ADORE RESOURCES LTD. GEOPHYSICAL REPORT

ON A
MULTIPOLE INDUCED POLARIZATION SURVEY
ON THE
B,T,PITA 1 Claims, Omenica M.D. LAT. $55^{\circ} 35^{\prime} \mathrm{N}$, Long. $124^{\circ} 28^{\prime} \mathrm{W}, \quad \mathrm{NTS} 93 \mathrm{~N} / 9 \mathrm{~W}$ AUTHORS: Cliff Candy, B. Sc.,

Geophysicist Glen E. White, B.Sc.,P.Eng.

Consulting Geophysicist
DATE OF WORK: SEPT. 25- OCT. 15, 1984
DATE OF REPORT: NOVEMBER 8, 1984

GEOLOGICALBRANCH ASSESSMENTBREPORH

 13,752
TABLE OF CONTENTS

PAGE
INTRODUCTION 1
PROPERTY 1
LOCATION AND ACCESS 1
PREVIOUS WORK 2
GENERAL GEOLOGY 2-3
SURVEY GRID 3
MULTIPOLE INDUCED POLARIZATION SURVEY 4-5
DISCUSSION OF RESULTS 6-7
CONCLUSIONS AND RECOMMENDATIONS 8
INSTRUMENT SPECIFICATIONS 9-11
COST BREAKDOWN 12
STATEMENT OF QUALIFICATIONS 13-14
REFERENCES 15
ILLUSTRATIONS
FIGURE 1 - Location and Claims Map
FIGURE 2A - Apparent Chargeability Contour Map
FIGURE 2B - Apparent Resistivity Contour Map
FIGURES 3-13 - Pseudo Sections

INTRODUCTION

During October of 1984 a multipole induced polarization survey was undertaken on the B,T and PITA 1 claims on behalf of Adore Resources Ltd. This survey consists of eleven lines of one kilometre length. Eleven separations were read on each line for a total of 3630 dipoles of coverage.

PROPERTY

The property consists of sixteen 2 post claims. Additional modified grid system claims were staked as an adjunct to the survey.

NAME	SYSTEM	$\frac{\text { UNITS }}{}$	
"B" claims	2 post	8	$52680,82,84,86,88,90,92,94$
"T" claims	2 post	8	$52679,81,83,85,87,89,91,93$
PITA l claim	Modified Grid	12	75105

LOCATION AND ACCESS

The property is located on the southern slope of Black Jack Mountain and the valley between Mount Gillis and Baldy Mountain a few kilometres north of the headwaters of Manson Creek. The property is accessed by 20 km of good dirt road from the settlement of Manson Creek which lies to the north.

Elevations range between 1,250 and 1,500 metres and is moderately steep over the trains of glacial debris. In the lower areas around the creeks, it is swampy with heavy underbrush. Otherwise, the timber, consisting of pine and some spruce, is fairly open.

The claims are situated at an approximate latitude of $55^{\circ} 35^{\prime} \mathrm{N}$ and longitude $124^{\circ} 28^{\prime} \mathrm{W}$ on NTS map sheet $93 \mathrm{~N} / 9$ in the Omineca Mining Division.

PREVIOUS WORK

The history of the property is described by A.F.Roberts, P.Eng. in his report dated August 14,1984. (6):
"The area was prospected over during the first part of the century for gold and silver.

In the early sixties, Wm.Rigler found quartz vein float carrying pyrite and molybdenum, built a road into the area following the tops of the glacial trains, and trenched the area with a D7 "cat".

Several examinations, with geochemical surveys, and further trenching, was carried out without too much success, as geochemistry was frustrated by the heavy, sandy, glacial debris, and the trenching by the depth of the overburden."

GENERAL GEOLOGY

The regional and property geology is described in the above mentioned report:
"The GSC Map indicates that the major part of the claim area is underlain by Omineca intrusives consisting of granodiorite, quartz diorite, diorite and granite. Both ends of the claims lap over sediments of the Cache Creek group.

