GEOCHEMICAL SURVEY

WHIPSAW CREEK PROPERTY
(MIKE, KERRY 1, KERRY 2 CLAIMS)
SIMILKAMEEN M.D.
NS 92H/7E
$49^{\circ} 16^{\prime} \mathrm{N}, 120^{\circ} 43^{\prime} \mathrm{W}$

Owner and Operator:

WORLD WIDE MINERALS LTD.

WHIPSAW CREEK PROPERTY

 GEOCHEMICAL SURVEY REPORT
TABLE OF CONTENTS

Page

1. Introduction 1
2. Soil Survey 5
2.1 Sampling Method 5
2.1 Anomalous Values 5
3. Discussion of Results 9
4. Recommendations 11
5. Itemized Cost Statement 12
6. Author's Qualifications 13
LIST OF TABLES
2.1 Anomalous Assay Values for $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Au}, \mathrm{Ag}$ and As 6

LIST OF FIGURES

1. Property Location Map 2
2. Claim and Topographic Map 3
3. Soil Geochemistry-Au, Ag, As 7
4. Soil Geochemistry- $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ 8
5. Soil Geochemistry - Au, Cu Summary 10
LIST OF APPENDICES
A Assay Certificates
B Histograms

1. INTRODUCTION

The Whipsaw Creek property of World Wide Minerals Ltd. is located 26 kilometres southwest of Princeton (see Figure 1). The property consists of the Mike, Kerry 1 and Kerry 2 claims which are accessed by secondary logging roads from the Hope-Princeton Highway. In wet weather the use of four wheel drive vehicles is recommended. The topographic relief is gentle, except for the deeply incised valley of Whipsaw Creek, which bisects the property (Figure 2). Elevations on the property range from 1385 to 1660 metres.

The property is underlain by hornblende-biotite schists and amphibolites, derived from Upper Triassic, Nicola Group volcanic and sedimentary rocks. Immediately to the southwest of the property, this rock sequence was intruded by the Eagle granodiorite, part of the Coast Range Intrusive. A number of shear zones and breccia zones are present on the property and near the intrusive contact there are swarms of feldspar porphyry dikes.

Mineralization took place in three stages: (i) widespread, finely disseminated pyrite, (ii) stockworks of pyrite, sphalerite, chalcopyrite and galena, (iii) coarse pyrite and other sulphides in quartz-carbonate veins.

Previous exploration dates back to 1915. It has included geological mapping, geochemical and geophysical surveys, trenching and diamond drilling. Most efforts were directed at the base metals potential, concentrating on the copper-zinc-lead mineralization in the southern part of the property, and on the porphyry-type copper-molybdenum potential in the northern part. Until recently, relatively little attention was paid to the possible gold and silver components of the mineralization.

In this respect, the previous work in the BZ showing area is of particular interest. The BZ showing is on the west side of a small, north-south flowing creek, about 450 metres north of its termination at Whipsaw Creek. Some years ago, this

mineralized zone was discovered by soil geochemistry, which outlined an elongate copper soil anomaly (see Section 3.0). These soils, however, were not analyzed for gold or silver. Four trenches across the anomaly revealed copper-zinc mineralization in the bedrock with gold and silver values. Two of the samples assayed $0.167 \mathrm{oz} /$ ton gold and $0.339 \mathrm{oz} /$ ton gold, with $6.12 \mathrm{oz} /$ ton silver and 5.40 $\mathrm{oz} /$ ton silver, respectively, over a width of 0.7 metres.

The precious metals potential in the general area of the $B Z$ showing should be further investigated. To this end, as a first step, a reconnaissance soil sampling program was carried out.

2. SOIL SURVEY

2.1 Sampling Method

Five east-west soil sampling lines were laid out, centered around the BZ trenches. The lines are 340 metres long and 180 metres apart. Along these lines soil samples were collected at 20 metre intervals and a total of 90 soil samples were taken. The samples were collected in "High West Strength" Kraft bags and sent to Acme Analytical Laboratories Ltd., Vancouver, for assay. The analytical procedures are described on the assay sheets (Appendix A).

As a result of the semi-arid climate, soil development is poor. The thickness of the A-horizon is 4 centimetres or less and the B -horizon is usually less than 5 centimetres thick, and of ten poorly defined. In the current survey, the soil samples were collected from the C-horizon, at depths varying from 20 to 30 centimetres. By taking the soil samples from the C -horizon, precious metals values are considered to reflect more accurately the content of the underlying bedrock. At 2-20 W on line ON, one sample was taken from the B-horizon and another one was taken from the C-horizon, from a depth of about 1.3 metres. The assay printout shows that the gold value in the deeper sample (C-horizon) is greater than that reported for the more shallow (B-horizon) sample.

