG	AG PPM	AS PP	M SB PPM	HG PPM	AU PPB		,
	2.00	01			COLLAR ROAD BED. NO SAMPLE.									
	2.50	01	l	TILL	ANGULAR TO SUBANGULAR P	EBBLES. SOME		N/A	N/A	N/A	N/A	N/A		
			-		CARBONATIZED PEBBLES.			A1 4 A	A1 # A	N. 4.4	A1 #A			-
	1.50 3.00	02 03	-		AS ABOVE SANDIER MATRI	X. HMC CONTA	T	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A .		
7.00	3.00	Us	•		NS 1 AU GRAIN	AR THE CONTR	-		147.74	147 🖷	177 17	···		
12.00	3.00	04			SUBANGULAR PEBBLES & SO PY CLAY. BROWN WATER RE	_		N/A	N/A 	N/A	N/A	N/A		
15.00	3.00	05	5		TAINS 2 AU GRAINS. Subangular Pebbles Not Sand & Glay Matrix	AS ABUNDANT.		N/A	N/A	N/A	N/A	N/A		
16.50	1.50	06	•	TILL	AS ABOVE			N/A	N/A	N/A	N/Å	N/A	•	
18.00	1.50	RX03878]		AOFC	BEDROCK. NICOLA ANDESIT NATE ALTERED REDDISH BR COLOURED CHIPS (90%). G	OWN TO MULTI	•	0.100	16.000	4-000	0.440	1.000	<u></u>	
					FRESH VOLCANIC & WHITE			,					•	
19.10	1.10	RX03 878 2	?	ADLC	N CHIPS (10%). NICOLA ANDESITE-TUFF. C RED RUST YELLOW BROWN C		E	0.100	13.000	14-000	16-000	2.000 -		•
					REDDISH BROWN TO YELLOW	TUFF CHIPS								
					(35%). GREEN TO GREY TO				22.717					
					ED FRESH VOLCANIC & WHI VEIN CHIPS (25%). BROWN									
9.20	0.10	RX038782	2	VOLC	AS ABOVE- PURPLE MATER	RETURN.				14-000		2.000		
		RX038782			AS TO 19-10M					14-000		2.000		
4-00	3.00	RX038783	<u> </u>	AOLC	NICOLA VOLCANIC TUFF, SL ATE ALTERED. YELLOW BRO			0.100	16-000	3-000	1-600	4.000		
					CHIPS (80%). GREEN TO B			•			•			
		,			LCANIC CHIPS (10%). WHI	TE CARBONATE					497		٠,	
					VEIN CHIPS (10%). WATER ES FROM LIGHT BROWN TO SOME LUMPY CLAY IN SCRE	DARKER BROWN						1		,
27.00	3.00	RX038784	•	AOFC	AS ABOVE. FOOT OF HOLE.	€.19		0.100	19-000	2-000	1-200	6.000	 	
					TOUT OF HOLES	×	•					_		
		ED ARE												

BOREHOLE # 38880-0

PAGE :

DREHOLE #	38880-0		. ,	DATE PROCESSED	JANUARY 24, 1985		PAGE 2
JMMARY OF FROM METRES 0.0	TO METRES	ION AND ROCK TYPE LENGTH MNZN METRES 2.00	S ROCK			·	
2.00 16.50	16.50 27.00	14.50 10.50	VOLC				
		,		· · · · · · · · · · · · · · · · · · ·	The state of the s		
		•	;				
	angle delimination of the second of the seco						
					-		
		:	. 1			· · · · · · · · · · · · · · · · · · ·	
				Commence of the Commence of th			and the second s

