Trenching and Diamond Drilling Report

on the

Kusk Property

Cariboo Mining Division, British Columbia N.T.S. 93A/7E

for -

Nirvana Oil and Gas Ltd. #1020-475 Howe Street Vancouver, B. C.

Prepared by:

G. Belik and Associates Ltd. 664 Sunvalley Drive Kamloops, B. C.

> G. D. Belik, M.Sc. November 12, 1985

Trenching and Diamond Drilling Report

- on the -

Kusk Property

Cariboo Mining Division, British Columbia N.T.S. 93A/7E

- for -

Nirvana Oil and Gas Ltd. #1020-475 Howe Street Vancouver, B. C.

Prepared by:

G. Belik and Associates Ltd.
664 Sunvalley Drive
Kamloops, B. C.

G. D. Belik, M.Sc.
November 12, 1985

Table of Contents

					Page No.
SUMMARY .					3
INTRODUCTION			•		4
CLAIMS .		•	•	• . • . • . • . • . • . • . • . • . • .	4
LOCATION AND	ACCESSIBILITY .	•	· .	•	5
PHYSIOGRAPHY	AND VEGETATION .	•	· •	•	6
SALIENT GEOL	OGICAL FEATURES .		•	•	7
PREVIOUS EXP	LORATION	•	. •	•	10
1985 PROGRAM	•	•	•	•	10
Litholo	gies	•		•	11
Structu	re	•	•	•	13
Veining	•		•		14
Alterat	ion	‡ 	•	•	15
Mineral	ization	•	•		16
Correla	tion of Drill Secti	ons .	•	•	18
CONCLUSIONS A	AND RECOMMENDATIONS			•	19
FIGURES:					
No. 1:	Location Map .	•	•		: : <u>1</u>
No. 2:	Claim Map	•	· .	•	2
No. 3:	General Geological 1:125,000	Settin	g •	•	9
No. 4:	Trench Locations 1:1,000	•	• .	•	Pocket
No. 5:	Plan of Road, Dril Locations 1:10,000	l Site,	and !	rench.	Pocket

No. 6: Section Correlation 1:1,000 Pocket

APPENDIX:

I: Diamond Drill Logs

II: Assay Certificates

III: Statement of Expenditures

IV: Statement of Qualifications: G. D. Belik

SUMMARY

The Kusk claims were staked in November, 1981 to cover the possible southeast extension of a gold-bearing horizon identified on Eureka Resources' Frasergold Property. Prior to the 1985 diamond drill program, work carried out to date on the property included wide-spaced reconnaissance soil sampling over most of the claim area in 1982, detailed soil sampling and mapping within the central part of the claim area in 1983 and detailed soil sampling and mapping in the western part of the claim area in 1984. The 1984 program delineated a large zone of weak to moderately anomalous gold values in soils, associated with the southeast extension of the same lithological sequence which hosts the known mineralization on the Frasergold Property.

During 1985, the main soil anomaly was evaluated by two diamond drill holes 550 meters apart. DDH-l penetrated a zone, 6.1 meters wide, averaging 0.033 oz gold/ton. DDH-2 penetrated a zone, 8.08 meters wide, averaging 0.043 oz gold/ton (incl. 2.13 meters of 0.086). Both zones occur at about the same stratigraphic level, near the top of a phyllite sequence characterized by the presence of calcareous phyllite and argillaceous limestone interbeds. The calcareous sequence has a overall thickness of about 100 meters.

INTRODUCTION

Approximately 3.0 km of access roads, two trenches with a combined length of 380 meters and two diamond drill holes, with a total depth of 676.67 meters, were completed within the Kusk 5 claim area during the period August 16 to October 4, 1985. An additional 14.0 km of rough tote road, which provided four-wheel-drive access to the claim area from Crooked Lake, was completed during the period August 7-15, 1985.

Diamond drilling was under contract to Core Enterprises Ltd., P.O. Box 67, Clinton, B. C. A Boyles BBS-15 drill rig with wireline equipment was used to bore the holes.

All of the core is stored in wooden boxes, placed under a tarp, at approximate grid co-ordinates 3+00S, 8+00W.

CLAIMS

The Kusk Property is comprised of 11 contiguous claims totalling 154 units as detailed below:

Mining Division	<u>Claim Name</u>	<u>Units</u>	Record No.	Record Date	
Cariboo	Kusk 1	9	4141	Nov. 20/81	

Cariboo	Kusk 2	12	4142	Nov.	20/81
Cariboo	Kusk 3	20	4143	Nov.	20/81
Cariboo	Kusk 4	16	4144	Nov.	20/81
Cariboo	Kusk 5	9.	4145	Nov.	20/81
Cariboo	Kusk 6	20	4146	Nov.	20/81
Cariboo	Kusk 7	20	4147	Nov.	20/81
Cariboo	Kusk 8	20	4148	Nov.	20/81
Cariboo	Kusk 9	4	4149	Nov.	20/81
Cariboo	Kusk 10	4	4150	Nov.	20/81
Cariboo	Kusk 11	20	4151	Nov.	20/81

Ownership of the above claims is as follows:

Mr. J.J. O'Neill -50% Kerr, Dawson & Associates Ltd. -25% G. Belik & Associates Ltd. -25%

Nirvana Oil & Gas Limited, #1020-475 Howe Street, Vancouver, B. C. and Roddy Resources, Inc., R.R. #3
Yellowhead Highway, Kamloops, B. C., are currently exercising an option on the Kusk 1-8 claims. Nirvana Oil & Gas Limited is the Operator of the Nirvana/Roddy Joint Venture.

LOCATION AND ACCESSIBILITY

The Kusk claims area situated in the Horsefly District, Cariboo Mining Division, British Columbia. The

claim area extends southeast from the headwaters of the MacKay River, along the western boundary of Wells Gray Provincial Park. The center of the property is situated about 100 kms east of Williams Lake at geographic coordinates 52° 15' North Latitude and 120° 30' West Longitude.

Prior to the 1985 program the most practical means of access to the property was by helicopter. During the 1985 program a rough tote road was completed which provided temporary four-wheel-drive access to the Kusk 5 claim area from Crooked Lake. This road has been blocked off and sections of the road have now been reclaimed.

PHYSIOGRAPHY AND VEGETATION

The Kusk claims are situated along a northwest-trending series of ridges and peaks with rounded tops and steep valley walls which extend between and parallel to the MacKay River and McKusky Creek/Crooked Lake Valleys. Eureka Peak, the highest point in the vicinity of the claims, attains an elevation of 2,428 meters. Elevation of the claim area ranges from about 2,100 meters a.s.l.

Below 1,800 meters a.s.l. thick stands of mature

balsam, spruce, fir and cedar with heavy underbrush predominate. Above 1,800 meters a.s.l. forest cover is lighter and above 1,900 meters to 1,950 meters a.s.l. alpine-type vegetation prevails.

SALIENT GEOLOGICAL FEATURES

The Kusk claims occur along the nose of a major northwest-trending, overturned syncline (informally designated the Crooked Lake Syncline). The axis of this syncline projects through the central part of the claim area, parallel to the MacKay River and McKusky Creek/Crooked Lake Valleys.

The Proterozoic Snowshoe Formation forms the base of the Crooked Lake Syncline and are the oldest rocks exposed in the area. This unit consists of sharp-banded paragneiss, leucocratic feldspar-augen gneiss, schist and sub-mylonite.

Overlying the Snowshoe Formation with apparent major structural discontinuity is a 100 meter to 500 meter thick section of Upper Paleozoic andesititic to basaltic metavolcanics which is in turn overlain by a thick section (+1500 meters) of Triassic metasedimentary and metavolcanic rocks. The Triassic section includes

a thick basal phyllite/greenshist sequence which grades upward into alkaline, augite-porphyry flows, tuffs and breccia.

The Triassic, basal phyllite greenschist sequence has been subdivided into three members. The lower member consists of interbedded dark grey to black phyllite, greenschist and quartz-sericite schist. The middle member is characterized by dark grey to black, locally strongly pyritic, lustrous phyllite with minor intercalated lenses of limestone. The upper member consists of interbanded black phyllite, quartzite, greenschist and quartz-sericite-chlorite schist.

The middle phyllite member includes a knotted, iron-carbonate rich facies which is the host unit for the zones of stratabound gold mineralization in the district. The knotted phyllite is characterized by abundant fine-grained iron-carbonate knots (ankerite and/or siderite) up to 1 cm in size. The knots, which are actually augen and boudinage structures appear to be the result of segmentation of competent, iron-carbonate rich laminations during the main period of deformation of the host rocks.

PREVIOUS EXPLORATION

The Kusk claims were staked in November, 1981 to cover the possible extension of the favourable knotted phyllite sequence which was known to host significant gold mineralization on the adjacent Frasergold Property. Prior to the 1985 program, exploration work carried out on the Kusk Property included wide-spaced reconnaissance soil sampling over most of the claim area in 1982, detailed soil sampling and mapping within the central part of the claim area in 1983 and detailed soil sampling and mapping in the western part of the claim area in 1984. The 1984 program delineated a large zone of weak to moderately anomalous gold values in soils, associated with the southeast extension of the knotted phyllite sequence, around the nose of the Crooked Lake Syncline.

1985 PROGRAM

Diamond drilling and trenching carried out during 1985 cross-cut the favourable knotted phyllite sequence and associated soil anomaly along two section lines. DDH-1, which was collared at 4+94S, 4+44W cross-cut the sequence near the nose of the Crooked Lake Syncline. Trenches A and B and DDH-2 cross-cut the sequence along

a section, 500-550 meters to the north.

Lithologies

Based on the results of the diamond drilling and trenching the knotted phyllite sequence has been sub-divided into the following units:

- Laminated phyllite: laminated phyllite is characterized by a well defined laminated appearance associated with alternating laminations of light to dark grey and black, carbonaceous phyllite. The unit often contains laminations and interbeds of light grey arenaceous phyllite.
- Banded phyllite: banded phyllite is characterized by alternating bands of medium to dark grey and dark grey to black, carbonaceous phyllite, a few cm to greater than 10 cm wide. Texturally the unit is fairly uniform, competent and very fine grained.
- Knotted phyllite: knotted phyllite is the distinctive unit from which the knotted phyllite sequence derives its name. The unit is characterized by the presence of abundant (10-30%) fine to coarse augen (1-2 mm to +1 cm) which imparts a distinctive knotted appearance to the unit.

In surface exposures the knots are invariably totally weathered to earthy brown limonite and/or goethite. Fresh knots are dense to very fine grained, often

faintly laminated and occassionally contain fine lines of pyrite, pyrrhotite and rarely sphalerite. Phyllite generally wraps around knots and many knots show rotation with pressure shadows filled with secondary carbonate.

The most common variety of knotted phyllite is a uniform dark grey to black color, carbonaceous and very fine grained. Laminated and banded varieties of phyllite which often contain well-developed knots have been included as part of the knotted phyllite unit. Where the host phyllite is light to medium grey, knots tend to be a pale straw yellow to light grey color. Knots in dark grey to black phyllite generally are medium to dark grey.

Petrographic work carried out by Amoco Canada on the adjacent Frasergold Property has determined that the knots are a fine-grained mixture of ankerite and siderite. The knots are a result of the segmentation of primary, competent iron-carbonate laminations during deformation of the host rocks. The original laminated texture locally is preserved, particularly where the laminations are thicker and faintly interlaminated with phyllite.

Argillite: homogeneous, very fine-grained, dark grey to black. Foliation well developed in other units, is indistinct or poorly developed.

Calcareous phyllite, argillaceous limestone and dolomite: calcareous phyllite and argillaceous limestone locally occur as narrow units and thin interbeds, principally within laminated varieties of phyllite.

The limestone is medium to dark grey and often thinly bedded. Dolomite is darker grey, dense and siliceous.

Siliceous phyllite: siliceous phyllite is thinly laminated, hard and resistant. The unit contains thin laminations and interbeds of dense, dark grey to black chert.

Cherty phyllite: similar to siliceous phyllite with more chert laminations and interbeds.

Structure

Most units display a strong, penetrative crenulation foliation parallel to subparallel to bedding. Within the area evaluated by drilling and trenching this foliation strikes north to north-northwest and dips 18° to 65° westerly.

Locally, and in particular in DDH-1 which was drilled into the nose of the Crooked Lake Syncline, small, late-stage drag folds are evident. These drag folds generally are associated with an axial plane cleavage, manifested by black tension gashes, which transposes bedding and the early foliation.

Veining

Quartz and quartz/carbonate pods, laminations and veins are common throughout the phyllite sequence. Locally sections are strongly veined and average 15-30% vein material over widths of up to 20 meters.

Most of the quartz occurs as pods and discontinuous laminations conformable to bedding and developed as 'sweats' during the main period of regional metamorphism and deformation of the host rocks. Locally, thin, latestage veins cross-cutting bedding are evident.

Most of the quartz is milky white, with clusters of coarse carbonate, principally ankerite, within the vein but more commonly along the vein margins. The carbonate generally is associated with pyrite and pyrrhotite and locally minor sphalerite, galena and chalcopyrite.

Strong vein zones tend to occur near the contact of competent units such as knotted phyllite and incompetent units such as thinly laminated phyllite. This is a reflection of the style of stress release during regional deformation of the host rocks. During regional deformation zones of dilation accompanied by tensional openings were created near the boundaries of lithologies of contrasting rock competency.

The strongest vein zones occur where incompetent members occur closely interbedded with competent members.

Alteration

Two types of alteration were noted in sections of both drill holes and include:

Sericite alteration: a zone of moderate to strong sericite alteration is evident in DDH-1 between 269.29 m and 291.77 m. The zone contains a strongly altered core, 9.45 meters wide, in which the phyllite has been completely converted into a white to pale green, pyritic, highly sericitic unit. Veining within this section is moderate. Marginal to the main alteration zone are transitional zones in which weak to strongly sericitized and 'bleached' phyllite occurs interlayered with dark grey unaltered phyllite. Within the transitional zones the relationship between veining and sericite alteration is apparent. Veins within this section often have bleached highly sericitized margins.

Numerous other strong veins zones occur in DDH-1 both above and below the sericite alteration zone. None of these are associated with any degree of sericite alteration.

A few sericite alteration zones are also evident in DDH-2. As in DDH-1 there is an apparent relationship between the alteration and veining, however, as in

DDH-1, strong vein zones above and below the alteration zones are not associated with the alteration. It is interesting to note that the sericite alteration in both holes occur at about the same stratigraphic level. This suggests the sericite alteration may be stratigraphically controlled.

Carbonate alteration: sections in both drill holes have a distinctive speckled or peppered appearance, due to the presence of finely disseminated, white to pale straw yellow carbonate 0.1-1.0 mm in size. In some sections the carbonate is euhedral with rombohedral outlines while in others the grains are rounded. In both drill holes the speckled units occur within approximately the same stratigraphic interval.

