GEOLOGICAL AND GEOCHEMICAL REPORT
on the

KR-1. 2, 3, 4, 5, 6 and 9 (BETA GROUP)
and

KR-7, 8, 10 and 11 (DELTA GROUP)

Mineral Claims
(Klehini River Property)

```
Atlin Mining Division
    N.T.S. 114 P/1OE
    Latitude 59032'
    Longitude 136035'
```


GEOLOGICALBRANCH ASSESSMENTREPORT

Owner/Operator: Noranda Exploration Company, Limited (No Personal Liability)

Author: Mike Savell

Decenter, 1985

Gold mineralization has been found on the Klehini River Property, and further work is required to fully determine the economic potential. The mineralization is found in quartz veins of probable mesothermal origin, hosted by a dioritic intrusion presumed to be Cretaceous. Potential exists for a number of small tonnage, steeply dipping, narrow, high grade vein deposits.

The most significant and promising mineralization is found on the $K R-4$ claim, where a vein has been traced for some 500 metres, assaying 0.283 opt Au over an average width of 1.03 metreg. This includes a high grade shoot about 175 metres long assaying 0.814 opt Au over 0.94 metres. The location is steep and somewhat difficult to reach, however further exploration is warranted. Other situations requiring further work include a high grade (up to 3.50 opt Au over 0.8 metres), irregular vein in a shear zone on the $K R-1$ claim, quartz float assaying 0.62 opt Au. Au-in-talus fines anomalies, and a 5 metre wide pyritic shear zone in diorite with anomalous $A u$ values.

A program consisting of blast trenching of the most significant showings, an accurate survey of trench locations, and grid soil sampling, magnetometer, and VLF surveys over the talus fine, float, and shear zone anomalies 19 recommended. This information should be sufficient to conclude whether further exploration is justified.

TEXT		PAGE
CHAPTER ONE:	INTRODUCTION	
1-1:	General	1
1-2:	Location and Access	1
1-3:	Physiography and Vegetation	2
1-4:	History of Claims	2
1-5:	Previous Work	4
1-6:	1985 Work Progran	5
CHAPTER TWO:	GEOLOGY	
2-1:	Regional Geology	8
2-2	Property Geology	9
CHAPTER THREE:	GEOCHEMISTRY	
3-1:	Soils	13
3-2:	Stream Sedimenta and Talus Fines	15
CHAPTER FOUR:	MINERALIZATION	18
CHAPTER FIVE:	CONCLUSIONS AND RECOMMENDATIONS	24
	LIST OE TABLES	
TABLE 1:	Claim Status	4
TABLE 2:	Table of Formations	12
TABLE 3:	Summary Statistics - Grid Soils	17
TABLE 4:	Summary Statistics - Talus Fines	17

LIST OF FIGURES

FIGURE 1:	Location Map 1:6,000,000	3
FIGURE 2:	Claim Map 1:50,000	6
FIGURE 3:	Geology 1:5,000 - Sheet 2	in pocket
FIGURE 4:	Geology 1:5.000 - Sheet 3	in pocket
	Leulany 115,000 - Bheat A	in Funket
FIGURE 6:	Geology 1:5,000 - Sheet 5	in pocket
FIGURE 7:	Geology 1:5,000 - Sheet 6	in pocket
FIGURE 8:	Geochem and Assay Sample Locations 1:5,000 - Sheet 2	in pocket
EIGURE 9:	Geochem and Assay Sample Locations 1:5,000 - Sheet 3	in pocket
FIGURE 10:	Geochem and Assay Sample Locations 1:5,000 - Sheet 4	in pocket
FIGURE 11:	Geochem and Assay Sample Locations 1:5,000 - Sheet 5	in pocket
FIGURE 12:	Geochem and Assay Sample Locations 1:5,000 - Sheet 6	in pocket
FIGURE 13:	1984 Sampling 1:20,000	in pocket
FIGURE 14:	Grid Soil Sampling KR-1 Claim - Au, As	in pocket
FIGURE 15:	Grid Soil Sampling KR-1 Claim - Ag, Pb	in pocket
FIGURE 16:	Grid Soil Sampling KR-1 Claim - Cu, Zn, Mo	in pocket

LIST OF APPENDICES

```
APPENDIX A: Personnel
APPENDIX B: Statement of Qualifications
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:
APPENDIX H:
APPENDIX I
Statement of Costs (BETA and DELTA Groups)
Grid Preparation
Sampling and Analytical Procedures
Geochemical Results
Rock Sample Descriptions
Assay Results
Talus Fine Numbering
```


1-1: GENERAL

Abstract

Thia report degnibea the recults of a geologicai and geochemical survey carried out durirg September, 1985 on the $\mathrm{KR}-1$ to 6 , and 9 (Beta Group) and $K R-7,8,10$ and 11 (Delta Group) mineral claims (Klehini River Property), Atlin Mining Division, B.C. Note that a Statement of Exploration and Development was submitted for each group but only one, combined assessment report has been written. A statement of cost has been prepared for each group.

The claims were staked by Noranda to cover the presumed source area for a stream sediment gold anomaly obtained during a 1983 reconnaissance program.

The work described in this report was performed by employees of Noranda Exploration Company, Limited (gee Appendix A).

1-2: LOCATION and ACCESS

The property is located on N.T.S. mapsheet no. $114 \mathrm{P} / 10 \mathrm{E}$, at 59 degrees 32^{\prime} latitude and 136 degrees 35^{\prime} longitude. This is about 4 kilometres southwest of the Rainy Hollow area in the extreme northwest of B.C. The nearest town is Haines, Alaska, some 70 kilometres by road to the south-southwest. Haines Junction, Yukon Territory, is about 145 kilometres

```
to the north-northwest (Figure 1).
    To date, access has been by helicopter. The centre of the
property lies about 5 kilometres from an unuged portion of the Haines
Highway, which is a paved, all season road leading to the port of Haines,
Alaska, some 73 kilometres by road. Construction of an access road would be
difficult as much of the property is covered by glacial ice and is quite
steep.
```

 1-3: PHYSIOGRAPHY and VEGETATION
 The property lies near the eastern edge of the rugged St. Elias Mountaing. Local elevations range from about 750 metres to 2050 metres. About 30% of the property is covered by glacial ice. The highest peaks on the property are very steep and rugged and are accessible only by technical climbing methods.

Most of the property is barren of vegetation. The lower elevations are covered by typical alpine grasses, lichens, shrub's, and flowers. To the eagt of the property, the vegetation type abruptly changes with the decrease in elevation to a lush coastal rain forest.

1-4: HISTOFY of the CLAIMS

The $K F$ claims were acquired by staking in 1984. The relevant details are listed in Table 1.
Vancal 11988

TABLE 1 - Claim Status

Claim name	NO. UNITS	RECORD NO.	RECORD DATE	EXPIRY DATE
KR-1	8	2418	Oct. 23, 1984	Oct. 23, 1988
KR-2	6	2419	"	"
KR-3	15	2420	\cdots	Oct. 23, 1987
KR-4	20	2421	\cdots	Oct. 23, 1988
KR-5	4	2422	.	"
KR-6	12	2423	.	.
KR-7	8	2424	\cdots	"
KR-8	15	2425	"	Oct. 23, 1987
KR-9	20	2426	"	-"
KR-10	20	2427	"	Oct. 23, 1986
KR-11	20	2433	"	Oct. 23, 1987
SADDLE-1	16	2276	April 4, 1984	April 4, 1987
SADDLE-2	16	2277	"	"
SADDLE-3	16	2278	"	"
SADDLE-4	16	2279	"	"

All claims are owned by Noranda Exploration Company, Limited (No Personal Liability). The KR claims will be in good standing until the above expiry dates upon acceptance of this report.

1-5: PREVIOUS WORK

There is no public record of any systematic exploration having been carried out on the property prior to that undertaken by Noranda in 1983.

The initial reconnaissance stream sediment sampling program located two streams anomalous in Au. The first stream drains the north side of the property and flows northeasterly and had values of $15,000 \mathrm{ppb}$ au in a panned concentrate and 220 ppb Au in a silt sample. The other stream drains

Abstract

the gouth half and flows eagterly. It had values of 31,000 ppb Au in a panned concentrate and 130 ppb in a allt agmple. On the bagig ot thege results, the SADDLE $1-4$ claims were staked. The $K R 1-11$ claims (Figure 2) were staked to secure surrounding ground in October, 1984. This report deals only with the $K R$ claims.

The 1984 exploration program consisted of detailed prospecting, preliminary geological mapping, and rock chip, stream sediment, and soil sampling where warranted. A total of 30 mandays were spent on the property and 87 geochemical samples collected and analyzed, during the period from August 16 to August 28,1984 . This work has been reported in "Geological and Geochemical Report on the SADDLE 1, 2, 3 and 4 Mineral Claims (Klehini River Property)" by Mike Savell, submitted for asgessment purposes.

1-6: 1985 WORK PROGRAM

The 1985 program on the $K R$ claims was designed to assess initial results obtained from prospecting traverses completed west of the SADDLE claims in 1984. A total of 74 mandays were spent on geological mapping, prospecting and geochemical sampling. Mapping was done at $1: 5,000$ scale. A total of 141 rock samples were assayed, and 369 soil, 158 talus fines, and 20 silt samples were analyzed. Soils were collected on a compass and chain controlled, picketed grid totalling 6.5 kilometres on the $K R-1$ claim. The geology and sample locations were plotted on $1: 5,000$ scale topographic base maps which were made from existing aerial photographs by Delta Aerial Surveys of Richmond. B.C. Steep areas were visually prospected with a


```
helicopter. When warranted, steep exposures were sampled using technical
climbing methods under the guidance of an experienced mountaineer.
Accommodation was provided by a local trapper's cabin on the Haines Road
rented for the program. A Hughes 500D helicopter chartered from Capital
Helicopters of Whitehorse was used for transportation.
```


CHAPTER TWO: GEOLOGY

2-1: REGIONAL GEOLOGY

A preliminary $:=125,000$ acale geology map of the 114 F mapaheet 19 now available (G.S.C. Open File Map No. 926). The area aurrounding the Haines Road was previously mapped at a scale of 1 inch to 2 miles by K. Dep Watson (Bulletin No. 25, B.C.D.M., 1948). The Haines Road roughly follows the Dalton Trail, one of the routes used by prospectors enroute to the Klondyke gold fields at the turn of the century. These prospectors located many of the $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Pb}-\mathrm{Ag}$ skarn-type mineral showings known in the Rainy Hollow-Three Guardsmen Pass area. These are described in the B.C. Mineral Inventory (numbers 7-14, 17, 19, 20, 29).

The property lies within the Alexander Terrane of the Insular Belt, between the Hubbard Fault and Denali Fault Syatem. This congietg of complexly deformed, generally low grade metamorphosed, predominantly Paleozoic rocks. On the property these consist mainly of black laminated and grey massive limestones, black shales and argillites, and dark green chloritic volcanic flows. These are capped locally by Tertiary subaerial volcanics and fluviatile sediments.

The aforementioned strata have been intruded by granodiorite of the Oligocene "Thope River Intrusions" and diorite of probable Pre-Tertiary age. Similar rocks nost the gold bearing "Gold Cord" quartz vein
approximately 10 kilometres to the aouthweat (B.C. Mineral Inventory No. 15).

2-2: PROPERTY GEOLOGY

Geological mapping was performed during pace and compass traverses. Outcrop and sample locations were plotted on 1:5,000 topographic bage maps and air photo blow-ups. The best exposures are found on ridge crests and cirque walls. When these are inaccessible, moraines and talus slopes provide a good indication of lithologies in rugged areas.

The geological plan has been plotted on Figures 3 to 7. Note that the property has been divided into geveral sheets in order to keep map sizes standard. Each map contains an index showing which part of the property it covers. The Table of Formations $2 s$ presented in Table 2.

The oldest rocks on the property consist of black to buff weathering, very fine-grained, thinly bedded limestones and carbonaceous argillites (Kaskawalsh Group?) which have been tentatively assigned an Early Ordovician to Devonian age by the G.S.C. (open file map \#926). These rocks are found on the far southwest corners of the claim blocks and are separated from exposures of younger lithologies by glacial ice. The ilmestone is cut by a moderate to strongly developed fracture cleavage which results in boudinaged, elongated beds that resemble stretched clasts.

On the far northeagt corners of the claim blocks lies a gequence of sedimentary and volcanic rocks which have been tentatively assigned a Devonian to Latest Triassic age (Kaskawalsh Group?). It consists of grey to
pale brown limeatone and dolomite, black argillite and ailtatone, and dark green, chloritic basalta. The argillites, ailtatones, and basalta exhibit a fairly well defined achistosity. Close to the margins of intrusions, these rocks are recrystallized and lose their schistosity. A number of roof pendants of these rocks are found within the intrusions.

Unconformably overlying the Ordovician-Devonian sediments on the west half of the $K R-1$ and $K R-2$ claims are a package of fluviatile sediments and thin volcanic flows which closely resemble rocks of the Oligocene Amphitheatre Formation in nearby areas. It consists of a generally upward fining sequence of dark brown to black, interbedded polymictic conglomerates, sandstones, and shales, with a few thin andesitic to basaltic flows in its upper section. There is a basal cobble conglomerate with large, subrounded clasts of argillite, limestone, greenstone, and diorite derived from the surrounding basement rocks.

A number of well preserved plant fragment and leaf imprints were observed in brown sandstone beds. The sandstones and conglomerates are cemented by brown, limonitic and calcareous clay. They exhibit no schistosity, and generally dip moderately to the northeast.

The bulk of the $K R$ claimg is underlain by a dark green, fine to medium grained hornblende diorite to quartz diorite. It generally has a foliated to gneissic appearance, but is locally massive. At some locations multiple intrusive episodes have resulted in megabreccias. Generally the diorite containg from 15 to 50% hornblende which 19 intergtitial to the feldspar. The aligned hornblende crystals define the foliation and occasionally constitute over 90% of the rock. The diorite also contains

```
from 5 to 30%, white to grey-green feldspar, 1 to 10% quartz, 1 to 5%
magnetite, and minor apatite, pyrite, and biotite. Epidote lined fractures
with narrow altered envelopes are common as are xenoliths of black, very
fine-grained microdiorite(?). These make up from 5 to 40x of the volume of
the intrusion. They are sub-elliptical, are usually aligned parallel to
follation and appear to have been stretched. The average gize ig from lo to
30 cm long, but they can be up to 100 cm long. They commonly are finely
feldspar porphyritic and contain minor muscovite. As mentioned above, the
diorite intrudes the Devonian to Triassic sediments, but dioritic boulders
are found in the Tertiary conglomerates. The diorite intrusion may be
related to Cretaceous plutons of the Coast Range Intrusives, however the
property is located west of the Denali Fault which separates the Coast
Intrusive Belt from the Insular Belt.
    A number of dykes cut the diorite. They are black, very fine-
grained and basaltic, or dark grey-green and dacitic. Quartz filled
amygdules are fairly common. The dykes are found parallel to, and cross-
cutting, the foliation and are from 15 to 200 cm wide. They are especially
common on the KR-1 claim.
Underlying the northeast \(K R-1\) and most of the \(K R-3\) claim is a pale pink to grey, medium to coarse-grained granodiorite. Contacts with the diorite and sediments are obscured by talus and moraine boulders. This intrusion is thought to be related to other similar intrusions in the area which have been dated as Oligocene by the G.S.C. (open file map \#926). Dykes of pale brown, fine-grained felsite and feldspar porphyry are assumed to be related to this intrusion.
```

```
Ouartz veina are found within the dioritic intruaion. They are generally white to translucent, massive, brittle, limonite stained and range from a few centimetres, to over 3.7 metres in width. They occasionally contain finely disseminated or narrow bands of pyrite with minor chalcopyrite. They are often surrounded by a 10 to 20 cm wide envelope of buff coloured, quartz-carbonate-sericite altered host rock. On the KR-1 claim, the veins are found occupying clay filled fault zones and are themselves sheared and brecciated. On the \(K R-1\) and \(K R-4\) claifs, quartz veins are found to carry significant quantities of gold.
```

TABLE 2:

TABLE OF FORMATIONS

NAME	AGE	LITHOLOGIES
"Tkope River Intrusions"	Oligocene	Granodiorite, felsite, feldspar porphyry
Coast Range Intrusives(?)	Cretaceous(?)	Diorite, basaltic dykes
Amphitheatre Formation(?)	Oligocene	Conglomerate, sandstone, shale, basalt
Kaskawalsh Group (?)	Devonian-Upper Triassic(?)	Limestone, dolomite, argillite, basalt
Kaskawalsh Group(?)	OrdovicianDevonian(?)	Limestone, argillite

The soil sampling survey was conducted on a closely spaced grid on the KR-1 claim. For a description of the grid preparation, sampling method, and analytical method see Appendices D and E. The data has been plotted on Figures 14 to 16 and is tabulated in Appendix F. The grid location is shown on Figure 3 .

The soil development in the grid area is typical of a high, steep alpine environment, that is it shows thin, poorly developed "A" and "B" horizons. Interlayering of horizons due to soil slumping is common. The sampling medium is generally the sandy component of the rocky "C" horizon. The slope is predominantly to the south (see Figure 3). North of the grid lines, the claim is covered by glacial ice and to the east, the slope is almost entirely covered by rocky moraine and talus derived from the stéep granite ridge to the north.

A short test line of soil samples was collected 1 mmediately above trench "A" and "D" where Au mineralization was found in situ (see Figure 8 - inset "A"). The samples were run for the common base and precious metals and typical "indicator" elements including $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Mo}, \mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Hg}, \mathrm{Sb}$ and Ea. Valueg up to $28.000 \mathrm{ppb} \mathrm{Au}, 9.0 \mathrm{ppm} \mathrm{Ag} ,19 \mathrm{ppm} \mathrm{Mo}$.438 ppm Cu , and 340 ppm Hg were obtained, indicating that a marked geochemical anomaly is associated with the mineralization. However, the values dropped to

Ag: Except for an anomalous result of 1.4 ppm near trench "B" at L 20000E, 20080 N , reaults are all at, or very close to, the limits of detection, 0.2 ppm.

Mo: Results are mostly at, or very close to, the detection lifit of 1 ppi, except for a few values up to 8 ppm in the southweat grid corner.

As: Mosi values are at the detection limit of 2 ppm , and the higher values (up to 30) are again distributed in the southwest corner.

Au: Values above $40-50 \mathrm{ppb}$ Au were considered anomalous. This relatively low threshold was selected since it is possible to be on the edge of a much stronger anomaly which is not apparent in spite of the close sample spacing as the width of a soil anomaly may be very narrow. A number of high values were obtained, however their distribution appears erratic and no iine to line correlation is possible. These are still considered important because of the nature of the soil development and the type of mineralization itself. The highest values were trenched in a later program which is not reported here.

3-2: STREAM SEDIMENTS AND TALUS FINES

A total of 20 silt and 158 talus fines samples were collected and analyzed. Sample locations are plotted on Figures 8 to 12.* Sampling procedures and analytical results are listed in Appendices E and F.

Streams draining the steep slopes generally have very little silt content, therefore this medium has limited use on the property. Results for the limited silt sampling completed were negative. The only possibly

Abstract

aignificant reault ia $\# 75594$ near the centre of the $k=6$ claim (Figure 10) which contained 70 ppb Au. Prospecting in the area at the time of the geochemical sampling failed to locate any quartz veins or other mineralization.

