FINAL REPORT ON GEOPHYSICAL SURVEY AND DRILLING ON THE SILVER PROPERTY (SILVER 1,4,5,6,7 and 8) OMINECA MINING DIVISION NEAR BURNS LAKE, B.C. 9392-K-6/W

LOCATION:

The central part of the claim is located at coordinates 54°, 26 minutes N latitude, 125° 25 minutes W longitude, approximately 60 km northwest of Burns Lake, B.C.

WORK PERIOD

October 1, to December 31, 1984

GEOLOGICAL BRANCH ASSESSMENT REPORT

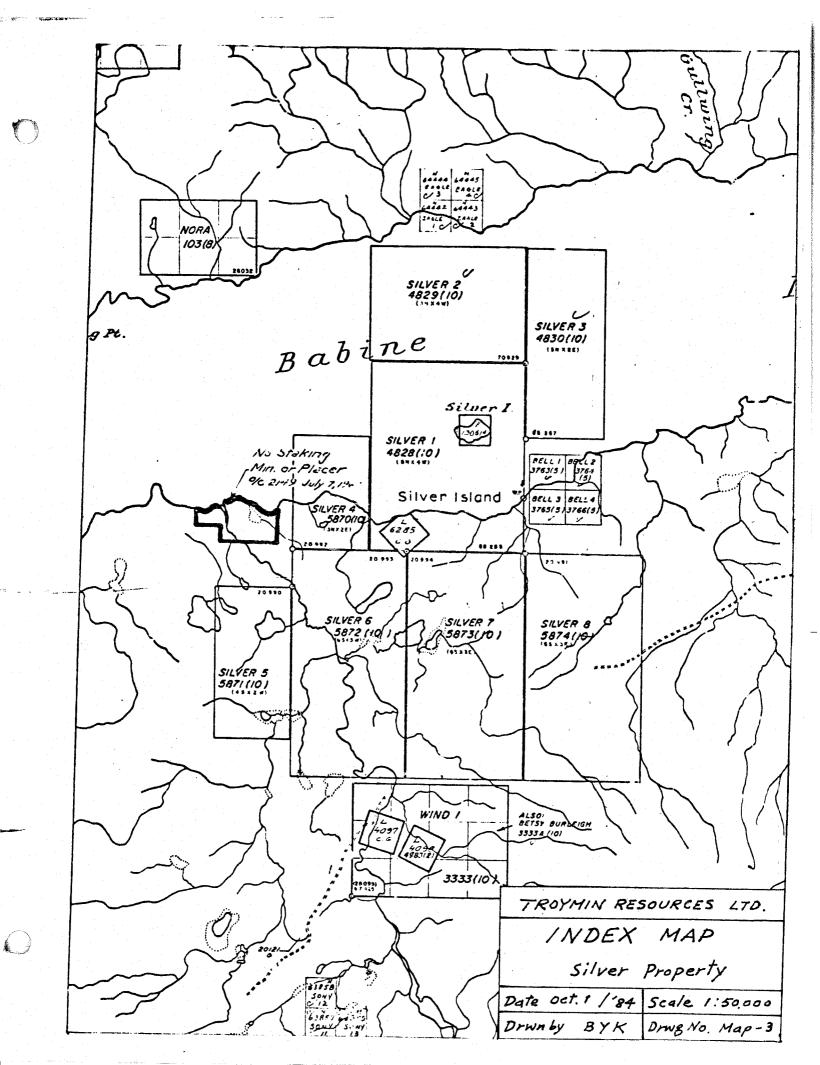
January 10, 1985

B. Y. Kim Geologist New Westminster, B.C.

6

TABLE OF CONTENTS

		PAGE
I	SUMMARY	1
II	INTRODUCTION	
	i) Location, Access and Physiographyii) Property Statusiii) History of Work Done	1 2 2
III	GEOLOGY	3
	i) Lithologyii) Structure and Metamorphismiii) Mineralization	3 4 5
IV	GEOPHYSICS	6
V	DRILLING	6
VI	CONCLUSION	6
VII	REFERENCE	8
ILLUSTRA	TIONS	
	Location Map	Facing Page 1
	Index Map	Facing Page l
	Plan Showing Geophysical Anomalies & Drill Sites	MAP-l In Pocket


APPENDICES

Geophysical Sections

Statement of Expenditure	I
Certificate of Writers	II
Drill Hole Sections	III
Drill Logs	IV

MAP-2 In Pocket

SUMMARY

- i) The 1984 prospecting program on the Silver claim group consisted of a geophysical survey (VLF EM survey) and diamond drilling (6 holes 3,458 ft. in total).
- ii) The geophysical survey revealed numerous northeast trending anomalies.
- iii) Six of the highest grade anomalies were drilled, all at a -50° angle and to an average depth of 580 ft., with no significant mineralization being encountered.
- iv) One of the most interesting anomalies, under the lake near Silver Island, could not be drilled because there was no ice.

II INTRODUCTION

The Silver claim group, located approximately 60 km northeast of Burns Lake, B.C. consists of six original M.G.S. claims (88 units in total) which were staked in October 1983.

The 1984 program conducted on the Silver claims was initiated as a result of a reconnaissance EM survey carried out in March 1984. The survey located a number of significant anomalies in the drift-covered area. A detailed EM survey was, therefore, carried out and was followed by a drilling program during December of 1984.

i) Location, Access and Physiography

The Silver claim group is situated at coordinates 50°26' N latitude, 125°25' W longitude (N.T.S. 92K/6W) in Omineca Mining Division, B.C. The claims are located around Silver Island, a small island in the southern part of Babine Lake, and immediately south of the island on the mainland. (Map 3)

Ι

The area is easily accessible by any motor vehicle from Burns Lake. The driving distance is approximately 60 km on gravel road which is well maintained by Federal Fisheries Pinkut Creek Hatchery.

The claims are centred on the south shore of Babine Lake in an area of gentle relief with many small lakes and swamps. Vegetation consists mainly of immature pine, spruce and aspen with moderate underbrush.

ii) Property Status

The original property consists of six M.G.S. claims (88 units in total) that were staked and recorded in October 1983. (Map-3).

Claim Name	No. of Units	Record No.	Record Date
Silver l	20	4828 (10)	October 1983
Silver 4	6	5870 (10)	October 1983
Silver 5	8	5871 (10)	October 1983
Silver 6	18	5872 (10)	October 1983
Silver 7	18	5873 (10)	October 1983
Silver 8	18	5874 (10)	October 1983

iii) History of Work Done

Although the area had been staked many times, there is no record of prospecting activities. A few small trenches have been noticed near the southern shore of the Babine Lake.

The objective of Troymin Resources Ltd.'s 1984 program was to define the nature of widespread geophysical anomalies detected by the government airborne magnetometer survey and a subsequent reconnaissance EM survey.

During Oct. 1 - Dec. 31, 1984, Troymin Resources Ltd. conducted an exploration program which consisted of:

Ground EM survey - a detailed survey of the central part of the claim block, approximately
 2.5 x 3.5 Km.

- 3 -

ii) Diamond drilling of 3.458 ft. (1054^M) in six holes.

III GEOLOGY

Most of the claim area is underlain by regionally metamorphosed volcanic rocks and minor clastic sediments belonging to Late Paleozoic Cache Creek group and minor intrusive rock on the southeastern corner of the claim area. The intrusive rock belongs to Topley intrusions probably of pre-Jurassic and post-Permian age (J.E. Armstrong 1965).

Since the central area of claim group is extensively covered by drift, no geological study could have been done. More than 3,000 ft. of drill core from the present work furnished the valuable geological information which is described below.

The metamorphosed rock consists largely of greenschist originating from an andesitic volcanic unit and composite gneiss with variable degrees of metamorphism. The degree of metamorphism is spatially associated with the intimate intrusion of various igneous bodies. This contact type metamorphism is considered to be a succeeding episode of the regional greenschist phase.

1) Lithology

The following lithological units are established from distinctive rock types seen in the drill core.

i) Greenschist - Schist (Paraschist)

In handspecimen from the drill core the greenschist is gray to dark greenish gray, mostly fine grained, foliated andesitic rock. Texture, grain size and degree of foliation are all quite variable. In extreme the rock appears to be just massive andesite but usually well foliated chloritic greenschist with local concentration of epidote.

ii) Diorite

The southeastern corner of the claim block has been mapped as diorite (J.E. Armstrong 1965). The diorite drill core is predominantly coarse grained, idiomorphic to hypidiomorphic textures. The principal minerals are hornblende (\pm 40%) and plagioclase (\pm 50%). The zonal change of the diorite is so severe and abrupt that its appearance is locally pegmatitic. This unit appears to be post-metamorphism since no obvious foliation has been developed.

iii) Orthogneiss (Granodiorite-Diorite dykes and sills)

Felsic igneous rocks with gneissic textures ranging from a biotite gneiss to a weakly foliated leucocratic dyke are quite common throughout the drill core. These orthogneisses are so intimately and frequently intercalated in the gradational contact with greenschist unit that a more detailed classification is difficult.

iv) Basic Dyke

A late stage basic dyke occurs in DDH 84-5. It is a fine grained dark gray lamprophyritic dyke with porphyritic texture. Fine, sparse hornblende phenocrysts are scattered in fine to aphanetic dark gray groundmass. This occurrence might be related to the above diorite intrusion, possibly as a small off-shoot of the body.

ii) Structure and Metamorphism

The most prominent topographical lineation trends northeasterly to easterly. Most of the geophysical (electromagnetic) anomalies coincide with these trends. Previous regional study on glaciation (J.E. Armstrong) indicates the trend is the same for glacial movement. Bedrock exposures are entirely lacking for local structural study. A prominent fault structure has been disclosed by drilling (DDH 84-4). The hole has penetrated a major broken and gouged zone with a drilling width of 120 M. This wide fault zone contains abundant fragments of various size which was reconsolidated with multiplestage quartz-calcite veining. It is not clear whether this structural feature also trends northeasterly coinciding with the surface lineation.

Metamorphism is shown by a variable assemblage of metamorphic minerals and development of foliation. Principally there are two lithological units of metamorphic rock.

i)	Greenschist	-	Schist	 Amphibolit	e

ii) Gneiss (orthogneiss)

These two different types are mainly predetermined by the type of original rocks.

Regional metamorphism, prevailing over all types of rock in the drill core except diorite and basic dyke, is generally weak and greenschist phase. In addition to this regional metamorphism, some greenschists exhibit contact type metamorphism in their relation with the diorite bodies of the Topley intrusion. The contact metamorphism which is observed in DDH 84-1 and 84-2 is locally demonstrated with strong clusters of epidote and minor magnetite.

iii) Mineralization

Pyrite is the only common metallic mineral in the drill core. Local concentration of pyrite associated with epidote-magnetite in contact metamorphic environment were noticed and sampled for assay, but results were not encouraging.

A few specks of chalcopyrite, tetrahedrite and molybdenite were recognized in the drill core.

- 5 -

IV GEOPHYSICS

Approximately 90 line Km were surveyed using a Phoenix VLF(2) EM. Most of the survey stations were established on chain-saw cut line and readings were taken every 50 M for initial survey. More detailed surveys were carried out for the selection of drill targets. (Map - 1 and 2) Geophysical work is described in a separate report by James M.L. Brown.

V. DRILLING

The six most highest grade anomalies, based on the EM survey, were drilled with -50° angle holes down to depths of 440 to 600 ft. (Map-3, Figures 2-8) The drilling contract was awarded to Coates Enterprise Ltd. which company completed 3,458 ft. of drilling during the period of Dec. 4 - Dec. 29, 1984.

The work procedure was as follows:

Hole No.	Total I	Depth	Date	Sta	rted	Date	Com	oleted
DDH 84-1		.(168.86 ^M)	Dec.	4,	1984	Dec.	7,	1984
2		(175.57 ^M)	Dec.	7,	1984	Dec.	10,	1984
4		(169.47 ^M)	Dec.	10,	1984	Dec.	13,	1984
.	601	(183.19 ^M)	Dec.	14,	1984	Dec.	19,	1984
		(178.61 ^M)	Dec.	20,	1984	Dec.	24,	1984
5	585	(178.00 ^M)	Dec.	24,	1984	Dec.	29,	1984

The widespread minor pyrite in regionally metamorphosed rock along with local magnetite-pyrite in contact metamorphic environment is considered the cause of anomalies. The prominent fault zone disclosed in DDH 84-4 may also be the source of anomalies. (Map 2, Appendix - Drilling log)

VI CONCLUSION

 The 1984 program on the Silver property delineated a large number of geophysical (EM) anomalies trending northeast.

- ii) Drilling at six selected sites verified the regional and contact metamorphism but gained no encouragement in metallic mineralization.
- iii) The geophysical anomalies were not completely tested. Various types of anomalies with higher intensity have been drilled with negative results, but there are at least 9 other significant anomalies left to drill as well as the anomaly extending out from Silver Island.