On the ground, in the area of the trenching, the writer found coarse blocks of quartz diorite, none of which was in place. Along with the above, there were large boulders of rusty quartz carrying pyrite and minor molybdenite.

Further west, a talus carried the same quartz diorite but of much finer grain. This was the only rock that could be considered to be in place.

Others call the rocks a quartz monzonite and mention the presence of both biotite and muscovite, which is very obvious in the eastern trenches, and some of the sedimentary rocks to the south of the present claims. They also mention that trenching was unsatisfactory due to the overburden depth, with very few exposures.

At the present time, the trenches are badly caved and partly overgrown.

Geochemistry gave one good anomaly, that was not trenched successfully, although a few quartz veins were seen.

The general opinion was that if an economic deposit is found it will be in the quartz veins along with pyrite and possibly copper."

SURVEY GRID

A grid was established with north-south lines on 100 metre centres. Stations were flagged at 25 metre intervals. Trench locations were recorded but no trace of the greexisting survey grid was found.

MULTIPOLE INDUCED POLARIZATION SURVEY
The multipole induced polarization method is a technique which exploits the rapid signal aquisition and processing capabilities available with current micro computer technology. With this technique the potential field information is obtained through a multiconductor cable having 36 takeouts at 25 metre intervals. The cable is presently configured as up to six end and position interchangeable cables of 150 metre length. The takeouts are addressed by the 40 channel multiplexer assembly in a specially configured HP-3497A data aquisition system as 25 metre to 275 metre dipoles. The data aquisition system is driven by a HP-85 computer, allowing the data to be stacked in the computer for a number of cycles at full precision until a criteria is reached. Ten windows on the secondary voltage are compiled, as well as the primary voltage information. Time zero is sensed by direct reference to the transmitter timing circuitry. The cable is scanned simultaneously in groups of five dipoles and the decay curves presented graphically for acceptance and logging or rejection and rescan by the operator. The data is logged on digital tape cartridges and is readily accessed in the field in order to produce pseudo-sections. These tapes are read by a HP-9845 computer for further processing and production of final report ready sections.

The primary field power is provided by a Huntec MK IV 2.5 kw transmitter operated in time domain mode which is driven by a $400 \mathrm{H}_{\mathrm{z}}$, 120 volt three phase motor
generator. The transmitted signal is an alternate cycle reversing current pulse of two second on and two second off time. The current is introduced into the ground through two current electrodes for each scan of the potential cable. By scanning the cable for each of several current stake positions both along the cable and off the ends of the cable a strong measure of redundancy of coverage of a given depth point is assured. The stacking of this multiple scan information in the computer results in an improved determination of the geoelectric section.

The apparent resistivity is obtained from the ratio of the primary voltage measured on the potential dipole during the current on part of the cycle to the current flowing through the current electrodes. A geometric factor is computed from the electrode locations to arrive at the apparent resistivity, measured in ohm-metres.

The apparent chargeability is calculated from the ten secondary voltage windows as the area under the secondary decay curve and is measured in milliseconds.

DISCUSSION OF RESULTS

The multipole induced polarization data is illustrated in pseudo section form on Figures 3 to 13. The apparent chargeability and apparent resistivity for the 50 metre dipole are posted and contoured as an aid to correlation of trends on Figures 2A and 2B, respectively.

The most prominent feature in the chargeability data is a variable but clearly defined chargeability high extending from approximately 575 N on line 00 W through 640 N on line 300 W , 700 N on line 600 W and swinging southerly through 525 N on line 900W. A good example of this feature in pseudo section is illustrated on Figure 6. The axis of this zone is labelled A on Figure 2A and 2B. Near Zone A on line 200N, R.G.Potter, 1979 (4) reports the presence of a pyritic argillaceous rock which may be the source of this trend. The strongest response observed on this zone appears on lines 700 W and 800 W in an area untested by trenching. This zone occurs principally in rock possessing a 300-500 ohm-m apparent resistivity.