The origin of the carbonate is uncertain. One possibility is that the carbonate is a product of hydrothermal alteration. Alternately the carbonate may be porphyroblasts which developed during regional metamorphism.

<u>Mineralization</u>

All of the drill core was split and fire assayed for gold and geochemically assayed for silver and zinc by Kamloops Research and Assay Laboratory Limited, located in Kamloops, B. C. The coarse rejects from twenty samples were also submitted to Acme Labs in Vancouver for check assays for gold from selected intervals from both holes.

All results obtained are included in Appendices I and II.

In DDH-1, the interval between 246.89 m and 252.99 m (6.1 m) averaged 0.033 oz gold/ton (KRAL). Samples from the same interval submitted to Acme Labs averaged 0.012 oz gold/ton. In DDH-2, the interval between 90.07 m and 98.15 m (8.08 m) averaged 0.011 oz gold/ton (KRAL). Samples from the same interval submitted to Acme Labs averaged 0.043 oz gold/ton (incl. 2.3 m of 0.086 oz gold/ton). The reason for the discrepancy between the two labs has not been established but may be due to a 'nugget' effect.

The mineralized interval in DDH-1 is associated with the speckled carbonate unit. There is no apparent veining or sericite alteration. In DDH-2 the mineralized interval is also associated with the speckled carbonate unit, however, in this section there is 20-30% quartz/carbonate in thin laminations and bands. Sericite alteration associated with veining, is also evident.

The only common denominators in both holes are the speckled carbonate unit and the presence of thin limestone interbeds. This and the occurence of the mineralization at about the same stratigraphic level (Figure 1037-6) suggests that the mineralization is stratigraphically controlled.

Correlation of Drill Sections

The results of the trenching and diamond drilling have been summarized in two columnar sections at a scale of 1:1,000 (Figure 1037-6). Both sections have been adjusted to reflect true thickness.

Within the area evaluated by drilling and trenching the Knotted Phyllite Sequence has been subdivided into three members. The Upper Member is characterized by the predominance of knotted phyllite. In the northern section the upper part of the Upper Member contains a few interbeds of laminated phyllite. It is in this section that quartz vein zones are particularily abundant. In the south section the Upper Member contains more laminated phyllite interbeds with the appearance of siliceous cherty interbeds. This suggests a possible facies change to the south to progressively more laminated varieties of phyllite.

The Middle Member is characterized by the presence of calcareous phyllite and argillaceous limestone interbeds. Knotted phyllite is present but not abundant. The gold-bearing horizon identified by drilling occurs near the top of the Middle Member Sequence.

The Lower Member is characterized by the appearance

of siliceous cherty phyllite. In DDH-2 the cherty phyllite grades downward into interbedded knotted phyllite and carbonaceous laminated phyllite similar to the Upper Member sequence.

CONCLUSIONS AND RECOMMENDATIONS

Although the 1985 diamond drill program identified a potentially laterally extensive, stratigraphically-controlled zone of gold mineralization, the grades encountered to date are low and uneconomic. The zone, however, has been tested by only two widely-spaced drill holes which do not provide an adequate evaluation of the overall grade of the mineralization. It is possible that high grade segments occur which could considerably enhance the overall grade of the mineralization. Alternately higher grade sections could be combined to give smaller reserves of higher grade mineralization. Notwithstanding a possibility for higher grade mineralization the results obtained to date are not encouraging enough to justify the high cost of additional drilling at this time.

To date only minor surface sampling has been carried out within the Kusk claim area. This was due to a general lack of good bedrock exposures, the lack of detailed

stratigraphic information and the large size of the permissive target area at that time.

Detailed stratigraphic information is now available. The position of the mineralized horizon has been determined within a unique sequence of phyllite, less than 100 meters thick, characterized by a distinctive speckled carbonate unit and by the presence of calcareous phyllite and limestone interbeds. With this information it should now be possible, with careful mapping and prospecting, to pinpoint the surface extension of the host sequence.

Once this has been determined it could then be opened up for sampling at regular intervals (50 m - 100 m) by hand trenching and ground sluicing (backhoe or dozer trenching is not feasible due to steep topography). If the sampling program determines that high-grade segments are present or the overall grade has been considerably enhanced, a program of additional drilling would then be warranted.

It is recommended that the above sampling program be carried out. Although it is difficult to estimate the cost of the sampling program due to unknown variables such as the nature and depth of overburden, the total cost of the program should be in the order of \$20,000 to \$30,000.

Respectfully Submitted,

G. D. Belik, M.Sc.

Appendix I

Diamond Drill Logs

Abbreviations and Notations used in Drill Logs

- * check assay from Acme Labs (oz gold/ton)
- L. denotes less than
- m meters
- cm centimeters
- mm millimeters
- Cpy chalcopyrite
- Py pyrite
- Po pyrrhotite
- SPH sphalerite
- GN galena
- F₁ early crenulation foliation parallel to subparallel to bedding
- F_{2} foliation, axial planar to late stage drag folds
- 65°/core axis angle between structure or feature noted and imaginary line parallel to the core
- oz troy ounces
- ppm parts per million

G. BELIK & ASSOCIATES LTD' DIAMOND DRILL RECORD

		PROPERTYKusk		HOL	E No	DH -	2		
DIP AN Meter Factage 137.1	Angle	Core Size 115.83-230.13 m: E Azimuth Angle of Hole -580	% l Ele Lat	ral Depth	300'	L D	heet No	Belik pt. 16 Oct. 1	/85 /85
DEPTH	CORE	DESCRIPTION		SAMPLE No.	WIDTH of SAMPLE		Au	Ag	Zn
Meters	Percen	5	•		OF OATH EL		_oz/ton	-ppm	ppm
.96	100	overburden							
6-41.76		dark grey homogeneous knotted phyllite;		22223	3.96-7.	32	· L.001	0.1	64
		bedding indistinct; 10-25% fine-grained,	gre	r.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
		carbonate knots; near surface, knots part	ly	22224	7.32-10	. 36	L.OOi	0.2	65
		to completely weathered to limonite; unit	5	22225	10.36-1	B.41	L.001	0.2	50
		speckled with fine, white to pale yellow	car	<u>.</u>	<u>ئىنى ئېشىنى</u>				
		bonate (weathered to limonite near surfac	e):	·	<u> </u>	2 M			
		unit contains 0.5-1.0% Py as disseminatio	ns	 					
		and fracture fillings; bedding and F, fol	iat	on					
		fairly uniform throughout section; no vei	n						
		quartz except as noted							
		at 4.27 m: 4 cm rusty quartz seam							
 									
· · · · · · · · · · · · · · · · · · ·		at 8.99 m: 1-2 cm rusty quartz seam		·				 	
·									
				<u> </u>		ļ			

DIAMOND DRILL RECORD

G. BELIK & ASSOCIATES LTD".

Kusk PROPERTY____

HOLE No. DDH - 2

SHEET No. 2 of 20

OEPTH .	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
leters	Percent	zone of strong oxidation extends to about 9.2	m					
		zone of partial oxidation extends to about						
		52.7 m						
		at 7.0 m: F ₁ 78°/core axis			×.			
		11.89-12.04 m: rusty quartz vein						
		13.41-14.63 m: 35% rusty quartz (poor	22226	13.41-1	+. 63	L.001	0.3	5.
		recovery)						
		at 15.85 m: F ₁ 80°/core axis	22227	14.63-1	7.68	L.001	0.2	7
		at 17.37 m: 7 mm rusty quartz seam cross-	22228	17.68-2	•. 73	L.001	0.3	8
		cutting F,						
		20.42-20.52 m: rusty quartz/carbonate vein	22229	20.73-2	3.77	L.001	0.3	7:
		at 20.73 m: .5 cm rusty quartz vein	22230	23.77-2	6.82	L.001	0.2	6
		at 22.25 m: F ₁ 780/core axis						
		25.91-26.01 m: rusty quartz/carbonate vein						
		26.82-28.04 m: poor recovery; badly broken	22231	26.82-2	8.04	L.001	0.3	30
		zone with 50% rusty quartz						
		v i						
				•		1	1	-

G. BELIK & ASSOCIATES LTD.

HOLE No. DDH - 2 SHEET No. 3 of 20 Kusk PROPERTY Ag WIDTH of SAMPLE CORE DEPTH SAMPLE No. DESCRIPTION oz/ton ppm Meters Percent at 28.96 m: F, & bedding 68°/core axis 28.04-31.7 77 22232 0.3 past 25.30 m: laminated appearance partly .001 developed 69 0.2 131.7-32.61 L.001 31.75-32.03 m: rusty quartz/carbonate bands | 22233 and seams 32.61-35.66 L.001 0.1 75 32.31-32.56 m: quartz/carbonate vein 22234 at 33.8 m: F_1 $68^{\circ}/\text{core axis}$ 0.4 78 35.66-38,71 L.001 22235 86 38.71-41 76 0.2 36.58-37.03 m: irregular post deformational 22236 L.001 rusty quartz/carbonate vein with phyllite inclusions 39.01-39.37 m: 20% post deformation rusty quartz/carbonate veins at 39.62 m: bedding 73°/core axis 40.49-40.69 m: rusty quartz/carbonate veins 41.0-41.76 m: paler grey; 5-10% post deformation quartz stringers; incipient sericite alteration . 1

DIAMOND DRILL RECORD

G. BELIK & ASSOCIATES LTD".

HOLE No. DDH - 2 SHEET No. 4 of 20 Kusk PROPERTY___

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		oz/ton	Ag ppm	Zn ppm
Meters	Percent	core losses for interval 3.96-41.76 m:						
	L.1	3.96-7.32 m						
	5	7.32-10.36 m						
	40	10.36-13.41 m						
	40	13.41-14.63 m						
	10	14.63-16.15 m						
	35	16.15-18.29 m					•	
	1	18.29-26.82 m						
	20	26.82-29.26 m						
	7	29.26-32.0 m						
	L.1	32.0-41.76 m						
.76-43	.21 L.1	strong vein section; 70% quartz with 15-20%	22237	41.76-4	B.21	L.001	0.3	50
		cream to pale straw yellow carbonate; 3-5% Py						
.21-47	.24 L.1	dark grey to black strongly knotted phyllite;	22238	43.21-4	\$.03	L.001	0.1	75
		lighter sections due to incipient sericite						
		alteration						
		at 44.6 m: F ₁ & bedding 79°/core axis						
		46.03-46.46 m: quartz/carbonate vein inter-						
		mixed with phyllite (20%)						
5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)								
. 24-47	.75 L.1	black dense siliceous mudstone; cleavage	22239	46.03-4	7.75	L.001	0.2	6,5
		poorly developed; 5% quartz seams						

G. BELIK & ASSOCIATES LTD'.

Kusk HOLE No. DDH - 2 SHEET No. 5 of 20

ROPERTY_		Kusk HOLE No. DDI	1 - 2		SHEET N	lo. <u> </u>	of	20
'DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	Percent							
•75 - 48	57 L.1	quartz/carbonate vein section; 30% phyllite	22240	47.75-48	• 57	.003	0.5	139
. 57-49 .	07 L.1	dark grey, laminated, knotted phyllite; 2-3%	22241	48.57-51	82	.002	0.6	63
		Py						
.07-55/	78 4	uniform, dark grey to black, faintly laminat	ed					
		phyllite; cleavage poorly developed; 0.5-1%	22242	51.82-54	86	L.001	0.5	171
		Py			<u></u>			
		at 50.60 m: 6 cm quartz/carbonate vein						
		at 51.8 m: F ₁ & bedding 80°/core axis						
		52.02-52.50 m: 10% quartz stringers						
	<u> </u>				<u> </u>			
		54.86-55.32 m: 20% quartz stringers		<u> </u>				
.78-70.	79	medium to dark grey uniform knotted phyllite	22243	54.86-5	7.91	.001	0.4	116
		20-30% grey knots, 1-4 mm in size; L.O.5% Py	22244	57.91-6	1.37	L.001	0.3	76
		traces CPY; local incipient sericite alterat	ion					
		56.69-57.0 m: 10-20% quartz principally as						
		thin laminations conformable to bedding						
		at 58.22 m: bedding 75°/core axis					<u></u>	
		. 1						
							1	

DIAMOND DRILL RECORD

G. BELIK & ASSOCIATES LTD.

PROPERTY Kusk HOLE No. DDH - 2 SHEET No. 6 of 20

DEPTH .	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag mqq	Zn ppm
Meters	Percent	matrix of unit contains abundant fine, white						
		carbonate rhombs (dusted appearance)						
		60.61-61.37 m: grey laminated limestone						
		61.72-63.4 m: knotted phyllite with 30% band	s 22245	61.37-63	4	L.001	0.2	49
		and laminations of bleached phyllite (sericit						
		carbonate alteration); a few alteration bands						
		associated with quartz veining; phyllite be-	22246	63.4-66.4	15	L.001	0.1	62
en de la composition de la composition La composition de la		tween alteration bands peppered with fine						
		secondary carbonate	22247	66.45-68	07	.001	0.3	85
		at 66.35 m: 8 mm cross-cutting quartz vein						
		at 66.75 m: 1-3 cm quartz/carbonate vein						
Sylven in the second se		at 67.77 m: a few thin quartz seams						
		68.07-70.41 m: sheared and broken; 10% irre-	22248	68.07-7	41	L.001	0.3	105
		gulor, cross-cutting carbonate/quartz veins						_
		at 70.7 m: F ₁ 50°/core axis						
								`
								`
							1	1

G. BELIK & ASSOCIATES LTD'.

DDH - 2 SHEET No. 7 of 20 Kusk HOLE No. PROPERTY..... Au Ag oz/ton ppm WIDTH of SAMPLE CORE DEPTH SAMPLE No. DESCRIPTION Meters Percent core losses for interval 55.78-70.79 m: 8 | 55.78-58.22 m L.1 | 58.22-61.27 m 8 61.27-63.09 m L.1 | 63.09-69.50 m 45 | 69.50-70.79 m 49 22249 70.79-73 46 L.001 dark grey/black knotted phyllite; zone badly 0.0 70.79-76.51 broken and some what sheared; minor Py; locally irregular, carbonate and quartz/carbonate 22250 73.46-76.51 L.001 56 0.0 veins (2-5%)core losses for interval 70.79-76.51 m: 10 70.79-72.54 m 60 72.54-73.76 m 50 73.76-76.51 m 76.51-80.16 L.001 43 76.51-80.16 14 dark grey to black, weak to moderately sheared, 22251 0.1 knotted phyllite; stockwork of irregular, thip, pyritic carbonate and quartz/carbonate veins (5-10%); zone limonitic at 77.4 m: F_1 63°/core axis

