GEOLOGY AND SOIL GEOCHEMISTRY MERIT ET AL. MINERAL CLAIMS SLOCAN MINING DIVISION McGUIGAN CREEK, ZINCTON, B.C. NTS 82 K/3 E LATITUDE 50°01'N, LONGITUDE 117°13'W

> Prepared for TROVE RESOURCES LTD.

ARCTEX ENGINEERING SERVICES

Locke B. Goldsmith, P.Eng. **Consulting Geologist**

October 22, 1985

(n) 🖽 ග 📿

Ô (n)n

C

Med 0 2 🍹 - j (*** 99 W

> 🛪 🎾 1 × 5 Z **7** 🔿 4 🕮

85-777-13985

10/86.

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
LOCATION MAP	3
CLAIM MAP	4
GEOLOGY	5
MINERALIZATION	6
SOIL GEOCHEMISTRY	6
CONCLUSIONS	8
RECOMMENDATIONS	8
COST ESTIMATE	ຸ 9
ENGINEER'S CERTIFICATE	11
REFERENCES	12
COST STATEMENT, 1985 PROGRAMME	13

APPENDIX:

GEOCHEMICAL ANALYSES

ASSAYS

MAPS:

(Pocket inside back cover)

GEOLOGY MAP, WITH ADIT AT 4+15W, 2+85N SOIL GEOCHEMISTRY MAPS: SILVER, LEAD, ZINC

GEOLOGY AND SOIL GEOCHEMISTRY MERIT ET AL. MINERAL CLAIMS SLOCAN MINING DIVISION McGUIGAN CREEK, ZINCTON, B.C. NTS 82 K/3 E

1

SUMMARY

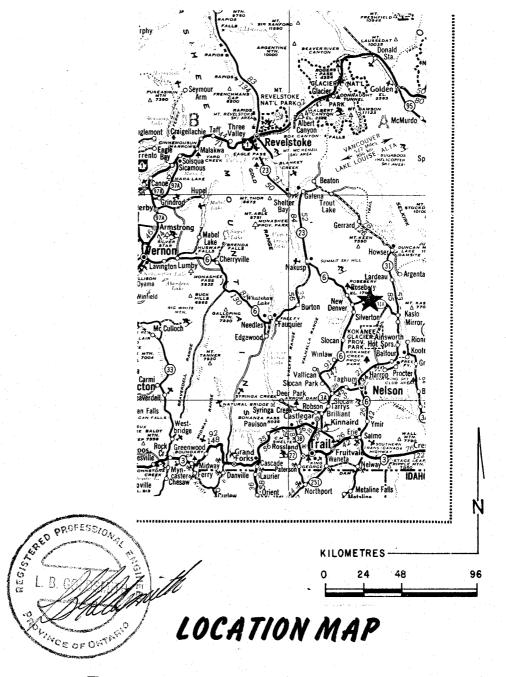
Geological mapping and soil geochemistry have been successful in indicating at least 5 areas within which exploration should be concentrated. Metals in soils may be derived from zinc-silver mineralization similar to that which is known at the Lucky Jim mine.

A programme of detailed soil geochemical sampling, dozer trenching, and diamond drilling in two Phases is recommended at a cost of \$118,600.

INTRODUCTION

The property is located approximately 1.5 km south of the formerly productive Lucky Jim mine at Zincton in southeastern British Columbia. Highway 31A which joins the towns of New Denver and Kaslo crosses the west-central portion of the claims. The nearest centre of population where basic.services can be obtained is New Denver, some 13 km to the west. A dirt road which departs southerly from Highway 31A some 1.5 km west of Zincton and ascends the east side of the valley of McGuigan Creek provides access to the Kate and Merit Centre claims and to the southwest corner of the Merit claim. Access to the Rich and Famous Fraction claims is by foot. The Megan claim is situated on the steep slopes to the north of Highway 31A. Elevations range from 1975 m (3200') on the highway to 2100 m (6900') in the east portion of the Rich claim.

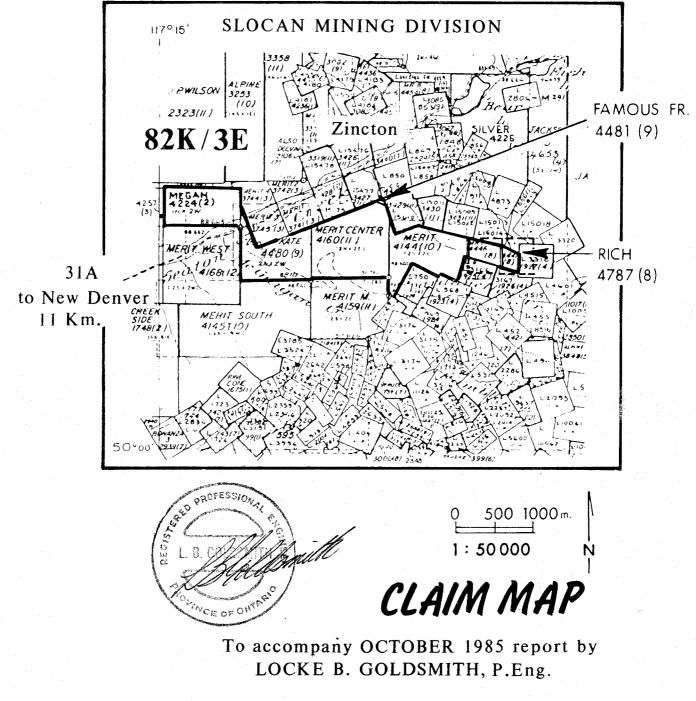
Claim Name	Units	Record Number	Recording Date
Merit	4	4144(10)	Oct. 31, 1983
Merit Centre	4	4160(11)	Nov. 29, 1983
Kate	4	4480(9)	Sept. 4, 1984
Rich	2	4787(9)	Sept. 3, 1985
Famous Fraction	<1	4481(9)	Sept. 4, 1984
Megan	2	4224(2)	Feb. 14, 1984


Total land holding is sixteen units and one very small fraction, amounting to some 400 hectares less approximately five units (125 hectares) in pre-existing bounding claims for a net of eleven units in 275 hectares. Various claim posts and boundaries were observed. The claims are situated in the Slocan Mining Division, NTS Map Sheet 82 K/3 E.

History of production in the surrounding area was reviewed in a recent report (Tully, 1984) and is not repeated herein.

Geological mapping and soil geochemical sampling were conducted between September 22 and October 7, 1985. A total of 22.2 km of grid was established, of which 18.7 km was used for soil sampling.

TROVE RESOURCES LTD. MERIT CLAIM GROUP


ZINCTON B.C. SLOCAN M.D. 82K/3E

To accompany OCTOBER 1985 report by LOCKE B. GOLDSMITH, P.Eng.

ARCTEX ENGINEERING SERVICES

TROVE RESOURCES LTD. MERIT CLAIM GROUP

ARCTEX ENGINEERING SERVICES

GEOLOGY

Rocks exposed within the claims and in the surrounding area belong to the Triassic-Jurassic Slocan Group, a suite of argillite, phyllite, quartzite, and limestone with occasional tuffaceous horizons. Granitic dykes, sills and stocks of variable composition are emplaced into all older strata.