The talus fines were collected at 25 metre intervals on contour lines along steep slopes where streams have not yet developed. Summary statistics are listed in Table 4. The most interesting result was obtained on the southeagt edge of the $K R-E$ ciaim (Figure 10). Six consecutive samples (\#70596 to 70602) Contained anomalous Au values, ranging from 90 ppb to 250 ppb . This covers an area at least 125 metres across and is open to the goutheast. There are two other anomalies on the $K R-10$ claim (Figure 11). Near the north edge of the claim, sample $\# 70640$ ran 140 ppb au with a nearby sample (\#70638) running 40 ppb. On the west side, two adjacent samples ($\# 70606$ and 70607) ran 80 and 50 ppb Au. All these anomalies require further geochemical surveys to pinpoint the source. No base metal anomalies were obtained in the talus fines.


```
*It should be noted that the surveyors' ribbon marking the talus fines
sample gites was labelled with g different numbering system than that shown
on the accompanying maps. The corresponding "map" and "field" numbers are
ligted in Appendix I.
```


TABLE 3

SUMMARY STATISTICS

GRID SOILS (in ppm except $A u$ in $p p b$)

	Cu	2 n	Pb	Ag	Mo	As	Au
Number of Analyses	366	366	366	366	366	366	363
Lowest Value	6	24	1	0.2	1	1	10
Highest Value	140	230	58	1.4	8	30	2400
Mean (Log)	26.1	81.9	1.3	0.20	1.2	2.6	11.9
Stand. Dev. (Log)	0.166	0.156	0.335	0.052	0.162	0.272	0.257
Mean (Arith)	28.0	87.7	2.4	0.20	1.3	3.4	22.4
Stand. Dev. (Arith)	11.37	34.88	5.55	0.065	0.82	3.72	128.70

TABLE 4

SUMMARY STATISTICS

TALUS FINES (in ppm except Au in ppb)

	Cu	2 n	Pb	Ag	Mo	A 5	Au
Number of Analyses	156	156	156	156	156	156	156
Lowest Value	4	56	1	0.2	1	1	10
Highest Value	110	180	18	1.0	6	30	250
Mean (Log)	48.3	89.9	2.1	0.20	1.0	2.2	12.3
Stand. Dev. (Log)	0.173	0.072	0.282	0.068	0.067	0.388	0.300
Mean (Arith)	51.8	91.1	2.6	0.21	1.0	3.6	20.1
Stand. Dev. (Arith)	18.83	15.66	2.11	0.071	0.41	4.59	39.15

CHAPTER FOUR: MINERALIZATION

A total of 141 rock amples were collected and agsayed for Au and Ag, most were also analyzed for Cu. All vein material and unusually altered or sulphide rich rock was sampled. Sample location and results are shown on Figureg 8 to 12 . Sample descriptions and assay certificates are listed in Appendices G and H.

Figure 8 (sheet 2) covers the $K R-1,2$, and 3 claims at the northwest of the property. Mineralization was found in a number of hand trenches or pits which were dug to locate the source of float found in 1984 and similar material discovered in the 1985 survey (inset A. Figure 8). The float consistg of limonite stained, friable quartz and assayed 0.797 opt Au (\#p72126 - see Figure 13). Similar material was found in all the pits. It congigts of narrow, branching, poddy veins of highly sheared, friable, brecciated, hematite and limonite stained quartz in a sheared and clay altered diorite. The veins contain very minor disseminated pyrite. chalcopyrite, malachite, azurite and a black, manganiferous stain on fractures. They appear to occupy fault zones. The clay alteration appears to be of a tectonic derivation. The sheared and brecciated nature of the vein indicates there has been post vein movement on the fault.

The average vein thicknese 19 about 0.45 metres, and Au agsaya range from 0.176 to 3.50 opt in chip samples. Au to Ag ratios range from 0.95 to $2.8 . \quad$ Altered and sheared wall rocks assay up to 0.035 opt Au over
0.4 metres (\#R70172) 1 mediately adjacent to the veing. The elevations of the outcropg range from 1,520 to 1,540 metres. Trench "A" and "B" are believed to be on the same structure having an apparent atrike of about 1350 and dipping about 500 to the north. Trench "C" and "D" are not on the same vein but may occupy the same ghear zone. These veins also dip to the north. Since they are narrow, sheared and brecciated, the veing would be expected to have poor recoveries in core drilling.

The only other significant mineralization found in the area outlined on Figure 8 is about 150 metres east of the $K R-1$ grid where chips from a few scattered quartz boulders over a 2×5 metre area in a moraine gagayed 0.62 opt $A u$ and 0.30 opt $A g$ (\#R73663). Locating the gource may be difficult as the area is almost entirely covered with moraine boulders.

Figure 9 covers primarily the SADDLE claims. Some detailed sampling of quartz veins found in the 1984 survey was conducted this year. On the SADDLE-3 claim, a vein is expooed intermittently along strike about 900 metres through a vertical elevation from 1,220 to 1,690 metres. This vein is competent, branching, with variable steep dips and cuts diorite at low elevations and hornfels at higher elevations. It contains up to 30% coarse pyrite in irregular patches confined mainly to the centre of the vein and minor siderite or ankerite. The best result from 13 samples ran 0.044 opt Au over 0.6 metres (\#R73641). On the SADDLE-4 claim, a similar vein is exposed for about 50 metres horizontally and 30 metres vertically in a hornfelg. Three samples produced no elevated $A u$ resultg.

Figure 10 (sheet 4) covers the $K R-4,5$, and 6 claims and several showings have been located here. The $K R-4$ claim is cut by a northwest
trending, ateep sided ridge. The terrain ia guch that technical climbing gear and personnel were required to sample parts of the veing. At the southeast end of this ridge, a quartz vein is exposed for about 100 metres horizontally from 1,680 to 1,740 metres in elevation. It congigts of white, competent quartz with hematite-limonite fracture coatinga in a very weakly altered diorite. No eulphideg were obgerved. The vein ranges from 0.2 to 1.0 metres thick where exposed. The best results from 12 samples were 0.65 opt Au from a grab (\#R69538) and 0.25 opt Au acrosg 0.63 metres (\#R69937). The remaining results were very low to nil. Au to Ag ratios in mineralized samples range from 2.4 to 5. This vein was the site from which a grab sample assaying 0.945 opt Au was collected in 1984 (\#R71921 - Figure 13). Further northeast along the ridge, another vein is exposed for a horizontal distance of 75 metres and 10 metres vertically, being covered by talus on either aide. A sample collected in 1984 assayed 0.680 opt Au across 3.0 metres of a "quartz vein network" (\#R71923 - Figure 13). However, closer inspection reveals that the true thickness of the zone ranges from 0.8 to 1.0 metres, and that the 1984 sample must have been collected along a 3 metre long dip slope exposure on the ridge crest. The zone congistg of thin, arcuate quartz and quartz carbonate veins up to 8 cm thick around which is developed a rusty weathered, quartz-carbonatesericite(?) altered diorite zone which parallels the veins. The veins make up about 10% by volume of the zone. The best of three samples collected on the zone in 1985 ran 0.092 opt Au over 0.8 metres ($\# \mathrm{R} 41442$). From this part of the ridge northwest to sample $\# R 72137$ (Figure 13), the ridge crest was capped by a thick cornice of icy snow remaining from the $1984-85$ winter.

This made location and reaampling of other showinga located in 1984 impossible. These include quartz veins assaying 0.12 opt Au over 2 metres (\#R72135) and 1.31 opt Au over 1.5 metres (\#R72136), and a skarn pendant which assayed 0.24 opt $\mathrm{Au}, 0.82$ opt Ag , and $3.04 \% \mathrm{Cu}$ in a grab sample (\#R72137).

Another vein was located at a lower elevation on the gouthwest slope of the $K R-4$ ridge, and may be a continuation of one of the previously sampled veins. It assayed 0.040 opt Au (\#R73642).

The most promising structure sampled on the property is found on the northeast slope of the $K R-4$ ridge (Figure 10). It can be traced along the base of the slope for over 500 metres and disappears under glacial ice and talus at each end. A sample was collected from one end of the vein in 1984 (\#72138) which assayed 0.075 opt Au over 1.5 metres (Figure 13). The weighted average of 13 chip samples collected in 1985 at irregular 25-75 metre intervals was 0.283 opt $A u$ across an average width of 1.03 metres. Within this is a higher grade shoot approximately 175 metres long which averaged 0.814 opt Au across 0.94 metres in four chip samples. The vein is a milky white to translucent, massive, competent, quartz with minor siderite or ankerite hosted by a weakly chloritized diorite. The vein is always hematite and limonite stained on fractures. Adjacent to the vein, the diorite is more strongly altered to quartz-carbonate-sericite and is bleached a light green to rusty colour. The vein dips into the ridge (southwest) at about 60° and strikes approximately 120°. Au to Ag ratios for the high grade samples range from 13.5 to 15.5 .

Figure 11 (sheet 5) covers most of the $K R-7,8,9,10$ and 11 claims. On the $K R-7$ claim, two ateep, parallel, competent quartz veins in a diorite host were found. The first vein extends from the south edge of sheet 3 (Figure 9) to the $K R-7$ and 8 claim boundary (Figure 11) for about 1,200 metres over an elevation difference of 1,260 to 1,480 metres. The vein is up to 3.5 metres thick and is surrounded by a band of schistose, buff to green coloured quartz-carbonate-sericite altered diorite. It is observed to branch, anastomose, pinch out, and is locally poddy. The highest assay from 18 samples at various elevations was 0.044 opt Au from a grab sample (\#R96485). The second vein is found 200 metres southwest of the above. It is exposed for a strike length of about 200 metres from an elevation of 1,400 to 1,500 metres before being covered by glacial ice. It is similar to the above vein, except that a $5-10 \mathrm{~cm}$ thick band of coarse pyrite and chalcopyrite ig found in the centre of the structure at one expogure. Here the structure consists of two thick, parallel quartz veing totalling 3.7 metres which assayed 0.017 opt $\mathrm{Au}, 0.68 \mathrm{Ag}$, and $1.4 \% \mathrm{Cu}$ (\#R41449). Thig was the only significant value from 11 samples'taken along this vein.

Elsewhere on this sheet, a number of float occurrences of similar vein material were sampled. Of 20 float samples analyzed, only one contained anomalous values. This was $\# 73615$ which assayed 0.015 opt Au in a grab sample from a $4.5 \times 8 \times 10 \mathrm{~cm}$ boulder.

Near the centre of the KR-11 claim, a chip sample (\#59972) was taken across a 5 metre wide epidote-chlorite-sericite altered, pyritic shear zone in diorite and assayed 0.040 opt Au and 0.24 opt Ag. A sample of an 11
cm thick vein and a 80 cm thick rhyolite dyke taken within this shear was not mineralized.

Figure 12 (sheet 6) covers predominantly the $K R-9$ claim. Six samples of pyritic, altered dykes and sheared, altered diorite were sampled with no pogitive results. No quartz veins were observed. One sample of a basaltic dyke (\#41348) contains minor, small, disseminated rosettes of molybdenite.

CHAPTER EIVE: CONCLUSIONS AND RECOMMENDATIONS

Gold mineralization has been found on the Klehini River Property, and further work is required to fully determine the economic potential. The mineralization is found in quartz veins hosted by a dioritic intrusion of probable Cretaceous Age. The high Au to Ag ratios, massive texture, and association with faulta suggests a mesothermal origin for the veins. The Futentigi exiEts fur a humber of small tonnage (100,000-500,000+ tona), narrow (~ 1.5 metres), steeply dipping, high grade ($0.5-0.8$ opt Au) vein deposits and possibly bulk tonnage lower grade stockwork type deposits where density of veins is sufficient.

The showings on the $K R-1$ claim located in the trenches were found to be narrow, irregular, and hoated in incompetent rocke, which would probably result in poor drilling conditions as was encountered on the nearby Gold Cord Property. However, the high grades found (up to 3.50 opt Au over 0.8 metres) warrant further trenching along etrike to confirm the continuation of the grade and nature of the host rock.

The ghowings located on the crest of the steep ridge on the KR-4 claim were found to be narrow and of lower grade than original reaults had indicated. Previously discovered occurrences on the ridge which were not resampled this year due to ice and snow cover are considered to be too Inaccessible to warrant further work.

The most significant and promising mineralization occurs along the northeast base of the steep ridge on the $K R-4$ claim. Here a vein, exposed
intermittently for some 500 metrea, had a weighted average assay of 0.283 opt Au across an average width of 1.03 metres (from 13 chip samples), including a higher grade "shoot" about 175 metres long assaying 0.814 opt across 0.94 metres. The host rock is competent and it appears that no shearing has occurred along the plane of the vein. Further work is warranted, however the location is steep and prone to rock and snow slides, and a glacier must be crossed to gain access. Blast trenching ig feasible along most of the vein, however drill get-ups would require aignificant gite preparation and complete helicopter support, including shift changes, if feasible at all. Consideration should be given to underground exploration in place of drilling. This may be more efficient when site preparation, helicopter costs, drilling recoveries, sampling accuracy and safety are taken into account.

Other vein exposures on the property have been thoroughly sampled with negative results. Future work on known mineralized shoots may provide guides or models which could lead to exploration on hidden extensions of these veins, however at present this is unwarranted. Situations which do warrant follow-up work include the $A u$ in talus fines anomalies on the KR-6 and KR-10 claims, Au mineralized float east of the soil grid on the $K R-1$ claim, and further gampling of the wide shear zone anomalous in au on the KR-11 claim.

The closeness of the property to the Haines Road and the port of Haines, Alaska makes it all the more attractive. Although in an area of rugged terrain, short summers, and heavy snowfall, these problems are not insurmountable, especially if a deposit with a grade comparable to known
occurrences 1 s delineated.

The following course of action is recommended in the 1986 field season:

1) blast trenching of the vein at the base of slope on $K R-4$, in between exposures where possible, and along strike from the high grade occurrences in the kR-1 trenches;
2) an accurate survey of the trench and exposure locations on the KR-4 claim, and selection of possible drill sites if drilling is determined to be feasible;
3) follow-up work on the talus fines anomalies, float occurrence on the KR-1 claim, and anomalous shear zone on the $K R-11$ claim, including grid soil sampling, magnetometer and VLF surveys;
4) the mineralogy of the veins and nature of the Au with regard to the ease of extraction should be briefly studied.

This data should be collected as soon as snow conditions permit, which may be mid-July if the snow cover is moderate. A decision should then be made on whether further exploration is justified, and whether diamond drilling or underground exploration is the most efficient method.

> Respectfully submitted,

Mike Savell
Project Geologist

PERSONNEL

```
Michael Savell
Project Geologist
203-107 Main Street
Whitehorse, Y.T. YlA 2A7
Gary Benvenuto Geologist
2683 Panorama Drive
N. Vancouver. B.C. V7G lV7
Stuart MacKenzie
Geologist
6211 - 150 Avenue
Edmonton, Alberta T5A 1W7
Susan Burnett
Box 404
Nakusp, B.C. VOG 1RO
Peter Beeney
    Field Assistant
525 Yonge Street
Midland Ontario L4R 2C6
Arthur Fekete
112 Parklane
Whitehorse, Y.T. Y1A 3E9
Jurg Hofer
Mountaineering Guide
Mile 92, Haines Road
B.C.
```

```
APPENDIX B STATEMENT OF QUALIFICATIONS
```

```
    I, Michael Savell of the City of Whitehorse, Yukon Territory, do
hereby certify that:
```

1. I have been an employee of Noranda Exploration Company. Limited (No Personal Liability) since May 1980.
2. I am a graduate of Dalhousie University with a Bachelor of Science Degree in Geology.
3. I am a member of the Geological Association of Canada, the Canadian Institute of Mining and Metallurgy, the Prospector's and Developers Association, and the B.C./ Yukon Chamber of Mines.
4. I performed the work contained in this report.
5. I have no direct or indirect interest in Mariner Exploration Inc. nor do I expect to receive any interest directly or indirectly in the securities of this company.
6. I consent to the use of this report by Mariner Exploration Inc. for any purposes deemed necessary.

Michael Cavell
Project Geologist
Noranda Exploration Co.. Ltd. (No Personal Liability)

APPENDIX C

STATEMENT OF COSTS

(BETA and DELTA Groups)

NORANDA EXPLORATION COMPANY, LIMITED

STATEMENT OF COSTS

PROJECT: DATE:		Klehini River November, 1985	(BETA Group
TYP	O Of REPORT: Geology	and Geochemistry	
a)	Wages:		
	No. of Days	53 mandays	
	Rate per Day	99.46	
	Dates from	Sept. 9-23, 1985	
	Total Wages	53×99.46	55,271.38
b)	Food and Accommodation:		
	No. of Days	53 mandays	
	Rate per Day	25.36	
	Dates from	Sept. 9-23, 1985	
	Total Cost	53×25.36	$1,344.41$
c)	Transportation:		
	No. of Days	53 mandays	
	Rate per Day	154.234	
	Dates from	Sept. 9-23, 1985	
	Total Cost	53×154.234	8,174.41
d)	Analysis		4.467.20
e)	Cost of Preparation of Report:		,
	Author 400	400.00	
	Drafting 40	400.00	
	Typing 20	200.00	
			1.000 .00
f)	Other:		
	Contractor (Base Map)		1.282 .00
	Camp Supplies		556.10
	Shipping		. 341.50
		TOTAL COST	\$22,437.00

Unit Costs for Geology:

```
No. of Days 53 mandays
No. of Units
Unit costs 183.45/manday
Total Cost 53 x 183.45
Unit Costs for Geochem:
No. of Unitg 527 Samples
Unit Costs 22.535/sample
Total Costs 527 x 22.535
Unit Costs for Trenching:
No. of Days 4 days
No. of Units
Unit Costs 209.6475
Total Costs 4 4 209.6475

PROJECT: Klehini River - \(K R-1,2,3,4,5,6\), and 9 claims (BETA Group)


\title{
NORANDA EXPLORATION COMPANY, LIMITED
}

\section*{STATEMENT OF COSTS}
```

PROJECT: Klehini River - KR-7, 8, 10 and 11 claims (DELTA Group)
DATE:
November, }198
TYPE OF REPORT: Geology and Geochemistry

```
a) Wages:
\begin{tabular}{lll} 
No. of Days & 21 mandays & \\
Rate per Day & 99.46 & \\
Dates from & Sept. \(9-23.1985\) & \\
Total Wages & \(21 \times 99.46\) & 52.088 .66
\end{tabular}
b) Food and Accommodation:

No. of Days 21 mandays
Rate per Day 25.36
Dates from Sept. 9-23, 1985
Total Cost \(21 \times 25.36 \quad 532.56\)
c) Transportation:
No. of Days 21 mandays

Rate per Day 224.02
Dates from Sept. 9-23. 1985
Total Cost \(21 \times 224.02\) 4,704.51
d) Analysis \(1,583.50\)
e) Cost of Preparation of Report:

Author 400.00
Drafting 400.00
Typing 200.00
\(1,000.00\)
f) Other:
\(\begin{array}{ll}\text { Contractor (Base Map) } & 848.00\end{array}\)
Camp Supplies 400.00
Shipping \(\quad 227.66\)

\section*{UNIT COSTS - (DELTA Group)}

Unit Costs for Geology:
\begin{tabular}{llll} 
No. of Days & 21 mandays \\
Unit costs & \(233.37 /\) manday & & \\
Total Cost & \(21 \times 233.37\) & & \(4,900.69\) \\
& & \\
Unit Costs for Geochem: & & \\
No. of Units & 161 Samples & & \\
Unit Costs & \(40.90 /\) sample & & 6.584 .20 \\
Total Costs & \(161 \times 40.90\) & & \(-11,484.89\)
\end{tabular}
```

