ROY W. ROBINSON 04/86 GEOPHYSICAL REPORT ON AN AIRBORNE VLF-ELECTROMAGNETOMETER AND MAGNETOMETER SURVEY O.G.G. CLAIM GROUP - NELSON M.D. LAT.49⁰23'N LONG.117⁰23'W NTS 82F/6W AUTHORS: E.Trent Pezzot,B.Sc., Geophysicist Glen E. White,B.Sc.P.Eng. Consulting Geophysicist Date of Work: Dec.19,1984 Date of Report:Jan.4,1985

FILMED

85-216-14280

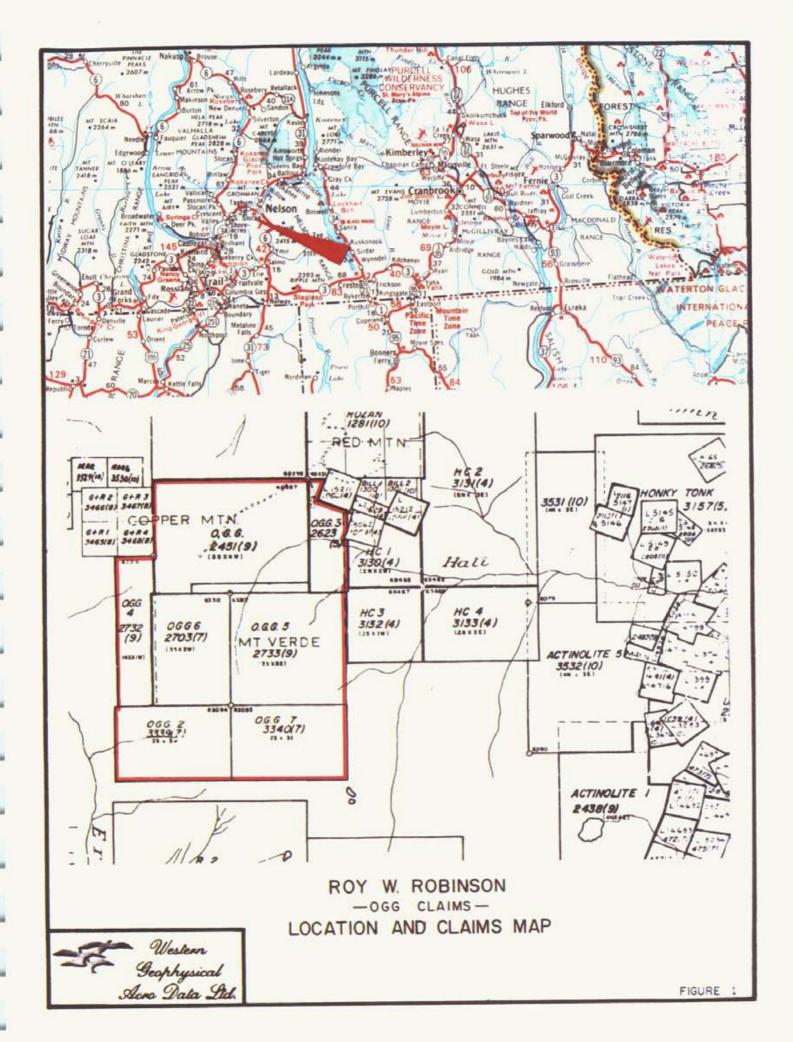
GEOLOGICAL BRANCH ASSESSMENT REPORT

4,28

PART 2 OF 2

WESTERN GEOPHYSICAL AERO DATA LTD.

TABLE OF CONTENTS


PAGE

INTRODUCTION	1
PROPERTY	1
LOCATION AND ACCESS	2
GENERAL GEOLOGY	2
PREVIOUS WORK	3
AIRBORNE VLF-EM & MAGNETOMETER SURVEY	4
DATA PROCESSING	5
DISCUSSION OF RESULTS	6-7
SUMMARY AND CONCLUSIONS	8-9
RECOMMENDATIONS	9
INSTRUMENT SPECIFICATIONS	10-14
COST BREAKDOWN	15
STATEMENT OF QUALIFICATIONS:	
E.Trent Pezzot, B.Sc.,	16
Glen E. White, B.Sc., P.Eng	17

ILLUSTRATIONS

Figure	1	- Location & Claims Map
Figure	2	- Magnetic Intensity Contour Map
Figure	3	- VLF-EM Profiles (Seattle)
Figure	4	- VLF-EM Profiles (Annapolis)
Figure	5	- Geophysical Interpretation Map

Plate 1 - General Geology Plate 2 - Mineral Inventory Map

.