G. BELIK & ASSOCIATES LTD.

SHEET No. 8 of 20 HOLE No. DDH - 2 Kusk PROPERTY____ Au oz/ton DEPTH CORE WIDTH SAMPLE No. DESCRIPTION of SAMPLE Meters Percent 22252 | 80.16-82|.3 69 medium to dark grey, knotted phyllite; +30% 8p.16-82 3 .001 0.2 light to medium grey knots; 0.5-1% Py; unit cut by thin, irregular carbonate/quartz veinlets (2-5%); bedding indistinct; partially oxidized 2 | medium to dark grey, thinly laminated argil- | 22253 | 82.3-85. | 5 0.3 60 L.001 82.3-87.33 laceous limestone and limy phyllite; 5% quartz 22254 85.35-87.33 .001 0.3 61 veins parallel and cross-cutting F₁ at 83.5 m: F₁ & bedding 66°/core axis 86.87-87.33 m: 30% segmented carbonate/quartz seams 22255 B7.33-90 07 0.4 .001 72 uniform, dark grey phyllite peppered with 87.33-90.07 L.1 secondary carbonate; abundant thin carbonate/ quartz veinlets conformable to bedding; 2-3% Py; narrow sections with coarse knots 89.16-89.61 m: grey, thinly laminated limestone at 89.31 m: bedding 71°/core axis

G. BELIK & ASSOCIATES LTD.

HOLE No. ______ DDH - 2 _____ SHEET No. ___ 9 ____ of ____

PROPERTY____Kusk WIDTH of SAMPLE CORE oz/ton ppm DEPTH DESCRIPTION SAMPLE No. Meters | Percent *.013 .003 .086 medium to dark grey knotted phyllite; matrix | 22256 | 90.07-93.27 68 9b.07-100.89 .016 | 0.6 22257 93.27-95.40 generally speckled with secondary carbonate; *:815 1.0 zone contains 20-30% quartz/carbonate in thin 22258 95.40-98.15 93 laminations and bands parallel to F1; sericite/ 22259 98.15-100.89 0.2 42 .002 carbonate alteration associated with veining *.001 imparts a lighter color to phyllite marginal to veins; unit contains 2-5% Py 93.27-93.5 m: rusty, pyritic quartz vein 93.88-95.25 m: laminated grey limestone and limy phyllite 94.34-95.4 m: 30-40% quartz/carbonate veins at 94.18 m: .F, & bedding 740/core axis core loss for interval 90.07-100.89 m 90.07-98.15 m 98.15-99.37 m 99.37-100.89 m

G. BELIK & ASSOCIATES LTD'.

Kusk HOLE No. _______ SHEET No. ______ of _____ PROPERTY____ WIDTH of SAMPLE oz/Au ton CORE DEPTH. SAMPLE No. DESCRIPTION Meters Percent 1001 L.001 * 011 037 medium to dark grey uniform, knotted phyllite; 22260 100.89-103.63 56 100.89-108.92 0.2 66 22261 103.63-106.68 1.1 20-40% grey knots L.1 to 6 mm in size; 2-4% *:88₺ 0.7 22262 106.68-108.92 100 Py as disseminations & fracture fillings; a few quartz/carbonate stringers at 101.2 m: F, 69°/core axis at 106.9 m: F, 720/core axis core loss for interval 100.89-108.92 m L.1 100.89-101.5 m 100 101.5-103.63 m - core ground (tube not locked) 2 103.63-106.07 m 10 106.07-108.92 m 22263 | 108.92-109.73 108.92-109.73 10 light grey, moderately sericitized phyllite; .001 74 0.9 30-40% rusty pyritic quartz/carbonate laminations; +5% Py 1d9.73-111.66 20 moderately sheared & oxidized, coarsely knotted 22264 109.73-111.66 .004 0.8 121 *.012 dark grey/black phyllite; 10-15% rusty quartz/ carbonate pods & laminations; +5% Py

HOLE No. DDH - 2 Kusk SHEET No. 11 of ____ PROPERTY____ WIDTH of SAMPLE CORE DEPTH SAMPLE No. DESCRIPTION Meters Percent 1.66-112.40 L.1 oxidized laminated phyllite with 30% rusty 1111.66-112.62 118 22265 .001 quartz/carbonate bands & laminations: 3-5% Pv 12.47-112.62 folded, laminated, calcareous phyllite; 30% rusty quartz 12.62-114.61 100 core lost: badly broken oxidized fault zone 14.61-115.83 50 calcareous, laminated black phyllite & medium 22266 114.61-115.83 L.001 *.001 to dark grey limestone; folded strongly oxidized and badly broken; 10-15% thin, rusty quartz/carbonate laminations 115.83-118.87 50 fault zone; fine muddy sand; quartz and pyrite22267 115.83-118.87 18.3 .011 1 58 grains evident; slightly effervescent in acid

G. BELIK & ASSOCIATES LTD'.

HOLE No. ____DDH - 2 SHEET No. 12 of ____ Kusk PROPERTY_____ CORE WIDTH of SAMPLE DEPTH DESCRIPTION SAMPLE No. Meters Percent 1<u>18.87-1</u>24.82 15 light to medium grey, thinly laminated, arena-22268 118.87-120.40 .001 1.5 130 ceous phyllite; 3-5% Py; limonitic sections at 119.48 m: 13 cm quartz/carbonate vein 22269 120.40-122.53 0.8 246 120.40-120.80 m: 40% quartz/carbonate L.001 laminations 121.29-122.53 m: 20% quartz bands & laminations at 123.45 m: F, & bedding 640/core axis 22270 122.53-124.82 L.001 1.0 126 124.82-125.78 0.8 110 22271 L.001 124.82-125.78 L. I grey and black banded phyllite speckled with secondary carbonate; 3-5% Py & Po 125.78-128.86 87 125.78-128.86 3 medium to dark grey and black banded, knotted 22272 L.001 0.9 phyllite; 10-20% large dark grey knots; locally peppered with fine secondary carbonate; partial bleaching of phyllite (sericitization) adjaceht to veins; 3-5% Py & Po 126.04-127.41 m: 10% quartz/carbonate bands

SHEET No. 13 of 20 HOLE No. DDH - 2 Kusk PROPERTY____ Au oz/ton WIDTH of SAMPLE CORE DEPTH DESCRIPTION SAMPLE No. Meters | Percent 128.86-129.54 1.4 82 22273 L.001 128.86-129.54 5 laminated, pale grey, sericitized phyllite; 5-10% Py; 20-30% quartz/carbonate veins; F₁ 750/core axis 22274 129.54-131.12 L.001 0.8 89 129.54-130.76 10 light to dark grey laminated, arenaceous phyllite; 3-5% Py at 129.85 m: 3.5 cm quartz vein 130.53-130.74 m: quartz band; ankerite along margins 130.76-131.12L.1 grey calcareous phyllite & argillaceous lime stone 131.12-134.11 light to dark grey laminated phyllite; dusted 22275 1.4 L.001 237 131.12-139.19 2 22276 134.11-137.16 261 with fine white to pale straw yellow carbon-L.001 1.3 1.4 ate which imparts a distinct speckled appear 22277 137.16-140.21 340 L.001 ance to the unit; 4-8% Py 132.13-132.51 m: 20% quartz/carbonate lamin+ ations 134.72-135.0 m: quartz band at 135.6 m: F₁ 780/core axis

PROPERTY_____Kusk HOLE No. DDH - 2 SHEET No. 14 of 20

'DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	Percent		***************************************					
						-		
9.19-17	2.44	similar to above unit; light to dark grey,	22278	140.21-1	+3.26	L.001	1.3	165
		strongly laminated phyllite speckled with car	- 22279	143.26-1	¥6.31	L.001	1.0	205
		bonate (ankerite?): interbeds of argillaceous						
		limestone and calcareous phyllite; minor quar	tz;22280	146.31-1	+9.35	L.001	1.5	309
		3-10% disseminated Py & Po	22281	149.35-1	52.40	L.001	1.5	264
		139.19-139.68 m: argillaceous limestone and					•	
		limy phyllite	22282	152.40-1	55.45	L.001	1.2	157
		at 142.0 m: F ₁ & bedding 73°/core axis						
			22283	155.45-1	58.50	L.001	1.2	295
		143.2-143.25 m: limestone		3				
			22284	158.50-1	61.55	L.001	1.4	321
		143.69-143.79 m: limestone						
		143.87-145.39 m: a few thin, cross-cutting	22285	161.55-1	64.59	L.001	1.3	295
		quartz/carbonate veins						
		at 148.4 m: F ₁ & bedding 69°/core axis	22286	164.59-1	67.64	L.001	1.1	259
		149.35-161.24 m: heavily speckled with abun-	22287	167.64-1	70.69	L.001	1.2	353
		dant small ankerite (?) augen	22288	170.69-1	72.44	L.001	1.4	135
		at 149.2 m: 1.5 cm quartz vein						
			* **					
			>		1			

. Kusk PROPERTY____ WIDTH of SAMPLE CORE SAMPLE No. DEPTH DESCRIPTION mag Meters Percent at 156.97 m: F₁ & bedding 69°/core axis at 158.35 m: thin discontinuous quartz seams with traces dark brown SPH at 167.34 m: F₁ & bedding 71°/core axis core loss for interval 139.19-172.44 L.1 139.19-145.39 m 3 145.39-153.32 m 20 153.32-153.93 m (broken section) 10 153.93-155.45 m L.1 155.45-158.50 m 10 158.50-162.77 m L.1 162.77-172.44 m 22289 172.44-174.85 L.001 0.3 172.44-176.79 1 white to grey, laminated, calcareous phyllite with limy interbeds; 1-2% Py + Po; 5% confor-22290 174.35-176.79 L.001 128 mable, white quartz/carbonate laminations & bands at 174.9 m: F₁ & bedding 73°/core axis

HOLE No. DDH - 2 SHEET No. 16 of ____ 20 Kusk PROPERTY____ Au oz/ton WIDTH CORE SAMPLE No. DEPTH DESCRIPTION of SAMPLE maga mag Meters Percent 132 22291 176.79-179.83 L.001 176.79-183.11 L.1 medium to dark grey, hard, siliceous, thinly laminated phyllite; dolomitic laminations and 22292 |179.83-183.11 .003 0.6 72 interbeds; 1-3% Py & Po; a few quartz veins at $181.9 : F_1$ & bedding $70^{\circ}/\text{core}$ axis 183.11-184.25 L.1 light grey, laminated, hydrothermally altered 22293 183.11-184.25 0.8 101 T. 001 phyllite; strongly sericitized; bright green talc locally evident; +5% disseminated Py & Po 184.25-188.52 L.1 dark grey to black, thinly laminated pyritic, 22294 184.25-186.29 149 1.2 L.001 676 186.29-188.52 L.001 carbonaceous phyllite; 5-10% Py & Po as fine 22295 disseminations and thin laminae parallel to bedding at 184.61 m: 2 cm conformable pyritic quarte vein at 185.12 m: 5 cm conformable pyritic quartz vein at 185.32 m: 4 cm conformable pyritic quartz vein 185.57-185.87 m: 70% pyritic quartz

Kusk

HOLE No. DDH - 2 SHEET No. 17 of 20 PROPERTY.... WIDTH CORE DEPTH DESCRIPTION SAMPLE No. of SAMPLE Meters | Percent at 186.13 m: 2 cm conformable pyritic quartz vein at 186.26 m: 3 cm conformable pyritic quartz vein 186.84-187.0 m: pyritic quartz vein 188.37-188.52 m: 40% pyritic quartz 188.52-199.04 2 dark grey, laminated, calcareous phyllite with 22296 188.52-192.03 L.001 384 1.0 dolomitic and grey, laminated, argillaceous 22297 192.03-195.07 L.001 287 limestone interbeds; 1-+5% Py & Po 22298 195.07-199.04 L.001 553 192.64-194.46 m: dark grey to black siliceous, cherty section 194.29-194.41 m: irregular, white quartz pod mixed with phyllite at 195.0 m: bedding 680/core axis 196.78-198.43: broken section with high core loss

G. BELIK & ASSOCIATES LTD'.

PROPERTY____Kusk

'DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
leters	Percent							
			e de la companya de l					
9.04-23	0.13	dark grey, fine-grained, faintly laminated,	22299	199.04-202	80.5	L.001	1.5	365
		siliceous phyllite; light to dark grey cherty	22300	202.08-20	5.13	L.001	1.4	480
		laminations; 1-+7% Py & Po						
			22301	205.13-208	3.18	L.001	1.1	406
		at 199.80 m: 4 cm conformable quartz vein						
		with traces of SPH	22302	208.18-210	92	L.001	0.9	310
		at 200.26 m: · 3 cm quartz vein						
		at 204.8 m: F ₁ & bedding 70°/core axis						
		207.22-207.37 m: argillaceous limestone						
		210.92-213.82 m: shear zone; broken sheared,	22303	210.92-212	2.44	L.001	1.7	578
		pyritic, black, siliceous phyllite; abundant	22304	212.44-21	3.82	*:889	1.7	330
en e		graphitic slips; 30% milky white, pyritic	22305	213.82-216	5.11	L.001	1.3	578
		quartz/carbonate veins with minor SPH and						
		traces CPY	22306	216.11-219	9.15	L.001	1.0	488
		at 214.05 m: irregular, 1-2 cm pyritic quart	22307	219.15-22	88.09	L.001	1.0	194
		vein with traces SPH						
		VI VI						

HOLE No. DDH - 2 SHEET No. 19 of 20 Kusk PROPERTY..... Au oz/ton CORE WIDTH of SAMPLE DEPTH. SAMPLE No. DESCRIPTION Meters Percent 214.58-215.04 m: broken sheared phyllite with 10% quartz at 215.8 m: F_1 & bedding $58^{\circ}/\text{core}$ axis 216.11-216.87 m: fault zone; most core lost; recovered pebbles mainly quartz 219.05-219.15 m: irregular pyritic quartz vein with traces SPH 220.88-224.18 L.001 220.88-224.18 m: folded and somewhat sheared 22308 232 laminated grey siliceous phyllite with 5-10% irregular quartz seams & bands 22309 224.18-226.77 L.001 85 224.18-228.60 m: strong fault zone; poor 0.5 22310 226.77-228.60 recovery; material recovered 35% quartz, 65% L.001 phyllite 228.60-230.13 L.001 0.6 308 22311

DIAMOND DRILL RECORD

HOLE No. DDH - 2 SHEET No. 20 of 20 Kusk PROPERTY____ CORE WIDTH of SAMPLE Au Ag oz/ton ppm Zn DEPTH SAMPLE No. DESCRIPTION Meters Percent at 228.9 m: F_1 & bedding $60^{\circ}/\text{core}$ axis core loss for interval 199.04-230.13 m 199.04-207.88 m 207.88-210.92 m 10 210.92-212.45 m 40 212.45-216.11 m 28 216.11-216.87 m 216.87-220.98 m 10 220.98-223.73 m 22 223.73-228.60 m 75 40 228.60-230.13 m End of Hole 230.13 m Casing left in .