In the eastern end of the property grey limestone is predominant. One shale outcrop was noted on line 7+00N 3+50 to 4+00E; rubble and talus in the vicinity suggest that shale may extend another 100-150 metres easterly and southerly. The remainder of the group is underlain by argillite with occasional granitic dykes or (as on the Megan claim) series of dykes. Much of the argillite shows slaty cleavage, and on the Megan claim all argillite exposures are slaty parallel to bedding planes. Bedding attitudes vary in dip from shallowly east to moderately west or south. Strikes are uniformly northwesterly south of the highway and vary from northwest to west on the Megan claim north of the highway. Overturned recumbent folding has been considered to be the tectonic event which created marked variations in dips. It is also possible that some strata were deposited/reworked in a chaotic environment (turbidite) to produce a diversity in primary bedding. Thence folding, followed by thrust feaulting along low-angle, westerly dipping planes could explain much of the complexities of structure.

With the exception of the shale horizon mentioned above, all the rocks which were observed are competent and would support open spaces along fracture zones. Fractures are oriented northeasterly to north-northeasterly. Quartz veins occupy some fractures, as in the southwest corner of the Merit claim. The locus of intersection of two fractures with the same strike and different dips near 3+00N 4+50E forms a prominent trench. This northeasterly fracture direction may be an expression of the productive lode systems of the surrounding area, but other than quartz veining no fracture-controlled mineralization was observed on the portion of the claims south of Highway 31A.

MINERALIZATION

Fractures exposed in an adit within a granitic dyke near 4+15W 2+85N on the Megan grid host narrow, discontinuous quartz veins which contain patches and disseminations of galena and pyrite. The fractures become indistinct in argillite at the north end of the adit. Assays are shown on an inset map which is included on the large geology mpa. Values are low. The small dimensions and low grades of the veins do not constitute an attractive exploration target.

Base metal sulphides were not observed in place elsewhere on the property. Quartz veins on the Merit claim have only rare specks of pyrite.

SOIL GEOCHEMISTRY

A total of 338 soil samples and 1 rock sample were analysed geochemically for lead, zinc, and silver. Analytical procedure is included in the Appendix. Soil samples were collected with a narrow, elongate spade from 30 to 45 cm below organic debris. The Megan claim was not sampled; the northwestern corner would be amenable to soil geochemistry from approximately 2+00N 8+00W to 5+00N 2+00W. Coverage was decreased in the valley of McGuigan Creek after it was determined that transported overburden extends for ± 400 metres up the eastern slope.

Several anomalously high values or groups of values are attributable to contamination. In the bottom of McGuigan Creek valley on lines 4+00N and 5+00N between 10+50W and 14+00W the high metal contents are probably derived from mining and milling operations upstream. The overgrown road at 5+00N 11+00W should be followed southerly to determine the origin of metals which presumably have been spilled along the right-of-way. Contamination from spillage along the road which is currently used has probably caused the anomalies at 4+00N 6+00W and 6+50W, and 7+00N 7+50W and 8+00W. An isolated value of 1000 ppm Zn at 8+00N 8+00W is close to a trail and a value of 3.5 ppm Ag at 5+00N 4+00W is near an overgrown road; these sites are possibly contaminated but should be checked by a small amount of resampling. The trail and overgrown road should be followed easterly to determine if they lead to old workings.

The following table shows the results of lognormal probability graphs which are used to determine background, threshold, and anomalous values of silver,

lead, and zinc, in soils overlying the Slocan Group rock. These plots have been derived from years of cumulated data.

	Ag, ppm	Pb, ppm	Zn, ppm
Background	< 2.3	< 38	Possibly
Threshold	2.3 to 4.9	38 to 150	two populations
Anomalous	> 4.9	> 150	> 980

Lead values are only occasionally above background levels; low threshold quantities occur with some anomalous zinc concentrations. The tendency of silver and zinc to cluster together is suggestive of zinc mineralization with subordinate silver of the type mined from the Lucky Jim deposit to the north of the Merit and Rich claims.

The most prominent anomaly is present on lines 6+00N, 7+00N, and 8+00N in the vicinity of 8+00E to 10+00E. Dispersion of metals is controlled by slopes which descend from the southwest or northeast into a valley which drains northwesterly. Net transport of soil is eventually to the northwest; thus it appears that the source of the anomaly is south of line 7+00N, and possibly near or immediately north of line 6+00N. The possibility of more than one source should be considered in this locale. Silver values are as high as 14.2 ppm and zinc up to 2680 ppm.

A second group of chiefly threshold to anomalous silver values occurs on lines 3+00N, 4+00N, and 5+00N from the base line easterly to 3+00E. The highest silver concentration is 5.0 ppm at 4+00N 00, and the highest zinc of 1150 ppm is at 5+00N 2+50E. These may be related to northeasterly trending quartz veins which are observed nearby. Quartz veins of this orientation occurred in the upper parts of important silver-lead deposits in the Rambler-Cariboo mine, approximately 2 km to the south (Cairnes, 1935, pp. 103-107).

A third cluster of threshold to anomalous silver without appreciable zinc is located on lines 6+00N and 7+00N from 0+50E to 1+00E. No outcrop was observed near these sample sites.

The fourth area of interest contains chiefly zinc up to 1725 ppm, on the western portions of lines 9+00N to 11+00N near 7+00W to 10+00W. The anomaly

terminates on line 9+00N; a source is presumed to be upslope to the south. Several weakly anomalous zinc values scattered to the northeast as far as a creek at 11+00N 2+50W could be related if a northeasterly trending structure is the mineralized source.

The fifth target lies on the western ends of lines 4+00N and 5+00N on steep slopes rising out of McGuigan Creek valley. Silver up to 4.8 ppm and zinc to 1800 ppm are contained in this grouping. Slopes rise steeply to the southwest and metals may have originated outside the claims. Patches of transported overburden in McGuigan Creek may remain above (southwest of) the boundary shown on the geology map and may have contributed anomalous values.

Other single point threshold or anomalous values should be checked with resampling.

CONCLUSIONS

Geological mapping has shown that competent rocks are present and that northeasterly fractures cross the property. Sulphide mineralization in narrow quartz-filled fractures within granite is exposed in an adit on the Megan claim; this occurrence is not considered to be a structure which has adequate potential to host an ore shoot.

Soil geochemistry has been successful in suggesting five areas within which additional exploration should be concentrated. Zinc and silver geochemical anomalies without significant accompanying lead suggest sources similar to the type of mineralization mined from the nearby Lucky Jim deposits.

RECOMMENDATIONS

Phase 1

a) The five clusters of geochemical anomalies should be detailed with closely spaced soil sampling and geological mapping. Single-sample anomalous values should be checked by re-sampling in the immediate vicinity.

b) If the anomalies which were obtained in the 1985 survey are substantiated and if no obvious source of metals can be located by geological mapping, a programme of road preparation and dozer-backhoe trenching should be initiated.

Phase 2

Dependent upon the results of Phase 1, a preliminary programme of diamond drilling may be required.

COST ESTIMATE

Phase 1

a)	Geological mapping	\$ 2,000	
	Soil sampling	2,000	·
	Analyses	1,500	
	Room, board, supplies	500	
	Vehicle, travel	500	
	Supervision and engineering	500	
	Contingencies @ 10%	7,000	• * •
		7,700	\$7,700
b)	Road preparation, trenching	\$12,000	
	Analyses	1,000	
	Room, board, supplies	1,000	
	Vehicle, travel	1,000	
	Supervision, engineering	2,000	
	Report	2,000	
	Contingencies @ 10%	19,000 1,900	
		20,900	20,900

Total, Phase 1

\$ 28,600

\$ 28,600

Phase 2

Diamond drilling, allow

\$ 90,000

Total, Phases 1 and 2 \$118,600

Results of Phase 1 should be compiled into an engineering report; continuance to Phase 2 should be contingent upon receiving favourable conclusions and recommendations from an Engineer.

