FOX GEOLOGICAL CONSULTANTS LTD

GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

FRIK 1 to 4, AND #1 and FRAK 1, 4 CLAIMS

Ъy

C. W. Payne, M.Sc. and P. E. Fox, Ph.D., P. Eng.

FOX GEOLOGICAL CONSULTANTS LIMITED 410 - 675 West Hastings Street Vancouver, B.C. V6B 1N2

for

GETTY CANADIAN METALS, LIMITED 1200 - 150 York Street Toronto, Ontario M5H 3S5

> Liard Mining Division NTS 10416, 11 52 28'N 129 27'W

Work Paid for by Getty Canadian Metals, Limited

October 16, 1985 GEOLOGICAL BRANCH ASSESSMENT REPORT

ية المامين مانية

85-795-14006

410 - 675 W. Hastings St., Vancouver, B.C. Canada V68 1N2 Tel. (604) 669-5736

TABLE OF CONTENTS

																								Page
SUMMARY	• •	••	•	••	•	•	•	•	•	•	•	٠	•	•	•	• ,	•	•	•	•	•	•	•	i
CONCLUS	IONS	••	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
INTRODU	CTION	•	•	••	•	•	•	•	•	•	•	•	•	•	•	.•	•	•	•	•	•	•	•	1
LOCATIO	N AND	AC	CES	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
CLAIM I	NFORM	ATI	ON	• - •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
PHYSIOG	RAPHY	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
1985 PR	OGRAM	•	•	••	•	•	•	•	•	.•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
REGIONA	L GEO	LOG	Ž	• •	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
LOCAL G	EOLOG	Y.	•	••	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	4
ALTERAT	ION A	ND I	MIN	ERA	LI	ZA'	TIC	ON	•	•	•	•	•	•	•	•	. •	•	•	•	•	•	•	6
GEOCHEM	ISTRY	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
STATEME	NT OF	CO	STS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
STATEME	NT OF	QU	ALI	FIC	AT	101	NS		•	•	•	•	•	•	è	•	•	•	•	•	•	•	•	8

FIGURES

FIGURE	1	-	KEY	MAP.	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
FIGURE	2	-	CLA:	IM M	\₽	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• .	•	3
FIGURE	3	-	GEOI	LOGIC	CAL	MA	P.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	pocl	ket
FIGURE	4	-	GEO	CHEM	ECA	LM	AP		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	poc	ket
FIGURE	5	-	GEO	CHEM	ECA:	LМ	AP	_	F	RA	K	4	GR	ID)				•		•	•	•	poc	ket

APPENDICES

APPENDIX	I	-	ANALYTICAL RESULTS)
APPENDIX	II	_	DETAILED THIN SECTIONS AND HAND SAMPLE	
			DESCRIPTIONS 10)

SUMMARY

Geological mapping and geochemical sampling work were done on the Frik 1-4, And #1, and Frak 1 and Frak 4 claims (97 units) between August 8th and August 17th, 1985. The purpose of this work was to evaluate several geochemical anomalies obtained in this region during reconnaissance work in 1984.

Geological mapping was done over the entire claim block at a scale of 1:10,000. In addition, 271 rock, soil and silt samples were collected during routine mapping of the property and from a soil grid prepared on the Frak 4 claim where 168 soil samples were collected. Samples were analyzed for 30 standard elements by ICP methods and for gold by atomic absorption techniques. Results are reported herein.

CONCLUSIONS

Geological work indicated that the claims are underlain by barren serpentinite of the Cache Creek Group and volcanic rocks and sediments of the Stuhini formation. Geochemical results returned background concentrations for most elements. No further work is warranted.

INTRODUCTION

E

ن قىتقا

1

1

12

ال الله

199 199

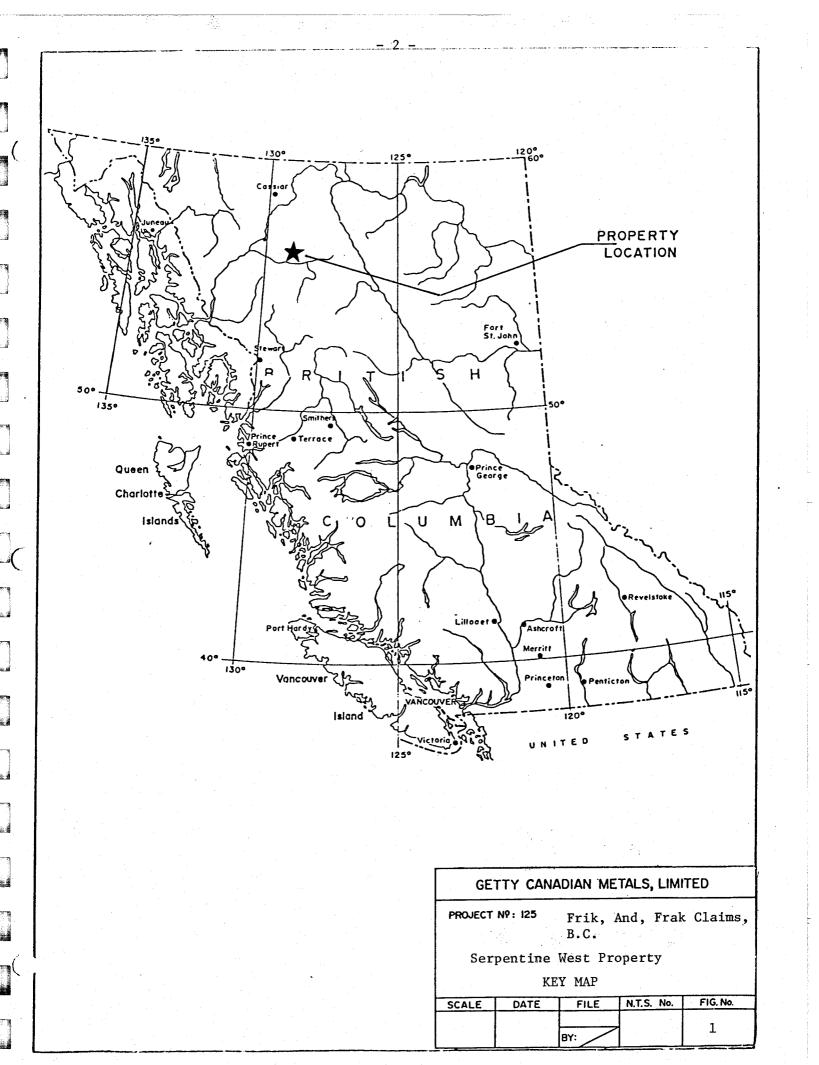
Results of work done on the Serpentine West prospect, comprising the Frik 1-4, And #1, and Frak 1, 4 claims (97 units), are provided in this report. Assessment work pertinent to maintaining two years on each claim was filed on August 26, 1985. The property was originally staked in 1984, part of a regional reconnaissance program.

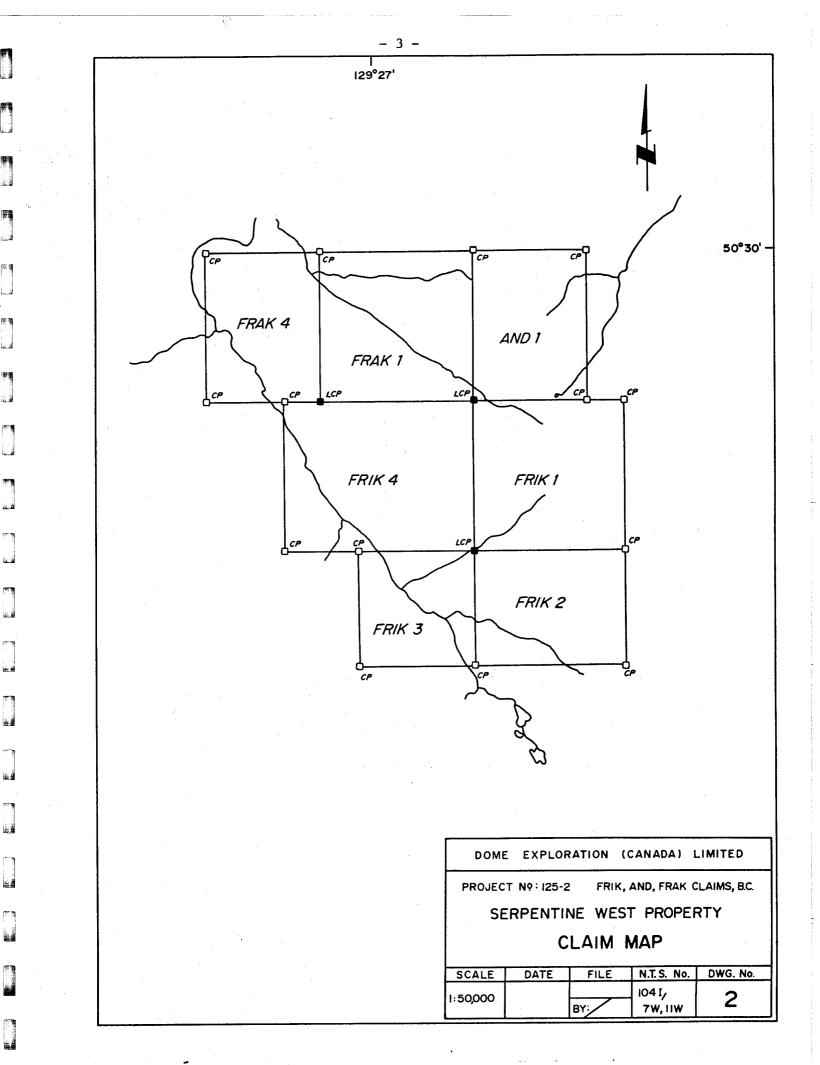
- 1 -

LOCATION AND ACCESS

The claims are situated 40 kilometres east of Dease Lake, B.C. and are reached by helicopter from that point (Figure 1). Dease Lake is some 380 kilometres from Stewart, B.C.

CLAIM INFORMATION


The Serpentine West prospect comprises the following block of contiguous claims.


Name	Units	Record No.	Expiry Date
· · · ·			
Frik 1	16	3191	September 1, 1987
Frik 2	12	3192	September 1, 1987
Frik 3	9	3193	September 1, 1987
Frik 4	20	3194	September 1, 1987
And 1	12	3195	September 1, 1987
Frak 1	16	3189	September 1, 1987
Frak 4	12	3190	September 1, 1987

Expiry dates provided assume all assessment work applied for on August 26, 1985 is accepted. All claims were grouped into the Serpentine West 1 group on August 26, 1985. A claim map is given in Figure 2.

PHYSIOGRAPHY

The terrain covered by the claim block comprises part of the rugged, mountainous ridges and peaks typical of this part of northern British Columbia. Dome Mountain, some ten kilometres west of property, rises to 2,000 metres. Vegetation is sparse, typically clumps of alpine spruce near ridge summits and wooded valleys below. Elevations range from 1,370 to 2,000 metres.

1985 PROGRAM

. قىقا

44

4

2

The 1985 program consisted of geological mapping, soil sampling, and rock chip sampling of selected outcrops. Work was done between August 8th and 17th, 1985 based at Dease Lake. The work was accessed by helicopter (Yukon Airways Ltd.) on a daily basis.

Geological mapping utilized aerial photographs and a 1:10,000 map prepared by McElhanney Ltd. Thin section reports were obtained for typical rock units. Soil sampling work was done on a small grid on the Frik #4 claim. Samples here were collected from a `B' horizon every 20 metres on grid lines spaced 150 metres apart. A total of 271 rock, soil, and silt samples were collected overall and analyzed for 30 elements by ICP methods and for gold by atomic absorption techniques by Acme Analytical Laboratories, Vancouver, B.C. Results are plotted in Figures 3, 4, 5 and tabulated Appendix I. Thin section reports and rock descriptions are provided in Appendix II.

REGIONAL GEOLOGY

The Serpentine West prospect covers a deformed and metamorphosed succession of ultramafic rocks, mafic volcanics and metasedimentary rocks, all of Mississippian-Permian age and all assigned to the Cache Creek Group. These rocks form a northwest-trending assemblage some 15 kilometres wide bounded on the northeast by the Kutcho Creek fault and to the southwest by the Nahlin fault, a northeasterly-dipping thrust fault along which Cache Creek rocks have overridden volcanics, shales and greywackes of Triassic-Lower Jurassic age. The Serpentine West property is situated at the north end of a large formation of serpentinite within the Cache Creek rocks.