PROJECT: Klehini River - KR-7, 8, 10, and 11 claims (DELTA Group)

```

Geochemical:
\begin{tabular}{lccc} 
Element & No. of Determinations & Cost per Determination & Total \\
\hline Cu & 161 & 1.50 & 241.50 \\
Zn & 108 & .60 & 64.80 \\
Fb & 108 & .60 & 64.80 \\
Mo & 108 & .60 & 64.80 \\
Ag & 108 & .60 & 64.80 \\
As & 108 & 1.40 & 151.20 \\
Au & 108 & 3.25 & 351.00
\end{tabular}

Assays:
\begin{tabular}{cccc} 
Au & 53 & 4.75 & 251.75 \\
Ag & 53 & 4.75 & 251.75 \\
Data Entry & 53 & 1.10 & 58.30 \\
& & & TOTAL
\end{tabular}

\section*{APPENDIX D}

\section*{GRID PREFARATION}

\begin{abstract}
For control purposes, a grid was laid out. A compass controlled, slope corrected, chained baseline was run on bearing of \(130^{\circ}\) for a length of 0.7 km and designated \(100+00 \mathrm{~N}\). Grid lines totalling some 5.8 kilometres were run at 50 metre spacings at right angles northeast and southwest of the baseline. Stations were marked at 25 metre intervals with \(1 / 2\) metre high wooden pickets. Sample sites were marked at 10 metre intervals with fluorescent surveyor's ribbon.
\end{abstract}

\section*{APPENDIX E}

\section*{GEOCHEMISTRY SURVEY}

\section*{1. Sampling Method}

A total of 369 soil samples were collected on the grid described above. The " \(B\) " soil horizon was sampled by digging a small hole with a grubhoe. Samples were placed in "Hi wet Strength Kraft \(31 / 2\) " by \(61 / 8^{\prime \prime}\) Open End" paper envelopes on which the grid designation was marked. The samples are allowed to air dry and then shipped to the geochemical lab of Noranda Exploration Company, Limited at 1050 Davie St., Vancouver, B.C. where they are analyzed for \(\mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}, \mathrm{Mo}, \mathrm{Ag}, \mathrm{As}\), and Au .

The 158 talus fines samples were collected where fine detritus accumulates on steep slopes inhibiting a proper soil development. The 20 silt samples were collected from small streams mainly on the \(K R-1\) claim. Both the talus fines and silt samples are treated and analyzed in the same manner as the soil samples.
2. Analytical Procedures

The samples are first dried in a drying cabinet for a period of 24 to 48 hours. They are then screened and sifted to obtain a -80 mesh fraction.

To determine the amount of total extractable \(\mathrm{As}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Zn}\), Pb , and Mo in each sample, the following procedure is employed:

A small amount of -80 mesh material. 0.200 grams, \(1 s\) digested in 2
ml of \(\mathrm{HClO}_{5}\) and \(0.5 \mathrm{ml} \mathrm{HNO}_{3}\) for approximately four hours. Following digestion, each sample is diluted to 5 ml with demineralized \(\mathrm{H}_{2} \mathrm{O}\). A Varian Techtron Model AA-5 atomic absorption spectrophotometer is used to ascertain the content, in parts per million, of each element.

To determine the amount of total extractable \(A u\) in each sample, the following procedure is employed:

Ten grams of the -80 mesh material (or less, if 10 grams not available) is roasted at \(580^{\circ} \mathrm{C}\) for 1.5 hours and then digested with aqua regia. Au is ascertained by diluting this solution to 200 ml with demineralized \(\mathrm{H}_{2} \mathrm{O}\) and extracting the \(A u\) with 10 ml of MIBK. An aliquot of this solution is then read on a Varian Techtron Model aA-5 atomic absorption spectrophotometer and a value in ppb is obtained.

ROSSBACHER LABORATORY LTD_ 2225 5. SPRINGER AVEN

\section*{CERTIFICATE OF ANALYSIS}

RURNAGY: G.C. VEE 3
TEL : (604) 299-69
TO : NORANDA EXFLOFATION CO. LTD. 1050 DAVIE STFEET vancouver: b.c.
PROJECT: 676 8510-605
TYPE OF ANALYSIS: GEOCHEMICAL Klchimi (MS) PAGE \# : 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { FRE } \\
& \text { FIX }
\end{aligned}
\] & SAMPLE NAME & \[
\begin{gathered}
\text { PPM } \\
\text { Mo }
\end{gathered}
\] & \[
\begin{aligned}
& \text { PFM } \\
& \mathrm{Cu}
\end{aligned}
\] & \[
\begin{aligned}
& \text { PPM } \\
& \mathrm{Ag}
\end{aligned}
\] & \[
\begin{array}{r}
\text { PPM } \\
\mathrm{Zn}
\end{array}
\] & \[
\begin{gathered}
\text { PPM } \\
\mathrm{Pb}
\end{gathered}
\] & \[
\begin{array}{r}
\text { PPM } \\
\text { Ea }
\end{array}
\] & \[
\begin{array}{r}
\mathrm{PPE} \\
\mathrm{Au}
\end{array}
\] & \[
\begin{array}{r}
\text { PPE } \\
\mathrm{Hg}
\end{array}
\] & \[
\begin{gathered}
\text { PPM } \\
\text { Sb }
\end{gathered}
\] \\
\hline 5 & 41415 & 1 & 22 & 0.2 & 66 & 2 & & 30 & 40 & 2 \\
\hline 5 & 41416 & 1 & 54 & 0.2 & 84 & 4 & & 1100 & 40 & 1 \\
\hline 5 & 41417 & 1 & 50 & 0.2 & 94 & 75 & & 1040 & 70 & a \\
\hline \(s\) & 41416 & 3 & 98 & 1.2 & 82 & 4 & & 11000 & 120 & 1 \\
\hline 5 & 41419 & 1 & 26 & 0.4 & 62 & 6 & & 290 & go & 1 \\
\hline S & 41420 & 2 & 30 & 0.4 & 84 & 4 & & 470 & so & 1 \\
\hline 5 & 41421 & 8 & 28 & 0.4 & 82 & 14 & & 50 & 40 & 1 \\
\hline 5 & 41422 & 2 & 30 & 0.2 & 102 & 9 & & 10 & 50 & 1 \\
\hline 5 & 41423 & 4 & 30 & 0.2 & 146 & 24 & & 10 & 20 & 1 \\
\hline 5 & 41424 & 7 & 32 & 0.2 & 158 & 26 & & 10 & 70 & 2 \\
\hline S & 78655 & 1 & 14 & 0.2 & 72 & 2 & 400 & 10 & 40 & 1 \\
\hline \(s\) & 7 Sos 6 & 3 & 2 & 0.2 & 126 & 28 & 880 & 10 & 40 & 1 \\
\hline S & 73667 & \(\underset{\sim}{3}\) & 10 & 0.2 & 128 & 24 & 500 & 10 & 60 & 1 \\
\hline s & 73568 & 5 & 4 & 0.2 & 140 & 28 & 520 & 10 & 63 & 1 \\
\hline 5 & 75689 & 19 & 438 & 9.0 & 76 & 10 & 300 & 28009 & 340 & i \\
\hline 5 & 78670 & 17 & 48 & 2.0 & 72 & 6 & 260 & 509 & 100 & 1 \\
\hline 5 & 78671 & 1 & B0 & 0.2 & 96 & 4 & 360 & 449 & a & 1 \\
\hline 5 & 78.72 & 1 & 48 & 0.2 & 3E & 2 & 820 & 80 & 40 & 1 \\
\hline 5 & 78178 & 1 & 82 & 0.2 & 94 & 2 & 260 & 170 & ¢ & i \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { T.T. } \\
& \text { NO. }
\end{aligned}
\] & \multicolumn{2}{|c|}{\begin{tabular}{l}
SAMFLE \\
No．
\end{tabular}} & Cus & \(2 n\) & F＇b & Ag & Mio & fis & \[
\begin{aligned}
& 208 \\
& \text { AU }
\end{aligned}
\] & \\
\hline 2 & Silt & 73585 & 36 & 130 & 1 & 0.2 & E & \(\because\) & io & \\
\hline 3 & & 73586 & 48 & 150 & 1 & 0.2 & E & z & 10 & \\
\hline 4 & & 73587 & ：8 & 68 & 1 & 0.2 & 1 & E & 10 & \\
\hline 5 & & 73598 & E0 & \％ 66 & 1 & 0.2 & \％ 4 － & E & 10 & \(\checkmark\) \\
\hline \(\epsilon\) & & 73589 & 6 & 24 & ： & 0.2 & 1 & 2 & 10 & \\
\hline 7 & & 73530 & 8 & 3 & ； & Q． 2 & 1 & E & 10 & \\
\hline 8 & & 73591 & 14 & 5 & ： & 0．E & 1 & E & 10 & \\
\hline 9 & & 73592 & 8 & 36 & i & 0.2 & 1 & \(\theta\) & 10 & \\
\hline 10 & & 73593 & 10 & \(3 こ\) & 1 & 0.2 & ！ & \(\Xi\) & 10 & \\
\hline 11 & & 73594 & 38 & 62 & ： & 0．E & i & E & 78 & \\
\hline 12 & & 73595 & 24 & 50 & 1 & B．E & ： & 2 & 10 & \\
\hline 13 & & 73596 & 32 & 60 & 1 & Q．\({ }^{\text {a }}\) & 1 & 2 & 10 & \\
\hline i4 & & 81912 & 26 & 94 & 1 & Q． 3 & 1 & 4 & 10 & \\
\hline 15 & & 81813 & 28 & 92 & 1 & Q． 2 & 1 & \(\Xi\) & E & \\
\hline 15 & & 81816 & 10 & 140 & ！ & 0.2 & 1 & 4 & 10 & \\
\hline 17 & & 91819 & 50 & 160 & 1 & D． & \(E\) & 10 & 10 & \\
\hline 18 & & 81881 & 40 & 1420 & \(E\) & \(0 . E\) & E & 12 & 10 & \\
\hline 19 & & 818ご & 46 & 150 & 1 & 0． 2 & \(E\) & 12 & ： 0 & \\
\hline 20 & & 81894 & E \({ }^{1}\) & 160 & 1 & 0.2 & E & E0 & i0 & \\
\hline 21 & Silt & 81825 & 36 & 150 & \(\pm\) & \(0 . E\) & \(\because\) & \(\Xi\) & 10 & \\
\hline をこ & 195505 & 19750 N & 36 & 130 & 1 & 》．E゙ & \(i\) & 2 & 10 & \\
\hline 23 & & 19760 & 38 & 140 & 1 & D． 2 & 2 & 5 & 10 & \\
\hline \(\because 4\) & & 13770 & 36 & 150 & 1 & 0． \(\mathrm{E}^{\text {a }}\) & \(E\) & 10 & 120 & \\
\hline こち & & 19780 & 34 & 110 & 1 & D．\(E\) & E & E & 10 & \\
\hline 25 & & 19730 & 58 & 150 & \(E\) & Q．E & 4 & \(\varepsilon\) & 10 & \\
\hline ご & & 19880 & 48 & 150 & 1 & 0.2 & i & 4 & 10 & \\
\hline こ9 & & 19810 & 52 & 170 & 1 & Q． & \(\pm\) & 12 & 10 & \\
\hline 27 & & \(138 こ 0\) & 48 & 150 & 2 & Q． 2 & E & E & 10 & \\
\hline 30 & & 17830 & 42 & 140 & 1 & D．E & 1 & 8 & 10 & \\
\hline 31 & & 19840 & 38 & 140 & 1 & 0.3 & 1 & 10 & 10 & \\
\hline 32 & & 17850 & 38 & 130 & 1 & 0.2 & 1 & 4 & 10 & \\
\hline 33 & & 19860 & 48 & 150 & 14 & Q． 2 & 1 & \(\epsilon\) & 10 & \\
\hline 34 & & 19870 & 44 & 180 & 4 & 入．\({ }^{\text {® }}\) & 4 & 2 & 10 & \\
\hline 35 & & 19880 & 44 & 150 & 1 & 0.2 & 4 & \(E\) & 10 & \\
\hline 36 & & 13830 & 46 & 160 & 4 & 0． 2 & こ & 18 & 10 & \\
\hline 37 & & 13900 & 48 & 150 & 4 & D．\(E\) & E & 14 & 10 & \\
\hline 38 & & 19910 & 50 & 150 & 1 & （7．2 & 2 & 16 & 10 & \\
\hline 39 & & 19920 & 48 & 160 & 6 & 0.2 & \(\Sigma\) & 10 & 10 & \\
\hline 48 & & 19930 & 48 & 140 & 1 & Q．E & 4 & 8 & I．S． & \\
\hline 41 & & 19940 & 48 & 150 & \(E\) & Q． 2 & \(\Xi\) & 4 & I．S． & \\
\hline 42 & & 19750 & 48 & 150 & 1 & 0.2 & こ & 10 & 1．S． & \\
\hline 43 & & 19960 & 46 & 160 & 1 & Q．E & E & 8 & 10 & \\
\hline 44 & & 19970 & 46 & 160 & 1 & 0.2 & 2 & 8 & 10 & \\
\hline 45 & & 19980 & 36 & 180 & 1 & 0． 2 & \(\underline{c}\) & 10 & 10 & \\
\hline 46 & 19550E & 7970n & 26 & 160 & 1 & 0.2 & 1 & 6 & 10 & \\
\hline 47 & 196010 E & 9750N & 26 & 80 & 1 & 0．こ & 4 & 4 & 10 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline . 48 & 25760 & 30 & 130 & 1 & 0.2 & e & 4 & 10 \\
\hline 449 & 19770 & 44 & 130 & 1 & 0.2 & 2 & 10 & 10 \\
\hline 1450 & 19780 & 40 & 110 & 1 & 0.2 & 4 & 2 & 10 \\
\hline 4\%51 & 19796 & 32 & 94 & 1 & 0.2 & 2 & 4 & 10 \\
\hline +. 53 & 19800 & 38 & 150 & E & 0.2 & 2 & 2 & 10 \\
\hline 53 & 19810 & 46 & 150 & 1 & 0.2 & 1 & 4 & 10 \\
\hline 54 & 19820 & 34 & 60 & 1 & 0.2 & 2 & 4 & 10 \\
\hline 5 & 17830 & 42 & 140 & 1 & 0.2 & 4 & 14 & 10 \\
\hline 56 & 19840 & 42 & 150 & 4 & 0.2 & 2 & 12 & 10 \\
\hline 57 & 19850 & 42 & 160 & 1 & 0.2 & 4 & \(\epsilon\) & 10 \\
\hline 58 & 19860 & 40 & 148 & 4 & 0.2 & 2 & 10 & 10 \\
\hline 59 & 17970 & E4 & 160 & \(E\) & 0.2 & \(E\) & 6 & 10 \\
\hline 60 & 17890 & 40 & 15 & 1 & 0.2 & 2 & 12 & 10 \\
\hline 61 & 13890 & 46 & 180 & 4 & 0.2 & \(\Sigma\) & 18 & 10 \\
\hline 62 & 17900 & 44 & 278 & 1 & 0. 2 & 2 & 30 & 10 \\
\hline 63 & 19910 & 50 & 170 & 8 & 0.2 & 4 & 20 & 10 \\
\hline 64 & 19700 & 49 & 160 & \(\epsilon\) & 0.2 & 4 & 16 & 10 \\
\hline 65 & 19930 & 48 & 16.4 & 4 & 0.3 & 4 & 14 & 10 \\
\hline EE & 17948 & 34 & 120 & : & 0.2 & 4 & 6 & 10 \\
\hline \(\varepsilon .7\) & 17950 & 44 & 170 & E & 0.2 & 2 & ᄅ & 10 \\
\hline \(\epsilon 8\) & 19960 & 44 & 160 & e & 0.2 & 4 & 2 & :0 \\
\hline ¢Э & 19970 & 44 & 180 & E & 0.2 & 2 & 2 & 10 \\
\hline 70 & 19780 & 56 & 170 & , & 0.E & e & 4 & 10 \\
\hline 71 & 19390 & 44 & 140 & & 0.E & z & 4 & 10 \\
\hline 72 & 19600E-EROUNN & 4 E & 150 & 1 & *.e & 2 & E & 10 \\
\hline 73 & 19650E-19750N & 29 & 100 & ; & 0.E & 2 & z & 10 \\
\hline 74 & 19760 & e8 & 120 & 1 & 8.e & e & \(z\) & 10 \\
\hline 75 & 19770 & \(こ ¢\) & 140 & 1 & Q.e & 6 & \(\varepsilon\) & 10 \\
\hline 76 & 19780 & EE & 100 & 1 & 0.2 & 8 & 4 & 10 \\
\hline 77 & 19790 & 40 & 190 & 3 & 2.e & 4 & \(\varepsilon\) & 10 \\
\hline 78 & 17808 & 42 & 170 & 1 & 0.2 & e & 8 & 10 \\
\hline 79 & 19810 & 18 & 150 & Ed & 0.2 & e & e & 10 \\
\hline 80 & 19800 & 14 & 130 & 14 & 0.2 & 2 & \(\varepsilon\) & 10 \\
\hline 81 & 19830 & 12 & 120 & 18 & 0.2 & 1 & \(\varepsilon\) & 10 \\
\hline 82 & 19840 & 12 & 150 & 14 & 0.2 & 1 & e & 40 \\
\hline 83 & 19850 & 16 & 130 & \(1 E\) & 0.3 & E & 4 & 10 \\
\hline 84 & 19960 & 18 & 130 & 9 & a.e & e & 15 & 10 \\
\hline 85 & 19870 & 18 & 140 & 18 & 0.2 & e & 4 & 12 \\
\hline 86 & 13880 & 16 & 110 & 14 & 0.2 & 4 & 10 & 10 \\
\hline 87 & 19930 & 14 & 130 & 24 & 0.2 & 6 & 4 & 10 \\
\hline 98 & 17900 & 18 & 150 & 18 & 0.2 & \(\varepsilon\) & E & 10 \\
\hline 89 & 19910 & ez & 110 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 90 & 19920 & 2e & 110 & : & 0.2 & 1 & 4 & 10 \\
\hline 91 & 19930 & 26 & 140 & 1 & 0.2 & 1 & ec & 10 \\
\hline 32 & 19740 & 26 & 120 & 1 & 0.2 & 1 & e & 10 \\
\hline 93 & 19750 & 14 & 70 & 1 & 0.e & 1 & 8 & 10 \\
\hline 34 & 13960 & 22 & 120 & 1 & 0.2 & 1 & 4 & 10 \\
\hline 95 & 19650E-19970n & 24 & 140 & 14 & 0.2 & 1 & e & 10 \\
\hline 96 & 19700E-20000N & 40 & 120 & e & 0.2 & & E & 10 \\
\hline 37 & 20010 & 24 & 130 & 12 & 0.2 & 1 & 14 & 10 \\
\hline 98 & 20raed & 26 & 130 & 14 & 0.2 & 1 & 6 & 10 \\
\hline 93 & 20030 & 40 & 76 & 1 & 0.2 & 1 & 6 & 10 \\
\hline 1000 & CHECK NL-5 & 24 & 70 & 54 & 1.4 & 12 & 6 E & 10 \\
\hline 10 j & 20040 & 32 & 88 & & 0.3 & 1 & \(E\) & 10 \\
\hline 102 & 20050 & 28 & 120 & 1 & 0.2 & 1 & 8 & 10 \\
\hline 103 & 19700E-200E0N & 4 E & 150 & 12 & 0.2 & 2 & 12 & 10 \\
\hline 104 & 19750E-19750n & 26 & 110 & e & 0.2 & 1 & 10 & 10 \\
\hline 105 & 19760 & 20 & 1000 & 1 & e & 1 & 6 & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ． 106 & － 19770 & 18 & 100 & 1 & 0.2 & 1 & \(\overline{8}\) & ：10 \\
\hline 107 & 19780 & 22 & 100 & 1 & Q． 2 & 1 & 2 & 10 \\
\hline \％108 & 19790 & 20 & 100 & ： & D． 2 & 1 & 2 & 10 \\
\hline \(\therefore 109\) & 19800 & 20 & 8 c & 1 & 0.3 & 1 & \(E\) & 10 \\
\hline \(\because 110\) & 19810 & 20 & 82 & 1 & 0．E & 1 & \(z\) & 30 \\
\hline 111 & 17820 & 18 & 80 & 1 & 0.3 & i & E & 1001 \\
\hline 112 & 19830 & 20 & 80 & 1 & 0.3 & 1 & \(\Xi\) & 10 \\
\hline 113 & 19946 & 2 a & 80 & 1 & \％． 2 & 1 & \(\because\) & 30 \\
\hline 114 & 19850 & 20 & 10.7 & 1 & 0.2 & i & \(z\) & 10 \\
\hline 1.15 & 13060 & 16 & 90 & ： & 0.3 & ： & 3 & 10 \\
\hline \(: 16\) & 13970 & ：8 & 70 & 1 & 0.2 & 1 & \(z\) & 10 \\
\hline 117 & 19880 & 22 & 90 & 1 & 0． 2 & 1 & \(E\) & 10 \\
\hline 118 & 19870 & 20 & 90 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 119 & 19900 & ごこ & 100 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 120 & 19910 & こ6 & 70 & 1 & \(0 . 已\) & 1 & 2 & 10 \\
\hline 121 & 19920 & 20 & 70 & 1 & D． 2 & 1 & \(\Sigma\) & 10 \\
\hline 122 & 19930 & 2こ & 80 & 1 & Q． 2 & 1 & 2 & 10 \\
\hline 123 & 19940 & E4 & 30 & i & B． 2 & 1 & \(\Xi\) & 10 \\
\hline 124 & 19950 & 18 & 90 & E & －． B & 1 & 2 & 10 \\
\hline 125 & 19970 & 28 & 100 & 1 & D． & 1 & 2 & 10 \\
\hline 126 & 20000 & 38 & 607 & ； & 0．2 & 1 & \(z\) & 10 \\
\hline 127 & En0 0 & 28 & 80 & 1 & B．こ & 1 & z & 10 \\
\hline 128 & 20020 & e2 & 80 & 1 & 0．E & 1 & \(\because\) & 10 \\
\hline 127 & 20030 & 5 & 90 & 1 & D． 2 & 1 & 4 & 50 \\
\hline ：30 & 200440 & 44 & 90 & 1 & D． 2 & 1 & 2 & 10 \\
\hline 131 & 19750E－E0USON & e4 & 80 & 1 & Q．E & e & \(\Sigma\) & 10 \\
\hline 130 & 19800E－19750n & \(\because 8\) & 90 & 1 & 0.2 & 1 & 4 & 10 \\
\hline 133 & 17760 & 26 & 30 & 1 & 0.3 & 1 & \(\Xi\) & 10 \\
\hline 134 & 19770 & 34 & 70 & 1 & 0.2 & 1 & 2 & 50 \\
\hline 135 & 19780 & 38 & 98 & 1 & Q． 2 & 1 & 2 & 40 \\
\hline 136 & 19790 & 38 & 90 & 1 & Q． \(\mathrm{E}^{2}\) & 1 & E & 90 \\
\hline 137 & 17800 & 44 & 92 & 1 & B．\(E\) & 1 & 6 & 60 \\
\hline 138 & 19810 & 40 & 90 & 1 & 0.2 & 1 & \(\Xi\) & 50 \\
\hline 133 & 19920 & 36 & 80 & 1 & 0.2 & 1 & 2 & 5 \\
\hline 148 & 19830 & 28 & 70 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 141 & 19840 & 24 & 7 E & i & 0．E & \(i\) & \(E\) & 10 \\
\hline 148 & 19850 & 22 & 70 & ： & 0． & 1 & \(E\) & 10 \\
\hline 143 & 17860 & E 6 & 70 & 1 & 0.2 & 1 & \(\Xi\) & 10 \\
\hline 144 & 19870 & 24 & 70 & 1 & 0.2 & \(!\) & 已 & 10 \\
\hline 145 & 17880 & 26 & 70 & 1 & 0.2 & 1 & \(E\) & 10. \\
\hline 146 & 19890 & 26 & 70 & 1 & 0.2 & 1 & E & 10 \\
\hline 147 & 19900 & 32 & 70 & 1 & D． 2 & 1 & \(z\) & 10 \\
\hline 148 & 19310 & 28 & 78 & 1 & 0．E & 1 & \(E\) & 10 \\
\hline 149 & 19920 & 30 & 70 & 1 & 0．E & 1 & E & 10 \\
\hline 156 & CHECK NL－S & 2 e & 70 & 66 & 1.4 & 10 & 54 & 10 \\
\hline 151 & 19930 & 32 & 5 S & 1 & 0.2 & 1 & 2 & 10 \\
\hline 152 & 19940 & 30 & 56 & 1 & ๑． \(\mathrm{C}^{\text {c }}\) & 1 & e & 10 \\
\hline 153 & 17950 & 34 & 46 & 1 & 0.2 & 1 & e & 10 \\
\hline 154 & 19960 & 36 & 56 & 1 & 0.2 & 1 & 4 & 260 \\
\hline 155 & 17970 & 38 & 56 & 1 & 0.2 & 1 & 4 & 10 \\
\hline 156 & 17980 & 38 & 50 & 1 & 0.2 & 1 & \(\epsilon\) & 10 \\
\hline 157 & 17990 & 28 & 48 & 1 & D．E & 1 & 2 & 10 \\
\hline 150 & 20000 & 28 & 80 & 1 & 0.2 & 1 & 10 & 10 \\
\hline 159 & 20010 & 26 & EE & 1 & 0.2 & 1 & 6 & 10 \\
\hline 160 & 20020 & 38 & 70 & 1 & D． 2 & 1 & 10 & 10 \\
\hline 16： & 20030 & 24 & 56 & 1 & 0．2 & 1 & 2 & 10 \\
\hline 162 & 20040 & 30 & 66 & 1 & 0.2 & 1 & e & 10 \\
\hline 163 & 19800E－20050N & 30 & 68 & 1 & D． 2 & 1 & \(\Xi\) & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 164 & 2955ne－i 37 \＃0r & \(\therefore\) & 80 & 1 & 0.2 & 1 & e & i0 \\
\hline 165 & ： 9760 & 36 & 36 & 1 & 0.2 & 1 & 2 & 10 \\
\hline \(16 \in\) & 19780 & 36 & 82 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 167 & 19790 & 36 & 73 & 1 & 0.2 & 1 & B & 10 \\
\hline 169 & 19900 & 42 & 84 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 169 & 17810 & 46 & 7こ & 1 & B． 2 & 1 & \(z\) & 10 \\
\hline 178 & 19800 & 30 & 62 & ： & ロ．2 & 1 & 4 & 10 \\
\hline 1\％： & 138これ & 26 & EE & i & N． 2 & ； & E & 10 \\
\hline 17e & 13840 & 24 & 64 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 173 & 17950 & 24 & 76 & 1 & 3．2 & 1 & 3 & 10 \\
\hline 174 & 19860 & 26 & 88 & 1 & －．2 & 1 & \(E\) & 10 \\
\hline 175 & 19870 & 20 & 78 & 1 & จ． 2 & 1 & 4 & 18 \\
\hline 176 & 13880 & \(5 E\) & ED & 1 & 0． 2 & 1 & \(z\) & 10 \\
\hline 177 & 17890 & こ8 & 8） & 1 & 0.3 & 1 & \(\Xi\) & 10 \\
\hline 178 & 19300 & 16 & 54 & 1 & 0.2 & 1 & E & 10 \\
\hline 179 & 19710 & 30 & 64 & 1 & 0.2 & 1 & 2 & \(\therefore \quad \therefore 2+10\) \\
\hline 188 & 197こ0 & こ8 & \(5 ¢\) & 1 & 0.3 & 1 & こ & 10 \\
\hline 181 & \(19 \ni 30\) & こ6 & \(5 E\) & ， & ®． 2 & ： & 2 & 10 \\
\hline 192 & 19940 & 26 & 64 & ， & N． 3 & i & E & 10 \\
\hline 103 & 19350 & ç & 54 & ， & 0.2 & 1 & \(z\) & 10 \\
\hline 184 & 19960 & 26 & 48 & ， & D． 2 & 1 & E & 20 \\
\hline 185 & 19770 & 30 & 54 & 1 & D． 2 & 1 & \(\Xi\) & 10 \\
\hline 186 & 19780 & 26 & 5 & 1 & D．E & 1 & \(z\) & 10 \\
\hline 187 & 19970 & 28 & 54 & ， & ถ． 2 & 1 & \(E\) & 10 \\
\hline 185 & 20000 & 24 & 50 & 1 & 0.2 & 1 & \(z\) & 10 \\
\hline 199 & E0010 & こわ & 46 & 1 & 0.2 & 1 & E & 10 \\
\hline ：98 & 19850E－E0020N & 22 & 48 & \(!\) & D．E & 1 & e & こ0 \\
\hline \(z\) & 1395ac－zod3m & 28 & 54 & 1 & Q． 2 & 1 & \(E\) & 30 \\
\hline 3 & こe040 & 32 & 50 & 1 & 0.2 & 1 & e & 340 \\
\hline 4 & E0050 & 24 & 74 & 1 & 0． 2 & 1 & \(\Xi\) & 10 \\