A number of shorter strike length effects are observed to flank Zone A. Those labelled B,C and D on Figures 2A and 2B, occur near the transition to more resistive lithologies to the northwest. Quartz monzonites are reported in the claim area (Potter,1970) and the 1000-1900 ohm-metre apparent resistivities might suggest the presence of this rock type in unaltered form in this north-western area. The only other occurrence of similar apparent resistivities appears as a more confined feature, open to the east, on lines 00W and 100W near 700 N .

Near lines 00 W and 100 W two narrow trends occur which may be correlated with a system of pyritic quartz veins (Potter, 1970) labelled E and F on Figures 2A and 2B these features exist within relatively resistive lithology.

Zone F can be correlated from line to line to 400 W by reference to the sections. Although only weakly present on 500 W and 600W these two zones, together with the broad and weak Zone G to the south, may be extensions of the features labeled H and I in the southwestern survey area. These two anomalies trend into a broad and strong chargeability high on line loo W.

A zone labelled J on Figures 2 A and 2 B is best-displayed on line loow, Figure 4. This effect is of short strike length, being weakly manifested on 200 W and not present on 200 W .

CONCLUSIONS AND RECOMMENDATIONS

A multipole induced polarization survey was undertaken on the B,T, and PITA 1 claims on behalf of Adore Resources Ltd. The survey disclosed the presence of ten anomalous chargeability trends. The most clearly defined of these is delineated over a strike length of approximately 1100 metres. This anomaly, as well as several others, presently remains open to the east and west.

It is recommended that geological examination of existing trenches and possibly additional trenching be accomplished in light of this information. Should sampling and assaying show the presence of favourable gold and silver values correlated with the changeability anomalies it is recommended that additional multipole induced polarization be undertaken to further delineate these zones.

Respectfully submitted,

Cliff Candy, B.Sc., Geophysicist

HP-85A
 Specifications

OPERATING SYSTEM
ROM.
32K bytes
USER READ/WRITE MEMORY
Standard
16K bytes
Expansion memory module 16K bytes

DYNAMIC RANGE

Real precision: -9.99999999999E499 to -1E-499, 0 and 1E-499 to 9.99999999999 E 499
Short precision: -9.9999E99 to -1E-99, 0, 1E-99 to 9.9999E99

Integer precision: -99999 to 99999

BULLT-IN FUNCTIONS

Mathematical and trigonometric functions are included in the following table with average execution times in msec.

CLOCK AND TIMERS

Time is maintained as seconds since midnight, along with year and day in year. Three timers can be programmed to generate individual interrupts periodically, at intervals from 0.5 msec to $99,999,999$ misec (1.16 days).

BEEPER

The beeper is programmable with parameters for duration and tone. The frequency range is appros mately 0 to $4,575 \mathrm{~Hz}$.

OPERATING REQUIREMENTS

Source. 115 Vac nominal ($90-127 \mathrm{Vac}$) 230 Vac nominal ($200-254 \mathrm{Vac}$) Line frequency . . $.50-60 \mathrm{~Hz}$
Consumption 40 watts nominal

HP.85A operating
temperature 5° to $40^{\circ} \mathrm{C}\left(40^{\circ}\right.$ to $\left.105^{\circ} \mathrm{F}\right)$
HP-85A storage
temperature $\ldots . .40^{\circ}$ to $65^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.150^{\circ} \mathrm{F}\right)$
HP-83A operating
temperature $\ldots .0^{\circ}$ to $55^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
HP-83A storage
temperature $\ldots . .-40^{\circ}$ to $75^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.167^{\circ} \mathrm{F}\right)$
Ambient
humidity 5% to 80% at $40^{\circ} \mathrm{C}$