LOCAL GEOLOGY

Bedrock formations, outcrop areas, lithological types, and structural data are given in Figure 3. Most of the claims north of the Nahlin thrust fault are underlain by serpentinite. On weathered surfaces this rock weathers greenish-grey, bright green, greenish-black or reddish-brown. It is intensely sheared in the east-central part of the map area. Elsewhere the serpentinite unit is massive and considerable variations are exhibited from outcrop to outcrop. At several outcrops on the property, peridotite nodules, set in a sheared serpentinite matrix, are common. The nodules commonly form elliptical masses up to one metre in diameter. The long axis of the nodules is usually parallel to the dominant foliation direction (northwest). In the south-central map area, some 450 metres west of West Creek, a 50cm wide plagioclase porphyry dyke cuts a small body of serpentinite. A thin section of the dyke rock shows it to consist of coarse plagioclase phenocrysts set in a fine-grained groundmass of plagioclase, epidote, chlorite, K-feldspar, quartz and trace amounts of pyrite and magnetite. The dyke is also altered and difficult to distinguish from the host serpentinite material (thin section descriptions in Appendix II).

A sheared tuff horizon outcrops in the south-central part of the claims. Outcrops of the tuff unit are scattered over a strike length of 335 metres. The tuff horizon is 18 to 35 metres thick, light green, and iron-stained. Within the horizon are discontinuous beds of chert and limestone up to four centimetres thick.

A phyllite unit overlies the tuff horizon. The phyllite is generally grey to black, laminated and locally iron-stained on joint and fracture surfaces. The rock is made up of light and dark alternating laminae of which the lighter ones are dominantly quartz-rich. The dark bands consist of sericite, muscovite and graphite.

أشيقا

ال ا

1

4

2

Only one outcrop (west-central map area) of basic volcanic rock was found during the mapping program. The rock is greenish-black on fresh surfaces and massive. Iron-stain is common on fracture surfaces. The rock consists of 1.0 to 1.5mm plagioclase phenocrysts and large 1- to 3-millimetre glomerophenocrysts of clinopyroxene set in a very fine grained matrix of plagioclase and clinopyroxene. Veinlets of sodic plagioclase, calcite and minor amounts of chlorite are common. A thin section report is given in Appendix II.

South of the Nahlin thrust fault, the claims are underlain by Upper Triassic siltstone, shale and limestone. The siltstone unit, which can be traced across the southern part of the claims, forms massive beds up to 20m thick. It is grey, well indurated and consists of 0.5mm diameter yellowish quartz grains in a grey cryptocrystalline matrix.

An outcrop of shale was noted in the southern corner of the claims. It is grey-black, fissile and iron-stained. The shale may be gradational with the siltstone unit. Outcrops of grey, massive, medium-grained and weakly fetid limestone were found at the junction of West Creek and an unnamed creek in the southern part of the claim block.

ALTERATION AND MINERALIZATION

Generally, all Cache Creek Group rocks contain varying amounts of secondary chlorite, epidote, introduced quartz and trace amounts of pyrite and magnetite. Various rock units situated close to or within shear zones are commonly silicified and contain abundant quartz veins. The veins are discontinuous and generally 2 to 4 centimetres wide. Weak to moderate amounts of chlorite are often associated with the quartz veins.

The tuff unit in the south-central part of the claims is sheared, iron-stained and silicified over widths of 18 to 35 metres. The unit contains up to 20% disseminated pyrite, pyrrhotite and trace amounts of arsenopyrite.

An iron-stained, siliceous serpentinite in the southeast corner of the property contains a well developed quartz-chalcedony stockwork. The stockwork ranges from 5 to 15 metres wide and is exposed over a length of 40 metres. Similar iron-stained serpentinite containing quartz-chalcedony stockworks is also present in the central part of the claims. Elsewhere mariposite and pyrite are common in siliceous zones. Other minerals observed throughout are pyrite, magnetite, arsenopyrite and "limonite".

Weathering of this material has formed an iron-stained gossan up to 70 metres wide. In the northeast corner of the property, a siliceous serpentinite body contains irregular zones of poorly developed quartz stockwork, 5% disseminated pyrite and fine grained (up to 10%) magnetite.

GEOCHEMISTRY

1

5

*

2

A total of 102 rock samples were collected during routine mapping of the claims (Figure 4). Sample descriptions and analytical results are listed in Appendix I and II.

Analytical results for rocks range from 1 to 490ppb Au, 0.1 to 1.5ppm Ag, 1 to 1300ppm Cu, 2 to 3536ppm Cr and 2 to 134ppm As. Sample 4530 contains significant Au (490ppb), Cu (1300ppm) and As (134ppm). The rock material is siliceous serpentinite containing poorly developed quartz stockworks. The sample also contained 3% fine-grained disseminated magnetite. Samples 4847, 4848 and 4849 returned Ag values ranging from 1.0 to 1.5ppm. All three samples are from an outcrop of grey-black, non-calcareous shale which contains 3% pyrrhotite and 2% disseminated pyrite. Samples 4847 and 4848 are grab samples and 4849 is a chip across one metre of shale.

A total of 168 soil samples were collected on a grid on the Frak #4 claim. Samples were taken every 20 metres on grid lines spaced 150 metres apart (Figure 5). Analytical results range from 1 to 32ppb Au (three samples between 10 to 32ppb), 0.1 to 0.3ppm Ag, 12 to 49ppm Cu, 222 to 1643ppm Cr and 2 to 48ppm As (three samples between 15 to 48ppm).

- 6 -

STATEMENT OF COSTS

-

1

Accomodation and Board	\$ 1,109.48	
Air Charter	2,662.50	
Assays, Geochemical analyses	3,899.08	
Automobile Expense	272.33	
Consulting, P. E. Fox, P. Eng.	895.00	
Field Supplies	409.83	
Freight	48.97	
Reproductions and Maps	237.20	
Travel Expense	665.61	
Pencil Manuscript, The McElhanney Group	1,900.00	
Thin Sections, Vancouver Petrographics	100.00	
inin Sections, vancouver reclographics	200,000	\$12,200.00

Salaries

Name	Period	Days	Rate	Total	
C. Payne G. Goodall R. Konst	August 8 to 18 August 8 to 16 August 8 to 16	12 10 10	350 150 150	\$4,200 1,500 1,500	7,200.00

GRAND TOTAL

\$19,400.00 ____

Work was paid for by Getty Canadian Metals, Limited and applied to the Serpentine West 1 group.

FOX

8月1113月

Prepared by:

FOX GEOLOGICAL CONSULTANTS LIMITED

43

P. E. Fox, Ph.D., P.Eng.

C.W a

C. W. Payne, M.Sc. October 16, 1985

÷ 7 -

STATEMENT OF QUALIFICATIONS

I, Craig W. Payne, do hereby certify that:

1. I graduated from Brock University, St. Catharines, Ontario in 1979 with a Master of Science in Geological Sciences.

2. Since that time I have been employed as an exploration geologist in British Columbia and elsewhere.

3. I am presently temporarily employed by Fox Geological Consultants Limited, Vancouver, B.C.

4. The work described in this report was done under my direct supervision.

C. W. Payne, M.Sc.

قيك

.

. السعا

أقسقا

1 التر الم

لينا

1 ان الدينة

2.4

12.2

1

APPENDIX I

ANALYTICAL RESULTS

by

Acme Analytical Laboratories Limited 852 East Hastings Street Vancouver, B.C.

أقدعا

16. 1

SAMPLE		No PPN	Cu PPN	Pb PPM	2n PPM	Aq PPM	Ni PPN	Co PPN	Ma PPM	Fe 1	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cđ PPM	Sb PPM	Bi PPN	V PPM	Ca L	P I	La PPM	Cr PPN	Mg Z	Ba PPM	Ti Z	8 PPN	Al Z	Na Z	K Z	N PPN	Aut PPB	
4087 4088 4089 4090 4091		1 1 6 2 1	29 52 5 832 34	3 2 2 2 2	75 106 31 18 2	.3 .4 .1 .1	7 5 786 443 19	14 38 48 90 4	792 2294 831 238 46		10 13 7 6 2	5 5 5 5 5	ND ND ND ND	1 7 1 1	189 4 2 5 15	1 1 1 1	2 2 2 2 2	9 2 2 2 2		4.64 13.70 .45 1.04 .30	.06 .02 .01 .01 .01	2 2 2 2 2	8 1477 62	14.58 4.37	11 4 1 14 3	.36 .87 .01 .01 .01	4 58 6 2	2.09 2.69 .13 .15 .02	.05 .01 .01 .01 .01	.03 .01 .01 .01 .01	1 1 1 1	7 2 1 2 1	
4092 4093 4094 4095 4096		2 1 1 9 7	10 33 3 10 5	2 2 2 2 6	20 98 39 40 33	.1 .1 .1 .2 .1	44 30 37 1614 839	19	232 1481 575 1019 719	1.15 4.97 3.89 4.88 7.35	2 4 9 8 11	5 5 5 5 5	ND ND ND ND ND	1 3 1 2	6 122 34 4 1	1 1 1 1	2 2 2 3 2	2 2 2 2 2 2	7 96 119 10 21	.13 3.09 9.46 .32 .04	.01 .11 .01 .01 .01	5 4 2 2 2	1517		22 77 4 1	.01 .22 .12 .01 .01	2 3 13 33 12	.09 3.22 5.15 .25 1.33	.04 .05 .01 .01 .01	.01 .08 .01 .01 .01	1 1 1 1	1 1 2 1 1	
4097 4098 4099 4100 4101		1 3 1 1 3	49 130 37 7 43	2 9 2 2 2	9 68 17 3 71	.1 .1 .1 .1	67 88 10 16 75	8 12 2 8	110 175 139 63 182	.53 1.69 .93 .29 1.05	3 2 2 2 2 2	5 5 5 5 5	nd Nd Nd Nd Hd	1 4 1 1 3	8 22 11 1 73	1 1 1 1	2 2 2 2 2	4 2 3 6	21 64 10 3 34	.57 .39 .10 .04 .34	.07 .13 .02 .01	9 16 2 3 11	70 90 7 8 29	.34 .28 .06	7 18 21 7 18	.29 .03 .01 .09 .21	2 2 4 2 2	.15 .21 .34 .06 .22	.08 .06 .03 .04 .09	.01 .01 .03 .01 .01	1 1 1 1	2 1 1 1 1	
4102 4103 4104 4105	÷	1 1 1 2	30 103 40 49	3 7 10 2	72 79 105 23	.2 .2 .4 .1	17 12 17 96	11 20 12 10	903 1050 796 110	3.86 5.52 3.33 .64	5 5 12 2	5 5 5 5	NÐ NÐ ND ND	2 1 1 1	186 30 43 5	1 1 1 1	2 2 2 2	6 2 6 2	82 164 46 5	.78 1.44 .31	.09 .03 .09 .02	4 2 3 4	2 10 28	1.25 2.48 1.14 1.25	51 14 109 18	.25 .29 .29 .06	4 8 3		.06 .04 .02 .07	.05 .01 .12 .01	1 1 1 1	1 2 1	
4106 4107 4108 4109 4109 4110	5012	5 5 5 6 5 5	35 31 32 28 24	2 3 2 2 2	58 45 51	.1 .1 .2	981 1138 886	44 50 49 40 59	874 638 636	4.05 4.41 4.23 4.16 4.56	9 7 7 8 5	5 5 5 5 5	ND ND ND ND ND	3 2 2 2 2	12	1 1 1 1	2 2 2 2 2	2 2 2 2 5	42 34	.26	.04 .05 .02 .04 .08	3	67 77 67	1 10.18 4 8.93 3 11.94 3 9.63 7 8.78	67 81 46 56 105	.06 .12 .07 .08 .14	19 24 19 18	.90 1.08 1.30	.02 .01 .02 .03	.03 .02 .03 .03	1 1 1 1	3 4 1 4	
4111 4112 4113 4114 4115		5 6 5 5 5	20 22 22 22 22 22	2 2 2	63 55 53	.1 .1 .2	1094 1082 934	49 66 51 38 42	1080 914 588		6 7 8 9 10	5 5 5 5 5	ND ND ND ND ND	2 1 1 2 2	12 20 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	39 35	.32 .33 .20	.04 .05 .06 .04 .04	2 5 4	87 71 69	6 9.25 B 12.23 6 11.12 3 9.79 6 10.49	59 62 83 64 52	.20 .09 .09 .09 .09	17 21 21	1.26 .98 1.04 1.05 1.04	.02 .02 .02 .02 .02	.03 .02 .03 .03 .02	1 - 1 1 1	3 1 4 3 2	
4116 4117 4118 4119 4120		5 5 5 5 5	25 22 27	2 4	54 60 52	.2	976 932 1033	38	637 517 563	4.04 4.20 3.87 4.02 3.86	7 9 4 5 8	5 5 5	NÐ ND ND ND	2 2 2 2 1	17 13	- 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2		.32 .31 .30	.06 .06 .05 .04 .05	1	73 69 67	7 10.02 1 11.04 1 10.33 7 10.29 1 10.93	78 69 65 63 62	.08 .09 .08 .11 .06	14 17 13	1.04 1.08	.02 .02 .02 .02 .02	.02 .03 .02 .03 .02	1 1 1 1 1	.4	
4121 4122 4123 4124 4125		6 7 4 5	21 19 27	5 2 6	41 76 59	.1	1492 754 922	38 47	714 906 896	4.61 3.97 5.21 4.60 4.14	8 8 8 6 10	5 5	NÐ ND NÐ ND	2 1 2 2 1		1 1 1 1	2 2 2 2 2 2	2 2 4 5 2	50 38	.32 .30 .35	.02 .05 .08		90 5 56 5 71	5 14.52 4 15.81 9 7.86 4 9.59 0 13.55	29 26 72 109 41	.06 .05 .20 .11 .05	29 9 10	.67 1.47 1.22	.01 .01 .03 .02 .01	.02 .02 .03 .02 .02	1 1 1 1	- 1	
4126 4127 4128 4129 4130		5 5 5 4 5	23 19 24	2 2 2	65 79 64	i.i ;.i;	990 1047 858	40 49 37	650 844 701	4.68 4.44 4.76 4.83 4.82	4	5 5 5	NÐ HD ND ND	1 1 1 2 1	. 11	1 1 1 1	2 3 2 2 2	2 2 2 5 3	31 41 41	31 31 324 327	.07		5 BO 6 76 8 62	6 10.52 2 11.10 5 10.92 4 8.66 2 8.76	47 62	.12 .10 .15 .18 .20	10 15 6	1.10 1.08 1.12 1.38 1.65	.02 .02 .02 .02 .02	.03 .02 .03 .02 .02	1	3 3 1	