Œ

IMS QUE N G,AS,SB,HG SION DRILL	SURF SURF TILL TILL TILL	2 I 15M COUNTR RILLED BY HOWAR EEK ROAD SECTIO	COMMENT: RD HORNING DN. KAM 22 ESCRIPTION SAMPLE. SURANGULAI RIX. BROWN L AU GRAIP CONTAINS 21 REDOMATIZE CONTAINS 21 CONTAINS	S PERCUSSION CLAIM. R PEBBLES. C MATER RETUR V. L AU GRAINS. D ROCK CHIPS. LI AU GRAIN. LAU GRAIN.	ANG EDEG	METRE: E 49 IS B.C.	S M	TELEMENT N/A N/A	STARTED MO DY V 09 14 8	7R MO 34 09 SHT#	PLETED DV YR 14 84 ANOM	
OUE N G,AS,SB,HG SION DRILL NG LTD. CO SAMPLE MI 01 02 03	SURF SURF TILL TILL TILL	RETRES DEG MIN 22.50 2 I 15W COUNTR RILLED BY HOMAR EEK ROAD SECTIO DE ROAD BED. NO S SUBROUNDED TO AY & SILT MATR -HMC CONTAINS AS ABOVE. HMC RUSTY BROWN C RUSTY BROWN C Y MATRIX. HMC YELLOW BROWN W	COMMENT: RD HORNING DN. KAM 22 ESCRIPTION SAMPLE. SURANGULAI RIX. BROWN L AU GRAIP CONTAINS 21 REDOMATIZE CONTAINS 21 CONTAINS	SYSTEM MET S DA PROV/ PERCUSSION CLAIM. R PEBBLES. C MATER RETUR L AU GRAIMS. D ROCK CHIPS. CL L AU GRAIN.	ANG EDEG	METRE: E 49 IS B.C. ELEMENT AG PPM N/A N/A	ELEMEN AS PP	TELEMENT N/A	MO DY NO 14 E	FLEMENT AU PPE	DV YR 14 84 ANGM	
SION DRILL NG LTD. CO SAMPLE MI 01 02 03	HOLE DR DPPER CRE IN ROCK TILL TILL TILL	RILLED BY HOWAR EEK ROAD SECTIO ROAD BED. NO S SUBROUNDED TO AY & SILT MATR .HMC CONTAINS AS ABOVE. HMC RUSTY BROWN CA FRESH VOLCANIC Y MATRIX. HMC YELLOW BROWN W	COMMENT: RD HORNING DN. KAM 22 ESCRIPTION SAMPLE. SURANGULAR RIX. BROWN I AU GRAIP CONTAINS I RBONATIZER RESURANGULAR CONTAINS I ATER RETUR	PERCUSSION CLAIM. R PEBBLES. C MATER RETUR L AU GRAIMS. PROCK CHIPS. T CHIPS. CL L AU GRAIN.	ANG E DEG	ELEMENT AG PPM N/A N/A	ELEMEN AS PP N/A	GRD BRNG TELEMENT PM SB PPM N/A	ELEMENT HG PPM N/A	SHT# ELEMENTAU PPE N/A	ANDA	
SION DRILL NG LTD. CO SAMPLE MI 01 02 03	HOLE DR DPPER CRE IN ROCK TILL TILL TILL	RILLED BY HOMAR EEK ROAD SECTIO DE ROAD BED. NO S SUBROUNDED TO AY & SILT MATR .HMC CONTAINS AS ABOVE. HMC RUSTY BROWN CA FRESH VOLCANIC Y MATRIX. HMC VELLOW BROWN W	COMMENT: RD HORNING DN. KAM 22 ESCRIPTION SAMPLE. SURANGULAI RIX. BROWN I AU GRATI CONTAINS 1 ARBONATIZE CONTAINS 1 ARBONATIZE CONTAINS 1 ARBONATIZE CONTAINS 1	S PERCUSSION CLAIM. R PEBBLES. C MATER RETUR V. L AU GRAINS. D ROCK CHIPS. LI AU GRAIN. LAU GRAIN.	ANG E DEG /	ELEMENT AG PPM N/A N/A	ELEMEN AS PP N/A	NT ELEMENT PM SB PPM N/A N/A	ELEMENT HG PPM N/A	ELEMENT AU PPE N/A		
O1 O2 O3	HOLE DR DPPER CRE IN ROCK TILL TILL TILL	ROAD BED. NO S SUBROUNDED TO AY & SILT MATR .HMC CONTAINS AS ABOVE. HMC RUSTY BROWN CA FRESH VOLCANIC Y MATRIX. HMC YELLOW BROWN W	RD HORNING DN. KAM 22 ESCRIPTION SAMPLE. SURANGULAR RIX. BROWN I AU GRAIP CONTAINS 1 ARBONATIZER REDIMER CONTAINS 1 ACTER RETUR	PERCUSSION CLAIM. R PEBBLES. C MATER RETUR V. L AU GRAIMS. D ROCK CHIPS. T CHIPS. CL L AU GRAIN. NO. CARBONAT	DEG /	N/A N/A N/A	N/A N/A	N/A N/A	HG PPM N/A	N/A		
O1 O2 O3	TILL TILL TILL	ROAD BED. NO S SUBROUNDED TO AY & SILT MATR .HMC CONTAINS AS ABOVE. HMC RUSTY BROWN CA FRESH VOLCANIC Y MATRIX. HMC YELLOW BROWN W	RD HORNING DN. KAM 22 ESCRIPTION SAMPLE. SURANGULAR RIX. BROWN I AU GRAIP CONTAINS 1 ARBONATIZER REDIMER CONTAINS 1 ACTER RETUR	PERCUSSION CLAIM. R PEBBLES. C MATER RETUR V. L AU GRAIMS. D ROCK CHIPS. T CHIPS. CL L AU GRAIN. NO. CARBONAT	DEG /	N/A N/A N/A	N/A N/A	N/A N/A	HG PPM N/A	N/A		
01 02 03	TILL TILL TILL	ROAD BED. NO S SUBROUNDED TO AY & SILT MATR .HMC CONTAINS AS ABOVE. HMC RUSTY BROWN CA FRESH VOLCANIC Y MATRIX. HMC YELLOW BROWN W	SAMPLE. SURANGULAI RIX. BROWN I AU GRAIN CONTAINS RBONATIZEE C S SEDIMEN CONTAINS IATER RETUE	MATER RETUR NO. L AU GRAINSO D ROCK CHIPS NT CHIPSO CL L AU GRAINO NO. CARBONAT	DEG /	N/A N/A N/A	N/A N/A	N/A N/A	HG PPM N/A	N/A		
02 03	TILL	SUBROUNDED TO AY & SILT MATR HMC CONTAINS AS ABOVE. HMC RUSTY BROWN CA FRESH VOLCANIC Y MATRIX. HMC YELLOW BROWN W	SURANGULAI RIX. BROWN I AU GRAIF CONTAINS I ARBONATIZEE C & SEDIMEN CONTAINS I	MATER RETUR NO. L AU GRAINSO D ROCK CHIPS NT CHIPSO CL L AU GRAINO NO. CARBONAT	A.	N/A N/A	N/A	N/A	N/A	N/A		
03	TILL	AS ABOVE. HMC RUSTY BROWN CA FRESH VOLCANIC Y MATRIX. HMC YELLOW BROWN W	CONTAINS ARBONATIZED S SEDIMENT CONTAINS DEATHER RETURNS OF THE PROPERTY OF TH	Z AU GRAINS. D ROCK CHIPS NT CHIPS. CL L AU GRAIN. NN. CARBONAT	Ā	N/A					,	
	TILL	YELLOW BROWN W	ATER RETUR	N. CARBONAT								
0.E						N/A	, N/A	N/A	N/A	N/A		· · · · · · · · · · · · · · · · · · ·
y9		ENT PEBBLES. C WATER RETURN C MOSTLY FRESHER	OLOUR CHAP	IGE. PEBBLES		N/A	N/A	NAA	N/A	N/A		-
038785		BEDROKC. DARK	GREY CARBO	DNATED ALTER		0-100	75.000	2.000	3.800	5.000		
(038786	SEDS	ITE CARBONATE AS ABOVE BUT A RUST YELLOW BR CHIPS (5%). LI	VEINFRAMEN ARGILLITE (LOWN CARBON GHT GREY (NTS (5%). CHIPS (70%). NATE ALTERED CARBONATE VE	I	0.300	133.000	2.000	2.300	5.000		
(038 786	SEDS	(58). BLACK WA GRADUAL CHANGE GREY TO LIGHTE	TER RETURN	R FROM DARK		0.300	133-000	2.000	2.300	5.000		
1038787	SEDS	DARK GREY CARB ARGILLITE CHIP	S 14081. L	IGHT GREY		0-100	87.000	2.000	2.200	5.000		
	•	BROWN CARBONAT	E ALTERATI OCK CHIPS (ON CHEPS (1								
() i	038786 038787 ARE R ASSAY V	038786 SEDS 038786 SEDS 038787 SEDS ARE R ASSAY VALUE IND	WN CARBONATE A ITE CARBONATE A ITE CARBONATE O38786 SEDS AS ABOVE BUT A RUST YELLOW BE CHIPS (5%). BLACK WA O38786 SEDS GRADUAL CHANGE GREY TO LIGHTE Y CLAY. O38787 SEDS DARK GREY CARB ARGILLITE CHIP CARBONATE VEIN BROWN CARBONAT %1. UNKNOWN RC GREY WATER RET FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE F	WN CARBONATE ALTERED CHI ITE CARBONATE VEINFRAME! 038786 SEDS AS ABOVE BUT ARGILLITE (RUST YELLOW BROWN CARBOY CHIPS (5%). LIGHT GREY (N CHJIPS (20%). UNKNOWN (5%). BLACK WATER RETURN 038786 SEDS GRADUAL CHANGE IN COLOUF GREY TO LIGHTER GREY. SO Y CLAY. 038787 SEDS DARK GREY CARBONATE ALTE ARGILLITE CHIPS (40%). L CARBONATE VEIN CHIPS (40%). L BROWN CARBONATE ALTERATI %). UNKNOWN ROCK CHIPS (GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CE	WN CARBONATE ALTERED CHIPS (15%), WITE CARBONATE VEINFRAMENTS (5%). 038786 SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). RUST YELLOW BROWN CARBONATE ALTERED CHIPS (5%). LIGHT GREY CARBONATE VE N CHJIPS (20%). UNKNOWN ROCK CHIPS (5%). BLACK WATER RETURN. 038786 SEDS GRADUAL CHANGE IN COLOUR FROM DARK GREY TO LIGHTER GREY. SOME LUMPY GR Y CLAY. 038787 SEDS DARK GREY CARBONATE ALTERED NICOLA ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (45%). VELLOW BROWN CARBONATE ALTERATION CHIPS (10%). UNKNOWN ROCK CHIPS (50%). LIGHT GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE WAS CALO	SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). RUST YELLOW BROWN CARBONATE ALTERED CHIPS (5%). LIGHT GREY CARBONATE VEI N CHJIPS (20%). UNKNOWN ROCK CHIPS (5%). BLACK WATER RETURN. GREY TO LIGHTER GREY. SOME LUMPY GRE Y CLAY. SEDS DARK GREY CARBONATE ALTERED NICOLA ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (45%). YELLOW BROWN CARBONATE ALTERATION CHIPS (10 %). UNKNOWN ROCK CHIPS (50%). LIGHT GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE WAS CALGULATE	WN CARBONATE ALTERED CHIPS (15%), WH ITE CARBONATE VEINFRAMENTS (5%). 038786 SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). RUST YELLOW BROWN CARBONATE ALTERED CHIPS (5%). LIGHT GREY CARBONATE VEI N CHJIPS (20%). UNKNOWN ROCK CHIPS (5%). BLACK WATER RETURN. 038786 SEDS GRADUAL CHANGE IN COLOUR FROM DARK 0.300 GREY TO LIGHTER GREY. SOME LUMPY GRE Y CLAY. 038787 SEDS DARK GREY CARBONATE ALTERED NICOLA ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (45%). VELLOW BROWN CARBONATE ALTERATION CHIPS (10 %). UNKNOWN ROCK CHIPS (50%). LIGHT GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE WAS CALGULATED FROM	WN CARBONATE ALTERED CHIPS (15%), WH ITE CARBONATE VEINFRAMENTS (5%). 038786 SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). CHIPS (5%). LIGHT GREY CARBONATE VEINFORD CHIPS (5%). LIGHT GREY CARBONATE VEINFORD CHIPS (5%). BLACK WATER RETURN. 038786 SEDS GRADUAL CHANGE IN COLOUR FROM DARK 0.300 133.000 GREY TO LIGHTER GREY. SOME LUMPY GREY CLAY. 038787 SEDS DARK GREY CARBONATE ALTERED NICOLA 0.100 87.000 ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (45%). VELLOW BROWN CARBONATE ALTERATION CHIPS (10%). UNKNOWN ROCK CHIPS (50%). LIGHT GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE WAS CALGULATED FROM ADJACEN	WN CARBONATE ALTERED CHIPS (15%), WH ITE CARBONATE VEINFRAMENTS (5%). 038786 SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). RUST YELLOW BROWN CARBONATE ATTERED CHIPS (5%). LIGHT GREY CARBONATE VEI N CHJIPS (20%). UNKNOWN ROCK CHIPS (5%). BLACK WATER RETURN. 038786 SEDS GRADUAL CHANGE IN COLOUR FROM DARK 0.300 133.000 2.000 GREY TO LIGHTER GREY. SOME LUMPY GRE Y CLAY. 038787 SEDS DARK GREY CARBONATE ALTERED NICOLA ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (45%). VELLOW BROWN CARBONATE ALTERATION CHIPS (10 %). UNKNOWN ROCK CHIPS (50%). LIGHT GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE WAS CALGULATED FROM ADJACENT SAMPLES	WN CARBONATE ALTERED CHIPS (15%), WH ITE CARBONATE VEINFRAMENTS (5%). 038786 SEDS AS ABDVE BUT ARGILLITE CHIPS (70%). 0.300 133.000 2.000 2.300 RUST YELLOW BROWN CARBONATE ALTERED CHIPS (5%). LIGHT GREY CARBONATE VEI N CHJIPS (20%). UNKNOWN ROCK CHIPS (5%). BLACK WATER RETURN. 038786 SEDS GRADUAL CHANGE IN COLOUR FROM DARK 0.300 133.000 2.000 2.300 GREY TO LIGHTER GREY. SOME LUMPY GRE Y CLAY. 038787 SEDS DARK GREY CARBONATE ALTERED NICOLA 0.100 87.000 2.000 2.200 ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (10%). VELLOW BROWN CARBONATE ALTERATION CHIPS (10%). UNKNOWN ROCK CHIPS (50%). LIGHT GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE WAS CALGULATED FROM ADJACENT SAMPLES	WN CARBONATE ALTERED CHIPS (15%), WH ITE CARBONATE VEINFRAMENTS (5%). 038786 SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). O38786 SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). CHIPS (5%). LIGHT GREY CARBONATE VEINOUTH ROUTH COLOUR FOR DARK O.300 133.000 2.000 2.300 5.000 (5%). BLACK WATER RETURN. O38786 SEDS GRADUAL CHANGE IN COLOUR FROM DARK O.300 133.000 2.000 2.300 5.000 GREY TO LIGHTER GREY. SOME LUMPY GRE Y CLAY. O38787 SEDS DARK GREY CARBONATE ALTERED NICOLA O.100 87.000 2.000 2.200 5.000 ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (40%). LIGHT GREY GREY MATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE MAS CALGULATED FROM ADJACENT SAMPLES	WN CARBONATE ALTERED CHIPS (15%), WH ITE CARBONATE VEINFRAMENTS (5%). 038786 SEDS AS ABOVE BUT ARGILLITE CHIPS (70%). 0-300 133.000 2.000 2.300 5.000 RUST YELLOM BROWN CARBONATE ALTERED CHIPS (5%). LIGHT GREY CARBONATE VEI N CHJIPS (20%). UNKNOWN ROCK CHIPS (5%). BLACK WATER RETURN. 038786 SEDS GRADUAL CHANGE IN COLOUR FROM DARK 0.300 133.000 2.000 2.300 5.000 GREY TO LIGHTER GREY. SOME LUMPY GRE Y CLAY. 038787 SEDS DARK GREY CARBONATE ALTERED NICOLA 0.100 87.000 2.000 2.200 5.000 ARGILLITE CHIPS (40%). LIGHT GREY CARBONATE VEIN CHIPS (45%). YELLOM BROWN CARBONATE ALTERATION CHIPS (10 31. UNKNOWN ROCK CHIPS (50%). LIGHT GREY WATER RETURN. FOOT OF HOLE. ARE R ASSAY VALUE INDICATES VALUE FOR LOST CORE MAS CALGULATED FROM ADJACENT SAMPLES

