85-719

PROSPECTING REPORT

ON

BANA AND LETT MINERAL CLAIMS

OMINECA MINING DIVISION

93M/6

55 17'N 127 01'W

OWNED BY: TOM RICHARDS

OPERATOR: ATNA RESOURCES LTD.

WRITTEN BY: COLIN HARIVEL

DATED: SEPTEMBER 1985

۲,

GEOLOGICAL BRANCH ASSESSMENT R"PORT

13,924

TABLE OF CONTENTS

INTRODUCTION	1.
(i) Location and Access	1.
(ii) History, Ownership and Economic Assessment	1.
(iii) Summary	1.
(iv) Claim Information	1.
DISCUSSION AND CONCLUSIONS	2.
STATEMENT OF COSTS	3.

LIST OF FIGURES

FIG.	1	Index Map
FIG.	2	Claim Map
FIG.	3	Sample Location Sketch

APPENDICES

APPENDIX 1 Analytical ResultsAPPENDIX 2 Statement of Qualifications of Author

INTRODUCTION

(i) Location and Access.

The Bana and Lett 2-post mineral claims are located near the head waters of Netalzul Creek, a tributary to Harold Price Creek. The center of the property is about 38 km east of the village of Hazelton, B.C. (Fig 1). The claims lie in Netalzul Pass near treeline and elevations range from 1158m to 1371m. The forest cover is hemlock-spruce and grades to alpine spruce at higher elevations.

Access was by helicopter from Smithers.

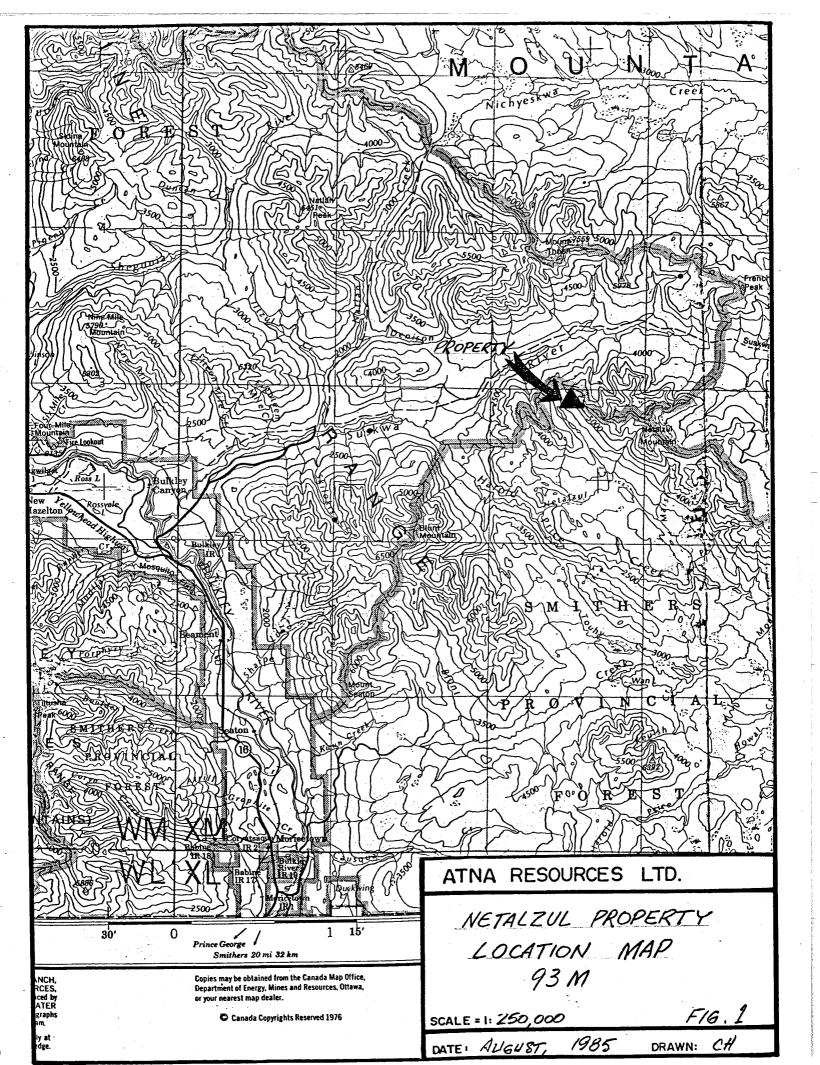
(ii) History, Ownership and Economic Assessment.