DIAMOND DRILL RECORD

PROPERTY.	*******	 Kusk	 	

HOLE No. 85DDH - 1

	AZIMUTH T				
Meters	Corrected				
Footage	Angle	Azimuth			
137.16	-66°				
259.08	-68 ⁶				
393.20	-65 ⁰				

	ize $\overset{ ext{B}}{\dots}$		
	Kusk		
Section		 	
Bearing	1100	 	

Total Depth.	446.54m
% Recovery.	
Elev. Collar .	5840 Ft.
	4+94 S
	4+44 W

Shee	t No1.	of28	
Logg	ed by G	. Belik	
		ug. 27/85	
		Sept. 14/8	
Core	Stored At	Property	

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	PerCen							
0-7.01		Overburden						
01-10.0	5 65	Grey laminated arenaceous phyllite; 5-10%	22051 7	.01-10.	06 ·	.001	1.2	160
		limonitic knots; +10% quartz as seams, blebs						
		pods & x-cutting veins; 2% pyrite as belbs &				••!		
		fine disseminations					<u></u>	
.06-13.4	∤ 1 5	Grey laminated arenaceous knotted phyllite;	22052]	0.06-13	41	.001	1.2	150
		10% quartz as folded laminations and syntec-						ļ
		tonic veins; primary foliation (F1) parallel						
		to bedding; knots locally partly to complete.	у					
		weathered to limonite; 10% Py & Po as blebs.						
		cubes, fine disseminations & laminations par-						
		allel to F1; F1& bedding at 12.8 m 650/core					i e i	
		axis						
3.41-25.7	6 2	Banded knotted phyllite; fine and coarse	22053	13.41-1	- 24	.001	0.5	154
		alternating bands and laminations of dark and	22054	15.24-1	8.29	L.001	1.1	156
		light grey phyllite; strongly crenulated and	22055	18.29-1	9.81	L.001	0.9	158
		foliated; abundant coarse knots consisting of						

. G. BELIK & ASSOCIATES LTD. - DIAMOND DRILL RECORD

HOLE No. 85DDH - 1 . SHEET No. 2 of 28 . Kusk PROPERTY____ Zn Au oz/ton CORE SAMPLE No. DEPTH. DESCRIPTION of SAMPLE Meters PerCent uniform grey faintly banded carbonate (ankerite (?) or siderite (?)); knots locally rotated with pressure shadows; many knots contain fine lines of Py & Po F₁ & bedding at 14.3 m 78°/core axis strong Fo foliation manifested by black tension gashes 35°/core axis; F2 which is associated with small drag folds transposes F, & bedding Angle $F_1/F_2 \cdot 65^\circ$; F.A. $F_2 \cdot 90^{\circ}/\text{core axis}$ F.A. F2 manifested by strong wrinkle lineation on F Unit averages 10% Py & Po as fine disseminations, laminations & blebs 16.76 m-19.51 m: minor knots 17.07-17.58: 40% quartz. At 19.51 m: 6.4 cm quartz/carbonate vein 19.81-20.04 L.001 14.0 3350 19.81-20.04 m: quartz/carbonate lense with 22056 minor galena and patches of coarse brown SPH; 20.04-21.34 0.8 147 L.001 22057 carbonate pale yellow At 20.73 m: 10 cm zone with quartz laminations 22058 21.34-24 39 1.0 216 .001 22.71-23.32 m: 20% vein quartz

6. BELIK & ASSOCIATES LTD' - DIAMOND DRILL RECORD

HOLE No. 85DDH - 1 SHEET No. 3 of ____ Kusk PROPERTY____ Au Ag oz/ton ppm WIDTH of SAMPLE Zn CORE SAMPLE No. DEPTH. DESCRIPTION ppm PerCent At 19.8 m bedding 620/core axis Meters 25.76-26.67 L.1 | Black, strongly crenulated, knotted phyllite; knots dark grey, faintly banded; unit tightly folded; bedding highly variable; minor quartz 5-10% Py & Po 24.39-27.43 .1.4 Grey/black banded, strongly knotted phyllite 22059 .002 26.67-40.69 with abundant graphitic slips; tightly folded and crenulated; bedding highly variable (00-22060 27.43-30.48 L.001 0.5 202 90°/core axis); F.A. F. 90°/core axis; minor 22061 30.48-33.53 0.4 145 .001 quartz; 5-10% Py & Po At 30.8 m F_2 35°/core axis 22062 33.53-36.58 .001 0.6 263 36.58-40.69 31.70-32.92 m: weak development of knots 22063 L.001 0.7 200 At 34.14 m F_1 & bedding $.49^{\circ}/\text{core}$ axis 34.75-35.51 m: dark grey to black argillite At 36.58 m: bedding 70° /core axis; F_2 25° / core axis 37.49-37.80: 3 pyritic quartz bands 38.71-39.01 m: black argillite At 40.23 im: 8 cm quartz seam

G. BELIK & ASSOCIATES LTD'.

28 Kusk HOLE No. 85DDH - 1 SHEET No. 4 PROPERTY.... Ag ppm CORE WIDTH oz/ton DEPTH DESCRIPTION SAMPLE No. LOST OL SAMPLE maga Meters PerCent 40.69-47.40 Quartz rich section; quartz pyritic 40.69-42.06: +60% quartz: remainder broken | 22064 40.69-42.06 0.7 170 .001 phyllite with quartz stringers 343 42.06-43.58 m: 70% phyllite, 30% quartz 22065 42.06-43.58 .001 .0.9 43.58-45.42 m: crenulated phyllite with 50% 22066 43.58-45.42 .001 0.7 171 25 fractured pyritic quartz 45.42-47.40 0.6 45.42-47.40: laminated phyllite with quartz-22067 .001 170 rich seams & sections (30%) 47.40-49.07 L.1 Banded grey/black knotted phyllite; sections 22068 47.40-49.07 .001 0.6 126 with very coarse knots (7 mm); 5-10% Py & Po minor quartz 49.07-52.58 Quartz rich section; zone contains about 50% quartz as large pods, laminations and bands; SPH locally evident in quartz and along vein margins; host unit black/grey banded phyllite with knots 49.07-51.21 m: 75% quartz 22069 49.07-51.21 L.001 520 22070 51.21-52.58 51.21-52.58 m: 30% quartz .006 0.7 114

G. BELIK & ASSOCIATES LTD.

PROPERTY_______ Kusk HOLE No. 85DDH - 1 SHEET No. 5 of 28

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	PerCent							
.58-62.	12 5	Strongly folded dark grey/black banded phylli	te;					
		knots weakly to moderately well developed;	22071	52.58-54	.86	.001	0.5	130
		bedding highly variable; minor vein quartz;	22072	54.86-57		.002	0.8	18
		+5% Py & Po						
		At 53.65 m: 2.5 cm quartz seam	22073	57.91-62	.12	.002	0.7	31
		At 55.17 m: F ₁ & bedding 57°/core axis						
		At 57.15 m: 1.3 cm quartz vein						
		57.8-57.95 m: dense grey dolomite with abun-					i serie de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición dela composición	
		dant thin quartz seams						
12-63.5	55 2	Grey, dense, uniform micritic dolomite;	22074	62.12-63	55	.002	0.1	14
		bedding indistinct; cleavage poorly develope	d;					
		laced with irregular quartz veins (tensional						
		features); average 20-30% quartz; low sulphi						
		content; sharp lower contact 40°/core axis		-				
<i>55</i> - 70.	10L.1	Dark grey to black laminated and banded car-	22075	63.55-67	06	.001	0.5	25
		bonaceous phyllite; 5-10% Py & Po; generally	1					
		weak development of knots; sections with	22076	67.06-70	10	L.001	0.4	13
		abundant coarse knots; knots grey to pale st	raw					
		yellow; knots contain fine lines of Py & Po						
		and locally SPH						
		• •			-			1
					- 			-
					+		 	

85DDH - 1 SHEET No. 6 of ____ HOLE No. Kusk PROPERTY____ Zn WIDTH SAMPLE No. DEPTH DESCRIPTION of SAMPLE Meters PerCent 70.10-71.32 0.4 Pale grey, banded, knotted phyllite; bedding 22077 T.001 125 70 10-71.32 L.1 uniform at about 30°/core axis; F₂ 10°/core axis; bedding/F, 40° .001 0.6 174 22078 |71.32-73|.15 Dark grey to black carbonaceous phyllite: 71.32-81.99 L.1 thinly laminated: abundant shiny black graphitic slips; +10% Py & Po; knots generally 22079 73.15-76.20 .002 0.9 163 195 76.20-79.25 .002 1.3 absent but locally present; unit locally con- 22080 tains black cherty bands; minor vein quartz L.001 0.9 182 22081 79.25-82.30 At 78.3 m bedding 320/core axis Grey/black banded siliceous knotted phyllite: 22082 B2.30-85\35 L.001 | 1.0 149 81.99-94.79 L.1 .002 | 1.4 85.35-88.39 189 22083 generally strong development of coarse knots; gradational with overlying unit: At 84.4 m F₁ & bedding 86°/core axis 22084 88.39-93.12 .001 | 1.1 192 90.88-90.93 m: conformable quartz vein with traces of GN & SPH At 91.75 m F_1 & bedding $67^{\circ}/\text{core}$ axis 93.12-94.95 22085 1.0 93.12-96.93 m; strong quartz vein sections 226 .001 (Av. 20-30%)2.6 22086 94.95-96.93 .004 295 Locally with minor SPH and traces CPY

PROPERTY______Kusk HOLE No. 85DDH - 1 SHEET No. 7 of 28

OEPTH .	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Au oz/ton	Ag mqq	Zn ppm
Meters	PerCent						
.79-101	8 L.1	Uniform grey to black cherty knotted phyllite	22087	96.93-100.59	.001	1.0	133
		color banding present but laminated appearance	: e				
		characteristic of overlying unit not develope	d;22088	100.59-103.63	L.001	1.1	314
		knots abundant; 5-10% Py & Po with traces of					
		SPH & CPY; 2-5% thin quartz seams; abundant					
1		graphitic slips; bedding uniform; F, & beddir	g				
		at 99.4 m 69°/core axis; F.A. F. 90°/core					
		axis					
.8 - 117	35 I 1	Grey/black banded & laminated knotted phyllit	e;22089	103.63-106.68	.001	1.2	172
		+5% Py & Po with traces of CPY & SPH; a few					
		thin quartz seams;	22090	106.68-109.73	.001	1.1	232
		At 114.6 m F ₁ & bedding 26°/core axis	22091	109.73-112.78	.001	1.1	262
		117.07-117.17 m: dolomite/quartz breccia	22092	112.78-115.83	.001	0.8	150
35-119	.18	White/grey/black laminated and banded cherty	22093	115.83-119.18	.001	0.9	129
		phyllite; knots poorly developed					
	40	116.74-119.18 m: poor recovery (tube not					
		locked)					

PROPERTY______ Kusk HOLE No. 85DDH - 1 SHEET No. 8 of 28

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Au oz/tor	Ag ppm	Zn ppm
Meters	PerCent						
.18-127	.87L.1	siliceous laminated & banded black phyllite;	22094	119.18-120	.40 .00	2 1.3	160
		no knots; strong laminated appearance; black	22095	120.40-121	.92 L.00	1 1.4	16
		bands & laminations of dense cherty phyllite	22096	121.92-123	.45 L.00	1 1.2	20
		5-10% Po & Py with traces of CPY; zone con-	22097	123.45-124	.97 L.00	1 1.1	16
		tains +20% vein quartz in thin laminations	22098	124.97-126	49 L.00	1 0.8	16
		and bands conformable to F ₁	22099	126.49-127	.87 .00	1 .0.9	29
		At 121.0 m F ₁ & bedding 640/core axis					_
		127.41-127.71 m: limestone/quartz breccia					
.87-146.0	.00L.1	Pale grey to dark grey laminated phyllite;	22100	127.87-129	.95 .00	1 1.3	39
		40% pale grey arenaceous bands; locally blac	Σ				
		cherty sections; zone averages 3-5% Py & Po					
		with stronger sulphide sections; traces of					
		disseminated SPH; at 129.8 m F ₁ & bedding					
		63 ⁰ /core axis					
		129.95-131.31 m: 30-40% vein quartz as band	s 22101	129.95-13	1.31 .00	3 1.2	29
		& laminations	22102	131.31-13	∤.11 . 00	1 1.0	28
		133.20-134.27 m: a few quartz laminations	22103	134.11-13	7.16 .00	1 0.9	16
		with traces of SPH					
		Past 137.16 m unit contains more dark grey to	22104	137.16-140	0.21 .00	1 0.6	18
		black cherty bands; a few knots locally	22105	140.21-14	3.26 L.00	1 0.8	32
		presenti					

G. BELIK & ASSOCIATES LTD".

Kusk PROPERTY___

HOLE No. 85DDH - 1 SHEET No. 9 of 28

DEPTH	LOS	E T	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	PerC	ent	Bedding and F, at 137.8 m 65°/core axis						
			Past 141.73 m: unit darker color; less	22106	143.26-	146.00	.001	0.8	32
			arenaceous bands; more dark cherty bands;						
			occasional knots; fine banded brown SPH noted						
			in a few knots						
.00-146	28	L.1	Dark grey dense siliceous dolomite with 40%	22107	146.00-	46.28	.001	.0.4	13
			vein quartz						
			•						
.28 - 151	79	L.1	Grey/black, laminated, arenaceous phyllite;	22108	146.28-	47.22	.001	0.6	2]
			2-5% Py & Po						
			147.22-148.68 m: 30% quartz bands	22109	147.22-	48.68	.001	1.0	37
				22110	148.68-	49.35	.001	0.8	34
			149.35-150.14 m: medium grey dolomite;	22111	149.35-	150.14	L.001	1.0	18
			brecciated with abundant quartz (70%); minor						
			CPY	22112	150.14-	52.10	L.001	0.8	16
79-152	.10	100	Badly broken fault zone; no core recovery						
10-154	. 54		Banded & laminated grey knotted phyllite with	22113	152.10-	154.54	.001	1.0	2]
			laminated arenaceous interbeds; at 152.40 m:						
			1.5 cm quartz seam						
		50	153.62-154.54: badly broken; poor recovery						

SHEET No. 10 Kusk 85DDH - 1 28 HOLE No. PROPERTY____ 2nWIDTH of SAMPLE Au oz/ton Ag DEPTH CORE DESCRIPTION SAMPLE No. LOST mag maga Meters | PerCent 154.54-181.51 1 Dark grey/black, laminated and banded, knot-22114 154.54-158.50 .001 300 ted phyllite; knots generally coarse, dark 22115 | 158.50-161.54 L.001 grey to black; some brownish grey knots con-1.2 202 22116 161.54-164.59 tain very fine-grained sphalerite; unit aver-1.3 285 .001 ages 2-3% Py & Po 158.65-158.80 m: conformable quartz lenses At 159.7 m: F_1 & bedding $46^{\circ}/\text{core axis}$ 22117 164.59-167.64 .002 1.5 203 160.48-161.85 m: mainly dense black cherty 167.64-170.69 1.4 266 22118 .003 phyllite At 168.3 m: F, & bedding 84°/core axis 170.69-173.74 22119 L.001 1.4 282 At 170.4 m: F.A. minor folds 850/core axis 173.74-176.79 22120 .001 1.5 753 At 176.18 m: 3 cm quartz seam 176.79-179.83 22121 .001 1.3 233 At 181.1 m: F_1 & bedding $90^{\circ}/\text{core}$ axis 22122 179.83-181.51 .001 1.3 (tightly folded) 335 Strongly pyritic, dark grey, laminated phyllite22123 181.51-182.73 1.1 156 181.51-182.72L.1 .001 50-60% pyritic quartz/carbonate veins with traces of SPH 22124 182.73-185.93 182.73-195.84 Interbanded grey, laminated, arenaceous knot-.001 1.1 253 ted phyllite & grey/black, banded knotted phyllite; 2-5% Py & Po