1

VII <u>REFERENCE</u>

C

C

1

(1) Armstrong, J.E. (1965)
Fort St. John Map-Area G.S.C. Memoir 252

STATEMENT OF EXPENDITURES

(Project on Silver claims - 1984)

Drilling			\$ 66,552.11
Transportation and Truck	Rental		3,500.00
Geological Supervision			4,500.00
Room and Board			1,800.00
Assays			970.00

TOTAL

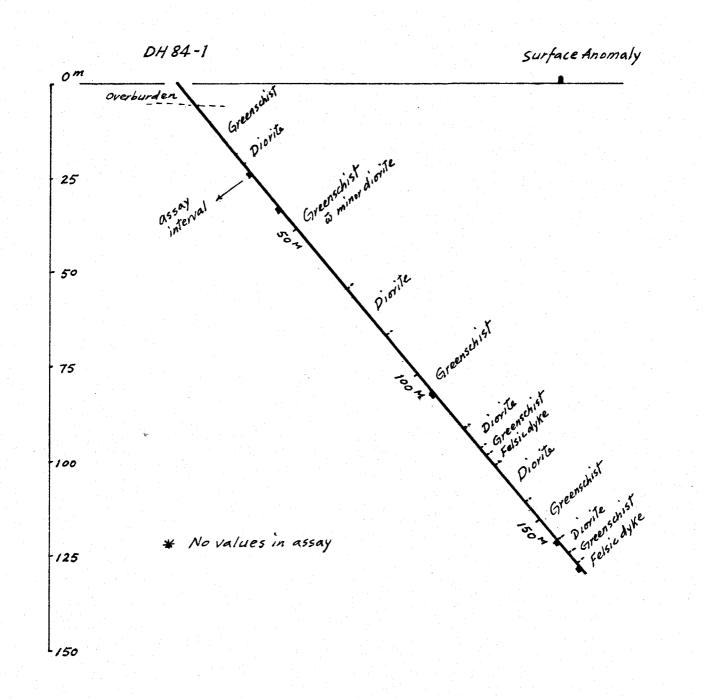
\$ 77,322.11

I certify the above expenditure to be a true and accurate account of expenses incurred.

Dated on October 27, 1984

Boo Joung Kim Boo Young Kim, Geologist

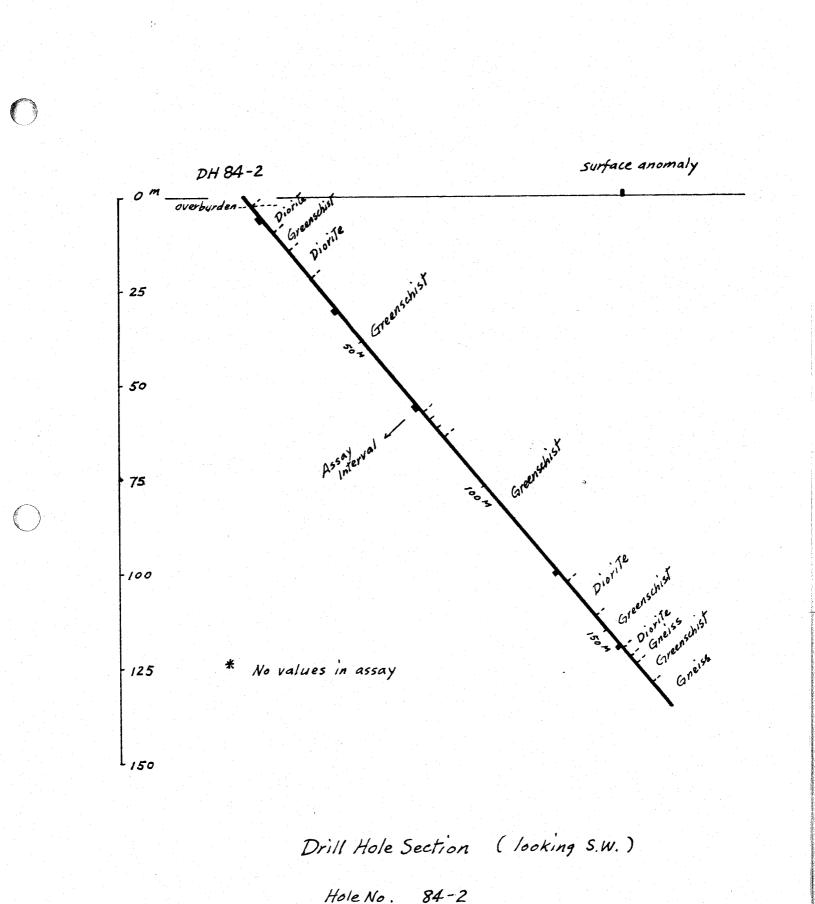
CERTIFICATE

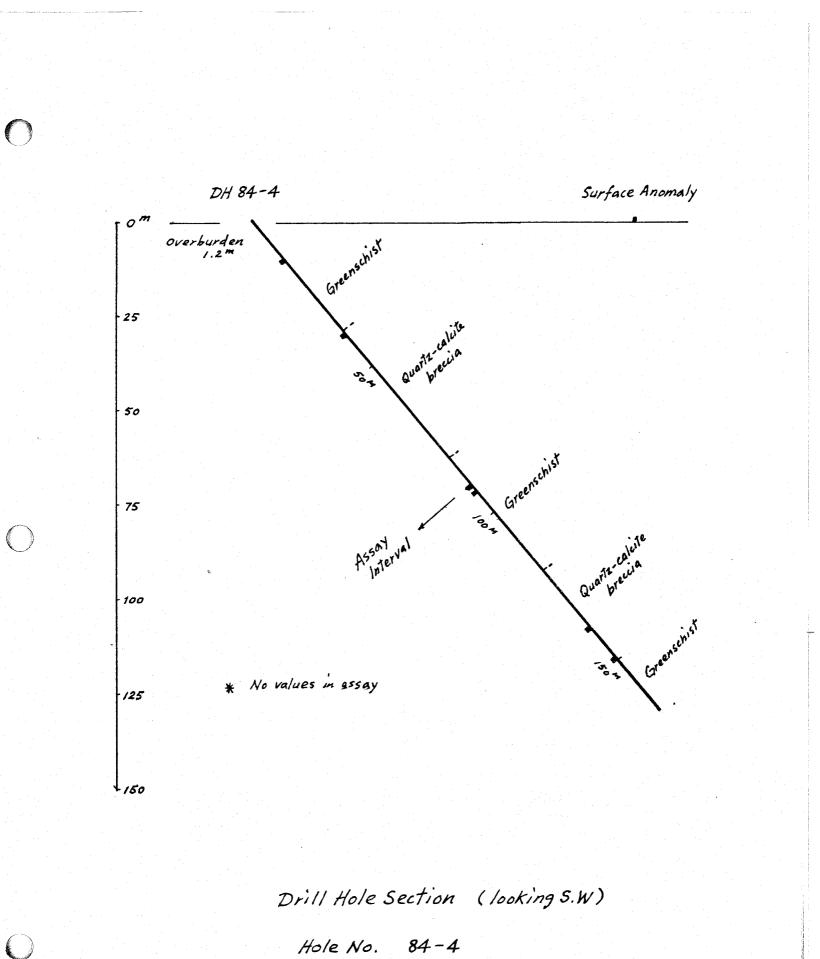

I, Boo Young Kim, of the City of New Westminster, in the Province of British Columbia, certifies as follows:

- That I am a geologist, residing at 222 Ash Street, New Westminster, B.C.
- 2. That I have practised my profession continuously since graduating in 1964 with B.Sc. in Geology from Seoul National University in Seoul, Korea.
- 3. That I have continuously engaged in mining exploration work in Canada, U.S.A. and Spain-Portugal, for the past nineteen years.
- That I have no interest in the property herein described.

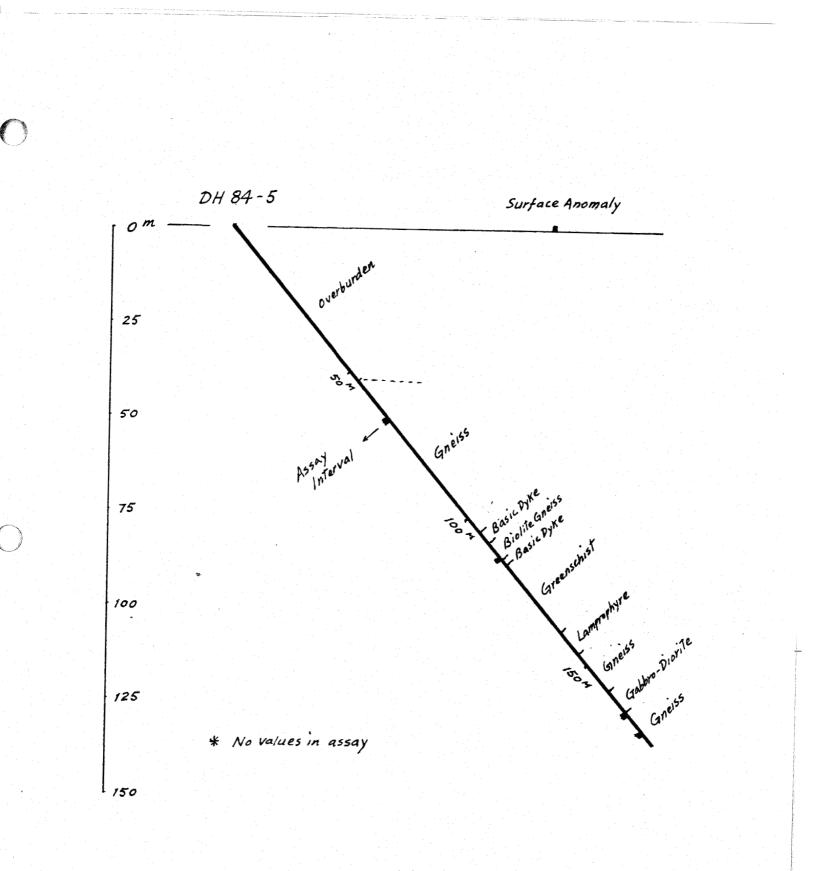
DATED at New Westminster, British Columbia, this 28^{th} day of January 1985.

Boo Young Kim

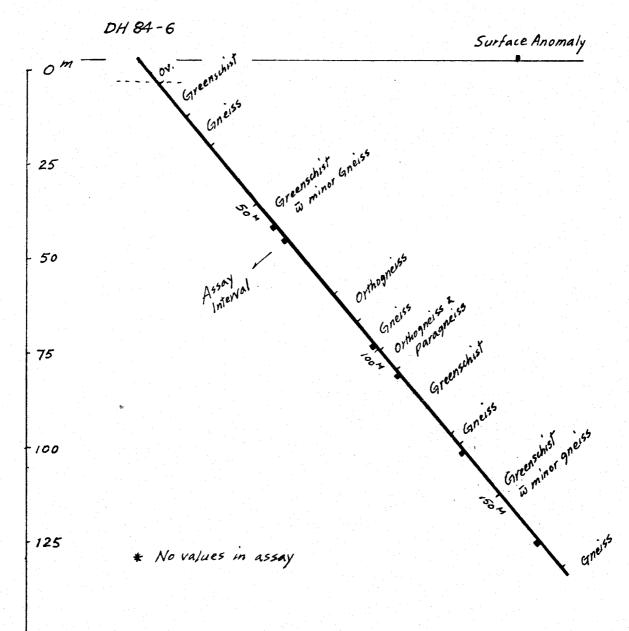

BYK/lmn


Drill Hole Section (looking S.W)

Hole No. 84-1 Direction N45°W Angle -50° Depth 168.86 M


()

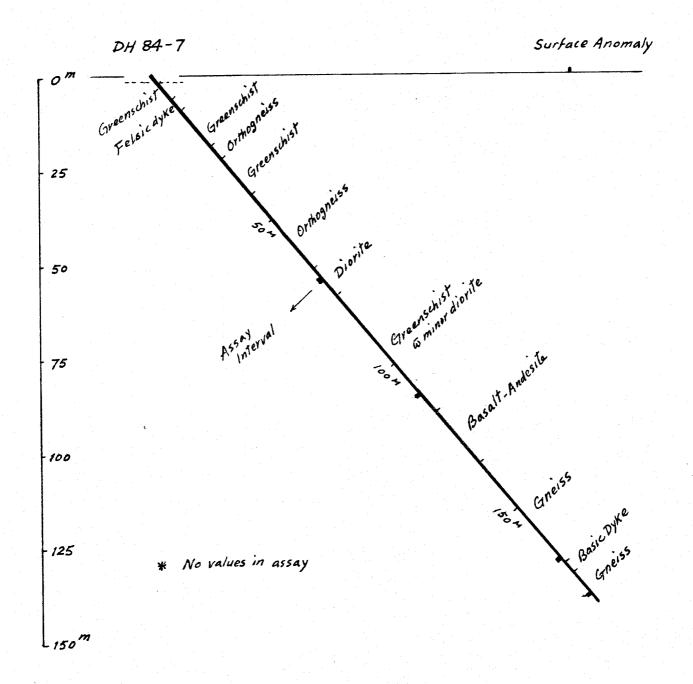
Hole No. 84-2 Direction N 45°W Angle -50° Depth 175,57 M



Hole No. 84-4 Direction N45°W Angle -50° Depth 169.47^M

Drill Hole Section (looking S.W)

Hole No. 84-5 Direction N45°W Angle -50° Depth 178.00^M



L 150

 \bigcirc

Drill Hole Section (looking S.W.)