and the second s

SAMPL	E		No PPN	Cu PPN	Pb Ppn	ln PPM	Ag P pm	Ni PPH	Co PPM	Mn PPN	Fe Z	As PPM	U P pn	Au PPM	Th PPN	Sr PPN	Cd PPN	St PPM	Bi PPN	V PPN	Ca Z	P 1	La PPN	Er PPN	ilg "Z	Ba PPN	Ti Z	B PPM	Al Z	Na I	K Z	N PPN	Au # PPB	
4552 4553 4554 4555 4555 4556	50,1	5	4 4 5 5 5	23 12 21 15 18	2 6 2 2	69 81 60 72 50	.1 .2 .1 .1 .1	1243 280 1163 940 1054	33 17 41 34 38	600 723	4.02 6.10 4.16 4.32 4.35	4 5 7 6 3	5 5 5 5 8	ND ND ND ND ND	2 3 2 1 1	26 20 18 21 13	1 1 1 1	4 4 2 5 4	2 8 2 2 2	42 97 41 45 43	.43 .30 .36 .43 .36	.09 .06 .04 .05 .05	11 B 4 7 4	671 256 721 587 772	9.28	94 49 66 62 49	.16 .60 .14 .18 .14	5 19 17	1.68 1.51 1.36 1.41 1.22	.03 .04 .03 .03 .02	.04 .04 .03 .03 .02	1 1 1 1	2 2 6 2 3	
4557 4558 4559 4560 4561		·	5 4 4 5 4	20 19 27 27 24	2 2 2 2 2 2	60 89 82 59 61	.1 .1 .1 .1	1116 698 904 1001 1043	36 36 45 44 44	584 1081 1122 822 929	3.96 5.15 4.13 4.40 4.89	19 11 24 8 11	6 5 5 5 5	ND ND ND ND ND	2 1 1 1 2	18 27 31 20 20	1 1 1 1	3 3 6 4 4	2 4 3 2 2	38 55 36 40 49	.40 .44 .52 .37 .38	.03 .07 .11 .05 .04	6 7 6 5 8	527 821 873	12.22 6.46 8.93 10.65 9.95	62 85 89 68 79	.14 .26 .10 .10 .17	12 23 9	1.22 1.95 1.41 1.38 1.64	.04 .04 .03 .02 .03	.04 .03 .03 .03 .03	1 1 1 1	1 3 5 4	
4562 4563 4564 4565 4565			5 5 3 5 5	27 27 17 22 26	2 2 2 2 2 2	62 63 108 73 68	.1 .1 .2 .1 .1	1320 1093 330 943 1119	59 49 17 31 36	919	4.86 4.43 6.16 4.48 4.22	4 5 5 2 2	6 5 5 6	NÐ ND ND ND	1 2 2 1 1	16 16 20 20 15	1 1 1 1 1	4 3 2 3 2	2 2 4 2 2	46 43 70 44 42	.38 .37 .26 .39 .31	.08 .07 .10 .07 .06	5 7 17 5 6	222 784	12.15 10.73 1.70 10.22 10.87	68 72 85 77 63	.09 .10 .37 .15 .13	15 2 15	1.50 1.31 2.85 1.46 1.33	.02 .02 .04 .03 .02	.02 .04 .04 .03 .03	1 1 1 1	4 3 3 2 5	
4567 4568 4569 4570 4571			4 5 5 5	23 17 21 19 18	6 2 2 2 2	81 72 59 55 56	.1 .2 .1 .1	867 1136 1015 1208 1147	32 45 34 43 37	678 578 634	4.86 4.94 4.16 4.05 4.59	2 2 2 2 2	5 9 5 5 6	ND ND ND ND	1 1 1 3	21 14 22 21 19	1 1 1 1 1	2 2 3 3 3	2 2 2 2 2 2	50 39 39 34 41	.42 .53 .37 .36 .37	.08 .06 .04 .04 .04	8 2 5 4 6	683 718	8.31 13.95 10.31 12.05 10.63	75 38 57 53 65	.20 .08 .10 .07 .14	15	1.68 1.06 1.15 1.02 1.40	.04 .02 .02 .02 .03	.03 .03 .03 .03	1 1 1 1	2 4 3 2 3	
4572 4573 4574 4575 4576			4 5 5 6 5	15 15 21 26 21	5 3 2 2 2	64 86 49 53 67	.1 .1 .2 .3	965 905 1153 1287 988	37 47 40 48 50	999 716 700	3.72	2 2 2 2 2 2	5 5 7 8 6	ND ND ND ND	1 1 1 1 1	25 31 49 37 16	1 1 1 1	2 2 3 2 2 2	2 2 2 2 2 2	49 46 32 35 50	.38 .49 .55 .55 .39	.05 .05 .06 .05 .09	7 5 7 5 6	603 620 769	8.34 10.42 11.58 13.88 10.74	82 50 67 55 98	.22 .21 .07 .08 .13	12 14	1.32	.03 .03 .02 .02 .02	.03 .04 .03 .03 .04	1 1 1 1 1	1 5 1 3 2	
4577 4578 4579 4580 4581			4 5 4 4 5	22 25 22 38 24	6 4 5 10	91 62 78 61 96	.2 .1 .1 .1 .3	1154	22 35 31 36 38	717 701 868 788 889	5.25 4.64	3 2 2 4 4	5 6 5 5 5	ND ND ND ND ND	3 2 2 2 1	25 22 27 26 32	1 1 1 1	3 2 2 2 3	2 2 6 2 2	60 53 60 51 59	.39 .40 .44 .58 .56	.07 .05 .07 .06 .10	16 7 14 12 5	435 583 463 701 558	5.48 9.52 6.10 9.52 7.74	100 92 116 102 96	.33 .21 .31 .16 .18	11 18	2.33 1.48 1.97 1.53 1.79	.06 .03 .05 .03 .02	.04 .04 .05 .04 .04	1 1 1 1	4 3 2 2 4	
4582 4583 4584 4585 4586			4 5 6 5 5	33 24 35 28 26	5 4 5 4	72 89 51 68 62	.1 .1 .2 .1 .1	1267	29 37 40 39 38	1022 545	4.70 5.19 4.23 4.71 3.88	3 4 2 2 2 2	5 5 7 6 6	ND ND ND ND	2 2 1 1 2	43 32 19 22 19	1 1 1 1 1	2 3 3 2 2	2 2 2 2 2 2	53 52 36 43 33	.61 .53 .43 .38 .34	.08 .11 .04 .05 .04	8 11 5 8 8	627 852 781	6.23 B.19 13.72 11.36 12.22	100 147 56 71 50	.20 .19 .07 .14 .08	B 16 14 12 17	1.88 1.76 .98 1.34 .99	.03 .04 .02 .03 .02	.04 .04 .02 .03 .03	1 1 1 1	3 3 2 2 2 2	
4587			5	26	2	61	.2	1183	33	558	4.13	2	6	ND	2	27	i	4	2	41	. 39	.05	8	680	10.79	68	.13	16	1.29	.03	.03	1	3	