2.2 Anomalous Values

Anomalous values were determined for copper, lead, zinc, gold, silver and arsenic by calculating the mean and standard deviation of the visually estimated background scatter. First order anomalous is from mean +2 SD to mean +8 SD; second order anomalous is from mean +8 SD to mean +16 SD ; third order anomalous is mean +16 SD and higher. The values calculated for these elements are presented in Table 2.1. Histograms illustrating the frequency of the reported values for copper, lead, zinc, silver and gold are presented in Appendix B.

The assay values for gold, silver and arsenic are plotted on Figure 3, the values for copper, lead and zinc are plotted on Figure 4. The anomalous values are underlined.

TABLE 2.1
Anomalous Assay Values for $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Au}, \mathrm{Ag}$ and As

$\frac{\mathrm{Cu}}{(\mathrm{ppm})}$	$\frac{\mathrm{Pb}}{(\mathrm{ppm})}$	$\frac{\mathrm{Zn}}{(\mathrm{ppm})}$	$\frac{\mathrm{Au}}{(\mathrm{ppb})}$	$\frac{\mathrm{Ag}}{(\mathrm{ppm})}$	$\frac{\mathrm{As}}{(\mathrm{ppm})}$
$490-730$	$40-60$	$520-790$	$10-15$	$1.6-2.8$	$23-35$
$730-1220$	$60-100$	$790-1330$	$15-26$	$2.8-5.2$	$35-59$
1220	100	1320	26	5.2	59

1st Order	$490-730$	$40-60$	$520-790$	$10-15$	$1.6-2.8$	$23-35$							
Anomalous							\quad						
:---	---:	---:	---:	---:	---:								
2nd Order													
Anomalous	$730-1220$	$60-100$	$790-1330$	$15-26$	$2.8-5.2$								
3rd Order	1220	100	1320	26	5.59								
Anomalous					59								

3. DISCUSSION OF RESULTS

The orientation soil survey found a number of clearly anomalous gold values. It should be noted that the higher gold values tend to concentrate in the southern part of the grid and that they are generally found up-slope from the previously indicated copper soil anomaly. The spatial relationship between the established copper soil anomaly and the gold values reported in this study can be seen in Figure 5. Because the samples were taken from the C-horizon, the anomalous gold values probably reflect mineralization in the bedrock directly underlying the soil samples.

The extremely high copper background represents a confirmation and expansion of the previously indicated copper soil anomaly as previous work has established that the regional copper background is around 40 ppm , a fairly normal figure. This anomaly is elongated in a north-south direction and is 3,000 metres long and 1,000 metres wide (Figure 5) with copper values of more than 500 ppm and peaks of more than $1,000 \mathrm{ppm}$.

In the present survey, only the values in excess of 490 ppm were designated as being anomalous. This very high anomalous value is valid only for the present population of 90 samples. It indicates that the soil sampling lines are entirely contained within a large copper soil anomaly. Similarly, the very high nickel and chromium backgrounds (see assay sheets) are probably indicative of large nickel and chromium anomalies.

0

4. RECOMMENDATIONS

A systematic compilation of all recorded previous work should be carried out.

Intermediate soil lines should be established between line $1+80 \mathrm{~N}$ and $3+60 \mathrm{~S}$ and the grid should be expanded to the south. All soil samples should be taken from the C-horizon, at depths of at least 30 centimetres. The samples should be assayed by the ICP method, with additional AA analyses for gold. Gold anomalies should be trenched or drilled.

The bedrock in the "Texas Gulf" trench, situated to the north of the present soil grid, should be sampled and assayed for precious metals.