SIZE AND WEIGHT

BASIC FUNCTIONS AND STATEMENTS

System Functions

ABS-Absolute value of the numeric expression
ACS-Principal value (1st or 2nd quadrant) of the arccosine of the numeric expression in the current angular units.
ASN -Principal value (1st or 4th quadrant) of the arcsine of the numeric expression in the current angular units.
ATN-Principal value (1st or 4th quadrant) of the arctangent of the numeric expression in the current angular units.
ATN2-Arctangent of Y / X in proper quadrant.
CEIL-Smallest integer greater than or equal to the numeric expression.
COS-Cosine.
COT-Cotangent.
CSC-Cosecant.
DATE-Julian date in the format YYDDD, assuming system timer was set.
DTR-Converts the value of the numeric expression from degrees to radians.
EPS-A constant equal to the smallest positive real precision number, 1E-499.
ERRL-Line number of latest error.
ERRN-Error number of latest error.
EXP-Value of Napierian e raised to the power of the computed expression.
FLOOR-Largest integer less than or equal to the evaluated expression.
FP-Fractional part of the evaluated expression.
INF-A constant equal to the largest real number possible, $9.99999999999 E 499$.
INT-Largest integer less than or equal to the evaluated expression (equivalent to FLOOR).
IP-Integer part of the numeric expression.
LGT-Common logarithm (base 10) of a positive numeric expression.
LOG-Natural logarithm (base e) of a positive numeric expression.
MAX-Larger of two values.
MIN-Smaller of two values.
$\mathrm{Pl}-$ Numerical value of pi.
RMD-Remainder resulting from a division operation according to $\mathrm{X}-(\mathrm{Y} * \mathrm{I} \mathrm{P}(\mathrm{X} / \mathrm{Y})$).
RND-Generates a number that is greater than or equal to zero and less than one, using a predetermined, pseudo-random sequence.
RTD-Converts the value of the numeric expression from radians to degrees.
SEC-Secant.
SGN-Returns a 1 if the expression is positive, -1 it negative, and 0 if exactly 0 .
SIN-Sine.
SQR-Square root of a positive numeric expression.
TAN-Tangent.
TMME-Returns the time in seconds since midnight if the timer is set, or since machine turn-on otherwise, resetting automatically after 24 hours.

String Functions

CHR\$-Converts a numeric value between 0 and

255 into a character corresponding to that value.
LEN-Returns the number of characters in a string.
NUM-Returns the decimal value corresponding to the first character of the string expression.
POS-Returns the position of the first character of a substring within another string or 0 if the substring is not found.
UPC \$-Converts all lowercase letters in a string to uppercase letters.
VAL-Returns as a numeric value, including exponent, a string of digits so that the value may be used in calculations.
VAL\$-Returns the value of a numeric expression as a string of digits.

