85-988-14182

COMINCO LTD.

EXPLORATION

WESTERN DISTRICT

NTS: 92 F/4E

ASSESSMENT REPORT

GEOLOGY, GEOCHEMISTRY, TRENCHING

ON THE

NICKEL 1,2,3, THE LORNE AND THE SUPER 1,2,3 CLAIMS

ALBERNI MINING DIVISION

LATITUDE: 49°12', LONGITUDE: 125°37'

OWNER: P.C. BUCKLAND

OPERATOR: COMINCO LTD.

GEOLOGICAL BRANCH ASSESSMENT REPORT

14,182

P.C. LECOUTEUR

DECEMBER 1985

TABLE OF CONTENTS

		· .																								Page
Ι.	INTR	ODUCTION	• •		• •	• •	•	• •	•	•	•	•	•	•	•	•	•	•.	•	•	•	•	•	•	•	1
	(a)	LOCATIO	N AND	ACC	ESS	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	1
	(b)	PROPERT	Y DEF	INIT	ION	AND) H	IST	rory	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	(c)	SUMMARY	OF W	ORK	DONE	•	•	•	• •	•	•	•	•	.•	٠	٠	•	•	•	٠	•	•	•	٠	•	2
п.	GEOL	OGY		• •	•		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	2
	(a)	OBJECTI	VES .		• •		•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	(b)	RESULTS	AND	INTE	RPRE	ETAT	.10	NS	•	•	•	•	٠	٠	٠	•	٠	•	•	•	•	•	•	•	•	3
III.	.GEOC	HEMISTRY	•••	••	•		•	•		•	•		•		•		•	•	•	•		•	•	•	•	4
	(a)	OBJECTI	VES .		•			•		•	•		•		•	•			•	•	•		•	•	•	4
	(b)	METHODS					•			•	•	•		•	•		•	•	•	•	•	•	•	•	•	4
	(c)	RESULTS	AND	INTE	RPRE	ETAT	10	NS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
IV.	CONC	LUSIONS			•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5

ххх

APPENDICES

Α.	Ē	χ	PE	ND	11	U R	ES
						~	

- B. STATEMENT OF AUTHOR'S QUALIFICATIONS C. PETROGRAPHIC REPORT BY J.R. IKINGURA

LIST OF FIGURES, PLATES AND TABLES

FIGURE 1	LOCATION OF PROPERTY
FIGURE 2	LOCATION OF CLAIMS
FIGURE 3	HISTOGRAM OF CU IN SOILS
FIGURE 4	HISTOGRAM OF NI IN SOILS
DI 170 1	OF OLDON COT OF OUR MACTON CANDLE LOCATIONS (
PLATE I	GEULUGY, SUIL GEUCHEMISTRY, SAMPLE LUCATIONS (POCKET)
PLATE 2	GEOLOGY OF THE MAIN SHOWING
PLATE 3	GEOLOGY AND SAMPLING OF TRENCHES
PLATE 4	SOIL GEOCHEMISTRY NEAR MAIN SHOWING
TABLE 1	DETAILS OF CLAIMS
TABLE 2	SUMMARY OF WORK DONE
TABLE 3	ANALYSES OF VARIOUS ROCKS
TABLE 4	MAJOR ELEMENT ANALYSES OF AMPHIBOLITE AND GNEISS
TABLE 5	ANALYSES OF ROCKS FROM MAIN SHOWING
TABLE 6	VALUES FOR ALL PLATINUM GROUP ELEMENTS IN TWO SAMPLES
TABLE 7	METHODS OF ANALYSES
TABLE 8	SOIL GEOCHEMISTRY RESULTS

COMINCO LTD.

EXPLORATION

WESTERN DISTRICT

NTS: 92 F/4E

19 December 1985

ASSESSMENT REPORT

GEOLOGY, GEOCHEMISTRY, TRENCHING ON THE

THE NICKEL 1,2,3, THE LORNE AND THE SUPER 1,2,3 CLAIMS

I. INTRODUCTION.

(a) Location and Access

The Nickel 1,2,3, the Lorne and the Super 1,2 and 3 form a group of adjacent claims on Deer Bay, Tofino Inlet, Vancouver Island (Figure 1). This property is about 25 km ENE of the town of Tofino, and may be reached by air (helicopter or floatplane) or by boat from Tofino or several other points along Tofino Inlet.

The ground is steep, heavily forested and ranges from sea level to 950 m. There are good exposures on the coast line and also in numerous bluffy outcrops, especially at higher elevations. A cabin on the property was repaired and used as a base for the work reported here, carried out intermittently over the period May 26-October 24 by P.C. LeCouteur, S.B. Noakes, I.J. Talbot and M.J. Gray.

(b) Property Definition and History

The property is shown on Figure 2, and details of the claims are given in Table 1.

TABLE 1

DETAILS OF CLAIMS

CLAIM	UNITS	RECORD NO.	RECORDING DATE	DUE DATE
NICKEL 1	4	1048	October 24, 1980	October 24, 1985
2	8	1338	November 12, 1981	November 12,1985
3	8	1339	November 12, 1981	November 12,1985
LORNE	12	1341	November 12, 1981	November 12,1985
SUPER 1	16	2150	May 10, 1984	May 10, 1987
2	16	2151	May 10, 1984	May 10, 1987
. 3	10	2152	May 10, 1984	May 10, 1987

Super 1,2,3 were grouped on May 7, 1985 Nickel 1,2,3 and Lorne were grouped October 3, 1983. The property has been explored intermittently since about 1898 and a number of showings of several types have received some work, mostly in the 1960's. These showings include Au quartz-veins, Mo-Cu skarns, and Ni-Cu-PGM mineralization in amphibolite. They are best described in the B.C. Dept. Mines Annual Report for 1963 (pp. 115-117) with additional information in the 1966 (p. 74) and 1967 (p. 75) BCDM Annual Reports.

The ground covered by the Nickel 1,2,3 and Lorne claims was owned by Lorne Hanson, a Tofino prospector, from the 1950's until his death in 1984 when they were acquired by his associate, P.C. Buckland of Vancouver. In 1984 Cominco (R.J. Sharp, I.M. Mason) examined the property and a brief geochemical, geological and geophysical program was carried out (See Assessment report by I.M. Mason). The adjoining Super 1,2 and 3 claims were purchased by Buckland and the combined claims wereoptioned to Cominco in 1985.

In the 1963 BCDM Annual report (P. 116) it was reported that a small Ni-Cu mineralized zone, on the NW side of the inlet opposite Similar Island, contained platinum-group metals. This showing ("Tofino Nickle") and this style of mineralization have been the main focus of the geological and geochemical work reported here.

(c) Summary of Work Done

The work done on the claims is summarized in Table 2.

TABLE 2

	NICKEL 1,2,3 and LORNE GROUP	SUPER 1,2,3 GROUP
GEOCHEMICAL SURVEY		
Soils Silts Rocks Trench Rock Chip Samples Total Length Trenched	51 2 31	97 1 20 7 11.1 m
<u>GEOLOGICAL SURVEY</u> Scale of Map Area Surveyed	1:5,000 2.5 km ²	1:5,000 0.5 km ²

SUMMARY OF WORK DONE

II. GEOLOGY

(a) Objectives

The objectives of the geological work were to understand the regional setting and controls of mineralization at the main Cu-Ni-PGM showing, and to prospect the surrounding area for mineralization of similar style. Examination of the showing required drilling and blasting trenches, mapping and chip sampling.

(b) Results and Interpretations

Regional Setting

Regional mapping by Muller and Carson (GSC Paper 68-50, 1968) indicates the property lies within a belt of rocks assigned to the Palaeozoic Sicker Group, or their metamorphosed equivalents. The metamorphism, thought to be coeval with emplacement of the mid to Upper Jurassic Island Intrusives, resulted in a number of enigmatic gneiss units, collectively termed the "West Coast Crystalline Complex" by Muller and Carson.

Gneisses

In that part of the claims shown in Plate 1 the principal rock-type is fine to medium-grained pale grey, brownish weathering, poorly foliated gneiss. It consists essentially of plagioclase and quartz with 5-20% ragged aligned laths of chlorite. These rocks are thought to be metamorphosed equivalents of Sicker Group lithologies, possibly silicified intermediate to acid volanics or volcaniclastics. No textural evidence bearing on their origin was found, but whole rock analyses of typical gneiss (LR530, LR552, LR563 in Table 4) are notable for their high silica levels. A thin band of coarse garnet-diopside marble was seen in one locality.

During prospecting pyrite was noted in gneiss in several areas, usually in minor amounts, and some of these were analysed for trace elements (Table 3, Plate 1). The area indicated by samples LR613-621 is particularly notable for the presence of laminated pyritic bands up to several cm wide in zones up to 3 m widths, that may contain up to 10% pyrite in gneiss. Analyses of all these rocks were unencouraging.

Amphibolites

In many exposures, particularly well-seen along the coast, the pale gneisses contain numerous dark grey to green amphibolite bands. These lie more or less parallel to the foliation of the gneiss, also possess a weak foliation, range from a few cm to several metres in thickness, and locally make up to 50% of large outcrop areas. They are thought to represent a swarm of basic sills probably related to the Upper Triassic Karmutsen volcanic episode.