80REHOLE # 38881-0

1

PAGE

BOR E	HOLE #	38881-0			DATE PROCESSED	JANUARY 24. 1985			PAG	SE 2
	,	INERAL IZAT	ION AND RO	OCK TYPES	•	'				•
(FROM	TO	LENGTH	MNZN ROCK					ŧ	
	METRES 0.0	METRES 3.00	METRES 3.00					·		
	3.00 16.00	16.00 22.50	13.00 6.50	TILL						
	10.00	22.70	0.50							
				,						
				•						
		1			*					
					•			•	ı	
	, .			. ,						
	•				•	•		•		
				•	•					
					•			•		*** /
							,	·	,	
									·	
				• • • • • • • • • • • • • • • • • • •	·		•			
								-	•	
				•						
					•			1		•
		•		• •	• • • • • • • • • • • • • • • • • • • •		and the second s			CONTRACTOR OF THE
				•		•				,
								·		
								F # 70001 5		
					1		BOREHOL	E # 38881-0	PAGE	

C · · · · · ·

MCO LIM	ITED FIE	LD EXPLO	RATION	BOREHOLE LOG	DATE PROCESSED	AUNA	RY 24, 1	985			PAGE	1
										S CHK*D		
REHOLE	PROPERT	Y PROPI	LEVEL	DEPTH AZIMUTH DIP METRES DEG MIN DEG MIN		DEPAR METRE	TURE EL S MB	EVATION TRES	STARTER MO DY			
8882-0	KAM CLA	IMS	SURF	30.00 -90 00	S 7071.	E 4	68.	734.	09 15 (84 09 15 84		
GGED B	Y J.G.RO	QUE	NTS #	92 I 15W COUNTRY IS CAN	ADA PROVISTATE	15 B.C.	G	RD BRNG	15 -	SHT# AND	OM#	
SAY FO	R . AU, A	G, AS, SB,	1G .	•				··· ·····				
				COMMEN L HOLE BY HOMARD HORNIN EEK ROAD SECTION. KAM 2	G PERCUSSION					•		
		SAMPLE P	IIN ROCK	DESCRIPTIO					ELEMENT			
ETRES 0.0	METRES 0.0			COLLAR	DEG	AG PPM	AS PPM	SB PP	HG PPM	AU PPB		
3.00 6.00	3.00 3.00	01	TILL	ROAD BED. NO SAMPLE. LIGHT BROWN WATER RETU Y. ABUNDANT SUBROUNDED		N/A	N/A	N/A	N AA	N/A		
9.00	3.00	02	TILL	ASSORTED COMPOSITION. PEBBLES LESS ABUNDANT. ASSORTED LITHOLOGIES. Y SAND & CLAY.	SUBROUNDED &	N/A	N/A	N/A	N/A	N/A		
0.50	1.50	03 04		AS ABOVE. INCREASED PE PEBBLY CLAY, YELLOW BRO		N/A	N/A	N/A	N/A	N/A		
12.00	1.50 3.00 R	K038788		BEDROCK. CARBONATE ALTERED NICO FF. RUST YELLOW BROWN RATION CHIPS (40%). GR FFACEOUS CHIPS (45%). E VEIN CHIPS (5-10%).	LA VOLCANIC TU CARBONATE ALTE EV TO BLACK TU WHITE CARBONAT	0.100	N/A 44.000	6.000	9.500	1.000		
8.00	3.00 R	K038789	YOLC	D CHIPS (5-101) IS POS ATION. SOME CLAY CARBONATE ALTERED NICO TUFF GREY TO BLACK CHI ONATE ALTERATION RUST HIPS (101). WHITE CARB	LA ARGILLITE & PS (70%). CARB YELLOW BROWN C	0.200	46.000	6.000	7.800	11.000		
1.00	3.00 R	(038790	AOFC	PS (20%). SAME AS ABOVE. UNKNOWN CHIPS (LESS THAN 5%). TO 21.0M LIGHT GREY WA	CONTAMINATION SECTION 20.0M	0.300	49.000	5.000	6-300	2.000		
4.00	3.00 R	(038791	AOTC	SOME SUBANGULAR PEBBLE SAME AS ABOVE. POSSIBL LITE CONTENT. WATER RE	S. E HIGHER ARGIL	0-200	54.000	3.000	4.000	1.000		· · · · · · · · · · · · · · · · · · ·
7-00	3.00 R	(038 79 2	AOFC	FROM DARK GREY (ALMOST HT GREY. ABUNDANT WHIT CARBONATE ALTERED NICO TUFF LIGHT GREY CHIPS CARBONATE VEIN CHIPS (BLACK) TO LIG E CLAY LUMPS. LA ARGILCITE & (75%). WHITE 15%). RUST BRO	0.100	41.000	6.000	10.000	2.000		
0.00	3.00 R	(038 793	VOLC	UN CARBONATE ALTERATIO NO CLAY OR PEBBLES SAME AS TO 27.0M FOOT OF HOLE		0-200	40.000	6.000	50-000	2.000		

BOREHOLE # 38882-0

PAGE

BOREHOLE #	38882-0	DATE PROCESSED JANUARY 24, 1985	Ρ.	IGE 2
NOTE SYMBOL:	S USED ARE • AFTER ASSAY	VALUE INDICATES VALUE FOR LOST CORE WAS CALCULATED FROM ADJACENT SAMPLES ASSAY VALUE INDICATES THE VALUE IS LESS THAN		
	,			
-				,

BOREHOLE #	38882-0			,	DATE PROCESSED	JANUARY 24.	1985	,		PAGE	3
SUMMARY OF FROM METRES 0.0	MINERALIZAT TO METRES 3.00	ION AND ROCI LENGTH METRES 3.00	(TYPES Inzn Rock						• · • · · · · · · · · · · · · · · · · ·	. S	Security of
3.00 10.50 12.00	10.50 12.00 30.00	7.50 1.50 18.00	AOTC CTVA AITT	-				•			
			<u>.</u>				4 Yes 19 miles femal flore floreign as	·····			
							,		٠.		·····
			. \	,			,				
					· · · · · · · · · · · · · · · · · · ·	,					
				, , , , , , , , , , , , , , , , , , ,							
							`				
	enterprise de la companio de destrucción de la companio de la comp			•				,			
				ang		1.	. -				
				,			e e e e e e e e e e e e e e e e e e e				