G. BELIK & ASSOCIATES LTD.

PROPERTY______Kusk HOLE No. 85DDH - 1 SHEET No. 11 of 28

OEPTH .	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	oz/ton	Ag mag	Zn ppm
Meters	PerCent						
		At 184.10 m: 6 cm quartz/carbonate vein					
		185.55-186.59: 20% quartz as segmented &	22125	185.93-188.98	.001	1.2	226
		folded bands & laminations					
		At 187.15 m: 3 cm segmented quartz/carbonat	е				
		vein	22126	188.98-191.82	.001	1.4	27
		At 189.3 m: F ₁ & bedding 640/core axis					
		1					
		191.82-194.24 m: strongly crenulated & fold	ed22127	191.82-194.24	L.001	0.9	20
		knotted phyllite with 10-15% quartz fragment	5				
		& segmented quartz/carbonate veins with trac	es				
		of SPH					
		194.24-195.84 m: 70% quartz/carbonate veins	22128	194.24-195.84	.002	2.2	18
		with Py, Po, minor SPH & traces GN					
.84-199	80 1	Dark grey to black, laminated, carbonaceous,	22129	195.84-198.73	L.001	1.1	196
		arenaceous phyllite; 5-10% Py & Po; pale stra	i.W				
		yellow carbonate present in many laminations					
			 				-

85DDH - 1 SHEET No. 12 of ____ Kusk HOLE No. PROPERTY.... Zn CORE WIDTH DEPTH DESCRIPTION SAMPLE No. of SAMPLE mag Meters | PerCent | At 196.14: 10 cm quartz vein with pale yellow carbonate Rhombs & abundant Py, Po along vein margins At 196.60 m: 12 cm quartz vein At 196.90 m: 5 cm quartz vein with abundant Py & Po 198.73-199.80 m: 10% quartz/carbonate veins 22130 198.73-199.80 1.4 205 .002 with abundant Po & Py with minor SPH At 199.7 m: F₁ & bedding 66°/core axis 199.80-202,39L.1 Black knotted phyllite with strong quartz/ 199.80-202.39 22131 1.5 .001 carbonate veining (50%); carbonate occurs in clusters laced with Py & Po; sericite alteration locally present adjacent to vein walls 202.39-206\35L.1 Dark grey/black banded knotted phyllite; abun 22132 202.39-205.74 126 .001 0.9 dant coarse knots; knots dark brown & faintly laminated; +5% Po, minor Py 22133 205.74-208.79 .001 2.1 130

PROPERTY______Kusk HOLE No. 85DDH - 1 SHEET No. 13 of 28

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Au oz/t	on p	Ag Z pm pp	Zn om
Meters	PerCent							
.35-216	.41	Banded, laminated and locally brecciated			**************************************			
		black phyllite; similar to last section with						
		arenaceous bands (often brecciated); less						
		knots; 2-3% Py & Po						
en e		At 213.4 m: F ₃ 78°/core axis						
		_						
		208.79-209.09 m: a few quartz seams with SP	1 22134	208.79-210	.31 .0	001 4	.0	9
		209.70-216.16 m: a few segmented quartz sear	ns 22135	210.31-213	.36 .0	01 1	.4	16
		with traces of SPH						
**		At 211.99 m: 14 cm zone with 50% quartz sea	ns 22136	213.36-216	.41 .C	01 2	.0	15
		At 214.28 m: 10 cm quartz/carbonate vein						
		214.89-215.19: 50% pyritic quartz seams						
	40	214.89-216.41: high core loss						
.41-218	.24L.1	Tightly folded & crenulated, black banded	22137	216.41-218	.24 .C	01 0	.9	15
		knotted phyllite; many knots sulphide rich;						
		5% Py & Po						
	<u> </u>							
.24-22]	74L.1	Dark grey to black siliceous, banded phyllit	e;22138	218.24-221	.74 .C	02 1	.9	34.
		no knots; 5% Py & Po						

G. BELIK & ASSOCIATES LTD'.

Kusk HOLE No. 85DDH - 1 SHEET No. 14 of 28 PROPERTY___ oz/ton WIDTH DEPTH. DESCRIPTION SAMPLE No. of SAMPLE At 219.5 m: F_1 43°/core axis Meters PerCent Plunge F.A. F_2 9°/core axis 219.76-220.06: a few pyritic quartz seams At 221.29 m: 2 cm sulphide-rich quartz seam 221.74-225.10 L.1 22139 221.74-225.10 1.5 Grey/black/white, strongly laminated arena-.001 131 ceous phyllite; no knots; 5% Py & Po; 5-10% segmented, pryitic quartz seams 225.10-225.86 225.10-242.40 L.1 22140 .001 0.8 134 Dark grey to black knotted phyllite; 20-30% knots up to 1 cm across (av. 5-7 mm); knots grey to dark brown and thinly laminated; pale 22141 225.86-226.39 67 .001 0.7 22142 226.39-228.60 L.001 0.7 125 straw yellow carbonate often present in pressure shadows around knots; unit contains 228.60-231.65 84 0.5 2-3% Py & Po with traces of disseminated SPH 22143 .002 22144 231.65-234.70 225.86-225.94 m: pyritic quartz/carbonate L.001 0.5 81 vein 226.01-226.39 m: pyritic quartz/carbonate 234.70-237.75 22145 L.001 0.3 82 vein At 228.15 m: 10 cm quartz/carbonate vein with 22146 237.75-242.40 Py & Po .002 0.5 102 At 236.2 m: bedding 55°/core axis At 236.22, 238.97 & 239.73 m: thin quartz 240.49: 6 cm quartz vein seams;

G. BELIK & ASSOCIATES LTD'.

PROPERTY Kusk HOLE No. 85DDH - 1 SHEET No. 15 of 28

'DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Au oz/ton	gA mqq	Zn ppm
Meters	PerCent						
					 *. 001		
.40-261	•52	Strongly laminated white/grey/black phyllite;	22147	242.40-246.89	L.001	1.2	194
		generally no knots; dusted with fine, possibl	е				
		secondary, white to pale straw yellow carbo-	22148	246.89-249.94	*.015 .029	1.5	156
		nate which imparts a distinct speckled appea-	22149	249.94-252.99	*.008 .036	1.3	174
		rance to the unit; unit contains 3-7% Po & Py	22150	252.99-256.04	*.001 .001	0.9	196
		with traces of disseminated SPH throughout					<u> </u>
		At 246.3 m: F ₁ & bedding 75°/core axis	22151	256.04-259.08	.001	1.0	178
			<u></u>				
		243.38-243.68 m: knotted phyllite section	22152	259.08-262.13	.001	1.2	110
		244.91-245.37 m: knotted phyllite section					
		246.89-247.19 m: folded, grey, laminated					
		limestone					
		254.05-254.35 m: banded grey limestone &					<u> </u>
		limestone breccia recemented with white calci	te				
		254.51-254.59 m: limestone breccia					
		At 254.7 m: F ₁ & bedding 86°/core axis					
		255.50-256.04 m: interbanded limestone & phy	llite				
		At 259.7 m: F ₁ & bedding 69°/core axis					

G. BELIK & ASSOCIATES LTD.

HOLE No. 85DDH - 1 . Kusk SHEET No. 16 of ____ 28 PROPERTY_____ DEPTH WIDTH SAMPLE No. DESCRIPTION of SAMPLE oz/ton maa maga Meters PerCent 261.52-269.29L.1 Light to dark grey/black laminated phyllite; 22153 262.13-265.48 L.001 1.6 139 locally brecciated; 7-10% Po & Py with traces of SPH; local speckled appearance similar to that developed in above unit although less pronounced 264.11-264.72 m: 20% vein quartz; weak sericite alteration developed in zone which imparts partial bleaching appearance to most phyllite Past 265.48 m: scattered, narrow quartz/car 22154 265.48-269.29 bonate veins (5%) with traces of SPH & CPY .001 1.4 175 22155 269.29-270.67 269.29-291 77L.1 Alteration zone; phyllite altered to pale .001 1.6 205 green sericitized unit with abundant Py & Po with traces of CPY & SPH; main alteration zone overlain and underlain by transitional zones characterized by strongly altered phyllite interbedded with weakly altered & unaltered phyllite'

G. BELIK & ASSOCIATES LTD'.

PROPERTY______ Kusk HOLE No. 85GGH - 1 SHEET No. 17 of 28

DEPTH .	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
leters	PerCent							
								L
		269.45-269.60 m: quartz/carbonate vein with						
		envelope of sericitic schist						
		269.29-270.67 m: unaltered black phyllite						
							li,	
		270.67-272.14 m: pale green to very pale gre	у 22156	270.67-2	72.14	.001	1.7	17
		moderately to strongly sericitized; +10% Py &						
		Po						
		271.38-271.99 m: limy interbeds						
		272.14-275.24 m: unaltered to weakly altered	22157	272.14-2	75.24	L.001	1.1	29
		laminated black phyllite; few veins; 3-5% Po						
		& Py						
		272.29-273.41 m: limestone & laminated cal-						
		careous phyllite						
		At 272.49 m: F ₁ & bedding 51°/core axis						
		275.24-275.47 m: weak to moderately serici-	22158	275.24-2	277.37	L.001	1.4	19
		tized laminated limestone						
		275.47-284.92 : main alteration zone; pale					: -	
		green strongly sericitized unit with general						
		flooding of secondary carbonate & quartz; 10-						
		15% disseminated Py & Po; traces of SPH & CPY						

G. BELIK & ASSOCIATES LTD'.

['] DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	PerCent							
		276.76-276.89 m: limy interbed .						
		277.37-279.50 m: stong sericite alteration	22159	277.37-2	79.50	L.001	1.5	151
		zone; 10-15% Py & Po with traces SPH & CPY;						
		10% quartz laminations						
		279.50-281.77 m: intense sericite alteration	22160	279.50-2	81.77	.001	1.2	142
		with strong quartz/carbonate veining (50-60%)	,					
		10-15% Py & Po						
		281.77-283.34 m: intense sericite alteration	; 22161	281.77-2	83.34	L.001	1.0	148
		5-20% sericitic quartz/carbonate veins						
		282.25-282.40 m: limy interbed						
		283.34-283.72 m: interlaminated, altered	22162	283.34-2	84.29	.001	1.4	188
		limestone & phyllite; bedding 56°/core axis						
		283.72-284.29 m: intensely altered; +10%						
		Py & Po; 5-10% vein quartz						
		284.29-286.82 m: dark grey to black lamina-	22163	284.29-2	86.82	L.001	1.5	310
		ted phyllite with limy interbeds at 286.31-						
		286.41 & 286.55-286.82; 5% thin quartz/carbo-						
a a la faction de la faction d		nate veins; 5-10% Py & Po; traces CPY & SPH						
		•						
					1			-

PROPERTY_____Kusk HOLE No. 85DDH -1 SHEET No. 19 of 28

OEPTH .	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE	Au oz/ton	Ag ppm	Zn ppm
leters	PerCent		<u> </u>				
		286.82-289.22 m: strongly sericitized; 10%	22164	286.82-289.22	.001	1.7	152
		quartz/carbonate veins; +10% Py & Po					
		At 287.06 m: 2 cm limy interbed					
		289.22-291.29 m: laminated black phyllite;	22165	289.22-291.29	L.001	1.2	26
		top section weakly altered; 5% vein quartz;					
		5-10% Py & Po					
		290.48-291.40 m: limestone interbed					
		291.09-291.29 m: limestone interbed	· · · · · · · · · · · · · · · · · · ·				
		291.29-291.77 m: strong sericite/carbonate	22166	291.29-291.77	.001	0.7	8
		alteration; cleavage indistinct					
77-306	63 1	White, light to dark grey and black, lamin-	22167	291.77-294.75	.001	1.3	28
		ated, arenaceous phyllite; locally minor kno	s				
		evident; 7-10% Po & Py					
		297.87-297.79 m: 10-20% partially segmented	22168	294.75-297.79	.001	1.2	35
		quartz laminations & bands					
		At 297.49 m: F ₃ 69°/core axis	22169	297.79-301.15	L.001	1.1	24
		298.28-298.43 m: quartz lense with GN & SPH					
		At 299.32 m: 5 cm quartz seam with minor GN					
		, i					
						1	1

PROPERTY______Kusk HOLE No. 85DDH - 1 SHEET No. 20 of 28

OEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	g A Mqq	ppm ppm
Meters	PerCent							
		Past 301.15 m Py & Po content drops to 2-3%	22170	301.15-3	04.80	.001	0.9	307
		At 302.16 m: 4 cm quartz seam	22171	304.80-	06.63	L.001	0.7	184
		303.13-303.74 m: zone with a few thin seg-		 				
		mented quartz seams						
		At 304.44 m: 2.5 cm folded quartz seam						
		At 304.74 m: 1.5 cm quartz seam						
		304.85-304.98 m: brecciated dolomite cement	ed					
		by recrystallized dolomite						1
		At 305.4 m: F ₁ & bedding 77°/core axis						
		F.A. F ₂ 8°/core axis						
Track.		At 305.90 m: 5 cm pyritic quartz seam						
6.63-3	10.59L.1	Dark grey to black, banded, knotted phyllite	; 22172	306.63-3	310.59	L.001	1.3	240
		graphitic slips; 3-5% Py & Po with traces of						
		CPY & SPH; locally significant disseminated						
		CPY; minor vein quartz						
								1
0.59-3	12.91L.1	Medium to dark grey laminated & banded knott	ed22173	310.59-3	314.25	L.001	0.8	200
		phyllite; knots generally weakly developed;						
		3-5% Pyl& Po with traces of CPY & SPH; a few						1
		quartz laninations						
					<u> </u>			