5. ITEMIZED COST STATEMENT

Soil Sampling; 90 samples, 3 man-days @ $\$ 100$ $\$ \quad 300.00$
Report 343.00
Assays; 90 assays @ $\$ 10.60$ 954.00
Histograms 32.00
Transportation; truck rental, gasoline, taxi 270.94
Room \& Board; 2 men, 2 days and 2 nights 171.00
Materials; 90 soil bags, topo maps, topofil, flagging 36.28
Total $\$ 2,107.22$

6. AUTHOR'S QUALIFICATIONS

I, Robert C. Heim, of North Vancouver, B.C., hereby certify the following:

1. I am a Senior Associate Geologist of Min-Ex Resource Consultants, the offices of which are located at 806-402 West Pender Street, Vancouver, B.C.
2. I have a Ph.D. (1952) degree in Geology from the University of Utrecht, Holland.
3. I have practised my profession since 1952, and have been an independent consultant since 1984.
4. I am a member of the Association of Professional Engineers of British Columbia and Ontario.
5. This report is based on the geochemical survey that I have carried out with Mr. John H. Perry, P.Geol., on August 12th and 13th, 1985.

Dated at Vancouver, B.C., this 12th day of September 1985.
R.C. Heim, Ph.D., P.Eng.

0

APPENDICES

0

APPENDIX A

ACME ANALYTICAL LABORATOKIES LTD. B52 E.HASTINGS ST. VANCOUVER B.C. YGA 1RG PHONE 253-315日 DATA LINE 251-1OI\&

GEDEHEMTCAL IEP AMALYSIS

. 500 gran sample is digested hith 3hl 3-1-2 hel-hnoz-hod at 95 deg. C for one hour and is diluied to 10 ml with mater.

- SAMFLE TYPE: SOILS -80 MESH AUf AMALYSIS bY aA fROM 10 GRAH SAMPLE,

MIN-EX CONSULTING LTD FFGJECT - $85-1 N S$ FILE \# 85-1866
FAGE :