\hline 5 & 20060 & 40 & 7 7 & 1 & Q．E & 1 & \(\because\) & 10 \\
\hline 5 & 1955nc－50070N & \(E \cdot\) & 52 & 1 & 0．\(\square^{2}\) & 1 & \(\because\) & 10 \\
\hline 7 & 19700E－19750N & E6 & 68 & 1 & 0.2 & 1 & E & 10 \\
\hline 8 & 19760 & 24 & 70 & 1 & 0．E & 1 & \(z\) & 10 \\
\hline F & 13778 & 24 & EE & 1 & Q．E & 1 & E & 10 \\
\hline 12 & 19780 & 26 & 66 & 1 & D．E & 1 & E & 100 \\
\hline 11 & ： 9790 & 2 c & 76 & 1 & ロ．\(\Xi\) & 1 & \(z\) & ： 0 \\
\hline 12 & 19800 & \(\because\) & 68 & 1 & \(0 . E\) & 1 & \(\Xi\) & 10 \\
\hline 13 & 17810 & E0 & 78 & 1 & D． 2 & 1 & 2 & 10 \\
\hline 14 & 19800 & 34 & 80 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 15 & 13830 & 32 & 76 & 1 & 0.2 & 1 & E & 10 \\
\hline 16 & 17840 & 38 & 76 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 17 & 17850 & 34 & 76 & 1 & 0．ć & 1 & E & 10 \\
\hline 18 & 19860 & 35 & 74 & i & 0.2 & 1 & \(E\) & 10 \\
\hline 19 & 17870 & 44 & 82 & 1 & 0．ᄅ & 1 & E & 10 \\
\hline El & 17880 & 32 & 84 & 1 & 0.2 & 1 & \(\because\) & 10 \\
\hline ご & 17890 & 34 & 62 & 1 & 0.2 & 1 & \(\Xi\) & 10 \\
\hline 22 & 19900 & 32 & 70 & 1 & 0.2 & 1 & \(\varepsilon\) & 10 \\
\hline こ3 & 19710 & 32 & 78 & 1 & 0.2 & 1 & E & 60 \\
\hline \(\underline{2}\) & 19920 & 34 & 7 F & 1 & 0.2 & 1 & \(z\) & 10 \\
\hline －5 & 19930 & 34 & 72 & 1 & 0.2 & 1 & E & 10 \\
\hline E6 & 19940 & 24 & 68 & 1 & Q． 2 & 1 & こ & 10 \\
\hline \(\cdots\) & 19350 & 24 & 64 & 1 & \(0 . E\) & 1 & \(\because\) & 10 \\
\hline ご8 & 19960 & 30 & 72 & 1 & 0． 2 & 1 & e & 10 \\
\hline 29 & 19970 & 36 & \(7 E\) & 1 & 0．2 & 1 & E & 10 \\
\hline 30 & 17980 & 30 & 74 & 1 & 0.2 & 1 & E & 10 \\
\hline 31 & 19990 & 24 & 66 & 1 & 0.2 & 1 & こ & 10 \\
\hline 30 & 20000 & 30 & 74 & 1 & 0.2 & 1 & こ & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 33 & 20ida & 32 & 74 & 1 & 0.2 & 1 & & e & & in \\
\hline 34 & E0020 & 36 & 24 & 1 & 0.2 & 1 & & \(こ\) & & 10 \\
\hline －35 & E0030 & 28 & 72 & 1 & 0.2 & 1 & & 2 & & ：0 \\
\hline 36 & 20040 & 28 & 66 & 1 & 0． 2 & i & & E & & 14 \\
\hline 37 & 20050 & 18 & 52 & 1 & 0.2 & 1 & & e & & 10 \\
\hline 38 & 20060 & 24 & 64 & 1 & 0． 2 & 1 & & 2 & & 10 \\
\hline 37 & 200070 & 24 & 68 & 1 & 0.2 & 1 & & 2 & & 10 \\
\hline 40 & E2030 & 28 & 68 & 1 & 8．2 & 1 & & \(E\) & & 10 \\
\hline 41 & 20090 & 19 & 56 & 1 & （1） 2 & 1 & & 2 & & 10 \\
\hline 4ご & 20100 & 18 & 50 & 1 & D． 3 & \(i\) & & E & & 18 \\
\hline 43 & 20110 & 24 & 70 & 1 & 0.2 & 1 & & z & & 40 \\
\hline 44 & E01こ0 & 10 & EE & 1 & 0.2 & 1 & & こ & & 10 \\
\hline 45 & e0130 & 16 & 80 & 1 & 0.2 & 1 & & 2 & & 10 \\
\hline \(4 E\) & 19300E－E0140N & 18 & 80 & 1 & Q． 2 & 1 & & \(z\) & & 20 \\
\hline 47 & 19950E－19750N & \(\varepsilon\) & 64 & 1 & 0.2 & 1 & & \(z\) & & 10 \\
\hline 48 & 1976 & E0 & 70 & \(\therefore \quad 1\) & 0.2 & 1 & （4） & \(E\) & F－ & 10 \\
\hline 43 & 19770 & 34 & 84 & 1 & \(0 . こ\) & 1 & & E & & 10 \\
\hline 50 & 19780 & 14 & 200 & 44 & B． 4 & 1 & & 2 & & 20 \\
\hline \(5:\) & 19790 & 24 & 76 & 1 & D． 0 & 1 & & e & & E0 \\
\hline 59 & 19800 & E6 & \(7 E\) & 1 & － & ； & & 2 & & これ \\
\hline 53 & 17810 & 28 & 82 & 1 & （1． 2 & 1 & & 2 & & 10 \\
\hline 54 & 19800 & 24 & 90 & 1 & D．\({ }^{\text {a }}\) & 1 & & \(E\) & & 10 \\
\hline 55 & 19830 & 24 & 80 & 1 & Q． 2 & 1 & & E & & 10 \\
\hline 56 & 17840 & E & 92 & 1 & 0.3 & 1 & & e & & 10 \\
\hline 57 & 19850 & こ\％ & 80 & 4 & ®． 2 & 1 & & 2 & & 10 \\
\hline 53 & 19860 & 24 & 92 & 5 & 0.2 & 1 & & E & & 200 \\
\hline 59 & 17970 & 14 & \(6 E\) & 6 & Q．\({ }^{2}\) & 1 & & E & & 10 \\
\hline Eb & 13690 & 20 & 76 & 3 & 0.3 & 1 & & \(E\) & & 10 \\
\hline E： & 19890 & 30 & 74 & \(!\) & 0.2 & \(i\) & & こ & & 10 \\
\hline \(6 こ\) & 19900 & 30 & 30 & － & 0.2 & 1 & & E & & 10 \\
\hline 63 & 19910 & －8 & 80 & 1 & 0.2 & 1 & & \(\Xi\) & & 10 \\
\hline 64 & 13950 & ER & 7 7 & 1 & ถ．\({ }^{\text {® }}\) & 1 & & \(E\) & & 10 \\
\hline E5 & 19730 & E® & 76 & 1 & Q．E & i & & E & & 10 \\
\hline 66 & 19940 & 32 & 80 & 1 & 入．\({ }^{\text {c }}\) & 1 & & \(E\) & & 10 \\
\hline 67 & 19950 & \(\Xi 8\) & 98 & 1 & 0.2 & 1 & & こ & & 10 \\
\hline 68 & 19960 & 29 & 78 & 1 & Q．E & 1 & & \(\because\) & & 10 \\
\hline 69 & 19770 & 30 & 80 & 1 & D．E & 1 & & 2 & & 10 \\
\hline 70 & 19990 & 32 & 74 & 1 & 8． 3 & 1 & & 2 & & 10 \\
\hline 71 & 19930 & 22 & 70 & 1 & 0．E & 1 & & 2 & & 10 \\
\hline 73 & couno & 24 & 74 & 1 & 0．2 & 1 & & 2 & & 30 \\
\hline 73 & 20010 & 38 & E6 & 1 & D． 2 & 1 & & \(\because\) & & 20 \\
\hline 74 & 200こ0 & 36 & 76 & 1 & 0.2 & 1 & & E & & 10 \\
\hline 75 & 20030 & 46 & 80 & 1 & （1．2 & 1 & & \(\bar{z}\) & & 10 \\
\hline 76 & E0044 & \(\Xi 6\) & 66 & 1 & 0．2 & 1 & & e & & 10 \\
\hline 77 & 20050 & 24 & 60 & 1 & 0.2 & 1 & & \(z\) & & 10 \\
\hline 78 & こ0060 & 24 & 66 & 1 & 0．2 & 1 & & E & & 10 \\
\hline 79 & 20070 & E0 & 60 & 1 & 0.2 & 1 & & こ & & 10 \\
\hline 80 & 20080 & 28 & 92 & 1 & 0.2 & 1 & & \(\Xi\) & & 30 \\
\hline 81 & 20090 & 24 & 44 & \(\cdots\) & 0.2 & 1 & & E & & 10 \\
\hline 82 & 20100 & 24 & 36 & 1 & D． 2 & 1 & & \(e\) & & 10 \\
\hline 83 & 20110 & 16 & 230 & 46 & 0．\({ }^{\text {a }}\) & 1 & & 2 & & 10 \\
\hline 84 & 20120 & 12 & 180 & 58 & 0.2 & 1 & & 2 & & 10 \\
\hline 85 & 20130 & こ8 & 88 & 1 & Q．E & 1 & & 2 & & 10 \\
\hline 86 & 20140 & E0 & \(\theta 8\) & 1 & 0．\(\underbrace{2}\) & 1 & & e & & 30 \\
\hline 87 & 20150 & 24 & 82 & 1 & 0.2 & 1 & & 2 & & 10 \\
\hline 88 & 20160 & 24 & 92 & 1 & 0．2 & 1 & & 2 & & 10 \\
\hline 89 & 20170 & 16 & 70 & 1 & 0.2 & 1 & & 2 & & 10 \\
\hline 90 & 20180 & 10 & 54 & 1 & 0.2 & 1 & & \(\cdots\) & & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline －\({ }^{2}\) & 20： 06 & ie & 8.4 & i & Q．e & i & 2 & 10 \\
\hline 92 & 19950 －こめこかめN & 2 & 74 & 1 & D． \(0^{2}\) & 1 & 4 & \(E\) \\
\hline 93 & EVRUQE－19750n & 2 & ： & 10 & 10． 3 & 1 & 2 & 10 \\
\hline 94 & 19760 & 2 & 140 & 18 & D． 3 & 1 & E & 10 \\
\hline 95 & 19770 & 20 & 120 & ： 6 & Q． 2 & 1 & 2 & 10 \\
\hline \(9 \epsilon\) & 137＊ & 24 & 96 & 0 & Q． & 1 & E & 10 \\
\hline 37 & 19790 & 18 & E4 & 1 & Q． 2 & 1 & E & 10 \\
\hline 98 & 19800 & 24 & 7.4 & ： & B． 2 & 1 & 2 & in \\
\hline 93 & 19420 & \(こ 6\) & 76 & ： & 0.2 & ． & \(\Xi\) & 20 \\
\hline 100 & CHECK \(\because\)－ & 2 & \(6 \%\) & 72 & 1．E & 10 & 56 & 10 \\
\hline 10 i & 1989 & こも & 73 & 1 & 0.2 & 1 & E & ？ \\
\hline 10 N & ： 9830 & 30 & \(7 \%\) & 1 & n． & 1 & \(\Xi\) & 10 \\
\hline 103 & 19840 & 24 & E & 1 & ©． 3 & 1 & \(z\) & ： 0 \\
\hline 104 & 19850 & 36 & 76 & 1 & 0.2 & 1 & \(\varepsilon\) & 10 \\
\hline 185 & 19360 & 30 & 76 & 1 & Q． 2 & 1 & E & ： 0 \\
\hline 106 & 19870 & 30 & 6 E & 1 & 0.2 & 1 & \(E\) & 10） \\
\hline 1077 & 19880 & \(3 こ\) & 68 & ！ & Q． 2 & 1 & 2 & 10 \\
\hline 108 & 19890 & 30 & 72 & ； & e． & 1 & \(\Xi\) & 10 \\
\hline 107 & 17900 & 30 & 7 ¢ & \(!\) & 0.8 & 1 & こ & 必 \\
\hline 118 & 17910 & 2s & 76 & i & Q． 2 & 1 & \(E\) & 30 \\
\hline 111 & －97を & 38 & 76 & 1 & Q． 2 & 1 & 2 & ： 4 \\
\hline 113 & 13930 & 35 & 76 & 1 & 0． 2 & 1 & E & 40 \\
\hline 113 & 19340 & 34 & 74 & ； & 入． & 1 & ق & E0 \\
\hline 114 & 19350 & 44 & EE & 1 & D．\(\square^{\text {a }}\) & 1 & \(E\) & \(10^{\circ}\) \\
\hline 115 & 15960 & E8 & 76 & 1 & 0．E & i & 2 & Eve \\
\hline 116 & 19970 & 5 & 70 & 1 & \(0 . E\) & 1 & \(\Xi\) & E\％ \\
\hline 117 & 19980 & 14 & 50 & ： & Q．E & i & 2 & iol \\
\hline 118 & 19990 & 1 E & 50 & 1 & Q．E & 1 & \(\because\) & is \\
\hline 119 & Evinod & 10 & 130 & 34 & 0.2 & 1 & 2 & ib \\
\hline 120 & 20010 & 20 & 64 & 1 & 0.2 & 1 & 2 & 290 \\
\hline 121 & E0RE0 & こ日 & 74 & 1 & 0．2 & 1 & 2 & E0 \\
\hline \(1 こ ゙\) & 20030 & 16 & 59 & 1 & Q．E & 1 & \(\because\) & \(\pm 0\) \\
\hline 123 & －00440 & 16 & 60 & 1 & D．E & 1 & E & 107 \\
\hline 124 & これ050 & 20 & 56 & － & 0． 2 & 1 & 2 & 37 \\
\hline 155 & c0060 & 10 & 40 & 1 & 入．\({ }^{\text {a }}\) & 1 & z & i 2 \\
\hline 126 & 20070 & 14 & 54 & 1 & a．\({ }^{\text {a }}\) & 1 & 2 & E \\
\hline \(1 \Xi 7\) & Eareos & 148 & 48 & 1 & 1.4 & 1 & \(E\) & 8400 \\
\hline 128 & coub & \(1 E\) & 68 & 1 & 0． 3 & 1 & \(E\) & 10 \\
\hline 123 & 20100 & 10 & 52 & 1 & 0.2 & 1 & \(\Sigma\) & 10 \\
\hline 130 & こ0110 & 12 & 70 & i & 0．E & 1 & \(E\) & 10 \\
\hline 131 & 20120 & 30 & 70 & 1 & 0．2 & 1 & \(z\) & 10 \\
\hline 132 & 20130 & 24 & 96 & 1 & － 2.2 & 1 & \(z\) & 10 \\
\hline 133 & こ0140 & E日 & 50 & 1 & Q．E & 1 & 2 & 10 \\
\hline 134 & 20150 & \(2^{4}\) & 80 & 1 & ＊．\({ }^{\text {a }}\) & 1 & \(E\) & in \\
\hline 135 & E0160 & 24 & 80 & 1 & 0.2 & 1 & 2 & 18 \\
\hline 136 & 20170 & 32 & 88 & 1 & D． 3 & 1 & 2 & 10 \\
\hline 137 & 20180 & 34 & 76 & 1 & 0.2 & 1 & \(\underline{2}\) & ： 0 \\
\hline 138 & E0190 & 28 & 84 & 1 & 0．E & 1 & e & 10 \\
\hline 139 & 20200 & 28 & 76 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 140 & 20000E－20210N & E0 & E4 & 1 & 0.3 & 1 & 2 & 10 \\
\hline 141 & 20050E－20000N & \(3 こ\) & 130 & 1 & Q． 2 & 1 & 2 & 10 \\
\hline 142 & 20010 & 12 & 76 & 1 & 0.2 & 1 & \(\Xi\) & 10 \\
\hline 143 & 20020 & 16 & 80 & ： & 0． 2 & 1 & \(\varepsilon\) & 10 \\
\hline 144 & こひひこ & 12 & 80 & 1 & 0.2 & 1 & E & 10 \\
\hline 145 & 20040 & 12 & 76 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 145 & 20050 & 16 & 82 & 1 & 0． 2 & 1 & 2 & 10 \\
\hline 147 & 20060 & 6 & 42 & 1 & 0.2 & 1 & 2 & 10 \\
\hline 148 & 20070 & 8 & 54 & 1 & Q． 2 & 1 & E & 10 \\
\hline
\end{tabular}


Disposition: d
End of Mail.

\section*{NORANDA UANCOUVER LABORATORY}
********************************** CODE:8511-008
PROPERTY/LOCATION:KLEHINI RIVER CODE :8511-00B
\begin{tabular}{llll} 
Project No. & \(: Y 76\) & Sheet:l of 1 & Date rec'dinOU. OL \\
Material & \(: S O I L\) & Geol.:M.S. & Date compl:DEC.O1
\end{tabular}

Remarks :
Values in PPM, except where noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline T. T. & \multirow[t]{2}{*}{SAMPLE} & & & & & & & PPB \\
\hline No. & & Cu & Zn & Pb & Ag & Mo & As & Au \\
\hline 2 & 20050E-19990N & 8 & 58 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 3 & 19980 & 20 & 78 & 1 & 0.4 & 1 & 1 & 10 \\
\hline 4 & 19970 & 16 & 72 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 5 & 19960 & 28 & 70 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 6 & 19950 & 16 & 60 & 1 & 0.2 & 1 & 1 & 130 \\
\hline 7 & 19940 & 38 & 68 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 3 & 19930 & 36 & 54 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 9 & 19920 & 32 & 72 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 10 & 19910 & 22 & 48 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 11 & 19900 & 16 & 32 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 12 & 19890 & 24 & 76 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 13 & 19860 & 32 & 62 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 14 & 19870 & 24 & 64 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 15 & 19860 & 22 & 60 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 16 & 19780 & 16 & 76 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 17 & 20050E-19760N & 22 & 86 & 1 & 0.4 & 1 & 1 & 10 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
PROPERTY／LOCATION：KLEHENI RIVER & & CODE ：BSIO－OOF \\
& & & Sheet： 1 of 3
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline T．T． No． & SAMPLE No． & Cu & Zn & Pb & Ag & Mo & As & \[
\begin{array}{r}
\text { PPB } \\
\text { Ail }
\end{array}
\] \\
\hline 2 & 70551 & 30 & 88 & 6 & 0.2 & 1 & 2 & 10 \\
\hline 3 & 70552 & 26 & 94 & 6 & 0.2 & 1 & 6 & 10 \\
\hline 4 & 70553 & 26 & 88 & 4 & 0.2 & 1 & 2 & 10 \\
\hline 5 & 70554 & 26 & Э & \(\varepsilon\) & 0.2 & 1 & 1 & 10 \\
\hline E & 70555 & 22 & 88 & 4 & \(0 . \ddot{C}\) & 1 & 1 & 10 \\
\hline 7 & 70556 & 22 & 88 & 2 & 0.2 & 1 & 1 & 10 \\
\hline 9 & 70557 & 3 c & \(9 こ\) & 4 & O．こ & 1 & 4 & 10 \\
\hline 9 & 70558 & 32 & 86 & こ & 0.2 & 1 & 1 & 10 \\
\hline 10 & 70559 & 36 & 98 & 2 & 0.2 & 5 & 1 & 10 \\
\hline 11 & \(70560^{-}\) & 34 & 96 & 4 & 0.2 & 1 & 6 & 10 \\
\hline 1 1． & 70561 & 30 & 88 & 4 & 0.2 & 1 & 2 & e0 \\
\hline 13 & 70562 & 38 & 88 & \(E\) & 0.2 & 1 & 4 & 10 \\
\hline 14 & 70563 & 34 & 86 & 6 & 0.2 & 1 & 4 & 10 \\
\hline 15 & 70563 & 28 & 80 & 4 & O．こ & 1 & 1 & 10 \\
\hline 16 & 70564 & 34 & 34 & 4 & 0.2 & 1 & 4 & 10 \\
\hline 17 & 70565 & 24 & 90 & 4 & 0.2 & 1 & 1 & 10 \\
\hline 18 & 70566 & 30 & 100 & 4 & 0.2 & 1 & 2 & 10 \\
\hline 19 & 70567 & 28 & 84 & 4 & 0.2 & 1 & こ & 10 \\
\hline 20 & 70568 & 30 & \(9 \epsilon\) & 4 & 0.2 & 1 & 1 & 10 \\
\hline cil & 70569 & 26 & 86 & 4 & 0.2 & 1 & 2 & 10 \\
\hline ここ & 70570 & 30 & 100 & 4 & 0.2 & 1 & 2 & 10 \\
\hline そう & 70571 & 58 & 100 & E & 0.2 & 1 & 1 & 10 \\
\hline 24 & 70572 & 46 & 96 & 1 & 0.8 & 1 & \(\Sigma\) & 10 \\
\hline こち & 70573 & 36 & 100 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 26 & 70574 & 30 & 34 & 4 & 0.2 & 1 & 4 & 10 \\
\hline 27 & 70575 & 32 & 100 & 4 & O． 2 & 1 & 1 & 10 \\
\hline こ8 & 70576 & 50 & 34 & 1 & 0.2 & 1 & 4 & 50 \\
\hline 29 & 70577 & 48 & 100 & 4 & 0.2 & 1 & 6 & 10 \\
\hline 30 & 70578 & 46 & 74 & 2 & 0.2 & 1 & \(こ\) & 10 \\
\hline 31 & 70579 & 40 & 78 & 4 & 0.2 & 1 & 4 & 10 \\
\hline 32 & 70580 & 38 & 9E & E & 0.2 & 1 & 4 & 10 \\
\hline 33 & 70581 & 78 & 120 & \(\varepsilon\) & 0.2 & 1 & 1 & 10 \\
\hline 34 & 70582 & 96 & 100 & \(こ\) & 0.2 & 1 & 1 & 10 \\
\hline 35 & 70583 & 50 & 98 & 1 & 0.2 & 1 & 1 & 10 \\
\hline 36 & 70584 & 80 & 110 & \(E\) & 0.2 & 1 & 8 & 10 \\
\hline 37 & 70585 & 1200 & 140 & \(E\) & 0.2 & 1 & 12 & 10 \\
\hline 38 & 70586 & 70 & 110 & 4 & O．E & 1 & こ & 10 \\
\hline 37 & 70587 & 54 & 86 & 1 & 0.2 & 1 & 6 & 10 \\
\hline 40 & 70588 & 50 & 96 & 1 & 0.2 & 1 & 6 & 10 \\
\hline 41 & 70589 & 56 & 84 & E & \(\square\) & 1 & 8 & 10 \\
\hline 4 & 70590 & 84 & 120 & 1 & 0.3 & 1 & 4 & 10 \\
\hline 43 & 70591 & 74 & 110 & \(E\) & 0.2 & 1 & \(\varepsilon\) & 10 \\
\hline 44 & 70592 & 64 & 84 & \(₹\) & 0.2 & 1 & 1 & 10 \\
\hline 45 & 70593 & 48 & 76 & 1 & 0．ご & 1 & 1 & 10 \\
\hline 46 & 70534 & 64 & 82 & 1 & 0.2 & 1 & 2 & （80） \\
\hline \(-47\) & 70595 & 56 & \(8 E\) & 1 & 0.8 & 1 & 1 & 10 \\
\hline 48 & 70596 & 50 & 100 & \(e\) & 0.2 & 1 & 1 & 160 \\
\hline 47 & 70597 & 50 & 96 & \(E\) & 0.2 & 1 & 1 & \(250 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline T．T． No． & SAMPLE No． & Cu & 2 ra & \(p b\) & \(A \mathrm{O}\) & Mo & As & \[
\begin{array}{r}
\mathrm{pps} \\
\mathrm{Au}
\end{array}
\] & \[
\begin{aligned}
& 85010-0 \\
& \mathrm{P}_{\mathrm{g}} .2
\end{aligned}
\] \\
\hline （ 50 & 70578 & 54 & 100 & 1 & 0.2 & 1 & 2 & 170 & \\
\hline － 51 & 70599 & 54 & 82 & 1 & 0.2 & 1 & 4 & 90 & \\
\hline 52 & 70600 & 50 & \(\ni ૯\) & 4 & O． & 1 & 8 & 200 & \\
\hline 53 & 70601 & 58 & 110 & 6 & 0.2 & 1 & 6 & 250\％ & \\
\hline 54 & 70602 & 68 & 30 & \(こ\) & O． \(\bar{C}\) & 1 & 1 & 140 & \\
\hline 55 & 70603 & 74 & 86 & 1 & O． e & 1 & 1 & 10 & \\
\hline 56 & 70604 & 52 & 82 & 1 & O． 2 & 1 & 1 & 10 & \\
\hline 57 & 70605 & 52 & 84 & 1 & 0.8 & 1 & 1 & 10 & \\
\hline 58 & 70606 & 64 & 86 & 4 & 0.2 & 1 & 1 & 80 & \\
\hline 59 & 70607 & 76 & 88 & 4 & 0.2 & 1 & 1 & 50 & \\
\hline 60 & 70608 & 110 & 100 & 4 & 0.2 & 1 & 1 & 10 & \\
\hline 61 & 70609 & 52 & 84 & \(こ\) & 0.2 & 1 & 4 & 10 & \\
\hline 62 & 70610 & 40 & 78 & \(こ\) & O． 2 & 1 & 1 & 10 & \\
\hline 63 & 70611 & 38 & 72 & 1 & 0.2 & 1 & 1 & 10 & \\
\hline 64 & 70612 & 38 & 68 & \(\varepsilon\) & O． 2 & 1 & 1 & 10 & \\
\hline 65 & 70613 & 38 & 60 & 1 & 0.2 & 1 & 1 & 10 & \\
\hline 66 & 70614 & 30 & 60 & 1 & 0.2 & 1 & 1 & 10 & \\
\hline 67 & 70614 & 36 & 60 & 1 & 0.2 & 1 & 1 & 10 & \\
\hline 68 & 70615 & 38 & 56 & 1 & 0.2 & 1 & 1 & 10 & \\
\hline 69 & 70616 & 30 & 94 & 4 & 0.2 & 1 & 1 & 10 & \\
\hline 70 & 70617 & 64 & 36 & 1 & 0.8 & 1 & 1 & 10 & \\
\hline 71 & 70618 & 44 & 110 & 2 & 0.2 & 1 & 1 & 10 & \\
\hline 72 & 70619 & 68 & 130 & 1 & 0.2 & 1 & 2 & 10 & \\
\hline 73 & 70622 & 70 & 180 & T8 & 0.2 & 1 & 30 & 10 & \\
\hline 74 & 70623 & 52 & 120 & 2 & \(0 . E\) & 1 & 2 & 10 & \\
\hline 75 & 70624 & 64 & 36 & 1 & 0.2 & 1 & 4 & 10 & \\
\hline ） 76 & 70625 & 36 & 76 & 12 & 0.2 & 1 & 10 & 10 & \\
\hline 77 & 70626 & 74 & 92 & 4 & 0.2 & 1 & 30 & 10 & \\
\hline 78 & 70627 & 74 & 8こ & \(E\) & \(0 . E\) & 1 & 6 & 10 & \\
\hline 79 & 70628 & 74 & 82 & 2 & 0.2 & 1 & \(\epsilon\) & 10 & \\
\hline 80 & 70629 & 50 & 68 & 1 & O．\({ }^{\text {a }}\) & 1 & \(\Xi\) & 10 & \\
\hline 81 & 70630 & 46 & 58 & 2 & \(0 . E\) & 1 & 12 & 10 & \\
\hline 82 & 70631 & E4 & 88 & 1 & O．E & 1 & 14 & 10 & \\
\hline 83 & 70632 & 90 & 110 & 4 & \(0 \cdot \tau\) & 1 & 16 & 10 & \\
\hline 84 & 70633 & 68 & 78 & 2 & 0.2 & 1 & 12 & 10 & \\
\hline 85 & 70634 & 54 & 80 & 1 & 0.2 & 1 & 4 & 10. & \\
\hline 86 & 70635 & 48 & 86 & \(\varepsilon\) & 0.2 & c & ． 24 & 10 & \\
\hline 87 & 70636 & 48 & 74 & 1 & O． 2 & 1 & 1 & 10 & \\
\hline 88 & 70637 & 44 & 74 & 1 & \(0 . E\) & 1 & 1 & 10 & \\
\hline 89 & 70638 & 48 & 32 & 1 & 0.2 & 1 & 2 & 40 & \\
\hline 90 & 70637 & 48 & 78 & 1 & O． & 1 & 1 & 10 & \\
\hline 91 & 70640 & 48 & 76 & \(\because\) & 0.2 & 1 & 2 & 1140 & \\
\hline 92 & 70641 & 44 & 74 & 1 & O． 2 & 1 & 1 & 10 & \\
\hline 93 & 70642 & 44 & Bこ & 1 & O． O & 1 & 4 & 10 & \\
\hline 94 & 70643 & 48 & 76 & 1 & 0． 2 & 1 & 1 & \(10^{\circ}\) & \\
\hline 35 & 70645 & 48 & 76 & 1 & \(0 . E\) & 1 & 1 & 10 & \\
\hline 96 & 70646 & 48 & 78 & 4 & O．\(\varepsilon\) & 1 & 2 & 10 & \\
\hline 97 & 70647 & 56 & 78 & \(己\) & O．こ & 1 & 1 & 10 & \\
\hline 98 & 70648 & 50 & 76 & 1 & \(0 . \bar{C}\) & 1 & 1 & 10 & \\
\hline 97 & 70649 & 38 & 74 & 1 & O．こ & 1 & 1 & 10 & \\
\hline 100 & NL－S & & & & & & & \(\square\) & \\
\hline （301 & 70650 & 46 & 84 & \(\underline{2}\) & \(0 . き\) & 1 & 1 & 10 & \\
\hline Gこ & 70651 & 40 & 30 & \(z\) & \(0 . \Xi\) & 1 & 1 & 10 & \\
\hline 103 & 70652 & 40 & 84 & こ & 0.2 & 1 & 1 & 10 & \\
\hline 104 & 70653 & 44 & 80 & \(\Xi\) & \(0 \cdot \bar{C}\) & 1 & \(c\) & 10 & \\
\hline 105 & 70654 & 40 & BE & \(こ\) & \(0 . \Xi\) & 1 & 1 & 10 & \\
\hline 106 & 70ESS & \(4 E\) & BE & \(\Xi\) & \(0 . \hat{C}\) & 1 & 1 & 10 & \\
\hline
\end{tabular}


\section*{APPENDIX G}

\section*{ROCK SAMPLE DESCRIPTIONS}

NORANDA EXPLORATION COMPANY, LIMITED
N.T.S. \(\quad 114\) P/10

PROPERTY_KIEHINI RIVER
DATE July 1985
SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { WIOTH } \\