INTRODUCTION

An airborne magnetometer and VLF-electromagnetometer survey was conducted across the O.G.G. group of claims, 14 kilometres south of Nelson, B.C. on December 19, 1984. The survey was conducted on behalf of Roy W. Robinson at the request of G. Salazar S. & Associates Ltd. and totalled approximately 97 kilometres in length.

1

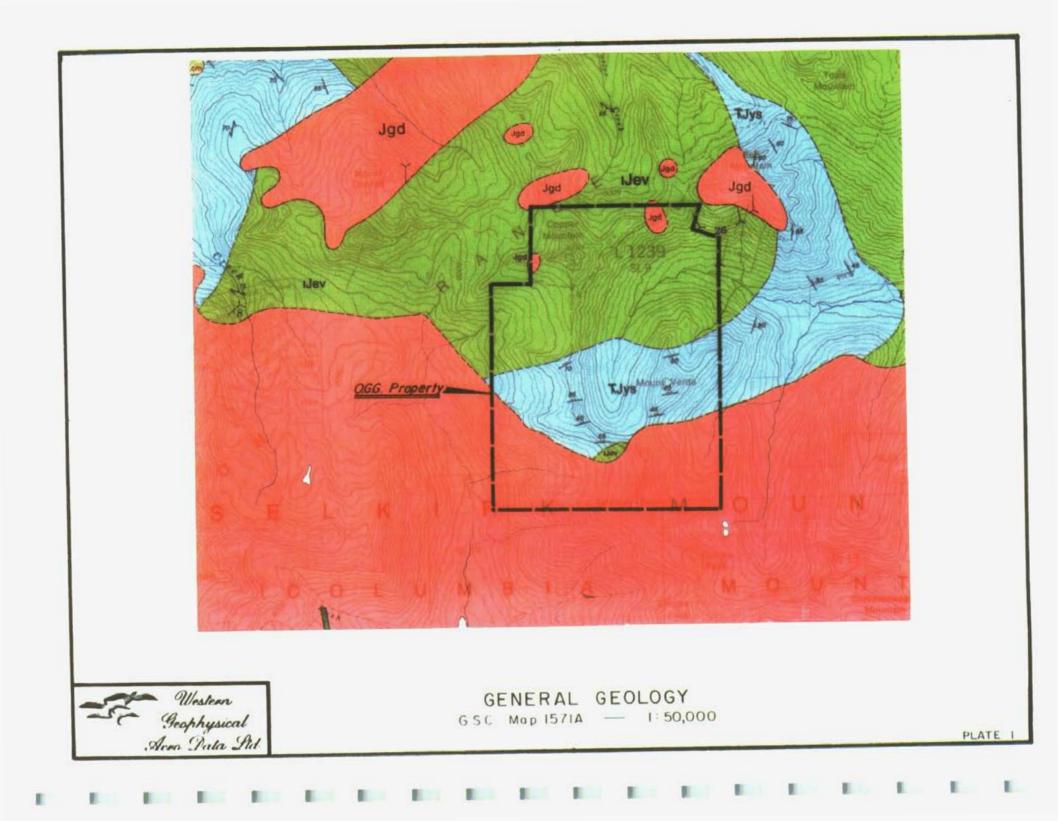
The claims are located in an area which has been actively explored since the 1800's and has mapped occurrences of gold, silver, copper, lead and zinc mineralization. It was the intention of this survey to provide information to assist in the reconnaissance geological mapping and provide target areas for detailed ground exploration.

PROPERTY

The O.G.G. group of claims is comprised of 46 contiquous units as listed below and illustrated on Figure 1.

CLAIM NAME	RECORD NO.	UNITS	DATE
0.G.G.	2451	12	May 8,1986
0.G.G.2	3339	6	July 19, 1985
0.G.G.3	2623	3	May 6, 1986
0.G.G.4	2732	4	Sept.2,1985
0.G.G.5	2733	9	Sept.2,1985
0.G.G.6	2703	6	July 23, 1985
0.G.G.7	3340	6	July 19, 1985

