85-377-13780

Geological, Geochemical Deport 5/86

Specific Claims Involved:

Mac	1586	
Mac 2	1767	
Mac 3	1766	
Mac 4	1768	
Mac 5	1769	
St Tere	sa #1	13414
St Tere	sa #6	15531

Mining Division: Clinton

Specific NTS Location:

92N/10E, 92N/151E

Latitude and Longitude: 51°44'N 124°38'W

Owner of Claims: Imperial Metals Corporation

Author of Report: J.W. Marsh ESSMENT REPORT

13,780

Date Submitted: May 1985

TABLE OF CONTENTS

	Page
Claim Map (Figure 1)	1
Introduction	2
Detailed Technical Data and Interpretation	3
Recommendations	6
Cost Statement	7
Author's Qualifications	8
Map: Geology and Sample Locations (Figure 2)	In Pocket
Geochemical Certificates	Appendix
Petrographic Descriptions	Appendix

•

INTRODUCTION

General Geographic and Physiographic Position

The MAC claim group is located within the Chilcotin region of British Columbia approximately 180 air miles west of the city of William's Lake. The claims are accessible via highway 20 from William's Lake to Tatla Lake village and then the Westbranch road to Bluff Lake. From Bluff Lake a truck road has been constructed to the center of the claim group. The claim group occurs on the edge of a mountain with elevations varying between 3500 feet and 7100 feet. Vegetation consists of open pine forest at lower elevations and alpine mosses and grasses at higher elevations.

Property Definition

The MAC claims occur within a geological region dominated by Mesozoic age intermediate composition pyroclastic volcanic rocks accompanied by minor rhyolitic sections. Within the MAC claims the volcanic section is cut by a quartz-diorite intrusive. Fracture zones developed within both the intrusive complex and the hosting volcanics have been invaded by quartz rich vein systems. One of these systems, the "Cow Trail Vein", is more thoroughly described in this report.

Summary of Work Completed

Bulldozer trenching and road construction: 300 meters Geological mapping of the Cow Trail Vein on a scale of 1:500: 4 hectares Rock sampling (1984): 79 samples assayed for Au and Ag and analyzed for Cu, Pb, Zn, As, Sb.

Work completed was on the MAC and St. Teresa 6 claim.

DETAILED TECHNICAL DATA AND INTERPRETATIONS

Geology of the Cow Trail Vein

The Cow Trail Vein can presently be identified along strike from 0+50W to 1+50E (200 meters). The vein has an average strike of 080° and at its western limits dips approximately 70° to the south. Throughout this length the vein varies between 0.3 and 1.5 meters in width. East of 1+00E the strength of the vein diminishes. An intensely altered (Kaolinite-sericite) quartz-diorite intrusive outcrops immediately northwest of the present known location of the vein. The vein displays both banded and vuggy textures seamingly of an epithermal origin. Chalcopyrite and (black) sphalerite occur as blebs within the vein. Gold and silver grades within the vein system are sporadic but run as high as 0.355 oz/ton Au and 33.2 oz/ton Ag (although typically they are, at surface, in the 0.04 to 0.08 oz/ton Au and 3.0 to 7.0 oz/ton Ag range). The better gold and silver values appear to be coincident with elevated copper values and the presence of obvious chlorite.

The intrusive complex that forms much of the host rock for the vein system is extensively altered in the northwestern corner of the survey area. It is considered likely that the "Cow Trail Vein" is one of several veins related to this quartz-diorite intrusive.

High concentrations of zinc and arsenic extend for considerable distances into the hosting intrusive and volcanic lithologies suggesting that some potential exists for bulk tonnage mineralization.