& (\mathrm{m})
\end{aligned}
\]} & \multicolumn{7}{|c|}{(opt) (ppm) ASSAYS} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline \multirow[t]{2}{*}{41329} & Quartz vein - white, massive, typical, in diorite & chip & 0.5 & 0.029 & 0.02 & 16 & & & & & M. Savell \\
\hline & host. & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{241330} & Quartz vein - as above, same vein, different expo- & chip & 1.0 & 0.169 & 0.035 & 14 & & & & & \\
\hline & sure - strike \(165^{\circ}\), dip \(\sim 50^{\circ} \mathrm{E}\) & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{¢41331} & Diorite - typical, unaltered, chips along ridge & chip & 3.0 & 0.001 & 0.02 & 8 & & & & & \\
\hline & top, some basaltic dyke material & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline \multirow[t]{14}{*}{241332} & Diorite - as above & chip & 2.0 & 0.001 & 0.02 & 12 & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & - & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & 20, & -xim & Wext & smexers &  \\
\hline
\end{tabular}

PROPERTY KLEHINI RIVER
SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPleno.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIOTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) AsSAYs} & \multirow[t]{2}{*}{SAMPLED Br} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline \multirow[t]{6}{*}{h 41344} & Downslope extension of \#41449 vein (above), very & chip & 2.5 & 0.001 & 0.02 & 6 & & & & & M. Savell \\
\hline & similar in appearance, minor schistose, alt'd & & & & & & & & & & \\
\hline & diorite in centre. Contacts obscured by talus. & & & & & & & & & & \\
\hline & "Outcrop" may be just large boulder fallen from & & & & & & & & & & \\
\hline & cliff above, appears to be slightly offset from & & & & & & & & & & \\
\hline & vein trend. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{万41345} & From NE wall of quartz vein \#41449 - sample of qtz- & grab & & 0.001 & 0.02 & 6 & & & & & \\
\hline & carb veinlets in alt'd diorite; veinlets irregular & & & & & & & & & & \\
\hline & up to \(\sim 5 \mathrm{~cm}\) thick. & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{\({ }^{1} 41346\)} & Andesitic volcanic - pale grey-green, f.gr., faint & float & & 0.001 & 0.02 & 428 & & & & & \\
\hline & feldspar phenocrysts visible, weakly schistose, & & & & & & & & & & \\
\hline & with \(58 \%\) py, \(1 \%\) chalcopy in interconnected frac- & & & & & & & & & & \\
\hline & tures and clusters. Float in lateral moraine. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{141347} & Skarn - contains coarse garnets, calcite and calc- & float & & 0.001 & 0.02 & 440 & & & & & \\
\hline & silicates, with minor py and fracture coating MoS 2 . & & & & & & & & & & \\
\hline & Float in lateral moraine. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{41348} & Basaltic Dyke - f.gr., dull gr.-green, massive & float & & 0.001 & 0.02 & 68 & & & & & \\
\hline & with minor \(\mathrm{MoS}_{2}\) in small rosettes. Float in talus & & & & & & & & & & \\
\hline & slope. & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{41349} & Basaltic Dyke - similar to above, with N10\% py in & float & & 0.001 & 0.02 & 14 & & & & & \\
\hline & fractures. & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

NORANDA EXPLORATION COMPANY, LIMITED

PROPERTY
KLEHINI RIVER
DATE Sept. 1985
SAMPLE REPORT


SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) Assars} & \multirow[t]{2}{*}{SAMPLED 8 Y} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline \multirow[t]{3}{*}{W41433} & Qtz-Ankerite vein - on strike with qtz vein sampled & chip & 0.9 & 0.036 & 0.02 & 4 & & & & & M. Savell \\
\hline & above, but with \(40 \%\) akerite. May not be same vein. & & & & & & & & & & \\
\hline & Small crosscutting qtz-ankerite veinlets nearby. & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{441434} & Quartz vein - similar to material sampled in & chip & 1.3 & 0.006 & 0.02 & 12 & & & & & \\
\hline & \#41426, strike extension of same vein. Underlain & & & & & & & & & & \\
\hline & by 0.7 m qtz-carb altered diorite(?). Vein is 0.6 m & & & & & & & & & & \\
\hline & thick. & & & & & & & & & & \\
\hline \(\checkmark 41435\) & Quartz vein - as in \#41426. & chip & 1.0 & 0.930 & 0.06 & 10 & & & & & \\
\hline \(\xrightarrow{+11436}\) & Quartz vein - as in \#41426. & chip & 0.7 & 2.160 & 0.16 & 68 & & & & & \\
\hline 241437 & Quartz vein - as in \#41426. & chip & 1.0 & 0.032 & 0.02 & 18 & & & & & \\
\hline \multirow[t]{2}{*}{\(\cdots 41438\)} & Quartz vein - as in \#41426. Vein is displaced & chip & 1.05 & 0.550 & 0.04 & 4 & & & & & \\
\hline & (faulted) 3 m near sample site. & & & & & & & & & & \\
\hline 441439 & Quartz vein - as in \#41426. Vein attitude \(\sim 115 / 60^{\circ} \mathrm{S}\) & chip & 0.85 & 0.045 & 0.02 & 8 & & & & & \\
\hline \multirow[t]{3}{*}{\(\checkmark 41440\)} & Wall rock - rusty weathered, green, silicified, & chip & 1.15 & 0.001 & 0.02 & 52 & & & & & \\
\hline & altered diorite - no quartz observed, but probably & & & & & & & & & & \\
\hline & obscured by talus. & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{41441} & Quartz vein - different vein than above (see map). & chip & 1.2 & 0.002 & 0.02 & 10 & & & & & \\
\hline & Similar in appearance, with some pyrite-rich ( \(\sim 50 \%\) ) & & & & & & & & & & \\
\hline & sections within vein, \(\sim 10 \mathrm{~cm}\) thick, discontinuous, & & & & & & & & & & \\
\hline & coarse grained. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{341442} & Rusty weathered, qtz-carb altered(?) diorite with & chip & 0.8 & 0.092 & 0.02 & 6 & & & & & \\
\hline & thin qutz-carb veinlets ( \(\sim 30 \%\) vein material) up & & & & & & & & & & \\
\hline & to 8 cm thick. Zone is 0.8 m at ridge top, strikes & & & & & & aspent & Tesmasem & mramames & \(\pm\) mex & mascmsmox \\
\hline
\end{tabular}
v
\(\qquad\)
SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{trpe} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) ASSAYs} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline & \(\sim 020^{\circ}\), dips \(45^{\circ}\) W. Sample \#71923 probably taken & & & & & & & & & & M. Savell \\
\hline & from dip slope of this zone at same site. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{341443} & As above - same zone 10 m downdip. Poor exposure & chip? & 0.7 & 0.008 & 0.02 & 6 & & & & & \\
\hline & estimate thickness. & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{341444} & As above - same zone 10 m downdip of \#41443, NE & chip & 1.0 & 0.010 & 0.02 & 8 & & & & & \\
\hline & side of ridge. Zone of hematized, rust-red coloured & & & & & & & & & & \\
\hline & fault gouge or alteration product, 4 cm thick, & & & & & & & & & & \\
\hline & within zone sampled. & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{341445} & Rusty weathered, altered diorite or skarn pendant & chip & 3.0 & 0.001 & 0.02 & 32 & & & & & \\
\hline & in diorite(?) - pale green, f.gr. siliceous. Zone & & & & & & & & & & \\
\hline & appears to intersect ridge at \(\sim 90^{\circ}\). Strike obscure & & & & & & & & & & \\
\hline & by talus. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\(\sqrt{51446}\)} & Quartz vein - typical, well exposed, host rock is & chip & 3.5 & 0.001 & 0.02 & 4 & & & & & \\
\hline & is xenolithic diorite. Band of highly schistose, & & & & & & & & & & \\
\hline & qtz-carb alt'd diorite at footwall contact. & & & & & & & & & & \\
\hline 万 41447 & Quartz vein - same vein as above, 5 m to north. & chip & 3.0 & 0.001 & 0.02 & 4 & & & & & \\
\hline \multirow[t]{2}{*}{941448} & SW wall of vertical qtz vein (\#41449). - mildly qtz- & chip & 2.0 & 0.001 & 0.02 & 46 & & & & & \\
\hline & carb alt'd diorite, xenolithic, migmatitic. & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{641449} & Quartz vein - base of extensive cliff exposure of & chip & 3.7 & 0.017 & 0.68 & 14000 & & & & & \\
\hline & well exposed vein, vertical. Vein consists predomi & & & & & & & & & & \\
\hline & nantly of massive, limonite stained quartz, with & & & & & & & & & & \\
\hline & centre of 5-10 cm thick band of 50\% coarse chalco & & & & & & & & & & \\
\hline & + po. Directly next to this is a 10 cm band of & & & & & & & & & & \\
\hline
\end{tabular}

SAMPLE REPORT

\(\qquad\) KLEHINI RIVER

DATE July 1985

\section*{SAMPLE REPORT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPle No.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) ASSAYs} & \multirow[t]{2}{*}{SAMPLE
\[
B Y
\]} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline \multirow[t]{2}{*}{269934} & Quartz vein - white, massive, limonite on frac- & chip & & 0.07 & NA & NA & & & & & M. Save] \\
\hline & tures, hosted by diorite. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{¢ 69935} & Quartz vein - same vein as above, different & chip & & 0.02 & NA & NA & & & & & \\
\hline & exposure. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{269936} & Quartz vein - same vein as above, different expo- & chip & & 0.017 & NA & NA & & & & & \\
\hline & sure. & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{269937} & 64 cm chip sample across rusty quartz-(carb) vein. & chip & 64 cm & 0.25 & NA & NA & & & & & \\
\hline & Vein strikes approx. \(083^{\circ}\), dips \(32^{\circ}\) south. Locatio & & & & & & & & & & \\
\hline & is 15 m at \(335^{\circ}\) from \#69935. No visible sulphides & & & & & & & & & & \\
\hline & but extensive hematite staining. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{269938} & Grab sample of coarse, rusty quartz vein. Same & grab & & 0.65 & NA & NA & & & & & \\
\hline & location as \#69937. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{n-69939} & Quartz vein - milky white, massive, typical, same & chip & 0.5 & 0.01 & NA & NA & & & & & \\
\hline & vein but different exposure. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\(V 69940\)} & Footwall rock - dark green, very fine grained, & chip & 1.0 & \(<0.01\) & NA & NA & & & & & \\
\hline & banded dyke paralleling quartz vein, possibly & & & & & & & & & & \\
\hline & altered diorite(?), minor dissem. py: & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{69962} & KR-10 claim - Siderite(?) - \(10 \times 15 \times 17 \mathrm{~cm}\), angular & grab/ & & 0.001 & 0.02 & 20 & & & & & G. B. \\
\hline & cobble of dark rusty orange weathering, medium & & & & & & & & & & \\
\hline & creamy, rusty orange, medium to crystalline, with & & & & & & & & & & \\
\hline & one irregular "bull" quartz veinlet to 2 cm thick, & & & & & & & & & & \\
\hline & and 3\%, irregular pods to \(1 \times 2 \mathrm{~cm}\) and stringer-like & & & & & & & & & & \\
\hline & fracture zones, with finely crystalline muscovite & & & & & & & & & & \\
\hline
\end{tabular}

SAMPLE REPORT


\title{
NORANDA EXPLORATION COMPANY, LIMITED
}
N.T.S. \(114 \mathrm{P} / 10\)

PROPERTY \(\qquad\) DATE Sept. 1985
SAMPLEREPORT


SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{trpe} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) Assays} & \multirow[t]{2}{*}{\[
\underset{B Y}{\operatorname{SAMPLE}^{2}}
\]} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline & fracture pyrite. Sample does not include \#69973 & & & & & & & & & & G.B. \\
\hline & and \#69974 which occur in shear zone. Shear zone & & & & & & & & & & \\
\hline & strike \(325^{\circ} /\) dips \(90^{\circ}\). & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{69973} & KR-1l claim. "Bull" quartz vein. Moderately to & chip & \begin{tabular}{l}
acros \\
11 cm
\end{tabular} & 0.01 & -0.02 & 4 & & & & & \\
\hline & strongly fractured, stained medium rusty orange; & & & & & & & & & & \\
\hline & up to 11 cm thick; strike length about 1.7 m ; occurs & & & & & & & & & & \\
\hline & in 5 m thick, shear zone within diorite?, oriented & & & & & & & & & & \\
\hline & parallel to shears. & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{69974} & KR-11 claim. Rhyolite? dyke?: strongly fractured, & chip & \[
\begin{array}{|l|}
\hline \text { acros } \\
75 \mathrm{~cm} \\
\hline
\end{array}
\] & 0.001 & 0.08 & 16 & & & & & \\
\hline & sub-opaque white to very light tan, very strongly & & & & & & & & & & \\
\hline & sericite? altered, metavitric? rhyolite? with abun- & & & & & & & & & & \\
\hline & dant rusty orange fractures. Dyke about \(75-80 \mathrm{~cm}\) & & & & & & & & & & \\
\hline & thick; occurs along NE margin of shear zone in & & & & & & & & & & \\
\hline & diorite? (see \#69972). & & & & & & & & & & \\
\hline \multirow[t]{9}{*}{69975} & KR-ll Claim. Rusty quartz vein: to 33 cm thick, & chip & acros
\[
33 \mathrm{~cm}
\] & 0.001 & 0.02 & 18 & & & & & \\
\hline & x 2 m strike length. Strongly fractured, very rust & & & & & & & & & & \\
\hline & orange to brown weathering; appears discontinuous & & & & & & & & & & \\
\hline & along strike (and dip) : 2 lenses to 1 m long appar- & & & & & & & & & & \\
\hline & ent - occurs in diorite? & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{PROPERTY KLEHINI RIVER}

DATE Sept. 16/85
SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{3}{|l|}{(opt) (opt) (ppm)} & \multicolumn{4}{|l|}{ASSAYS} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline 70101 & Qtz-feldspar aplite dyke - \(2 \%\) dissem. sulphides & float & 5 cm & 0.001 & 0.02 & 4 & & & & & SAM/JAF \\
\hline & (galena?) - 5 cm thick. & & & & & & & & & & \\
\hline 70102 & Similar to R70101. & & & 0.001 & 0.02 & 2 & & & & & \\
\hline 70103 & Cream coloured micritic limestone - no visible & o/c & grab & 0.001 & 0.02 & 6 & & & & & \\
\hline & sedimentary structure or sulphides. & & & & & & & & & & \\
\hline 70104 & Qtz feldspar porphyry with \(2 \%\) pyrite. & & & 0.001 & 0.02 & 20 & & & & & \\
\hline 570151 & Quartz vein - typical, 3.0 m wide, fairly well ex- & chip & 3 m & 0.001 & 0.02 & 4 & & & & & M Savel1 \\
\hline & posed. 25 m at \(090^{\circ}\) from 41446. Host is foliated, & & & & & & & & & & \\
\hline & xenolithic diorite. Vein strikes \(090^{\circ}\), dips vertica & 1 y . & & & & & & & & & \\
\hline 570152 & Quartz vein - typical, same vein as above, 25 m & chip & 2.1 & 0.005 & 0.02 & 8 & & & & & \\
\hline & at \(090^{\circ}\) from 70151. & & & & & & & & & & \\
\hline 670153 & Footwall (to north) of above vein - qtz-carb-seri- & chip & 2.0 & 0.002 & 0.02 & 8 & & & & & \\
\hline & cite altered diorite, pale green, schistose, rusty & & & & & & & & & & \\
\hline & weathered with \(\sim 5 \%\) thin quartz veinlets. & & & & & & & & & & \\
\hline 670154 & Quartz vein with altered host diorite - on strike & chip & 2.5 & 0.001 & 0.02 & 10 & & & & & \\
\hline & with 70152, 25 m to east. Zone sampled contains & & & & & & & & & & \\
\hline & \(50 \%\) vein material, vein branches, pinches. & & & & & & & & & & \\
\hline 570155 & Quartz vein with altered diorite, at \(080{ }^{\circ} 50 \mathrm{~m}\) & chip & 2.0 & 0.002 & 0.02 & 8 & & & & & \\
\hline & from 70154, probably same structure. Zone sampled & & & & & & & & & & \\
\hline & contains \(\sim 40 \%\) vein material, mainly in two branches. & & & & & & & & & & \\
\hline & Foliation in nearby diorite at \(160 / 45^{\circ} \mathrm{W}\). & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & - & \\
\hline
\end{tabular}

PROPERTY
KLEHINI RIVER 
SAMPLEREPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{3}{|l|}{(opt) (opt) (ppm)} & \multicolumn{4}{|l|}{ASSAYS} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline \multirow[t]{4}{*}{\({ }^{5} 70156\)} & Quartz-carbonate vein - ~ 75 m east of 70155. Vein & chip & 2.1 & 0.008 & 0.02 & 6 & & & & & M. Savell \\
\hline & is not well defined, irregular, poddy, anastomizing & & & & & & & & & & \\
\hline & thin branches. Ankerite much more common here than & & & & & & & & & & \\
\hline & 70151-70155. & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{h70157} & Quartz vein in diorite, very little alteration of & chip & 1.8 & 0.001 & 0.02 & 4 & & & & & \\
\hline & host, sample contains \(80 \%\) quartz, mostly in one vein & & & & & & & & & & \\
\hline & Sample site is \(\sim 25 \mathrm{~m}\) north of 70156 . Possibly & & & & & & & & & & \\
\hline & different vein or offset of same structure - obscure & & & & & & & & & & \\
\hline & by talus. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{70158} & Quartz vein in metasediments - biotite schists, & chip & 2.0 & 0.001 & 0.02 & 4 & & & & & \\
\hline & xenolithic diorite - chip across 2 m of rubbly o/c & & & & & & & & & & \\
\hline & on ridge top, true thickness of vein not measureabl & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{70159} & Quartz vein - same vein as in \(70158,25 \mathrm{~m}\) on strike & chip & 2.0 & 0.001 & 0.02 & 12 & & & & & \\
\hline & to east, at \(130 / 70^{\circ} \mathrm{N}\). & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{70160} & Quartz vein, well exposed, typical. Fine grained & chip & 1.4 & 0.001 & 0.02 & 80 & & & & & \\
\hline & dioritic host, weakly altered. Minor malachite & & & & & & & & & & \\
\hline & staining. Sericitic altered inclusion in vein. & & & & & & & & & & \\
\hline & At \(140^{\circ} / 90^{\circ}\). & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{70161} & Quartz vein, 15 m downslope of 70160 , same vein, & chip & 1.5 & 0.001 & 0.02 & 422 & & & & & \\
\hline & slight offset to north. Pinches out to 30 cm immed- & & & & & & & & & & \\
\hline & iately below sample site. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{70162} & Quartz vein, 20 m downslope of 70161, same vein & chip & 1.5 & 0.002 & 0.02 & 266. & & & & & \\
\hline & strike \(115 / 85 \mathrm{~N}\) & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{l} 
N.T.S. \(\frac{114 \text { P/7-10 }}{\text { DATE } \quad \text { Sept. } 1985}\) \\
\hline
\end{tabular}

SAMPLEREPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[b]{2}{*}{Trench "A" LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{3}{|l|}{(opt) (opt) (ppm)} & \multicolumn{4}{|l|}{ASSAYS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SAMPLED } \\
\mathrm{SH}^{2}
\end{gathered}