LOCATION AND ACCESS

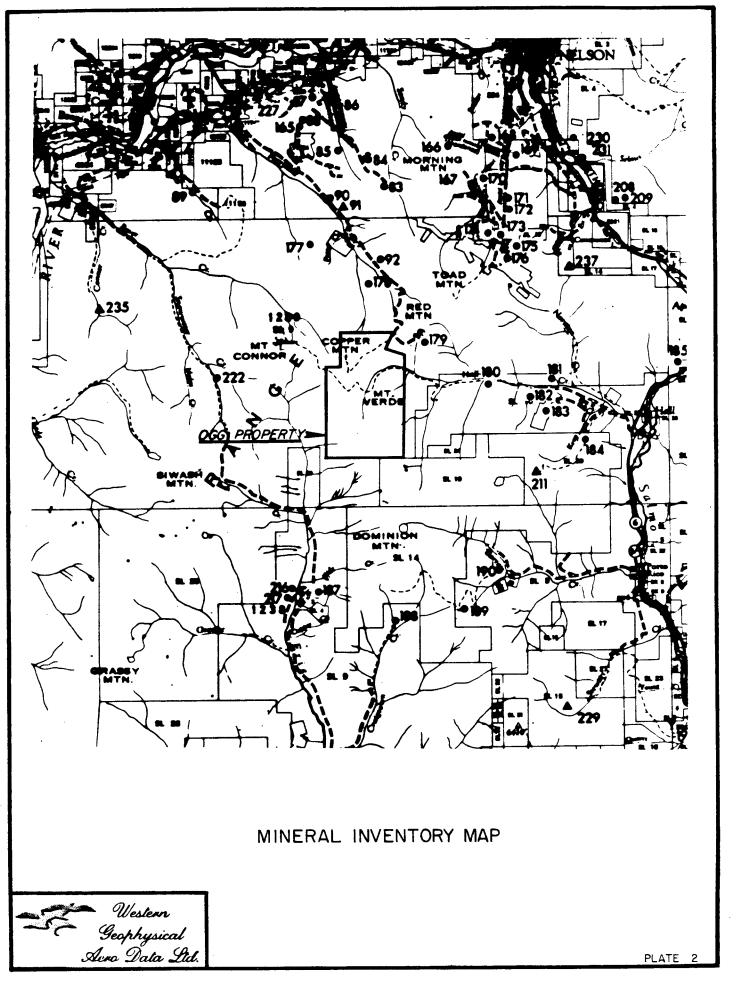

The claims are located approximately 14 kilometres southsouthwest of Nelson, B.C. in the Nelson Mining Division and NTS 82F/6W. The approximate geographical co-ordinates are latitude 49⁰23'N and longitude 117⁰23'W.

A unimproved forestry and logging road which leaves B.C. Highway 6 at the town of Hall (14 kilometres south of Nelson) follows Hall Creek and provides direct vehicle access to the claim area. A network of switchback roads provides access from Hall Creek part way up the side of Red Mountain. A second route, which branches off B.C. Highway #3 near the Taghum bridge, follows Fortynine Creek and approaches the claim area from the north. These roads pass near the summits of Red and Copper Mountains. Heavy snow conditions restrict access at the higher elevations during the winter months.

GENERAL GEOLOGY

Map 1571A published by the Geological Survey of Canada illustrates the general geological environment of the O.G.G. claims area. The applicable portion of this map has been reproduced as Plate 1 in this report. The G.S.C. delineates 3 distinct rock groups in the area; the Ymir group of sediments of Triassic and Jurassic (?) age which are overlain conformably by Elise formation volcanic rocks of Jurassic age. Both units have been intruded by granodiorites, diorites and granites (Nelson Intrusions) of Jurassic and Cretaceous (?) age.

Mineralization noted in the area includes gold, silver, lead, zinc and copper.


	LEGEND
	QUATERNARY
U	Unconsolidated sediments: till. sand, gravel, silt
CENOZOIC	TERTIARY EOCENE MIDDLE EOCENE
G	EC CORYELL INTRUSIONS: Ecs, syenite; Ecm, biotite monzonite, biotite - augite monzonite
	CRETACEOUS AND/OR TERTIARY KTip, quartz-feldspar-augite porphyry dykes; KTia, aplite dykes; KTil, lamprophyre and diabase dykes
	KTp Pegmatitic granite
	JURASSIC AND (?) CRETACEOUS
	Jski SILVER KING PORPHYRY: porphyritic hornblende quartz diorite
	Jgd NELSON INTRUSIONS: granodiorite, granite, diorite; Jdi, diorite porphyry
	JURASSIC (?) Ju Pyroxene - hornblende - biotite rock
OIC	Jp Pseudodiorite
MESOZOIC	JURASSIC LOWER AND MIDDLE JURASSIC
W	HALL FORMATION: argillite, sandstone, shale. siltstone, conglomerate; some argillaceous quartzite
	LOWER JURASSIC ELISE FORMATION: andesite and basalt flows and flow breccia, agglomerate, augite porphyry; minor tuff
	ARCHIBALD FORMATION: argillaceous and micaceous quartzite, siltstone, argillite: minor tuff
	TRIASSIC (?) AND JURASSIC (?) LOWER JURASSIC (?) AND OLDER YMIR GROUP
	Argillaceous quartzite, micaceous quartzite, argillite, slate; minor limestone; locally layered gneiss