Hole No. 84-6 Direction N45°W Angle -50° Depth 178.61^M

Drill Hole Section (looking S.W.)

Hole No. 84-7 Direction N45°W Angle -50° Depth 183,19^M

LOCATION: BURNS Lake B.C.

MINING DIVISION Smineca

CLAIM Silver

HOLE NO: $\beta 4 - 1$ ANGLE: -50° DIRECTION: N 45° W DEPTH: 168.86 M GRID NO: CO-ORDINATES: 1460 S + 2380 E DATE STARTED: Dec. 4 1984 FINISHED: Dec. 7 1984 LOGGED BY: B. Y. Kind DRILLED BY: D.W. Coates Enterprises Lod.

DEPTH			
FROM	то	DESCRIPTION OF CORE	
D	9.5	Dverburden	
9.5	25,3	Greenschist	
		Gray to dank greenish gray, fine grained,	
		Variably foliated andesitic greenschist with	
		abundant chlorite, Minor epidate patches and	
		fractures. Variable in texture, grain size	
		and frequent alternating change. Besides	
		pervasive chlorite-epidote, many types of	
		stockwork-like veinlets & stringers with	
		minor alteration envelope (epidote - chlorite -	
	4	calcité - quantz) purite content is minor.	
		Oxidation is only restricted on fracture faces	
		with usual hematite staining.	
		9.45-14.78 Andesitic greenschist with frequ	
		nt short intervals of coarse to fine grained,	
		gray to dark greenish gray diorite, Usual	
		criss-crossing veinlets of 45 to core axis	
		14.78 - 15,12 Quartz vein, milky white, barren	
		15,12 - 18.59 AndesiTic greenschist	
		18,57-25.30 Brokenzone, reconsolidated with	

	DIAMOND DRILL LOG	
CLAIM	LOCATION	
MINING DIVISION		
HOLE NO:	ANGLE: DIRECTION:	
DEPTH	GRID No: CO-ORDINATES:	
DATE STARTED:	FINISHED: LOGGED BY:	
DRILLED BY:		
DEPTH	DESCRIPTION OF CORE	
FROM TO		
25.30 28.04	quartz-calcite veinlets (minor breccia texture) Slip faces are usual, Rare sulphide (pyrite) Diorite Coarse idiomorphic with abundant large formblend (giving breccia appearance) pequatitie due to sharp zonal change with large hornblende and quartz-feldspar.	
28,04 31.24	Greenschist	
	Same as above greenschist, Broken & weakly brecciated with late stage quarty veining Local heavy sulphide (pyrite) fingers concorde	

70 schistocity
31,24 39.32 Greenschist & Diorite
Near-contact alternating zone of the above two
types of rock . Local massive pyritic fingers .
Occasional guartz-felsitic dykes & veins
Minor breccia texture due to large crystals in
diorite with criss-crossing guartz vein .
39.32 41.91 Greenschist

Greenschist Similar to above andesitic greenschist . Locally

CLAIM	LOCATI	ION	
MINING DIVISION			
HOLE NO:	ANGLE:	DIRECTION	
DEPTH	GRID No:	CO-ORDINATES:	
DATE STARTED:	FINISHED:	LOGGED BY:	
DRILLED BY:			

DEPTH	DESCRIPTION OF CORE
FROM TO	
	Well-foliated (± 60° to core axis). Fractures.
	of calcite-chlorite cross-cutting The foliation,
41.91 61.57	τ
	Massive core with abundant epidole-chlorite, loca
	brecciated (Tectonic breccia), Occasional heavy ma;
	netite blebs (48.00 M of hole depth) associated is
	epidote. Contact metamorphic environment is
	prevailing
	Usual large enhedral homblende in diovitic for
	Minor massive pyritic fingers along with weak
	pervasive dissemination
	(sampled for assay 42,37-43.59)
61.57 70.26	Greenschist
	Same as the above greenschist.
	Well-foliated, 20-30° to core axis. Frequent
	mjected ann of disritie rock. Abundant hair
	line to 1 cm epidote fractures.
70,26 87,48	Dioritz
	Similar to above diovite, abundant epidote on
	fractures.

C

 \mathcal{O}

 \bigcirc

CLAIM		LOCATION:	
MINING DIVISION			
HOLE NO:	ANGLE	DIRECTION:	
DEPTH	GRID No:	CO-ORDINATES:	
DATE STARTED:	FINISHED:	LOGGED BY:	
DRILLED BY:			

DEPTH			
FROM TO	DESCRIPTION OF CORE		
	Very coarse to pegmatitic section at 71.32, 77.12 - 78.33. Near - vertical (to core axis) vueggy guartz at 77.		
	Near-vertical calcite fracture and drusy calcile		
	with this envelope of hematile at 79.55-79.8		
	Finer grained 79.86 - 87.48, Poorly defined		
	zonal change.		
87,48 119,74	Greenschist		
	Fine grained to aphanetic, andesitic, Locally		
	broken due to abundant slip faces of calcite - chlorite-hematite, Pyrite content is minor excep		
	fair amount (less Than 1%) of large cubes 114-119.94 M. Foliation weak, ± 60° To co.		
	axis, Occasional quarts-aplite vein		
	Black apphanetic dense basalt-andesite 32.92.		
	33.71 M		
	Near-horizontal (to core axis) calcite-epidote		
	with associated pyrite stringers 106.38 - 107.90 (sampled for assay)		

			DIAMOND	DRILL LOG	
CLAIM MINING DIVISION HOLE NO:			LOCATIO	DN:	
		SION			
			ANGLE:	DIRECTION:	
	DEPTH		GRID No:	CO-ORDINATES:	
	DATE STARTE	D:	FINISHED:	LOGGED BY:	
	DRILLED BY:				
	DE	PTH		ESCRIPTION OF CORE	
	FROM	то			
	119.94	125.58	Diorite		
			Same as above	coarse diovite,	
			Consisting most	ty of hornblende	(weakly chloritized)
			,	I with strong frac	
				•	ous contact (intru-
			•		liorite at 125,58 M
					te content is minor
				ng at 399,5 M.	a content 10 million
	125.58	127,71	Greenschist		
			Fine grained	andesitie, stron	eg epidote - chlorite

with minor late-stage calcite fractures. Parite content is minor occurring as dissemination and on fractures with epidote.

127.71 131.37

Felsic dyke Light pinkish white, mostly of feldspar (minou K-spar) and minor quantz. Usual calcite fractures and minor pyrite on fractures. Very minor magnetite.

131,37 135,8

Greenschist Similar to above greenschist at 125.58 - 127.71 M.

0

CLAIM		LOCAT	ION:	
	MINING DIVISION			
	HOLE No:	ANGLE	DIRECTION.	
	DEPTH	GRID No:	CO-ORDINATES:	
	DATE STARTED:	FINISHED:	LOGGED BY:	
	DRILLED BY:			

	DE	EPTH	
F	ROM	то	DESCRIPTION OF CORE
			Stronger (than ever) magnetile fracture with epidole
			(contact metamorphism) Pyrite content is very
			minor
,			
		,	
13	35.8	136.7	Felsic dyne
			Same as above dyke at 127.71-131.37 M
2			
3 1 12	367	144.0	Diorite
	.,,		
			Similar to above diorite;
			Textures very variable, strong epidote - chlorite
			throughout.
			Gradational contact (assimilated) to darker green
			chist. Very minor pyrile.
			A speck of molyldenite in coarse grained (regmat
			lic) zone at 458 ft (139.6 M)
14	4.0	157.2	Greenschist
			Similar to above greenschust.
			145.70 - 14.7.52: broken and weakly gauged
			(core recovery ± 70 %)
			Poorly defined antitic date way 1195 - 150 M
	1		Poorly defined aplitic date vein 149.5 - 150 M

	DIAMOND DRILL LOG
CLAIM	LOCATION
MINING DIVISION	
HOLE NO.	ANGLE: DIRECTION:
DEPTH	GRID No: CO-ORDINATES:
DATE STARTED:	FINISHED: LOGGED BY:
DRILLED BY:	
DEPTH FROM TO	DESCRIPTION OF CORE
157,2 162,2	Diorite
	Hornblende-rich, more uniformly granular than
	above occurrences. Usual epidote fractures mostly
	70-90 to core axis.
	Short broken zone with fault gouge at 161.1 M
162.2 166.0	Greenschist
	Similar to above schist (greenschist), Slightly
	danker with strong chlorite-epidote, very minor
	pyrite.
166.0 168.86	Dyke (Gneissic granodiorite - diorite)
	Gray white, fine to medium grained with gneissic
	textures, Occasional dark-colored inclusions
	of greenschist.
	Obviously different from the above homblende-
	rich diorite
	Weak fracture-controlled alteration where more
	broken
	Steeply-dipping (1 20° to core axis) quartz-calcite
	Veining is usual. Prite content is minor and
	insignificant.

0

0

CLAIM Silver LOCATION: Bains Lake, B.C. MINING DIVISION Ominieca. HOLE NO: 84-2 ANGLE: -50° DIRECTION: N45°W DEPTH: 175,57^M GRID NO: CO-ORDINATES: 1670 S + 1970 E DATE STARTED: Dec. 7 1984 FINISHED: Dec. 10 1984 LOGGED BY: B.Y. KIMU DRILLED BY: D.W. COATES EATES prises Ltd.

DEPTH		DESCRIPTION OF CORE
FROM	то	
0	3.10	Overburden
3.10 M	5.60	Diorite
		gray to dank greenish gray, granular homblende
		diorite, Variable in grain size and texture.
		Abundant enhedral to subhedral hornblende up to
		3 cm long. Poorly defined assimilated contact
		with frequent dyrie swarm and occasional
	-	inclusions. Abundant magnetite disseminations
		and local heavy magnetite Lands associated with
		epidote fractures, Pyrite content is minor and
		insignificant.
		Oxidation is minor, restricted on fracture faces
		down to 19.50 m
		A near-vertical (to core axis) quarty-calcite vein
		makes The sharp contact with underlying greenschi-
		st.
5.60	10.30	Greenschist
		Greenish gray, foliated, andesitic with variable.
		Texture. The variation is mainly due to intrusion
		of dioritie dykie. Strong chlorite - epidote throug-
		hout, Thin carbonate-hematite fractures.

	DIAMOND DRILL LOG
CLAIM	LOCATION
MINING DIVISION	
HOLE NO	ANGLE: DIRECTION:
DEPTH	GRID No: CO-ORDINATES:
DATE STARTED:	FINISHED: LOGGED BY:
DRILLED BY:	
DEPTH	DESCRIPTION OF CORE
	A leb of tetrahedrite at 7.3 m (sampled for assay)
	associated with felsic dyke.
	Broken core with frequent oxidized slip faces
	with carbonate coating.
	Felsic dyke swarm at 7.70-8.40, 8.8 & 10,3 M
	1 21210 ryne swarm at 1.10-8.40, 010 010,0
10,30 13.60	Diorite
	Same as above diorite (3.1-5.6 M). Frequent
	flat-lying (to core axis) epidote fractures with
	magnetite envelope, Minor pyrite as dissemination
	and on fracture faces,
13.60 19.50	Greenschist
	Well-foliated, dark greenish gray to light gray,
	Abundant carbonate fractures cross-cutting the

banded texture black-green slipped fractures due to crushed carbonate-chlorite with minor smeared sulphide (pyrite)

0 19.50 29.30 Diorite

C

Same as above divite, locally very coarse idiomorphic hornblende gives a treccia appearance.

	DIAMOND DRILL LOG
CLAIM	LOCATION
MINING DIVISION	
HOLE NO:	ANGLE: DIRECTION:
DEPTH	GRID No: CO-ORDINATES:
DATE STARTED:	FINISHED: LOGGED BY:
DRILLED BY:	
DEPTH FROM TO	DESCRIPTION OF CORE
	A few specks of tetrahedrite on felsic vein around
	The lower contact. Only insignificant pyrite in
	minor amount.
27.30 74.7	o Greenschist
	Light gray to gray, mostly foliated, variable from
	massive and esitic to well-banded gneissic, Emerssic
	section may be originated from sedimentary unit
	Weakly broken due to dark-colored slip faces,
	Criss-crossing quartz and for calcite veinlets
	are usual.
	Very minor disseminated pyrite with only occasional
	pyrite-rich bandings (sampled 38.58 -
	40.08 4)
	Fine grained epidote-rich sharp greenish gray andesite
	greenschist (40,10 - 50,50 M)
	Well-developed gneissocity from 50.5 M, Usual alter-

P

nating core between gray queissic type and chlorite-epidote-rich massive greenish type.

A near-vertical calcile vein (3^{cm} thick) with horsetails carring dank crushed and slipped pyrite envelope at 73^m.

(

 $\left(\right)$

CLAIM	LOCATION	
MINING DIVISION		
HOLE NO:	ANGLE: DIRECTION:	
DEPTH	GRID NO: CO-ORDINATES	5:
DATE STARTED:	FINISHED:	LOGGED BY:
DRILLED BY		
DEPTH FROM TO	DESCRIPTION C	OF CORE
74.7 770	Folsic duke (aulita)	

77.0 79.6 Greenschist Similar to above, mixture of the above two Zypes andesitie and gneissic, Weakly foliated, gray To dark greenish gray. Strong epidote and minor disseminated pyrite. 79.6 83.5 Dirrite Not so coarse grained as above diorites. Broken at 82.30 M with minor calcite breecia, Pyrite is very minor.