Respectfully submitted, PROFESSIO AL O Minit 21032 Locke B. Goldsmith, P.Eng. Ver or Owe Consulting Geologist

Vancouver, B.C. October 22, 1985

ENGINEER'S CERTIFICATE

LOCKE B. GOLDSMITH

- I, Locke B. Goldsmith, am a Registered Professional Engineer in the Province of Ontario and the Northwest Territories, and a Registered Professional Geologist in the State of Oregon. My address is 301, 1855 Balsam Street, Vancouver, B.C.
- 2. from have a B.Sc. (Honours) degree in Geology I Michigan Technological University, a M.Sc. degree in Geology from the University of British Columbia, and have done postgraduate study in Geology at Michigan Tech and the University of Nevada. I am a graduate of the Haileybury School of Mines, and am a Certified Mining Technician. I am a Member of the Society of Economic Geologists, the AIME, and the Australasian Institute of Mining and Metallurgy, and a Fellow of the Geological Association of Canada.
- 3. I have been engaged in mining exploration for the past 26 years.
- I have authored the report entitled, "Geology and Soil Geochemistry, Merit et al. Mineral Claims, Slocan Mining Division, McGuigan Creek, Zincton, B.C." dated October 22, 1985. The report is based upon fieldwork and research supervised by the author.
- 5. I have no ownership in the property, nor in the stocks of Trove Resources Ltd.
- 6. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds.

SED PROFESSION R Respectfully submitted, RECIS Locke B. Goldsmith, P.Eng. OF WOE OF ON **Consulting Geologist**

Vancouver, B.C. October 22, 1985

REFERENCES

- Tully, Donald W. April 3, 1984. Report on the Merit Mineral Claim, Seaton Creek-McGuigan Creek-Zincton Area, Slocan Mining Division, Sandon, B.C.
 Private report for Trove Resources Ltd.
- Cairnes, C.E. 1935. Description of Properties, Slocan Mining Camp, B.C. G.S.C. Memoir 184.

COST STATEMENT, 1985 PROGRAMME

1.	Personnel		
	L.B. Goldsmith, Sept. 22, $\frac{1}{2}$ 23, 24, 25, Oct. 3, 4, $\frac{1}{2}$ 6, 7, 8, $\frac{1}{4}$ 9, 14, $\frac{1}{4}$ 17, $\frac{1}{4}$ 18, $\frac{3}{4}$ 19, $\frac{1}{2}$ 20, $\frac{1}{2}$ 21, $\frac{3}{4}$ 22, total 12 $\frac{1}{4}$ days @ \$360/day	\$ 4,410.00	
	 G. Bennett, Sept. 24, 25, 26, 27, 28, Oct. 3, 4, ³/₄ 7, total 7³/₄ days @ \$220/day 	1,705.00	
	J. Subotin, Sept. 26, 27, 28, total 3 days @ \$220/day	660.00 \$ 6,775.00	\$ 6,775.00
2.	Accommodation, Food, Supplies		
	Total \$466.49 22¼ man days = \$20.97/man/day		466.49
3.	Transportation		
	4x4 vehicles, 12 days @ \$45/day 2250 km @ \$.30/km Gas	\$ 540.00 675.00 174.50	1 000 50
	· ·	\$ 1,389.50	1,389.50
4.	Analyses		
	338 soil samples (geochem) cost 1 rock sample (geochem) cost 4 assays cost Waybills	1,530.106.30101.0048.50	
		\$ 1,685.90	1,685.90
5.	Report		
	Drafting, photocopying, typing, materials		1,130.38
		TOTAL	\$11,447.27

APPENDIX

Gold F.A.-A.A. Combo Method ppb:

For low grade samples and geochemical materials, 10 gram samples are fused in litharge, carbonate and siliceous flux with the addition of 10 mg of Au-free Ag metal and cupelled. The silver bead is parted with dilute HNO3 and then treated with aqua regia. The salts are dissolved in dilute HCl and analyzed for Au on an atomic absorption spectrophotometer.

Detection limit: 5 ppb

Copper, Lead, Zinc, Silver ppm:

1.0 gm sample is digested with perchloric-nitric acid (HC104-HN03) for approximately 2 hours. The digested sample is cooled and made up to 25 mls with distilled water. The solution is mixed and solids are allowed to settle. Copper, lead, zinc and silver are determined by atomic absorption techniques. Silver and lead are corrected for background absorption.

Detection limit: Copper, Zinc - 1 ppm Silver - 0.2 ppm Lead - 2 ppm

Arsenic ppm:

A 1.0 gm sample is digested with a mixture of perchloric and nitric acid to strong fumes of perchloric acid. The digested solution is diluted to volume and mixed. An aliquot of the digest is acidified, reduced with K1 and mixed. A portion of the reduced solution is converted to arsine with NaBH4 and the arsenic content determined using flameless atomic absorption.

Detection limit: 1 ppm

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone:

(604) 984-0221 Telex: 043-52597

Analytical Chemists

•

Geochemists • Registered Assayers

CERTIFICATE OF ANALYSIS

TO : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

CERT. #	:	A8516901-001-A
INVOICE #	:	18516901
DATE	:	5-0CT-85
P•O• #	:	NONE
TROVE		

Sample	Prep	Pb	Zn	Ag			
description	code	mqq	ppm	opm			
1+00N 0+00	201	21	485	1.0			
1+00N 0+50E	201	17	480	1.6			
1+00N 1+00E	201	21	975	1.4			
1+00N 1+50E	201	15	755	4•1			
2+00N 0+00	201	27	575	1.6			
2+00N 0+50E	201	71	335	1.1			
2+00N 1+00E	201	22	355	0.6			
2+00N 1+50E	201	33	340	2.1			
2+00N 2+00E	201	28	195	0.6			
3+00N 0+00	201	26	460	1.4			
3+00N 0+50E	201	15	540	2.2			
	201	20	485	3.6			
()00N 1+00E (8)	201	14	473	2.2			
3+00N 1+50E	201	15	390	1.1			
3+00N 2+00E	201	17	550	1.2			
3+00N 2+50E	201	23	445	0.5			
3+00N 0+50W	201	17	400	1.2	·		
3+00N 1+50W	201	14	330	1.5			
3+00N 2+00W	201	16	490	1.8			
3+00N 2+50W	201	18	395	1.5			
3+00N 3+00W	201	24	168	1.8			
BL 4N	201	16	310	5.0			
4+00N 0+50E	201	11	455	2•2			
4+00N 1+00E	201	12	270	3.8			
4+00N 1+50E	201	12	645	3.8			
4+00N 2+00E	201	64	278	1.5	-	·	
4+00N 2+50E	201	14	155	2.5			
4+00N 3+00E	201	12	218	4.2			
4+00N 3+50E	201	13	218	0.4			
4+00N 4+00E	201	13	85	0.8			
4+00N 4+50E	201	16	157	0.4			
4+00N 5+00E	201	15	223	0.4			
4+00N 5+50E	201	12	165	0.3			
4+00N 6+00E	201	7	110	0.2			
4+00N 6+50E	201	8	21	0.1			
4+00N 7+00E	201	9	245	0.3			
4+00N 7+50E	201	12	118	0.3			
00N 8+00E	201	13	33	0.5			
00N 8+50E	201	13	146	1.6			
4+00N 9+00E	201	11	238	1.6			
		<u> </u>		<u> </u>	•	0.0	VOI rev. 4/8