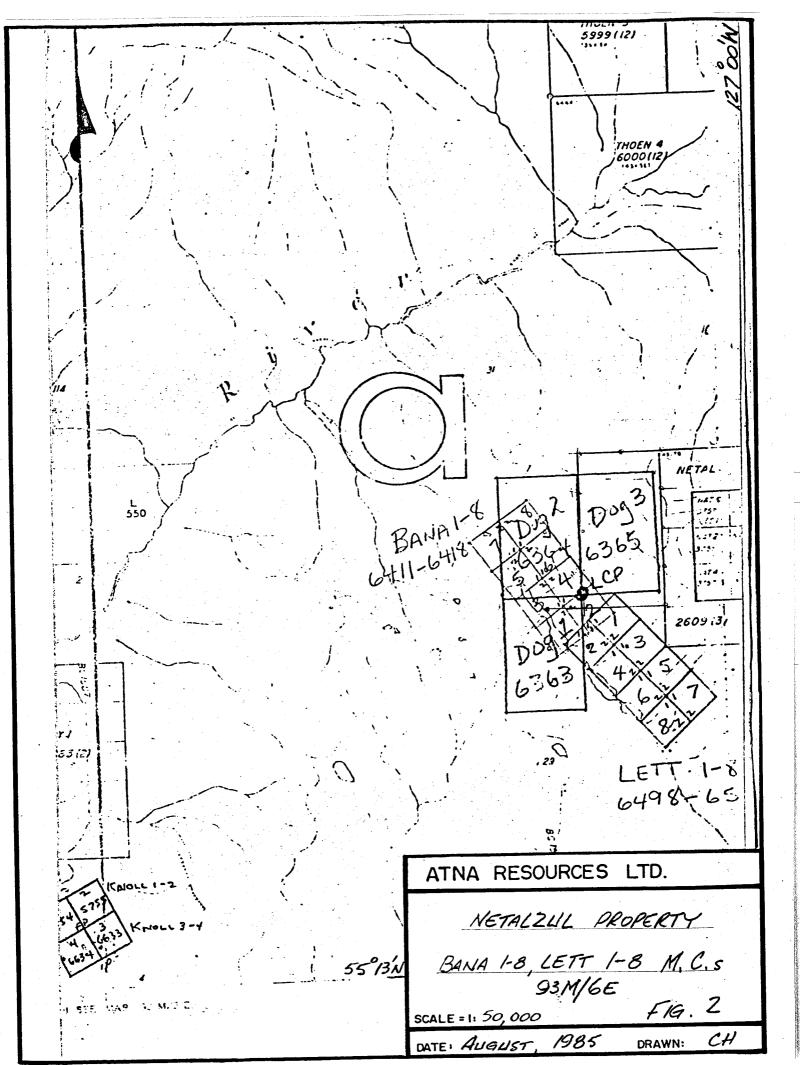
The property was staked in June 1984 as a result of the release of government Regional Geochemical Survey data. A single sample stream sediment anomaly (see location, Fig. 3) was deemed to be of significant interest.

The claims are owned by Tom Richards of Hazelton, B.C. and funds for the exploration of the ground were provided by Atna Resources Ltd.

The property is of immediate economic interest as a possible vein-type silver producer..

(iii) Summary.


Work on the claim consisted of a helicopter supported visit during which the anaomaly source-area was prospected. Mineralized samples were collected by two Atna representatives and the analyses of these samples is reported in Appendix 1.