Slightly pinkish white with very minor crushed pyrite

on steeply-dipping (to core axis) slipped frac-

83.5 133.7 Greenschist Light gray to gray, foliated with frequent quartsaplitic vein or dyke, locally broken and altered to greenish tinted clay Insignificant & rare pyrite. 10 CM black chert intercalated at 86.72. Quartz - aplitic veins at 85.04 - 86.26, 88.09 - 88.39 90.22 - 90.83 , 103.63 and many small occurrences .

Ċ

0

C

CLAIM	LOCAT	ON:	
MINING DIVISION			
HOLE No:	ANGLE:	DIRECTION:	
DEPTH	GRID No:	CO-ORDINATES:	
DATE STARTED:	FINISHED	LOGGED BY:	
DRILLED BY:			

DEPTH	
FROM TO	DESCRIPTION OF CORE
	Sections which are originated from sedimentary unit show less pyrite than andesitic schist or
	gnéissie diorite.
	Stronger epidote 96.01-98.76, Granilie dyke Swarm around 106 & 107.5 M
	3 cm gouge at 108.2 M, Soft (light green in
	color) chlorite-carbonate with flat-lying banded
	texture.
	Sharp foot-wall contact with andesite schist,
	contact 80 to core axis.
	Fine grained apple-green greenschist 110.03 -
	116.43, more pyrite Than usual Granilie
	The above contacts
	Below 116.43 dark gray greensehist predominant
	Variable in texture, content of epidote à calcite
	Veining. Minor desseminated pyrde with rare
	color) chlorite-carbonate with flat-lying bande texture Sharp foot-wall contact with andesite schist, contact 80° to core axis. Fine grained apple-green greenschist 110.03 - 116.43, more pyrite than usual Granitic dyke at 110.34 & 116.43 ^M , coinciding with the above contacts Below 116.43 dark gray greenschist predomini- variable in texture, content of epidote 2 cal

CLAIM MINING DIVISION HOLE No:			LOCATION	
		ANGLE:	DIRECTION:	
DEPTH	.	GRID No: FINISHED:	CO-ORDINATES:	
DATE STARTED	J:	FINISHED:	LUGGED BY:	
DEPTH FROM TO			DESCRIPTION OF CORE	
		Granitic ped 9	e dyke 124.05-125.27 neissocity	, showing well-develo-

Occasional short interval of felsic bands down to 131.06 M, probably associated with the above granitic dyke.

Minor pyrite-rich banding at 130.15 M.

Random-oriented calcite veining usual, some are near-vertical (to core axis) and well-defined.

Distinctive pyrite cubes on footwall contact of a well-defined quartz vein Overall pyrite content is minor and insignificant, much less than 1% in volume.

133.66 146.30

 $\left(\right)$

Diorite Partially assimilated inclusions of dank-colored andesitic schist, Variable Textures. Abundant hornblende (70%), pervasively and weakly chloritized (locally strong) Abundant epidote on fractures. Pyrite content

CLAIM		LOCATIO	DN:			
MINING DIVISION						
HOLE No:	ANGLE	:	DIRECTION:			
DEPTH	GRID No:		CO-ORDINATE	S:		
DATE STARTED:		FINISHED		LOGGED BY:		
DRILLED BY:						
DEPTH	<u>ı </u>	ום	ESCRIPTION (OF CORE	 	
FROM	то					

13 minor .

145.2 - 145.9 M quarts-feldspar (felsitic) Vein with trainline cracks, barren and containing inclusions of disrite . Greenschist & Diorite Dark greenish gray, fine grained greenschist in frequent contact with the above diorite . pyrite content is very minor.

Gneissic 147,98 -148.74 with gneissouity 60 -70° to core axis ,

Breccia texture due to assimilated by minor dyke 147,98 - 152,10 M. Quartz-feldspar (pegmatitic) vein 154.99 -155.75 M with minor pyrite and a few speaks of chalcopyrite .

156,52 158,80 Diorite

) 146.30 156.52

Similar to above diorite at the top of hole . Hornblende-rich, Wide variation in grain size

(

CLAIM			LOCATION
MINING DIVIS	ION		
HOLE NO:		ANGLE	DIRECTION:
DEPTH		GRID No:	CO-ORDINATES:
DATE STARTE	:	FINISHE	D: LOGGED BY:
DRILLED BY:			
DE	етн		
FROM	то		DESCRIPTION OF CORE
	-	textur	e & degree of assimilation, Weak foliation
			ninov amount of pyrite, Epidote fractures a
		Commo	
158.80	161.54	Greenschi	31
			dark gray - greenish gray and esitie greens
			leak foliation, Usual epidote & local ca
			factures. Minor insignificant pyrite
	-9- -		
161,54	167.34	Gneiss	
			gray, well foliated (60° to core axis)
			colored inclusion near the bottom contact
			To be originated from felsic dyke roc
			aplitic sections, Rare and insignif
		pyrit	
		0.01	
167.34	168.25	Greensch	ist in the second s
* <i>E</i> \$			as above greenschist at 158.80 -161.54
			ately intruded by felsic dykes. Only
			occasional pyrite.
		Very	
168,25	16901	Grneiss	
100,-0	1-1.1	Unerss	

CLAIM	LOCATION:			
MINING DIVISION				
HOLE NO:	ANGLE: DI	RECTION:		
DEPTH	GRID No:	CO-ORDINATES:		
DATE STARTED:	FINISHED:	LOGGED) BY:	
DRILLED BY:				

DEPTH			
FROM	то	DESCRIPTION OF CORE	
169.01	171,30	Diorite & minor greenschist	
		Variable type of rock, change is gradational and	
		obsecure due to intimate intrusion and metamor-	
		phism.	
171.30	173,28	Gneiss	
		Same as the above gneiss	
173,28	175,57	Gneiss (low grade composite gneiss)	
		Mixed section of the above 3 types of low grade	
		metamorphic rock. Rare pyrite.	
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,			

CLAIM Silver LOCATION: Burns Lake, B.C. MINING DIVISION OMINECA HOLE NO: 84-4 ANGLE: -50° DIRECTION: N 45°W DEPTH: 169.47 M GRID NO: - CO-ORDINATES: 14805+870E DATE STARTED: Dec. 10 1984. FINISHED: Dec. 13 1984 LOGGED BY: B.Y. KIM DRILLED BY: D.W. COATES ENTERPRISES LOD.

· -	DEPTH		DESCRIPTION OF CORE
-	FROM	то	
	0	1.22	Overburden
	1,22	38.41	Greenschist
			Greenish gray to dark greenish gray, fine grained
			Well-foliated greenschist with abundant crisscross
			caleite fractures, mostly made up of alteration
			Chlorite-calcite. Occasional quantz veining of
		5	variable thickness, mostly concordant to
			foliation (foliations 50 - 70° to core axis)
			Oxidation is minor, only fracture-limited down to
			10.67 m Very weak oxidized staining around 22,5 m
			of the hole depth. Pyrite occurrence is very minor.
			-throughout.
			Hematite staining as this envelope of calcite vein
			is common around 13,7 m
			Frequent and irregular alternation of rock type.
			Non-foliated section 12.19 - 13.81 m due to apparetic
			massive andesitic greenschist
>	e Sete		strong greissocity 15.09-20.59 apparaintly of
			intrusive origin.
		· .	

	DIAMOND DRILL LOG
CLAIM	LOCATION:
MINING DIVISION	
HOLE NO: 84 - 4	ANGLE: DIRECTION:
DEPTH	GRID No: CO-ORDINATES:
DATE STARTED:	FINISHED: LOGGED BY:
DRILLED BY:	
DEPTH FROM TO	DESCRIPTION OF CORE
	Non-foliated, massive section 20,57 - 27.13 with
	abundant crisscressing carbonates and occusional
	quantz veins & minor vuggy texture.
	Pyrite content is very minor, very occasional
	Cluster and large cubes on fracture faces.
6	Thinnly foliated with strong near-ventical (to core
	axis) carbonate fractures and quarty verns.
	occasional aplitic or pegmatitic bands.
	Leucocratic gneiss 31.70 - 32.31, probably of
	felsie dyke origin bearing fair quartz with vaggy
	texture. Pyrite is minor on fractures, Quartz
	itself is barren.
	Increased veining and alteration with well-develop-
	ed foliation. Near the lower contact with
	breccia the foliation is almost vertical (to core
	axis)
38.41 82.30	Quartz-carbonate breccia
	Multiple-staged quartz-calcite veining with partially
	assimilated angular ~ rounded fragments of

C

0

CLAIM		LOCATION
MINING DIVISION		
HOLE NO: 84 -	4 ANGLE:	DIRECTION:
DEPTH	GRID No:	CO-ORDINATES:
DATE STARTED:	FINISHED	LOGGED BY:
DRILLED BY:		

DEPTH				
FROM	то	DESCRIPTION OF CORE		
		darker greenschist. The fragments altered variably		
		Stock-work-like quartz veins are cracked and		
		Vugged with meandering and straight new quan		
		and for carbonate veining.		
		White to dark greenish gray depending on alterna		
		intensity and amount of fragment. Quartz an		
		carbonate (as matrix material) are apparantly		
	7	barren while fragments contain a little pyrite		
		mostly as dissemination but total amount of		
		pyrite is nowhere near 1% in volume.		
		Greenish gray fault gouge 50.75 - 51.05		
		Brecciation weakening below the above gouge zone		
		due to weaker quartz veining and more frequent		
		larger fragments (?) of andesitic greenschist		
		Disseminated pyrite showing weathering halo (limo		
		te) and occasional minor spotty stain of oxidat. on slipped fractures.		
		74.68 ~ 77.27 " large fragments of andesitie		
		greenschist with minor (compared with quants		
		breecia) quartz-carbonate veins,		

CLAIM	LOCATION	
MINING DIVISION		
HOLE NO: 84-4	ANGLE: DIRECTION:	
DEPTH	GRID No: CO-ORDINATES:	
DATE STARTED:	FINISHED:	DGGED BY:
DRILLED BY:		
DEPTH FROM TO	DESCRIPTION OF	CORE

Frayments at 62.94 - 63.98 " assimilated by quarts flooding show pervasive phyllic alteration Occasional but persistent minor oxidation staining

on fracture faces particularly on vuggy quarts openings.

Weaker breccia texture - gradational change from 82.30 ^M. Breccia appearance mostly due to strong criss-crossing calcite-quartz veining with occasional quartz lumps.

Quartz and/or calcite have been introduced into broken zone, resulting to wide zone of breccia. Briginal rock type in the broken can be distinguished Greenschist

Andesitic with strong quartz-carbonate veining Principally same as above quartz-carbonate breccia, just decreased amount of introduced quartz-carbonate. host rock representing as predominant fragments show original textures. Still strong quartz-carbonate breccia locally.

82.30 121.31

 $\binom{1}{0}$

		DIAMOND DRILL LOG	
CLAIM		LOCATION	
MINING DIVISI	ON		
HOLE NO: 8	4-4	ANGLE: DIRECTION:	
DEPTH		GRID No: CO-ORDINATES:	
DATE STARTED	: :	FINISHED: LOGGED BY:	
DRILLED BY:			
DEF		DESCRIPTION OF CORE	
FROM	то	Assay samples #3 (90.23-91.45) & #4	
		(91.75 - 93.26) have fair amount of pyrite on fractures.	
		Weathering stains on fractures are not uncommon	۴,
		local spotty blemish of weathering probably from	2
		oxidized pyrite dissemination	
121.31	151.49	Breccia (Quartz-carbonate breccia)	
		Gradual change from above greenschist, just	
		improved breccia texture due To increased amount	
		of quarty-carbonate veining. Pyrite is very	
		minor, only carried by dark-colored fragment	15
		125.43 - 129.08 strong breccia texture with	
		absorbed and rounded fragments in white fels.	ic
		matrix. Minor pyrite in fragments but no Py	irite

in matrix material

8

Well-defined contact (20° to core axis) at 129.08 with light gray fine grained felsic dyke rock.

Changing gradually To green colored, with weaker

	CLAIM		LO	CATION:		
	MINING DIVISION					
	HOLE NO: 84 -4	ANGLE:		DIRECTION:		
•	DEPTH	GRID No:		CO-ORDINATE	S:	
	DATE STARTED		FINISHED:		LOGGED BY:	
	DRILLED BY:					
	DEPTH FROM TO	-		DESCRIPTION (OF CORE	

breeciation .

Breccia texture improves gradually from 136,25 M along with silicification (?)

Small vuggy druse quartz is usual from 138.38 stronger silicification down to depth.

Oxidized fragments at 144.48 M

Foliated greenschist 148.44 - 149.66 with abundant concordant felsic veining & crisscrossing calciles quartz veins.

Kubbly core at lower contact 151.49 M with minor oxidation on fractures.