	SAMPLE		Ag 07/TON	Cu DDM	Pb ppm	Zn	As DDM
SAULL T		02/100	ULTION	Г ГГЧ. 			
MC-1	0.5	.011	7.04	_	-	-	-
MC-2	0.8	.123	9.38	-	-	-	-
MC-3	0.8	.024	2.76	-		-	-
MC-4	0.8	.006	.62	-	-	-	-
MC-5	0.8	.082	8.92	-	-	-	_
MC-8	0.8	.003	.21	-	-	-	_
DR-1	7.0	.001	.01	48	9	107	7
'DR-2	grab	.067	.93	612	5238	20404	35
DR-3	grab	.025	.40	91	832	1734	45
DR-4	grab	.355	33.20	2364	20800	37398	46
DR-5	grab	.006	2.20	176	1016	885	40
DR-6	1.0	.012	.20	58	214	395	86
,DR-7	2.0	.002	10.89	241	8214	843	81
DR-8	1.0	.018	.61	60	809	907	91
DR-9	1.0	.004	.31	29	233	212	64
DR-10	2.0	.001	.06	78	47	290	42
DR-15	0.7	.004	.49	294	911	4568	53
DR-16	0.7	.061	1.86	505	8163	10180	72
ି UR-17	grab	.001	.01	42	39	130	27
DR-18	grab	.001	.03	28	60	95	41
DR-19	grab	.001	.02	25	19	41	14 E» 14
DR-20	rubble	.255	20.54	473	5639	13463	604
DR-21	2.0	.001	.03	88	34	226	134
_DR-22	2.0	.001	.10	43	51	625	136
DR-23	2.0	.001	.19	90	371	689	140
DR-24	2.0	.003	.24	92	125	720	158
DR-25	2.0	.001	.09	57	25	591	89
DR-26	2.0	.001	.06	104	28	812	133
DR-27	2.0	.001	.03	80	12	622	167
DR-28	2.0	.001	.03	76	21	334	93
DR-29	2.0	.001	.02	88	17	115	115
DR-30	2.0	.001	.04	99	29	111	65
DR-31	2.0	.001	.09	114	32	342	216
DR-32	2.0	.001	.23	101	489	565	119
DR-33	2.0	.001	.04	83	20	584	113
<u>DR-34</u>	2.0	.001	.16	62	32	5/6	191
DR-35	2.0	.001	.06	94	23	/03	109
DR-36	2.0	.001	.04	58	19	490	121
DR-37	2.0	.001	.02	69	14	483	96
DR-38	2.0	.001	.02	120	73	168	144
DR-39	2.0	.001	.16	78	172	273	61
DR-40	2.0	.001	.41	71	508	759	192

TABLE 1: ROCK CHIP SAMPLING RESULTS

د. م را با با با محمد المعار معرف العرار ال. ال والعار الا ال

. . .

- 4 -

sample #	SAMPLE WIDTH (M)	Au Oz/ton	Ag OZ/TON	Cu PPM	P d PP m	Zn PPM	As PPM
DR-41	2.0	.001	.01	87	15	74	66
DR-42	.2.0	.001	.02	90	14	76	68
DR-43	2.0	.001	.01	106	9	58	90
DR-44	2.0	.001	.01	92	22	293	85
`DR-45	2.0	.001	.01	106	21	154	116
DR-46	2.0	.001	.02	172	48	205	108
DR-47	2.0	.001	.08	136	23	139	99
DR-48	2.0	.001	.13	81	104	206	160
DR-49	2.0	.002	.02	136	14	82	129
DR-50	2.0	.001	.03	110	12	69	109
DR-51	2.0	.003	.22	105	29	129	222
DR-52	2.0	.002	.11	53	37	118	216
DR-53	2.0	.001	.08	124	24	142	217
DR-54	2.0	.003	.23	116	66	411	124
DR-55	2.0	.001	.10	77	43	367	63
DR-56	2.0	.001	.34	146	365	648	117
DR-57	2.0	.038	.85	242	258	589	386
DR-58	2.0	.001	.13	121	86	519	124
DR-59	2.0	.001	.07	100	28	150	153
DR-60	2.0	.001	.07	108	404	370	106
DR-61	2.0	.005	1.33	159	1305	1456	108
DR-62	2.0	.001	.08	.90	128	325	132
DR-63	2.0	.017	1.03	159	1865	1235	100
DR-64	2.0	.001	.03	203	37	111	76
DR-65	2.0	.001	.02	138	9	84	130
DR-66	0.5	.001	.07	64	409	184	14
DR-67	0.8	.054	2.88	357	3055	33892	62
DR-68	2.0	.001	.09	106	253	1323	36
DR-69	2.0	.001	.04	98	28	201	100
DR-70	2.0	.001	.01	83	21	130	86
DR-71	2.0	.001	.09	75	78	273	56
DR-72	2.0	.001	.11	63	135	323	92
DR-73	0.5	.001	.17	54	546	334	48
DR-74	2.0	.001 c	.08	77	164	286	85
DR-75	2.0	.001	.35	43	217	255	192
DR-76	0.8	.009	.65	94	709	6861	82
DR-77	0.8	.001	.12	46	155	140	150
DR-79	grab	.001	.07	69	12	54	114
DR-80	1.0	.001	.05	48	31	203	89
DR-81	0.7	.075 ٢	3.32	266	3923	3212	68
DR-82	1.0	.001	.12	28	708	347	44
DR-83	0.7	.055	7.77	765	12074	2584 3	152

TABLE 1: ROCK CHIP SAMPLING RESULTS

•

RECOMMENDATIONS

A program of additional trenching should be followed by a program of diamond drilling.