SARFLEI	Ho	Cu	Pb	In	Ag	Ni	Co	Mn	Fe	As		Au	Th	Sr	cd	Sb	Hi		Ca	P	12	Cr	H	Ba	II	θ					Aus
	PPK	PPM	PPM	PPM	PPH	PPH	PPM	PPH	2	PPK	PPM	1	2	PP\%	PPM	2	PPM	2	PPM	2	1	2	PPM	PPI							
$3+60 \mathrm{~N} 3+40 \mathrm{~K}$	3	181	10	131	. 7	34	11	305	3.09	8	5	ND	2	13	1	2	2	87	.13	. 10	2	64	1.04	57	. 10	3	2.01	. 02	. 13	1	2
$3+60 \mathrm{~N} 3+20 \mathrm{H}$	3	199	13	128	. 4	38	12	318	3.22	8	5	MD	1	13	1	2	2	69	. 13	. 08	2	72	1.20	62	. 10	2	2.11	. 02	. 63	!	1
$3+60 \mathrm{~N} 3+00 \mathrm{LK}$	3	231	13	139	. 5	38	11	275	3.26	9	5	No	2	16	1	2	2	69	. 16	. 09	3	65	1.07	80	. 11	3	2.26	. 02	. 02	1	\%
$3+60 \mathrm{~N} 2+80 \mathrm{~W}$	1	268	14	165	. 7	35	12	490	2.91	1	5	ND	1	19	1	2	2	62	. 19	. 07	3	65	1.02	82	. 11	3	2.19	. 02	. 03	1	2
$3+60 \mathrm{~N} 2+60 \mathrm{H}$	5	261	14	186	.7	35	12	284	3.35	12	7	ND	2	15	1	2	2	69	. 15	.10	3	61	. 94	72	.12	3	2.26	. 01	. 04	1	2
$3+60 \mathrm{~N} 2+40 \mathrm{~K}$	5	261	19	16a	. 6	11	14	349	3.57	12	5	ND	3	15	1	2	2	74	. 14	.12	4	74	1.18	66	. 12	2	2.19	. 02	.63	1	3
$3+60 \mathrm{~N} 2+2 \mathrm{~N}$	1	218	14	145	. 7	32	10	267	3.26	12	5	Mid	2	13	1		2	66	. 13	. 12	2	61	. 92	53	. 11	3	2.08	. 02	. 03	1	:
$3+60 \mathrm{~N} 2+00 \mathrm{~N}$	4	238	19	165	. 3	39	13	423	3.47	9	5	Mo	2	17	1	2	2	69	. 15	. 13	3	75	1.16	66	. 11	2	2.24	. 02	. 04	1	
$3+60 \mathrm{~N} 1+80 \mathrm{H}$	4	223	13	128	. 6	26	6	. 222	2.83	b	5	No.	1	11	1	2	2	61	. 10	. 11	3	53	. 71	49	.14	3	1.96	. 01	. 01	1	2
$3+60 \mathrm{~N} 1+60 \mathrm{~K}$	15	397	13	175	. 8	11	7	244	4.60	1	16	ND	4	26	1		4	104	.12	. 13	5	118	1.41	157	. 20	2	3.28	. 02	. 07	1	2
$3+60 \mathrm{~N} 1+40 \mathrm{~W}$	17	328	11	147	. 5	31	5	229	4.22	10	5	ND	2	11	1	2	2	98	. 08	. 10	2	95	1.20	80	. 17	2	2.36	. 02	. 04	1	-
3+6ON $1+00 \mathrm{H}$	6	1128	17	435	1.2	66	18	362	3.97	15	5	ND	1	25	1	5	2	89	. 46	. 04	6	104	1.65	83	. 14	2	2.51	. 02	.05	1	1
$3+60 \%$ 0+80	2	375	18	257	.7	42	11	329	3.29	10	5	ND	2	22	1	2	3	72	. 33	. 08	3	68	1.13	96	. 13	3	2.14	. 01	. 65	1	3
$3+60 \mathrm{~N} 0+60 \mathrm{~N}$	5	296	24	229	. 4	57	14	475	4.18	19	5	ND	1	29	1	2	2	85	. 16	. 07	1	100	1.81	87	. 12	2	2.26	. 02	. 06	1	5
$3+60 \mathrm{~N} 0+40 \mathrm{H}$	2	236	26	224	. 6	44	9	241	2.91	11	5	MD	1	20	1		2	62	. 31	. 05	4	54	. 97	70	. 12	2	1.81	. 02	. 64	1	2
$3+60 \mathrm{NO} 0+20 \mathrm{~N}$	6	323	26	268	. 2	57	13	363	3.79	19	5	ND	1	24	1	2	2	81	. 37	. 06	5	70	1.59	88	. 13	3	2.12	. 02	. 09	1	2
$3+60 \mathrm{NO}+00 \mathrm{H}$	3	207	25	254	. 4	47	10	291	3.21	15	5	N0	2	21	1	2	2	72	. 30	. 06	3	74	1.36	60	. 12	2	1.95	. 02	. 04	1	7
$1+80 \mathrm{~N} 3+40 \mathrm{~K}$	1	295	26	246	1.3	14	12	256	3.15	11	5	ND	2	15	1	2	4	12	. 14	. 08	3	80	1.13	69	.13	2	2.29	. 02	. 03	$!$	1