In thin section the amphibolites are fine to medium grained, poorly foliated, and consist of about 70% green amphibole and 30% plagioclase. Analyses (Table 4) indicate most have basaltic compositions, except for 2 samples (LR537, LR589) from the main showing, which are ultrabasic. Some analyses of Ni, Cu, Pt and Pd (Table 3) indicate the levels of these elements in unmineralized amphibolite. Apart from the main showing no other significant mineralization was located in amphibolites, although one sample (LR622, Table 3) does contain minor Cu in chalcopyrite.

Main Showing

The main Cu-Ni-PGM showing is located beside a small creek at 275 m ASL on the SW-facing slope above the small bay 1/2 km north of Similar Island (Plate 1). It may be reached by a rough track from the cabin at water's edge on the west side of the bay.

At the showing, an outcrop some 10x30 m, several bands of dark grey to green amphibolite are interlayered somewhat irregularly in leucocratic gneiss. The setting is thus not unlike that seen elsewhere on the claims, except for the pale colour of some gneisses, which gives them an anorthositic aspect, and for the ultrabasic composition of the amphibolitised sills (analyses LR537, LR589 in Table 4). Sample LR530 (Table 4) is representative of gneiss from the showing.

There is some pyrite disseminated in the gneiss, particularly close to the amphibolite, but the important sulphide concentrations, generally 10-50% sulphide, are in the amphibolite. The principal sulphide is pyrite but chalcopyrite may locally be dominant and form 50% or more of a hand specimen. Accessory minerals include pyrrhotite, magnetite, violarite, millerite and pentlandite. A detailed petrographic study of some 23 rocks from the main showing is included as Appendix C. In this study a palladium antimono-telluride was identified, possibly merenskyite, but no platinum carrier was found.

A geological map of the main showing with sample locations and trenches is shown as Plate 2, and sketches of the trenches as plate 3. Analytical results of rock samples and chip samples are given in Table 5. Two select samples with high Pt and Pd were analysed at two different laboratories for all the PGM plus Re and Au, with the results shown in Table 6. Fair agreement is indicated, except for Re, and these values generally confirm the Pt and Pd levels reported earlier by the cheaper Pb-collection method of analysis. The dominance of Pd over Pt and the much lesser amounts of other PGM are of note.

Although deformation and low grade metamorphism have obscured evidence of a magmatic origin of the mineralization it is possible that the sulphides were introduced as an immiscible sulphide liquid component of an ultrabasic magma at the time of sill injection. The high Pd/Pt ratio may indicate preferential remobilization of PGM (see Appendix C) during metamorphism.

III. GEOCHEMISTRY

(a) Objectives

An orientation soil survey in the immediate area of the main showing was intended to test the usefulness of Cu and Ni analyses of soils in detecting mineralized amphibolite bands.

A soil survey was carried out over a wider area centred on the showing to locate any Cu and Ni anomalies.

(b) Methods

A grid was set out using topofil and compass for control. Five lines spaced at a slope-corrected 100 m apart were laid out from a base line through the showing. The base line connects the 300 m stations. Lines were run at 225° with a nominal 30 m sample interval. Three silts and 148 soils were collected over 3990 m of line. Samples were obtained by soil auger or spade, mostly of the B horizon. This horizon was light to dark brown and varied from gravelly to clayey. Stations were tagged with flagging and soils transferred to Kraft envelopes. Details noted at each site were recorded and are given in Table 8, along with the Cu and Ni analyses.

Bedrock in the area of the grid was identified in numerous outcrops as leucocratic gneiss with bands of amphibolite. Slopes are steep and the presence of large blocks in some areas suggests that downslope movement must have been considerable. This will affect the usefulness of soil surveys.

Methods of analysis for all results in this report are given in Table 7. Except where indicated by the notation "analyses by an outside laboratory" under each table of results, all analyses were done in Cominco's Vancouver Exploration Lab. The outside laboratory, used for Pd, Pt and some Au analyses, was X-Ray Assay Labs Ltd. of Toronto, except for 3 analyses of PGM by ICI Laboratories of England (Table 6). All analyses were by standard, well known methods.

(c) Results and Interpretations

Results of the orientation soil survey are shown on Plate 4 and Table 8 (Lines C+15m and C-30m). Above the showing only one weak anomaly is present. Below the showing all samples from 290 to 305 m show coincident high Cu and Ni values. It appears that soil geochemistry is useful, although anmalies may be subtle. Some of the high values on line C-30 may be due to development work on the showing above.

Results of the main grid survey are shown in Plate 1 and Table 8 (Lines A,B,C, D,E). Values are also shown in histogram form for Cu in Figure 3 and for Ni in Figure 4. Threshold values are estimated to be about 12 ppm Ni and 20 ppm Cu by inspection of these figures. On Plate 1 there are 16 stations above this level for Cu and 9 for Ni. Five stations show coincident above-threshold Cu and Ni values: B 270m, C Om, C 120m, D Om and E 270m. All of these are subtle anomalies, far below the values downslope from the known showing, and knowledge of their significance will require prospecting, fill-in soil sampling and geophysical surveying. The concentration of the "anomalies" in the NE end of the grid and the similarity of values to those above the known showing are encouraging.

IV. CONCLUSIONS

- <u>Geology</u> Those parts of the property examined consist of Sicker Group rocks intruded by a swarm of sub-parallel ?Karmutsen basic and ?rare ultrabasic sills. These rocks have been metamorphosed to leucocratic gneiss and amphibolite respectively.
- Prospecting Away from the main Cu-Ni-PGM showing some heavily pyritic zones were found during prospecting in the gneiss, but these appear barren. One amphibolite band showed weak Cu mineralization.
- 3. <u>Main Showing</u> On the showing trenching and chip sampling over 11.1m in 4 trenches gave values up to 1.5% Ni, 4.2% Cu, 1.4 ppm Pt and 4 ppm Pd in sulphide-rich amphibolite. Selected character samples gave considerably

5.

higher values. A palladium antimono-telluride has been identified but the Pt carrier is not yet known. It is speculated that mineralization may be due to injection of ultramafic magma containing immiscible Fe-Cu-Ni sulphide liquid during an early phase of the sill swarm formation.

- Orientation Geochemistry Soil geochemistry over the showing gives strong Cu and Ni responses below the showing (partly man-made?) and a weak response above.
- Soil Geochemistry Soil geochemistry on 5 lines with 100 m line spacing and 30 m stations (3.9 km, 151 samples) showed 5 weak Cu and Ni anomalies, mostly in the NE end of the grid.
- 6. <u>Further Work</u> Considerable prospecting, soil, silt and heavy mineral geochemistry, and geophysical surveying remain to be done to locate extensions of the mineralized sill or similar parallel sills.

Reported by:

P.C. LeCouteur Project Geologist

Endorsed for Release by:

N. J. Mloe

W.J. Wolfe Manager, Exploration -Western Canada

PCL/cgs

Distribution

Mining Recorder Western District PCL

6.

210-0610

8.

Table ³. Analyses of various rocks

LAB NO	FIELD	NUMBER	NI PPN	.Cu PPN .	Pt PPB	Рв РРВ	AU PPB	NT AU GRAM	As PPN	Рв Рри	Zn ppn
R8515738	****	LR 543	1	2	(10	(2	(4	20			36
R8515739	*	LR.544		63	(15	(3	(8)	20			_32
R8515740	*	LR. 548	30	6	(10	2	(3	20			24
R8515741		LR 552	.1 .	16	<10	(2	(4	20		•	.14
R8515742	. *	LR 559	28	. 1	(10	4	(2	20			27
R8515743	*	LR 561	20	.58		.3	K 8	.20			
R8515744		LR 563	1	2	(10	(2	(7	20			16
R8517359		LB610					<10		.4.4		
R8517360		LR611					(10		(
R8517361		LR612					.(10	5	(.4		
R8517362		LR613					(10	5	.4	(4	12
R8517363		LR614					<u>(10</u>	.5		- (4	_ 18
R8517364		LR615					(10	5	(4 .	. (4	21
R8517365		L8616					. (10	. 5 -	3.4	34	_23
R8517366		LR617			•		(10	5	. (4	. (4	20
R8517369		LR621					(10	5	3.4	. (4	. 20
R8517370	*	LR622	46	5330			. 44	5	1.8		
R8517372		LR628	.(1	.37			90	5	{.4		
R8517373		LR629.	1)	31			20	5	(.4		
R8517374		LR630					(10	. 5	4		•
R8517375		LR631					(10	5	Č.4.		
R8517376		LR633	.7				{10	5	5.4	{	
R8517377		LR634	. 7	45			(10	. 5	. ((4	65
R8517379		TR151	2	9			(10		4		
R8517380		TR152	3	90			(10	5	6.4	÷ •	
88517381		TR154	- 71	28							

TEINSUFFICIENT SAMPLE X=SMALL SAMPLE E=EXCEEDS CALIBRATION C=BEING CHECKED R=REVISED IF REQUESTED ANALYSES ARE NOT SHOWN PRESULTS ARE TO FOLLOW