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221

Analytical Chemists

hemists • Geochemists

Registered Assayers

Phone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3 CERT. # : A8516901-002-A INVOICE # : I8516901 DATE : 5-0CT-85 P.O. # : NONE TROVE

Sample	Prep	Pb	Zn	Ag		
description	code	ppm	ppm	ppm		
4+00N 9+50E	201	10	285	1.2	 	
4+00N 0+50W	201	9	300	0.8	 	
4+00N 1+00W	201	12	285	2.3	 ·	
4+00N 1+50W	201	15	295	1.3	 	
4+00N 2+00W	201	14	438	3.0	 	
4+00N 2+50W	201	16	350	2.3	 ÷-	
4+00N 3+00W	201	15	265	1.0	 	
4+00N 3+50W	201	20	205	1.0	 	
4+00N 4+00W	201	10	270	1.5	 	
4+00N 4+50W	201	13	245	1.7	 	
4+00N 5+00W	201	14	345	1.4	 	
	201	17	340	1.2	 	
()-00N 6+00W	201	15	580	3.4	 	
4+00N 6+50W	201	108	2100	6.0	 	
4+00N 7+00W	201	10	175	0.3	 	
4+00N 7+50W	201	145	610	1.8	 	
4+00N 8+00W	201	25	430	1.6	 	<u> </u>

Certified by .

VOI rev. 4/85

HautBichler

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

Geochemists

Registered Assayers

Γ		· · · · · · · · · · · · · · · · · · ·
	CERTIFICATE	OF ANALYSIS

1-A

TD : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER. B.C. V6K 3M3

CERT• #		:	A8516878-00
INVOICE	#	:	I8516878
DATE		:	5-0CT-85
P.O. #		:	NONE

Sample	Prep	Pb	Zn	Ag			
description	code	ppm	DDM	pom			
4N 08+50W	201	30	730	0 - 8			
4N 09+00W	201	28	335	0.9			
4N 09+50W	201	25	580	0.9			
4N 10+50W	201	138	1530	2.2		~~	
4N 11+00₩	217	35	835	0.7			
4N 11+50W	201	38	680	2.3			
4N 12+00W	201	14	233	1.0			
4N 12+50W	217	38	292	0.7			
4N 13+00W	201	24	900	1.7			
4N 13+50W	201	32	850	1.5			
4N 14+00W	201	18	312	0.9	`		
4N 14+50W	201	13	300	1.2			
N 15+00W	201	13	165	0.9			
4N 15+50W	201	17	168	0.7			
4N 16+00W	201	62	259	0.7			
4N 16+50W	201	24	250	0.5			
4N 17+00W	201	34	375	0.4			
4N 17+50W	201	25	795	0.5	"		
4N 18+00W	201	16	425.	1.5			
4N 18+50W	201	13	450	4.8			
4N 19+00W	201	12	420	4.0			
4N 19+50W	201	20	600	1.1			
4N. 20+00W	201	14	400	2.1			
5N 11+00W	201	33	3350	2.2			
5N 11+50W	201	500	1900	10.4			
5N 12+00W	201	52	590	1.4			
5N 12+50W	201	47	475	1.6			
5N 13+00W	201	29	455	1.8			
5N 13+50W	201	32	900	1.4			
5N 14+00W	201	1550	5700	14.5			
5N 14+50W	201	32	340	1.4			
5N 15+00W	201	13	220	0.3			
5N 15+50W	201	60	530	0.8			
5N 16+00W	217	25	1800	2•2			
5N 16+50W	217	34	1500	2.8			
5N 17+00W	201	27	955	2.0			
5N 17+50W	201	32	560	0.7			
IN 18+00W	201	16	645	1.4			
N 18+50W	201	13	525	1.3			
<u>5N 19+00W</u>	201	25	900	3.1			
	<u>_</u>		,,,,		•		VOI rev. 4/85

Hart Bichler Certified by

212Brooksbank Ave.North Vancouver, B.C.CanadaV7J 2C1Phone:(604) 984-0221Telex:043-52597

Analytical Chemists

sts • Geochemists

Registered Assayers

certified by Haut Bichle

CERTIFICATE OF ANALYSIS

TO : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3 CERT. # : A8516878-002-A INVOICE # : I8516878 DATE : 5-0CT-85 P.O. # : NONE

Sample	Prep	Pb	Zn	Ag	······································		·
description	code	ppm	ppm	ppm			
5N 19+50W	201	16	870	4.0			
5N 20+00W	201	14	545	2.0			
7N 07+50W	201	135	830	2 • 1			
7N 08+00W	201	323	610	4.8			
7N 08+50W	201	35	450	1.4			
7N 09+00W	201	22	420	1.7			
7N 09+50W	201	17	193	3.3			
7N 10+00W	201	25	158	1.3			
7N 10+50W	201	12	235	0.6			
7N 11+00W	201	17	228	0.8			
7N 11+50W	201	45	207	0.6			~ -
7N 12+00W	201	16	262	0 • 8		`	
7N 12+50W	201	12	338	2.0			
7N 13+00W	201	24	395	0.9			
7N 13+50W	201	42	645	1.6			
7N 14+00W	201	27	400	1.0			
7N 14+50W	201	28	550	1.3			
7N 15+00W	201	95	615	1.4			

VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221 Phone: Telex: 043-52597

Analytical Chemists

.

Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : GOLDSMITH, MR. L. B.

#301-1855 BALSAM STREET VANCOUVER. B.C. V6K 3M3

CERT. # : A8517025-001-A INVOICE # : 18517025 DATE : 9-0CT-85 P.O. # : NONE

						• • • • • • •	
Sample	Prep	Pb	Zn	Ag	•		
<u>aescript</u>		ppm	pom	maa			······
5N 0+00E		22	290	1.4			
5N 0+50E		17	240	1.2			
5N 1+00E		12	103	1.5			
5N 1+50E		15	268	1.5			
5N 2+00E		18	238	1.2			
5N 2+50E		31	1150	3.1			
5N 3+00E		12	100	0.4			
5N 3+50E		18	98	0•4			
5N 4+00E		19	285	0.5			
5N 4+50E	201	24	57	0.1			
5N 5+00E	201	15	70	0.1			
5N 5+50E	201	11	51	0.1			
()N 6+00E	201	29	67	0.2			
5N 6+50E	201	18	207	0.5			
5N 7+00E	201	9	85	0.1			
5N 7+50E	201	6	45	0.1			
5N 8+00E	201	11	207	0.4			
5N 8+50E	201	7	114	0.5			
5N 9+00E		10	373	0.1	·		
5N 9+50E		9	103	0.4			
5N 10+00E	201	19	290	0.6			
5N 10+50E		14	135	0.5		·	
5N 11+00E		10	122	0.9			
5N 11+50E		13	245	0.6			
5N 12+00E		15	265	1.7			
5N 12+50E		15	112	1.0			
5N 13+00E		32	700	1.4			
5N 13+50E		20	960	1.3			
5N 14+00E		23	200	1.6		·	
5N 14+50E		15	68	0.2			
5N 15+00E	the second se	17	123	3 • 8		-	
5N 15+50E		32	125	1.7			
5N 0+50W		21	320	1.3			
5N 1+00W		12	57	0.6			
5N 1+50W		15	165	0.5			
5N 2+00W		10	142	0.3			
5N 2+50W		10	180	2.5			
5N 3+00W		14	240	0.8			
14 S							
5N 3+50W 5N 4+00W		14 16	265 130	2•3 3•5			
4+UUW	201	10	1.20	5.5	—		

VOI rev. 4/85

Certified by Haut Bichler

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221 043-52597

Analytical Chemists ٠

Geochemists

Registered Assayers

Phone: Telex:

CERTIFICATE OF ANALYSIS

TO : GOLDSMITH, MR. L. B.