1+80N $3+20 \mathrm{~K}$	9	279	18	22 ?	1.3	45	12	259	3.12	8	5	No	2	14	1	2	2	69	. 14	. 09	3	101	1.24	81	.13	2	2.28	. 02	. 62	1	3
$1+80 \mathrm{~N} 3+60 \mathrm{OH}$	10	558	21	2.5	. 7	47	13	256	3.70	8	5	ND	3	16	1	2	2	74	. 12	. 07	5	76	1.05	84	. 14	3	2.57	. 01	. 03	1	2
$1+\mathrm{EOH} 2+80 \mathrm{~N}$	17	575	19	302	. 8	45	,	164	3.28	10	5	ND	2	15	1	2	4	63	. 14	. 07	3	71	. 72	56	. 13	2	2.25	. 02	. 03	,	5
$1+80 \mathrm{~N} 2+60 \mathrm{~K}$	26	789	35	319	. 5	41	,	184	4.02	10	5	HD	2	22	1	4	2	75	. 19	. 05	3	65	. 93	65	. 08	2	1.71	. 02	. 06	1	6
$1+80 \mathrm{~N} 2+40 \mathrm{H}$	19	1202	27	353	. 4	76	18	323	3.86	,	5	H0	2	31	1	2	2	70	. 32	. 04	4	106	1.32	73	.12	3	2.56	. 01	. 06	1	5
$1+80 \mathrm{~N} 2+2 \mathrm{OK}$	8	1167	21	509	. 3	86	13	283	3.19	10	5	N0	3	27	1	2	2	66	. 31	. 04	,	86	1.37	56	. 12	3	2.31	. 02	. 07	1	5
$1+80 \mathrm{~N} 2+6 \mathrm{OH}$	5	214	23	181	. 7	37	11	225	3.08	13	5	M D	1	15	1	2	2	67	. 14	. 08	1	63	. 94	59	. 12	2	2.10	. 01	. 02	1	3
$1+80 \mathrm{~N} 1+80 \mathrm{H}$	3	197	18	200	. 8	43	13	270	3.27	11	5	ND	2	16	1		2	69	. 14	. 10	2	74	1.11	60	. 11	2	2.15	. 01	. 01	1	2
$1+80 \mathrm{~N} 1+60 \mathrm{H}$	2	203	19	212	. 0	43	13	323	3.21	10	5	HD	3	16	1		2	67	. 15	. 11	,	71	1.09	75	.11	2	2.21	. 01	. 03	1	2
$1+80 \mathrm{~N} 1+40 \mathrm{~K}$	3	236	24	260	. 6	41	13	316	3.26	15	5	N0	1	15	1	2	2	67	. 14	. 11		74	1.02	68	. 11	2	2.21	. 01	. 03	1	3
$1+80 \mathrm{~N} 1+20 \mathrm{H}$	5	324	24	254	1.1	43	13	322	3.57	18	5	HD	2	17	1	2	2	75	. 16	. 13	2	78	1.05	76	. 12	2	2.30	. 01	. 04	1	4
$1+80 \mathrm{~N} 1+00 \mathrm{H}$	10	799	23	496	. 7	60	25	477	3.50	11	5	ND		17	i	2		74	. 18	. 07	3	84	1.27	52	. 11	2	2.40	. 01	. 03	1	6
1+80\% 0+804	5	817	21	521	. 9	63	17	340	3.18	14	5	HD	2	14	1	2	2	62	. 13	. $0 B$	3	61	. 81	70	. 13	2	2.53	. 02	. 03	1	4
$1+8 c^{+1} 0+6014$		$16 t$	11	200	. 8	33		229	3.51	12	5	N0	2	11	1	2		76	. 09	. 12	3	72	. 90	11	. 16	2	2.88	. 02	. 02	1	1
$1+80 \mathrm{~N} 0+40 \mathrm{M}$	36	1498	25	250	1.5	62	14	391	6.26	25	5	ND	3	35	1	2	2	145	. 19	. 09	5	183	2.68	185	. 21	3	3.46	. 02	. 16	1	12
$1+80 \mathrm{NO}+2 \mathrm{OH}$	10	947	20	303	1.3	53	13	281	3.82	16	5	H ${ }^{\text {d }}$	3	15	1	2	2	86	. 14	. 06	4	96	1.31	71	. 15	2	2.66	. 01	. 04	1	5
	5	323	22	319	1.5	54	10	238	3.10	15	5	Mo	2	22	1	2	2	73	. 26	. 06	4	12	1.10	94	.12	2	2.47	. 01	. 06	8	1
wrow 3+40H	3	249	35	103	1.4	46	13	370	3.45	13	5	ND	1	19	1	2	2	71	. 21	. 09	1	87	8.35	12	. 11	3	2.15	. 01	. 04	1	38
SID C/AU-0.5	20	58	39	133	1.0	68	26	1161	3.97	38	17	8	36	51	16	15	22	59	. 48	. 13	37	55	. 87	174	. 07	41	1.55	. 06	. 08	12	480