ANALYTICAL METHODS

NI ADUA REGIA BECOMPOSITION / AAS

____CU AQUA REGIA BECONPOSITION / AAS

PT ANALYSIS BY AN OUTSIDE LABORATORY ____

PD ANALYSIS BY AN OUTSIDE LABORATORY

AU ADUA BEGIA BECOMPOSITION / SOLVENT EXTRACTION / AAS

NT AU THE HEIGHT OF SAMPLE TAKEN TO ANALYSE FOR GOLD (GEOCHEM)

AS ADUA REGIA BECOMPOSITION / AAS

* amphibolite rest are gneisses

Table 4. Major-element analyses of amphibolites and gneisses

	*****			*******	******									
LAB NO	FIELD NUMBER .	S102	TrO2	AL 203 X	Fe203 %	Fe0 . Z	HNŪ Z	NG() X	CAQ X	NA20 Z	K20 Z	P205 X	LOI X	TOTAL. 2
	,	********	*******				******							
R8516084	LR 530	.73.69	0.26	13.36	1.98			1.07	3.18	.3.46	0.98		1.90	.99.88
R8516085	LR 537*	40.40	0.54	11.95	13.40			19.78	7.36	1.23	0.09		4.62	99.37
R8515737	LR 534 *	49.66	0.39	.21.40	3.53		•	1.98	10.34	4.98	1.61		5.24	99.13
R8515739	LR. 544 *	48.71	1.12	18.08	11.07			8,10	9.41	3.18	0.46		0.30	100.43
R8515741	LR. 552	.77.03	0.25	12.53	2.64			.0.10	1.14	6.63	0.08		0.42	100.82
R8515742	LR 559*	49,59	0.66	15,16	10.57			9.62	9.24	3.28	0.72		1.54	100.38
R8515744	LR::563	75.87	0.20	13.21	1.98			0.24	1.63	.5.14	.1.40		.0.45	100.12
R8515746	LR 569*	46.87	0.85	16.65	10.43			9.50	9.63	2.87	0.88		2.51	100.19
R8516998	LR589 🕈	42.78	. 55	11.15	.9.64	•		20.99	6.98	61	_07		5.91	98. 68

10

I=INSUFFICIENT SAMPLE X=SMALL SAMPLE E=EXCEEDS CALIBRATION C=BEING CHECKED R=BEVISED

ANALYTICAL METHODS

.LOI BETERNINES GRAVINETRICALLY OTHER ELEMENTS BY LI BORATE FUSION/XRF. WHERE NO FED VALUE SHOWN 'FE203' IS TOTAL FE AS FE203

* amphibolite

, .	TREN	CH DIME	NSIONS
TR	LENGTH	WIDTH	DEPTH
#1	3.0	.76	.61
#2	2.74	.61	.76
#3	3.8	.61	.76
· #4	1.78	.61	.61
direct	ion of t	renche	¤ 040

1	ΚEY	
-		 -

LR610

GG

TRENCH #4

GG

1

0.38m

LR626

1. P. XIA PHIN

R8517021

network sulphide (cpy, po, pent)

ł

1.78m

LAB NO	FIELD MUMBER	. Hr	Nz	Ľu	· Cu	Pr	Pa
		PPR	X	. PPN	Z	PP 8	***
R8516999	LR590	E49800	4.60	1860	.20	980	5700
98517000	LRS91	E46700	5.00	5230	52	2700	10000
R8512001	. LR592	E16100	1.60	. 9100	.93	1200	5400
P8517002	_TR12 LR595	B400					B10
28517003	TR#2. LR596	E142000	14.80	2050	.23	3600	E10000
R8517004	TR12 L8597	E64000	4.20	E109000	11.20	. 5000	E10000
RE517005		. E47500	4.20	E41700	4.10	3600	E10000
28517006						. 20	کم `
R8517008	TR#3 LR603	1370	14	E214000	23.10	5300	E10000
P8517009	TRES LR604	£70000		E15900	1.50	_3600	E10000
R8517010	TR#3 LR605	E49600	4.80	E14300	1.48	1600	· 3700
R8517011	TR#3 LR607	348	.•	407		20	11
R8517012	TRUS LRAOS	E10400	1.03	2060	.21	570	1600
R8517014	TR#4 LR610	9500		£32200	3.10	_950	3600
R8517015	TR#1 0-2.74H	760		104		(10	14
R8517016	_ TR02 0-1.52M	E15000	1.50	. 9710			_3200
8517017	TR02 1.52-2.74H	2750		944		590	2500
28517018	TR03 0-1.52H	_E11500	. 1.14	E42900	4.20	1400	4000
28517019	TR#3 1.52-2.13H	E10200	1.03	E21600	2.20	. 960	2600
08517020	TR43 2.13-3.65H	1810		2050			.260
R8517021	TR44 0.38-1.78H	E32000	3.10	E19500	2.09		6100
28517383	_TR43 LR625		. 1.41		9.23	1400	
8517384	TR44: 18626		2.59		5.90	2000	8200

٠	4	•		
TR	+ 6	1	2	
	~)		

n by: Traced by:						· · · ·										
Revised by	Date	Revised by	Date	-												
			+	7	GEOI	LOGY	AND	SAMPLI	NG	OF	TRENCH	ES				
	ļ			_												
		-	<u></u>													
				Scale:	ās no	oted		Date:	15 T)ec	1985	Plate:	٦			

12.

Table 5. Analyses of rocks from the main showing

LAD NO	FIELD NUMBER	NI	Nr X	Cu PPM	Cu X	Pr PPS	Р э ррв	AU PPB
	I R590	FAQRAA	ـــــــــــــــــــــــــــــــــــــ	1840	 20	980	5700	 170
88517000	18591	F46700	5.00	5230	.52	2700	10000	240
R8517001	* LR592	E16100	1.60	9100	.93	1200	5400	170
R8517002	TR#2 LR595	8400	2.07	3590		260	810	87
R8517003	TR#2 LR596	E142000	14.80	2050	.23	3600	E10000	160
R8517004	TR#2 LR597	E64000	6.20	E109000	11.20	5000	E10000	. 700
R8517005	TR#2 LR598	E47500	4.20	E41700	4.10	3600	E10000	. 370
R8517006	TR#2 LR599	374		207		20	.65	18
R8517008.	TR#3 LR603	1370	14	E214000	23.10	5300	E10000	770
RB517009	TR#3 LR604	E70000	6.80	£15900	1.50	3600	E10000	400
R8517010	TR#3 LR605	E49600	4.80	E14300	1.48	1600	3700	530
R8517011	TR#3 LR607	348		407		20	33	63
R8517012	TR#3 LR608	E10400	1.03	2060	.21	570	1600	43
R8517014	TR#4 LR610	.9500		E32200	3.10	950	3600	170
R8517015	TR#1 0-2.74H	760		104		(10	- 14	3
R8517016	TR#2 0-1.52N	E15000	1.50	9710	.90	.640	3200	. 200
R8517017	TR#2 1.52-2.74N	2750				590	2500	38
P8517018	TR#3 0-1.52H	E11500	1.14	E42900	4.20	1400	4000	370
R8517019	TR#3 1.52-2.13H.	E10200	1.03	E21600	2.20	960		330
R8517020	TR43 2.13-3.65H	1810		2050		.60	.260	52
R8517021	TR44 0.38-1.78M	E32000	3.10	E19500	2.08	. 1600	6100	190
RB517383	TR#3 LR625		0.41		9.23	1400	5100	420
R8517384	TR#4. LR626		2.59		5.90	2000	8200	. 470

IFINSUFFICIENT SAMPLE X=SMALL SAMPLE E=EXCEEDS CALIBRATION C=BEING CHECKED R=REVISED

ANALYTICAL METHODS

- NE AQUA REGIA BECOMPOSITION / AAS
- CU AQUA REGIA DECOMPOSITION / AAS
- PT ANALYSIS BY AN OUTSIDE LABORATORY.
- PB ANALYSIS BY AN OUTSIDE LABORATORY
- AU ADUA_REGIA_BECOMPOSITION / SOLVENT EXTRACTION / AAS
- HT AU. THE WEIGHT OF SAMPLE TAKEN TO ANALYSE FOR GOLD (GEOCKER) AG AQUA REGIA BECOMPOSITION / AAS

* TR# 2 means sample is from trench 2

note:samples R8517015-17021 are chip samples from indicated lengths of trenches

Flement	Sample	BcNi6	Sample	BNi9	Standar	rd PTC-1 (c)
ррЬ	ICI ^(a)	XRAL ^(b)	ICI	XRAL	ICI	XRAL	STD VALUE
Pt	3700	3300	1700	1300	2500	2000	3000
Au	426	470	450	560	478	430	650
Ir	102	140	60	120	114	190	
0s	316	310	205	240	340	310	
Ru	240	430	240	65	400	440	
Rh	328	300	210	190	547	640	620
Pd	16200	14500	19300	18400	16000	10900	12700
Re	3400	140	1000	35	2800	90	·

TABLE 6 - Values for all Platinum Group Elements in Two Samples

For Sample Locations See Plate 2.