G. BELIK & ASSOCIATES LTD.

HOLE No. 85DDH - 1 SHEET No. 21 of Kusk 28 PROPERTY____ WIDTH of SAMPLE DEPTH Au Ag oz/ton ppm DESCRIPTION SAMPLE No. ppm Meters | PerCent At 311.05: 4 cm quartz lense 312.58-312.91 m: 30% quartz laminations and bands 312 91-329.49 L.1 Laminated arenaceous phyllite; minor knots 2-4% Py & Po with traces of CPY & SPH throughout most of zone At 313.03 m: F_1 & bedding $76^{\circ}/\text{core}$ axis 22174 314.25-315.04 314.25-315.04 m: white quartz vein with L.001 2.2 105 22175 315.04-316.69 ankerite, Py, Po, GN, SPH & CPY along vein L.001 206 margins 22176 316.69-317.68 316.60-317.68 m: " L.001 0.3 35 At 320.04 m: F, & bedding 69°/core axis 321.06-321.36 m: quartz/carbonate veins with minor SPH, GN, SPH 321.87-322.02 m: " 317.68-322.02 22177 L.001 0.8 234 322.02-326.14: 2% thin quartz seams with 22178 322.02-326.14 L.001 0.7 178 traces of CPY & SPH At 327.71 m: F_1 & bedding 56° /core axis 22179 326.14-329.19 249 L.001 0.7 At 327.97 m: 2 cm quartz seam 328.88-329.03: quartz/dolomite breccia

HOLE No. 85DDH - 1 SHEET No. 22 of 28 PROPERTY_____ Kusk DEPTH Au Ag oz/ton ppm WIDTH DESCRIPTION SAMPLE No. of SAMPLE Meters PerCent 329 49-342 29 1.1 1.0 Dark grey to black, banded & laminated 22180 329.19-330.71 L.001 210 phyllite with scattered large knots (up to 17 mm); 3% Py & Po 22181 | 330.71-332.24 330.71-333.76 m: 5-10% quartz laminations L.001 1.2 209 22182 | 332.24-3|33.76 & bands L.001 225 .1.0 At 335.3 m: F₁ & bedding 51°/core axis 22183 | 333.76-337.57 L.001 0.8 195 337.57-338.64 m: shatter quartz rich section; 22184 | 337.57-340.47 L.001 1.0 114 30 60% vein quartz with local patches of GN; drusy cavities evident with grey metallic (possibly tetrahedrite) 5 | 340.47-341.38 m: quartz vein/breccia zone; 22185 340.47-341.38 L.001 0.8 97 60-70% quartz; vein margins contain abundant ankerite, Py, Po with traces of CPY & SPH Light to dark grey/black laminated arenaceous 22186 341.38-343.70 342.29-346.87 3 L.001 0.9 179 phyllite; 2-3% Py & Po 342.29-342.37 m: quartz vein At 342.83 m: 2.5 cm quartz seam with traces CPY & SPH

PROPERTY______ Kusk HOLE No. _____ 85 DDH - 1 SHEET No. _____ 23 _____ of ____ 28

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	PerCent	343.70-346.87 m: quartz-rich section						
		343.70-345.65 m: 60% quartz; GN locally	22187	343.70-3	45.65	L.001	2.1	26
		evident						
		345.65-346.87 m: 70% vein quartz; ankerite	22188	345.65-3	46.87	L.001	1.2	13
		associated with Py, Po, SPH, GN & locally CPY						
		occur along vein margins & patches within vei	ns					
.87-350	.07 L.1	Black dense cherty phyllite with 20% contorte	d 22189	346.87-3	50.07	L.001	1.2	19
		& folded quartz-rich laminations; 5% vein						
		quartz; 5-10% Po & Py; traces CPY, SPH						
.07-350	.60 L.1	Contorted & folded phyllite with 70% vein qua	rtz22190	350.07-3	53.57	L.001	0.9	13
.60-362	.41 L.1	Light to dark grey laminated & banded phyllit	e 22191	353 • 57 - 3	56.62	L.001	0.9	13
•		with black laminated cherty sections; a few						
		coarse knots locally evident; 3% Py & Po;	22192	356.62-3	59.67	L.001	1.0	18
		traces of SPH, GN & CPY associated with quart	z 22193	359.67-3	62.71	L.001	1.1	2]
		352.76-352.96 m: quartz/carbonate vein						
		At 354.79 m: 5 cm quartz vein						
		355.67-355.83 m: quartz/carbonate vein						
		At 356.0 m: F ₁ & bedding 65°/core axis						
		At 356.47 m: 3 cm quartz vein						
		. 1						

G. BELIK & ASSOCIATES LTD".

SHEET No. 24 01 28 85DDH - 1 Kusk HOLE No. ---PROPERTY____ Au Ag oz/ton ppm Zn DEPTH DESCRIPTION SAMPLE No. of SAMPLE Meters |PerCent 356.62-356.82 m: quartz/carbonate vein with limestone fragments At 361.8 m: F_1 & bedding 65° /core axis 100 359.97-360.43: tube not locked; core ground 22194 362.71-365.76 L.001 362.41-387.41 0.6 131 Siliceous dark grey to black, banded & laminated knotted phyllite; 1-3% Py & Po; traces 365.76-368.81 L.001 1.3 135 22195 SPH; minor quartz; 5-15% coarse grey knots 22196 | 368.81-371.86 104 11.001 1.1 Core loss: 368.20-370.64 m 70 22197 371.86-374.91 IL.OOL 1.1 142 376.74-378.57 m 378.57-379.18 m 116 22198 374.91-377.96 L.001 0.9 379.18-382.22 m L.001 152 22199 377.96-381.00 1.1 At 368.28 m: 5 mm quartz seam At 368.8 m: F_1 & bedding $30^{\circ}/\text{core}$ axis 1.4 163 At 372.32 m: 3 cm quartz vein L.001 22200 381.00-384.05 *.001 At 376.81 m: 2 cm quartz vein At 379.79 m: 2 cm quartz vein At 381.61 m: F_1 & bedding $73^{\circ}/\text{core}$ axis 382.22-382.58 m: 60% vein quartz with minor SPH & CRY At 382.99 m: 2 cm quartz vein

G. BELIK & ASSOCIATES LTD".

OEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		oz/ton	Ag ppm	Zn ppm
Meters	PerCent							
		383.60-383.72 m: quartz with SPH & CPY alon	g 22201	384.05-38	37.10	.021	1.5	148
		vein margins				*.001		
		Past 387.41 m: laminated appearance more						
		distinct						
		388.93-389.23 m: irregular quartz/carbonate						
		vein with minor SPH & CPY along vein margins						
		At 389.84 m: F ₁ & bedding 66 ⁰ /core axis					•	
		-						
.41-399	.75	Medium to dark grey laminated phyllite with	22202	387.10-3	90.53		1.2	156
		minor knots; abundant minor folds; 1-2% Py &				*.001		
		Po; traces CPY & SPH						
		390.53-391.22 m: contorted phyllite veined	22203	390.53-39	92.13	L.001	1.2	149
		with quartz (50%); CPY, SPH						
		At 391.67 m: 3 cm quartz/carbonate vein with	1					
		traces CPY ,						
		391.90-392.13 m: strong quartz/carbonate						
		veining (40%)						
		393.81-395.94 m: fair development of knots;	22204	392.13-3	96.55	L.001	1.0	15'
	r L	some knots contain abundant fine Py & Po with	1					
		traces of CPY & SPH						
		Past 396.55 m: minor, scattered knots	22205	396.55-L	01.12	L.001	1.0	11

HOLE No. 85DDH - 1 SHEET No. 26 Kusk PROPERTY____ oz/ton WIDTH of SAMPLE DEPTH DESCRIPTION SAMPLE No. Meters PerCent Dark grey/black, siliceous, laminated knotted 399 75-411 18 L.1 phyllite; cherty interbeds; 1-3% Py & Po with traces CPY & SPH 399.14-403.05 m: 20-25% quartz/carbonate 22206 401.12-403.05 L.001 1.5 149 403.05-406.61 veins, pods & laminations with traces CPY, GN 22207 L.001 0.9 160 SPH At 404.53 m: 3 cm quartz vein 406.61-409.96 At 405.08 m: · 2 cm quartz vein 22208 L.001 1.2 159 At 405.39 m: F_1 45°/core axis 405.59-406.43 m: 30-35% irregular quartz veins 409.35-409.45 m: quartz band 409.86-409.96 m: quartz band 410.14-410.33 m: strong quartz veining 409.96-413.01 +11.18-419.71 L.1 Laminated & banded siliceous dark grey phyl-22209 L.001 1.2 151 lite; minor knots 22210 413.01-416.06 412.91-413.01 m: quartz vein L.001 0.9 135 413.26-413.44 m: quartz vein with traces of 22211 416.06-419.11 GN, SPH, CPY L.001 146 1.0 414.53-414.78 m: 40% quartz laminations 415.14-415.35 m: 30% quartz stringers with traces GN', SPH At 415.75 m: F₁ & bedding 69°/core axis 418.67-418.95 m: 30% quartz laminations

DIAMOND DRILL RECORD

G. BELIK & ASSOCIATES LTD'.

HOLE No. 85DDH - 1 SHEET No. 27 of 28 Kusk PROPERTY____ DEPTH WIDTH of SAMPLE Au Ag oz/ton ppm DESCRIPTION SAMPLE No. ppm Meters PerCent 419 71-421.54 L.1 Dark grey to black carbonaceous knotted phyl- 22212 419.11-422.15 L.001 122 1.1 lite At 419.41 m: 3 cm quartz vein At 419.92 m: 4 cm irregular quartz vein 420.12-420.30 m: quartz with traces of SPH At 420.63 m: 6 cm quartz vein 421.54-440.44 L.1 | Laminated & banded carbonaceous phyllite; 22213 422.15-425.20 0.8 L.001 114 minor knots 422.76-422.89 m: quartz band 22214 425.20-428.10 L.001 0.9 141 At 429.47 m: F₁ & bedding 53°/core axis 424.90-425.20 m: black knotted phyllite 428.10-430.08 22215 L.001 0.9 121 425.81-425.89 m: quartz band 425.76-426.34 m: knotted phyllite facies At 429.47 m: F, & bedding 68°/core axis 429.77-430.07 m: knotted phyllite facies #28.15-428.25 m: quartz lense 428.43-428.55 m: quartz lense 430.08-438.56 m: strong quartz/carbonate vein zone 430.08-432.52 m: 40% milky white quartz with 22216 430.08-432.52 | L.001 | carbonate, Py, Po & traces SPH along vein margins

DIAMOND DRILL RECORD

G. BELIK & ASSOCIATES LTD'.

DEPTH	CORE LOST	DESCRIPTION	SAMPLE No.	WIDTH of SAMPLE		Au oz/ton	Ag ppm	Zn ppm
Meters	PerCent					0.2/		
		432.52-433.58 m: 40% pyritic quartz/carbonat	e 22217	432.52-4	33.58	L.001	0.9	112
		veins with traces SPH, GN & CPY						
		433.58-435.87 m: 60-70% vein quartz with	22218	433.58-4	35.87	L.001	2.1	170
		abundant phyllite illusions; ankerite/Py/Po						
		rich zones with traces SPH, CPY; rare GN						
		435.87-438.56 m: 30% quartz; ankerite/sul-	22219	435.87-4	38.56	L.001	1.4	165
		phide patches & stringers along vein margins;						
		rare traces SPH;						
		436.78-436.94 m: limestone						
		At 437.4 m: F ₁ & bedding 48 ⁰ /core axis						
		438.56-440.44 m: 10% pyritic quartz/carbonat	e 22220	438.56-4	40.44	L.001	1.4	173
	·	stringers; veins irregular tensional features						
.44-446	.54 1	Black banded knotted phyllite; 1-2% Py & Po	22221	440.44-4	43.49	L.001	1.0	149
		At 442.27 m: F ₁ & bedding 420/core axis	22222	443.49-4	46.54	L.001	1.1	163
		442.65-442.88 m: quartz band; thin carbonate	/					
		sulphide selvage with traces CPY, SPH						
		443.79-444.00 m: quartz lense						
		At 445.62 m: F ₁ & bedding 720/core axis						
		End of Hole						
		Casing not pulled						
		. 1						
								
								+

Appendix II

Assay Certificates

Gary Belik & Associates

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

	664 Sun Valley Dr.,							cate No.		
	Kamloops, B.C. V2B 6S4						Date _	Septem	ber 18	. 1985.
3	hereby certify that the follow.	the herein	described .	: 	sa	mples				
Kral No.	Marked	Au								
		ozs/ton								
1 2 3 4 5 6 7 8 9 10	22051 22052 22053 22054 22055 22056 22057 22058 22059 22060	.001 .001 L.001 L.001 L.001 L.001 .001								
11 12 13 14 15 16 17 18 19 20	22061 22062 22063 22064 22065 22066 22067 22068 22069 22070	.001 .001 L.001 .001 .001 .001 .001 L.001 .006								

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Dank A. Semall

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

<i>TO</i> _	Gary Belik & Associates						Certific	cate No	K 7155	2
	and the second section of the s	energia (proposition de la companya	ndig aan to did distribusiya digaa qada ta baharan da				Date _	Sept	ember 1	8, 1985
	I hereby certify that the follow	ing are the result	s of assays made	by us upon	the herein	described		Sá	amples	
Kral No.	Marked	Au								
		ozs/ton								
21 22 23 24 25 26 27 28 29 30	22071 22072 22073 22074 22075 22076 22077 22078 22079 22080	.001 .002 .002 .002 .001 L.001 L.001 .001 .002								
31 32 33 34 35 36 37 38 39 40	22081 22082 22083 22084 22085 22086 22087 22088 22089 22090	L.001 L.001 .002 .001 .001 .004 .001 L.001 .001								

NOTE:

Rejects retained three weeks. Pulps retained three months unless otherwise arranged. Donk A. Bludell

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

Certificate No. K 7155 3

Date September 18, 1985

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No.	Marked	Au				
		ozs/ton				
41 42 43 44 45 46 47 48 95	22091 22092 22093 22094 22095 22096 22097 22098 22099 22100	.001 .001 .002 L.001 L.001 L.001 .001				
51 553 554 5555 555 556 556	22101 22102 22103 22104 22105 22106 22107 22108 22109 22110	.003 .001 .001 .001 L.001 .001 .001 .001				

NOTE: Rejects retained three weeks. Pulps retained three months

unless otherwise arranged.