1

SAMPLE		I	Na PPN	Cu PPN	Pb PPM	Zn PPM	Ag PPN	Ni PPN	Co PPM	Hn PPN	Fe X	As PPN	U PPN	Au PPN	Th PPN	Sr PPN	Cd PPN	Sh PPN	Bi PPM	V PPN	Ca Z	P Z	La PPN	Cr PPN	Ng I	Ba PPN	Ti I	B PPM	AI I	Na I	K I	N PPN	Au++ PPB	Pt++ PPB	Pd++ PPB
4518			3	265	2	19	.1	322	37	343	2.16	3	5	ND	1	3	1	2	2	15	. 37	.01	2		5.62	14	.01	7	.16	.01	.01	1	6	65	97
4520			2	8	2	15	- 1	1328	10	365	1.41	2	5	ND	1	1	1	2	2	11	.01	.01	2			1	.01		1.46	.01	.01	1	1	2	2
4519			. 1	5	2	5	.1	12	1	186	. 28	2	5	ND	1	276	1	2	2	1	2.34	.01	2	3	.06	4	.01	2	.03	.01	.01	1	1		
4521			4	61	4	38	.1	728	33	600	2.73	Ś	5	ND	3	159	1	2	2		3.11	.01	9		8.58	39	.01	3	.07	.03	-03	1	1		
4522			7	9	3	18	-1	1294	52	727	3.05	7	5	ND	1	10	1	3	2	23	.60	01		1260		45	.01	31	.50	.03	.06	- 1	2		
4523			2	44	5	76	-1	409				13	. 5	ND	5	91	1	2 2	2		6.65 .08	.02	7		3.71 .38	113 7	.01	6 2	.39	.04 .05	.07	. 1	1		
4524 4525			- 1	10 53	3 2	21 52	.1 .2	- 31 44	- <u>4</u> - 11	184 433	1.14	2 3	5	ND ND	1	5 10	1	2	23	12 117	.85	.02	4	12	2.26	94	.34		2.24	.04	.08	1	1		
4323			•	55	2	JZ	• 4		••	433	J. 70	J		NV.	•	10	•	.	3	•••			•	12		••						•	•		
4526 4527			1	11 5	4	13 B	.1	15 27	2	49 117	.41 .57	2 2	5	ND ND	2	_ 3 29	· 1	2	2	B 13	.09 .20	.01	7	12 138	.09	18 10	.06 .01	3 3	.06 .48	.02 .10	.01 .01	1	1		
4528			1	J Ó	3	31	.1 .1	40	- 3	289	1.81	2	5	ND	1	16	1	2	2	21	.20	.04	4	150	.60	33	.07	· 4	. 88	.06	.04	1	- i		
4529			1.	13	5	52	.2	39	. 14	497	3.37	3	5	ND	i	17	1	2	2	48	6.54	.04	2		1.92	3	.07	3	3.58	.01	.01	1	1		
4530				1300	2	18	.1	1132	69	315		134	5	ND	1	3	1	2	2	5	.77	.02	2		7.22	1	.01	10	.26	- 01	.01	1	490		
4531			1	43	2	4	.1	110	5	119	.41	3	5	ND	2	10	1	2	2		5.98	.01	- 3	19	. 42	.4	.04		2.15	.01	.01	1	3		
4532			1	1	2	18	.1	22	2	249	.41	2	5	ND	4	10	1	2	2	2	10.74	.02	3	4	.69	1	.02		3.16	.01	.01	1	1		
4533			1	5	2	2	.1	3	1	29	.22	2	- 5	ND	1	1	- 1	2	2	1 88	-16 -48	01	2	3	.03 2,20	1 37	.01 .18	2	.07 1.89	.01 .05	.01 .02	1	1		
4534 4535			2 1	24 28	3	53 17	.1	72 21	11 3	599 93	3.20	5 2	5 5	ND ND	1	40 2	1	2	2 2	23	.02	.02 .01	2	. 9	.07	25	.01	2	.10	,01	.02	1	1		
-127		· .	•	20	•	17	•1	21	3	73	• / •	2	J	<u>u</u>	1	-	•	2	2	25		.01	۲	,	.07	23	.01					•	•		
4536			1	12	2	44	. .i	9	4	422	.80	2	5	ND	1	30	1	2	6	34	.48	.09	3	6	.45	7	.19	3	.50 .01	.03 .01	.01	1	2		
4537			1	5	3	1	-1	3	1	31	.30	2	5	ND	1	1	1	2	2	1	.01	.01	2	2	.01 .39	14	.01 .01	2	.39	.01	.01 .03	1	-1		
4538			1	13	2	17	.1	33	3 5	161 890	1.09	2	ა 5	ND ND	1	. B 11	1	2	2	14 18	.07 .24	.04	2	18 13	.05	120	.01	1	.08	.03	.01	1	3		
4539 4540			2	73 6	5 5	43 6	.1	31 154	2	95	.43	2	5	ND	1	38	1	2	2		4.50	.05	2	32	.64	97	.06	•	1.77	.02	.01	1	-1		
4541			1	7	2	B.	.1	17	3	222	.50	2	5	ND	i	6	i	2	2	9	1.70	.08	2	7	.44	10	.03		1.38	.07	.04	1	1 -		
4542 5	ILS	•	. 6	21	6	49	1	1380	50	604	3.93	7	5	NÐ	1	15	1	2	2	27	.32	.04	4	695	13.45	42	.05	24	.62	.01	.02	1	5		
4543	1		5	17	2	68	.1	704	45	781	4.22	9	5	ND	2	21	1	2	2	31	. 39	.05	6	607	10.01	66	.11	16	1.10	.02	.03	1	4		
4544			5	19	2	53	.1	1048	52	754	4.10	10	5	NÐ	ł	23	1	3	2	38	. 39	.04	- 5		10.07	60	.13	32	1.14	.03	.03	1	1		
4545	Ť.		4	17	5	88	.1	676	28	1191	3.97	6	5	NO	1	39	1	2	3	33	.59	.12	. 8	579	6.88	96	.10	16	1.10	.03	.03	1	1		
4546			5	13	6	87	.1	720	50	790		6	- 5	ND	1	20	1	3	2	43	.50	.04	5		8.92	58	.14		1.29	.02	.04	1	1		
4547			5	- 21	2	68	.2	1045	37	747	3.29	9	5	ND	1	33	1	3	2	30	.45	.08	7		8.95	79	.09		1.08	.02	.03	1	2		
4548			5	19	2	54	.1	884	48	705		10	5	NG	1	13	. 1	2	2	42	.35	.06	. 4		11.29	50	.09		1.19	.01	.03	1	3		
4549			6	24	2	63	.!	1056	61	1034		7	5.	ND	-1	15 8	1	3 5	2	38	.41 .35	.06	5		11.94	54 39	.10 .05		1.10	.02	.02 .02	1-	1		
4550			6	20	2	48	.1	1049	62	846	4.57	14	3	ND	1	8	1	3	2	38	. 22	.04	3	1149		37	.03					1	1		
4551			6	21	5	50	.1	920	50	651	4.31	9	7	ND	2	13	1	3	2	38	.33	.03	4	804	12.18	43	.09	29	1.21	.01	.03	1	1		

 111

100

and the second second

SAMPLE	No PPN			Zn PPM	Ag PPM	Ni PPM	Co PPN	Mn PPN	Fe Z	As PPN	U PPM	Au PPM	Th PPN	Sr PPM -	Cd PPN	Sb PPM	Bi PPN	V PPN	Ca Z	P Z	La PPN	Cr PPN	Mg Z	Ba PPM	ti Z	B PPM	A1 Z	Na Z	K Z	N PPH	Au# PPB			
4588 4589 4590 4591 4592	3 5 4 5 5	22 18 21	10 5 6	102 77 80 66 62	.1 .1 .2 .1 .1	557 631 439 878 936	22 33 25 31 32	799 999 562	5.35 5.25 6.22 4.15 3.59	2 4 2 9 2	6 5 5 5 5	ND ND ND ND	2 2 2 1 1	39 19 25 24 32	1 1 1 1 1	2 2 3 2 2	5 2 5 2 2	57 58 79 43 38	.53 .36 .37 .38 .48	.09 .08 .09 .06 .09	22 15 15 10 9	434		133 90 87 83 84	.36 .28 .46 .15 .10	9 -2 14	2.42 2.19 2.53 1.39 1.27	.07 .04 .04 .03 .02	.05 .04 .04 .04 .04	1 1 1 1	2 13 3 2 5			
4593 4594 4595 4596 4597	5 5 5 5 5	25 32 25	6 3	59 57 67 58 113	.1 .1 .1 .1	994 1004 1374 1099 877	40 39 36 44 47	581 600 876	3.86 3.60 3.69 3.24 3.82	6 7 6 5 7	5 5 5 5 5	ND ND ND ND	2 2 1 1 1	22 19 36 41 19	1 1 1 1	4 3 2 2 2	2 3 3 4 2	39 38 38 28 33	.37 .34 .53 .60 .39	.05 .04 .09 .16 .06	10 7 17 8 5	602 570 653 582 696 1	9.88 9.14 9.29	77 70 96 99 62	.12 .11 .10 .05 .08	13	1.24 1.18 1.25 1.03 .90	.03 .02 .03 .02 .02	.04 .04 .04 .03 .03	1 1 1 1	2 1 1 2 2			
4598 4599 4600 Souls	5	19 19	2	62 81 52	.2 .1	1114 1056 1142	52 46 43	772 574	4.58 5.39 3.98	3 7 6	5 5 5	ND ND ND	1 2 1	18 25 18	1 1 1	2 3 2	2 4 2	41 44 35	.33 .46 .34	.05 .04 .04	7 10 6	677 684 684 1	9.57 1.55	62 63 53	.17 .19 .09	10	1.28 1.15 1.00	.03 .04 .02	.04 .03 .03	1 1 1	1 1 2	- - - -		
4742 4743 4744 4745 4746	1 1 3 1 3	104	2	20 1 12 61 13	.2 .2 .4 .1 .1	94 6 4 71 86	12 1 2 25 7	33 37 1357	3.15 .28 .54 11.76 1.25	2 2 3 9 4	5 5 5 5 5	ND ND ND ND	1 1 5 3	9 5 6 7 107	1 1 1 1	2 2 2 2 2 2	2 2 2 5 2	2 4 317 1	8.86 .16 .06 19.30 8.57	.01 .01 .02 .11 .01	2 2 5 8 2	3 6 67	1.71 .04 .04 2.44 3.99	7 1 34 13 1338	.10 .01 .03 .90 .03	2 2	2.78 .05 .05 2.09 .18	.01 .01 .05 .01 .04	.01 .01 .01 .05 .02	1 1 1 1 1	1 2 1 1			
4747 4748 4749 4750	2 1 1 2	26 2	2	36 23 7 49	.1 .1 .1	41 23 37 155	8 2 3 27	49 2 177 264 689	3.35 .37 .77 5.60	2 2 3 8	5 5 5 5	ND ND ND ND	1 1 1	10 67 281 20	1 -1 1 1	2 2 2 2	2 2 2 2		.45 .93 1.75 3.80	.06 .03 .01 .04	2 2 2 2	2 3 7 476	.61 .10 .69 4.72	26 14 14 1	.12 .08 .07 .10		.95 .18 1.16 4.85	.06 .08 .06 .01	.02 .01 .02 .01	1 1 1	1 2 2 1	Pt++ PPB 2	Pd++ PPB 2	
4751 4752 4753 4754	6	2 7	1 17 5 2			830 180 61 2143	70 19 35 93	963	5.27 4.77 2.64 7.42	9 8 3 7	5 5 5 5 5	ND ND ND ND	1 5 1 t	4 10 5 2	1 1 1 1	2 2 2 2	2 2 2 2		.41 12.68 2.81 .04	.01 .14 .01 .01	2 2 2 2 2		4,29 2,40	1 1 3 7	.01 .12 .02 .01		.62 4.03 2.94 .15	.01 .01 .03 .01	.01 .01 .02 .01	1 1 1 1	1 1 1	2	2	
4758 4755 4756 4757	14	3 1 1 1(1 2)	F 8	23	.2		81 3 1 1	797 62 66 56	5,78 .40 .33 .79	B 2 4 2	5 5 5 5	ND ND ND ND	1	2 5 4 9	1	2 2 2 2 2	2 2 2 2 2 2 2	11 3 1 12	.03 .29 .06 .17	.01 .01 .01 .04	2 2 2 9	1871 1 11 5 17	20.28 .28 .04 .03	7 7 2 36	.01 .01 .01 .12	37 2 3 2	.27	.01 .91 .01	.01 .01 .01 .01	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2	
4759 4760 4761		1 30 1 11 1 2	0 9 9 12 3 9	9 67 16	.1 .2	14 50 5	3 9 3	667 854 348	.76 3.07 1.21	233	5	ND ND ND	1	4 271 17	1	2 2 2	2 2 5	20 61 20	.05 3.49 .47	.01 .08	2 4 7	14 7 16	.19 .87 .25	70 221 64	.04 .17 .26 .27	2 6 2	.11 2.31	.02 .03 .06 .07	.04 .13 .04 .04	1	2 1 1 5			
4762 4763 4764 4765		1 1 1 2	1 5 1 6 5 2	5 5 5 5	.1 .1 .1	4	15 1 2 5	802 50 49 36	.60 .68 .85	2 2 2 2 2	5 5 5	ND ND ND ND	1	55 5 4 4	1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 3 7	113 8 13 26	2.06 .24 .29 .35	.11 .02 .02 .02	2 2	4 4 22	1.41 .13 .18 .15	20 20 20 20 20	.13 .26 .29	2 2 2	.13 .07 .08	.07 .06 .07	.01 .01 .01	1	1 1 1			
4766		1 2	2 14	99	1	9	. 12	- 710	3.85	10	5	MD	2	32	. 1	2	7	/4	1.42	.10	4	12	1.00	84	.26	. 3	2.12	.03	.12	1				