- (a) ICI Ltd., Billingham Cleveland, England
- (b) X Ray Assay Labs Ltd., Toronto
- (c) CANMET Sulphide Standard

TABLE 7 - Methods of Geochemical Analysis Used

Elements (in rocks except where noted	Mesh	Reagent and Conc.	Analysis Method
Cu Ni (in Soils)	-80	20% HNO ₃	AA
Ag Pb Zn Cu Ni	200	Aqua Regia	AA
Au	200	Aqua Regia/Solvent Extraction	AA
Pt + Pd + Au	200	Lead Collection	AA
PGM + Re + Au	200	NiS Collection	NAA
CU Ni (assay)	200	Aqua Regia	Colorimetric
Major Elements	200	Li borate fusion	XRF

15.

.

Table 8. Soil geochemistry results

..

EXP LAB	FIEL	D									į	DEPT	I.NTDTH	.FLOW.			Cu	NI
NUMBER	. NO	. NAP	ZONE	EAST	NORTH		MAT'L DRIG	SITE	COLOUR	SIZE	ORG	NETcn	SLOPE	HORIZ	PPT	PH	PPN	. PPN
58511056	23290			A	+300	6	SOIL RESID		DK -BROWN	SANBY -SILT	NED	N'st. 30	STEEP	B		•	14	.3
S8511057	23291			A.	+330	. 6	Soll Resid		Neb-brown	SANDY -SILT	. Heb	Het 40	STEEP	B		\$.	7	1.
\$8511058	23292			A	+360	6	SOIL RESID		BK TBROWN	GRAVLY-SILT	MER	HET	STEEP	. B		-4	12	.5
S8511059	23293			A.	+390	6	Soll Resla	•	Ner-brown	SANDY	Lou	NET 30	STEEP	D		•	7	1
S8511060	23294			A	+420		SOIL RESID		MEB-BBOWN	SILTY -CLAY	Low	HET 45	Steep	.8			.15	. 10
S8511061	23295			A.	+480	.6	Soll Resid		DK -BROWN	SANDY -SILT	Ked	NET 30	STEEP	B		•	7	2
S8511062	23296			ι A	+510	.6.	SOIL RESID		DK -BROWN	SANDY -SILT	Low	NET	STEEP	B			12	1
S8511063	23297			A.	+540	6	SOIL RESID	· .	Ned-brown	SANDY -SILT	Nea	NET 35	STEEP	. B		•	11	(1
S8511064	23298			A	+560		SOIL RESID		MEB-BROWN	SANBY -SELT.	Low	H'ST .30	STEEP	B			4	(1
S8511065	23299			A.	+570	6	SDIL RESID		Nen-brown	SANDY -SILT	LOW	H'ST 30	STEEP	B		٠	11	2
S8511066	23300			. A	+630	6	SOIL RESID		MED-BROWN	SAND	Low	H'st30	STEEP	B		•	4	(1
S8511067	23301			A.	+690	6	SOIL RESIR		DK -BROWN	SILT	Kea	HET 30	STEEP	B		•	11	5
S8511068	23302			A	+720	6	SOIL RESID		NED-BROWN	SANDY -SILT	MED	Day	STEEP	B			11	1
S8511069	23303			A	+750	6	SOIL RESID		MED-BROWN	SANDY -SILT	HED	HET 30	STEEP	B		•	5	11
S8511070	23304			A	+780	6	SOIL RESID		MED-BROWN	SANBY -SILT	Low	Day. 40	STEEP	B		•	7	. 1
SB511071	23305			Â.	+840	6	SOIL RESIN		NED-BROWN	SANDY -SILT	Low	N'st 35	STEEP	B		٠	19	4
S8511072	23306			A	+870	. ک	SOIL RESID		MEB-BROWN	SANBY -SILT.	Lov	NET . 40	STEEP	B			11	·
\$8511073	23307			Â.	+900	6	SOIL RESID		BKBROWN	SANDY -SILT	MEN	NET 30	HER	B		•	26	. ⊢ 4 .
S8511074	23308			A	+930	6	SOLL RESID		BROWN	SANBY -SILT	Low	HET 30	MED	. B			6	.3
S8511075	23309			Â.	+960	6	SDIL RESIN		BK -GREV	SANDY -CLAY	HED	M'ST 65	STEEP	C		•	3	2
S8511076	23310			A	+990	6	SOIL RESID		NEB-BROWN	SANBY -SILT	Lov	HET . 40	STEEP	B .		•]	2
S8511077	23311			Â	+1020	6	SOIL RESID		MED-BROWN	SANBY	Low	N'ST 30	NED	B			10	4.
S8511078	23312			B	+30	2	Sore Resta		BK ~BROWN	SILT	HIGH	M'ST 40	STEEP	A				.3
58511079	23313			B	+60	2	Sori Collu		NED-RROWN	SAND	HER	30	STEEP	B		•	6	7
58511080	27714			R	+90	5	SATI CALLU		MER-RROWN	GRAVI V-SAND	Low	10	STEEP				17	4
CR511001	27715			n one N	+170	2	Son Course		T -PROUM	REAU V-CANE	1 mu	20	STEEP	B			18	4
C0511001	23313			. 5	150	່ ງ	CATI PALLA	•	Dr -sanun	REAU V-CANE	MIEN	15	STEER	Ā			7	2
C0211V02	17717			ע. פ	190 191		COTI DECTA	•	By seven	CANNY -CTIT		50	STEE	4		••	18	
50211407	2331/	• •		р Б	100 100	2	GOLL RESIA		NEL-DROWN	CRAM V-CAMP	. плон Мен		STEEP	л Я		•	20	
50211102	17710			Q. 9	1710	ב בי ירי			Mes-ssouth	COALLI-SAND	1458	ι	Green	 `^		-4	4V 70	
50211V01 30311A03	7991A			0 2	T24V 1976	- 4 -	GUIL INLUS	••••	MER-COOL	CAANA	N	12	Green	с 0		٠	20 75	10
-05111000	23320			. <u>D</u>	72/0	-4-1 - 1	DUIL LOLLU		NET-BROWN	URAYLY-SAND	. rita Mar	لاس. ۱۸	Cares	₽ 		4	ردر. ا	4 01''
20211AQ1	23321			, D	·7JJV	.4	ODIL. COLLU		HEB-BBOWN	UBAVL V-SAND	TER	29	JIEEP Cause	н. Б		٠	9) 17	L E
20211028	-23522			B	1.100	- - 4.2	SOIL LOLLU		RED-BROWN	SAND	LON	∪د. ⊢	STEEP	.D			- 41	<u>ت</u> .

16.