\]} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline \multirow[t]{2}{*}{70165} & Footwall diorite - friable, slightly sheared, & chip & 1.0 & 0.009 & 0.02 & 282 & & & & & M. Savell \\
\hline & weakly altered diorite. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{70166} & Quartz vein, very rusty, limonitized, friable, & chip & 1.3 & 0.310 & 0.28 & 244 & & & & & \\
\hline & crumbly quartz, vein is fairly well defined, 1.3 m & & & & & & & & & & \\
\hline & thick at 140/52 \({ }^{\circ}\) NE. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{-70167} & Hanging wall Diorite - similar to 70165. & chip & 1.0 & 0.005 & 0.02 & 74 & & & & & \\
\hline & Trench "B" & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{- 70168} & Quartz "pod", massive rusty weathered, limonite and & grab & & 0.056 & 0.02 & 18 & & & & & \\
\hline & manganese stained quartz in \(0.3 \times 0.9 \mathrm{~m}\) pod, surrounded & & & & & & & & & & \\
\hline & by highly weathered, sheared diorite. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\(\bigcirc 70169\)} & Altered diorite - weathered, sheared wall rock of & grab & & 0.001 & 0.02 & 224 & & & & & \\
\hline & above sample. & & & & & & & & & & \\
\hline & Trench "C" & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{- 70170} & Diorite - clay altered, sheared, weathered, taken & chip & 2 & 0.002 & 0.02 & 42 & & & & & \\
\hline & from trench, underneath \#70171. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{170171} & Weathered quartz vein - highly altered, limonitized, & chip & 0.8 & 2.440 & 0.86 & 494 & & & & & \\
\hline & cumbly quartz, in irregular shaped vein, minor mala- & & & & & & & & & & \\
\hline & chite, azurite staining near contact. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{\({ }^{7} 70172\)} & Altered Diorite - footwall to \#70173, sheared, wea- & chip & 0.4 & 0.035 & 0.04 & 22 & & & & & \\
\hline & thered, clay altered (minor) dioritic intrusive. & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\(\ 70173\)} & Quartz vein - highly weathered, crumbly, friable, & chip & 0.3 & 0.330 & 0.16 & 50 & & & & & \\
\hline & sugary gtz, "vein" may be sloping parallel to gully & & & & & & & & & & \\
\hline & pank or may even be layer of talus (??) & & & & & & & & & & \\
\hline
\end{tabular}

SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) Assars} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SAMPLED } \\
B Y
\end{gathered}
\]} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline 70175 & Gossan in diorite - chips from ridge top outcrop & grab & & 0.001 & 0.02 & 10 & & & & & M. Savell \\
\hline & of rusty weathered, limonitized intrusive, with & & & & & & & & & & \\
\hline & minor network of fine quartz and calcite veinlets. & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline \multirow[t]{8}{*}{361} & South central KR-1 claim. Gossanous Qtz + Fsp? + & chip & 50 cm & 0.216 & 0.14 & 168 & & & & & \\
\hline & Cal. vein. Crumbly; medium rusty orange. Contact & & & & & & & & & & \\
\hline & with wall rock with \(2-10 \mathrm{~cm}\) thick zone of strongly & & & & & & & & & & \\
\hline & brecciated quartz locally with Cu-staining. Wall & & & & & & & & & & \\
\hline & rock: intrusive?; strongly sheared, medium gray- & & & & & & & & & & \\
\hline & green, deeply clay weathered, finely? crystalline?, & & & & & & & & & & \\
\hline & very strongly epidote?-sericite?-altered. Vein & & & & & & & & & & \\
\hline & strikes about \(345^{\circ} /\) dips about \(65^{\circ} \mathrm{NE}\). & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{- 73613} & As 73612; 4 m below ( \(150^{\circ} \mathrm{Az}\) ) 73612. Gossanous & chip & 60 cm & 3.500 & 1.34 & 322 & & & & & \\
\hline & Qtz vein, as 73612. Strike and dip of NE contact & & & & & & & & & & \\
\hline & with wall rock: \(280^{\circ} / 60^{\circ} \mathrm{N}\); of SW contact: about & & & & & & & & & & \\
\hline & \[
255^{\circ} / 55^{\circ} \mathrm{S}
\] & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{-73614} & 9 m SW of 73612; at old grab sample site 69941. & chip & 30 cm & 0.176 & 0.10 & 24 & & & & & \\
\hline & White Qtz vein: strongly fractured and crumbly; & & & & & & & & & & \\
\hline & overlain by limonite? gossan; underlain by grey- & & & & & & & & & & \\
\hline & green clay-weathered intrusive? Basal contact & & & & & & & & & & \\
\hline & strikes about \(035^{\circ} /\) dips about \(15^{\circ}\) SE: could be & & & & & & & & & & \\
\hline & dip sloping. & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
N.T.S. 114 P/10

PROPERTY_KLEHINI RIVER
SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) ASSAYS} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline 173615 & North central KR-2 claim. Float cobble of very & grab/ float & & 0.015 & 0.02 & 52 & & & & & G.B. \\
\hline & rusty weathering, sub-opaque medium grey, very & & & & & & & & & & \\
\hline & strongly ankerite?-altered, very finely crystalline & ? & & & & & & & & & \\
\hline & rock with 5-7\% very, very fine, disseminated pyrite & & & & & & & & & & \\
\hline & and about \(7-8 \%\) very, very fine, disseminated, opaque & & & & & & & & & & \\
\hline & tan sphalerite?. Float in lateral moraine. & & & & & & & & & & \\
\hline 73617 & KR-6 claim; ridge northeast of Jarvis Glacier. & \begin{tabular}{l}
grab/ \\
float
\end{tabular} & & 0.001 & 0.02 & 16 & & & & & \\
\hline & Float cobble ( \(7 \times 12 \times 15 \mathrm{~cm}\) ) of pyrite rhyolite??: & & & & & & & & & & \\
\hline & medium rusty-orange stained with core of translucen & t & & & & & & & & & \\
\hline & grey/opaque white spotted; feldspar?, quartz por- & & & & & & & & & & \\
\hline & phyritic?, vitric rhyolite? with about 5\% very, & & & & & & & & & & \\
\hline & very fine to fine, disseminated, anhedral pyrite. & & & & & & & & & & \\
\hline & In talus of diorite?. & & & & & & & & & & \\
\hline 73618 & KR-6 claim, 475 m east of 73617. Float from talus & \[
\begin{aligned}
& \text { grab/ } \\
& \text { float }
\end{aligned}
\] & & 0.001 & 0.02 & 60 & & & & & \\
\hline & of pyritic basalt?: very rusty weathering, 12 cm & & & & & & & & & & \\
\hline & diameter, angular cobble of very dark grey, very, & & & & & & & & & & \\
\hline & very finely crystalline, weakly magnetic, feldspar- & & & & & & & & & & \\
\hline & hornblende?-basalt? with \(3-4 \%\) very, very fine, & & & & & & & & & & \\
\hline & disseminated pyrite. & & & & & & & & & & \\
\hline 73619 & KR-6 claim, 550 m NE of 73617. Float: angular, & grab & & 0.001 & 0.02 & 72 & & & & & \\
\hline & very rusty weathering, cobble of brittle, strongly & & & & & & & & & & \\
\hline & fractured, pyritic apalite?: sub-translucent grey. & & & & & & & & & & \\
\hline & hard, very, very fine grained, with 5-10\% very, & & & & & & & & & & \\
\hline
\end{tabular}

SAMPLE REPORT

N.T.S. 114 P/7-10

PROPERTY \(\qquad\) DATE Sept. 1985
SAMPLEREPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SAMPLENO.} & \multirow[b]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{trpe} & \multirow[t]{2}{*}{WIOTH} & (opt) & (opt) & ppm) & \multicolumn{4}{|l|}{ASSAYS} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline 73623 & and pyrrhotite?. Rock is weakly magnetic. & & & & & & & & & & G.B. \\
\hline \multirow[t]{2}{*}{73624} & KR-10 claim. Rusty diorite? - angular boulder, & \[
\begin{aligned}
& \text { grab/ } \\
& \text { float }
\end{aligned}
\] & & 0.001 & 0.02 & 114 & & & & & \\
\hline & \(15 \times 17 \times 17 \mathrm{~cm}\) of rusty weathering, medium (lavender-) & & & & & & & & & & \\
\hline & grey/very light grey/black spotted, altered, coarsel & 1 y & & & & & & & & & \\
\hline & crystalline, feldspar-hornblende-diorite? with about & & & & & & & & & & \\
\hline & 3-4\% very fine to very, very fine, disseminated pyri & ite & & & & & & & & & \\
\hline & and pyrrhotite and \(1-2 \%\), fracture-controlled, patchy & & & & & & & & & & \\
\hline & pyrite and pyrrhotite. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{2.73629} & Vein No. 1 - qtz vein, no visible sulphides & chip & 30 cm & 0.010 & 0.02 & 10 & & & & & SAM/JH \\
\hline & \(162^{\circ} / 72^{\circ} \mathrm{E}\) @ 25 m . & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{273630} & Vein No. 1 - munged, foliated, clay altered hanging| & grab & 20 cm & 0.048 & 0.02 & 12 & & & & & \\
\hline & wall rock adjacent to quartz vein. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{273631} & Vein No. 1-qtz vein - no visible sulphides @ 50m & chip & 50 cm & 0.100 & 0.02 & 8 & & & & & \\
\hline & Nein No. 2 - Saddle claims & & & & & & & & & & \\
\hline 73632 & Grab of subsidiary vein - \(105^{\circ} / 64^{\circ} \mathrm{S}\). & grab & 5 cm & 0.001 & 0.02 & 12 & & & & & \\
\hline 73633 & Chip across qtz/pyrite (30\%) vein \(115^{\circ} / 70^{\circ} \mathrm{S}\). & chip & 60 cm & 0.001 & 0.02 & 6 & & & & & \\
\hline \multirow[t]{2}{*}{73634} & Chip across another subsidiary qtz vein (no visible & chip & 15 cm & 0.001 & 0.02 & 4 & & & & & \\
\hline & sulphides) \(\sim 108^{\circ} / 82^{\circ} \mathrm{N}\). & & & & & & & & & & \\
\hline 73635 & Grab of wall rock - f.gr. diorite & grab & & 0.001 & 0.02 & 38 & & & & & \\
\hline \multirow[t]{2}{*}{73636} & Grab of wall rock - hnbl diorite with mafic xeno- & grab & & 0.001 & 0.02 & 52 & & & & & \\
\hline & liths elongated perpendicular to vein. & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{73637} & Chip across rusty quartz/pyrite (15\%) vein 112/850s & chip & 25 cm & 0.6.0.3 & -0.08 & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
\(\qquad\) DATE
Sept. 1985
SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIOTH} & \multicolumn{8}{|l|}{(opt) (opt) (ppm) Assays} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & & \\
\hline \multirow[t]{2}{*}{73638} & Chip across rusty qtz pyrite vein (20\% pyrite) & chip & 60 cm & 0.009 & 0.10 & 66 & & & & & & SAM/JH \\
\hline & \(118^{\circ} / \mathrm{vert}\). & & & & & & & & & & & \\
\hline 73639 & Chip across qtz vein (no visible sulphides) 118/74N & chip & 80 cm & 0.004 & 0.02 & 12 & & & & & & \\
\hline 73640 & Wall rock grab - diorite & grab & & 0.001 & 0.02 & 12 & & & & & & \\
\hline 73641 & Chip across quarz vein ( \(\sim 5 \%\) pyrite) & chip & 60 cm & 0.044 & 0.02 & 8 & & & & & & \\
\hline 73642 & Vein No. 3 - qtz vein 15 cm thick - rusty & grab & & 0.040 & 0.02 & 14 & & & & & & \\
\hline 73643 & Vein No. 3 - qtz vein 15 cm thick - rusty & grab & & 0.005 & 0.02 & 6 & & & & & & \\
\hline \multirow[t]{3}{*}{73644} & Vein No. 4-qtz siderite vein - no visible sul- & chip & 20 cm & 0.002 & 0.02 & 4 & & & & & & \\
\hline & phides (brown c.gr. siderite) strike \(130^{\circ} /\) vert or & & & & & & & & & & & \\
\hline & high angle dipping to south. Altimeter 4360' & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{73654} & Dk brown weathered, v.f. grained, siliceous, & chip & 2 m ? & 0.001 & 0.02 & 4 & & & & & & M. Savel \\
\hline & metasstn or felsite intrusive(?), massive, blocky & & & & & & & & & & & \\
\hline & pale grey to brown with finely disseminated py & & & & & & & & & & & \\
\hline & (flag at site marked l4-l) & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{173655} & Dk green and white speckled, f.gr. hbl diorite, & chip & \(\sim 4 \mathrm{~m}\) & 0.001 & 0.02 & 30 & & & & & & \\
\hline & with irregular network of fine qtz veinlets, severe & & & & & & & & & & & \\
\hline & orientations. Several intrusive phases present (\% & & & & & & & & & & & \\
\hline & hbl changes abruptly, brecciated appearance). & & & & & & & & & & & \\
\hline & Rubbly outcrop. (flag marked 14-2) & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{\(\begin{array}{r}1 \\ \times 3656 \\ \hline\end{array}\)} & Chips from float boulders in talus bank adjacent & float & ? & 0.001 & 0.02 & 6 & & & & & & \\
\hline & to gully - source close by. Grey-green finely & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multicolumn{2}{|l|}{qtz veinlets \((20-30 \%)\), minor dissem. py, in talus df} & & & & & & & 2.... & & & \\
\hline
\end{tabular}

J
\(\qquad\) KLEHINI RIVER

SAMPLE REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{7}{|l|}{(opt) (opt) (ppm) Assars} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline 173656 & hbl diorite, rusty weathered. (flag marked 14-3) & & & & & & & & & & M. Savell \\
\hline \multirow[t]{4}{*}{- 73657} & 15 m from above sample, also talus chips - similar & float & ? & 0.001 & 0.02 & 2 & & & & & \\
\hline & skarny material with abundant bright green mica, & & & & & & & & & & \\
\hline & minor py, rare sph, minor calcite veinlets. (flag & & & & & & & & & & \\
\hline & marked 14-4). & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{- 73658} & Chips from pale green, v.f.gr., siliceous, massive & grab & & 0.001 & 0.02 & 4 & & & & & \\
\hline & felsic intrusive or metased-volc(?) with minor & & & & & & & & & & \\
\hline & v.f. dissem. py. (flag marked 14-5) & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{173659} & Rubbly, poorly exposed, heavy limonitic stained, & chip & 0.5 m & 0.019 & 0.02 & 32 & & & & & \\
\hline & qtz vein material - should be trenched if mineralia & & & & & & & & & & \\
\hline & (flag marked 14-6) & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{'73660} & Highly weathered, limonitized, rusty qtz vein & grab & & 0.400 & 0.28 & 1000 & & & & & \\
\hline & boulders in talus slope, possibly extension of & & & & & & & & & & \\
\hline & above vein, source close by. (flag marked 14-7) & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{173661} & 3 m from above. Boulders in talus slope of friable & grab & & 0.001 & 0.02 & 17000 & & & & & \\
\hline & weathered qtz with abundant malachite and manganes¢ & ?) & & & & & & & & & \\
\hline & coating, assoc. with boulders as above, close to & & & & & & & & & & \\
\hline & source(?). (flag marked 14-8) & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{173662} & Chips from talus boulders, similar to sample & float & & 0.001 & 0.04 & 118 & & & & & \\
\hline & \#73656. (flag marked 14-9). & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{173663} & Chips from talus boulders, 20-30 cm in diameter, & float & & 0.620 & 0.30 & 1040 & & & & & \\
\hline & of \(v\). rusty weathered qtz , in glacial moraine - & & & & & & & & & & \\
\hline & surrounding rocks predominantly diorite. (flag mary & 14-10 & & & & & & & & & \\
\hline
\end{tabular}

SAMPLEREPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SAMPLENO.} & \multirow[t]{2}{*}{LOCATION \& DESCRIPTION} & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{WIDTH} & \multicolumn{3}{|l|}{(opt) (opt) (ppm)} & \multicolumn{4}{|l|}{ASSAYS} & \multirow[t]{2}{*}{SAMPLED BY} \\
\hline & & & & Au & Ag & Cu & & & & & \\
\hline \multirow[t]{3}{*}{\} 7 3 6 6 4} & Chips from boulders in moraine of green, calc-sili- & float & & 0.050 & 0.06 & 1360 & & & & & M. Savell \\
\hline & cate skarn, similar to 73656 , with \(1 \%\) chalcopyrite & & & & & & & & & & \\
\hline & in blebs, disseminations. (flag marked 14-1l) & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{73674} & Diorite - rusty weathered, weakly silicified (?), & float & & 0.004 & 0.02 & 152 & & & & & \\
\hline & diorite or qtz-diorite with 5-10\% fracture and & & & & & & & & & & \\
\hline & cluster pyrite. Float in gully. & & & & & & & & & & \\
\hline \multirow[t]{11}{*}{73701} & KR-11 claim. Diorite? with about \(3 \%\) pyrite along & grab & & 0.003 & 0.02 & 200 & & & & & G.B. \\
\hline & fractures. Diorite? weakly to moderately (to local & 1 y & & & & & & & & & \\
\hline & strongly) fractured. Forms approx. at least 150 m & & & & & & & & & & \\
\hline & wide zone of very rusty weathering rock. Diorite? & & & & & & & & & & \\
\hline & with same degree of alteration as diorite? without & & & & & & & & & & \\
\hline & fracture/pyrite. Pyrite is very, very fine gr., & & & & & & & & & & \\
\hline & anhedral and forms patches along fracture surfaces & & & & & & & & & & \\
\hline & and along micro-fractures bordering fractures, loca & \(11 y\) & & & & & & & & & \\
\hline & with minor, very fine grained chalcopyrite in fine & & & & & & & & & & \\
\hline & patches and minor irregular patches of very, very fin & ine & & & & & & & & & \\
\hline & grained pyrrhotite. . . & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{73702} & KR-6 claim, northeast. Granodiorite? cobble with & \[
\begin{aligned}
& \text { grab/ } \\
& \text { float } \\
& \hline
\end{aligned}
\] & & 0.002 & 0.02 & 14 & & & & & \\
\hline & 30-40\%, medium rusty orange-stained feldspar crysta & ls. & & & & & & & & & \\
\hline & \(5 \times 10 \times 11 \mathrm{~cm}\), sub-angular cobble, from talus in ter- & & & & & & & & & & \\
\hline & minal moranine, of feldspar-quartz-hornblende-grand & & & & & & & & & & \\
\hline & diorite?. & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
\(\qquad\) DATE Sept. 1985

SAMPLE REPORT

\(\qquad\) DATE Sept. 1985
SAMPLE REPORT


SAMPLE REPORT

\(\qquad\) KLEHINI RIVER

SAMPLE REPORT


APPENDIX H

\section*{ASSAY RESULTS}

RQSSBACHER LABORATORY LTD -
2225S. SPRINGER AVENI GURNABY: B.C. V5B 3
CERTIFICATE OF ANALYSIS
TEL: (604) 299-691

TO : NORANDA EXPLOFRATLON CO. LTD. 1050 DAVIE STFEET VANCQUVER B.C.
FFOUECT: 676, 8509-072
TYPE DF ANALYSIS: ASSAY

CERTIFICATE\#: 8S378.A
INVOICE\#:
DATE ENTERED:
FILE NAME: NOFB5.378.A
PAGE \# :
\(o z / t\)
Ag

FRE
FIX SAMPLE NAME

0.001
0.001
0.001
0.370
\(\frac{0.604}{0.001}\)
0.010
0.049
0.002
\(\frac{0.036}{0.005}\)
0.930
2.160
0.032
0.550
0.045
0. ف1
0.002
9. 92
\(\frac{0.00}{0.010}-\quad\)-. \(\quad\)
0.001
0.001
O. 01
0.091
0.02
0.02
0.02
0. 2
0.02
0.02
0.02
0.02
0.02
0.06
0.15
0.02
\(\frac{0.04}{6.02}\)
ब. O
0. O
- ロ2
- -2
0. O
Q. 2

ब. 2
\(\frac{9.92}{6.62}\)
- 2
0.01
- 001
\(\because\) oा
9.09
0.001
0.01
- ©
0.01
0.091
0.091
0. 94
0.00.
O. 001

ॐ. a
\(-\)



\section*{ROSSAACHER LAEQRATGPY LTDCERTIFICATE OF ANALYSIS}

2225 S. SPRINGER GVENIIE BUENAEY: B.C. VSE SM

TO : NOFAANDA EXFLGFATION CO. LTD. 1 OSO DAVIE STFEET VANCOUVEF B.C.
FFOJECT: o76 8509-072
TYFE OF ANALYSIS: SEOLHEMICAL
```