FOX GEOLOGICAL PROJECT - GETTY-125-2 FILE # 85-1896 PAGE 8 SAMPLE# No Eu Pb Za Aa Ni Co . Fe As Th Sr Cd Sb Bi Ea Mn U Au ۷ Ρ La Cr Ng Ba-Ti B A1 Na ĸ # Au+ 7 PPN PPN PPM PPM PPM PPM PPN PPN 1 PPN PPN PPN PPM PPM PPM PPM PPN PPN 2 7 PPN PPN PPM 2 PPN 2 7 7 PPN PPB 4767 Seils 3 34 10 75 .1 1768 77 1259 6.80 48 5 NÐ 10 1 2 6 49 .21 .03 8 712 5.62 183 .02 1 8 1.03 .02 .11 1 2 4768 3 49 10 8 5 ND 2 143 .2 472 36 1119 8.31 3 18 1 2 153 .45 .16 16 302 4.08 216 .21 12 2.68 .03 .19 1 1 4769 6 26 13 76 .1 1413 48 590 4.88 9 5 13 2 44 .42 .06 6 1147 13.90 .07 25 1.21 32 ND 1 1 4 83 .02 .05 1 4770 20 7 .1 1605 5 ND 6 63 76 1038 6.24 6 1 11 1 2 2 37 .30 .03 4 1342 13.33 55 .09 22 .98 .02 .02 - 1 1 4771 6 21 .9 70 .1 1170 76 1198 5.65 8 5 ND 1 16 1 2 2 38 .44 .09 5 1267 11.73 76 .06 19 1.06 .02 .04 1 2 4772 8 20 5 48 .2 1962 91 1221 5.55 8 5 ND 1 2 7 1 3 26 .40 .05 3 1369 16.66 32 .02 20 . 57 .01 .03 3 1 4773 25 10 7 5 71 .1 1557 62 745 4.84 5 ND 10 5 2 31 .30 1 1 .08 5 1182 14.39 53 .05 . 98 2 15 .01 .04 1 4774 8 20 40 .1 2016 2 1354 17.44 10 81 873 5.35 12 5 ND 5 2 2 28 .41 .04 21 .01 37 .59 .01 .02 12 1 1 1 4775 29 5 8 64 .2 946 37 619 4.24 6 5 ND - 1 16 1 2 2 44 .37 .13 4 777 9.89 126 13 1.37 .05 .02 .04 1 -5 4776 6 35 7 58 .1 1025 58 914 4.37 7 5 ND 1 13 1-2 2 42 .44 .07 4 827 11.10 70 .06 16 1.11 .01 .04 1 2 4777 5 36 å 65 .1 923 44 878 5.06 5 5 ND 2 14 1 2 2 56 . 39 .05 11 672 8.07 75 6 1.57 .03 .17 .05 1 1 4778 23 5 4 10 66 .1 634 32 795 5.16 5 ND 2 21 1 2 2 57 .40 .07 10 452 5.23 89 .23 6 1.82 .04 .05 1 1 4779 5 31 11 67 .1 763 44 855 4.88 7 5 ND 20 52 .42 .09 6 757 8.01 102 .09 13 1.40 1 1 2 2 .02 .05 1 1 4780 8 20 2 47 .1 2061 88 1044 5.20 12 5 ND 1 5 2 28 .38 .03 2 1298 18.20 28 .03 22 .65 1 2 .01 .01 1 2 4781 9 21 4ó .1 2234 89 1038 5.46 11 5 ND 1 2 2 25 .33 .02 5 1410 18.96 Ó 1 4 20 .02 21 .51 .01 .01 ę 1 4782 5 8 18 5 60 .1 1901 88 1133 6.20 8 ND 2 8 1 2 2 33 .39 .03 7 1442 16.45 39 .06 25 .91 .02 .02 1 1 4783 35 .1 1297 54 604 4.17 7 5 2 13 33 6 6 58 NÐ 2 1 2 .40 .06 8 1015 12.21 56 .07 10 1.07 .02 .04 1 1 4784 5 25 2 46 11 836 54 919 3.26 5 NÐ 47 2 25 . 69 .15 4 751 9.12 6 1 1 2 73 .03 19 .74 .01 .02 1 1 5 4785 9 20 2 41 .1 1988 81 908 4.37 11 ND 22 2 .35 .03 2 1263 19.73 17 18 .53 1 4 1 3 .02 .01 .01 1 2 4786 8 19 2 46 .2 1743 69 711 5.38 9 5 NÐ 1 1 2 24 .35 .04 4 1182 17.33 21 6 4 .û3 2ú .55 .01 .02 1 1 4787 19 11 5 9 8 45 .2 1779 60 543 4.40 ND 1 2 21 .30 4 1 4 .02 2 1129 18.47 15 .03 22 . 52 .01 .02 1 . 1 4788 8 26 2 60 .1 1671 73 910 5.25 11 5 ND 2 2 28 .33 2 .03 5 1191 17.30 25 .05 23 .77 .01 .02 1 1 1 4789 9 35 20 5 .2 2198 .90 944 4.51 12 5 ND 1 2 2 20 . 28 .01 2 1159 19.82 11 .01 24 .39 .01 .01 1 1 23 22 2 B .2 2099 96 107B 5.04 5 ND 2 2 .24 .02 2 1289 18.92 .02 23 .50 .01 .01 4790 15 3 49 4 4 1 2 7 5 2 23 .26 .02 2 1282 18.70 14 .02 28 .45 .01 .01 3 4791 8 15 42 .3 2058 90 907 5.06 ND 1 2 1 4 1 3 4792 19 .1 1204 52 846 5.90 4 5 ND 2 16 1 2 å 41 .35 .06 13 938 10.91 58 .17 14 1.34 .05 .04 1 1 5 7 84 4793 22 .1 2037 99 1041 4.25 7 5 ND 8 2 23 .25 .02 5 1059 17.17 29 .04 25 .61 .01 .02 . 1 7 9 48 1 1 4 1 25 .1 1827 84 891 4.90 8 5 ND 2 .30 .03 3 1204 17.21 25 .04 25 .63 .01 .02 1 4794 1. 19 6 48 2 3 1 . 4795 7 21 2 45 .1 1756 84 889 4.45 5 5 ND 7 2 23 .30 .05 3 1289 17.90 29 .02 24 .56 .01 .02 1 .2 1 1 4796 4 25 2 .1 890 35 570 4.46 4 5 ND 2 22 1 2 5 45 .35 .06 12 687 9.59 84 .14 10 1.33 .03 .03 1 67 1 28 38 5 5 ND 2 23 1 3 3 43 .34 2 4797 5 11 71 .2 1037 626 4.48 .08 12 749 9.62 103 .13 13 1.42 .03 .04 1 7 2 2 3 4798 30 .1 1297 56 641 4.09 5 ND 14 1 2 35 .31 .03 6 841 13.82 50 14 .91 .02 .02 1 6 6 50 .06 4799 21 .1 1704 81 892 5.91 6 5 ND A 2 33 .43 .05 5 1643 16.72 40 21 .78 .01 . 02 1 7 3 76 1 1 2 .03 1 .02 4800 6 17 7 81 .1 1292 75 1098 5.88 5 5 ND 2 14 2 41 .40 .07 5 1278 13.31 60 .10 23 1.03 .02 1 1 2 5 8 20 7 .1 1875 81 857 4.86 5 ND 1 2 28 .40 .02 3 1364 18.24 18 .03 16 .60 .01 .02 1 3 4801 43 1 4 2 937 5.50 - 5 5 2 13 2 44 .36 5 1102 12.38 20 1.33 1 4802 6 22 6 64 .1 1315 65 ND 1 2 .05 63 .13 .02 .02 1 2 91 958 4.78 6 5 NÐ 2 3 2 26 . 38 .02 2 1363 19.36 17 .01 23 .54 1 4803 8 20 44 .1 2049 1 4 .01 .01 1 5 2 23 .38 4804 8 12 8 34 .1 1703 72 709 3.96 5 ND 1 3 1 3 .01 2 1264 19.47 7 .01 26 .49 .01 .01 1 1

SAMPLE Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na Mo Cu Pb Zn Ag Ni Co Mn K W Aut I PPM PPB 4805 8 -15 3 32 .1 1928 80 804 3.27 5 ND 2 21 .36 .01 2 1085 20.94 .47 .01 .01 6 1 1 1 3 11 .01 19 1 2 4806 8 12 4 39 .1 1849 80 851 3.77 5 5 ND 1 2 1 2 2 25 . 39 .02 2 1321 20.61 14 .01 21 .50 .01 .01 1 2 4807 9 15 5 32 5 ND .1 1908 81 787 3.86 4 1 1 1 4 2 18 .22 .01 2 1188 21.02 7 .01 29 .35 .01 .01 1 14 4808 ß 37 ND 15 6 .1 1794 79 751 4.74 6 5 2 3 1 2 2 21 .35 .02 2 1226 20.10 9.01 20 .38 .01 .01 1 1 7 S ND 4809 20 3 39 .1 1653 85 799 6.96 6 1 3 1 2 2 23 .39 .01 2 1327 17.91 11 .02 22 .34 .01 .01 1 . 1 4810 9 12 2 37 .1 2038 82 791 3.82 5 2 2 15 .21 .01 2 1180 20.85 6 ND .1 1 1 7 .01 21 .30 .01 .01 1 1 4811 8 15 2 · 37 .1 1740 81 742 5.37 5 5 ND 1 3 1 3 2 21 .34 .01 2 1243 19.32 7 .01 17 .34 .01 .01 2 2 4812 8 15 3 38 .1 1836 80 760 4.03 5 NB 2 2 19 .27 .01 7 1 1 3 2 1146 20.36 11 .01 21 .39 .01 .02 1 2 B 4813 3 2 25 .26 .02 - 20 4 46 .1 1925 90 1021 4.47 6 5 NÐ 2 . 4 1 2 1280 19.27 22 .02 16 .49 .01 .01 2 1 4814 5 27 2 53 .1 1035 51 649 4.44 ND 2 15 6 5 2 2 41 .35 .04 7 B69 11.20 1 64 .09 11 1.06 .02 .03 1 1 4815 6 21 5 57 .1 958 56 839 5.10 6 5 2 13 2 2 47 .38 .05 5 889 12.44 53 .15 ND 1 9 1.11 .03 .03 1 1 4816 6 26 4 51 .1 1118 61 786 4.68 5 ND 12 38 5 1 1 3 2 .37 .05 8 1024 12.72 58 .06 7 1.03 .02 .02 1 2 4817 4 23 9 38 904 5.62 5 5 ND 3 24 76 .1 672 1 2 6 68 .50 .07 12 486 5.93 93 .31 5 2.17 .04 .04 1 1 4818 6 23 6 50 .1 1062 65 907 5.09 6 5 ND 2 15 2 2 41 .39 .06 3 1061 13.48 1 64 .08 15 1.07 .01 .02 1 1 4819 22 48 4 6 3 .2 914 58 867 4.99 5 ND 2 -14 1 2 2 42 .33 .04 4 994 12.40 57 .11 11 .97 .02 .02 1 1 4820 5 26 7 83 .1 938 84 1717 5.65 4 5 ND 20 2 2 48 .44 .11 7 997 9.69 106 .11 15 1.17 .02 .03 1 1 1 1 4821 13 6 26 6 60 .1 1083 73 1022 5.27 5 5 NÐ 1 1 2 2 40 .36 .06 3 1095 12.73 61 .08 13 1.04 .02 .02 1 10 5 22 4822 7 76 .2 851 44 933 5.71 7 5 ND S 16 1 2 6 47 .38 .05 18 623 7.37 63 .25 2 2.29 .07 .05 1 1 4823 8 28 8 72 68 1088 5.67 5 ND 14 2 42 .35 .06 .1 982 5 1 1 2 7 1014 11.91 72 .12 10 1.24 .02 .02 1 4824 7 28 2 48 .1 1415 64 669 4.74 8 S ND 2 8 1 2 2 30 .30 .03 3 1277 16.57 36 .03 18 .76 .01 .02 1 2 4825 5 57 .1 990 55 799 4.76 S ND 2 2 37 .32 .08 6 1038 12.04 91 .06 11 1.10 .02 .02 ó 26 7 16 1 2 1 2 38 .35 .05 4 112B 14.05 48 .08 15 1.10 .02 .03 1 2 55 .1 1219 53 741 5.11 2 5 NÐ 1 -14 1 2 4826 24 7 6 ND 2 7 26 .29 .02 4 1081 16.68 26 .03 22 .65 .01 .02 1 20 4827 7 28 3 40 .1 1442 56 612 3.90 2 5 1 2 2 4828 Souls 59 .45 .07 11 686 7.94 70 .30 11 1.53 .05 .03 1 39 881 5.43 3 5 ND 1 24 1 2 2 -3 5 22 4 77 .1 807 7 1006 13.77 4 .01 23 1.25 .01 .01 1 2 4843 2 A 6 26 .1 1565 58 586 3.76 3 5 ND 1 1 1 7 2 21 .16 .01 2 21 .01 .01 7 980 12.41 1 .01 35 .36 .01 .01 1 1 8 5 28 .3 1827 76 635 5.16 14 5 ND 1 1 1 7 4844 1 1 36 1 2 23 .34 .12 11 25 1.33 106 .21 9 1.64 .02 .19 3 5 ND 3 2 4845 1. 42 8 74 .1 25 5 593 3.74 4 9 961 3.53 5 ND 2 254 1 2 2 32 3.48 .10 B 29 1.33 63.22 6 1.59 .03 .10 1 3 28 86 .4 30 6 4846 1 11 37 7 10 1.14 72 .24 7 1.25 .02 .11 1 2 24 .61 .10 4847 5 67 20 52 1.5 5 1 565 3.38 6 5 ND 3 1 4 15 .71 68 .21 6 1.10 .02 .10 1 1 1 442 2.00 5 1 30 4 4 68 .77 .08 4 4848 18 - 34 16 61 1.4 12 ND 1 6 .02 .11 25 22 .77 .09 4 13.71 71 .22 5 1.13 1 1 4849 2 29 11 39 1.0 6 2 500 1.85 5 5 ND 1 1 2 5 3 11 .61 60 .20 5 1.02 .03 .09 1 1 1 17 2 23 .71 .05 4850 2 62 12 40 .7 12 7 498 1.84 2 5 ND 1 6 683 7.88 16 1.56 .02 .08 1 1 46 1.02 4 64 .12 33 843 5.31 14 ND 2 -44 2 .07 4851 511+ 89 .2 592 2 40 14 4 2 .02 .06 1 5 968 2.13 7 1803 2 5 26 17,34 .07 3 15 .82 42 .11 5 1.31 ND 1 4852 1 13 S 47 .3 - 11 6 6 2 58 1.80 .08 10 3B 1.40 92 .19 9 2.73 .03 .10 1 -1 48 1 3 2 4853 1 12 13 68 .3 29 8 924 4.51 19 5 ND 7 11 .70 101 .15 7 1.85 .03 .13 1 2 43 1.B1 .11 6 622 2.93 5 5 NÐ 1 43 1 2 2 4854 11 69 .1 10 1 - 36 150 .20 6 2.09 .03 .11 1 1 7 9 1.12 3 632 4 2 63 5.76 .08 4855 16 7 79 .2 3 10 1305 4.04 11 5 ND 1 1 2 11 .02 .01 3 484 13.14 7...01 12 .21 .01 .01 1 1 71 451 3.38 4 5 ND 1 1 2 - 4 4856 12 3 34 .2 1693 1 1 1 5 .01 48 .57 .01 .01 3 1 8 2 18 .51 .02 3 614 14.72 2 5 ND 1 4857 2 2 8 25 .2 1689 74 599 3.48 1 .01 51 .34 .01 .01 1 3 35 NÐ 1 1 1 2 2 21 .03 .01 5 1102 15.61 5 30 .3 1933 79 710 4.07 485B 1 3