EXP LAB	FIELD						*****			DEPTH	HTDTH	FLON			Cu .	Nr
NUMBER	NO	MAP.ZONE	EAST	NORTH	A MAT'L DRIG	SITE	COLOUR	SIZE	ORG	NET CH	SLOPE	HORIZ	PPT	PH	PPM	. PPN
S8511089.			B	+390	2 SILT ALLUV	ACTIVE	DK -BROWN	SANDY -SILT	HI6H	HET	STEEP	SLON		•	19	4.
S8511090			B	+420	2 SOIL RESID		DKBROWN	SAND	HIGH	. 25	STEEP	B			3	1
S8511091			. 8	+450	. 2 SOIL COLLU		Ned-brown	SAND	MED	.30	STEEP	A			10	2
S8511092			B	+480	2 SOIL COLLU		NED-BROWN	GRAVLY-SAND	HIGH.	. 20	•	B			13	(1
S8511093			B	+510	2 SOIL COLLU	· · · · · ·	LT -GREY	GRAVLY-SAND	Low	20	STEEP	. B		•	5	1
S8511094		•	B	+540	2 SOIL COLLU	1	NED-BROWN	GRAVLY-SAND	Mea	45	STEEP	B		٠	6	1
S8511095			B	+570	2 SOIL COLLU		LT -BROWN	SANDY -SILT.	Med		STEEP	B			.4	.(1
\$8511096			B	+600	2 SOIL COLLU		Nen-brown	GRAVLY-SAND	Kea	30	STEEP	B			4	(1)
S8511097			B	+630	2 SOIL RESID		LT -BROWN	SILT	MEN	25	STEEP	B			.6	.2
S8511098			B	+660	2. SOIL RESID		Ned-brown	SANRY -SELT	HED	. 25	STEEP	B		•	17	5
S8511099			. B	+670	.2 SILT ALLUV	ACTIVE	Вк -вясин	SILT	HIGH	HET _25	STEEP	SLOW		•	22	.7
S8511100			B	+690	2 Sort Collu		NER-BROWN	SAND	Low	20	STEEP	B		•	18	8
S8511101				+720	2 Soil Collu		Med-brown	SAND	Low	. 25	STEEP	_ B			16	1
\$8511102			B	+750	2 SOIL RESID		DK -BLACK	SANRYSILT	HIGH.	HET 35	STEEP	A.		•	17	4
S8511103			. B	+780	2 Soil Collu	·	LT -SBEY	GRAVLY-SAND	Low	20	STEEP	. B		•	. 4	.3
S8511104			B	+810	2 SOIL COLLU		DK -BROWN	GRAVLY-SAND	Nea	. 15	STEEP	B		•	16	1
\$8511105			B	+840	2 SOIL COLLU		Med-brown	SANBY -SILT	MED	.15	STEEP	B		•	. 12	2
\$8511106		•	D	+870	2 SOIL COLLU		LT -BROWN	GRAVLY-SAND	Ned	25	STEEP	B		•	10	1
S8511107				+900	2 SOIL RESID		LT "GREY	SILTY "CLAY	MEN	40	STEEP	C			2	(1
S8511108			C	+0	1 SOIL RESID		Nen-brown	GRAVLX-CLAY	Nen	N'st 10	Steep	B		٠	23	14.
SB511109			1	. ±30 .	1_SOIL RESID	· · . 	NEB-BROWN	SANDY -CLAY	Men	H'st 10	STEEP	B		· •	16	.6
S8511110			· C	+60.	1 SOIL RESIB		Mes-brown	SANDY -CLAY	Her	N'st 30	STEEP	B		•	16	. 13
S8511111			J	+90	1 Soil Resid		DK -BROWN	SANDY TELAY	Neb	N'st 30	STEEP	. B		•	4	(1
\$8511112			C	+120	1 SOIL RESID		DK -BROWN	GRAVLY-CLAY	NED .	11/st 25	STEEP	B		•	33	15
S8511113			3	+150	1 Soil Resid		LT -SBEY	GRAVLY-CLAY	Mea	N'st .30	STEEP	. B		•	. 12	2
S8511114			C	+180	1 SOIL RESID	. .	Nea-brown	SANBY -CLAY.	Med	H'st 40	STEEP	B		٠	13	2
S8511115			3	+210	.1. SOIL RESID		LT -BROWN	SANBY	MEB	H'st	STEEP	. B			6	
S8511116			C	+240	1 SOIL RESID	-	NER-BROWN.	SANDY. TELAY.	HED	N'st 30	STEEP	B			12	4
S8511117			1 .	+270	1 Soil Resib		MEB-BROWN	GRAVLY-CLAY	MEN	N'.st .35	STEEP	B		•	. 13	10
S8511118			0	+300	. 1 SOIL RESID		NEB-BROWN	SANR	Ner	H'st 30	STEEP	B		•	10	1
S8511119			3	+310	1 SOIL RESID		MED-BBOWN		Men	N'st 40	STEEP	B			20	.9
SB511120			C	+315	1 SOIL RESID		LT -BROWN	GRAVEN-SAND.	Mea	H'st 25	STEEP	B		•	14	· 4
S8511121			1	+320	2 SOIL RESID		MED-BROWN	SAND	Lov	. 25	STEEP	.8			14	18
\$8511122			C	+325	1 SOIL RESID		Nes-brown	SANDY -CLAY	Ned	N'st 20	STEEP	B		٠	10	2
S8511123			1 .	+330	1 SOIL RESID	. •.	LT -BROWN	SANBY TELAY	Men	N'st 15	STEEP	B		•	.27	2
SB511124 -			3 .	. +360	1 SOIL RESID		Mea-grev	SANBYCLAY.	Mea	N'st 15	STEEP	B		٠	6	1

÷.

~	

	•	

EXP LAD NUMBER	FIELD NO MAP ZONE	EAST	NORTH	# MAT'L :		SITE	COLOUR	SIZE	.086	DEPTH NET cm	I WIDTH Slope	FLON Horiz	PPT	PH	Cu PPN	NI PPN
		 P			*****			C			 C	 D				 7
-26211122		t. C	1470	1.301L R	ESID		Man-sary	SANBY TELAY	NEB	N/.51 .10	STEEP	D D		-4	 0	
58211120	•	با م	. 1429	1 301L R	ESIA		MER-BREV	JANSY TELAY	- NE.D	UNIST ZV.	STEEP C	р. р		•	4 1	- \1
5851112/		یل. م	1.500	.1.50IL K	ESIB.		. NED-BROWN	JANBY "CLAY	REB	N'ST-2V	STEEP	.B ∧		٠	4	21
58511128		L O	154A	I SOIL K	ESID		NK -BROWN	SANRY "CLAY	HIGH	UNIST 10.	STEEP	- A . D		•	ა ი	2
-56511129		نا م	1210	L SOIL K	ESID		REB-BROWN	JANNY .T.CLAY.	REB	N'ST LV	STEEP	.Ŭ		-•	15 0	4
58311130	•		+340	. 1 SOIL K	ESIN		UK TGREV	C	HIGH	NET 13	STEEP	8		٠	D	2
58511131		يا م	13/0	1 SOIL K	ESID -	· ·	LT BROWN	SANDY CLAY	RED	N'ST LQ	STEEP				0 E	
50511132 COE11177		L C	+ 470	I JOIL R	ESIA		LT -BROWN	DANRY TELAY	. NED	NIST JV	STEEP	р р		٠	3	1) 1/
20211122			7.030	.1.30IL N	ESIB -		LT "BROWN	CANEY	AED	N'.ST39	STEEP	_ 15 		٠	<u>צ</u> . ד	. 20
20311134 COE11175		د د	1400	1 Guil. K	2518 . 		Man-onous	SANAY. TLLAY.	HIGH M	Nten 25	STEEP Commo	• N . D		•	1	. 7.
20211122		مات ح	1079 1770	1 Cover Dr	ESID		Du	JANSY TCLAY		IT'STZJ 10	STEEP	D A		•	17	ב. רר
- 30J11130- CO511177		с С	1750	I GOTL R	518	• •	MED-DI ACM	Chain w_PLAN	MES	Wer 20	STEEP	n D		•	10	<u></u>
2031113/		ե. Դ	1700	1 Cost D	2519 2019	-	THE -FARM	CANNY		N/c+ 75	GTEEP	а 2		4	1	_0_ /1
20511130		ւ Ր	1010	I GOTL N	2218		Men-annuk	SANAY -LLAY	.HLGN Men	Wey AG	GTEEF	a a		٠	1 4	1
205111137		بر ۲۵۳–۲۵	1010	1 Cov D	5210 5210	• •	MEN-DROOM	JPNDI TLLOI	- Mara	Mar 75	Green			- 4	л. 100	107
20511144		C-30	1005	1 Core Di	C318 C318		Исанайонн	CANB	ne a Nea		Green	а а		•	271. 444	212
C0511141	••		+27J ⊥7∩∩	1 Covi Di	2319		NER-BRUNN	SANNY -FLAY	Men Men	N/av 25	STEED	R G			.333	118
S0511147	,	C-70	1300	1 Cort P	CDLA · Petb		Dy -second	JANBY, LLPP.	· 115.8	20	STEEP	Δ		•	18	75
CQ511144		r-10	+310	1 Cori Pi	C310 CC78			SANNY -FLAY	Men	Mier 30	STEED	R		-4	7	
C0511145		C-70	1715	1 Cori Pi	CDLN Peth		T -COEV	CANR	Men	15	Green	R		8-	2	,
GQ511144	··· •	ΛΣ-30	+770	1 Con Di	5318 ·	••• •	T DAET		l DN		STEEP	R		4		
SR511147		r-10	+725	1 Soll N	531 8 . 2218		Исанарони	SANDY -FIAV	Mca	Wer 15	STEER	R		•	22	י ב. ד
58511148		ΩΣ-30 Γ-30	+770	1 Sont Di	531 8 2671	••	NCS-SSOUR	CANB	Hen	20	STEEP	R			- K	· ••
S8511149		C+15	+300	1 Sori Ri	FETR		MER-RROWN	RRAVI Y-SAND	Mea	30	STEEP	B		•	39	14
S8511150		C+15	+305	1 Sori R	FSTR		MER-RRAUN	GRAVI V-SAND	KER	20	STEEP	B			11	11
S8511151		C+15	+310	1 Soti Ri	FSTA		MEB-BROWN	SANBY -CLAY	MER	N'ST 20	STEEP	B			5	2
S8511152		C+15	+315	1 Soul R	FSTN		NEB-BROWN	SANDY -CLAY	NED	N'ST 60	STEEP	B			4	ā
S8511153		C+15	+320	1 Sori Ri	FSTB		MER-RROWN	GRAVEY-SAND	MED		STEEP	B			.6	1
S8511154		C+15	+325	1 Sori Ri	FSTR		MER-RROWN	SANBY -CLAY	NED	N'ST 20	STEEP	B			8	3
\$8511155	•	C+15	+330	1 Sori Ri	FSTN	,	MER-RROWN	SANNY -CLAY	MER	NET 30	STEEP	B			16	5
S8511154			+0	3 Sori Ri	FGIB		AK -RROWN	SANDY -CLAY	HED	N'ST 20	STEEP	B			60	12
S8511157		ก	+30	3 Sori Ri	FGTB		MED-REAL	GRAVLY-STLT	MEB	N'ST 20	STEEP	B		-	15	16
S8511158		n	460	3 Soti Ri	FGTB		MCB-RROUN	GRAVI V-STI T	MER	H'ST 20	STEEP	B		-	11 .	. 11
S8511159	•	P	490	3 Sori Pi	- JA#			GRAVLY-STLT	Men	N'ST 20	STEEP	B			10	4
S8511160		D	+120	3 Sort R	ESTI	•	HED-BROWN	SILTY	NED	N'ST 40	STEEP	B			18	9
********	•	-		w wyah N			1468 WINDER					-		•	••	-

18.