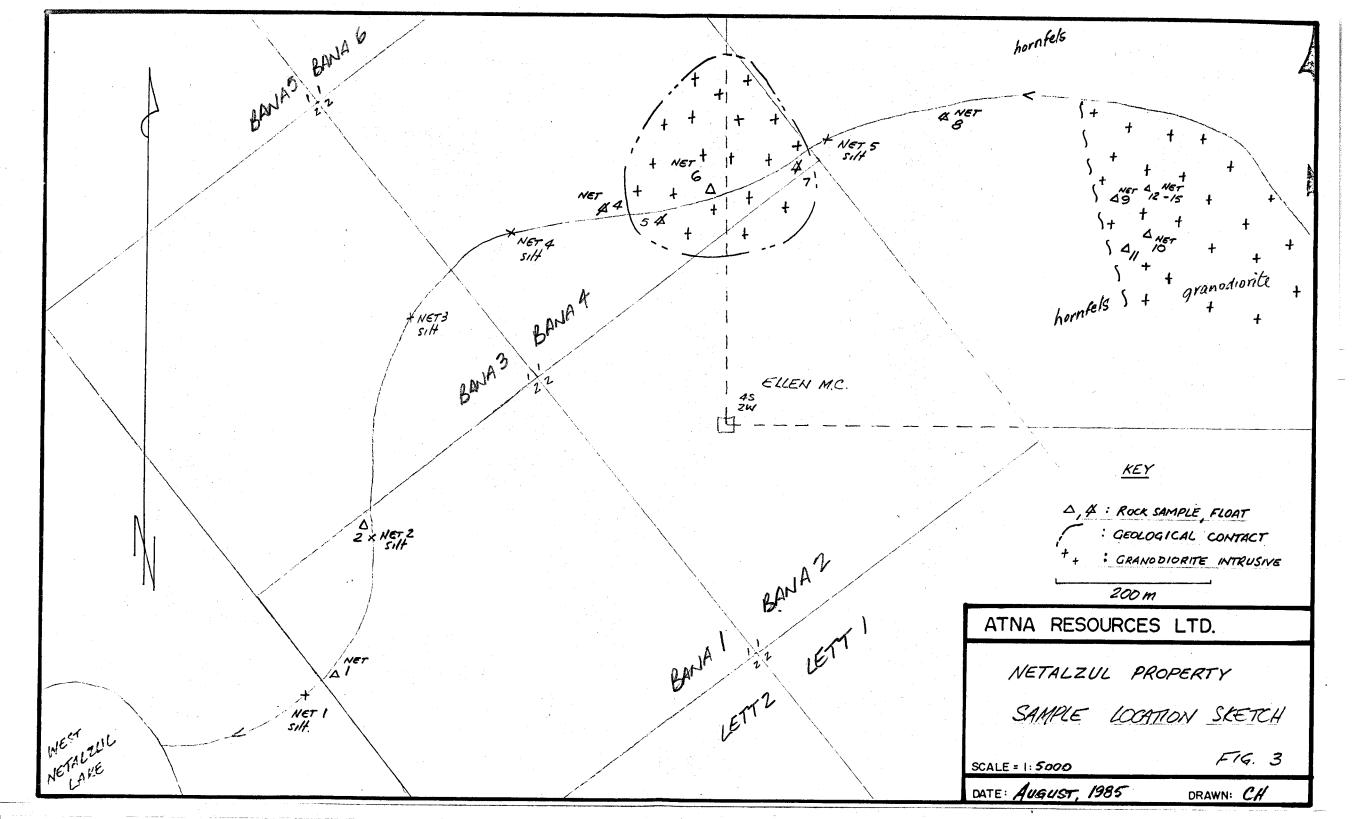

Ten rock chip samples were taken and submitted for analysis.

(iv) Claim Information.

Bana 1 - 8	6411 - 6418	July 24	8 units
Lett 1 - 8	6498 - 6505	24 July	8 units.

1.

DISCUSSION AND CONCLUSION


The area traversed was underlain by Bowser Lake Group sediments and intruded by granodiorite assigned to Bulkley Intrusions of Cretaceous age.