General Statemento and

Programmable Commands
BEEP-Outputs a tone of specified frequency for a specified duration.
CLEAR-Clears the CRT.
COM-Dimensions and reserves memory so chained programs can access the same data.
CRT IS-Allows the definition of either a printer or the actual CRT as the current CRT.
DATA-Provides constants and text characters for use with READ statements.
DEFAULT ON-Makes numeric overflows, underflows, and the use of uninitialized variables non-fatal by substituting an appropriate approximate value.
DEFAULT OFF-Makes numeric overflows, underflows, and the use of uninitialized variables fatal.
DEF FN-Defines a single- or multiple-line function.
DEG-Sets degree mode for evaluation and output of the arguments and results of trigonometric functions.
DIM-Declares the size and dimensions of array and string variables.
DISP-Outputs the values or text on the current CRT.
DISP USING-Displays values and text according to format specified by IMAGE statement or literal IMAGE.
END-Terminates program execution (same as STOP).
FLIP-Changes the keyboard from BASIC mode to typewriter mode or vice versa.
FN END-Terminates a multiple line function.
FOR/NEXT-Defines a program loop and the number of iterations.
GOSUB-Transfers program control to a subroutine and allows subsequent return of control.
GOTO-Transfers program execution to the specified line.
GRAD-Sets grad mode for evaluation and output of the arguments and results of trigonometric functions.
IF...THEN...ELSE-Allows statements to be either executed or bypassed depending on the outcome of a logical expression.
IMAGE-Specifies the format used with PRINT USING or DISP USING statements.
INPUT-Allows entry of values or text from the keyboard during program execution.
INTEGER-Declares variables as integers as well as the size and dimensions of integer arrays.
KEY LABEL - Displays in the lower portion of the CRT, an eight-character prompt for each Special Function Key defined by an ON KEY statement. Also returns cursor to upper left corner of the CRT.
LET-Assigns a value to a variable or array element.
LIST-Lists the program on the CRT IS device. Also outputs bytes remaining at the end of a program.
NORMAL-Cancels the effect of the PRINT ALL, AUTO, or TRACE statements.
ON ERROR-Sets up a branch to the specified line or subroutine anytime an error occurs.
OFF ERROR-Cancels any ON ERROR statement previously executed.
ON KEY\#-Sets up a branch to the specified line or subroutine each time the Special Function Key is pressed.

SPECIFICATIONS TABLES

SYSTEM ACCURACY SPECIFICATIONS

These system specifications combine individual accuracy specifications to result in a total measurement accuracy specification. For example, the resistance specifications combine the DVM, current source and acquisition assembly error terms.

Voltage Measured Through Acquisition Assembly

3497A Configuration:

DVM: $51 / 2$ digit, auto zero on
Relays Switches: Tree Switched
Accuracy: \pm ($\%$ of reading + number of counts)
90 Days $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Voltmeter Ranga	$51 / 2$ digits	Digits Displayad $4 / 2$ digits	$31 / 2$ digits
0.1 V	$0.007+5$	$0.01+2$	$0.1+1$
1.0 V	$0.006+1$	$0.01+1$	$0.1+1$
10.0 V	$0.006+1$	$0.01+1$	$0.1+1$
100.0 V	$0.006+1$	$0.01+1$	$0.1+1$

Resistance Measured Through an Acquisition Assembly

3497A Configuration:

DVM: $51 / 2$ digit, auto zero on
Current Source: As indicated
Relay Switches: Configured for a 4-terminal resistance measurement

Characteristics

$\left.\begin{array}{|cccc|}\hline \begin{array}{c}\text { Effective } \\ \text { Resistance } \\ \text { Range }\end{array} & \begin{array}{c}\text { Effective } \\ \text { Resistance } \\ \text { Resolution }\end{array} & \begin{array}{c}\text { Current } \\ \text { Source } \\ \text { Range }\end{array} & \text { Range } \\ \hline 100 \Omega & 1 \mathrm{~m} \Omega & 1 \mathrm{~mA} & .100000 \\ \hline 1 \mathrm{k} \Omega & 10 \mathrm{~m} \Omega & 100 \mu \mathrm{~A} & 1.00000 \\ \hline 10 \mathrm{k} \Omega & 100 \mathrm{~m} \Omega & 100 \mu \mathrm{~A} & 10.0000 \\ \hline 100 \mathrm{k} \Omega & 1 & \Omega & 10 \mu \mathrm{~A}\end{array}\right) 10.0000$

Accuracy: \pm ($\%$ of reading + number of counts)
90 Days $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Range Relays (0pi. 010)	5\% digits	Digits Displayed $4 / 2$ digits	$3 / 2$ digits
100Ω	$.032+5$	$.035+2$	$0.125+1$
$1 \mathrm{k} \Omega$	$.032+5$	$.035+2$	$0.125+1$
$10 \mathrm{k} \Omega$	$.032+5$	$.035+2$	$0.125+1$
$100 \mathrm{k} \Omega$	$.031+2$	$.035+2$	$0.125+1$

System Noise Rejectian

Narmal Mode Rejection (NMR): (50 or $60 \mathrm{~Hz}+.09 \%$)

DVM Digits Displayed	Rejection
$5 \frac{1}{2}$	60 dB
$4 \frac{1}{2}$	0 dB
$31 / 2$	0 dB

NMR is a function of the 3497A DVM configuration only and is not affected by the number of channels in the system.