CERTIFICATE\#: 95%79
INVOICE\#:DATE ENTERED:FILE NAME:PAGE \# :
95.73
5587
SEFT.27.1985
NOFBE 78
4

```

TEL: (604) 299-69M0

\(\qquad\)

\[
\therefore \quad \text { M! }!\text { Ki! }!
\]


\section*{NORANDA UANCOUVER LARGRATORY}


\begin{tabular}{lrrrrrrr}
\(6 \exists\) ROCK & \(413 \Xi 3\) & 16 & 10 & 16 & 0.4 & 90 & 1000 \\
70 & 41330 & 14 & 20 & 8 & 1.2 & 180 & 5800 \\
71 & 41331 & 8 & 70 & 4 & 0.6 & 1 & 10 \\
\(7 \Xi\) & \(413 \Xi 2\) & 12 & 30 & 36 & 0.6 & 1 & 10 \\
73 & 41337 & 10 & 50 & 8 & 0.4 & 1 & 10
\end{tabular}

\section*{CERTIFICATE OF ANALYBIB}

TEL : (604).299-6931
TO : NORANDA EXPLORATION CO. LTD. 1050 DAVID STREET
VANCOUVER E.C.
CERTIFICATE\#: 85.378
INVOICE\#: 5587
DATE ENTERED: SEPT.27.1985
FILE NAME: NORB5.78.A
PAGE \# : 2
PROJECT: 676 8509-072
TYPE OF ANALYSIS: ASSAY




2225 S: SPRINGER AVENL BURNABY. B.C. V5B 3 A TEL: (504) 299 - 69:

TO = NORANDA EXFLOFIATION CO. LTD. 1050 DAVIE STREET VANCDUVER B.C.
PROJECT: 676 8509-072
TYFE DF ANALYSIS: ASSAY

CERTIFICATE\#: 85378.A
INVOICE\#: 5587
DATE ENTERED: 5EFT.27.1985
FILE NAME: NORBE378.A
PAGE \# :
oz/t
Ag
\begin{tabular}{lrrr} 
PRE & & \(o z / t\) & \(o z / t\) \\
FIX & SAMPLE NAME & Au & Ag
\end{tabular}


\title{
ROSSBACHER LABGRATDRY LTD - \\ CERTIFICATE OF ANALYSIS
}

2225 S. SPFINGER AVEN BURNABY: E.C. V5B 3 TEL: (604) 299-59

TO: NORANDA EXPLORATION CO. LTD. \(105 O\) DAVIE STREET VANCOUVER B.C.
PROJECT: 676 8509-072
TYPE OF ANALYSIS: ASSAY
```