PREVIOUS WORK

The general area has been actively explored and mined since the late 1800's and mineralization found to date includes gold, silver, lead, zinc and copper. A portion of the Minerals Inventory Map for this area has been reproduced as Plate 2 of this report and shows the location of known mineral occurrences near the O.G.G. claim group.

3

Conversations with G. Salazar of G. Salazar S & Associates Ltd. have indicated that some exploration efforts have been applied specifically to the O.G.G. claims. These include, in part, grid preparation and a limited amount of ground magnetometer surveying but the results were unavailable to the authors.

 $\left[\right]$

[]

LEGEND:

189		Ag
181	SALE	Au, Cu, Ag
		Po, Co. Au, Mo
	HOMENALE	
-		
	MCHOAY	
185		Co, Ao, Ag
186	RANNAY	Co. Ao. Ag
127		3. N. A.
-	MAL BOY	
10	MAYFLOWER	
330	ROBERT E. LEE	
		Au, Cu, Ag
100	ARE LINCOLN	Cu, Au
184	ST. BAND	Ma, Co, W, Ap, Au
	CONSCLOATE ST. BAND	
105	CLIT, VIII	
137		=
100	GREAT WESTERN	Au, Cu
100		
	BOOD FEDAY, NORTHERN SALE	
	HATTHE	
H		
M		
3444	HATTHE BROWN	-
146		. Au, Ag, Pb, 3b
146	MAYFLOWER (DLLA FORMERA)	Ag, Za, B, Au, Cd
147		An, Cu, Ap
- 148		
149		-
190	COLUMBIA	-
151		. An, Ang
19	CHONIN FORM	. Au, Cu, Ag
19	LEY MAY	Ag, Co, In, R. Au
196	CURLINY	. Ag. Au
1.00		-
	HATARE BOY	-
196		-
197		
190		
199	COLUMBIA	. Au, Au
1460		. Ag, 16, 3n
144	SLVB 17	An, Ag
		•
147		
148	ATHABASCA	-
149	CALIFOINIA	An, Ag, Zh, Ph
170		Za, Ro, Ag, Aw
171		Au, Ag
172	GERAT BASTERN	-
	VICTORIA, JENNE	-
170		
174		
176	BAYLIGHT, SELLEY	
176	SLVR K046	Cu, Ag, Au, R
177	10700-04M	Au
178	NORTHERN LIGHT	
179	GOLDEN BAGLE	-
.,,,		

	القداقا الاجتبابات فالمتحجب التشفي ومحيون وتشري المجمعات والمتعاد	
100	BALTIC	Au, Ag
	GOLS KING	Au, Au, Cu
		-
188		
100		Au, Ag
184	CANADIAN BELLE	Am Ca. An
		-
105	OCLOBN AGE	Au, Ag, Ri, Zi, W. Co
105	8.POA 185	Au. Au. R. Zu
		-
187		-
10		Au, Ag
100		Am. Am
		-
110	STOTIO HOME	
191		Au, Ag
18		4-
_		•
198		Au, Ag
196	NEW VICTOR	Au, Ap
188	DICE.SCA	Am. Am
		-
186	PLOP-0000 HOPE	Au, Au
1117	MYRR.	Au, Ag, Zn, Re
-		-
-		-
199		Au, R., Zu, Ag, Cd
-	CLARGE, CONSTOCK BOLADER CITY).	An. An. Th
		-
200		And . And .
-		Au, Au, In, R
-		A- A- B
		-
385	COLO HEL	Au, Au
-	ALDIOTON	An. An. B. In
		-
		•
207	SLVE BOLLAS	Au, Ag, Zh, R
-	Fuller	Au. 2n. 15. Au
		-
300	• • • • •	+
210		Au, Zn, Ru, Ag
211		Am. Co. Mb.
	APON	Au, Au
210	SIND LANDON	C .
214	BGNA	6
-		
216		
216		Au, Au
217		A. A.
216		16. M , V
299		3. A. R. C. C.
-		
		Au, dillas
		Au, Ag
	21,61	
-		
	17. MOUR	Co., fo. also
-		
*	••••	C
	•	•
-		
-	SNE I	Ag, R. 20
-		
		-
		-
200	HIII	Co., Mo
	•	
		-
-	SA499999	Au, Au, B., B., B.
-		- · · ·
780		Au
20	ATLIN - NOLIS	Au, Au
		-