Effective Common Mode Rejection (ECMB): The ECMR of a 3497 A based system is a combination of the ECMR of the 3497A DVM and the effects of adding multiplexer assemblies and 3498A extenders.

ECMR: $1 / k \Omega$ imbalance in low lead, using tree switching, ac at 50 or $60 \mathrm{~Hz}, 25^{\circ} \mathrm{C},<85 \%$ R.H.)

Voltmetar Configuration

Number of

Acquisition Ch (Options 10		51/2 digits	41/2 digits	$31 / 2$ digits
0	AC	150 dB	90 dB	90 dB
	DC	120 dB	120 dB	120 dB
<100	AC	150 dB	90 dB	90 dB
	DC	104 dB	104 dB	104 dB
<400	AC	140 dB	80 dB	80 dB
	DC	92 dB	92 dB	92 dB
<1000	AC	130 dB	70 dB	70 dB
	DC	85 dB	85 dB	85 dB

Measurement Speeds

For the 3497A DVM and the relay multiplexer. Speeds are given for measurements on random channels (using software channel selection) and sequential channels (using external hardware increment). Speeds include $1 / 0$ times to the indicated computers.

	Number of Digits Selected	85	Computar 9826*	10002	1000E,F
Sequential Channais using external increment	$51 / 2$ digits	391 33)**	39	$39(25)$	30125)
	$41 / 2$ digits	$97(88)$	103	108(79)	88(79)
	$31 / 2$ digits	$1121107)$	123	1271991	107(99)
Random Channels using sotware	$51 / 2$ digits	13(15)	27	2116)	22(16)
	$41 / 2$ digits	$14121)$	51	$31(28)$	35(30)
	$31 / 2$ digits	14(23)	55	33(29)	35(32)

* 9826 speeds for BASIC operating system
**50 Hz speeds in ()

TIMERIREAL TIME CLOCK

$+.1127 \square 4$

Clock Format

Month:Day:Hours:Minutes:Seconds (Option 230)
Day:Month:Hours:Minutes:Seconds (Option 231)

	Maximum Time	Resolution	Accuracy	Output
Real Time Mode	1 year	1 second	$\begin{gathered} \pm(.005 \% \text { of time } \\ +.1 \mathrm{~s}) \end{gathered}$	Display and HP-IB
Elapsed Time Mode	$\begin{gathered} 10^{6} \\ \text { seconds } \end{gathered}$	1 second	$\begin{gathered} \pm(.005 \% \text { of time } \\ +.1 \mathrm{~s}) \end{gathered}$	$\begin{aligned} & \text { Display } \\ & \text { and } \\ & \text { HP-IB } \end{aligned}$
Time Alarm Mode	24 hours	1 second	$\begin{gathered} \pm(.005 \% \text { of time } \\ +.1 \mathrm{~s}) \end{gathered}$	HP-IB SRQ
Time Interval Mode	24 hours	1 second	$\begin{gathered} \pm(.005 \% \text { of time } \\ +.1 \mathrm{~s}) \end{gathered}$	$\begin{gathered} 50 \mu \mathrm{~S} \\ \text { TTL } \\ \text { Pulse } \\ + \text { HP-IB } \\ \text { SRQ } \end{gathered}$
Time Output Mode	1 second	$100 \mu \mathrm{~S}$	$\pm(.02 \%$ of time $)$	$\begin{gathered} 16 \mu \mathrm{~S} \\ \text { TTL } \\ \text { Pulse } \\ \hline \end{gathered}$

Power Failure Protection: Battery back-up for $\mathbf{> 2 4}$ hours for time and elapsed time only

Ext Jrig. Input: TTL Compatible
Minimum pulse width: 50 n seconds
Ext Incr. Input: TTL Compatible
Minimum pulse width: 50μ seconds
BBM Sync: TTL Compatible
This terminal serves as a break before make synchronizing signal to the 3497A and other equipment. The terminal is both an-input and output with a low level indicating a channel is closed. The 3497A will not close any additional channels until the line is sensed high and the line will float high when all channels are open.