COST STATEMENT

Salaries:	W. Morton	Sept. 2-Sept. 7/84	ŀ	7 days @ \$200/day	\$	1,400
	R. Durfeld	Sept. 3-Sept. 5/84	ł			
		Sept. 12-Sept.16/8	34	8 days @ \$200/da y		1,600
Bulldozer	Costs	Sept. 3/84				750
Assaving &	& Geochemical	Analyses		79 samples @ \$12/sample		948
Vehicle Co	osts including	fuel		10 days @ \$60/day	¢	• · <u>-</u> 600
Food & Acc	commodation		.ه.	10 man days @ \$40/day		400
Report Pre	eparation & Dr	afting				500

TOTAL \$ 6,198

AUTHOR QUALIFICATIONS

■ ¹	I,	JAMES W. MORTON, CERTIFY THE FOLLOWING:
•	1.	I graduated from Carelton University in 1971 with a Bachelor of Science in Geology.
•	2.	I graduated from the University of British Columbia in 1976 with a Master of Science in Soil Science.
•	3.	I have worked for various mining and exploration companies since
•		1900.

4. I am presently a permanent staff geologist with Imperial Metals Corporation of Vancouver, B.C.

5. I supervised the work described in this report.

J.W. Morton, Geologist

- 8 -

ICME ANALYTICAL LABORATORIES LTD. 52 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 DATA LINE 251-1011 VE 253-3158 P

SEPT 18 1984 DATE RECEIVED:

1 24/84 DATE REPORT MAILED:

4107 MA

ASSAY CERTIFICATE

.500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HN03-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPN. SAMPLE TYPE: ROCK CHIPS AG++ AND AU++ BY FIRE ASSAY

Lifidean Toye. CERTIFIED B.C. ASSAYER ASSAYER:

IMPERIA	IL MEIF	165 601	KPUKA I	IUN	FILE	# 84∽∠	0008	FAGE	T
SAMPLE#	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	AG** OZ/T	AU** OZ/T		
DR-21 DR-22 DR-23 DR-24 DR-25	88 43 90 92 57	34 51 371 125 25	226 625 689 720 591	134 136 140 158 89	2 2 3 6 3	.03 .10 .19 .24 .09	.001 .001 .003 .003		
DR-26 DR-27 DR-28 DR-29 DR-30	104 80 76 88 99	28 12 21 17 29	812 622 334 115 111	133 167 93 115 65	8 5 2 2 2	.06 .03 .03 .02 .04	.001 .001 .001 .001 .001		
DR-31 DR-32 DR-33 DR-34 DR-35	114 101 83 62 94	32 489 20 32 23	342 566 584 576 703	216 119 113 191 109	3 3 5 4	.09 .23 .04 .16 .06	.001 .001 .001 .001 .001	 ₩.	
DR-36 DR-37 DR-38 DR-39 DR-40	58 69 120 78 71	19 14 73 172 508	490 483 168 273 759	121 96 144 61 192	4 3 2 2 3	.04 .02 .02 .16 .41	.001 .001 .001 .001 .001		
DR-41 DR-42 DR-43 DR-44 DR-45	87 90 106 92 106	15 14 9 22 21	74 76 58 293 154	66 68 90 85 116	2 2 2 2 2 2 2	.01 .02 .01 .01	.001 .001 .001 .001 .001		
DR-46 DR-47 DR-48 DR-49 DR-50	172 136 81 136 110	48 23 104 14 12	205 139 206 82 69	108 99 160 129 109	2 2 2 2 2 2	.02 .08 .13 .02 .03	.001 .001 .001 .002 .001		
DR-51 DR-52 DR-53 DR-54 DR-55	105 53 124 116 77	29 37 24 66 43	129 118 142 411 367	222 216 217 124 63	4 2 4 2 2	.22 .11 .08 .23 .10	.003 .002 .001 .003 .001		
DR-56 DR-57 STD C	146 242 61	365 258 40	648 589 123	117 386 41	2 7 15	.34 .85	.001		