#301-1855 BALSAM STREET VANCOUVER, B.C. V6K 3M3

CERT. # : A8517025-002-A INVDICE # : 18517025 DATE : 9-UCT-85 P.O. # : NONE.

S	iample .	Prep	Pb	Zņ	Ag			
de	escription	code	mqa	ppm	ppm			
5N	4+50W	201	17	455	1.1			
5N	5+00W	201	17	240	1.5			
5N	5+50W	201	19	325	1.3			
5N	6+00W	201	14	250	0.3			*
5 N	6+50W	201	15	355	2 • 1			
5N	7+00W	201	18	410	0.5			
5N	7+40W	201	25	372	0.7			
6N	0+00E	201	10	55	0.6			
6N	0+50E	201	14	288	6.1			
6N	1+00E	201	24	348	1.6		·	
6N	1+50E	201	27	410	1.5			
-6N	2+00E	201	51	325	2.5			
N (2+50E	201	17	210	1.1			
-6N	3+00E	201	13	143	0.4			
6 N	3+50E	201	22	360	0.9			
6N	4+00E	201	27	383	1.1			.
6N	4+50E	201	28	285	3.5			
6N	5+00E	201	32	300	0.9			
6 N	5+50E	201	27	240	0.5	·		
6N	6+00E	201	24	210	0.9			
- 6N	6+50E	201	7	47	0.1			
6N	7+00E	201	19	98	0.3	~ ~		
6N	7+50E	201	21	150	0.3			
6N	8+00E	201	32	385	0.4			
6N	8+50E	201	20	140	0.4	·		
6N	9+00E	201	88	1100	1.8			
6N	9+50E	201	43	740	1.7			
6N	10+00E	201	3	62	0.4			
6N	10+50E	201	18	620	0.7			
6N	11+00E	201	6	123	0.5			
6N	11+50E	201	12	153	0.7			-
6N	12+00E	201	12	223	1.5			
6N	12+50E	201	13	53	1.3			
6 N	13+50E	201	19	238	1.4			
	14+00E	201	13	57	0.7			
	14+50E	201	43	463	1.8			
	15+00E	201	19	155	0.5		-	
1 SN	15+50E	201	22	300	0.5			
SN SN	0+50W	201	15	265	0.5			
6N	1+00W	201	14	123	0.3			
							0.0	VOI rev. 4/85
					1	How to	rellion	
				Certifi	ed by			-

Certified by .

Analytical Chemists •

Registered Assayers Geochemists •

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

CERTIFICATE OF ANALYSIS

TO : GOLDSMITH, MR. L. B.

#301-1855 BALSAM STREET VANCOUVER, B.C. V6K 3M3

CERT. # : A8517025-003-A INVDICE # : 18517025 9-0CT-85 DATE : P.O. # : NONE

~	ample	Prep	Pb	Zn	Ag			•
de	scription	code	ppm	ppm	mqq			
6N	1+50W	201	37	200	0.8			
6N	2+004	201	15	320	1.3			
6N	2+50W	201	14	233	0.9			
6N	3+00W	201	24	235	1.7			
6N	3+50W	201	17	247	1.5		فنت جيره	
6N	4+00W	201	18	273	1.2			
6N	4+50W	201	13	278	1.6			
6N	5+00W	201	17	213	0.6			
6N	5+50W	201	16	250	0.8			
5 N	6+00W	201	20	163	0.4			
6N	6+50₩	201	33	229	2.2			
6N	7+00W	201	25	195	1.0			
5N	7+50W	201	27	262	0.3			
~~7N	0+00E	201	10	253	0.9			
7N	0+50E	201	24	255	4.5			
7 N	1+00E	201	23	225	3.5			
7 N	2+00E	201	14	253	2.4		and the second second	
7 N	2+50E	201	17	295	1.2			
7N	3+00E	201	14	152	0.9			
7N	3+50E	201	15	370	1.5			
7 N	4+00E	201	28	513	1.9	,		
7 N	4+50E	201	18	152	0.8			
7N	5+00E	201	20	163	0.5			
7 N	5+50E	201	8	64	0.9			
7N	6+00E	201	26	190	0.9			
7N	6+50E	201	31	257	1.2			
7N	8+00E	201	22	225	0.6	· · · · ·		
7N	8+50E	201	55	2200	3.7			
7.N	9+00E	201	16	640	6.8			
7 N	9+50E	201	27	1280	2.6			
	11+00E	201	34	1500	2.9			
	11+50E	201	25	580	2.0			
	12+00E	201	33	480	1.9			
	12+50E	201	6	34	3.0			
	13+00E	201	20	405	2.3			
8N	0+00E	201	13	300	2.3			
8N	0+50E	201	17	210	0.5			
6 BN	1+00E	201	21	155	1.6			
N8.	1+50E	201	15	183	0.4			
8N	2+00E	201	20	127	1.1			
						10	<u> </u>	VOI rev. 4/85
					14	tartos.	chiler	

Certified by

Geochemists

212 Brooksbank Ave. North Vancouver, B.C. V7J 2C1 Canada Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : GOLDSMITH, MR. L. B.

#301-1855 BALSAM STREET VANCOUVER, B.C. V6K 3M3

CERT. # : A8517025-004-A INVOICE # : 18517025 DATE 9-0CT-85 : P.O. # : NONE

Sample	Prep	Pb	Zn	Ag			
aescription	code	ppm	ppm	ppm			
8N 2+50E	201	24	207	0.5		·	
8N 3+00E	201	48	325	1.5			
8N 3+50E	201	40	293	1.0			
8N 4+00E	201	16	198	0.4			
8N 4+50E	201	27	262	0.5			
8N 5+00E	201	9	51	0.6			
8N 5+50E	201	. 17	470	2.3			
8N 6+50E	201	30	193	0.4	'		
8N 7+00E	201	45	500	1.3			
8N 7+50E	201	22	400	1.5			
3N 8+00E	201	43	22.30	1.9			
	201	57	2580	14.2			
3N 9+00E	201	35	1230	4.8			
8N 9+50E	201	28	795	2.7			
8N 10+00E	201	25	540	1.9			·
8N 0+50W	201	15	282	1.4			
8N 1+00W	201	20	305	1.8			
8N 1+50W	217	43	690	1.9			
3N 2+00W	201	12	127	2.5			
8N 2+50W	201	21	270	1.3			
8N 3+00W	217	38	190	0.5			
8N 3+50W	201	16	138	0.8			
8N 4+00W	201	19	113	0 • 8			
8N 4+50W	201	14	158	1.1			
8N 5+00W	201	26	283	3.0			
8N 5+50W	201	34	108	2.1			
8N 6+00W	201	22	230	1 • 4			
8N 6+50W -1	201	20	233	2.8			- <u>-</u>
8N 6+50W -2	201	40	460	2.9			
8N 7+00W	201	25	420	1.8			
8N 7+50W	201	31	390	1.1			
3N 8+00W	217	56	1000	1.9			
8N 8+50W	201	19	295	1.3			
8N 9+00W	201	16	175	0.6			
8N 9+50W	201	15	390	0.6			
8N 10+00W	201	20	390	0.3			
8N 10+50W	201	16	230	0.2			
3N 11+00W	201	17	290	0.8			
N 11+50W	201	15	175	0.4			
8N 12+00W	201	35	255	0.2			
					•		VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 (604) 984-0221 043-52597

VOI rev. 4/85

Analytical Chemists Geochemists

Chemists	• Ge	ochemi	sts •	Register	ed Assayers	Phone: Telex:	()
CERTI	FICAT	E OF	ANALY	SIS -			

TD : GOLDSMITH, MR. L. 8.