SAMPLEI	Mo	Cu	Pb	In	Ag	Ni	Co	Kn	Fe	As	\cup	All	in	Sr	Cd	Sb	日i	V	Ca	p	La	Cr	Hg	Ba	1	\＃	nit	Ka	K	－	At：
	PFK	PFK	PPN	PPM	FFH	PFH	PPM	PPH	2	PPM	PPM	PPM	PPK	PPM	PPM	PPM	PPM	PPM	1	1	PPM	PPM	1	PPK	t	PPM	1	1	1	fin	Ff：
O＋COON $3+2 \mathrm{OH}$	2	103	27	407	1.2	31	9	367	2.90	6	5	ND	2	14.	1	2	2	62	． 16	． 09	5	56	． 86	102	． 12	2	1.97	． 01	． 05	1	i
jotoun 3 ＋0an	3	242	34	283	1.9	47	15	419	3.64	14	5	ND	2	18	1	2	2	75	． 17	． 11	日	81	1.22	17	． 13	2	2.85	． 01	． 04	1	1
O＋00N $2+80 \mathrm{H}$	5	354	36	264	1.1	46	14	633	3．86	17	5	ND	2	20	1	2	2	76	． 19	． 11	6	85	1.16	87	． 11	2	2.70	． 01	． 08	$!$	7
$0+00 \mathrm{~N} 2+60 \mathrm{~N}$	5	321	35	270	1.4	46	15	116	3.56	14	5	ND	2	19	1	2	1	71	． 18	． 09	6	82	1.13	84	． 12	2	2.48	． 01	． 04	1	11
O＋OON $2+40 \mathrm{H}$	3	195	32	296	1.0	11	12.	172	3.08	15	5	N0	2	17	1	2	2	63	． 17	． 08	6	66	． 92	85	． 11	2	2.31	． 01	． 05	1	5
O＋00H $2+20 \mathrm{~N}-\mathrm{C}$	23	621	86	337	1.1	52	10	195	5.50	33	5	N0	3	78	1	3	3	100	． 33	． 08	10	163	1.78	152	． 13	3	2.73	． 01	． 21	1	45
O＋OON $2+20 \mathrm{H}-\mathrm{B}$	3	212	27	138	1.4	39	12	358	3.03	13	5	ND	2	20	1	2	4	63	． 20	． 07	5	65	． 84	70	． 11	2	2.18	． 01	． 05	1	3
$0+00 \mathrm{~N} 2+00 \mathrm{H}$	3	216	23	453	1.4	12	12	294	2.99	8	5	ND	2	15	1	2	2	62	． 15	． 08	1	69	． 91	80	． 12	2	2.34	． 01	． 05	1	1
a $+00 \mathrm{~K} 1+8 \mathrm{Cu}$	5	231	28	132	1.6	10	12	327	3.04	14	5	ND	3	14	1	4	5	64	． 16	． 09	5	66	． 88	70	.10	2	2.22	． 01	． 06	1	0
O＋00N 1＋604	5	324	10	394	1.8	43	13	432	3.66	15	5	ND	2	20	1	2	3	73	． 20	． 09	5	74	． 98	87	． 12	2	2.45	． 02	． 06	1	1
O＋00N $1+40 \mathrm{H}$	5	309	70	427	1.7	35	12	401	3.74	18	5	ND	J	29	1	2	3	70	． 15	． 12	8	68	.84	112	． 12	2	2.53	． 01	． 07	1	1
O＋003 1＋20H1	3	268	27	369	． 9	37	13	415	2.97	13	5	ND	3	21	1	，	2	59	． 20	． 11	5	56	． 74	66	． 11	2	2.19	． 01	． 06	1	\％
O＋002 1＋1003	4	295	21	295	． 6	37	13	346	3.15	12	5	ND	2	20	1	2	2	64	． 16	． 09	5	63	． 92	67	． 11	2	2.14	.01	． 04	1	2
OtGOH 0＋80H	6	300	20	252	． 8	28	9	295	2.96	13	5	ND	2	11	1	2	2	59	． 10	． 11	6	47	． 54	43	． 12	2	2.42	． 02	． 04	1	！
O＋OCH O＋OOM	5	417	18	221	． 6	32	10	239	3.11	11	5	ND	3	11	1	2	2	70	． 11	． 13	6	60	． 81	56	． 14	2	2.61	． 01	． 03	1	8
O＋0CN $0+40 \mathrm{~N}$	8	737	18	239	． 8	44	14	309	3.79	15	5	ND	3	16	1	2	2	84	． 14	． 07	b	87	1.20	82	． 15	2	3.78	． 01	． 04	1	
0＋006 $0+20 \mathrm{H}$	6	567	16	239	． 8	3 B	12	349	3.23	12	5	ND	2	14	1	2	2	73	． 13	． 10	1	13	． 97	60	.13	2	2.76	． 01	． 04	1	8