IMPERIAL METALS CORPORATION FILE # 84-26658

I

SAMPLE#	CU PPM	PB PPM	ZN PPM	AS PPM	SB PPM	AG** OZ/T	AU** OZ/T
DR-58	121	86	519	124	2	.13	.001
DR-59	100	28	150	153	2	.07	.001
DR-60	108	404	370	106	4	.07	.001
DR-61	159	1305	1456	108	10	1.33	.005
DR-62	90	128	325	132	2	.08	.001
DR-63	159	1865	1235	100	2	1.03	.017
DR-64	203	37	111	76	2	.03	.001
DR-65	138	9	84	130	2	.02	.001
DR-66	64	409	184	14	4	.07	.001
DR-67	357	3055	33892	62	8	2.88	.054
DR-68	106	253	1323	36	2	.09	.001
DR- 69	78	28	201	100	2	.04	.001
DR-70	83	21	130	86	4	.01	.001
DR-71	75	78	273	56	2	.09	.001
DR-72	63	135	323	92	5	.11	.001
DR-73	54	546	334	48	5	.17	.001
DR-74	77	164	286	85	2	.08	.001 🧽
DR-75	43	217	255	192	5	.35	.001
DR-76	94	709	6861	82	4	.65	.009
DR-77	46	155	140	150	3	.12	.001
DR-78	33	73	525	75	3	. 11	.001
DR-79	69	12	54	114	2	.07	.001
DR-80	48	31	203	89	2	.05	.001
DR-81	266	3923	3212	68	2	<u>3.32</u>	.075
DR-82	28	708	347	44	2	.12	.001
DR-83	765	12074	25843	152	140	7.77	.055
STD C	62	38	123	39	15	-	-

PAGE 2

ACME ANALYTICAL LABORATORIES LTD. 352 E.HASTINGS ST.VANCOUVER B.C. V6A 1R6 FHONE 253-3158 DATA LINE 251-1011 DATE RECEIVED: SEPT 7 1984

DATE REPORT MAILED: Nept. 13/89

ASSAY CERTIFICATE

.500 SRAM SAMPLE IS DIGESTED WITH 3ML 3-1-3 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN.FE.CA.P.CR.MG.BA.TI.B.AL.NA.K.W.SI.ZR.CE.SN.Y.NB AND TA. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: ROCK CHIPS AUXI BY FIRE ASSAY Ag** by Fire Assay

ASSAYER: M. DEAN TOYE. CERTIFIED B.C. ASSAYER

IMPERIAL METALS CORP FROJECT # 4107 FILE # 84-2534

SAMPLE# CU PB ΖN AS SB AG** AU** FPM PPM P'P'M PPM F'F'M OZ/T DZ/T DR-1 48 9 107 7 2 .01 .001 5238 20404 DR-2 612 35 11 .93 .067 .40 DR-3 91 832 1734 45 6 .025 2364 20800 37398 46 DR-4 69 33.20 .355 DE-5 176 1016 885 40 28 2.20 .006 DR-6 58 214 395 85 3 .20 .012 DR-7 241 8214 843. 81 56 10.87 .002 60 809 907 91 7 DR-8 .61 .018 .004 233 .31 27 7 DE-9 212 64 2 78 47 290 -42 .06 DR-10 .001 DR-11 1916 12 1.05 .001 65 1526 67 224 7305 2923 .023 DR-12 55 46 5.15 154 . . 07 DF:-13 19 37 82 6 .005 .07 .001 DR-14 20 54 30 17 5 4568 5 DR-15 294 711 53 .49 .004 505 1.86 .061 DR-16 8163 10180 72 11 2 .01 42 39 130 27 .001 DR-17 2 .001 28 60 95 41 .03 DR-18 14 .02 25 17 41 2 .001 DR-19 .255 DR-20 20.54 473 5639 13463 604 238 36 58 39 122 15 STD C

FAGE 1

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS, VANCOUVER B.C. PH:253-3158 TELEX:04-53124 DATE RECEIVED SEPT 29 1983

DATE REPORTS MAILED OCT 31

ASSAY CERTIFICATE

SAMPLE TYPE : ROCK - CRUSHED AND PRULVERIZED TD -100 MESH. AG & AU BY FIRE ASSAY

ASSAYER _____ DEAN TOYE, CERTIFIED B.C. ASSAYER

IMPERIAL METALS PROJECT # MCDONALD FILE # 83-23698

	SAMPLE	AG OZ/TON	AU OZ/TON
MC-1	81901C	7.04	.011
MC-2	81902C	9.38	.123
MC-3	81903C	2.76	.024
MC-4	81904C	.62	.006
MC-5	81905C	8.92	.082
MC-8	81906C	.09	.001
	81907C	.01	.001
	81908C	.21	.003
	81909C	.53	.005
	81910C	.02	.001
	81911C 81912C	.01 .01	.001

. . .