#301-1855 BALSAM STREET VANCOUVER, B.C. V6K 3M3

CERT. #		:	A8517025-005-A
INVOICE	4	:	I8517025
DATE		:	9-0CT-85
P.O. #		:	NONE

Sample	Prep	Pb	Zn	Ag		
description	code	ppm	ppm	ppm		
8N 12+50W	201	23	630	0.2	 	
8N 13+00W	201	24	595	0.7	 	

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

Analytical Chemists

CERTIFICA

Geochemists

Registered Assayers

TF	٥F	ANALYSIS	1
	<u> </u>] [
			r.

TO : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3

CERT. #	:	A8517260-001-A
INVOICE #	:	18517260
DATE	:	15-0CT-85
P.O. #	:	NUNE
TROVE		

CC: ARCTEX "SILVERTON, B.C."

00 - 11(01 - 11	OTEVENION					
Sample	Prep	Рb	Žn	Ag		
description	code	ppm	ppm	ppm		
BL 9N 0+00	201	27	720	0.7		
BL 9N 0+50W	201	17	202	0.9		
BL 9N 1+00W	201	33	287	1.4		
BL 9N 1+50W	201	25	375	0.5		
BL 9N 2+00W	201	27	267	1.0		
BL 9N 2+50W	201	21	182	1.4		
BL 9N 3+00W	201	18	268	0.9		
BL 9N 3+50W	201	25	264	1.6		
BL 9N 4+00W	201	23	145	0.8		
BL 9N 4+50W	201	26	375	0.9		
BL 9N 5+00W	201	19	310	1.0		
BL 9N 5+50W	201	25	405	1.0		
L 9N 6+00W	201	70	342	1.0	·	
BL 9N 6+50W	201	33	410	1.9		
BL 9N 7+00W	201	35	1720	1.6		
BL 9N 7+50W	201	17	380	0.5	· •••	
BL 9N 8+00W	201	57	1725	2.2		
BL 9N 8+50W	201	22	635	0.6		
BL 9N 9+00W	201	37	229	0.3		
BL 9N 9+50W	201	69	242	1.0		
BL 9N 10+00W	201	23	468	0.6		
BL 9N 10+50W	201	17	166	0.6		
4						

Certified by Haut Bichles

VOI rev. 4/85

212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1 Phone: (604) 984-0221 Telex: 043-52597

VOI rev. 4/85

Analytical Chemists • Geochemists

Registered Assayers

CERTIFICATE OF ANALYSIS

TO : ARCTEX ENGINEERING

301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3 CERT. # : A8517172-001-A INVOICE # : I8517172 DATE : 15-0CT-85 P.O. # : NONE

cc:	ARCI	ΓEΧ,	SIL	VER	TON	, B	• C	•
Samn	10		Рг	en			Ph	

	SILVERIO				 	
Sample	Ргер	Pb	Zn	Ag		
description	code	ppm	ppm	ppm	 	
BL 10+00N	201	15	235	0.8	 	
10N 00+50W	201	19	265	1.9	 	
10N 01+00W	201	12	175	3.0	 	
10N 01+50W	201	16	320	1.1	 	
10N 02+00W	201	16	370	1.2	 	
10N 02+50W	201	18	330	0.9	 	
10N 03+00W	201	12	228	1.0	 	
10N 03+50W	201	14	245	1.4	 	
10N 04+00W	201	13	309	0.5	 	
10N 04+50W	201	13	390	0.7	 	
10N 05+00W	201	22	345	2.1	 	
10N 05+50W	201	15	270	0.7	 	
()ON 06+00W	201	16	275	2.2	 	
10N 06+50W	201	16	440	1.9	 	
10N 07+00W	201	23	795	0.7	 	
10N 07+50W	201	42	715	1.5	 	
10N 08+00W	201	20	460	0.6	 	
10N 08+50W	201	20	250	0.2	 	
10N 09+00W	201	12	1045	1.9	 	
10N 09+50W	201	13	330	1.2	 	
10N 10+00W	201	10	135	0.1	 	
11N 01+50W	201	52	590	2.0	 	
11N 02+00W	201	18	270	2.1	 	
11N 02+50W	201	20	905	1.4	 	
11N 03+00W	201	10	370	2.1	 	
11N 03+50W	201	14	175	0.5	 	
11N 04+00W	201	11	310	2.3	 	
11N 04+50W	201	14	365	1.5	 	
11N 05+00W	201	21	1045	1.6	 	
11N 05+50W	201	32	375	1.5	 	
11N 06+00W	201	18	340	0.5	 	
11N 06+50W	201	12	165	0.5	 	
11N 07+00W	201	30	740	1.2	 	
12N 01+50W	201	16	308	2.2	 	
12N 02+00W	201	14	775	1.0	 	
12N 02+50W	201	15	285	2.3	 	
12N 03+00W	201	12	270	0.9	 	
2 12N 03+50W	201	9	170	4.3	 	
22N 04+00W	201	13	185	0.4	 	
	_ · -	-				

Certified by

C	hemex Labs Ltd.	212 Brooksbank Ave. North Vancouver, B.C. Canada V7J 2C1		
Analytica	CERTIFICATE OF ANALYSIS	Phone: (604) 984-0221 Telex: 043-52597		
TO : ARCTEX ENGINEERING 301 - 1855 BALSAM ST. VANCOUVER, B.C. V6K 3M3	CERT• #	: A8516900-001-A : I8516900 : 5-OCT-85 : NONE		