MCO LINE	ITED FIELD EXP	LORATION	BOREHOLE L	.OG DATI	E PROCESSED	JANUARY 2	4. 1985			PAG	E I
		•							CHK*D		<u>:</u> .
OR EHOLE .	PROPERTY PR	OP# LEVEL	DEPTH AZIMUTH				ELEVATION				
			METRES DEG MIN C			METRES	METRES	MO DY Y			
38883-0	KAM CLAIMS	SURF	7-50	-90 00	\$ 7126.	E 380.	731.	09 15 8	09 15	84	
OGGED BY	/ J.G.ROQUE	NTS # 92	I 15W COUNTRY	IS CANADA	PROV/STATE	IS B.C.	GRD BRNG	15	SHT#	ANOM	
SSAY FOR	AU, AG, AS, S	B.HG	•								
			LL HOLE BY HOMARI								
	ENGTH SAMPLE	MIN ROCK	C DES	CRIPTION			MENT ELEMEN				
METRES M	1ETRES 0.0	•	COLLAR	1	DEG	AG PPN AS	PPM SB PP	M HG PPM	AU PPB		
1.50 3.00			ROAD BED. NO SAME		DEN.			*			
	3.00 RX03879	4Y0L0	BEDROCK. NICOL	ANDESITE TO	BASALT,	0.100 35.	000 2.000	1.300	1-000		
			DARK GREEN, EPD! RUST BROWN CARE	SONATE ALTERAT	ION &						
			ROUNDED CHIPS (•.			. •		
. 20	0 20 0402070	·. • VOL	ERBURDEN	_		0 200 27	000 2.000	0.240	1.000		
0.30,_	0.30 RX03879	2 V ULC	GREEN CEPIDOTE-	RICHI CHIPS (9021. WH	0.200 51.	2.000	08270	1.000		
			ITE CARBONATE (
6-40	0.10 RX03879	5 VOLO	ATION PURPLE WATER RE	TURN. SOME QUA	ARTZ CHI	0.200 37.	000 2-000	0-240	1.000	¥*	•
7.50	1.10 RX03879	5 VOL	PS SAME AS TO 6-30	M. DARK GREEN	WATER	0.200 37.	000 2.000	0-240	1.000		
			RETURN. FOOT OF HOLE								
INTE CVMB	OLS USED ARE	• •									
	AFTER ASS		DICATES VALUE FO			D FROM ADJA	CENT SAMPLE	<u> </u>			
	- IN PRUNI	UP ASSAT Y	ALUE INDICATES 1	HE VALUE 13 L	ESS INAN ,	٠					
			•								• •
			TO 10		The state of the second			· · · · · · · · · · · · · · · · · · ·			
·		, .		-						,	
-		·	• · · · · · · · · · · · · · · · · · · ·		 						

BOREHOLE # 38883-0 PAGE

1

C		ng =) ng mallang digital ng mananan na san	um applicar aboves,	معليد باشاري الله	C		•	\mathbf{C}
BOREHOLE #	38883-0				DATE PROCESSED	IANUARY 24. 1985	ı	PAGE 2
FROM METRES 0.0	TO METRES 3.00	TION AND ROC LENGTH METRES 3,00	MNZN	ROCK		,		
3.00	7.50	4.50	•	VOLC			•• • • • • • • • • • • • • • • • • • •	
			•					
	7		· · · .			``		
						The state of the s		
			,					
·								
			•				BOREHOLE # 38883-0	PAGB 2

NCO LIM	ITED FI	ELD EXPL	ORATIO	M	BOR	EHOLE LO	DG	DATE	PROC	ESSED	JANU	IRY 24,	1985					PA	G6 1	
							•								7 7	CHK"				
OR EHOLE.	PROPER	ry ero	P# LI		DEPTH_A			CO-ORD					ELEVATION		RTE		MPLE			
					METRES DE			SYSTEM			METR		METRES	•	DY 1		O DY			
38884-0	KAN CL	AIMS	,	SURF	21.00		-9 0 00	;	\$.	7158.	E	282.	727	. 09	15 8	34 0	9 1,5	84	¥.	
OGGED B	Y J.G.R	DQUE	NTS		92 I 15W	COUNTRY	IS CAN	ADA	PROV	STATE	15 B.C.	•	GRD BRN	e is		SHT		ANOM#		
SSAY FO	R . AU.	AG, AS, SB	. HG		•			٠.												
					L HOLE BY EEK ROAD			G PERCUS								,			•	
METRES	METRES	SAMPLE	MIN	ROCK		DES	CRIPTIO	N .					ENT ELEME					,		
	0.0 1.50				COLLAR ROAD BED				•	,					•		*			
3-00	1.50	01		IILL	CASING. SUBANGUL			ED PEBBL	ES.S	E	N/A	N/A	N/A	N/A		N/A				
					VERAL CO HMC CONT	BBLES.	SAND &	CLAY MAT												
7.50	1.50	02		TILL	SAME AS GRAINS I	TD 6.0M	. HMC C	CHIATHO			N/A	N/A	N/A	N/A	١	N/A				
8-40	0.90	02		****	LOST WAT	ER RETU	RN. NO				N/A	N/A	N/A	N/A	ı	N/A				
12.00	0,60 3.00	02 03			SAME AS	TO 6.0M	. SANDI	ER MATRI	х. н	MC	N/A	N/A	N/A	N/A		N/A				
15.00	3.00	04		TILL	CONTAINS ABUNDANT RUSTY BR	SUBANGI DMN (CAI	ULAR PER	ZED). SA	NDY		N/A	N/A	N/A	N/A	١.	N/A				
16.00	1.00 6	XX038796		TILL	TRIX. HM NOT BEDR					EÐ	0.100	22.00	00 2.00	0 3.9	00	1.00	o ·			
	,			3	IN THE F S. MULTI BROWN CA NICOLA V RATE. BR	IELD. M PLE LITI RBONATE DLCANII	ANY ROUI HOLOGIE: ALTERA' C & ASHI	NDED ROC S INCLUD TION, FR CROFT CO	K CH E RU ESH	IP SI						,		,	•	
_17.80	1.60	X038796		TILL	SAME AS RETURN. EROUS SU	ROCK FLI	DUR. RO	CK CHIPS			0.100	22.00	2.00	0 3.9	00	1.00	0			
18.00	0.20	XX038796		TILL	SAME AS				RET	UR:	0.100	22.00	2.00	0 3-9	00	1.00	0			
19.00	1.00 6	XX038797		TILL	NOT BEDR						0.100	13-00	00 2-00	0 1-3	00	1.00	0			
				,	MENTS. L N CARBON OCLASE P QUARTZ, RALL DOM	ETHOLOGI ATE ALTE DRPHYRY S: ASHCRO	LES INCI RATION & SLATI DET CONG	LUDE RUS , MICOLA E-ARGILL GLOMERAT	T BRI PLA ITE, E. O	OW GI		•	• .		•					
19.20	0-20 F	X038797	· · ·	TILL	SAME AS					UR	0-100	13-00	0 2-00	0 1.3	00	1-00	0			
21.00	1.80 F	X038797		TILL	N. SAME AS D D CHIPS	PONINANI		GREY C	OLOVI	RE	0.100	13-00	2-000	0 1-3	00	1.00	0		· The shall desire	
			-		FOOT OF		5.OM TO	21-0H I	NITL	AL .				•				• '	,	

BOREHOLE # 38884-0 PAGE 1

BOREHOLE #	38884-0		DATE PROCESSED	JANUARY 24.	1985		PAGE	2
DEPTH LENG METRES METR	TH SAMPLE ES	MIN ROCK	DESCRIPTION	DEG AG PPN I	ELEMENT ELEMEN AS PPN SB PP	T ELEMENT ELEMENT H HG PPM AU PPB		
			TIRE SECTION IS TILL MATERIAL DUE TO DOMINANCE OF ROUNDED RO CK CHIPS.					
NOTE SYMBOLS	AFTER ASS	AY VALUE INDICAT	ES VALUE FOR LOST CORE MAS CAL	ULATED FROM	ADJACENT SAMPLE	<u>s</u>		
		•	INDICATES THE VALUE IS LESS THAN					٠
			er en			·		
- · · · · · · · · · · · · · · · · · · ·					- 4000000000000000000000000000000000000			
				•			•	**
								•
				T				
	•	**************************************						
	. •		. •					
		• •						
							<u> </u>	
•								
								•
			•	والمستعملية والمعادية والمستعملية والمستعملية والمستعملات والمستعملية والمستعم				
		•					· *	
						• •		
						i		
		•	•					,
			· · · · · · · · · · · · · · · · · · ·					
		· ·				00 EHOLE 4 30 04-0	PAGE	

.

and the same of

. . . .

represent towards or "" "

C	The state of the s	C		\mathbf{C}
BOR EHOLE # 38884-0		DATE PROCESSED JANUARY 2	4, 1985	PAGE 3
SUMMARY OF MINERALIZATIO FROM TO METRES METRES 0.0 3.00	IN AND ROCK TYPES LENGTH MNZN ROCK METRES 3.00			
3.00 7.50 7.50 8.40 8.40 21.00	4.50 TILL 0.90 12.60 TILL		. *.	
		·		
	,			
		·		
		1 °		