PAGE# 1

M-1: ALTERED (KAOLINITE-SERICITE) QUARTZ-DIORITE.

This sample is a medium grained, somewhat ineqigranular intrusive rock which originally consisted of a granular intergrowth of plagioclase and quartz. There are few large plagioclase grains. Alteration has been intense resulting in the replacement of plagioclase by kaolinite with fine sericite scattered within it. Minerals are:

quartz	35%	
plagioclase	4	
kaolinite	40	
sericite	16	
illite (?)	4	
Fe-Ti oxide	1	
epidote	minor	
opaque (py	cite?) minor	(altering to limonite)

The original rock consisted of a granular intergrowth of subrounded quartz grains and subhedral plagioclase laths 0.1 to 0.4mm in size. Quartz may occur in small aggregates. There were also a few euhedral plagioclase phenocrysts up to 2mm in size scattered amongst the finer plagioclase and quartz.

Almost all the plagioclase has been altered to extremely fine kaolinite; only a few partial remnant grains remain. The outline of the original plagioclase which was intergrown with the quartz is usually preserved although there has been some redistribution of the clay between and into the quartz grains. Very fine ragged flakes of sericite are scattered within the kaolinite, often occuring in small aggregates and clusters. Some of the plagioclase laths, including the phenocrysts, consist of a matted aggregate of a flakey mineral which may be illite (hydromuscovite) rather than sericite. Fine ragged Fe-Ti oxide grains, mostly less than 0.05mm in size are disseminated within the sericite and kaolinite. These often occur in small shapeless aggregates. Epidote forms thin prismatic grains up to 0.1mm in length occuring in spherultic radiating aggregates within the mass of kaolinite and sericite and also in the quartz grains.

Opaques (pyrite?) are subcubic in shape and up to 0.4mm in size. Clusters are quite common. They occur scattered within the altered plagioclase. They are altering to limonite and limonite stain has developed within the clays.

0+54E 0+04N

M-2: ANDESITE PORPHYRY.

This sample is a medium to fine grained porphyritic dyke rock consisting of plagioclase phenocrysts within a fine grianed plagioclase groundmass. It has been moderately altered with sericite-calcite-chlorite-quartz-pyrite(?). Phenocrysts tend to be more altered than the groundmass. Minerals are:

plagioclase phenocrysts	28%
plagioclase groundmass	56
calcite	6
sericite (+ trace kaolinite) 4
chlorite	4
Fe-Ti oxide	2
epidote	minor
quartz	minor
opaque (pyrite?)	minor

Plagioclase phenocrysts form broad euhedral laths 0.5 to 1.5mm in size which occur within a groundmass consisting of a mass of fine feathery plagioclase laths 0.1 to 0.2mm in length. The laths tend to wrap around the phenocrysts. Ragged rounded Fe-Ti oxide grains about 0.05mm in size are intergrown with the fine plagioclase laths.

Alteration has resulted in sericite and calcite being present within the plagioclase phenocrysts. They form very fine grains which are disseminated within all the phenocrysts and are intimately mixed in many. In some phenocrysts sericite or calcite coalesce into ragged patches which may replace most of the plagioclase and one or the other is dominant. Where sericitisation is intense, the sericite may be intergrown with small amounts of kaolinite. Fine calcite is scattered about the groundmass, sometimes occuring in small ragged patches.

Chlorite forms fine flakes which occur mostly in the groundmass although in some of the more highly altered phenocrysts it is intergrown with sericite and calcite. The chlorite in the groundmass usually occurs in rounded to shapeless patches 0.1 to 2.0mm in size; most are less than 0.5mm. It is often integrown with subrounded quartz grains about 0.1mm in size. Some quartz may be primary occuring as small shapelss grains sandwiched between the groundmass plagioclase. Epidote forms thin prismatic grains up to 0.2mm in length occuring in spherulitic aggregates within the chlorite patches. A few small epidote grains occur scattered within the phenocrysts. The larger chlorite patches tend to occur adjacent to phenocrysts and often partly replaces them as well.

Opaque grains (pyrite?) are cubic in shape and range in size from 0.05 to 0.3mm. They occur in small clusters within or near chlorite patches in the groundmass. In the larger chlorite patches there are shapeless aggregates of opaque material.