151.49 169.47

 \bigcirc

 $\left(\right)$

Greenschist

Dark greenish gray, fine to medium-grained andesitic greenschirt with strong epidote as dissemination & heavy bandings. Gneissic textures in massive lighter colored section. Pyrite content is minor (<< 1%), Very occasional heavy pyrite

CLAIM	and the second second	LOCATION:		
MINING DIVISION				
HOLE NO: 84 - 4	ANGLE	DIRECTION.		
DEPTH	GRID No:	CO-ORDIN	ATES:	
DATE STARTED:	FINISHE	ED:	LOGGED BY:	
DRILLED BY				

	PTH	DESCRIPTION OF CORE			
FROM	то				
		cluster on fracture.			
	₽				

 \bigcirc

		DIAMOND DRILL LOG
	ilver	LOCATION: BUINS Lake, B.C.
MINING DIVIS	sion Oin.	ineca
HOLE NO: 8	4-5	ANGLE: -50° DIRECTION: $N45^{\circ}W$
DEPTH: 17	18.0 M	GRID NO: CO-ORDINATES: 840 S + 70 E
DATE STARTE	Dec 2	51984 FINISHED: Dec. 29 1984 LOGGED BY: 13. Y. Kim
DRILLED BY:	D. W. 0	Coates Enterprises Ltd.
DE	PTH	DESCRIPTION OF CORE
FROM	то	
0	53.04	Overburden
53.04	105,16	Gneiss
		Gray white to gray, fine grained with well-developed
		foliation (10-35° queissocity to coreaxis)
		Variable textures & colors indicating complex origin
		for metamorphism (Composite gneiss), Occasional
	τ.	inclusions of dark gray fine grained andesitic rock
		(less foliated or massive) and minor felsic dyke
		or sill.
		Rare pyrite occurring as disseminations & on slipped
		Fractures. Generally solid and with very painty black.
		Generally solid core with very minor blocky, broken section due to chlorite-calcite slips, minor
		magnetite & hematite tint on the slipped fracture.
		Aplitic or pegmatitic section with sparse poorly-lineated
		chloritized matic 55.63 - 58.23 M
		20 cm and esitic inclusion within the above aplitic section at 57.15 M.
		Non-foliated dark gray andesitic inclusion (?) at 61.11-61.72 M

()

		DIAMO	NO DRIEL LOG
CLAIM			LOCATION:
MINING DIVI	SION		
HOLE NO:		ANGLE	DIRECTION:
DEPTH		GRID No:	CO-ORDINATES:
DATE STARTE	D:	FINISHED:	LOGGED BY:
DRILLED BY:			
DI	EPTH	DESCRIPTION OF CORE	
FROM	то		DESCRIPTION OF CORE
		Rubbly &	blocky core 65,84 - 67,67 M
		Coriginate	1 irregular alternation between leucogneiss of from felsic dyke or sill) and darker biolit Pyrite content is minor and insignificant

gneiss. Pyrite content is minor and insignificant Dark slip faces with weak hematite tint, minor distinct cubes of pyrite associated with the slips at 75.29^M Original rock type of biotite gneiss is obsecure due to strong metamorphism (partly due to assimilation prior to metamorphism ?)

Dark-colored small inclusions are abundant 95.71-100.89, which are only partially altered (both by assimilation & metamorphism)

Partially assimilated granitic inclusions, showing no definite foliation 104.24

A narrow aplitic dyke or sill with slicken-sided and brecciated banding with sharp chlorite-epidote matrix and hematite staining at 103.63^M.

CLAIM		LOCATION:			
MINING DIVISION					
HOLE NO:	ANGLE:		DIRECTION:		
DEPTH	GRID No:		CO-ORDINATES		
DATE STARTED:	Fil	NISHED:		LOGGED BY:	

DRILLED BY:

R

DI	EPTH	
FROM	то	DESCRIPTION OF CORE
105,16	109.12 109.12	Basic dyke
		Dark greenish gray, fine grained chlorite-rich
		andesite with frequent occurrence of granitic
		dyke swarm and lor inclusion) massive with
		no définite foliation.
		Kare pyrite as fine specks of dissemination.
	M	
) 109.12	114.61	Biotite gneiss
		Light gray, thinnly foliated (70-So" to core axis)
		with aplitic or pagmatitic dyke swarm. locally strong
		epidote both on fracture faces and as distemination
		Minor magnetile associated with it.
		Very minor specks of pyrite.
		Alternating zone with aplitic dyke 112.78-113.6
114.61	M 116,43	Basic dyke
		Same as above dyke at 105.16 - 109.12 M
116.43	138.23	Greenschist
		Dark greenish gray to dark gray with local strong
		foliation (steeply-dipping to core axis)
		Frequent aplitic or pegmatitic dyke intercalated with

CLAIM		LOCATION:			
MINING DIVISION					
HOLE No:	ANGLE:	DIREC	TION:		
DEPTH	GRID No:	со-	ORDINATES:		
DATE STARTED:	FINISF	1ED:	LOGGED	BY:	
DRILLED BY:					

	DE	ЕРТН	
	FROM	то	DESCRIPTION OF CORE
			minor basic dykes. Foliation is stronger around
			The contacts with aplitic dykes.
			Pyrite content is minor, occurring as rare specks.
			Occasional slips of chilorite - calcite, which spit The
			COT 2
			Aplitic - pegmatitic section 118,26 - 119,18,
$\sum_{i=1}^{n}$			126,49 - 127.71 - 128.63 , 131.37 , 133.81 -
)		e la	134.42
		M	
1	38.23	146,61	Lamprophyre dyke
			Gray - dark greenish gray . fine grained, mostly
			porphyritic, hornblende phenocrysts in finegrained
			to aphanetic matrix (groundmass)
			Moderate calcite fractures and occasional epidote
			fractures.
			Sharp contact (lower) with slippage of
			black sulphide-smeared fracture Overall
			pyrite content is very minor, only as specks
	1661	15911	Gneiss
).			Similar to 7/0 phone area at 109 12 - 114-61
			Similar to the above gneiss at 109,12 - 114.61. More variable textures. Foliations are steeply-
,			oriented to core axis. Fine magnetite
			associated with felsic veining around 152.40 M
	1		contraction persite verning would size the

 \bigcirc

 $\left(\right)$

CLAIM	LOCATION
MINING DIVISION	
HOLE No	ANGLE: DIRECTION:
DEPTH	GRID No: CO-ORDINATES:
DATE STARTED:	FINISHED: LOGGED BY:
DRILLED BY:	

	DEPTH		
•	FROM		DESCRIPTION OF CORE
	159.11	166.12	Gabbro-diorite
			Dark gray, fine to medium grained, granular
			non-foliated with gabbroic igneous body with
			occasional felsic dyke swarm, Epidote fractures
			are common. Pyrite content is minor and
			insignificant.
· · ·			may be related intimately with the above lamp-
)		ъ. Т	rophyric dyke occurrence at 138,23-14661.
		м	
	166.12	178.00	Gineiss
			Variably textured gneisses as above occurrences
			Alternation between felsic gneiss (Leucogneiss)
			& more massive darker & finer andesitic
			greenschist.
			Upper contact : Broken, gouged (graenish
			tint) with hemotite staining and pieces of
			felsic dyke
			Slightly more broken at the end of the hole.
			Very minor pyrite, Epidote is locally strong.
) }			
Ĵ			
	in an tha an the An		
•			

CLAIM Solver LOCATION: Burns Lake B.C. MINING DIVISION Dimineca HOLE NO: 84-6 ANGLE: -50° DIRECTION: N 4.5° W CO-ORDINATES: 5705+170W DEPTH: 178.61 M GRID No: DATE STARTED: Dec. 20 1984 FINISHED: Dec. 24 1984 LOGGED BY: B.Y. KIM DRILLED BY: D.W. Coates Enterprises Ltd.

DEPTH		DESCRIPTION OF CORE		
FROM	то			
0	9.60	Overburden		
9.60	20,88	Greenschist		
		Gray to dark greenish gray chlorite-rich greenschist		
		with well-developed this foliation (20-40° to		
		core axis) Frequent narrow felsic (aplitic)		
		bandings and abundant hairline to fine fractu-		
	ų,	res. Intimately contacted with underlying felsic		
		intrusion (dyke ?) of granodisvitic composition)		
		Rare pyrite throughout . Epidote is usual pervasively		
		with occasional fracture epidote. Very loccally		
		fine dissemination of garnet embedded in darker		
		layer of foliation . Probably originated from		
		clastic unit of Cache Creek group.		
		13.87-14.02 M Disritic dyke with sharp contact		
		30° to core axis.		
		Broken at 14.17, Dyke of granodiorite-diorite		
		composition		
20,88	30.63	Gneiss		
		Greywhite - Light gray leucocratic gneiss originated		
41				
20,88	м 30.63			

CLAIM		LOCATI	ON:	
MINING DIVISION				
HOLE NO:	ANGLE:	4.	DIRECTION:	
DEPTH	GRID No:		CO-ORDINATES:	
DATE STARTED:		FINISHED:		LOGGED BY

DRILLED BY:

C

	DE FROM	ертн То	DESCRIPTION OF CORE
			from dioritie dyke rock. Variably foliated with
			minor chloritized matics, No significant pyrite
			in very minor amount.
			Broken & weakly breceivated with greenschist frag-
			ments at 28.96 M.
) /			
	30.63	39.01.	Greenschist
			Similar to the above greenschist at 9.60 - 20,88.
			Slightly weaker foliation than above with frequent
			occurrence of aplitic dyke or sill, occasional
			magnetite-bearing dark bandings of foliation which
			is associated with intrusion of applitic dykes.
			No - rare pyrite. In general foliation is weak
			(20-40° to core axis)
	39.01	42.06	Gneiss
			Same as above gneiss at 20,88 - 30,63. Well-folia
			ted (20-50° to core axis) with sharp well-defined
			contacts. Darker bandings of chloritized matics
			and minor magnetite. Negligible rare pyrite
	na de la composition de la composition La composition de la c		specks.

 \bigcirc

 $\left(\right)$

CLAIM		LOCATION:		
MINING DIVISION				
HOLE No:	ANGLE:	DIRECTION:		
DEPTH	GRID No:	CO-ORDINATES:		
DATE STARTED:	FINISHED	:	OGGED BY:	
DRILLED BY:				
DEPTH		DESCRIPTION OF	CORE	

DE	EPTH	DESCRIPTION OF CODE
FROM	то	DESCRIPTION OF CORE
42.06	54,56	Greenschist
		dark gran - light greenish gray, massive to well-
		foliated, variable andesitic greenschist. Pyrite
		content is very minor throughout. Noticeable
		amount of pyrite around 54.56 contact.
		Broken at 50.27 due to stronger fractures of
		carbonate with minor hematite stain.
		0.3 m of grieissic intercalation at 49.05 m.
		Very fine popphyritic texture in chert-like black
		massive andesite-basalt around 48.75 m.
54.56	57.15	Gneiss
		Light gray - light greenish gray well-foliated orthog-
		neiss, probably originated from monzonite ~ diorite
		intrusive . Intimatly intruded The surrounding
		greenschist and showing repeated contact.
		pyrite is rare to nil.
ETIE	11.01	Greenschist
57.15	64.01	
		Similar to the above greenschist at 42.06-54.56.

CLAIM	LOCATION	N:
MINING DIVISION		
HOLE No:	ANGLE:	DIRECTION:
DEPTH	GRID No:	CO-ORDINATES:
DATE STARTED	FINISHED:	LOGGED BY:
DRILLED BY:		

DE	ЕРТН			
FROM	то	DESCRIPTION OF CORE		
		Frequently intercalated with aplitic dyke or sill. Variably metamorphosed - strong contact-type around lower contact with 30-40% of epidote 60.96-63.40 M. Variable intensity of foliation local calcite-chlorite fractures & slips. Pyrite content is minor, Kare specks of chalcopyrite near the epidote-rich contact around 62.68 M.		
64.01	м 65.23			
65,23	71.17	Greenschist		
71.17	M 51.23	Dark gray to dark greenish gray, near-contact rock with variable assimilation by the near-by intrusion, Poorly foliated with usual epidote developement. Fine gramed amphibolite zone 66.60 - 67.82. Pyrite content is minor & insignificant. Gneiss Same as the above gneiss, poor foliation due to weake matic. Pyrite content is minor and insignificant. Very local strong pyrite fractures.		