VM Complete Output: TTL Compatible
Puise width $=500 \mathrm{n}$ seconds
Channel Closed Output: TTL Compatible
Pulse width $=500 \mathrm{n}$ seconds

Timer Interval Output: TTL Compatible
Output port for the time interval and time output functions.

Physical Paramaters

Size (3497A or 3498A): $190.5 \mathrm{~mm}(71 / 2 \mathrm{in}$.) high $428.6 \mathrm{~mm}(167 / 8 \mathrm{in}$.$) wide$ $520.7 \mathrm{~mm}(201 / 2 \mathrm{in}$.) deep An additional two inches in depth should be allowed for wiring.

Nat Weight:

	3497 A	3498 A
Maximum	20.4 kg	20.4 kg
(with assemblies in all slots)	$(45 \mathrm{lbs})$.	$(45 \mathrm{lbs})$.

COST BREAKDOWN

L.Setter-Sept.25-Oct.15/84 21 days @ 245/day....... $\$ 5,145.00$
B.Acheson-Sept. 25-Oct.15/84 21 days @ 125/day....... 2,625.00
D.01denwald-Sept.25-Oct.15/84 21 days @ 125/day...... 2,625.00
G.Sturrock-Sept.25-0ct.15/84 21 days @ 125/day 2,625.00

Instrument Lease 21 days @ 225/day4, 425.00
Meals \& Accommodations 3. 325.00
Vehicle 21 days @ 80/day 1,680.00
Computer Processing - Nov.2-8/84 1, 000.00
Drafting \& Reports - Nov.4-8/84 2, 500.00
Total $\$ 26,250.00$

Name: CANDY, Clifford, E.
Profession: Geophysicist
Education: B.Sc., Geophysics
University of British Columbia
Professional
Associations: Society of Exploration Geophysicists British Columbia Geophysical Society
Experience: Six years Geophysicist with Glen E. White Geophysical Consulting and Services Ltd., with work in B.C., Yukon, Quebec, Saskatchewan, southwestern U.S.A. and Ireland.

STATEMENT OF QUALIFICATIONS

NAME: WHITE, Glen E., P.Eng.

PROFESSION: Geophysicist
EDUCATION: B.Sc. Geophysicist - Geology University of British Columbia.

PROFESSIONAL ASSOCIATIONS:

Registered Professional Engineer, Province of British Columbia.
Associate member of Society of Exploration Geophysicists.
Past President of B.C. Society of Mining Geophysicists.

EXPERIENCE: Pre-Graduate experience in Geology Geochemistry - Geophysics with Anaconda American Brass.

Two years Mining Geophysicist with Sulmac Exploration Ltd. and Airborne Geophysics with Spartan Air Services Ltd.
One year Mining Geophysicist and Technical Sales Manager in the Pacific north-west for W.P. McGill and Associates.
Two years Mining Geophysicist and supervisor Airborne and Ground Geophysical Divisions with Geo-X Surveys Ltd.

Two years Chief Geophysicist Tri-Con Exploration Surveys Ltd.
Twelve years Consulting Geophysicist.
Active experience in all Geologic provinces of Canada.