EXP LAB NUMBER	FIELI NO	MAP	ZONE	EAST	NORTH		MAT'L DRIG	SITE	COLOUR	SIZE	ORG	DEPTH NET_CM	SLOPE	FLON Horiz	PPT	PH	Cu. PPN	N1 PPM
S8511161				B	+150	3	SOIL RESID		NEB-BROWN	SANBY TELAY.	Mes	N'st30	STEEP	B			10	4
\$8511162				D	+180	3	SOIL RESID		Ned-brown	GRAVEY-SILT	Ned	N/st 15	STEEP	B			36	. 9
S8511163					+210	.3	SOIL RESID		Neb-brown	GRAVLY-CLAY	Mea	H'st 20	STEEP	B		•	8	.3
S8511164				. D	+240	3	SOIL RESID	••• •	DKBROWN	GRAVLY-CLAY.	Ned	H'st 20	STEEP	B			32	3
S8511165				D	+270	3	SOIL RESID		Dx -saown	GRAVLY-CLAY	MED	N'ST	STEEP	B		•	13	5
S8511166				D	+300	. 3	SOIL RESIB		NED-BROWN	SANRY	MER	N2'st 20	STEEP	B			11	1
S8511167				D	+.330		SOIL RESIN		MEB-BROWN	GRAVLY-SILT	MER	N'st .30	. STEEP	B			15	.1
S8511168				. D	+360	3	SOIL RESID		DK -BROWN	SILTY CLAY	HIGH	HET 30	STEEP	B		٠	23	2
S8511169				B	+390	3	SOIL RESID		MEB-BROWN	BRAVLY-CLAY	Med	N'ST 40	STEEP	B			19	.3
S8511170				D	+420	.3	SOIL RESID		NED-BROWN	GBAYLY-SILT	Ned	HET 40	STEEP	B		•	6	1
S8511171				D	+450	3	SOIL RESID		MED-BROWN	GRAVLY-SILT	MED	Day 20	STEEP	B			3	1
\$8511172				D	+480	3	SDIL RESID		DKBROWN.	SANDY -CLAY	MED	M/st 20	STEEP	B			6	1
S8511173				B	+510	_3	SOIL RESID		NED-BROWN	SANBY -SILT	HIGH	NET 30	STEEP	B			5	1
S8511174				D	+540	3	SOIL RESID		LT -GREY	SANDY -SILT	NER	N'ST 40	STEEP	B			2	(1
S8511175				B	+570	3	SOIL RESID		DK -BROWN	SANBY -SELT	HEGH	N'ST .30	STEEP	B			5	1
S8511176				D	+600	3	SOLL RESID		LT -GREY	SANDY -SILT	HED	M'st 30	STEEP	Ĉ			2	1
S8511177	,			.D	+630	.3	SOIL RESID		MED-GREY	SANDY TELAY	MED	NET 40	Nea	B		•	. 3	1
\$8511178				D	+660	3	SILT RESID		LT -5REY	SANBY -CLAY	MED	M'ST 30	Men	B			3	. 7
S8511179				. B	+690	3	SILT RESID		MED-BROWN	SANDY TELAY	MED	N'ST 40	NEB	B				.1
S8511180				. D	+720	3	SOIL RESID		LT -GREY	SANDY -CLAY	MER	N'ST 30	STEEP	B			1	. (1
S85111B1				Đ	+750	3	SOIL RESID	_	MED-BROWN	SAND	Low	N'ST 15	STEEP	B			9	. 2
\$8511182				D	+780	3	SOTL RESTR		MEB-BROWN	SANBY -CLAY	Men	HET 40	MED	B			4	ī
S8511183				Ē	+0	6	SOIL RESID		MER-BROWN	SANBY -SILT	MER	H'ST 50	STEEP	B			15	11
\$8511184				E	+60	6	SOTI RESID		MED-RROWN	SANDY -STLT	MED	HET 30	STEEP	B			2	1
\$8511185	•			F	+90	3	Sori Resta		RI ACH	STITY -CLAY	HIGH	N'ST 40	STEEP	Ā			2	2
\$8511186				F	+120	3	Sori RESTR		IT -RROWN	GRAVI V-FLAV	NER	M'st 10	STEEP	B			18	8
SR511187				. F.	+150	7	GOTE RESTA		T -SOUN	GRAVI V-CLAV	MER	N/ST 40	STEEP	Ŕ		•	4	· 1
S8511188				E	+180	رب. ۲	SOLL RESID		Dv -panum	GRAUIV-PLAV	Men	M/st 30	Men	R	-	•	10	Ā
SR511189				F	+210	7	Sori Pesta			GRAULV-CLAV	Men	N/ct AD	STEED	R		•	~	1
S851119A					+740	 7	Soti Peeth		MCD-DDOWN	CRAULY CLAY	Mes		STEED	R		-•	12	2
SR211101		·		с. С	+270	- J - Z	Con Deers			GRAM V-CLAV	Иса	Ner An	GYEER	R R		•	57	27
\$2511197					+300	د. ۲	Con Dects			CANNY -CLAT	Men	Her TA	Green	U		•	ريد. 15	
SR511197	· ·			. F	+776	4	Goti Deers	•	NCR-DRAVEN	GANNY - THE	Mes	Rev TA	STEEP	D D		٠	3 3 14	רי. ל
GR511104	•				4270	0. ۲	Gari Deer-		NED-DOOM	CANNOT TOLLI	100	Wey 75	GTEEN				10	ן. ד
CR511105				E E	1200	ن ۲	COTI Desta		Nes-coour	CANNY	Nes.	N/c+ 10	Green	D D		•	1	J 1
C0511101	`			<u>ب</u> ر ۲	1379 1171		Con Dese	*	Nas-reserves.	GANNET "SILT	1 1	M124 JE	Cynne	.D D		•	.0 11	с Г
20111110				E	~ *748	¢	aull. Kesib		IL B_BHOMN	JANNY. "SII.T -	r ne	D:21 23	JIEEP	D			66	J

19

EXP LAB NUMBER	FIELD No	NAP ZONE	EAST	NORTH		TE COLOUR	SIZE	ORG	DEPTH NETch	NTDTH Slope	FLON. Horiz	PPT	PH	Cu PPM	- NI PPN
 \$8511197		، ده ک که جو می کرد. بر ما خل ط	 F	+450		Исл-релин	 		 ^5	GTEER	FAST			 10	7
S8511198			F	+480	6 Sou Resu	BK -BROWN	SANDY -SILT	LON	N'ST 40	STEEP	B		•	11	1
SB511199	•		<u>.</u>	+510	6 SOIL RESID	NED-BROWN	SANBY -SILT	MED	HET. 35	STEEP	B			7	
S8511200			E	+560	6 SOIL RESID	NED-BROWN	SANRY -SILT	HER	HET 35	STEEP	B		•	8	2
S8511201		•.	£	+600	6 SOIL RESID	Men-GREY	SILT	Low	N'st 30	STEEP	B		•	2	1
58511202			E	+630	6 SOIL RESID	BROWN	SILTY -CLAY	HIGH	NET 30	STEEP	A			.8	. 1
S8511203	•		ΞΕ	+720	6 SOIL RESID		SANBY -SILT.	NED.	Day 15	STEEP	B			7	2
S8511204			E	+750	6 SOIL RESIN	BROWN	SANDY -SILT	Her	HET 35	STEEP	B		•	2	1
S8511205			. E	+780	.6 SOIL RESID	DK -BROWN	SANBY -SILT	Med	Ket	STEEP	B			3	31
S8511206			. E .	+810	6 SOIL RESID	NED-BROWN	SANDY -CLAY	Low	HET 30	STEEP	B		ə .	17.	11

I=INSUFFICIENT SAMPLE X=SMALL SAMPLE E=EXCEEDS CALIBRATION C=BEING CHECKED R=BEVISED

Ξ.:

ANALYTICAL METHODS

_ CU 20% HNO3 DECOMPOSITION / AAS

. . .

NI 20% HNO3 BECOMPOSITION / AAS

Figure 3. Cu in soils

ARITHMETIC HISTOGRAM FOR COPPER

SOIL GEOCHENISTRY BEER BAY

...

ELENENT	NO OF ANALYSES	RANGE OF	VALUES MIN UNITS	ARITH NEAN (HEAN+25TH DEV)	. SEO MEAN (HEAN+25TD DEV)
COPPER	151 .	444 TO		16.7 (9.2 (57)

21.