Than usual)
iorite-gabbro
with frequent
ibolitic zone
//. /

Pyrite is minor as dissemination, occasional fracture filling pyrite

Epidote is very common, locally strong both as disse. mination & fracture-filling

91.14 101.19

Gneiss Grenerally dark gray, fine grained, foliated gneiss with minor amphibolite, Frequent gradational change due to assimilation by earlier intrusion along with swarm of dioritic dykes and felsic dykes. Epidote appears to be stronger toward the lower contact local heavier pyrite associated with epidote fracture.

minor chalcopyrite noticed at 98.45

101.19

107.59

Gneiss (Mixture of orthogneiss & paragneiss)

0

 \bigcirc

CLAIM		LOCATION	
MINING DIVISION			
HOLE NO:	ANGLE:	DIRECTION:	
DEPTH	GRID No:	CO-ORDINATES:	
DATE STARTED:	FINISHED:	LOGGED	BY:
DRILLED BY:			
		DESCRIPTION OF COR	E

DEPTH		DESCRIPTION OF CODE
FROM	то	DESCRIPTION OF CORE
		Well-foliated, Irregular mixture of the above two types of gneiss. disseminated Strong Vepidote with local heavy fracture bandings & clusters.
		Quartz vein with chlorite-epidote inclusion at 107.59 contact.
107.59	M 129.85	Greenschist
		Dark greenish gray, fine grained audesitic greenschist with weak foliation. Heavy epidote disseminations & fractures which cross cut the foliation.
		Nanow heavy pyrite banding enveloping a small quarty vein at 108,51 (sampled for assay)
		Gneissic section 116.43 - 118.87, 121.92 - 122.68
		Epidote is pervasive alteration product, Carbonate fracture is usual. Pyrite is minor.
129.85	м 134,57	Gneiss Same as The above queiss at 71.17 - 81.23 M

MINING DIVISION HOLE NO: ANGLE: DIRECTION: DEPTH: GRID NO: CO-ORDINATES: DATE STARTED: FINISHED: LOGGED BY: DRILLED BY:	CLAIM	LOCATION:
DEPTH: GRID No: CO-ORDINATES: DATE STARTED: FINISHED: LOGGED BY:	MINING DIVISION	
DATE STARTED: LOGGED BY:	HOLE NO:	ANGLE: DIRECTION:
	DEPTH	GRID No: CO-ORDINATES:
DRILLED BY:	DATE STARTED:	FINISHED: LOGGED BY:
	DRILLED BY:	

DEPTH			DESCRIPTION OF CORE
	FROM	M	
÷	134.57	175.87	Greenschist + Gineiss
			Irregular mixture of andesitic greenschist and
	· · · · ·		orthogneiss. Greenschist is dark gray, very fine
			grained and poorly foliated while orthogneiss shows
			Well-developed foliation with light gray, coarser grained.
			Textures, Epidote occurrence is pervasive on both
			type of rocks. The contacts are very intimate and
		-	some contacts are probably inclusions.
			Generally solid core with local minor slippage usually
			along the foliation
			Pyrite is minor and insignificant, appears to be
			a little stronger on the intruded rock which may
			be originated from a sedimentary unit of Cache
			Creek group.
			Occasional hematile staining on slip faces with
			crushed chlorite-carbonate.
			Fine grained to aphanetic black massive basalt
			is predominant at 141.43 - 146.91 M.
			Strong biotite development making predominant
			darker bandings . Fair amount of pyrite associated
			with This biotite bandings (less than 1%)

		DIAMOND DRILL LOG
	CLAIM	LOCATION:
\cap	MINING DIVISION	
	HOLE No: 24 - 6	ANGLE: DIRECTION:
	DEPTH	GRID No: CO-ORDINATES:
	DATE STARTED:	FINISHED: LOGGED BY:
	DRILLED BY:	
	DEPTH FROM TO	DESCRIPTION OF CORE
		black aphanetic basalt as above occurrence at 171.39 - 171.84 M
	175.81 178.61	Gneiss
		Light gray to gray white , fine to medium grained
		gneiss
\bigcirc		massive solid core with occasional slips of crushed
	10	chlorite - calcite and minor epidote, Very minor pyrite
		occurring as fine dissemination
Q		

DIAMOND DRILL LOG CLAIM Silver LOCATION: BURNS Lake B.C. MINING DIVISION Omineca ANGLE: - 50 DIRECTION: N45°W HOLE NO: 84-7 CO-ORDINATES: P405 + 470 W DEPTH: 183,19 M GRID No: DATE STARTED: Dec. 14 1984 FINISHED: Dec. 19 1984 LOGGED BY: B.Y. KIM DRILLED BY: D.W. Coates Enterprises (Id. DEPTH DESCRIPTION OF CORE FROM то 3.35 Overburden 0 8,53 Greenschist 3.35 Dark gray - dark greenish gray , fine ~ medium grained andesitic greenschist with weak foliation consisted predominantly of chlorite and minor epidote and strong carbonate fractures. Dyke swarm of felsic composition throughout. Rare pyrite & occasional weak hematile starring on slipped fractures Moderately magnetic due to pervasive dissemina-Tion of magnetite 12.04 8.53 Felsie dyke White gray - Ash gray , fine-grained with well-defined foliation (± 30° to core axis) Fairly broken (compared to the above greenschist) due to sharp chlorite-carbonate slip faces Rare pyrite, dark-colored chloritic slip faces may have some smeared pyrite. 12.04 24.54 Greenschist Similar To above greenschist at 3.35 - 8.53 M

6

CLAIM		LOCATION:
MINING DIVISION		
HOLE NO: DEPTH:	ANGLE:	DIRECTION:
DATE STARTED:	FINISHE	
DRILLED BY:		
 DEPTH		DESCRIPTION OF CORE

DEPTH		DESCRIPTION OF CORE
FROM	то	DESCRIPTION OF CORE
		Steeply dipping (to core axis) felsic dyke swarm around 17 ^m shows gnessic texture, Strong epidote
		as dissemination and fracture-filling, Rare pyrite.
24.54	m 28,96	Orthogneiss (diorite) Fine to medium grained, light gray gneiss oxigina-
	۰. ۳	led from hornblende-rich dioritie dyke (?) rock.
		Strong epidote throughout both as dissemination & fracture-coating, Occasional hematite tint on fracture slips, Rare pyrite.
28.96	м 40.23	Greenschist Similar to above greenschist, Stronger apidote
		both on fractures and as dissemination, Contact type of metamorphism is prevailing, Calcite-hema- tite fractures with near-vertical orientation (to
1	M	core axis) are more usual, Rare pyrite.
	67.67	Orthogneiss (diorite) Similar to above gneiss at 24.54 - 28.96 ^M . Light Greenish gray due to bandings of chloritized matics Weakly slipped fractures of Chlorite-calcite-hematite

CLAIM	LOCATION		
MINING DIVISION			
HOLE No:	ANGLE	DIRECTION:	
DEPTH	GRID No:	CO-ORDINATES:	
DATE STARTED:	FINISHED	LOGGED BY:	
DRILLED BY:			
DEPTH FROM TO	DES	CRIPTION OF CORE	
	with rare pyri	Te, Weak chilled	contact with The above

Incompletely assimilated inclusions of greenschist with quartz veining 52,43 - 55,47 with chlorite-calcite. slips. Minor fracture-controlled clay alteration (hydrothermal type) 58,22 - 59,44 M

Slicken-sided fractures of dark chlorite are usual .

67.67 76.96

Diorite gneiss

greenschist.

Similar to above orthogneiss . Coarser grained and Strongen foliation (gneissocity ± 30° to core axis) Appears to be originated from The contact zone disrite with abundant inclusions of darker greenschist and concordant felsic dykes & sills Very minor pyrite but occasional heavier coating associated with carbonate fractures 67.06 - 73.15^m Broken, gouged and weakly breeciated near The lower contact around 77^M

Greenschist & minor diorite gneiss

76.96 117.65

CLAIM	LOCATION:
MINING DIVISION	
HOLE NO: ANGLE:	DIRECTION
DEPTH: GRID No:	CO-ORDINATES:
DATE STARTED: FINISHED:	LOGGED BY:
DRILLED BY:	
DEPTH FROM TO	DESCRIPTION OF CORE

Gradual change from above, Predominanty darker-colored greenschist with well-developed foliation. Frequent appearance of felsic-aplitic bandings and minor diovitic sections pyrite is rare. Fine disseminated magnetite is usual in section which seems to be originated from intrusive rock.

Broken, rubbly core due to dark greenish gray fracture slips of chlorite-calcite 79.86 - 82.30

Aplitic dykes 56.11 - 86.41, 87.48 - 87.94 Hairline fractures & slips of hematite staining areusual 86.26 - 90.22

Broken, blocky core at 99.37, 100,28, 102.72" Broken, cracked core near the lower contact - felsic. banding at the contact 117.65 M

117.65 134.57

 \bigcirc

()

 $\left(\right)$

Basalt - Andesite Dark gray, aphanetic to fine grained, generally massive (locally amygolaloidal and spherulitic) basic volcanic or dyke with fine disseminated magnetite and very miner pyrite.

CLAIM		LOCATION:	
MINING DIVISION			· ·
HOLE NO:	ANGLE	DIRECTION:	
DEPTH	GRID No:	CO-ORDINATES:	
DATE STARTED:	FINISHED	LOG	GED BY:
DRILLED BY:			
DEPTH FROM TO		DESCRIPTION OF C	ORE
	Filiation	developement is wea	k and

Gneiss

Gneissic zone 124.36 - 124.97 Rubbly core of fine-grained andesitic rock 129.69 -130.45 Poor core recovery 131.98 - 132.89 (approximately 70%)

only local .

134.57 169.62

 $\left(\right)$

 \bigcirc

Predominantly well-foliated gneiss of intrusive origin, with minor dark poorly-foliated section of volcanic origin. Solid core in orthogneiss (dioritic) section, while more broken in andesitic. (?) gneissic section Kare pyrite throughout.

Short youged zone at 152.71, 153.31 Broken and rubbly core. 161.24-161.85, 164.29 166.12.167.64

A near-vertical (to core axis) slipped fracture of chlorite-calcite-hematite (stain) with weak selvage alteration, minor quartz is associated with it, Sulphide (pyrite) is very rare.

	DIAMOND DRILL LOG
CLAIM	LOCATION:
MINING DIVISION	
MINING DIVISION	
HOLE No	ANGLE: DIRECTION:
DEPTH	GRID No: CO-ORDINATES:
DATE STARTED:	FINISHED: LOGGED BY:
DRILLED BY:	
DEPTH FROM T	DESCRIPTION OF CORE
169.62 172	52 Basic dyke
	dark greenish gray to black, aphanetic To fine poph-
	gritic lamphrophyric dyke with no foliation.
	Apparantly of later stage (than most of rock types)
	No pyrite visible. Minor hairline criss crossing
	calcite fractures. Both contacts (upper &
	lower) are sharp. 20° to core axis for upper
	contact & 65° to core axis for lower contact.
172,52 183.	
	Solid core predominantly of gray well-foliated
	coarse grained gneiss with short aplitic or pegmatitic
	intercalation & poorly foliated dark gray andesitic
	greenschist, Very minor pyrite as disseminations and
	locally as heavier dissemination on foliation fractures
	Coarse grained, dark gray orthogneiss (dioritic)
	with intercalated aplitic dyke or sill . Fine grained
	dissemination of epidote is strong.