Mineralized samples included float with chalcopyite and molybdenite in quatz veins and quartz veins with galena and shalerite. The float was traced into the head of the basin and mineralization of both types was found in place. The most significant mineralization found is off the presently held ground and more ground should be acquired to the east.

Inspection of the results, see Appendix 1, shows that samples NET 8R, 11R, 12R, 14R, and 15R are anomalous for Ag and NET 14R returned 0.012 oz/ton Au.

The results of the preliminary prospecting indicate that the area warrants further intensive prospecting and mapping.

, !'

Wages:

Bruce Holden, propsector, One day @ \$200/day	July 9,	\$200
Ellen Lambert, geologist, One day @ \$175/day	July 9,	\$175

Helicopter:

Portion of Flight Invoice from Northern Mountain Hel. Prorated from total bill of \$997 \$337

Truck:

Cost of one pick-up truck rental plus gas One day @ \$108/day \$108

Expended Supplies:

To replace flagging, hip-chain filament, sample bags Total \$89

Motel:

One	night,	Smithers,	July	8,	1985			\$50
-----	--------	-----------	------	----	------	--	--	------

Meals:

One	day,	two	men,	Smithers,	July	8,	1985		Ş4	8
-----	------	-----	------	-----------	------	----	------	--	----	---

Office Expenses:

Phone calls, preparation of photocopies and maps, \$139

Report Preparation:

1.2 days @ \$300/day	\$360
Drafting and typing	\$103

TOTAL

\$1609

APPENDIX 1

VANGEOCHEM LAB LIMITED

 MAIN OFFICE

 1521 PEMBERTON AVE.

 NORTH VANCOUVER, B.C. V7P 2S3

 (604) 986-5211

 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 85-75-005	JOB NUMBER: 85187(A)	NR. TON RICHARDS	• •	PAGE 1 OF 1
SAMPLE #	Ag oz/st			
H 315R	3.69			
NET 12R	23.98			
NET 15R	73.76			
PS 45R	18.82			

DETECTION LIMIT .01 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001% ppm = parts per million (signed:

{ = less than

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	REPORT NUMBER: 85-75-00	JOB NUMBER: 85183	TOM RICHARDS	PAGE 1 OF 2
	SAMPLE #	Au	Au	
	ORMPLE #	oz/st	ppb	
-				
1ta	DE 1R		.5	
			(5	
. 1	(H 314R	.082	2800	
Skiloki	H 314R H 315R	. 034	1160	
	H 316R	.009	300	
1	NET 1R		(5	
	NET 2R	- 1997 - 1997 	5	
	NET 3R		(5	
c)	NET 4R		(5	
Netalzul	NET BR	.006	200	*
Noin				
	NET 1ØR		(5	
	NET 11R	, 009	300	×
	NET 12R		75	
•	NET 14R	.012	400	×
	NET 15R	atom atom	230	
			а. 	
	PS 35R		10	
. 1.5	PS 38R		130	
Skilokis	PS 39R		5	
	PS 43R	. 856	> 10000	~
	PS 45R	. 009	300	

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

. 005 1 ppm = 0.00017 5 ppm # parts per million

 $\langle = less than$

Suskwa River

VANGEOCHEM LAB LIMITED

i

MAIN OFFICE: 1521 PEMBERTON AVE. N.VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, HD= NOT DETECTED, -= NOT ANALYZED