Figure 4. Ni in soils

ARITHMETIC HISTOGRAM FOR NICKEL

APPENDIX A

EXPENDITURES

Work was conducted on the two claim groups more or less simultaneously and a fair apportionment of costs has been made as detailed below. Work was done on the following dates: May 26-27, Oct. 1-4, Oct. 15-18, Oct. 21-25. SUPER NICKEL AND LORNE GROUP GROUP Wages P. LeCouteur (16 field, 6 office) @ \$233=\$5126 \$2,096 \$3,030 (16 field, 4 office) @ \$129=\$2580 1.570 I.J. Talbot 1.010 (9 field, 2 office) @ \$124=\$1364 S.B. Noakes 682 682 M.J. Gray (5 field) **0** \$129=\$645 322.50 322.50 Accomodation 11 man days (motel) @ \$30=\$330 165 165 Food 46 man days @ \$20=\$920 460 460 Transportation $\overline{12}$ trips (2 trucks) @ \$23 Ferry \$276 138 138 Gas (boat & truck, total) Boat and Motor Rental 1 week @ \$349 \$330 165 165 \$349 174.50 174.50 Truck Rental 21 days (2 trucks) @ \$30 \$630 315 315 Car Rental 3 days @ \$26 39 39 \$ 78 Boat Rental 9 days @ \$40 \$360 180 180 Analyses 9 rocks for whole rock analysis @ \$30.00=\$270 90 180 74.50 5 rocks for Pt+Pd+Au+Cu+Ni @ \$14.90=\$74.50 23 rocks for Pt+Pd+Au @ \$12.00=\$276 276 18 rocks for Au+Aq @ \$10.50=\$189 189 8 rocks for Cu+Ni @ \$ 5.90=\$47.20 47.20 @ \$ 5.90=\$47.20 8 rocks for Pb+Zn 47.20 @ \$ 3.65=\$551.15 151 rocks for Cu+Ni 354 197.15 2 rocks for total PGM @ \$80.00=\$160 160 17 rocks for Cu+Ni assav @ \$14.50=\$246.50 246.50 Incidental Maps, reproductions =\$200 100 100 Lumber, camp supplies, heating fuel =\$300 150 150 Explosives, day box rental =\$286.69 286.69 Topofil, flagging, bags etc. =\$ 44 22 22 77 =\$ 77 11 thin sections @ \$7 7 polished thin sections @ \$18 =\$126 126 TOTALS \$8,308.19 \$8,325.05 Trenching Costs Trenching costs on the Super 1 claims are included in the above figures for the Super Group. This work was done on Oct. 15-18 and details of

costs are given below:

Wages	\$1,304.22
Food	100.00
Accomodation	64.52
Transportation	370.51
Analyses	710.50
TOTAL	\$2,549.75

23.

APPENDIX B

STATEMENT OF AUTHOR'S QUALIFICATIONS

I, Peter C. LeCouteur of the District of North Vancouver in the Province of British Columbia, hereby certify:

- 1. THAT I am a Geologist residing at 4900 Skyline Drive, North Vancouver, British Columbia with a business address at 700-409 Granville Street, Vancouver, British Columbia.
- 2. THAT I graduated with a Ph.D. in Geology from the University of British Columbia in 1973.
- 3. THAT I have practised Geology with Cominco Ltd. from 1975 to the present.
- 4. THAT I am a Fellow of the Geological Association of Canada and a Professional Engineer (Geological, 1977) in the Association of Professional Engineers of British Columbia.

he louter Signed:

Peter C. LeCouteur, P.Eng., Project Geologist, Cominco Ltd.

18 Décémber 1985

APPENDIX C

REPORT ON THE MICROSCOPIC STUDY OF THE FE-CU-NI-(PGE) SULFIDES WITH THE ASSOCIATED ULTRAMAFIC ROCKS FROM TOFINO, VANCOUVER ISLAND, B.C.

Вy

Justinian R. Ikingura (in consultation with Dr. D.H. Watkinson) Geology Department, Carleton University 20/ March/ 1985 Report on the microscopic study of the Fe-Cu-Ni-(PGE) sulfides with the associated ultramafic rocks from Tofino, Vancouver Island, B.C.

Introduction

A total of twenty three polished thin sections have been petrographically examined using reflected and transmitted light. In addition, several thin sections have been microprobed to identify any peculiar sulfide mineral phases suspected to belong to the platinum-group minerals (PGM). Ten of the studied sections are rich in sulfides (15 % to 50 %); the rest either consist disseminated sulfides (< 1 % to 5 %) or have sulfides concentrated in thin laminae. The sulfide content in the rocks appears to vary with rock composition. With progressive change in rock composition from mafic to felsic, the sulfides vary in texture and concentration from massive sulfides through dispersed sulfides to disseminated sulfides in the silicate mineral matrix. Alternate layering of silicate and sulfide minerals in the rocks possibly suggests changes in the physio-chemical conditions during crystallization. Post-crystallization deuteric alteration, metamorphism and supergene alteration have modified considerably the sulfide mineralogy and the silicate mineral assemblage.

Sulfide mineralogy

The sulfide minerals and their relative abundance in the rocks are given in Table 1 below.

CONTENTS

Introduction 1
Sulfide mineralogy l
Iron-oxides 4
Platinum-group elements (PGE) and mineralogy 4
Silicate mineralogy 6
Rock types
Deuteric and metamorphic alteration
Supergene alteration8
Summary and conclusion
References 10
Appendix
Analyses of samples from Tofino Showing 10
Figure 1 : Plot of Pd vs Pt 11
Figure 2 : Plot of Pd, Pt vs Au 12
Figure 3 : Plot of Pd, Pt vs Cu, Ni 13
List of polished thin sections examined 14
Envelope with photographic plates 1 to 7

Page

Table 1:

Mineral	Very abundant	Abundant	Less abundant	Trace
Pyrite	x			
Chalcopyrite		x		
Violarite		•	x	
Millerite			x	
Pentlandite				x
Pyrrhotite				x
Siegenite ?	(CoNi) ₃ S ₄			x

Texture

<u>Pyrite</u> : Commonly constitutes about 75 % to 95 % of the total sulfides in the rocks. It occurs in coarse-grained subhedral crystals or in massive anhedral aggregates. Fine-grained disseminated pyrite occurs in disseminated-type sulfide ores. Rarely pyrite forms myrmekitic intergrowth with chalcopyrite. Whether most of the pyrite owes its origin from primary magmatic crystallization or from post-magmatic modification of pyrrhotite is hard to establish. Late mobilization of pyrite, however, is indicated by the formation of pyrite veins and shoots along cracks and cleavage traces in the mafic minerals (Plate 1).

<u>Chalcopyrite</u>: Commonly constitutes about 2 % to 5 % of the total sulfides. Thin sulfide laminae (1-2 mm) containing about 85 % to 99 % chalcopyrite are locally found in the felsic rocks. Chalcopyrite occurs in anhedral grains in association with

pyrite. Less commonly is intergrown with pyrite or encloses rounded tiny pyrite grains. Chalcopyrite often exhibits strongly grooved or pitted texture and contains a lot of gangue inclusions. Clear uniformly textured chalcopyrite is generally rare. Chalcopyrite-rich sulfides tend to be enriched in nickelbearing minerals.

<u>Violarite</u> : Is found as a secondary mineral from the alteration of pentlandite. Constitutes about 2 % to 3 % of the total sulfides with which it is associated. Only one thin section contained up to 15 % violarite (R8412601). Violarite commonly occurs along or between pyrite grain boundaries. The alteration with which violarite is associated has imparted to it a distinctive cracked texture (Plate 2).

<u>Millerite</u> : Millerite is the common primary nickel-bearing mineral in the sulfides. Constitutes about 2 % to 5 % of the total sulfides. A few thin sections contain 10 % to 15 % millerite (e.g. R8412581, R8412583). Millerite occurs in large crystals rarely intergrown with chalcopyrite or pyrite. Commonly contains subrounded inclusions of pyrrhotite or pyrite. Unlike pentlandite which is strongly altered, millerite appears to be unaffected by supergene alteration.

<u>Pentlandite</u> : Occurs in minor amounts (less than 1 %) in the ore. This is because most of the original pentlandite has been almost completely replaced by violarite. Pentlandite is either found between pyrite grains or in association with chalcopyrite.

Pyrrhotite : Pyrrhotite is found only in trace amounts. It occurs

mainly as subrounded inclusions in millerite. Rarely forms separate grains closely associated with chalcopyrite.

<u>Siegenite</u>? : One grain of this mineral was observed in one thin section (R848770). Microprobe EDS analysis indicated the mineral to be Ni-Co-Fe sulfide with Ni>Co>Fe. The mineral is isotropic and has been tentatively identified to be possibly siegenite.

Iron-oxides

Normal magnetite and chromium-bearing magnetite (Plate 3) are the primary iron-oxide minerals observed in thin sections. They generally constitute less than 0.5 % of the ore minerals (i.e oxides and sulfides). Both occurs in subrounded or subhedral grains with pitted texture. Secondary magnetite is found locally filling cracks and cleavage traces within the mafic minerals.

Platinum-group elements (PGE) and mineralogy

Chemical analytical data for two platinum-group elements (Pt, Pd) and four other trace elements (Au, Ni, Cu, Co) (courtesy of COMINCO) was available from 15 samples. These analytical data are given in Table 3 in the Appendix and plotted in Figures 1 to 3. The Pt content in the samples varies from 0.02 ppm to 4.30 ppm whereas the Pd content varies from 0.30 ppm to 15.40 ppm. The Pt/(Pd+Pt) ratio ranges from 0.03 to 0.35. The data indicate that the rocks are generally more enriched in Pd than Pt. Although the chemical data show considerable scatter, the variation of Pd in the rocks is positively correlated with Pt

(Figure 1). However, Pt. varies within a very narrow range (0.02-4.30 ppm) whereas Pd exhibits wide variation (0.02-15.40 ppm). Both Pt and Pd are poorly correlated with Au, although samples enriched in Pd appear also to be enriched in Au (Figure 2).