	ITED FIL	LD EXPL	.ORATI	DN	BOR	LEHOLE LO	G	DATE P	OCESSED	JANUA	RY 24.	1985		- N	PA	GE 1
	,								•					CHK®D		
INDEHNI E	98 N9 FR 1	Y PRO	19# ##	EVEL	DEPTH /	7 T MISTM	OIP .	CO-ORD	AATITUDE	DEPAR	THRE E	I EVATION -	STARTER	COMPLE	TED	
ONEHOLL	FRUEEN	LLEDY	<i>J.</i>	<u> </u>	METRES DE	G MIN DE	GMIN	SYSTEM	METRES	METRE	S M	ETRES	MO DY Y	R MO DY	YR	
38885-0	KAN CL	IMS	1	SURF	1,3,50		90 00	. Other or a state topped	S 7165.	£ 1	71.	727.	09 15 8	09 15	84	
OGGED B	Y J.G.R	QUE	NTS		92 .I 15W	COUNTRY	IS CANA	DA PI	ROV/STATE	IS B.C.		GRD BRNG	IS	SHT#	ANOM#	
SSAY FO	R • AU,	G.AS.SE	, HG		•		<u> </u>	•								
					L HOLE BY SEEK ROAD	HOWARD	HORNING		ION	*		·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		* * ***** **
DEPTH METRES	LENGTH METRES	SAMPLE	MIN	ROCK	· · · · · · · · · · · · · · · · · · ·	DESC	RIPTION)				T ELEMENT M SB PPM				
0.0					COLLAR	· · · · · · · · · · · · · · · · · · ·	NG SE	MPLE.						_		
	3.00 3.00	01	ı	TILL	. SUBANGUL	.AR TO SU	BROUNDE	MPLE. D PEBBLE: LOWN CARBO	SOM	N/A	N/A	N/A	N/A	N/A		
				· ·	ALTERATI	ON & QUA		C CONTAIN								
9.00	3.00	02	2	TILL	AU GRAIN		HMC CO	NTAINS 5	AU	N/A	N/A	N/A	N/A	N/A		· ·
12.00	3.00 R	X038 79 8	ı,	SEDS				TE. INTER		0.400	104.000	2.000	0.260	2.000		
					ROUNDED	CHIPS OF AS CONTA	ASHCRO	FT CONGLO	MERA					1.0L MA;		
13.50	1.50 R	X038 79 9)	SEDS	SAME AS			;	•	0.400	98.000	2.000	0-160	2.000		
OTE SYM	+ AFT	ER ASSA	Y VALU	UE IN V	DICATES V	ALUE FOR	LOST C	ORE WAS	CALCULATE THAN	ED FROM	 ADJACEN	T SAMPLES				
						•		·.				•				
									•				•			
				•												
												* - 45 100101 10010				
	t ha delicar labora. Monday to v		** arando relacido reia um albido riotra		to the sale described a set of			, ,								
				* ************************************		. /		, *								W 75 - 43
	, we assume that a work of		er egypter pilleder volus ava didder van et	b		,		, `								-
<u> </u>				b		. ,	<u>-</u>		·			· · · · · · · · · · · · · · · · · · ·			,	<u>.</u>

. • C			offer allered and managed are:		C	·		C
BOREHOLE & SUMMARY OF FROM METRES	TO METRES	LENGTH METRES	MNZN ROCI	K	DATE PROCESSED	JANUARY 24, 1985		PAGE 2
0.0_ 3.00 9.00	3.00 9.00 13.50	3.00 6.00 4.50	TIL SED	S :			••	
			•					
-		• .						
							· · · · · · · · · · · · · · · · · · ·	' <u></u>
						- -	BOREHOLE # 38885-0	PAGE 2
						4		. ·

	ILIED LICED EXP	LORATIO	DN	BQ	REHOLE (LOG	DATE P	ROCESSE	D JANUA	RY 24.	L985			₽	PAGB 1
				₩.,	was in		y dan e dan san e dan s	*				ASSAVS DATE.	CHK*D.	•••••	Marsharts
OR EHOLE	PROPERTY PR	OP# LI	EVEL	DEPTH	HTUNISA	DIP	CO-ORD	LATITU	DE DEPART	TURE E	EVATION	STARTED	COMPI	LETED	
	PROPERTY PR	~	ľ	AETRES D	EG MIN	DEG MIN	SYSTEM	ME TRES	METRE	M	TRES	MO DY Y	R MO	DY YR	
38886-0	KAM CLAIMS		SURF	7-50		-9 0 00	·	\$ 709	5. E 7	12.	728.	09 15 6	14 09 1	15 84	
	SY J.G.ROQUE				COUNTRY	' IS	P	ROV/STA	TE IS	,	GRD BRNG	15	SHT#	ANOM	ŧ
ASSAY FO	OR . AU, AG, AS, S	B.HG		. •											
Approximate the second	DRILLED PERC Drilling Ltd. Kam 22 Claim	. CASI	ING 10		Y HOWARD		PERCUSS								
DEPTH METRES	LENGTH SAMPLE	MIN	ROCK		DES	SCRIPTIO		A	NG ELEMENT EG AG PPN	ELEMEN AS PP	F ELEMENT	ELEMENT HG PPM	ELEMENT AU PPB	was t	
0.0 3.00	METRES 0.0 3.00			COLLAR ROAD BE	D. CASI	IG. NO S	AMPLE.								
4.50	1.50 RX03880	<u>0</u>	AOFC	BEDROÇK	- NICOLA	A CARBON	ATE ALTER	ED RU	0.100	11.000	2.000	7.100	2.000	······	
			-	TITHOLO	GY ROUNE	H CHIPS (1702) & M 5 (302) A	S TIL							
	1 50 040555			L CONTA	MINATION	1			0 105		2 222				***
6.00	1.50 RX03880			ATION (95-100%	- WHITE	ARBONATE CARBONAT	E ÁET			2-000				
7.50	1.50 Rx03880	2	VOLC	SAME AS ATION (IPS WIT	TO 4.5H 75213 WH	WITH CAR	ARBONATE SONATE VE PECKS CIN	ALTER IN CH	0.200	9.000	2.000	9.300	1.000	•	
				(25%). FOOT OF	HOLE						*			•	
	IBOLS USED ARE	·					ORE WAS		ATED FROM A		SAMPLES				
NOTE SYM	# AFTER ASS					LHE AYLDI	IS LESS	THAN				•	٠.	****	
IOTE SYM	# AFTER ASS					THE VALUE	IS LESS	THAN						**************************************	,
NOTE SYM	# AFTER ASS					THE VALUE	IS LESS	THAN		·· -					
OTE SYM	# AFTER ASS					THE VALUE	E IS LESS	THAN							•
NOTE SYM	# AFTER ASS					THE VALUE	E IS LESS	THAN							
NOTE SYM	# AFTER ASS					THE VALUE	E IS LESS	THAN							
NOTE SYM	# AFTER ASS					THE VALUE	E IS LESS	THAN							
NOTE SYM	# AFTER ASS					THE VALUE	E IS LESS	THAN							
NOTE SYM	# AFTER ASS					THE VALUE	E IS LESS	THAN							
NOTE SYM	# AFTER ASS					THE VALUE	E IS LESS	·							
OTE SYM	AFTER ASSI - IN FRONT					THE VALUE	E IS LESS	THAN							
OTE SYM	# AFTER ASS					THE VALUE	E IS LESS	THAN							

C				C	<u>.</u> i			C · · · ·
BOR EHOLE #	38886-0			DATE PROCESSED	JANUARY 24, 1985			PAGE 2
SUMMARY OF FROM METRES 0.0	TO Metres	TION AND RO LENGTH METRES 3.00	CK TYPES MNZN -ROCK					
3.00	7.50	4.50	VOLC			• *		
						,		
							,	
					•		and the second	
•	•	•						€ to accompany with the
ters • 1 monocontrad	the second as a second							
								. The state of the state of th
<u> </u>								
			· · ·			•		
		1	•		,			
					•		·	

								. Constitution of disco-
 						V-70	,	
						<i></i>		
		•						a service de la service de
						BORE	QLE # 38886-0	PAGE 2

	ITED FIELD	EXPLORATI	ION	ВС	DREHOLE	LOG	DATE	PROCESS	ED .	ANUAR	Y 24,	1985					PAGE	1
						,		1000 100 100 100 100							S CHK!D.			na hara daga da ilan
OR EHOLE	PROPERTY	PROP# L	LEVEL	DEPTH METRES D	AZIMUTH DEG MIN	DIP DEG MIN	CO-OR	LATII	UDE D	EPART ETRES	URE	ELEVAT	ION	STARTE	COMP	LETED Dy yr		
38887-0	KAN CLAIMS	, , , ,.	SURF	4-80		-9 0 00		S 20		,, 6	57.	7	32.	09 15	84, 09,	15 84		1
	Y J.G.ROQUE																	
SSAY FO	R ● AU, AG, A	S.S.HG		•	<u> </u>		····						· · · · · ·		***************************************	,		
	DRILLED P DRILLING CREEK ROA	LTD. CASI	ING 3 I	METRES.	HOLE 1	AS DRIL	NG PERCU	SION COPPER										. ,
METRES	LENGTH SAM	IPLE MIN	ROCK		· DE		ON		ANG ELE DEG AG	MENT PPN	ELEME AS P	NT ELE	MENT PPM	ELEMENT HG PPM	ELEMENT AU PPB			
1.50	0.0 1.50 1.50	01		ROAD BE	D. CASI JLAR TO	SUBROUN	SAMPLE. Deb pebb		N/	<u> </u>	,N/A,	N/	'A	N/A	N/A			
4.50	1.50 RK03	8803	,	GREEN 1 (95%). -5%) WI	C. NICOL TO BLACK WHITE C ITH'SPEC	A ANESI		J.DARK	0.	100	2.00	0 2.	000	0.080	1.000		•	
OTE SYM	BOLS USED A																	
		ASSAY VAL INT OF ASS					CORE WAS UE IS LES			ROM A	DJACE	NT SAM	IPLES	,				• .
										ROM A	aDALD.	NT SAM	IPLES					· · · · · · · · · · · · · · · · · · ·
 										ROM A	DJACE	NT SAM	IPLES					
										ROM A	DJACE	NT SAM	IPLES					
										ROM A	DJACE	NT SAM	IPLES					