COMPANY: ATTENTIO PROJECT:				ES				REPO JOB# INVO	: 851	35-7 183	75-0	031	ð		DAT	E CO		ED: E TED: O: T.	85/			C. H	I ARI V	EL	ANAL	YST_	w	Re	mes
																						PA	GE 1 OF	1					
SAMPLE NAME	A s PPN	AL X	AS PPN	AU PPM	BA PPM	BI PPM	CA Z	CD PPM	CO PPM	CR PPM	CU PPM	FE 1	K Z	MG X	MN Ppn	MO PPM	NA Z	NI PPM	P I	P9 PPN	PD PPN	PT PPN	SB PPN	SN Pph	SR PPN	U PPN	N PPN	ZN PPN	
DE-1R DE-2R H-314R H-315R H-316R	.2 4.0 7.8)100 .8	.30 .03	100 (49659) (25381)	ND ND ND ND ND	57 69 ND 17 4	3 3 11 41 ND	.55 .02 .01 .05 .08	.1 6.5 53.0 27.1 4.4	7 13 8 5 2	51 66 182 95 91	44 160 46 394 11	2.60 3.04 6.11 4.42 1.85	.10 .07 .09 .10 .09	.62 .04 .01 .04 .02	767 39 54 52 44	1 9 4 6 6	.09 .01 .01 .01	7 8 7 5 3	.05 .01 .01 .04 .06	7 255 145 756 21	ND ND ND ND ND	ND ND ND ND	ND 71 75 228 13	ND ND ND ND ND	16 7 3 19 2	ND ND ND ND	ND ND ND ND	49 1385 122 72 9	
NET-1R NET-2R NET-3R NET-4R NET-8R	.8 .5 .8 .8 43.0	.61 5.54	37 ND ND	ND ND ND NB ND	486 42 11 230 ND	ND ND ND 5 99	.61 .28 3.08 1.51 .03	.1 .1 .1 .6	5 7 88 13 7	175 65 52 68 130	26 58 1253 132 25887	2.17 2.31 10.23 3.06 4.54	.10 .08 .25 .21 .09	.37 .35 .08 .44 .01	370 191 200 318 30	2 4 5 4 5	.15 .12 .12 .20 .03	9 6 18 8 5	.04 .08 .11 .05 .01	8 10 8 59	ND ND ND ND	ND ND ND ND	3 4 ND ND 13	ND ND 2 4 ND	63 16 136 97 3	ND ND 12 6 ND	ND ND 15 6	54 56 15 36 49	
NET-10R NET-11R NET-12R NET-14R NET-15R	.8 70.0 >100 12.1 >100	.48 .09 .87	40 439 1149	ND ND ND ND ND	30 27 9 86 5	ND 1280 16 6 353	4.16 .11 .13 .06 .10	.1 1.2 179.8 2.9 143.1	29 12 3 22 22	75 84 124 49 95	778 1086 5287 843 22485	3.93 8.21 .48 6.19) 7.36	.17 .16 .04 .14 .12	.41 .07 .01 .26 .08	201 283 146 201 6549	9 5 34 47 9	.29 .01 .01 .03 .01	7 7 750) 304 17	.11 .05 .01 .03 .01	8 262 11407 170 2925	ND ND ND ND	ND ND ND ND ND	ND 14 3630 94 11592	ND 4 ND 5 4	351 11 8 8 7	12 ND ND ND	6 ND ND 25	17 259 11313 233 4046	
PS-35R PS-38R PS-39R PS-43R PS-45R	17.1 7.5 3.7 11.1 ()100		402 59 >102	ND ND ND 29 ND	91 19 3 14 ND	8 96 1089 16	.21 1.58 3.86 1.27 .04	1.5 .1 6.0 577.5 131.1	4 2 5916 84	68 89 21 13 42	1113 71 852 25 553	1.83 1.14 3.70 24.36 .72	.07 .11 .15 .43 .02	.50 .33 1.55 .13 .01	265 387 966 79 22	2 109 53 86 4	.13 .12 .01 .01 .01	353 467 9 109 6	.05 .03 .11 .01 .01	73 60 60 23 20761	ND ND ND ND	ND ND ND ND	155 33 30 135 39678	3 ND 2 ND ND	18 27 40 280 10	4 5 30 ND ND	3 ND ND ND	111 27 724 23 3711	
PS-46R PS-47R TR-24R JR-25R TR-27R	6.5 11.3 1.2 .8 1.7	.68 .18 .62 .55 .29	158 136 19	ND ND ND ND ND	5 25 46 86 75	5 ND ND 3 5	3.57 8.56 .18 1.18 2.47	.8 209.3 2.2 .5 .1	14 1 23 4 12	19 32 16 23 33	482 171 90 11 24	4.48 .73 6.35 1.40 2.57	.21 .14 .14 .11 ,15	.86 .05 .26 .41 .73	688 2372 279 508 2646	4 52 2 1 1	.56 .01 .03 .09 .11	80 4 54 5 19	.07 .01 .03 .05 .10	454 1060 99 24 30	ND ND ND ND ND	ND ND ND ND	268 108 41 12 15	ND ND ND ND ND	42 146 14 57 142	25 ND ND 7 11	ND ND ND ND	56 3788 82 169 80	
TR-29R TR-30R TR-50R	6.8 57.0 13.6	.17 .22 .18	365	ND ND ND	44 46 40	ND 5 22	.19 .48 .27	18.2 277.5 669.5	6 2 5	51 39 63	124 4226 620	2.52 2.55 2.08	.09 .09 .07	.03 .13 .03	136 1139 1042	2 5 12	.01 .01 5.08	405 11 308	.06 .06 .04	1957 15968 1804	ND ND ND	NÐ ND ND	16 132 16	ND 5 9	8 17 13	ND ND ND	ND 52 620	3208 36939 69447	