CERTIFICATE\#: 85.378.A
INVOICE\#: 55B7
DATE ENTERED: SEPT.27.1985
FILE NAME: NOF85\Xi7日. A
PAGE \# : 4

```

\begin{tabular}{lccc} 
PRE & & \(0 z / t\) & \(0 z / t\) \\
FIX & SAMPLE MAME & Au & Ag \\
\hdashline\(A\) & 96480 & 0.001 & 0.02 \\
\(A\) & 96481 & 0.001 & 0.02 \\
\(A\) & 96482 & 0.001 & 0.02 \\
\(A\) & 96483 & 0.028 & 0.02 \\
\(A\) & 96484 & 0.001 & 0.02 \\
\hline\(A\) & 96495 & 0.044 & 0.02 \\
\(A\) & 96486 & 0.002 & 0.02
\end{tabular}
\(\qquad\)
\(\qquad\)

ROSSEAGFER LAEDRATGRY LTD-

\section*{CERTIFICATE OF ANALYSIS}

2225 S. SPRINGER AVENUE GURNAEY: B.C. VSE SNI
TEL: (604) 299-5910

TO : NOFANDA EXFLQFATIUN CO. LTD. 10 SO DAVIE STFEET VANCDUVER E.C.

CERTIFICATE\#: 85.379
INVOICE\#: 5587
DATE ENTERED: SEPT. 27.1996
FILE NAME: NOR85:78
FAGE \# : 1
FFOJECT: 676 8509-072
TYPE OF ANALYSIS: GEOCHEMICAL



ROSSBACHER LABORATORV LTD -
2225 S. SPRINGER AVENUE
CERTIFICATE OF ANALYSIS EURNAEY: E.C. YSE JHI
TEL : (604) \(299-6910\)
TO = NORANDA EXFLOFATION CO. LTD.
\(10 G O\) DAVIE STFEET
VANCDUVER: E.E.
PROJECT \(=676\) 8509-072
CERTIFICATE\# : AS378
INVOICE\#: 5587
DATE ENTERED: SEFT.27.179S
FILE NAME: NOFEST7S
TYPE OF ANALYSIS: GEOCHEMICAI-
PAGE \# :
2
 PFE

SAMPLE NAME
FFM
FIX
Cu
\begin{tabular}{|c|c|c|}
\hline A & 67975 & 18 \\
\hline A & 76101 & 4 \\
\hline A & 7¢口2 & 2 \\
\hline A & 7010 S & 6 \\
\hline \(\hat{A}\) & 76104 & 20 \\
\hline A & 70151 & 4 \\
\hline A & 70152 & 9 \\
\hline A & 7015 & 9 \\
\hline A & 70154 & 10 \\
\hline A & 7015 & 8 \\
\hline A & 70154 & 6 \\
\hline fir & 7015 & 4 \\
\hline 9 & 70159 & 4 \\
\hline \(A\) & 70159 & 12 \\
\hline A & 70160 & 96 \\
\hline A & 7161 & 422 \\
\hline F & 7016 & 26 \\
\hline \(\hat{A}\) & 7016 S & 50 \\
\hline f: & 79164 & उ-2 \\
\hline A & 79169 & 282 \\
\hline \(\hat{A}\) & 76166 & 244 \\
\hline A & 70167 & 74 \\
\hline A & 70169 & 19 \\
\hline A & 716 & 224 \\
\hline \(A\) & 79170 & 42 \\
\hline \(A\) & 70171 & 454 \\
\hline \(A\) & 76172 & - \\
\hline \(\therefore\) & 70176 & \% \\
\hline A & \(7017 \%\) & 10 \\
\hline A & 76017 & 16 \\
\hline \(\therefore\) & 78418 & © \\
\hline is & 7 TS ? & \(\cdots\) \\
\hline 9 & 78020 & 12 \\
\hline + & 75621 & 6 \\
\hline \(\ddagger\) & 7622 & \% \\
\hline i & 78623 & 112 \\
\hline \(\ddagger\) & 75624 & 119 \\
\hline 1 & 75629 & 10 \\
\hline \(\downarrow\) & 78630 & 12 \\
\hline ) & 786 & 8 \\
\hline
\end{tabular}
\(A\)


CERTIFIED BY:


APPENDIX I: TALUS FINES NUMBERING
\begin{tabular}{|c|c|}
\hline Number on Flag at Sample Site & Corresponding Number on Sample Location Map \\
\hline \(100+00 \mathrm{E}\) & 70551 \\
\hline \(100+25 E\) & 70552 \\
\hline \(100+50 \mathrm{E}\) & 70553 \\
\hline \(100+75 \mathrm{E}\) & 70554 \\
\hline 101+00E & 70555 \\
\hline \(101+25 E\) & 70556 \\
\hline \(101+50 \mathrm{E}\) & 70557 \\
\hline \(101+75 \mathrm{E}\) & 70558 \\
\hline 102+00E & 70559 \\
\hline \(102+25 E\) & 70560 \\
\hline 102+50E & 70561 \\
\hline \(102+75 E\) & 70562 \\
\hline \(103+00 \mathrm{E}\) & 70563 \\
\hline 103+25E & 70564 \\
\hline 103+50E & 70565 \\
\hline \(103+75 \mathrm{E}\) & 70566 \\
\hline \(104+00 \mathrm{E}\) & 70567 \\
\hline \(104+25 E\) & 70568 \\
\hline \(104+50 \mathrm{E}\) & 70569 \\
\hline \(104+75 \mathrm{E}\) & 70570 \\
\hline \(105+00 \mathrm{E}\) & 70571 \\
\hline 105+25E & 70572 \\
\hline \(105+50 \mathrm{E}\) & 70573 \\
\hline 105+75E & 70574 \\
\hline 106+00E & 70575 \\
\hline \(106+25 E\) & 70576 \\
\hline \(106+50 \mathrm{E}\) & 70577 \\
\hline \(106+75 \mathrm{E}\) & 70578 \\
\hline 107+00E & 70579 \\
\hline \(107+25 E\) & 70580 \\
\hline 109+75E & 70581 \\
\hline \(110+00 \mathrm{E}\) & 70582 \\
\hline \(110+25 E\) & 70583 \\
\hline \(110+50 \mathrm{E}\) & 70584 \\
\hline \(110+75 E\) & 70585 \\
\hline \(111+00 \mathrm{E}\) & 70586 \\
\hline \(111+25 E\) & 70587 \\
\hline \(111+50 \mathrm{E}\) & 70588 \\
\hline \(111+75 E\) & 70589 \\
\hline \(112+00 \mathrm{E}\) & 70590 \\
\hline \(113+00 \mathrm{E}\) & 70591 \\
\hline \(113+25 E\) & 70592 \\
\hline \(113+50 \mathrm{E}\) & 70593 \\
\hline \(113+75 E\) & 70594 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(114+00 \mathrm{E}\) & 70595 \\
\hline \(114+25 E\) & 70596 \\
\hline \(114+50 \mathrm{E}\) & 70597 \\
\hline \(114+75 \mathrm{E}\) & 70598 \\
\hline \(115+00 \mathrm{E}\) & 70599 \\
\hline \(115+25 \mathrm{E}\) & 70600 \\
\hline \(115+50 \mathrm{E}\) & 70601 \\
\hline \(115+75 \mathrm{E}\) & 70602 \\
\hline & \\
\hline 16-1 & 70603 \\
\hline 16-2 & 70604 \\
\hline 16-3 & 70605 \\
\hline 16-4 & 70606 \\
\hline 16-5 & 70607 \\
\hline 16-6 & 70608 \\
\hline 16-7 & 70609 \\
\hline 16-8 & 70610 \\
\hline 16-9 & 70611 \\
\hline 16-10 & 70612 \\
\hline 16-11 & 70613 \\
\hline 16-12 & 70614 \\
\hline 16-13 & 70615 \\
\hline 16-14 & 70616 \\
\hline 16-15 & 70617 \\
\hline 16-16 & 70618 \\
\hline 16-17 & 70619 \\
\hline 16-18 & 70620 \\
\hline 16-19 & 70621 \\
\hline 16-20 & 70622 \\
\hline 16-21 & 70623 \\
\hline 16-22 & 70624 \\
\hline 16-23 & 70625 \\
\hline 16-24 & 70626 \\
\hline 16-25 & 70627 \\
\hline 16-26 & 70628 \\
\hline 16-27 & 70629 \\
\hline 16-28 & 70630 \\
\hline 16-29 & 70631 \\
\hline 16-30 & 70632 \\
\hline 16-31 & 70633 \\
\hline 16-32 & 70634 \\
\hline 16-33 & 70635 \\
\hline 16-34 & 70636 \\
\hline 16-35 & 70637 \\
\hline 16-36 & 70638 \\
\hline 16-37 & 70639 \\
\hline 16-38 & 70640 \\
\hline 16-39 & 70641 \\
\hline 16-40 & 70642 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 16-41 & 70643 \\
\hline 16-42 & 70644 \\
\hline 16-43 & 70645 \\
\hline 16-44 & 70646 \\
\hline 16-45 & 70647 \\
\hline 16-46 & 70648 \\
\hline 16-47 & 70649 \\
\hline 16-48 & 70650 \\
\hline 16-49 & 70651 \\
\hline 16-50 & 70652 \\
\hline 16-51 & 70653 \\
\hline 16-52 & 70654 \\
\hline 16-53 & 70655 \\
\hline 16-54 & 70656 \\
\hline 16-55 & 70657 \\
\hline 16-56 & 70658 \\
\hline 16-57 & 70659 \\
\hline 16-58 & 70660 \\
\hline 16-59 & 70661 \\
\hline 16-60 & 70662 \\
\hline 16-61 & 70663 \\
\hline 16-62 & 70664 \\
\hline 16-63 & 70665 \\
\hline 16-64 & 70666 \\
\hline 16-65 & 70667 \\
\hline 16-66 & 70668 \\
\hline 16-67 & 70669 \\
\hline 16-68 & 70670 \\
\hline 16-69 & 70671 \\
\hline 16-70 & 70672 \\
\hline 16-71 & 70673 \\
\hline 16-72 & 70674 \\
\hline 16-73 & 70675 \\
\hline 16-74 & 70676 \\
\hline 16-75 & 70677 \\
\hline S-1 & 73595 \\
\hline S-2 & 73596 \\
\hline & \\
\hline 17-1 & 70678 \\
\hline 17-2 & 70679 \\
\hline 17-3 & 70680 \\
\hline 17-4 & 70681 \\
\hline 17-5 & 70682 \\
\hline 17-6 & 70683 \\
\hline 17-7 & 70684 \\
\hline 17-8 & 70685 \\
\hline 17-9 & 70686 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(17-10\) & 70687 \\
\(17-11\) & 70688 \\
\(17-12\) & 70689 \\
\(17-13\) & 70690 \\
\(17-14\) & 70691 \\
\(17-15\) & 70692 \\
\(17-16\) & 70693 \\
\(17-17\) & 70694 \\
\(17-19\) & 70695 \\
\(17-20\) & 70696 \\
\(17-21\) & 70697 \\
\(17-22\) & 70698 \\
\(17-23\) & 70699 \\
\(17-24\) & 70700 \\
\(17-25\) & 70701 \\
\(17-26\) & 70702 \\
\(17-27\) & 70703 \\
\(17-28\) & 70704 \\
\(17-29\) & 70705 \\
\(17-30\) & 70706 \\
\(17-31\) & 70707 \\
\(17-32\) & 70708 \\
\(17-33\) & 70709 \\
\(17-34\) & 70710 \\
\(17-35\) & 70711 \\
\(17-36\) & 70712 \\
\(17-37\) & 70713 \\
\(17-38\) & 70714 \\
\(17-39\) & 70715 \\
17 & 70716
\end{tabular}```