0toon $0+3004$	8	637	14	222	． 9	42	13	304	3.63	16	5	N0	2	15	1	2	2	81	．13	． 06	6	80	1.11	70	． 15	2	2.78	． 02	． 04	1	1
$1+8053+404$	1	127	43	305	1.1	23	9	568	3.11	16	5	MD	2	11	1	2	2	77	． 16	． 11	1	46	． 73	41	． 12	2	1.89	． 01	． 03	1	－
1＋805 3＋2011	6	310	79	412	． 8	30	14	849	3.87	39	5	ND	2	21	1	3	8	83	． 23	． 09	6	52	1.02	115	． 11	2	2.50	． 01	． 06	1	t
$1+6053+004$	5	326	63	583	1.2	34	14	563	3.67	32	5	HD	2	21	1	2	2	77	． 27	． 10	8	59	． 99	117	． 12	3	2.48	． 01	． 06	1	7
1＋805 2480以	1	259	46	573	． 9	41	13	480	3.27	27	5	N0	2	21	1	3	2	71	． 25	．08	5	75	． 95	86	． 12	2	2.25	． 01	． 06	1	§
1＋805 $2+6001$	1	！ 88	22	1134	1.0	48	10	596	2.93	13	5	WD	2	18	1	2	2	70	． 29	． 05	1	89	1.10	53	． 17	2	2.15	． 01	． 03	1	5
$1+8052+10 \mathrm{H}$	5	301	318	692	37.9	32	8	468	5.21	516	5	N	3	13	2	31	40	59	． 15	． 09	1	70	． 74	88	．j8	2	1.73	． 01	． 69	1	85
1＋805 $2+2011$	1	344	142	816	5.9	46	14	461	4.16	106	5	ND	3	18	1	2	6	73	． 19	．08	1	95	1.13	94	． 11	2	2.33	． 01	． 06	1	100
1＋60s $2+00 \mathrm{M}$	3	261	55	886	2.3	19	15	468	3.17	30	5	ND	2	18	1	2	2	71	． 23	． 08	5	86	1.10	78	． 12	2	2.30	． 01	． 06	1	5
$1+8051480$	5	455	61	978	2.0	60	17	520	3.87	22	5	H0	2	16	1	2	2	76	． 24	． 10	7	86	1.22	65	． 12	2	2.47	． 01	． 05	1	16
1＋805 $1+60 \mathrm{H}$	1	380	56	978	1.6	55	16	551	3.17	20	5	ND	3	14	1	2	2	67	． 18	． 09	6	96	1.13	73	． 12	2	2.23	． 01	． 05	1	8
1＋805 1＋10M	5	462	35	875	1.2	51	16	540	3.57	23	5	ND	2	17	1	2	2	74	． 21	． 10	5	80	1.05	78	． 13	2	2.28	． 01	． 05	1	1
1＋805 1＋200	B	1179	22	1510	1.0	70	15	318	3.72	17	5	ND	3	12	1	2	2	71	． 15	． 08	6	88	1.14	48	． 13	2	$2.5 ?$	． 01	． 04	1	15
1＋805 $1+004$	6	449	13	296	． 5	52	14	348	3.32	8	5	ND	3	30	1	2	2	75	． 33	． 01	6	95	1.48	79	． 12	2	2.68	． 02	． 06	1	16
1＋805 0＋60\％	2	322	16	264	． 4	42	12	311	2.64	3	5	ND	2	27	1	2	2	58	． 28	． 06	5	74	1.09	77	． 10	2	1.98	． 01	． 04	1	3
1＋805 0＋60以	5	343	21	214	． 6	13	12	274	3．08	12	5	ND	2	21	1	2	2	65	． 19	． 10	5	73	1.04	81	． 10	2	2.27	． 01	．05	1	1
1＋805 $0+10 \mathrm{~W}$	6	460	24	249	． 6	48	15	326	3.38	14	5	N	2	20	1	2	2	72	． 21	． 10	6	86	1.22	89	． 11	2	2.34	． 01	． 06	1	d
1＋8CS $0+20 \mathrm{~N}$	3	290	21	266	． 8	11	12	285	3.00	12	5	N0	2	17	1	2	2	65	． 16	． 09	5	70	． 94	82	． 11	2	2.28	． 01	． 05	1	3
1＋805 0＋004	3	224	23	272	． 9	39	12	288	2.96	11	5	ND	2	18	1	2	2	64	． 17	． 08	6	66	． 96	76	． 11	2	2.22	． 01	． 04	1	5
SID C／AU 0.5	21	59	41	137	7.0	71	26	1184	3.99	39	19	8	38	52	16	15	20	60	． 48	.13	37	59	． 88	［77	． 07	11	1.72	． 06	． 10	12	495