PAGE

C		. managadassa	urufu nu maad anaa.		C		C
BOR EHOLE	38887-0		· endenine a Section		DATE PROCESSED JANUARY 24, 1985		PAGE 2
SUMMARY OF M FROM METRES 0.0	INERALIZAT TO METRES 1.50	ION AND RO LENGTH METRES 1.50		S ROCK		· · · · · · · · · · · · · · · · · · ·	
1.50	3.00 4.50	1.50 1.50		AOTC		••	
		,					
				·			
							A AND DESCRIPTION OF
	·	A substitute of the second					

INCO LIMI	TEO FI	ELD EXPL	ORATE	N	BOREHOLE LOG	DATE PROCE	SSED	JANUAR	Y 25.	1985			PAGI	E . 1
CONTRACT TO A SECURE TO A SECU	********	mata da como a mora e o			•					- College Suppliers and College College College		CHK!D		· :
OR EHOLE	PROPER	TY PRO	P# U	EVEL	DEPTH AZIMUTH DIP	CO-ORD LAT	ITUDE	DEPART	URE E	LEVATION	STARTE	COMPLI	TED	
					TETRES DEG MIN DEG MIN	SYSTEM MET	RES	METRES	, R	ETRES	NO DY Y	IR MO DI	YR	
38888-0	KAN CL	AIMS		SURF	13-40 -90 00	<u> </u>	5738.	M 41		742-	09 16 8	94 09 14	84	
.OGGED BY	/ J.G.R	DQUE	NTS	* 9	92 I 15W COUNTRY IS CAN	ABA PROV/	STATE	IS B.C.	•	GRD BRNG .	15	SHT#	ANGM	
SSAY FOR	+ AU,	AG . AS . SE	B.HG						,					
					CONNEN		· 				************		the contract	
	DRILL	ING LTD. 9 CLAIM.	CASI	NG 7.5	HOLE BY HOWARD HORNING METRES. SABISTON CREEK	ROAD SECTION	N							
DEPTH L	ENGTH			ROCK	DESCRIPTION		ANG	ELEMENT	ELEMEN	T ELEMENT	ELEMENT	ELEMENT		•
0.0	0.0			1	DESCRIPTION	a produceron de como de esta de esta en esta e	DEG	AU FFW	AS FF	1 30 FFN	no rra	NO FEB.	•••	er sede
	3.00 1.00	01			ROAD BED. CASING. NO SI SUBANGULAR PEBBLES. CLI	IBPLE.								
7.00	1.00	01	·		IX. SOME GRANITOID PEBI	ILES. HMC CON	T	1754	N/A		nra			
4.50	0.50				AINS 1 AU GRAIN. LOST WATER RETURN. NO :	AMPI F								
	1.50		I	GRYL	GRAVEL. NICOLA VOLCANIO M TO 5.3M.		i	N/A	AAN	M/A	N/A	N/A		To diagno dan dan t
9.00	3.00	02	2 `	GRVL	GRAVEL & SAND. NICOLA	BLCANIC BOUL	9	N/A	N/A	AAM	N/A	- N/A		
· · · · · · · · · · · · · · · · · · ·			ţ		ER 7.5M TO 8.5M. LAST WATER COLOUR CHANGE TO RUSTY BROWN CARBONATE	BROWN (CLAY	4			e				
12.00	3.00 (X038804		SEDS	PS). BEDROCK. CARBONATE ALTI GILLITE, LIGHT GREY CHI	MED NICOLA A	R .	0-100	11-000	2.000	0-130	1.000		
					BROWN CARBONATE ALTERE) MICBEY ADTC	A				,			,
			•		NIC (158). WHITE CARBON S (108) WITH SPECKS OF	IATE WEIN CHI PYRITE. UNKN	8	•						
			-		HN CHIPS FROM OVERBURD	EN CONTAMINAT	Į į	and the same of th			********** * * * * * * * * * * * * * * *			
13.50	1.50	RX 038 805	5	VOLC	ON (15%) INCLUDING VOLUNICOLA ANDESITE-TUFF &			0-200	19-000	2-000	0-230	1.000	. •	
					MEDIUM GREEN (40%) & GI S. RUST YELLOW BROWN CA	EY (408) CHI	P					`		
			i sa casa e		ED CHIPS (108). WHITE	ARBONATE VEI	N			4 pr gar g 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	francis is no transis and the			* · · · · · · · · · · · · · · · · · · ·
					CHIPS (1-10%).			•			į			,
					TOUT OF HULE					<u> </u>				
OTE SYMB	. AF	TER ASSA	Y VAL	JE ING	DICATES VALUE FOR LOST	CORE MAS CAL	GULAT	ED FROM A	DJACEN	T SAMPLES				
need of the second second		FRUNE	15, 533	34., ¥,	'''''' TUNICHIES THE TATUS	e es essi tuv								
	1							•		•				
			<u>`</u>		·									
				•				•	•			•		•
					. The second of the second			عربيس أحويس		عليه أصلت للمعالم		-	* *	
						A								

BOREHOLE #	38888-0			DATE PROCESSED JANU	ARY 25, 1985	1,	PAGE	2
SUMMARY OF FROM METRES 0.0	MINERALIZATO TO METRES 3.00	TION AND ROCK LENGTH M METRES 3.00	NZN ROCK	· · · · · · · · · · · · · · · · · · ·			•	
3.00 4.00 4.50 9.00	4.00 4.50 9.00 12.00	1.00 0.50 4.50 3.00	GRYL SEDS					
12.00	13.50	1.50	VOLC		·			<u></u>
		e e e e e e e e e e e e e e e e e e e						
		•	,	·		· ·		
				· · · · · /	· · · · · · · · · · · · · · · · · · ·			
	, '	."	,					
, , , , , , , , , , , , , , , , , , , ,				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
								<u>.</u> .
Mar of Market Constant								
		,			· · · · · · · · · · · · · · · · · · ·			
					· ·			

INCO LIM	ITED FI	ELD EXPL	ORATI	ON	BOREHO	LE LOG	DATE P	ROCESSED	JANUA	RY 24	, 198	15			P	AGE	1
			`	**		-,		**						S CHK*D			
BOR EHOLE_	PROPER	TY PRO	P# L		DEPTH AZIM					TURE	METR	ES	MO DY	D COMPL Yr mod	ETED Y YR		·
													••				
38889-0	KAH CL	AIMS .		SURF	12.00	-9 0 00		\$ 5650	. ¥ 3	58.		746.	09 16	84 , 09 1	6 84	-	
LOGGED BY	Y J.G.R	DQUE	NTS		92 I 15W COU	NTRY IS CAI	NADA 1 PI	ROV/STAT	E IS B.C.		GRD	BRNG	l S	SHT#	ANOM#		
ASSAY FO	R • AU,	AG, AS, SB	• HG		•				***************************************								
	DRILL		CASI		L HOLE BY HO Metres. Sabi		NG PERCUSS										
DEPTH L	LENGTH	SAMPLE	MIN	ROCK		DESCRIPTION)N		ELEMENT					. — -			
METRES P	METRES				COLL AR			DEC	S AG PPM	AS F	PPM S	B PPM	HG PPM	AU PPB			
0.0 1.50	0.0 1.50				ROAD BED. C	ASENG. NO S	SAMPLE.						•				
	1.50			TILL	GRANITOID,	SEDIMENT &	VOLCANIC !										
4 00	3 00	01		T	ES. NO SAMP				N/A	N/A		N/A	N/A	N/A			
6.00	3.00	01		****	SUBANGULAR :				RFA	IN M		WA	N/A	NA			
					NIC BOULDER												• •
					NS 1 AU GRA												
9.00	3.00	RX038806		AOLC	BEDROCK. NIC				0.100	5-00	00	2.000	0.370	1.000			
					TE CARBONAT												
,					E ROUNDED R												
					'RBURDEN CON												
10.50	1.50	RX0388 07	_	AUCC	NICOLA ANDE				0.100	14.00	JU	2.000	0.120	1.000			
					BONATE VEIN												
	•				CONTAIN SPE												
12.00	1 60 1	RX038808		VOI C	OF OVERBURD				0.100	15.00	10	2000	0.130	1-000			
12.00	1.30	KAU300Ua		VULC	SE PROPHYRY				5.100	1900	,,,	2.000	0.130	1.000			
					WHITE CARBO	NATE VEIN	HIPS (58)	NO NO									
					SULPHIDES.		•										
					FOOT OF HOLE	5								,			
NOTE SYME	BOLS US	ED ARE											1	•			
	• AF	TER ASSA			DICATES VALUE				TED FROM A	ADJAÇE	ent s	AMPLES					
	<u> - IN</u>	FRONT O	F ASS	AY V	ALUE INDICAT	ES THE VALU	JE IS LESS	THAN	· · · · · · · · · · · · · · · · · · ·								
					`												
								•						,. ,			
													•		•	- · · ·	
					•												
		.						<u></u>					·				
:								•		•							
													**				
								T									