FOX GEOLOGICAL PROJECT - GETTY-125-2 FILE # 85-1896

Carlo 1998

100 million

and the second second

Sec. Sec.

Rithing

SAMPLE	No PPN	Cu PPM	Pb PPN	Zn PPN	Ag PPN	Ni PPN	Co PPM	Hn PPH	Fe	As PPM	U PPH	Au PPM	Th PPM	Sr PPN	Cd PPN	Sb PPM	Bi PPM	V PPM	Ca 1	P 1	La PPM	Cr PPN	Ng I	Ba PPN	Ti Z	B PPM	Al Z	Na I	K I	N PPN	Au* PPB	
4901 59115 4902	- 6 7	21 18	2 2	49 41	.1 .1	1447 1450	50 58		3.89 4.15	4 2	5 5	nd Nd	1	10 13	1 . 1.	2. 2	2 2	32 28	.36 .38	.04 .03	9 6		14.45 15.94	43 37	.06 .04	25 24	.91 .80	.02	.03 .03	1 1	2 2	
4903 50115	- 7	19	2	51	.1	1413	55	648	4.15	2	5	ND	1	14	1	2	2	28	. 39	.03	B	865	16.00	34	.05	22	. 81	.01	.03	, 1	4	
4914	1	9	10	11	.2	51	3	210	.81	2	5	ND	- 1	3!	1	4	2	15	3.51	.01	4	. 9	.45	678	.07		2.64	.15	.05	1	2	
4915	1	124	6	16	4	119	10	568	2.37	2	5	ND	1	13	1	2	2	93	5.00	.02	3	66		22	.12	7	1.79	.01	.01	- 1	1	
4916	1	28	4	17	.1	22	2	222	.77	3	5	ND	1	3	1	2	2	5	.04	.01	2	18	06	- 30	.01	- 3	.08	.01	.03	1	. 2	
4917	1	20	5	- 14	.2	87	5.	131	.86	2	5	NÐ	1	ó	. 1	2	2	5	.08	-04	- 4	. 29	.30	61	01	2	.26	.01	.13	1	21	
4718	. 1	86	7	69	.2	59	9	453	1.97	3	5	ND	2	. 4	1	2	2	11	.13	.01	6	17	.15	70	.01	.4	.17	.01	.06	1	3	
4919	1	4	2	1	.1	5	1	46	.33	2	5	ND	1	1	1	2	2	1	.01	.01	2	4	.01	3	.01	2	.01	.01	.01	1	2	
4920	· 1	19	6	54	.1	64	5	299	1.88	2	5	ND	2	4	1	2	2	13	.04	.01	7	- 14	.1B	45	.01	2	.20	.04	.02	1	2	
4921	1	51	2	18	.1	694	24	354	2.30	7	. 5	ND	1	1	1	2	2	25	.01	.02	3	732	.72	7	.01	5	.31	.01	.01	1	2	
4922	1	. 8	2	3	.1	20	1	65	. 38	2	5	ND	1	1	1	2	2	2	.01	.01	2	10	.02	10	.01	2	.02	.01	.01	1	3	
4923	1	28	6	29	.1	46	7	204	.96	6	5	ND	1	4	· 1	2	2	4	.05	.03	5	11	.02	113	.01	2	.02	.01	.01	1	3	
4924	1	н	5	8	.1	81	4	136	.67	2	5	ND	1	37	1	3	2	7	.09	.01	2	38	.41	17	.02	2	.20	.01	.03	1	. 2	
4925	1	28	8	56	.3	120	15	416	3.95	. 4	5	ND	1	7	1	2	2	46	1.66	.06	. 4	7	.78	23	, 25	5	1.48	.05	.01	1	. 1	

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hestings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

GEOCHEMICAL LABORATORY METHODOLOGY - 1981

SAMPLE PREPARATION

1. Soil samples are dried at 60°C and sieved to -80 mesh.

2. Rock samples are pulverized to -100 mesh.

Geochemical Analysis for Ag*, Bi*, Cd*, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sb*, V, Zn

0.5 gram samples are digested hot dilute aqua regia in a boiling water bath and diluted to 10 ml with dimineralized water.

All the above elements are determined in the acid solution by Atomic Absorption.

* demotes background correction.

Geochemical Analysis for Au

10.0 gram samples that have been ignited overnite at 600°C are digested with hot dilute aqua regia, and the clear solution obtained is extracted with Methyl Isobutyl Ketone.

Au is determined in the MIBK extract by Atomic Absorption using background correction (Detection Limit = 5 ppb direct AA and 1 ppb graphite AA.)

Geochemical Analysis for Au, Pd, Pt, Rh

10.0 - 30.0 gram samples are subjected to Fire assay preconcentration techniques to produce silver beads.

The silver beads are dissolved and Au, Pd, Pt, and Rh are determined in the solution by Atomic Absorption.

Geochemical Analysis for As

0.5 gram samples are digested with hot dilute aqua regia and diluted to 10 ml. As is determined in the solution by Graphite Furnace Atomic Absorption.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

Geochemical Analysis of Hg

Digestion

A .50 gram sample is digested with aqua regia and diluted with 20% HCl.

Determination

Hg in the solution is determinated by cold vapour AA using F & J Scientific Hg assembly. An aliquot is added to stannous chloride-hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it determined by AA.

Oxalic Acid Leach of Rock, Soil & Silt Samples

A .50 gram. sample is digested hot with 10 mls 5% oxalic acid solution. The oxalic acid will dissolve Fe and Mn from their oxided of M - 1 fraction (but not from magnetite & ilmenite) limonites and clays. The following metals are analysed by atomic absorption : Cu, Zn, Pb, Ni, Mo, Fe & Mn.

Cold HC1 Acid Extraction

A .50 gram sample is leached with 10 ml 5% HCl solution at room temperature for 2 hours with ocasional shaking. Copper is dissolved from the organic and surface layers of clay fractions.

EDTA Extraction

A .50 gram sample is leached at room temperature for 4 hours with 10 mls of 2.5% EDTA solution.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253 - 3158

Geochemical Analysis for Barium

A CONTRACTOR

and as the

0.0

15

4

0.1 gram samples are digested with hot NaOH and EDTA solution.

Ba is determined in the solution by Atomic Absorption.

Geochemical Analysis for Uranium

0.5 gram samples are digested with hot aqua regia and diluted to 10 ml.

Aliquots of the acid extract are solvent extracted using a salting agent and aliquots of the solvent extract are fused with NaF, K_2CO_3 and Na_2CO_3 flux in a platinum dish.

The fluorescence of the pellet is determined on the Jarrel Ash Fluorometer.

Geochemical Analysis for Tungsten

1.0 gram samples are fused with KCl, KNO_3 and Na_2CO_3 flux in a test tube, and the fusions are leached with 10 ml water. W is in the solution determined by ICP with a detection of 1 ppm.

Geochemical Analysis for Fluorine

0.25 gram samples are fused with sodium hydroxide and leached with 10 ml water. The solution is neutralized, buffered, adjusted to pH 7.8 and diluted to 100 ml. Fluorine is determined by Specific Ion Electrode using an Orion Model 404 meter.

Geochemical Analysis for Tin

1.0 gram samples are fused with ammonium iodide in a test tube. The sublimed iodine is leached with dilute hydrochloric acid.

The solution is extracted with MIBK and tin is determined in the extract by Atomic Absorption.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

Multi Element Analysis by ICP

Digestion of Sample

0.5 gram samples are digested with hot aqua regia for one hour and the sample is diluted to 10 ml. The diluted sample is aspirated by ICP and the analytical results are printed by Telex, either in percent or ppm as shown.

> Please Note : This digestion is partial for Al, Ca, La, Mg, P Ti, W and very little Ba is dissolved.

Report Format

IS

HO/22N 385ØW EGC	•			•				
BURN # 1 GE16	15:46	3FEB1	981					
IS 1357			• •					
MO CU 3.92 41.5	РВ 9.00	ZN 136	AG . 332	NI 15.3	CO 5.7Ø	MN 312	FE% 3.167	AS 5.73
U IS 4.11 .371	TH .424	IS 1Ø73	CD .96Ø	SB 1.94	BI 4.51	۷ 52.7	CA% 1.1Ø7	Р% .2Ø6
LA IN 22.1 3.5Ø	MG% .2589	BA% .Ø184	TI% .ØØ14	B Ø5	AL% 1.72Ø	IS Ø	IS 3.Ø6	W .276
*0/M1 EGC				•				
BURN # 1 GE16 1358	15:48	3FEB1	.981					
.563 29.3 3.57 .Ø44 6.42 2.88	34.6 2.79 .6008	171 765 .ø252	.154 1.Ø8 .Ø753	33.4 .635 37	11.5 4.25 1.944	794 54.8 Ø	2.536 .6452 2.32	8.77 .1Ø9 61
<u>Code</u> :								
HO, *O, EGC /22N 3850 W /M1	S	Sample N			r quality	control		

ACME Geochem standard for quality control. 15:46 3FEB1981 Time and Date of Analysis. BURN # 1 GE16 Geochem Computer Program. Internal Standard.

APPENDIX II

DETAILED THIN SECTIONS AND HAND SAMPLE DESCRIPTIONS

Ъу

Vancouver Petrographics Limited

and the second se

100

Quantum 1

Serpentine West MPu TS-5 4089 Plagioclase Porphyry Dike

The rock contains very coarse plagioclase phenocrysts in a fine grained groundmass of plagioclase, epidote, chlorite, K-feldspar, quartz, and opaque. It contains amygdules dominated by chlorite, epidote, and quartz, with lesser biotite, hematite/pyrite, and plagioclase.

phenocrysts		secondary patches	5
plagioclase	25-30%	chlorite	5- 78
groundmass	a da anti- Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	epidote	2-3
plagioclase	30-35	quartz	11-2
epidote	12-15	biotite	0.3
chlorite	5-7	hematite/pyrite	0.1
K-feldspar	5-72	plagioclase	minor
quartz	$1 - 1\frac{1}{2}$		
opaque	$1\frac{1}{2}-2$		

Plagioclase forms prismatic to tabular phenocrysts up to 1 cm in length. Most are moderately altered to irregular disseminated patches of epidote, and a few contain very fine grained patches of chlorite.