Dula A. Semdell

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320 CERTIFICATE OF ASSAY

O Gary Belik & Associates

Certificate No. K 7

Date __September 18, 1985

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No. Marked	Au			
	ozs/ton			
61 22111 62 22112 63 22113 64 22114 65 22115 66 22116 67 22117 68 22118 69 22119 70 22120	L.001 L.001 .001 .001 L.001 .002 .003 L.001			
71 72 72 73 74 75 76 77 78 79 80 22121 22122 22123 22124 22125 22125 22126 22127 22128 22129 80 22130	.001 .001 .001 .001 .001 .001 L.001 .002 L.001 .002			

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Dente S. Blundell

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO	Gary Belik & Associates		 				K·7155 5		
		ing the state of the second	Marie Carlos			Certificate No. Date Septe	mber 18, 1985.		
	I hereby certify that the follow	ving are the result	s of assays made	by us upon	the herein described	d samples			
Kral No.	Marked	Λu							
		ozs/ton							
81 82 83 84 85 86 87 88 89	22131 22132 22133 22134 22135 22136 22137 22138 22139 22140	.001 .001 .001 .001 .001 .001 .002 .001							
91 92 93 94 95 96 97 98 99 100	22141 22142 22143 22144 22145 22146 22147 22148 22149 22150	.001 L.001 .002 L.001 L.001 .002 L.001 .029 .036							

NOTE:

Rejects retained three weeks. Pulps retained three months unless otherwise arranged. Dack A. Bluddle

Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Gary Belik & Associates

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

							Certifica	ate No	K 715	5 6
		n Tangar ji jawasan ji jawasa					Date	Septem	ber 18	, 1985.
	U hereby certify that the follow	ing are the result	's of assays made	e by us upon	the herein (described		sa	mples	
Kral No.	Marked	Au								
		ozs/ton								
101 102 103 104 105 106 107 108 109	22151 22152 22153 22154 22155 22156 22157 22158 22159 22160	.001 .001 L.001 .001 .001 L.001 L.001 L.001								
111 112 113 114 115 116 117 118 119 120	22161 22162 22163 22164 22165 22166 22167 22168 22169 22170	L.001 .001 L.001 .001 L.001 .001 .001 L.001 .001								
	L means "less than"									

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT - KAMLOOPS. B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TOG	rija da mahari da kara				Contific	ata Na	K-7176		
6	664 Sun Valley Drive								er 30, 1985
<u>k</u>	(amloops, B.C.	V2B 6S4							
\mathfrak{Z}	hereby tertify that the follow	ving are the result	s of assays made	by us upon	the herein de	scribed _		sa	mples
Kral No.	Marked	Au							
		ounces/ton							
1 2 3 4 5 6 7 8 9	22171 22172 22173 22174 22175 22176 22177 22178 22179 22180	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001							
11 12 13 14 15 16 17 18 19 20	22181 22182 22183 22184 22185 22186 22187 22188 22188 22189	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001							

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

	Gary Belik & Associate	S Ltd.					cate No. <u>K-7</u>] September	
3	hereby certify that the follow	ving are the result	s of assays made l	by us upon	the herein describ	ped	samples	
Kral No.	Marked	Au						
		ounces/ton						
21 22 23 24 25 26 27 28 29 30	22191 22192 22193 22194 22195 22196 22197 22198 22199 22200	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001						
31 32 33 34 35 36 37 38 39 40	22201 22202 22203 22204 22205 22206 22207 22208 22209 22210	.021 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001						

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Deck A Sendel

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

ΤΟ	G	ary Belik & Assocites	Ltd.					Certifica	ate No. 🔔	K-7176	3 .
	<u> </u>									ember 30	
	31	hereby certify that the follow	wing are the result	s of assays made	e by us upon	the herein (described ₋		sa	mples	
Kral No.		Marked	Au								
			ounces/ton								
42 44 45 44 45 47 49 50 50 50 50 50 50 50 50 50 50 50 50 50		22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22225 22226 22227 22228 22229 22230	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001								

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Duk A. Shall

B.C. LICENSED ASSAYERS
GEOCHEMICAL ANALYSTS
METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO		Gary Belik &	Associates	Ltd.						Codific	cate No	K = 717	5 4
													1985
										Date_	<u> </u>	111001 0	<u>, 1330</u>
	31	hereby certi	$\mathfrak{f}_{\mathcal{V}}$ that the follow	ving are the result	s of assays n	nade l	by us upon	the herein	described .		sa	mples	
Kral No.			rked	Au									
				ounces/ton									
61 62 63 64 65 66 67 68 69 70		2223 2223 2223 2223 2223 2223 2223 222	32 33 34 35 36 37 38	L.001 .001 L.001 L.001 L.001 L.001 L.001 L.001									
71 72 73 74 75 76		2224 2224 2224 2224 2224 2224	12 13 14 15	.002 L.001 .001 L.001 L.001									

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Duk A. Bludel

Gary Relik & Associates Itd

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

•	/alley Drive	***************************************						cate No			
	prrby crify that the following are the results of assays made by us upon the herein described_					Date October 16, 1985samples					
Kral No.	Marked	Au									
		ounces/ton									
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22265	.001 L.001 L.001 L.001 L.001 .001 .001 .									

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Duck A Gladel

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

	Gary Belik & Associates Ltd.			Certificate No. K-7210 2 Date October 16, 1985
	I hereby certify that the follow	ing are the results	ts of assays made by us upon the herein descr	ibed samples
Kral No.	Marked	Au		
		ounces/ton		
21 22 23 24 25 26 27 28 29 30	22267 22268 22269 22270 22271 22272 22273 22274 22275 22276	.011 .001 L.001 L.001 L.001 L.001 L.001 L.001 L.001		
31 32 33 34 35 36 37 38 39 40	22277 22278 22279 22280 22281 22282 22283 22284 22285 22286	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001		

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged

Dank A Blombill

Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO	Gary Belik & Associates Ltd.	• •					
							o. <u>K-7210 3</u>
						Date	October 16, 1985
					et en		
J	hereby certify that the follow	ing are the result	s of assays made	e by us upor	the herein describ	ped	samples
Kral No.	Marked	Au					
		ounces/ton					
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	22287 22288 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001					

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO _	Gary Belik & Associates Li	td.	·			Cortificate N	o. <u>K-7210 4</u>
		entrope de la composição					ctober 16, 1985
	I hereby certify that the follow	ing are the result	s of assays mad	le by us upon	the herein described	d	_ samples
Kral No.	Marked	Au					
		ounces/ton					
61 62 63 64 65	22307 22308 22309 22310 22311	L.001 L.001 L.001 L.001					
	L means "Less than"						

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

Derk A. Bludel

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS **METALLURGISTS**

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO.	Gary Belik & Associates		<u>ئىنىنى</u> د					K 712	5
	664 Sun Valley Dr.,							te No. $\frac{K}{712}$ September	
	Kamloops, B.C. V2B 6S	4					Dale	<u> </u>	2, 1,00
	I hereby certify that the follow	ing are the results of as	says made	e by us upon	the herein	described _		samples	
Kral No.	Marked	Au							
		ozs/ton							
1 2 3 4 5 6 7 8 9 10	Trench A 85-TRA-01 -02 -03 -04 -05 -06 -07 -08 -09	.003 .001 .001 L.001 L.001 .009 .001 L.001 L.001							
11 12 13 14	85-TRA-10 -11 -12 -13	.003 L.001 L.001 L.001							

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

15 16

17

18

19

20

-16

-17

-18

-19

L.001 L.001

L.001

L.001

L.001

L.001

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO Gary	Belik & Associates					K 7125 2
I her	reby certify that the follow	ving are the resul	's of assays made	e by us upon	the herein described	
Kral No.	Marked	Au				
		ozs/ton				
21 22 23 24 25 26 27 28 29 30	85-TRA-20 -21 -22 -23 -24 -25 -26 -27 -28 -29	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001				
31 32 33 34 35 36 37 38 39 40	85-TRA-30 -31 -32 -33 -34 -35 -36 -37 -38 -39	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 .001				

NOTE:
Rejects retained three weeks.
Pulps retained three months

Pulps retained three months unless otherwise arranged.

Down A . Fredell

B.C. LICENSED ASSAYERS
GEOCHEMICAL ANALYSTS
METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO.	Gary Belik & Associates						Comitti	nata Nia	K 7125	3
			,				Date _	a Lilia	mber 3,	
	I hereby certify that the follow	ing are the resul	ts of assays made	e by us upon	the herein de	escribed _		sa	ımples	
Kral No.	Marked	Au								
		ozs/ton								
41 42 43 45 46 47 48 49 50	85-TRB-01 -02 -03 -04 -05 -06 -07 -08 -09 -10	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001								
51 52 53 55 55 57 59 60	-12 -13 -14 -15 -16 -17 -18 -19 -20	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001								

NOTE:

Rejects retained three weeks. Pulps retained three months unless otherwise arranged. Dorck A. Brandell

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

TO Ga	ry Belik & Associates					Certific	September 3, 1985
I he	ereby certify that the follow	ing are the result	s of assays made	by us upon	the herein describe	ed	samples
Kral No.	Marked	Au					
		ozs/ton					
61 62 63 64 65 66 67 68 69 70	85-TRB-21 -22 -23 -24 -25 -26 -27 -28 -29 -30	L.001 L.001 L.001 .003 L.001 L.001 L.001 L.001 L.001					
71 72 73 74 75 76 77 78 79 80	-32 -32 -33 -34 -35 -36 -37 -38 -39 -40	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001					

NOTE:

Rejects retained three weeks. Pulps retained three months unless otherwise arranged. Donk A. Bondall

Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

ΤΟ	<u>Gary F</u>	Belik & Associates						Certifi	cate No	K 7125	5
				editaria de la composición dela composición de la composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la c				Date	Septe	mber 3,	1985
								Date.			
	I hereb	y certify that the follow	ing are the resul	s of assays made	by us upon	the herein	described		Sa	amples	
Kral No.		Marked	Au			and the same					
			ozs/ton								
81 83 84 856 88 89 99 99 99 99 99 99 90 99 90		85-TRB-41 -42 -43 -445 -445 -446 -448 -450 -48 -49 -51 -52 -556 -556 -558 -559 -60	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001								

Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

ΤΟ	Gary Belik & Associates		aye .			Certificate No	K 7125 6
		· · · · · · · · · · · · · · · · · · ·					ember 3, 1985.
	I hereby certify that the follow	ing are the resul	ts of assays made	by us upon the herein	described	Sa	amples
Kral No.	Marked	Au					
		ozs/ton					
101 102 103 104 105 106 107 108 109	85-TRB-61 -62 -63 -64 -65 -66 -67 -68 -69 -70	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001					
111 112 113 114 115 116 117 118 119 120	85-TRB-71 -72 -73 -74 -75 -76 -77 -78 -79 -80	L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001					

Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. LICENSED ASSAYERS GEOCHEMICAL ANALYSTS METALLURGISTS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

CERTIFICATE OF ASSAY

το _	Gary Belik & Associates						Certifi	cate No	K · 7125	7
		 	g ann a de la companya de la company				Date	Septem	ber 3,	1985
- 1	I hereby certify that the follow	ving are the resul	lts of assays made	by us upon	the herein	described .	· · · · · · · · · · · · · · · · · · ·	sa	amples	
Kral No.	Marked	Au								
		ozs/ton								
121 122 123 124 125 126 127	85-TRB-81 -82 -83 -84 -85 -86 -87	L.001 L.001 L.001 L.001 L.001 L.001			-					

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED NOV 4 1985 PH: (604) 253-3158 COMPUTER LINE: 251-1011 DATE REPORTS MAILED Nov. 6/85

ASSAY CERTIFICATE

SAMPLE TYPE: ROCK - CRUSHED AND PULVERIZED TO -100 MESH.

AUX BY FIRE ASSAY

V. Vaundy DEAN TOYE OR TOM SAUNDRY, CERTIFIED B.C. ASSAYER ASSAYER

6. BELIK & ASSOC. FILE# 85-3010

PAGE# 1

SAMPLE	Au**
	oz/t
K7155 22147	.001
K7155 22148	.015
K7155 22149	.008
K7155 22150	.001
K7176 22200	.001
K7176 22201	.001
K7176 22202	.001
K7210 22256	.013
K7210 22257	.086
K7210 22258	.046
K7210 22259	.001
K7210 22260	.001
K7210 22261	.011
K7210 22262	.005
K7210 22263	.001
K7210 22264	.012
K7210 22265	.001
K7210 22266	.001
K7210 22267	.017
K7210 22304	.001

10416 2.13

KAMLOOPS RESEARCH B.C. CERTIFIED ASSAYERS ASSAY LABORATORY 912 LAVAL CRESCENT

LTD. PHONE 372-2784 - TELEX 048-8320

GEOCHEMICAL LAB REPORT

GARY BELIK & ASSOCIATES 664 SUN VALLEY DR., KAMLOOPS, B.C. V2B 654

DATE OCT. 30. 1985.

FILE NO. | G 1403

PAGE 1 / 7

3 28 4 28 5 26 6 28 7 28 8 28 9 28 10 28 11 28 12 28 13 28 14 28 15 28 16 28	2052 2053 2054 2055 2056 2058 2059 2060 2061 2062 2063	1.2 0.5 1.1 0.9 14.0 0.8 1.0 1.4 0.5 0.4 0.6	147.0 216.0 349.0 202.0 145.0 263.0	
4 28 5 26 6 28 7 28 8 28 9 28 10 28 11 28 13 14 28 15 16 28 16 28	2054 2055 2056 2058 2059 2060 2061 2062	1.1 0.9 14.0 0.8 1.0 1.4 0.5 0.4 0.6	156.0 158.0 3350.0 147.0 216.0 349.0 202.0 145.0 263.0	
5 28 6 28 7 28 8 28 9 28 10 28 11 28 12 28 13 28 14 28 15 28 16 28	2055 2056 2058 2059 2060 2061 2062 2063	0.9 14.0 0.8 1.0 1.4 0.5 0.4 0.6	158.0 3350.0 147.0 216.0 349.0 202.0 145.0 263.0	
6 28 7 28 8 28 9 28 10 28 11 28 12 28 13 28 14 28 15 28 16 28	2056 2057 2058 2059 2060 2061 2062 2063	14.0 0.8 1.0 1.4 0.5 0.4 0.6	3350.0 147.0 216.0 349.0 202.0 145.0 263.0	
7 28 8 28 9 28 10 28 11 28 12 28 13 28 14 28 15 28 16 28	2057 2058 2059 2060 2061 2062 2063	0.8 1.0 1.4 0.5 0.4 0.6	147.0 216.0 349.0 202.0 145.0 263.0	
8 28 9 28 10 28 11 28 12 28 13 28 14 28 15 28 16 28	2058 2059 2060 2061 2062 2063	1.0 1.4 0.5 0.4 0.6	216.0 349.0 202.0 145.0 263.0	
9 28 10 28 11 28 12 28 13 28 14 28 15 28 16 28	2059 2060 2061 2062 2063	1.4 0.5 0.4 0.6	349.0 202.0 145.0 263.0	
10 28 11 28 12 28 13 28 14 28 15 28 16 28	2060 2061 2062 2063	0.5 0.4 0.6	202.0 145.0 263.0	
11 28 12 28 13 28 14 28 15 28 16 28	2061 2062 2063	0.4 0.6	145.0 263.0	
12 28 13 28 14 28 15 28 16 28	2062 2063	0.6	263.0	
13 23 14 28 15 28 16 28	2063			
14 28 15 28 16 28		0.57		
15 23 16 28	054	O+ 1	200.0	
16 28		0.7	170.0	
	2065	0.9	343.0	
سريسر بسمور	3066	0.7	171.0	
17 28	2067	0.6	170.0	
18 28	2068	0.6	126.0	
19 28	2069	0.7	520.0	
20 22	2070	0.7	114.0	
21 22	2071	0.5	136.0	
	2072	0.8	188.0	
23 22	2073	0.7	312.0	
24 23	2074	0.1	144.0	
25 28	2075	0.5	253.0	
26 22	2076	0.4	134.0	
27 22	2077	0.4	125.0	
28 22	2078	0.6	174.0	
29 28	2079	0.9	163.0	