15

Frenc

S.11-5 ? x

· . . .

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N.VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML DF 3:1:3 HCL TO HND3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: TO ATTENTION: PROJECT:	TOM					a desta		REPOR 108#: 1NVOI	851	84		004	•**		DATI DATI COP		CEIVE MPLET NT TO	TED:			··	PAG	6E 1 OF		ANAL	YST_4	<u>a</u>	aus
SAMPLE NAME		a. AL a	AS PPN	- AU PPN	BA PPN	BI PPN	CA I	CD PPK	ED PPN	.CR PPN	CU PPN	FE	K	16 1	MN PPH	NO Ppn	NA Z	NI PPN	P	PB PPN	- PD PPN	PT PPN	SB PPN	SN PPH	SR PPH	U PPN	N PPK	ZN PPN
85 H314 85 H315 85 TR31C 85 TR32 85 TR33	5.8 4.8 .6 .2 .1	2.10 2.81 1.84 2.03 2.66	588 458 23 31 14	ND ND ND ND	108 93 281 173 177	5 4 ND ND ND	.80 1.31 1.28 .42 .58	5.0 3.5 .8 1.6	13 13 6 17 16	20 10 6 9 7	128 112 25 182 40	5.57 3.54 2.79 5.04 5.42	.19 .18 .15 .14 .16	.97 .93 .28 .61 .68	789 726 1244 1346 1570	3 8 2 6 1	.11 .13 .19 .09 .09	8 7 15 11	.13 .14 .15 .09	299 199 14 40 11	ND ND ND ND ND	ND ND ND ND	(15) 11) ND 4 ND	3 1 ND ND	119 195 116 45 61	13 21 9 3 5	ND ND ND ND ND	256 173 87 262 120
85 TR35 85 TR36 85 TR37 85 TR38 85 TR39	.4 .5 .8 .5 1.1	1.56 1.39 1.79 1.18	65 90 124 57 154	ND ND ND ND ND	288 121 157 135 160	ND ND ND 3 ND	.48 .26 .54 .26 .52	7.0 5.9 5.9 7.9 9.3	24 17 21 16 21	8 9 9	36 75 81 103 104	4.94 4.11 4.79 3.58 5.34	.13 .13 .16 .12 .15	.39 .49 .46 .45 .45	7870 2428 2915 2800 3339	4 5 5 3 4	.10 .11 .17 .11 .15	8 9 9 10	.15 .09 .14 .09 .16	81 86 121 115 209	ND ND ND ND ND	ND ND ND ND	3 7 6 5 5	ND ND ND ND	50 24 58 24 53	ND ND 7 3	ND ND ND ND	390 551 587 541 762
85 TR20 SILT 85 TR21 85 TR22 85 TR23 85 TR26	.2 .5 .1 1.2 .2	2.35 2.34 2.47 1.35 1.84	29 17 36 77 41	ND ND ND ND	194 237 245 154 157	ND ND ND ND	.44 .76 .80 .27 .26	.8 .3 .3 1.7 2.7	18 7 15 24 16	11 9 17 10 10	37 22 34 458 146	5.90 3.40 4.83 7.28 4.22	.16 .12 .15 .15 .11	.74 .37 .66 .41 .56	1588 956 1 7 86 1467 952	1 2 5 21 8	.08 .11 .10 .08 .08	18 7 15 12 10	.09 .14 .12 .12 .08	19 14 15 118 66	ND ND ND ND ND	ND ND ND ND ND	5 ND ND 16 6	ND ND ND ND	41 128 87 44 31	3 6 7 ND ND	ND ND ND 3	140 118 127 357 244
85 TR28 85 NET1 85 NET2 85 NET3 85 NET3	.2 .4 .1 .3 1.2	1.30 3.05 3.84 2.56 2.97	51 182 68 322 63	ND ND ND ND	161 176 176 213 156	ND ND ND ND	.23 .41 .36 .57 .62	6.3 5.8 2.7 7.5 6.3	22 18 22 23 13	7 12 13 12 13	71 66 46 41 97	4.07 5.09 6.33 7.35 3.91	.10 .14 .15 .17 .14	.38 .75 .83 .71 .71	3554 1825 3665 7818 1084	4 9 67 7 12	.08 .09 .08 .10 .12	11 12 11 15 9	.07 .07 .11 .10 .11	48 78 33 33 54	ND ND ND ND	ND ND ND ND	4 13 ND 6 7	ND ND 1 2 ND	36 71 53 115 99	ND ND ND ND	ND ND 7 ND ND	338 351 185 206 383
85 NET5	1.2	3.15	73	ND	144	ND	.63	9.8	19	16	135	4,78	.15	.85	1670	15	.11	25	.11	73	ND	ND	8	1	98	ND	7	624