Groundmass plagioclase forms prismatic laths from 0.1-0.3 mm in length, and equant grains from 0.05-0.1 mm in size. These are much less altered than the phenocrysts, suggesting a more sodic composition.

Epidote forms disseminated, very fine to fine grained, irregular patches throughout the groundmass.

Chlorite forms irregular, very fine to extremely fine grained patches throughout the groundmass.

K-feldspar occurs throughout the groundmass as equant, anhedral grains averaging 0.05-0.1 mm in size. It is difficult to impossible to distinguish from plagioclase in thin section (untwinned, equant grains). In the offcut slab, a strong yellow stain indicates its presence as disseminated grains.

Quartz occurs in a few interstitial patches up to 1 mm in size, with abundant intergrown plagioclase and lesser epidote grains surrounded by skeletal quartz grains in optical continuity throughout.

The presence of quartz and K-feldspar in the groundmass suggests a strong fractionation during crystallization, and the texture of quartz is suggestive of a granophyre.

Opaque (pyrite and magnetite) forms equant, subhedral grains from 0.03-0.1 mm in average size.

Secondary patches up to a few mm across show a wide variety of textures and compositions. A common variety shows thin, colloform-like growths of extremely fine grained epidote on walls, with very fine to fine grained chlorite in the interior. Chlorite shows a zoned composition, with a bright blue interference color in the outer zone and a mauve interference color and generally finer grain size in the core. Other patches contain rims of epidote and chlorite as above, with cores of quartz and/or epidote. These cores are fine to medium grained. Epidote in some shows subradiating textures of elongate prismatic grains; in others it forms fine grained, granular aggregates. Biotite occurs with chlorite as scattered grains and a few clusters of fine grain size. Pleochroism is from pale or light green to medium olive to grass green. One patch 0.5 mm long is dominated by a very fine grained aggregate of biotite and minor chlorite; this might represent an altered hornblende phenocryst. Hematite/pyrite forms a few anhedral grains up to 0.5 mm across. Plagioclase forms scattered, very fine grained patches near the borders of a few secondary patches.

Serpentine West 4763

and a second

Porphyritic Basalt

The rock contains phenocrysts of plagioclase and glomerophenocrysts of clinopyroxene in an extremely fine grained groundmass of the same minerals. Plagioclase is moderately to strongly altered to epidote?. The rock contains scattered patches of chlorite, in part possibly after original mafic minerals. It is cut by irregular breccia seams along which dusty opaque was deposited. Late veinlets are dominated by sodic plagioclase with lesser calcite and chlorite.

phenocrysts		
plagioclase	20-25%	
clinopyroxene	10-12	
patches		
chlorite	0.3	
groundmass		
plagioclase-cl	inopyroxene	60-65
veinlets		60-65
		60-65
veinlets		60-65
veinlets sodic plagiocl	ase 1-2	60-65

Plagioclase forms subhedral to euhedral prismatic phenocrysts from 1 to 1.5 mm in average size. They show combined Carlsbad and albite twinning, but no composition was determined. They are moderately to strongly altered to extremely fine grained epidote? which masks the optical properties of plagioclase, and is too fine grained to be identified. As well, epidote commonly forms scattered prismatic grains up to 0.15 mm in length randomly distributed through the plagioclase phenocrysts, and to a lesser extent in the groundmass.

Clinopyroxene occurs a clusters of phenocrysts up to 3 mm in size, with individual grains varying widely in size from less than 0.1 mm to over 2 mm. Most grain borders are rounded and slightly irregular. A few patches also contain inclusions up to 0.2 mm in size of light olive green chlorite.

Similar patches of chlorite occur in the groundmass. Some of these have convex margins, suggesting they occupy interstitial patches. Their origin is uncertain, possibly in part alteration of early mafic minerals (olivine?), and in part irregular amygdules (although their shape is atypical for amygdules).

The groundmass consists of extremely fine grained (0.01-0.02 mm) plagioclase and clinopyroxene in an unoriented intergrowth of equant to prismatic grains. Plagioclase is altered to epidote? as in the phenocrysts, and identification of many of the grains in the groundmass is impossible because of the fine size and alteration.

The rock is cut by irregular, braided breccia seams, along which was deposited dusty opaque (Mn-oxide?).

Late veinlets, which may in part be fracture filling along the breccia zones, are dominated by very fine grained sodic plagioclase with much less calcite and moderately less chlorite. One late fracture filling vein 0.3 mm across along one edge of the section consists of very fine to fine grained plagioclase (0.05-0.2 mm) with scattered grains of calcite of similar size.

SERPENTINE WEST ROCK SAMPLE DESCRIPTIONS

No. of Concession, Name

the second second

0.000

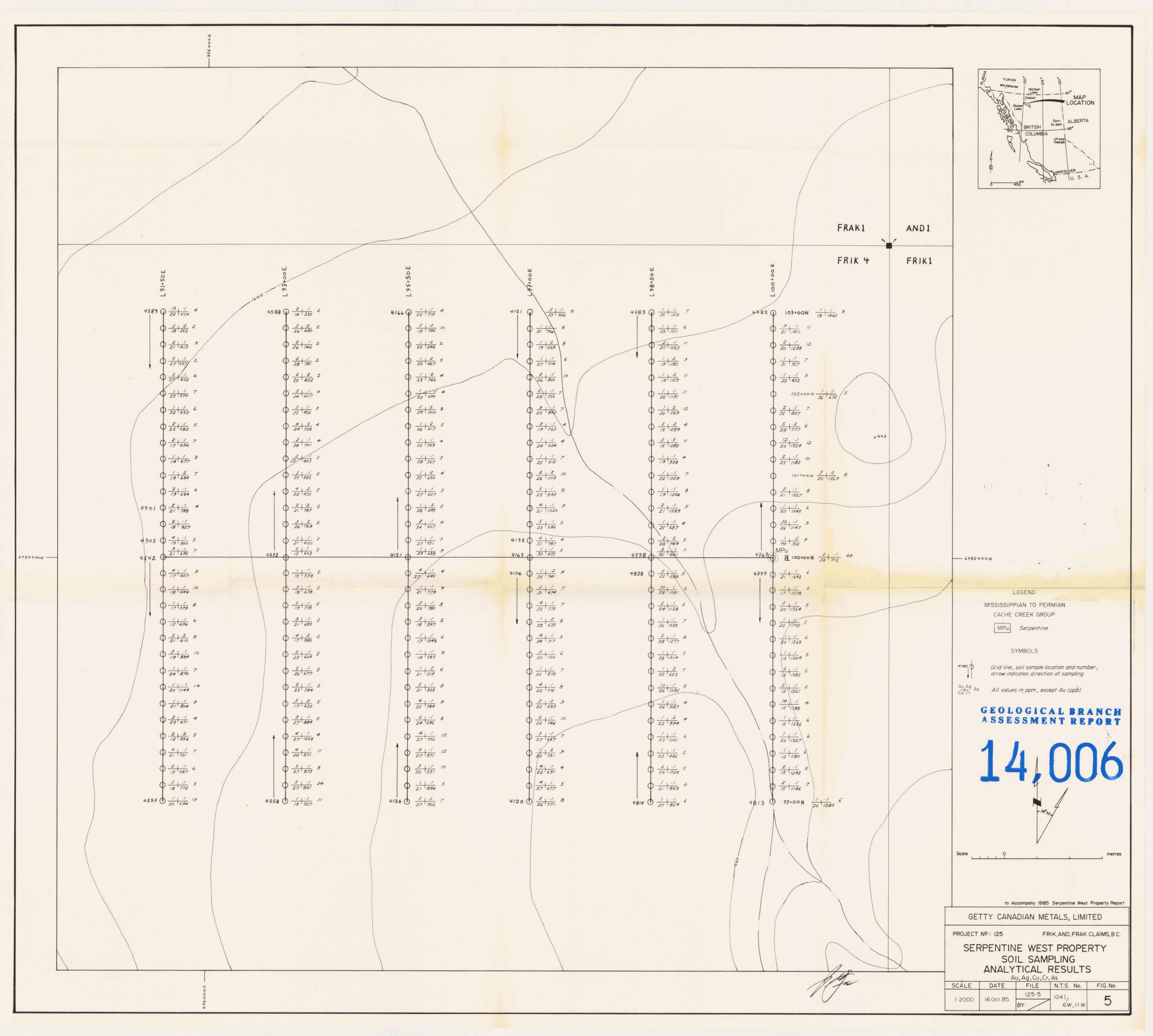
SAMPLE #	SAMPLE DESCRIPTION SAM	IPLE TYPE
4087	greenish/grey siliceous tuff, sheared, 5% disseminated pyrite and pyrrhotite	grab
4088	green, fine-grained serpentinite, sample contains lcm wide veinlet of magnetite	grab
4089	light brown/green serpentinite,1% disseminated magnetite crystals (up to 5mm)	l grab
4090	orange/brown silicified breccia with serpentinite fragments, 2-3% disseminated pyrrhotite and <1% magnetite	float
4091	quartz boulder, iron oxide stained, minor calcite	float
4092	siliceous breccia, angular grey/black fragments, chalcedony/quartz stockworks	grab
4093	grey volcanic? rock, 5% disseminated pyrrhotite	float
4094	chloritic serpentinite, trace disseminated blue mineral (non-metallic)	grab
4095	green serpentinite, trace pyrite and magnetite	grab
4096	dark green, fine-grained serpenitinite, 5-8% disseminated magnetite	grab
4097	grey/green tuff, no visible sulphides	grab
4098	grey/brown banded, siliceous phyllite	grab
4099	quartz boulder, iron oxide stained on fractures, small (0.5-1cm) angular phyllite in quartz	float
4100	siliceous phyllite, small <1cm pods limonite	float

4101	dark brown, siliceous phyllite, iron oxide stained along fractures	float
4102	grey, fine-grained tuff?, 2-3% disseminated pyrrhotite	float
4103	green, siliceous tuff, veinlets of epidote, trace disseminated pyrite	float
4104	grey phyllite, trace pyrite	float
4105	green serpentinite,1-2% disseminated magnetite	grab
4182	siliceous phyllite, trace pyrite	grab
4183	síliceous phyllite, trace pyrite, magnetite	grab
4184	brecciated serpentinite, silica-rich matrix up to 5% mariposite locally trace pyrite, magnet	float tite
4185	brecciated phyllite, siliceous matrix, quartz veinlets throughout sample, iron oxide stained	grab
4186	siliceous phyllite, iron oxide stained fractures, quartz veinlets throughout sample	grab
4187	serpentinite, siliceous, iron oxide stained, trace disseminated pyrite	grab
4188	phyllite, siliceous, iron oxide stained fractures, no visible fractures	grab
4518	black serpentinite, 3% irregular patches of magnetite	grab talus
4519	quartz boulder, iron oxide stained, massive 1% calcite	float
4520	grey/black serpentinite, 3% patchy magnetite, irregular quartz veinlet stockworks	grab talus
4521	quartz boulder, abundant (3-5%) mariposite	grab talus