PAGE

		FILE NO.	G 1403			
II.	RAL NO.	IDENTIFI(CATION	4G 	ZN	
	31	22081		0.9	182.0	
	32	22082		1.0	149.0	
	33	22083		1.4	189.0	
	34	22084		1.1	192.0	
F	35	22085		1.0	226.0	
	36	22086		2.6	295.0	
L 3	37	22087		1.0	133.0	
	38	22088		1.1	314.0	
	39	22089		1. Ξ	172.0	
8	40	55090		1.1	232.0	
	41	22091		1.1	263.0	
	42	82092		0.8	150.0	
	43	22093		0.9	129.0	
<u></u>	44	22094		1.3	160.0	
F	45	22095		1.4	161.0	
	46	22096		1.2	200.0	
6	47	22097		1.1	164.0	
	48	22098		0.8	161.0	
	49	22099		0.9	290.0	
	50	22100		1.3	395.0	
	51	22101		1.2	295.0	
-	52	22102		1.0	289.0	
	53	22103		0.9	162.0	
(L.)	54	22104		0.6	185.0	
A 3	55	22105		0.8	320.0	
	56	22106		0.8	322.0	
	57	22107		0.4	131.0	
	58	22108		0.6	212.0	
	59	22109		1.0	375.0	
	60	22110		0.8	345.0	
	61	22111		1.0		
	62	22112		0.8	169.0	
	63	22113		1.0	218.0	
W. 3	64	22114		1.1	300.0	
ee:~an.	65	22115		1.2	202.0	
100	66	22116		1.3	285.0	
	67	22117		1.5	203.0	
	68	22118		1.4	266.0	
	69	22119		1.4	282.0	
	70	22120		1.5	753.0	

PAGE

3 / 7

4.3			JEUCHEM!		HB	KEPUKI		
: 	(D)		6 1403			7 6 1		
FT H	HL NU.	IDENTIFIC	HIIIU	AG		ZN		
	71	22121		·	.3	233.0		
	72	22122			. 3	335.0		
	73	22123			.1	156.0		
	74	22124			. 1	253.0		
	75	22125			.2	and the second second second		
	75 76	22125			, 4	279.0		
	77	22127			.9	200.0		
القيطا	78	22128			.2	183.0		
573	79	22129			. 1	196.0		
	80	22130			. 4	205.0		
6	8i	22131			.5	71.0		
	82	22132			. 9	126.0		
	83	22133			. 1	130.0		
	84	22134			.0	90.0		
	85	22135			4	163.0		
	86	22136			.0	156.0		
	87	22137			. 9	159.0		
الشا	88	22138			.9	345.0		
	89	22139			.5	131.0		
	90	22140			. 8	134.0		*
٨	91	22140			. 7	67.0		•
	92	22142			7	125.0		
	93	22143			.5	84.0		
	94	22144			.5	81.0		
	95	22145			3	82.0		
	96	22146			5	102.0		
	97	22147			. 2	194.0		
E	98	22148			. 5	156.0		
	99	22149			3	174.0		
	100	22150			9.9	196.0		
	101	22151			.0	178.0		
	102	22152			. 2	110.0		
	103	22153			6	139.0		
	104	22154			. 4	175.0		
	105	22155		1	6	205.0	,	
	106	22156			7	178.0		
	107	22157		1	. 1	295.0	ı	
	108	22158			4	192.0	,	
e= 78	109	22159		1	5	151.0	•	
	110	22160		1	.2	142.0		

PAGE

FILE NO. G 1403

KRAL	NO.	IDENTIFICATION	AG	ZN	
	111	25161	1.0	148.0	***************************************
	112	88168	1.4	188.0	
	113	22163	1.5	310.0	
	114	22164	1.7	152.0	
	115	22165	1.2	263.0	
	116	22166	0.7	87.0	
	117	22167	1.3	285.0	
	116	22168	1.2	351.0	
	119	22169	i. 1	240.0	
	120	22170	0.9	307.0	
	121	22171	0.7	184.0	
	122	22172	1.3	240.0	
	123	22173	0.8	200.0	
	124	22174	= =	105.0	
	125	22175	1.1	206.0	
	126	22176	0.3	35.0	
	127	22177	୍. 8	234.0	
	128	22178	0.7	178.0	
	129	22179	0.7	249.0	
	130	22180	1.O	210.0	•
	131	22181	1.2	209.0	
	132	22182	i.O	225.0	
	133	22183	0.8	195.0	
	134	22184	1.0	114.0	
	135	22185	0.8	97.0	
	136	22186	0.9	179.0	
	137	22187	E. 1	269.0	
	138	22188	1.2	133.0	
	139	22189	1.2	194.0	
	140	22190	0.9	135.0	
	141	22191	0.9	137.0	
	142	22192	1 . O	186.0	
	143	22193	1.1	216.0	
	144	22194	0.6	131.0	
	145	22195	1.3	135.0	
	146	22196	1.1	104.0	
	147	22197	1.1	142.0	
	148	22198	0.9	116.0	
	149	22199	1.1	152.0	
	150	55500	1.4	163.0	

PAGE 5 / 7

	FILE NO. 6 140	ICHL LHD :	KEPUKI	
KRAL NO.			ZN	
	. IDENTIFICATION	P1U7	Z 14	
151	22201	1.5	148.0	
n 152	22202	1.2	156.0	
153	22203	1.2		
154	22204	1.0	157.0	
, 155	22205	0 . Z	110.0	
156	22206	1.5	149.0	
157	22207	0.9	160.0	
158	82208	1.2	159.0	
159	22209	1.2	151.0	
160	22210	0.9	135.0	
161	22211	1.0	146.0	
162	22212	1.1	122.0	
163	22213	0.8	114.0	
164		0.9	141.0	
165	22215	0.9	121.0	
166	22216	0.8	127.0	
167		0.9	112.0	
168	22218	2.1	170.0	
169	22219	1.4	165.0	
170	22220	14	173.0	
171	22221	1.0	149.0	
172	22222	1. i	163.0	
173	22223	O. i	64.0	
174	22224	0.2	65.0	
175	22225	0.2	50.0	
176	22226	0.3	51.0	
177	22227	0.2	70.0	
178	22228	0.3	84.0	
179	22229	0.3	72.0	
180	22230	0.2		
181	22231	0.3	36.0	
182	22232	0.3	77.0	
183	22233	0.2	69.0	
184	22234	0.1	75.0	
185	22235	0.4	78.0	
186	22236	0.2	86.0	
187	22237	0.3	50.0	
188	22238	0.1	75.0	
189	22239	0.2	65.0	
190	22240	0.5	139.0	

PAGE

	KRAL NO.		1403		
	111111111111111111111111111111111111111	TOUR TOUR	ION AG	ZN	
	191	22241	0.6	63.0	
	192	22242	0.5	171.0	
	193	22243	0.4	116.0	
m/ 'W	194	22244	0.3	76.0	
67 B	195	22245	0.2	49.0	
	196	22246	0.1	62.0	
أفسفا	197	22247	0.3	85.0	
	198	22248	0.3	105.0	
	199	22249	0.0	49.0	
الم	200	22250	0.0	56.0	
	201	22251	0.1	43.O	
	202	22252	0.2	69.0	
	203	22253	0.3	60.0	
W.,	204	22254	0.3	61.0	
9	205	22255	0.4	72.0	
	506	22256	0.5	68.0	
Ä	207	22257	0.6	34.0	
	208	22258	1. O	93.0	
	209	22259	0.2	42.0	
ا	210	22260	0.2	56.0	
	211	22261	1.1	66.0	
1	212	22262	0.7	100.0	
	213	22263	0.9	74.0	
L39	214	22264	0.8	121.0	
- T-99	215	22265	1.3	118.0	
7	216	22266	0.8	192.0	
	217	22267	18.3	158.0	
	218	22268	1.5	130.0	
1	219	22269	0.8	246.0	
	220	22270	1.0	126.0	
	221	22271	0.8	110.0	
n N	222	22272	0.9	87.0	
-	223	22273	1.4	82.0	
	224	22274	0.8	89.0	
-	225	22275	.1.4.	237.0	
in section of	226	22276	1.3	261.0	
	227	22277	1.4	340.0	
	228 228	22278	1.3	165.0	
	229	22279	1.0	205.0	
ā	230	22280	1.5	309.0	

PAGE 7 / 7

FILE NO. G 140 RAL NO. IDENTIFICATION	
231 22281	1.5 264.0
232 22282	1.2 157.0
233 22283	1.2 295.0
234 22284	1.4 321.0
235 22285	1.3 295.0
236 22286	1.1 259.0
237 22287	1.2 353.0
238 22288	1.4 135.0
239 22289	0.3 98.0
240 22290	0.6 128.0
241 22291	0.6 132.0
242 22292	0.6 72.0
243 22293	0.8 101.0
244 22294	1.2 149.0
245 22295	1.3 676.0
246 22296	1.0 384.0
247 222 9 7	0.7 287.0
248 22298	1.6 553.0
249 22299	1.5 365.0
250 22300	1.4 480.0
251 22301	1.1 406.0
252 22302	0.9 310.0
253 22303	1.7 578.0
254 22304	1.7 330.0
255 22305	1.3 578.0
256 22306	1.0 488.0
257 22307	1.0 194.0
258 22308	1.2 232.0
259 22309	0.5 59.0
260 22310	0.9 177.0
261 22311	0.6 308.0

IN AG COLUMN O.O INDICATES (O.1 PPM

AG ZN METHOD HOT ACID EXTRACTION ATOMIC ABSORPTION

Appendix III

Statement of Expenditures

Statement of Expenditures

Kusk Project, 1985

1). Labour:

G. Belik, M.Sc., Project Supervisor 2.25 days preparation (June 12,13, July 17-19, 30, 1985)

10.5 days road and trenching supervision (Aug. 6-10, 15-23, 1985)

28.75 days diamond drill supervision, core logging, reclamation work (Aug. 26,30,31, Sept. 2-9, 11-26, 28-30, Oct. 1-4, 1985)

41.5 days at \$300/day \$12,450.00

D. Arens, Field Supervisor

16.0 days road supervision, trench sampling (Aug. 6-23, 1985)

37.0 days core splitting, camp construction, reclamation work, shipping samples etc. (Aug. 26-31, Sept. 1, 3-20, 23-30, Oct. 1-4, Nov. 1, 1985)

53.0 days at \$140/day 7,420.00

E. Lacasse, Cat Operator 204.0 hrs. road work and trenching (Aug. 7-21, Sept. 21-22, 1985)

204.0 hrs. at \$21/hr. 4,284.00

J. Belik, Assistant

5.0 days trench sampling (Aug. 18-22, 1985)

5.0 days at \$75/day

375.00 \$ 24,529.00

2). Drilling Costs:

-paid to Core Enterprises Ltd. P.O. Box 67, Clinton, B. C.

53,265.00

-for 560.84 m BQ and 115.83 m NQ drilling (total 676.67 m)

-costs include camp, drilling, mob & demob, consumables

3).	Cat Re	ntal:		
	В.	id to Westland Tractor, Kamloop C. for rental of D7G dozer wit ppers for period Aug. 7 to Oct.	h	12,439.96
4).	4 X 4	Truck Rentals:		3,539.88
5).	Small	Equipment Rentals:		
		er saw - \$220.00 e splitter - 95.00		315.00
6).	Assays			4,927.80
7).	Expens	es:		
	a)	low bed charges for hauling Ca to & from Crooked Lake	t \$1,812.60	
	ъ)	fuel for running Cat	1,938.72	
	c)	truck gas	932.77	
	d)	food and accommodation for creduring road construction phase		
	e)	field supplies (consumed)	885.74	
	f)	travel expenses: meals - \$81.85 air travel - 176.80	258.65	
	g)	repairs on D7G -welding grouser bar onto tracks for ice conditions	488.00	
	h)	mobil radio charges and long distant calls	495.00	
	i)	freight charges	31.05	
	j)	reclamation of water shed to Crooked Lake Resort -result of road construction	540.00	8,863.51

Assistanted

Backland Take

8). Report Preparation:

-professional fees, drafting, secretarial, map prints, xerox, binding

2,550.00

Total 1985 Trenching & Drilling Program

\$110,430.15

Appendix IV

Statement of Qualifications:
G. D. Belik

GARY D. BELIK, M.Sc.

Consulting Geologist Mineral Exploration

664 Sunvalley Drive, V2B 6S4 579 8206 #6 NICOLA PLACE, 310 NICOLA STREET • KAMLOOPS, B.C. V2C 2P5 • PHONE (604) 374,4247

CERTIFICATE

- I, GARY D. BELIK, OF THE CITY OF KAMLOOPS, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:
- (1). I am a member of the Canadian Institute of Mining and Metallurgy and a fellow of the Geological Association of Canada.
- (2). I am employed by G. Belik and Associates Ltd. with my office at 664 Sunvalley Drive, Kamloops, B. C.
- (3). I am a graduate of the University of British Columbia with a B.Sc. in Honors Geology and a M.Sc. in Geology.
- (4). I have practised continuously as a geologist since May, 1970.
- (5). This report is based on results of work carried out on the Kusk claims, under my direct supervision during August 6 to October 4, 1985.

Gary D. Belik, M.Sc., GEOLOGIST

KAMLOOPS, B. C. November 12, 1985

STATISTICS SINGLE STATES OF STATES O

TRENCH A

GEOLOGICAL BRANCH ASSESSMENT REPORT

14,050

NIRVANA OIL AND GAS LTD.

TRENCH LOCATIONS

KUSK PROJECT

CARIBOO MINING DIVISION, BRITISH COLUMBIA.

G Belik and Associates Ltd.

Scale
1: 1,000 0 100

Drawn By: W G.

Date: November, 1985.

Fig. No. 1037-4

LEGEND

DARK GREY TO BLACK, KNOTTED PHYLLITE; KNOTS COMPLETELY WEATHERED TO LIMONITE AND/OR GOETHITE

GREY TO BLACK LAMINATED PHYLLITE -LOCALLY ARENACEOUS, OCCASIONAL KNOTS

GREATER THAN 10% QUARTZ/CARBONATE PODS, VEINS, LAMINATIONS; OFTEN RUSTY AND PYRITIC

MAIN FOLIATION DIRECTION AND INCLINATION

SAMPLE INTERVAL (3.0 m) WITH GOLD VALUE EXPRESSED IN 0Z/TON

TR DENOTES LESS THAN 0.001 OZ GOLD/TON