REFERENCES

1) Carr, J.M., B.C. Department of Mines Annual Report, Manson Creek, 1965
2) Page, P.E., Assessment Report No.1161, Wm. Rigler Molybdenum Claims, Prof. Geol., July 30/62.
3) Philp,R.H.D., Assessment Report No.2185, Geological, Geochemical Surveys on the 'A' claims, 1969.
4) Potter,R.G., Assessment Report No.2689, Report on the 'A' and 'B' claims, Omineca M.D. for Javelin Mines Ltd., August 1970.
5) Sinclair,A.G., Preliminary Report on the 'A' claims,1969.
6) Roberts, A.F., Report on the B,T, claims Omineca M.D., August 14, 1984
7) Geology Map, G.S.C. Map 876-A, Manson Creek 1:253,440

ADORE RESOURCES LTD.

MANSON CREEK PROJECT MULTIPOLE INDUCED POLARIZATION SURVEY LINE DOW

APPARENT RESISTIVITY (Ohm-metres*10)

GLEN E. WHITE
ADORE RESOURCES LTD.
MANSON CREEK PROJECT
MULTIPOLE INDUCED POLARIZATION SURVEY LINE 100W

APPARENT CHARGEABILITY（Milliseconds）

APPARENT RESISTIVITY（Ohm－metres＊10）

ADORE RESOURCES LTD．
MANSON CREEK PROJECT
MULTIPOLE INDUCED POLARIZATION SURVEY

APPARENT CHARGEABILITY (Milliseconds)

APPARENT RESISTIVITY (Ohm-metres*10).

METRES

- 25 5月 7510日

GLEN E. WHITE GEOPHYSICAL CONSULTING \& SERVICES LTD.

INST: 36 CHANNEL MULTIPOLE I.P.

ADORE RESOURCES LTD.
MANSON CREEK PROJECT
MULTIPOLE INDUCED POLARIZATION SURVEY LINE 300W

APPARENT CHARGEABILITY (Milliseconds)

APPRREENT RESISTIVITY (Ohm-metres*10)0

APPRRENT CHARGEABILITY (Milliseconds)

APPARENT RESISTIVITY (Ohm-metres*10)

ADORE RESOURCES LTD.

$$
\frac{\text { METRES }}{0} 25 \quad 50 \quad 75100
$$

MANSON CREEK PROJECT
MULTIPOLE INDUCED POLARIZATION SURVEY

GLEN E. WHITE GEOPHYSICAL CONSULTING \& SERVICES LTD.

INST: 36 CHANNEL MULTIPOLE I.P. LINE 500W

DATE: OCT/84
FIG.: 8

ADORE RESOURCES LTD. $\begin{array}{llllll}\text { METRES } \\ 0 & 25 & 50 & 75100\end{array}$

APPARENT CHARGEABILITY (Milliseconds)

RPPARENT RESISTIVITY (Ohm-metres*10) 0

ADORE RESOURCES LTD.

$$
\stackrel{\text { METRES }}{ }
$$

GLEN E. WHITE GEOPHYSICAL CONSULTING \& SERVICES LTD.

MANSON CREEK PROJECT
MULTIPOLE INDUCED POLARIZATION SURVEY LINE 7DOW

RPPRRENT CHARGERBILITY (Milliseconds)

ADORE RESOURCES LTD.
MANSON CREEK PROJECT
MULTIPOLE INDUCED POLARIZATION SURVEY LINE 800W

APPARENT RESISTIVITY (Ohm-metres*10)

$$
12
$$

$$
\begin{aligned}
& 115 \\
& 121)^{12018}
\end{aligned}
$$

APPARENT CHARGERBILITY (Milliseconds)

APPRRENT RESISTIVITY (Ohm-metres*10)

METRES
$0 \quad 25 \quad 5075100$

GLEN E. WHITE GEOPHYSICAL CONSULTING \& SERVICES LTD.
\&

INST: 36 CHANNEL MULTIPOLE I.P.

ADORE RESOURCES LTD.
MANSON CREEK PROJECT

MULTIPOLE INDUCED POLARIZATION SURVEY LINE 1000W