Sample	Prep	Pb	Zn	Ag		
description	code	ppm	ppm	ppm		
3+80N 1+60E	205	21	530	0.9		

-HartBichler Certified by

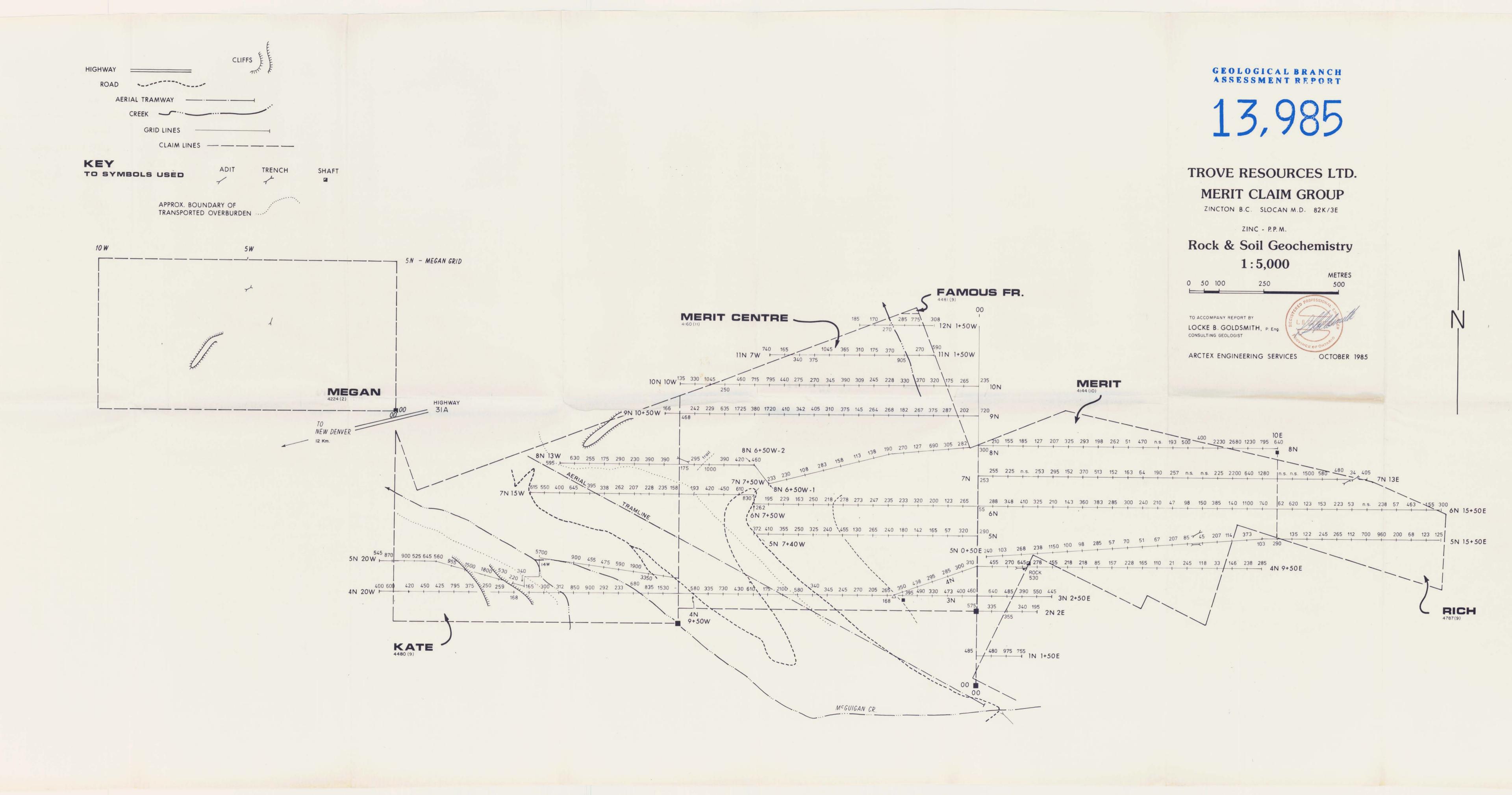
212BrooksbankAveNorthVancouver, B.C.CanadaV7J 2C1