> MIN-EX CONSULTING LTD FRGJELI -- BS-WS FILE \# 85-1800

SAMFLEI	Ho	[u	Pb	In	Ag	N1	Co	Mn	fe	As	U	Au	in	$5 r$	Cd	Sb	$8 i$	v	Ca	p	La	Cr	Mg	8	Ii.	8	Al	Hz_{2}	k	\forall	hut
	FFh	PPH	PFM	PFH	PPM	PFK	PPM	PFK	1	PPK	PPK	P9K	PPM	PPH	PPK	PPM	PPM	PPH	1	\%	PPM	PPM	1	PPM	1	FPK	4	\%	2	PFK	SPG
$3+6053+4014$	2	178	50	1022	. 3	45	14	736	3.17	25	5	N0	1	17	1	2	2	68	. 27	. 09	2	88	1.05	79	. 13	3	2.34	. 01	. 08	1	39
3+605 3+201	1	62	5	393	. 1	27	11	680	2.77	3	5	ND	1	13	2	2	2	70	. 34	. 10	2	52	. 96	87	. 11	4	1.52	. 02	. 12	1	3
$3+6053+004$	1	138	30	1136	. 8	44	13	356	3.19	19	5	H9	2	18	2	2	2	65	. 25	. 09	2	65	. 95	94	. 14	3	2.52	. 02	. 68	1	4
$3+6052+80 \mathrm{H}$	2	314	39	1402	1.7	48	12	305	3.26	21	5	ND	1	16	1	2	2	69	. 28	. 06	2	77	. 99	66	. 13	3	2.35	. 02	. 06	1	18
$3+6052+60 \mathrm{H}$	2	241	37	673	1.0	12	12	341	3.17	22	5	ND	2	18	1	2	3	67	. 26	. 00	2	76	1.01	95	. 12	5	2.26	. 01	:08	1	30
3+6uS $2+40 \mathrm{H}$	1	237	14	1123	. 1	76	15	489	3.16	5	B	ND	1	19	1	2	4	69	. 42	. 05	2	160	2.25	54	. 21	2	2.67	. 01	. 04	1	3
3+605 2+2011	1	171	32	885	. 9	47	13	502	3.44	19	8	ND	1	22	2	2	3	12	. 30	. 06	2	80	1.19	114	.13	5	2.54	. 02	. 07	1	17
$3+6052+004$	1	302	36	1230	1.3	58	14	540	3.59	16	6	HD	2	19	2	2	6	73	. 29	. 08	2	103	1.34	117	. 15	2	2.76	. 02	. 09	1	5
$3+6051+80 \%$	2	408	27	1636	. 6	57	15	536	3.58	10	5	NH	1	24	2	2	3	75	. 38	. 09	2	85	1.29	82	. 12	2	2.52	. 02	. 06	1	4
$3+6051+60 \mathrm{H}$	4	522	30	1180	. 8	56	19	545	3.48	13	5	ND	1	20	1	2	2	74	. 28	. 06	2	87	1.15	72	. 13	2	2.47	. 01	. 06	1	8
3+605 1+1041	6	2958	24	1733	. 1	174	47	467	3.49	16	5	ND	1	22	1	2	2	68	. 25	. 05	2	80	1.21	109	.10	4	2.78	. 02	. 05	1	41
3+605 1+201	1	83	21	521	1.0	46	11	311	3.09	17	5	N	1	19	1	2	2	67	. 20	. 07	2	14	1.06	77	. 13	3	2.24	. 01	. 07	1	4
$3+6051+60011$	1	66	32	507	. 8	41	11	438	3.07	12	5	N0	1	15	1	2	2	70	. 19	. 07	2	65	1.05	12	.14	2	2.17	. 01	. 06	1	8
$3+6650+8011$	1	75	33	524	.6	41	12	415	3.61	18	5	ND	1	18	1	5	2	79	. 29	. 03	2	91	1.51	60	.12	2	2.23	. 02	. 10	1	4
$3+6050+6011$	1	43	22	366	. 2	41	11	681	3.16	10	5	No	1	25	1	2	2	68	. 31	. 06	2	72	1.29	83	. 11	3	2.11	. 01	. 09	1	3
$3+6050+4011$	1	78	22	609	. 6	39	11	542	3.03	10	5	ND	1	22	1	2	2	63	. 25	. 09	2	64	1.09	90	. 12	2	2.20	. 01	. 05	1	3
$3+6050+2014$	1	61	10	990	. 6	35	11	814	3.08	17	5	ND	2	18	2	2	2	66	. 23	. 10	2	54	. 82	97	.14	2	2.17	. 02	. 07	1	3
3+605 0+00\%	1	139	25	315	. 3	51	15	530	3.86	16	5	ND	1	20	1	2	2	83	. 31	. 05	2	99	1.74	92	. 13	3	2.35	. 01	. 20	1	3
5 T C/AU-6.5	21	5	40	134	7.0	71	25	1172	3.98	39	15	8	36	51	16	15	21	59	. 48	.13	37	57	. 88	173	.0)	40	1.72	Ob	-d	11	80

APPENDIX B

θ


```
SAHPLE SILE: 90 MAX : 295 B MIN : 13 MEDIAK : 295
```