BOREHOLE # 38889-0

PAGE

L

	C		يورون ديد.	· · · · · · · · · · · · · · · · · · ·			C
BOR	REHOLE #	38889-0			DATE PROCESSED JANUARY 24. 1985		PAGE 2
SUP	FROM Metres	INERALIZAT TO METRES 1.50	TION AND RO LENGTH METRES 1.50	OCK TYPES MNZN ROCK			
>	0.0 1.50 6.00	6.00 12.00	4.50 6.00	YILL	,	•*	
		. •					
-							
	. Programatical				•		

						,	
							,, · · · · · · · · · · · · · · · · · ·
	, ,						
	,	,	aj se				
		,				7	
						BOREHOLE # 38889-0	PAGE 2

	TED FIELD EXP	LORATION	BOREHOLE LOG	DATE PROCESSED	JANUARY 25	. 1985		PAGE	1
		* 1						CHK • D	
OREHOLE	PROPERTY PR	OP# LEVEL	DEPTH AZIMUTH DIP METRES DEG MIN DEG MIN	CO-ORD LATITUDE SYSTEM METRES	DEPARTURE METRES	ELEVATION METRES	STARTED MO DY YR	COMPLETED MG DY YR	
38890-0	KAP CLAINS	SURF	7.50 -90 00	S 5602.	W318.	746.	_09 16 84	09 16 84	
OGGED BY	J.G.ROQUE	NTS #	92 I 15W COUNTRY IS CA	NADA PROVISTATE	IS B-C.	GRD BRNG I	s	SHT# ANGM#	
SSAY FOR	• AU, AG, AS, SI	B • HG	•						
	DRILLED PERCU DRILLING LTD. KAM 19 CLAIM.		COMMI L HOLE BY NOWARD HORNI METRES. SABISTON CREEK	NTS NG PERCUSSION ROAD SECTION.	,				
DEPTH LI	ENGTH SAMPLE	MIN ROCK	COLLAR	ON ANG	ELEMENT ELEM	IENT ELEMENT	ELEMENT E	LEMENT	
DEIKES M	0-0 		COLLAR	DEG	AG PPH AS	FFN 30	NO, FEN,A	IU PPB	
1.50	1.50						,		
	1.50		POSSIBLE BEDROCK. SIN SAMPLE. WATER RETURN	KING CASING. NO	<u> </u>				
4.50	1.50 RX038805		BEDROCK. NICOLA ANDE REEN CHIPS (75%). DVI IPS CONTAMINATION (2 BROWN CARBONATE ALTER CARBONATE VEIN CHIPS.	RBURDEN ROCK CH 21. Minor Rust Ation & White	0.100 7.0	2-000	Q-150	1.000	
6.00	1.50 RX038810) VOL	CARBUNATE VEIN CHIPS. NICOLA VOLCANIC, GREY 31. WHITE CARBONATE \ ORANGE-BROWN WATER RE	GREEN CHIPS (85 EIN CHIPS (158)	0.100 2.0	2.000	0.130	1.000	
7.50	1.50 RX038811	VOL.	: NICOLA VOLCANIC.GREY	GREEN CHIPS (75	0.100 5.0	2.000	0-120	1.000	
	•		OVERBURDEN CONTAMINAT CHIPS (5%). FOOT OF HOLE	ION OF ROUNDED					
OTE SYMBO	OLS USED ARE		DICATES VALUE FOR LOST	CORE WAS CALCULATE	OALGA MORT G	ENT SAMPLES		•	,
	- IN FRONT	F ASSAY	ALUE INDICATES THE VAL	UE IS LESS THAN					
			e e e e e e e e e e e e e e e e e e e						
		:			•	•			
		:							
		- ;							

BOREHOLE # 38890-0

PAGE

OREHOLE #	38890-0			DATE PROCESSED	JANUARY 25, 1985	,	PAGE 2
FROM METRES 0.0	TO METRES 3.00	METRES 3.00	ZN ROCK				
3.00	7.50	4-50	AOLC				
			•	,			
	•	•					
		,					
· · · · · · · · · · · · · · · · · · ·						•	
							,
		, , ,	· · · · · · · · · · · · · · · · · · ·				·
				!			,
	·· · · · · · · · · · · · · · · · · · ·						
				· .		80REHOLE # 38890	-O PAGE 2

 \mathbf{C}

GE 1
····
- alaya e samerer di di Aganggan, mater di di Trans i pamper P

) |

)

)

)

- }

	•				C			\mathbf{C}
BOREHOLE #	38891-0			CATE PROCESSED	JANUARY 25, 1985		and the finance of the state of	PAGE 2
SUMMARY OF FRUM METRES	TO METRES 3-00	LENGTH METRES 3.00	MNZN ROCK		•			
3.00	7.50	4.50	VOLC					
						,		
							,	
		,				,		
					. ,			
			`					

(

			•											
INCO LIM	ITED FI	ELD EXPL	ORATI	ON	BOREHOLE LOG	DATE PROCE	SSED	JANUAR	Y 24. 1	985			PAGE	1 .
	•		•		· · · · · · · · · · · · · · · · · · ·	man et ape i de auden.						CHK*D		~ ~
BOR EHOLE	PROPER	TY PRO	er_L	EVEL.	DEPTH AZIMUTH DIP	CO-ORD LAT	LTUDE	DEPART	URE EL	EVATION	STARTE	COMPL	ETED	
					METRES DEG MIN DEG MIN	SYSTEM HET	RE S	METRES	ME	TRES	MO DY 1	r HO D	Y YR	
38892-0	KAM GL	AINS	•••	SURF	13-5090 00		5480.	E 28	1.	747.	09 16,6	09 1	6 84	************
LOGGED B	Y J.G.R	OQUE	NTS	#	92 E 15W COUNTRY IS CAN	ADA PROV/	STATE	IS B.C.	G	RD BRNG	IS	SHT#	ANOM#	
ASSAY FO	OR + AU,	AG, AS, SB	, HG		•									<u> </u>
	DRILL	ED PERCU ING LTD. 9 CLAIM.	CASI	NG 12	COMMEN L HOLE BY HOMARD HORNIN METRES. SABISTON CREEK	G PERCUSSION	•		_ ~~					
	LENGTH METRES	SAMPLE	MIN								ELEMENT HG PPM			** ***** *
3.00	3-00		-		COLLAR ROAD BED, OVERBURDEN. C	ASING. NO SAM	P					*	·	•
4-00	1.00	01		SAND	SAND & GRAVEL WITH ALM		•	N/A	N/A	N/A	N/A	N/A		
4.50 6.00		02		SAND	LOST RETURN. NO SAMPLE OCCASIONAL SUBROUNDED	PEBBLES. HMC		N/A	N/A	N/A	N/A	N/A		
6.80	0.80	03	, .	SAND	CONTAINS 4 AU GRAINS.			N/A	N/A	NZA .	N/A	N/A		
9.00	2.20				LOST RETURN. CASING PU SAMPLE.	SHED AHEAD. N	<u> </u>							
11.80	2.80	RX038814		VOLC	BEDROCK. NICOLA ANDESI LOMERATÉ, GREEN TO MULT PS (90%). WHITE CARBON	I-COLOURED CH ATE VEIN & RU	I	0.100	12-000	2.000	0.180	1.000	. •	
					T BROWN CARBONATE ALTE		4							
					NIC ARE CARBONATE ALTE	REDIXI.RUST BI	8							
12.00	0-20	RX038814		VOLC	SAME AS TO 11.8M BUT I BONATE ALTERATION CHIP WATER RETURN CHANGES T	S (RUST BROWN)	0.100	12.000	2.000	0-180	1-000	•	** *
13.50	1.50	RX038815		VOLC	NICOLA ANDESITE-TUFF T	O'AGGLOMERATE	•	0-100	12.000	2-000	0.330	1.000		
Y	,				MEDIUM GREEN COLOURED WHITE CARBONATE VEIN C RUST BROWN CARBONATE A	HIPS & MINOR								
			٠	•	S (5%). FOOT OF HOLE					,				, .
NOTE SYM					and a first special programmer a result for the sample and secured and the sample of t									
					DICATES VALUE FOR LOST (ALUE INDICATES THE VALUE			D FROM A	DJACENT	SAMPLES		·		•
							-					•	•	* * * * *,
	•									1				
					The second section of the second section of the second section of the second section s									

	C		\mathbf{C}
8 OREHOLE # 38892-0	DATE PROCESSED JANUARY 24. 1985		PAGE 2
SUMMARY OF MINERALIZATION AND ROCK TYPES FROM TO LENGTH MNZN ROCK METRES METRES METRES 0.0 3.00 3.00			
3.00 4.00 1.00 SAND 4.00 4.50 0.50 4.50 6.80 2.30 SAND 6.80 9.00 2.20 9.00 13.50 4.50 VOLC		••	
	,		
	•		