4522	phyllite, siliceous, 40% mariposite, weak quartz veinlet stockworks throughout sample	float
4523	phyllite breccia? silica matrix, iron oxide stained	float
4524	quartz boulder, trace disseminated pyrite and 1% limonite pods throughout sample	float
4525	green, siliceous greenstone?, 4% disseminated limonite pods (1-2mm)	float
4526	phyllite, siliceous, brecciated, silica matrix about 10% limonite in matrix	float
4527	quartz boulder, iron oxide stained, angular phyllite fragments in quartz	float
4528	quartz boulder, trace disseminated pyrite, phyllite fragments in quartz	float
4529	sheared serpentinite, siliceous 3.	0 chip
4530	serpentinite, quartz veinlet stockwork, 3% fine-grained, disseminated magnetite	grab talus
4531	serpentinite, siliceous, 1% disseminated, fine-grained magnetite	grab talus
4532	green, siliceous serpentinite	grab talus
4533	quartz boulder, sub-angular, iron oxide stained	float
4534	greenstone, siliceous, 5% disseminated pyrite	float
4535	black phyllite with 2cm wide quartz vein, trace disseminated pyrite in quartz vein	float
4536	quartz boulder with abundant chlorite, 4-5mm veinlet of epidote in sample	float
4537	quartz boulder, graphite stringers and trace limonite	float

	and the second secon	
4538	quartz boulder, angular phyllite fragments and trace limonite	float
4539	banded chert?, dark bands contain up to 50% limonite	float
4540	serpentinite, very siliceous, trace magnetite	float
4541	amphibolite, very siliceous, 1% disseminated pyrite	float
4742	serpentinite, siliceous, possible shear zones	grab
4743	quartz boulder, iron oxide stained on fractures, boulder is rounded	float
4744	phyllite, very siliceous, iron oxide stained on surfaces, 1% disseminated pyrite	float
4745	serpentinite, grey/green, possible shear zone	grab
4746	breccia zone in serpentinite, chalcedony/ quartz veinlet stockwork, iron oxide, 1% disseminated pyrite	float
4747	serpentinite, iron oxide stained, brecciated, 2% disseminated pyrite, pyrrhotite	float
4748	phyllite breccia, very siliceous, <1% disseminated pyrrhotite	float
4749	breccia, siliceous, serpentinite?, iron oxide stained	float
4750	shear zone in serpentinite, white to purple, silica-rich	grab
4751	serpentinite, siliceous, iron oxide stained, 5-8% disseminated magnetite	grab
4752	serpentinite, sheared, white to purple, 1% disseminated magnetite	grab
4753	serpentinite, very siliceous	grab

1. A

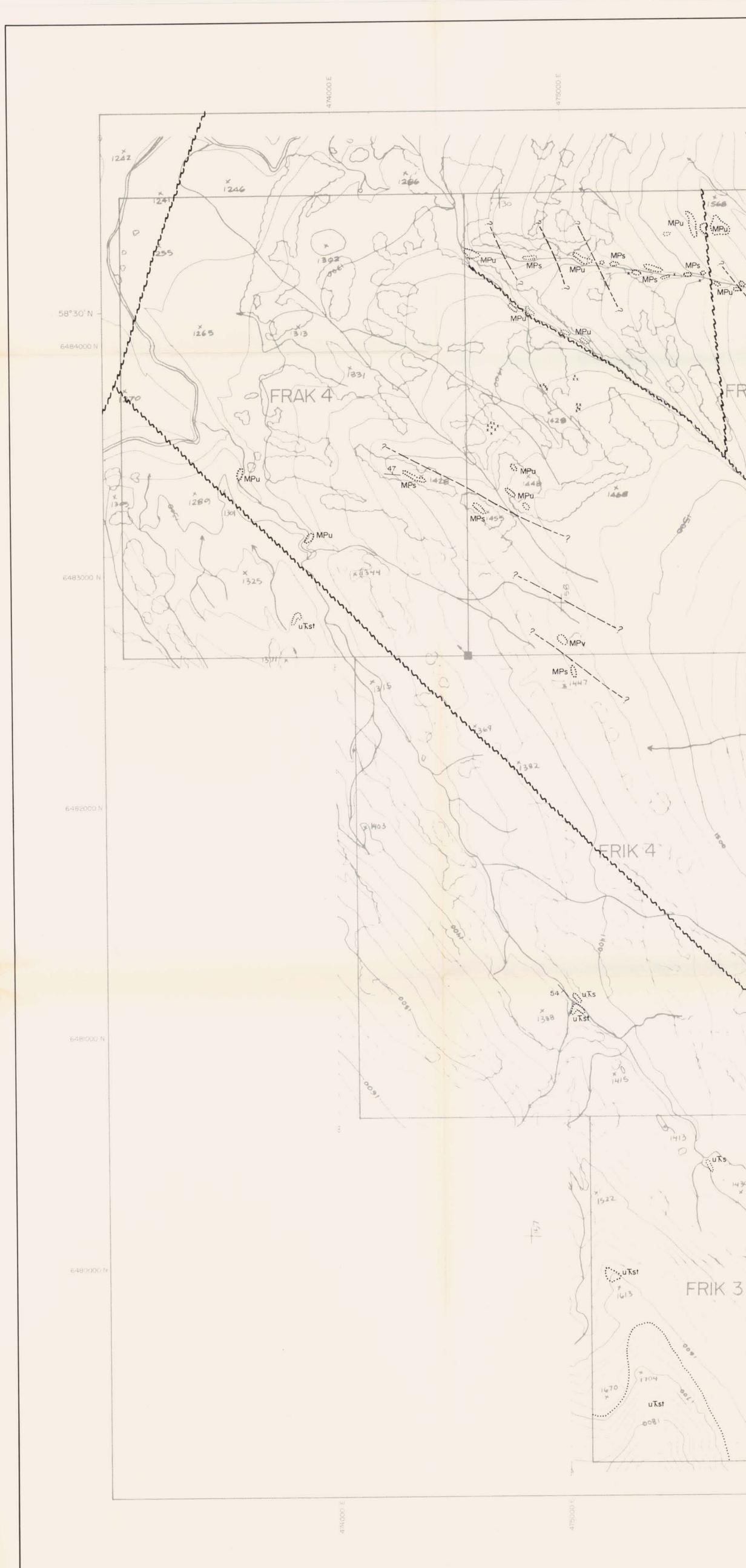

4754	serpentinite, siliceous, iron oxide stained, 3% disseminated magnetite	float
4755	quartz boulder, angular	float
4756	quartz boulder, fractured, <1% disseminated pyrite	float
4757	phyllite, siliceous, 1-2% disseminated pyrite	float
4758	serpentinite, very fine-grained, siliceous, black, 5% fine-grained magnetite	grab
4759	siliceous grey sediment?, no visible sulphides	float
4760	tuff?, greenish/grey, siliceous, 1-2% disseminated pyrrhotite	float
4761	phyllite, 4mx2m angular boulder, locally iron oxide stained on surface	float
4762	tuff?, green, silicous, 1% disseminated pyrrhotite	float
4763	volcanic, grey/green, fine-grained, fissile, weakly siliceous, no visible sulphides	grab
4764	phyllite, grey/black quite massive, beds up to lm thick, no visible sulphides	grab
4765	same 4764	grab
4766	tuff, siliceous, grey/green, 2-3% disseminated pyrrhotite, boulder is rounded	float
4843	serpentinite, iron oxide stained, 2-3% fine- grained disseminated magnetite	grab
4844	serpentinite, green to lime green, foliated	grab
4845	phyllite, locally silty, no visibly sulphides	grab
4846	banded phyllite, 1-2% disseminated pyrite	grab
4847	shale, fissile, 1-2% disseminated pyrite	grab
4848	same as 4847	grab

100

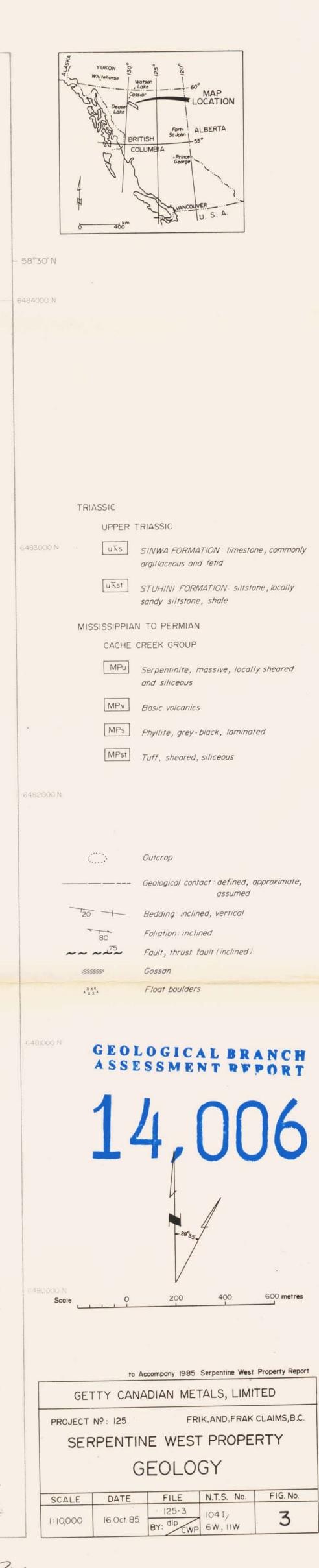
an an air


4849	siliceous, black shale, 3-4% disseminated pyrrhotite. Rep. chip across in wide iron oxide stained zone.	rep.chip
4850	same as 4849, 5-6% disseminated pyrrhotite, weakly siliceous	grab
4852	medium-grained limestone, 1-2% disseminated pyrrhotite	grab
4853	silty sandstone, <1% disseminated pyrite	grab
4854	silty sandstone, <1% disseminated pyrite	grab
4855	silty sandstone, sheared, <1% disseminated pyrite	grab
4856	black/green serpentinite, iron oxide stained, 2-3% disseiminated magnetite	grab
4857	black to limegreen serpentinite	grab
4858	green to limegreen serpentinite	grab
4914	quartz boulder, chlorite	float
4915	greenstone?, siliceous, trace malachite	float
4916	black, brecciated phyllite, silica matrix, iron oxide stained	float
4917	same as 4916	float
4918	black phyllite, quartz veinlet stockwork	grab
4919	quartz boulder, trace of grey submetallic mineral	float
4920	altered phyllite, iron oxide stained, siliceous	grab
4921	quartz boulder, sericite & limonite stringers	float
4922	quartz boulder, black phyllite fragment inclusions	float

4923	black phyllite, siliceous, quartz & limonite stringers	float
4924	quartz/calcite boulder	float
4925	tuff?, 4% disseminated pyrite and pyrrhotite	float



* 2067 tig 2 1 2 1688 4921 2082 1725 3+3 3+1102 4858 1613 AND FRAK 1663 1 2 614 1922 12 484 5 538 4527 4856 692 103 2 4104 A 4761 4762 5 1. 2 17 2, 2 4747 377 2 10112, 2 4524 4525 12 10112, 2 4524 4525 12 53 72 28 9 ,2 44 155 / 13 A4523 ▲4522 2+1/9+1260 17 4757 4540 4521 67 61 178 24' 4092 4746 2 6 53' 6 32' 24 34 .5 1942 1186 4532 4533 2..., 2 5 3 4745 1-1, 9 A 104 67 $\begin{array}{c} \frac{1}{1/4} \frac{2}{5}, 4 \\ 4756 \\ 4 \\ 4765 \\ \frac{1}{1/6} \frac{1}{1/2}, 2 \\ \frac{1}{1/6} \frac{1}{1/2}, 2 \end{array}$ 4520 1671 * 8 3536 4519 1.1,2 1682 * 2 4.3 FRIK'1 475A JILLS 1678 * 832 62 1659 8 2055 1829 × 4753 4753 3 4753 4753 4531 4531 4531 4531 4531 1792 / 1661 5 1477, 7 130 90, 2 5 4089 \$ 4098 4530 490 1300 300, 134 (A⁴⁷⁵² 7 126, 8 × 1497 4743 1 2 2 ×1502 5 363,9 0 1751 4+476' BI A750 6 - 1 265 363 - 3 1865 1 1+2,3 4529 13+16,3 A 4087 29 4,10 10+12,8 4095 1997 2 V 9 4094 1439 × × 1426 1444 ×1447 1899 × FRIK 2 4452 0 16 3 1523 1477 1495 1490 10 1549 1491 567 X . f 1566 1506 × 1508



YUKON

ALBERTA

2 129 2006 1608 1669 MPs × ZOB2 1725 MPu MPL 1 FRAK MP 1922 MPu MPu X X X X X X X X 1773 , х ×1730 43 41637 MPu 1942 0 MPu MPu Boundary of soil sampling grid area see Fig.5 for results M x x x x x x x MPu MPu (1681 × FRIK 1678 20550 1659 3 1792 MPu . MPu 🔅 MPu 160 1721 2012) MPu 12 MPu MPu 1487 MPu 7:502 5>/ MPu. MPu 😳 MF I987 MPu 1865 X MPu O 1997 10 th MPu 🌔 MPst 14444 × 1447 1898 K FRIK 2 36 4492 uTst 1523 1495 💥 MPu 1477 1490 1+ 1549 MPu 1567 UTst 1506 566

Atta