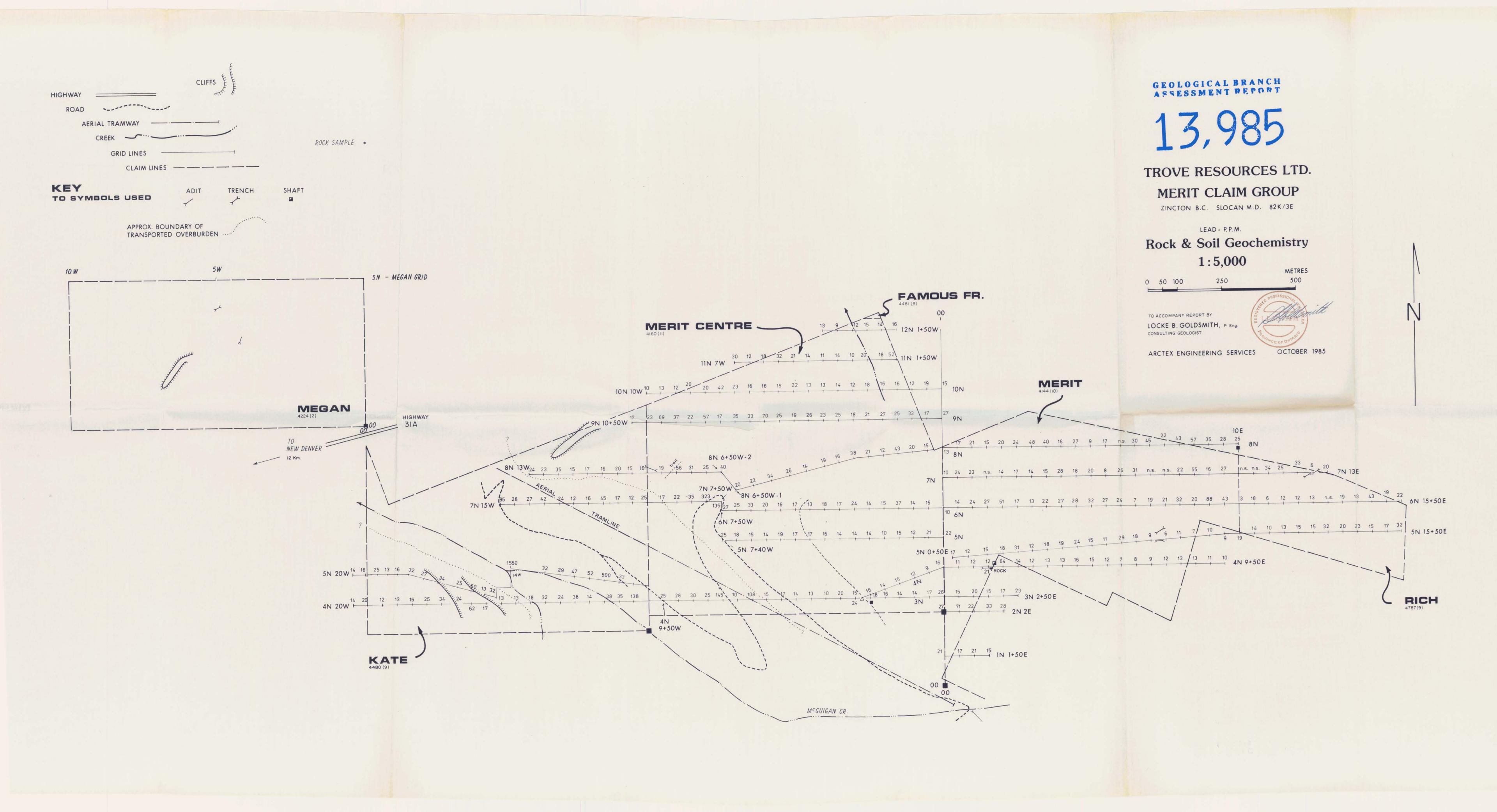
Analytical Chemists

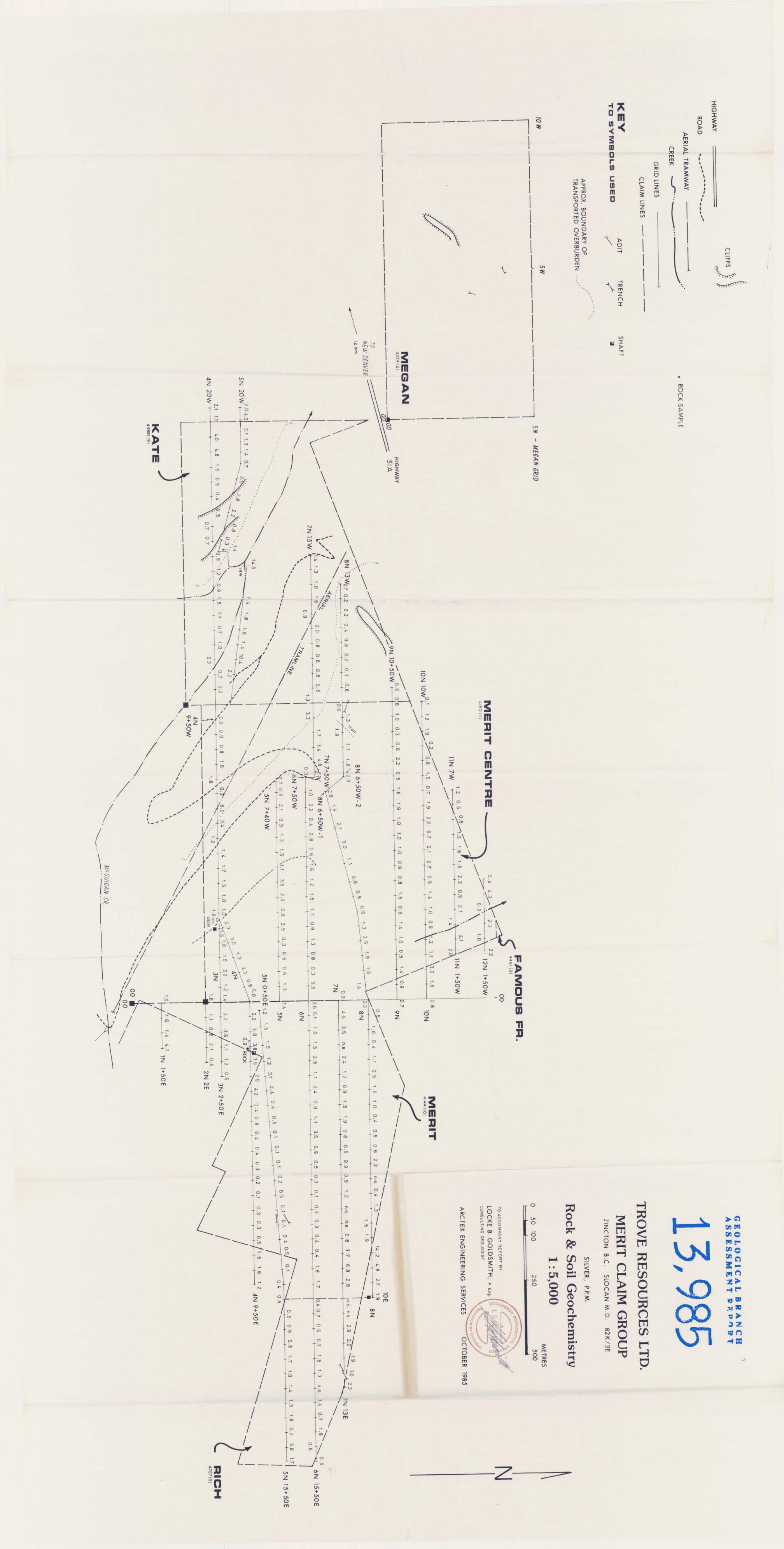
ists • Geochemists

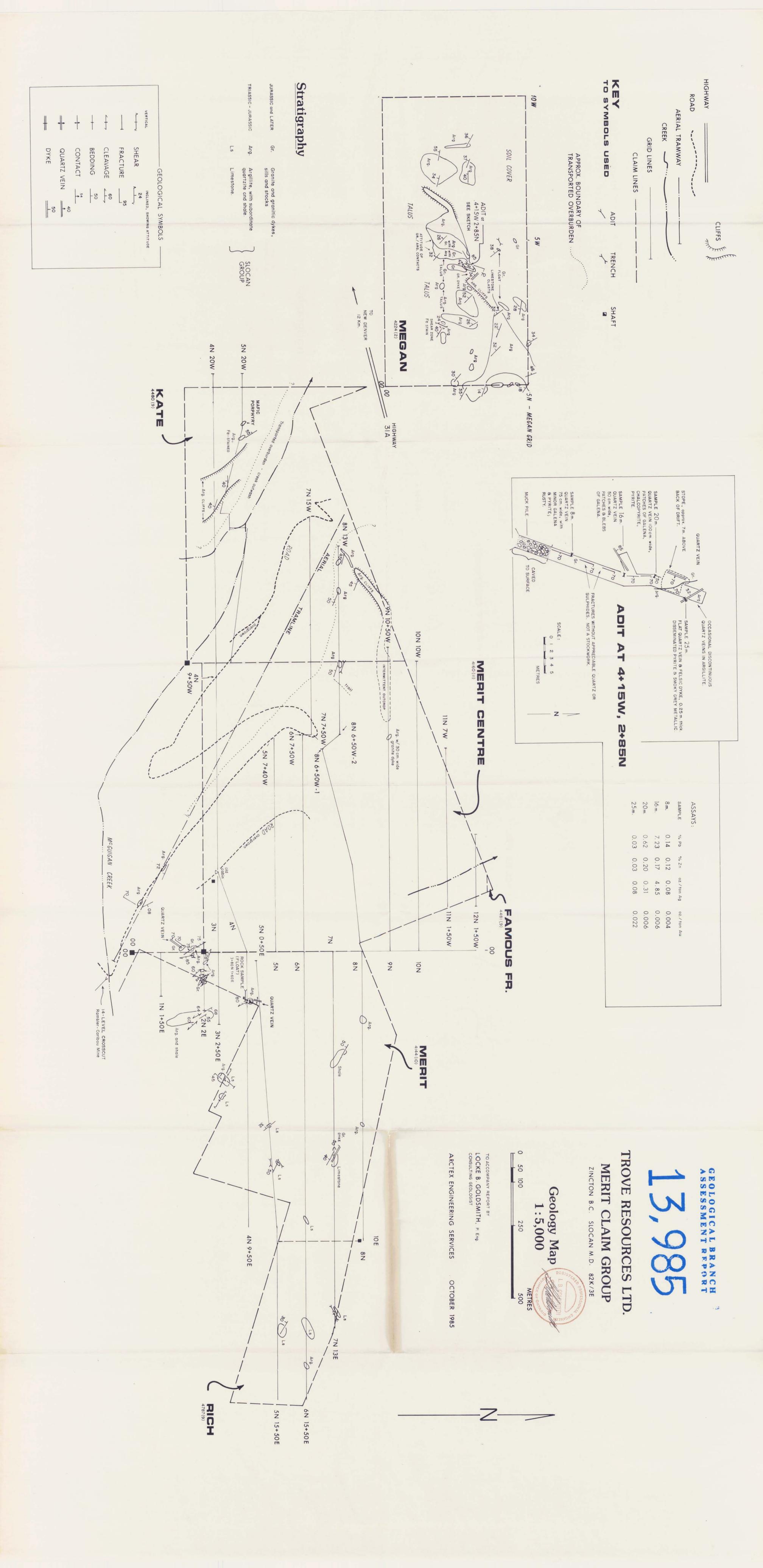
Registered Assayers

Telephone:(604) 984-0221 Telex: 043-52597


	CERTIFICATE OF ASSAY			
TO : ARCTEX ENGINEERING		CERT• #	:	A8517261-001-A
		INVOICE #	:	18517261
301 - 1855 BALSAM ST.	,	DATE	:	21-0CT-85
VANCOUVER. B.C.		P.O. #	:	NONE
V6K 3M3		TROVE		


CC: ARCTEX "SILVERTON, B.C."


Sample description	Prep code	Pb %	Zn %	Ag FA oz/T	· Au FA oz/T	
ADIT 8M	207	0.14	0.12	0.08	0.004	
ADIT 16M	207	7.23	0.17	4.85	0.006	
ADIT 20M	207	0.62	0.20	0.31	0.006	
ADIT 25M	207	0.03	0.03	0.08	0.022	


Registered Assayer, Province of British Columbia