															**,			CHK !			
					٧													•••••	••••	•••	
OR EHOLE	PROPER	TY PR	OP# LE	VEL	DEPTH AZ	LINUTH	DIP	Ç	O-ORD	LATI	TUDE	DEP				STA	RTED DY Y	COA R MO	APLE		
					ETRES DE	, WIN F	JEG MII	M . 2	1215W	ME I N	4E 2	ME 11	ES	MBTF	(5)	, nu	UT 1	к п	יט נ	7 K	
38893-0	RAM CL	AIMS	S	URF	21.00		-90 00	۵		, S 5	5404.	W	217.				16,8	• 09	1,6		
OGGED B	Y J.G.R	DQUE	NTS	# 9	2 I 15W (COUNTRY	IS C	ANADA	•	PROV/S	STATE	15 8-0	•	GRE	BRNG	15		SHT#		ANOM#	
								ENTS								····					
	DRILL	ING LTD	CASIN	G 20	HOLE BY METRES A STON CREEK	BANDON	IED HO	LE IN	OVER	BURDEN											
050511												EI EMEI	I T ELEN	IENT S	El EMEN	T CIEM	ENT	CI CMCA	4 T		
METRES		SAMPLE	HIN	KUÇK		UE:	SCRIP I	IUN			DEG	AG PI	N AS	PPM	SB PP	M HG	PPN	AU PE	ъВ		
0.0	0.0			*	COLLAR																
2.00	2.00				ROAD BED.					.											
3.00	1.00				CASING. C NUMEROUS TION CHIP	RUST E					1										
6.00	3.00	0	1		SAND & GR	RAVEL.						N/A	N/A		N/A	N/A		N/A			
					FROM RETURN	JRN OUT	SIDE											•			
7 50	1.50	0.	•	CAND	SAME AS T			E CHRI	PULINDE	n to		N/A	N/A		N/A	N/A		N/A			
7.30	1.50	U.	• ,	34110	ROUNDED P		_	. 300	NOUND.			iá. v	.,,,	ľ	W. W	147.7					
9.00	1.50	0.	2	SAND	SAME AS T SAMPLE CO IDE OF CA INS.	LLECTE	D FROM	M RET	URN ON	OUTS		N/A	··· N/A		N/A	N/A		N/A	,		
12.00	3.00	0:	3 (GRAVEL &	LOST	WATER	RETU	RN. SAP	IPLE C		N/A	N/A		N/A	N/A		N/A			
					OLLECTED 4M TO 12. MOSTLY VO ANITOIDS.	OM.SAN	10 & PI	EBBLE	S & CC	BBLES	5							•			
15.00	3.00	0-	4 :		SAND & GR					ES.		N/A	N/A	\	N/A	N/A	•	N/A			
18.00	3.00	0:	5	SAND	SANDIER T	HAN PR	EVIOUS	S ENT	RY. 50) 	N/A	N/A		NAA	N/A		N/A			
19.50	1.50	0	6 :	SAND	LAYERED S	AND &						N/A	N/A		N/A	N/A		N/A			
21.00	1.50	0.	7	SAND	SAND & GR TAINS 1 A	AVEL.	NS.				l ·	N/A	N/A	, , , , , , , , , , , , , , , , , , , ,	N/A	N/A		N/A			
					HOLE ABAN FOOT OF H		IN SAP	ND &	GR AVEL	•		•				_					
	BOLS USI					1				1 :											* * * *

BOREHOLE # 38893-0

PAGE

C		s Thomas and Millians in the decision and a second	and the same same	C	· ·		C
BOR EHOLE	38893-0			DATE PROCESSED	JANUARY 24. 1985		PAGE 2
SUMMARY OF FROM METRES	TO	ION AND ROCK TYP LENGTH MNZN METRES 3.00	ES ROCK				
3.00 9.00 12.00	9.00 12.00	6.00 3.00 9.00	SAND GRVL SAND		,	•••	
 							/
			'.				
• <u> </u>							
•				•			••
•							
• !							
•							
	. '					· · · · · · · · · · · · · · · · · · ·	
•		. ,					,

NCO LI	MITED FI	ELD EX	PLURAT	ION	, B	OKENOLE	LOG	DATE	PRUCES	250	JANUAR	T 24.	7402				ν,	AGE 1
								,						ASSAY	YS CHK	• D		
			•		* ***	**				•			* .		•••••			
OR EHOL	E PROPER	TY P	ROP#	LEVEL	DEPTH	AZIMUTI	H DIP	CO-ORD	LATE	TUDE	DEPART	URE	ELEVATION	STARTI	ED C	OMPLE	TED	
			;		METRES.	DEG MIN	DEG MIN	SYSTEM	METR	lE S	METRES	5	METRES	MO DY	YR	MO DY	YR	
38894-	O KAM ÇL	AIMS		SURF	22.50		-90 00		, S 5	475.	W 19	3.	756.	09 17	84	09 17	84	
OGGED 1	BY J.G Ř	OQUE	NT	S #	92 I 15	W COUNT	RY ES CA	NADA	PROV/S	TATE	IS B.C.		GRD BRNG	15	SHT		ANOM#	•
-							COMME	NTS										
	DRILL	ED PER	CUSSIO	N DRIL	L HOLES	BY HOM	ARD HORN	ING PERCU	ISSION							•		
	DRILL Na AL	ING LI L CASI	D. CAS Ng Pul	LED. S	> MEIRE	S. ABANI CREEK	DUNED HU ROAD SEC	LE IN OVE Tion. Kam	1 19 CL					•		•	•	• • • •
			•		-					•							•	
	LENGTH METRES	SAMPL	E MIN	ROCK	· · · · · · · · · · · · · · · · · · · 	D	ESCRIPTI	ON					NT ELEMEN					
0.0					COLLAR					DEG	AG FFR	A3 F		n no rri	1 20			
	3.00				OVERGIA	BACK C	ASING. N	O SAMPLE.	,	,								
6.00	3.00		01	SAND	SAND W	ITH CLA	Y. ABUND	ANT RUSTY	. BROWN		N/A	N/A	N/A	N/A	N/A			
								SAND-SIZE										
	·							SUBROUNDE							<u> </u>			
							-	ANIC & SE Ains I Au										
9.00	3.00		02	SAND				HY BROWN			N/A	N/A	N/A	N/A	N/A			
,,,,	3000		~_	0				8 AU GRAI										
12.00	3.00		03	GR VL	GRAVEL	& SAND.	. SOME G	RANITOLD	E VOLC	; ,	N/A	N/A	NZA	NZA	N/A			*
								M TO 10.0										
								WITH CLA		ì								
					GRAINS		29 HMC	CONATINS	T AU									
15.00	3.00		04	GRVL			OM. HMC	CONTAINS	4 AU		N/A	N/A	N/A	N/A	N/A			
			•		GRAINS			,				-						
18.00	3.00	ا ۔	05	GRVL			ON. HMC	CONTAINS	13 AU		N/A	N/A	N/A	N/A_	N/A			
	2 22		•	6440	GRAINS			Ec umc c	OMT 4 F M	1	N/A	NZA	N/A	N/A	N/A			
21.00	3.00	1	06	SAND		GRAINS.		ES. HMC C	UNIAIN)	N/A	NFA	NZA	N/A	M/A	•		
22.50	1.50		07	SAND				CONTAINS	2 AU		N/A	N/A	N/A	N/A	N/A		•	-
-					GRAINS	•		•			,							
					HOLE A	BANDONE	EN SAN	D & GRAVE	L.		a management policiera mana i							
					FOOT O	F HOLE.												,
		.					•											
OIF 244	IBOLS US	TED AC	CAV PA	LIE IN	DICATES	VALUE 6	T201 903	CODE HÀS	CALC	144 ATS	O EROM A	D 14C=	NT SAMPLE	•				N
								SB S I BU			U FRUM A	JACE	.ma SANFLE.	•				
	111	. 170111	J. 43	J-1 1	111				_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•								

PAGB

BOREHOLE # SUMMARY OF M FROM METRES 0.0	38894-0 INERALIZAT TO METRES3.00	ION AND RO LENGTH METRES 3.00	DCK TYPE MNZN	S ROCK	DATE PROCESS		ARY 24. 19	185			PAGE	2
3.00 9.00 18.00	9.00 18.00 22.50	6.00 9.00 4.50	***************************************	SAND GRVL SAND	,			. erre mandretten e mendellikkense	** '			
			•				,			,	Per Galantini, que la completa de la completa del completa de la completa del completa de la completa del la completa de la completa del la completa de la completa de la completa del la completa de la completa de la completa del la complet	
									A A A A A A A A A A A A A A A A A A A			
											·	
		,		. ·	•		- Angeles passagness source .					
						, , , , , , , , , , , , , , , , , , , ,				÷ . ,		
	, '					• •	alkala ana anakadana a			· · · ·		
·				•	e e e e e e e e e e e e e e e e e e e						PAGE	

C

C