VEDENDIX S

STATEMENT OF QUALIFICATIONS

I, Colin Harivel, of business address Box 233, Smithers,B.C. do certify that;

1. I am a geologist and have practised my profession in the mining exploration industry in Australia, Canada and the United States of America.

2. I am a graduate in geology from the University of British Columbia with the degree of Bachelor of Science (1972).

3. I am a Fellow of the Geological Association of Canada.

4. I have, in the course of my professional work in Canada, explored for deposits of the type that may exist on the property described.

5. This report was prepared from notes taken by me and by other competent geologists and prospectors who have worked on the claims described in this report.

Signed:

Gal. Harivel, BSc, FGAC.

STATEMENT OF QUALIFICATIONS

We, the undersigned, do hereby state that;

1. This prospecting report was prepared from notes made by us during the prospecting of the claims described in this report.

2. We are qualified, experienced prospectors and have worked in west central British Columbia in the mineral exploration industry for at least seven years.

3. This report accurately reflects our observations with respect to the claims which are the subject of this report.

Tom Richards, PhD, geologist, prospector

Pat Suratt, prospector

Bruce Holden, prospector Bruce Adden.....

.

Colin Harivel, BSc, geologist, prospector

Prospector's Resume

This prospecting report was prepared from nobes made by me during the prospecting of the claims described in this report.

I am a qualified experienced prospector and have worked in central British Columbia in the mineral industry for at least seven years.

This report accurately reflects our observations with respect to the claims which is the subject of this report.

In 1975 and 1976, contract work for Noranda Exploration.

In 1977, geophysical exploration with Canadian Superior Ltd.

In 1978, property work with Granby Exploration Ltd.

In 1980, Property work with Tom Richards, geologist.

From 1982 to 1985, regional prospecting with Tom Richards

In 1981, I took a course from Dr. Allan Gottesfeld through the Northwest Community Collage.

In 1982, I took and recieved a certificate from the British Columbia Department of Mines, Prospecting Course, Terrace, B.C.

In 1983, I took a prospecting course from Dr. T.A. Richards, from the Northwest Community Collage.

Bruce Holden

Bruce Holder