In order to assess the variation of PGE with respect to Ni and Cu content in the rocks, Pt and Pd were plotted against Ni and Cu. The results are shown in Figure 3. Rocks enriched in Ni or Cu are generally also enriched in Pd. Platinum exhibits nearly flat distribution pattern with respect to Cu and Ni. The primary distribution of Pt and Pd in the rocks has been possibly modified by secondary processes especially deuteric, metamorphic and supergene alteration to yield the present distribution. Studies of PGE in the Lac-Des-Iles Complex in Northwestern Ontario by Dunning et al. (1981) and Talkington and Watkinson (1984) have shown that secondary processes such as hydrothermal alteration, are active in the mobilization of PGE and could lead to secondary concentration of these elements in the rocks.

A detailed microscopic examination of the ore minerals coupled with microprobe analysis of various mineral phases for PGE has revealed the presence of a palladium mineral phase $[Pd(Sb,Te)_2,$ Te>Sb] in the sulfides. This mineral was found in polished thin section R8412593 of the rock sample that had the highest concentration of both Pd (>10 ppm) and Pt (1.15 ppm). The chemical composition indicates the mineral to belong possibly into the merensyikite (PdTe₂)-group of the platinum-group minerals. The mineral is very weakly anisotropic and occurs as a

white elliptical bleb (25 microns) enclosed in chalcopyrite (Plate 4). The reflectance value of the above mineral is almost equal to that of pyrite and this makes it difficult to distinguish from pyrite under the microscope. No individual Pt minerals were observed in the sulfides during the present study. It is possible that platinum is dispersed within Cu-Ni sulfides or occurs in some palladium mineral(s).

Silicate mineralogy

The silicate minerals and their relative abundance in the rocks are given in Table 2 below.

Table 2 :

Mineral	Very	abundant	Abundant	Less abundan	t Accessory
Hornblend	e	x	· .		
Mg-chlori	te		x		
Plagiocla	se		х		
Orthoclas	е			x	
Quartz				x	
Sericite					x
Epidote					x
Biotite					×
Muscovite	:				x
Calcite		. <i>*</i>			x

Rock types

The rocks could be divided into two main groups on the basis of their major minerals. The two groups are :

(i) ultramafic rocks (ii) felsic rocks

Ultramafic rocks : These consist of almost 100 % amphibolites.

The clinoamphiboles in the amphibolites are generally still wellpreserved whereas magnesium-rich amphiboles have been completely replaced by magnesium-chlorite (Plate 5). These amphibolites are possibly products of deuteric alteration or metamorphism of cumulus pyroxenites. In addition to the amphibolites, rocks of anorthositic composition (95 % plagioclase) are also found. Layered sulfide concentrations are found in the ultramafic rocks and also along the interface separating the ultramafics from rocks of anorthositic composition (Plate 6).

<u>Felsic rocks</u> : These comprise of rocks of granodioritic composition. Plagioclase (mainly oligoclase) and quartz are the major minerals. Orthoclase is rarely found. These rocks possibly represent felsic derivatives/differentiates of the ultramafic suite. Most of the felsic rocks examined in thin section contain minor amounts of sulfides in disseminated form. A few felsic rocks, however, contain thin sulfide laminae (1-2 mm) enriched in chalcopyrite.

Deuteric and metamorphic alteration

The distribution of various secondary minerals in the rocks and their texture allow the distinction of alteration effects due metasomatism from those due to regional low-grade greenschist metamorphism. The secondary minerals found in the rocks include amphiboles, chlorite, epidote, calcite, muscovite, sericite and rarely biotite. Because the rocks have undergone only low-grade greenschist metamorphism most of the amphiboles in the

ultramafics have possibly resulted from deuteric alteration or autometamorphism of cumulus pyroxenes and less likely from regional metamorphism. The occurrence of epidote alteration confined around sulfides (Plate 7) indicates epidote to be also possibly due to hydrothermal alteration. Calcite and muscovite are less commonly found with epidote in the alteration haloes around the sulfides. Whereas epidote could be attributed to deuteric alteration most of the sericite and chlorite in the rocks appear to be due to metamorphic alteration. Sericite is commonly found as an incipient alteration product of feldspar and usually exhibits texture ranging from finely disseminated to coarse-grained "rosettes". Chlorite with distinctive fibrous habit and anomalous bluish-gray interference colour is abundant in some of the amphibolites (Plate 5). This magnesium-chlorite (Mg:Fe = 3.37) appears to have formed by selective replacement of magnesium-rich amphiboles while the clinoamphiboles remained almost unaffected. Local shearing and deformation in the rocks is indicated by the bending of the micas and fibrous chlorite. Undalutory extinction in quartz also indicates strain in the rocks.

Supergene alteration

Supergene alteration is very pronounced in rocks penetrated by fractures. The alteration is mainly indicated by the breakdown of pyrite to goethite and pentlandite to violarite (Plate 2). Chalcopyrite is rarely altered to cuprite. Supergene alteration has also locally intensified the alteration of feldspar and mafic

minerals to sericite and chlorite.

Summary and conclusion

The petrographical study of the Tofino ultramafics and the associated felsic rocks has indicated that concetrations of Fe-Cu-Ni-(PGE) sulfides occur within the ultramafic cumulus rocks and also along the interface separating ultramafic and anorthositic rocks. The sulfide minerals observed in the rocks are pyrite, chalcopyrite, violarite, millerite, pentlandite, pyrrhotite and Siegenite (?) in that order of decreasing abundance. The last three minerals are found only in trace amounts. Violarite is found as a secondary mineral derived from the alteration of pentlandite. Pyrite is altered to goethite especially along fractures. Local alteration of chalcopyrite to secondary copper minerals such as cuprite is also evident in the sulfides. Normal and chromium-bearing magnetite are found disseminated in the ultramafics.

Microprobe analysis of various mineral phases has revealed the presence of a palladium mineral phase $[Pd(SbTe)_2, Te>Sb]$ in the sulfides. The occurrence of this mineral in rocks rich in Pd (>10 ppm) suggests that palladium in these rocks is probably concentrated in palladium minerals. Retrographical identification of palladium mineral phases of the type identified above is, however, rendered difficult by their resemblance to pyrite in optical characteristics (Plate 4). No individual Pt minerals were found during the present study. Platinum is possibly dispersed in Cu-Ni sulfides or occurs in palladium mineral(s).

Supergene alteration of Fe-Ni-Cu sulfides in the rocks tends to mask the subtle optical features of small mineral grains. Samples showing least supergene alteration would be useful for further microscope/microprobe search for platinum-group minerals in the sulfides associated with the Tofino ultramafics.

References

- Dunning, G.R., Watkinson, D.H. and Mainwaring, P.R., 1981. Correlation of platinum-group elements, copper and nickel with lithology in the Lac-des-Iles complex, Canada. In Proceedings of the International Symposium on Metallogeny of Layered Mafic-Ultramafic Intrusions, Athens, Greece. Int. Geol. Correl. Program, Project 169, pp. 83-102.
- Talkington, R.W. and Watkinson D.H., 1984. Trends in the distribution of the precious metals in the Lac-des_Iles complex, Northwestern Ontario. Canadian Mineralogist v. 22, pp. 125-136.

Appendix

Table 3 : Analyses of samples from Tofino Showing

Lab	Pd	Pt	Au	Ni	Cu	Co	Pt/
No.	g/t	g/t	g/t	%	%	%	Pd+Pt
8768	4.70	1.65	0.36	0.25	3.57	_	0.25
8771	1.80	0.85	0.14	0.61	0.20	-	0.32
8773	15.40	3.80	0.62	8.50	0.43	-	0.20
8763	-	3.30	0.03	14.00	_	0.14	-
8762	-	4.30	0.24	0.50		0.16	-
12586	4.70	1.70	0.13	1.46	0.98	0.17	0.27
12589	0.30	0.10	0.11	0.08	0.36	0.002	0.25
12592	0.50	0.02	0.03	0.48	0.19	0.01	0.03
12593	> 10	1.15	0.60	1.45	5.40	0.05	0.10
12597	2.10	1.15	0.08	0.55	0.23	0.08	0.35
12601	5.60	1.25	0.01	1.64	0.86	0.07	0.18
84174	6.10	2.30	-	0.35	2.97	-	0.27
84180	7.30	2.30	-	3.80	1.26	-	0.24
84181	1.07	0.30	-	0.58	0.46	-	0.30
84182	3.55	1.15	-	2.88	0.51	-	0.25
(Cour	tesy of	COMINCO)					

List of polished thin sections examined:

1.	R848768
2.	R848769
3.	R848770
4.	R848771
5.	R848772
6.	R848777
7.	R848779
8.	R8412578
9.	R8412579

10. R8412580

11. R8412581

R8412582
R8412583

.

14. R8412584

15. R8412585

16. R8412586

17. R8412589

18. R8412590

19. R8412592
20. R8412593

.

21. R8412597

22. R8412598

23. R8412601