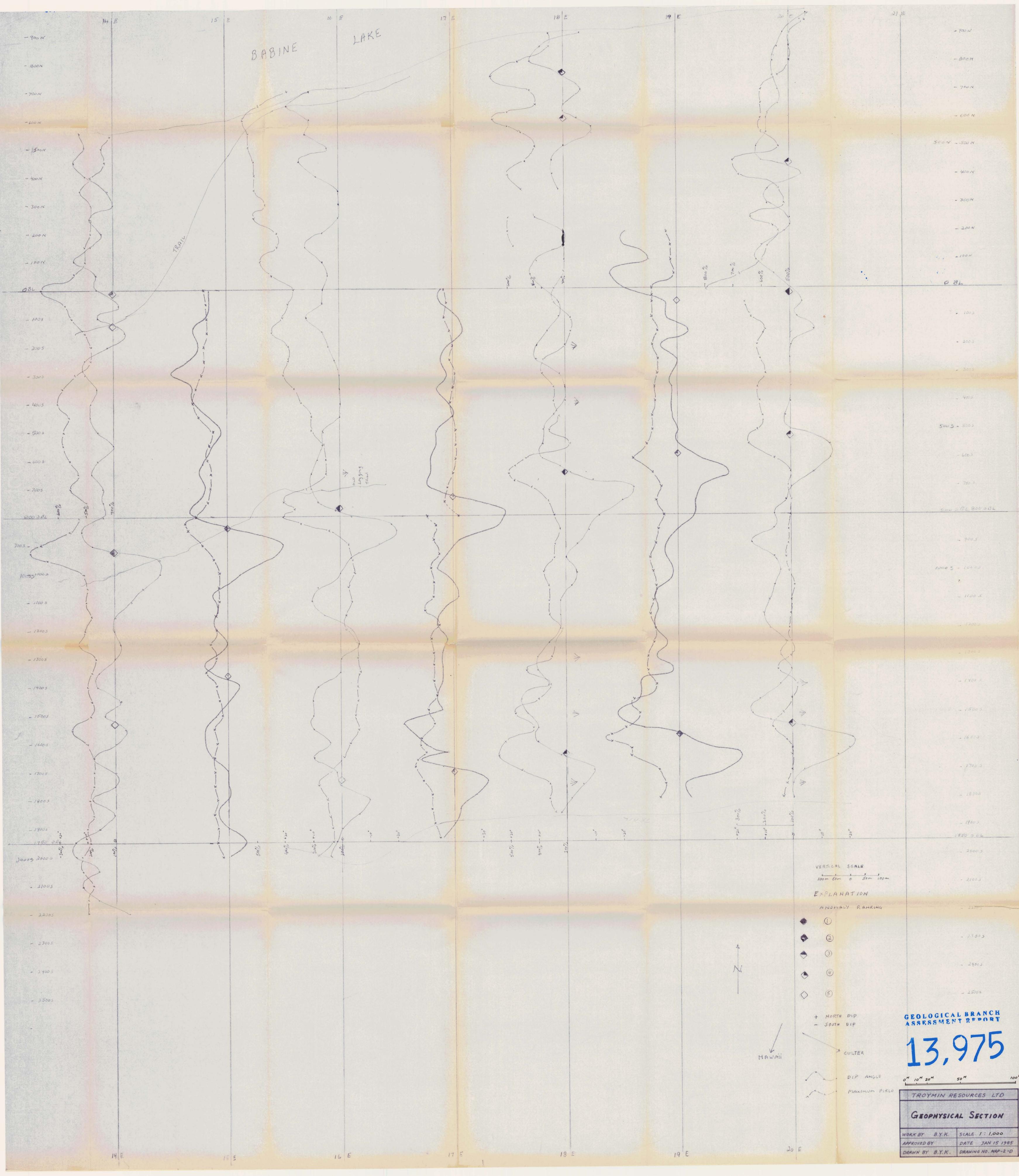
 \mathbb{S}

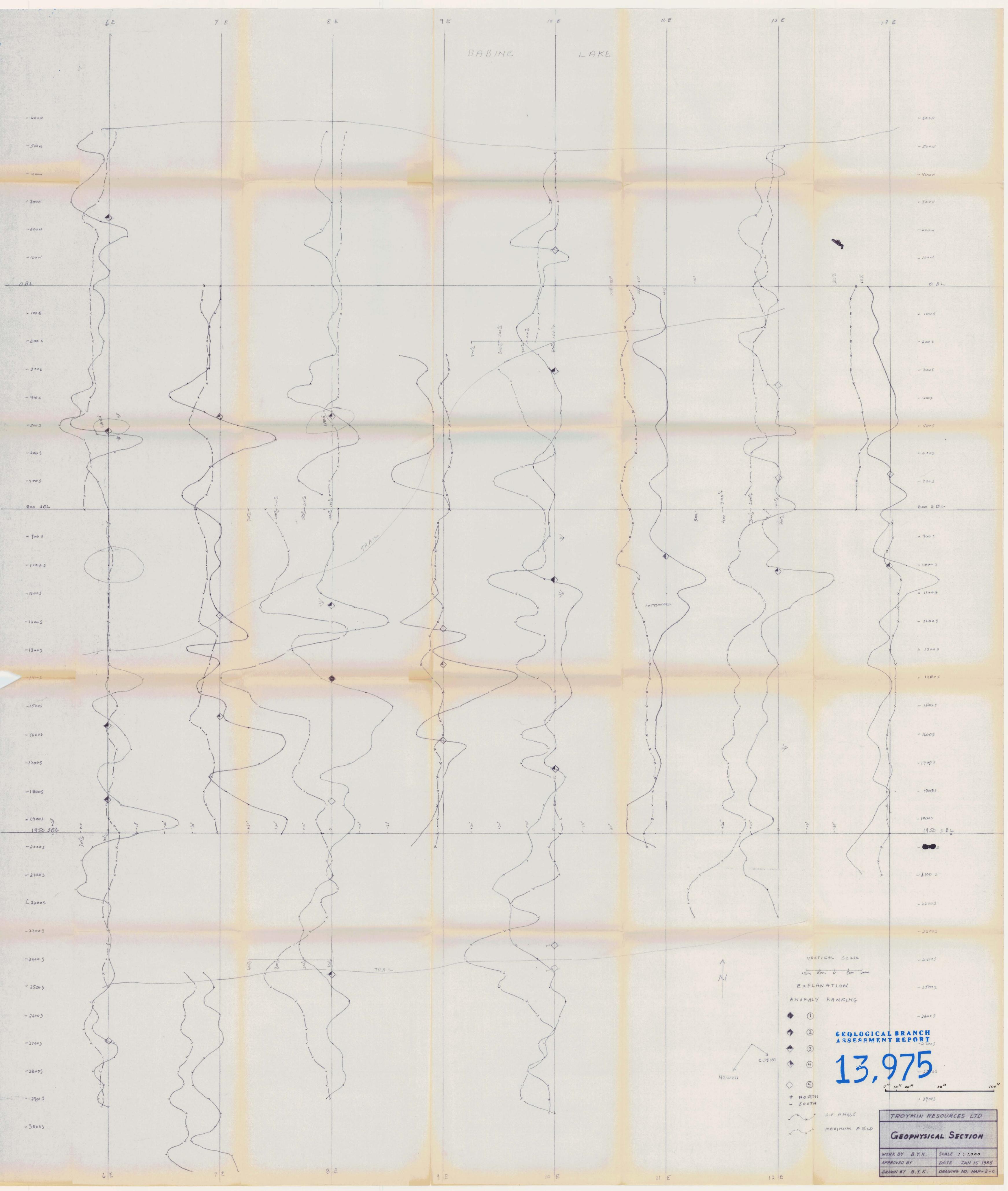
OMPAN	Y	7	roym	, n ,	Resol	urces	s Lta	1		\cup	N					CORR	ECTED	DIP TE	STS		
	ND DR																· .				· · ·
		DAT	E BEGAN	Dec	. 4	1984		COMPLI	ETED \mathcal{D}	ec. 7	7 1984	-	·						•		
	Silve										-							``			
											m			······							
OLE NO	84 -		CO-OR	D <u>14</u>	-603		HORIZ	ONTAL	LENGTH	108.	54					· · · · · · · · · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · · ·			
	1									Ŵ											<u></u>
LAIM NO	Silver	۳	ELEVA	TION	929.	6 m	ANGL		50°										RESIDENT	GEOLOGI	ST
						SSAY			Ę		WIDT	H X ASS	BAY	· · · ·				AVERAG	ES		
EPTH(M)	NUMBER	WIDTH	AU 47	AG	cu	ZN	PB	NI							WIDTH	AU	AG	cu	ZN	PB	N
- 9.5			Over	burde	n																
-30.18	6951 D		not s	ample	d					1											
11	695/D	1.06	.001	.02									ļ				 	· · · · ·			ļ
4-42.37			not		ed																
	6952D	1.22	.002	.01			· · · · ·									į 					
9-106.38			not	Samp	led																
	6953D			.01						· · · ·											ļ
-157,20			net		pled					· ·											
	6954 D			,										:							ļ
- 166,42			not	Samp	led									· 							;
	6955 D													<u>.</u>					· · ·		
			net	<u>Sam</u>	oled							<u> </u>									
End	of hole						· · · · ·	· · · · · · · · · · · · · · · · · · ·									÷				
				-				· · · ·								<u>-</u>					· · ·
					······					1					·						
										<u> </u>						<u> </u>					
																	· · · · · ·				
											+										
																					 . ·
													·								
											1		-								
							4														·
								L		1	1		1								
					· · · · · · · · · · · · · · · · · · ·						1	·									
		_					. •														
																			. 1		
								·													
																					1
							.)		ļ.	ļ							· · · · · · · · · · · · · · · · · · ·				
				• .					ļ	<u> </u>	ļ				 						

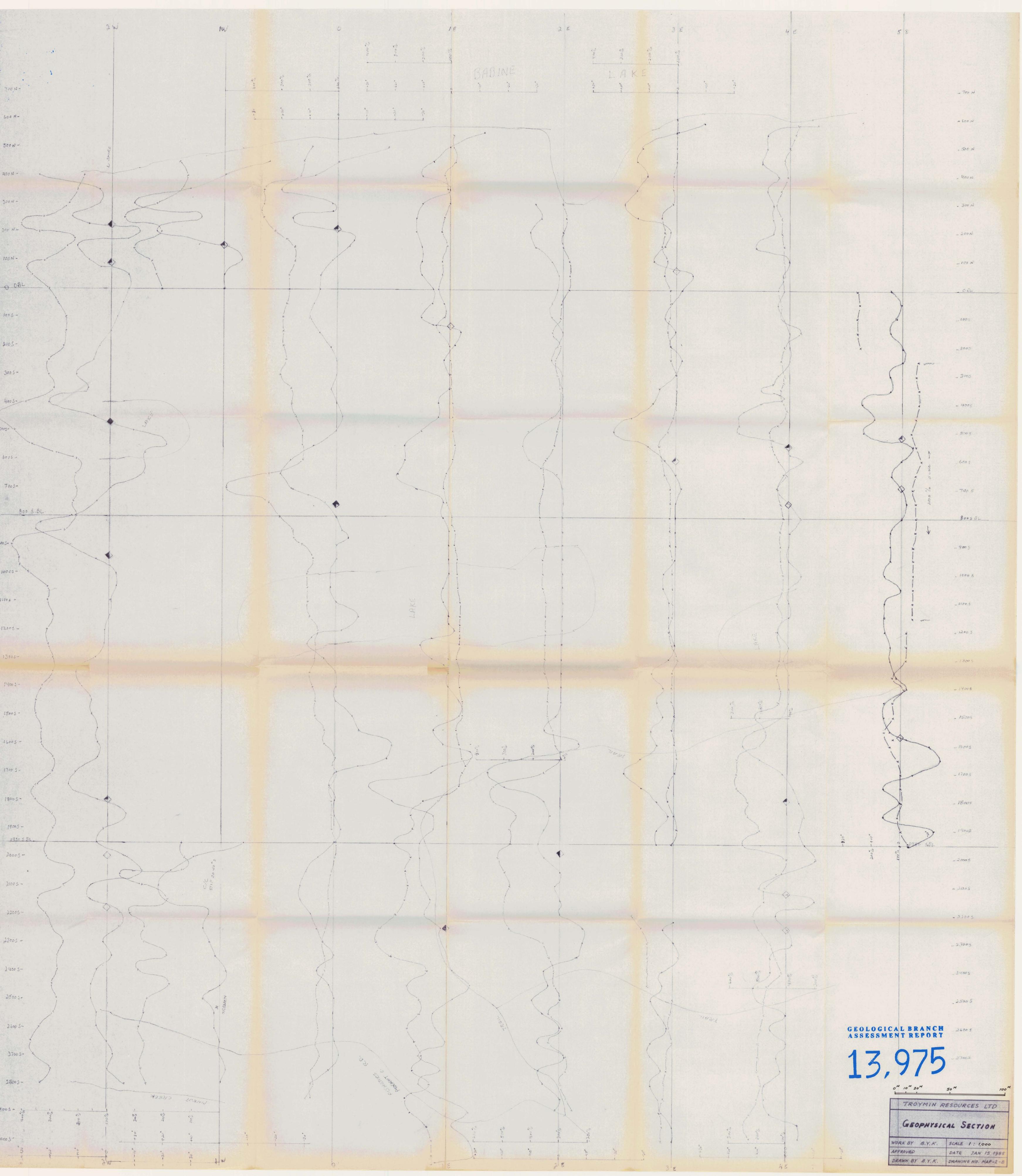
COMPAN	Y	Frou	min		Rose	nirre	5	Ltd		\bigcirc		-									
· ·					1236	urce	<u> </u>	7								CORRI	ECTED	DIP TE	STS		
DIAMO	OND DR										0.00	,									
	•										0 1984	-									
PROPERTY	Silve	27		PROJ	ECT NO		DEPTH	1_/7	5.5	7 m											
HOLE NO	84 -	2	CO-OF		670 S		HORIZ	ONTAL	LENGTH	112.	86 1	.				· · · · · ·					
SHEET NO			·	1	9701	£	DIREC	TION _	N 45	5°W		.	· · · ·				. .				
	Silve									* 								· · · · · · · · · · · · · · · · · · ·	RESIDENT	GEOLOGI	57
]						SSAY					WIDT	H X ASS	SAY					AVERAC	GES	· · · · · · · · · · · · · · · · · · ·	
DEPTH(M)	NUMBER	WIDTH	AU	AG	cu	ZN	PB	NÍ							WIDTH	AU	AG	ເບ	ZN	PB	NI
- 3.1			Ove	rburd	en																
1-6.4			not	Sampl	led						-										
1	6956D	i	1	1							_								ļ		<u> </u>
4 - 38.58			1107	t Samp	led				ļ .							- -			ļ]		
1	6957D										+										
08-71.80	6958D	. 50	not	Samp	eq				1												
30-129.54		7.30			lad												ļ				
	6959D	0.91	.001	.01	/~1					1	+				1						
1		2	1		led								1							•	1
5.00-155.75	6960D	0.75	,001	.01																	
75-175.57			not	samp	led	·									 						
End	of hole				· · · · · · · · · · · · · · · · · · ·																
				· · · ·													· · · ·	. <u>i</u>	 		
							· · · · ·														
						<u> </u>								1							
				1																	
										1				1							
				-						· ·				1							
							·			<u> </u>								<u> </u>		Ì	· · ·
	· · · ·											ļ					ļ				
										-							· · ·				
				+				-		<u> </u>	+							 			·
					<u>.</u>				++		+			1		-				-	
								·													;
						<u> </u>															
				-	· · · · · · · · · · · · · · · · · · ·																
	╢─────	╢		·	+	 												<u> </u>		·	

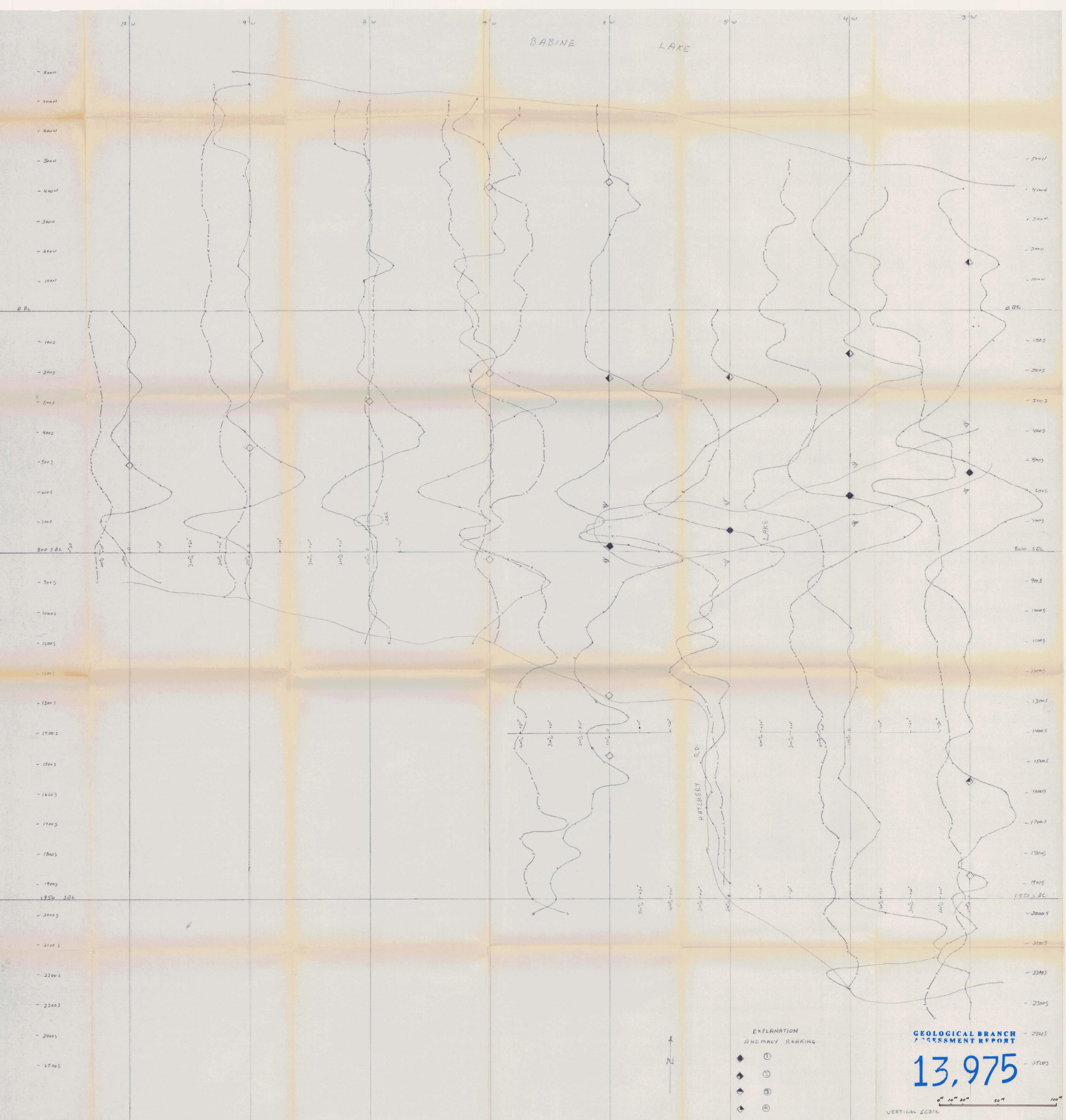
×4

	<u> </u>									(\bigcirc		
COMPAN	Y	Troy	min		Resol	urces	Lta	′								CORRE	CTED	DIP TE	STS		
DIAMO	ND DR	ILL RI	ECOR	D																	
		DA	TE BEGA	N_De	.c.10	1984	DATE	COMPLE		ec. 13	1984	.		·				*			A
PROPERTY	Silv	er		PRO.	IECT NO		DEPTH	/6	9.47	m	·				· · · · · · · · · · · · · · · · · · ·					· · ·	
HOLE NO -	84 -	4	CO-OR	0 14	480 5	3	HORIZ	ONTAL I	LENGTH	108.	93 m										
CUEFT NO	1			ć	870 E	-	DIREC	TION	N 45	*w					·			· · · · · ·			· .
CLAIM NO	Silve	r 7	ELEVA	TION	838,	20 M	_ ANGLE		50°						<u></u>				RESIDENT	GEOLOGIS	эт
		T				SSAY			đ		WIDTH	I X ASS	٩Y				·	AVERAC	GES		
DEPTH(M)	NUMBER	WIDTH	AU	AGZ	cυ	ZN	PB	NI							WIDTH	AU.	AG	ເບ	ZN	PB	NI
0 - 1.22				burde																	
1.22-1280	10115			sampl	ed					ļ											
12 <u>80-1381</u> 1381 - 38 41	676/D	1.01																			
3841-39.62	6962 0	1.21	not . pol		KA						+										
39.62-90.83	07020	1.21	1	Samp	led						-					····					
90.83-92.05	6963D	1.22	.001	.03																	
92.05.92.35			not	Samp	led																
92 <u>35 - 93</u> 88		1.53	1	1		·															<u> </u>
93.88.13975				Samp	led	-															
139 <u>,75-140,82</u> 140,82 -+49,96	6965D	1.07		1																	
149,96-15/49	6966 D	1.53	not	59,049 02	veq				<u> </u>												
151,49-169,47		1 1)	not		led					· ·			;								
End																					
					· ·				l												·
									· · · · · · · · · · · · · · · · · · ·												·
			ļ																		
					+								•••••		·						· · · · · · · · · · · · · · · · · · ·
							1														
	······	-	· · · · · · · · · · · · · · · · · · ·				<u>1</u>						i								·
																		 			
		H												· · · · · · · · · · · · · · · · · · ·						·····	· · · · · · · · · · · · · · · · · · ·
										1							· · · ·				· · · · · · · · · · · · · · · · · · ·
								<u> </u>	ļ							ļ		+			
A grand a set of a set of the set	1) }			+	n a 1. la k arana ang kasita. I		1		•••	•											


COMPAN	Y	Tr	oymi	n	Reso	urces	Lta	d .	hth <u></u>		<u></u>					CORR	ECTED	DIP TE	STS					
DIAMO	ND DR	ILL RE	ECOR	D													· .							
		DAT	E BEGA	N_De	zc. 25	5 1984	2 DATE	COMPLE	TED D	ec. 2	9 1984	-					·							
ROPERTY	Silve	er	· .	PROJ	ECT NO		DEPTH	17	18,00	m														
	84 - :	5-	CO-OR	в <i>8</i>	405		HORIZ	ONTAL I	LENGTH	114	.42"	,												
HEET NO	1				70 E		DIREC	TION	N 45	• • W														
LAIM NO	l Silve	- 6	ELEVA	TION	853	.44 M	ANGLE		50°			·				<u> </u>		·	RESIDENT	GEOLOGI	ST			
				·····		SSAY		1	ą.		WIDT	H X ASS	SAY		<u> </u>	-		AVERAG	ES					
EPTH(M)	NUMBER	WIDTH	AU	AG 02	cυ	ZN	PB	NÎ							WIDTH	ÂŬ	AG	ເນ	ZN	PB	NI			
- 53.04			overb													· · · · ·								
4 - 65.84				Samp	led															· · · · · · · · · · · · · · · · · · ·				
1	6977D	1.22		1	1-1	· · · ·									<u> </u>		-	· · · ·			<u> </u>			
6-113,69 9-11461	6978D	192		Sampl .01	eq									1						·	<u> </u>			
61-166.12	01180	0.14		.01 Samp	led									1										
	6979D	1.37															1							
9-17252			net	Sampl	ed						·					•								
	69800	1 11							 					-							ļ			
58-178.0			not	sampl	ed														· · · ·		 			
End	of hole										<u> </u>		·							<u></u>				
																	ļ				ļ			
· · · · · · · · · · · · · · · · · · ·																	-							
	· · · · · · · · · · · · · · · · · · ·												+	· · · · · · · · · · · · · · · · · · ·		· · ·					 .			
		·																						
· · · · ·							-		· · · ·		+										ļ			
																· · · · ·					: 			
	· · · · · · · · · · · · · · · · · · ·		·									- 		+										
													+								: : :			
			· · · · · · · · · · · · · · · · · · ·														<u> </u>				<u> </u>			
	· .																							
														<u> </u>		· ,					: 1			
																				· · · · ·				
									-								+							


-


	A.									\bigcirc									\bigcirc		
COMPAN	IY	in Tr	oymi	n	Res	ources	: Lt	d.			-					CORRE	ECTED	DIP TE	STS		
DIAMO	OND DR		ECOR	D							•						<u> </u>				
		DAT	TE BEGA	_N _De	c. 20	1984	DATE	COMPL	ETED De	ec 24 1	984			· · · ·			· · ·				·······
PROPERTY	Silver																		· · · · · · · · ·		
	84 -										/										
SHEET NO			· · · ·		170 U	/	DIREC	TION _	N 45	W							· · · · · ·	+ <u>.</u>	· .		
CLAIM NO	I 	- 6	ELEVA	TION	838.	20 M	ANGLI	E	- 50°				<u>-</u> `	· · · · ·			· · · · ·		RESIDENT	GEOLOGIS	;T
	· · · · · · · · · · · · · · · · · · ·					SSAY		,	1	r	нтаіw	X ASS	AY .					AVERAG			
DEPTH	NUMBER	WIDTH		AG	cυ	ZN	PB	ŇI							WIDTH	AU	AG	- CU	ZN	PB	NI
0 - 9.60 9.60 - 57.15				burdei samp	1																
57.15-58.06		0.91							1												
58,06-61.72			not	Samp.	led												 				
61.72-63.09 63.09-98,30				.03 5amj	lad																
63 <u>,07-78</u> ,30 98 <u>,</u> 30 - 99 <u>,</u> 37	6973D	1.07	,00)	1	729																
99.37-108.51			nei	sam	o/ed																· · · · ·
108 <u>51-10942</u> 10942-13472	6974D	0.91	.00/		la d											· · · · · · · · · · · · · · · · · · ·					
134.72 -135.94	6975D	1,22	1	- Samj . 01	area .		·														
135.94-165.81			no	+ samp	oled			1													
165 <u>8 - 167.03</u> 167.03 -178 6		1.22	1	1	1.1								· · · · · ·								
End			101	5 amy	PIEd																· · ·
																				·	· · · · ·
																<u></u>	· · · ·		· · · ·		
	-			· · ·	. .	· · · · ·				:											
				<u> </u>																	
											·										
							ļ													 	· · ·
				<u> </u>												·					
								· · ·													· .
				1		· · · · · · · · · · · · · · · · · · ·										·					
							:	·		T				1			1	1			


COMPANY	r	7	Treym,	in	Res	ource	25 1	Ltd.								CORRE	ECTED	DIP TE	STS		
DIAMO																					
		DAT	E BEGAN	Dec	. 14	1984	DATE	COMPLI	ETED <u>De</u>	ec. 19	1984				· · ·	·····	•				
PROPERTY .	Silve	r .		PROJ	ECT NO		DEPTH	18	3.19	m	······					-					
HOLE No	84	7	CO-OR	D	405		HORIZ	ONTAL	LENGTH	117	.76								1 ×		
SHEET NO	1			4	170 W		_ DIREC	TION _	N 45	°W			n a u						· · · · · · · · · · · · · · · · · · ·		
CLAIM NO	Silver	6	ELEVA	TION	838	,20	ANGLI	=	50°										RESIDENT	GEOLOGI	IST
					A	SSAY			*		WIDT	I X ASS	AY					AVERAG	ES		
DEPTH(m)			. 1			ZN	PB	N1							WIDTH	AU	AG	cυ	ZN	PB	NI
- 3.35			Over	1			ļ												·····	· .	12
15-69.80 80-71.02	6967D	1.22		5amp .01	124																1
02-110.03			not		led							*H									
03-110,95	6968D		.00/	.01																	
95-167.03		0.7	not	Sampl	led												 	· · · · · ·			
•3-167.95 195-179.22	6969D		,001 not		ad																+
32-18014	6970D	0.92	,00/		2 .4																
14-183.19		1 1	n•†	1	led																1
End	of hole																				<u></u>
													· · ·		· ·						
	· · · · · · · · · · · · · · · · · · ·																				
				-									· · ·				ļ				<u> .</u>
																- 1					<u></u>
												·····									
																······································					
					· .																
												÷ .									
· · ·		:					1														
<u> </u>																					
									<u> </u>							· · · · · ·					<u></u>
										-							· · · · · · · · · · · · · · · · · · ·				<u>t</u>
																					1
									H		+										<u> </u>
	-								1				1	+				+			<u></u>

.