- Western Geophysical Acro Data Ltd. -57

[]

AIRBORNE VLF-ELECTROMAGNETIC AND MAGNETIC SURVEY

This survey system simultaneously monitors and records the output signal from a proton precession magnetometer and two VLF-EM receivers installed in a bird designed to be towed 100 feet below a helicopter. A gimbal and shock mounted TV camera, fixed to the helicopter skid, provides input signal to a video cassette recorder allowing for accurate flight path recovery by correlation between the flight path cassette and air photographs of the survey area. A KING KRA-10A radar altimeter allows the pilot to continually monitor and control terrain clearance along any flight path.

Continuous measurements of the earth's total magnetic field intensity and of the total horizontal VLF-EM field strength of two transmission frequencies are stored in three independent modes: an analogue strip chart recorder, digital magnetic tapes and a digital video recovery system. A threepen analogue power recorder provides direct, unfiltered recordings of the three geophysical instrument output signals. A Hewlett-Packard 9875 tape drive system digitally records all information as it is processed through an onboard micro-computer. The magnetic and electromagnetic data is also processed through the onboard micro-computer, incorporating an analogue to digital converter and a character generator, then superimposed along with the date, real time and terrain clearance upon the actual flight path video recording to allow exact correlation between geophysical data and ground location. The input signals are averaged and updated on the video display every second. Correlation between the strip chart, digital tape and the video flight path recovery tape is controlled via fiducial marks common to all systems. Line identification, flight direction and pertinent survey information are recorded on the audio track of the video recording tape.

DATA PROCESSING

Field data is digitally recorded, with the time of day fiducial, on magnetic cassettes in a format compatible with the Hewlett-Packard 9845 computer. The recovered flight path locations are digitized and the field data is processed to produce plan maps of each of the parameters. A variety of formats are available in which to display this data.

5

Total field intensity magnetic information is routinely edited for noise spikes and corrected for any diurnal variations recorded on a base magnetometer located in the survey area.

Total field intensity VLF-EM signals are sensitive to topographic changes and sensor oscillation. Oscillation effects can be reduced by filters tuned to the dominant period. Long period effects attributable to topography can be removed by high pass filtering the planimetric data.

STERN GEOPHYSICAL AERO DATA LTD. 🗕

DISCUSSION OF RESULTS

The airborne survey totalled approximately 97 kilometres on lines oriented $330^{\circ}/150^{\circ}$ and spaced at 200 metre intervals. The magnetic data gathered is presented in contour form as Figure 2 of this report and the Seattle and Annapolis VLF-EM data as profiles on Figures 3 and 4 respectively.

6

A general correlation is observed between the magnetic trends (Figure 2) and the geological mapping presented by the Geological Survey of Canada (Plate 1 and Figure 2). The Ymir group of sediments, which cuts across the central portion of the claim group, is reflected by a magnetic low when compared to the Elise formation volcanics (andesites, basalts) mapped across the northernmost claims. The Nelson Intrusions (granodiorite) also appear as magnetic lows, of similar intensity to those reflecting the Ymir group.

There are a number of magnetic responses observed which apparently contradict the geological mapping. Most noticeably is an area of high magnetic intensity which covers portions of the southern claims as shown on Figure 2. This magnetic anomaly is of similar intensity to that correlated with the Elise formation to the north. Although a small window of these volcanics is mapped in the area, the magnetic information suggests the area of underlying volcanics is much larger. Other possibilities are that the Nelson Intrusion geologically mapped in the area is either very thin and underlain by the Elise formation or contains a facies with higher magnetic susceptibility materials.

The data recorded on line 8 was extremely noisy, showing large and rapid variations in the magnetic intensity. When compared with the data on the adjacent lines, it is apparent that these responses resulted from a northwesterly trending fault or contact zone which is interpreted as crossing the property as illustrated on Figures 2. The extreme magnetic variations observed likely result from localized alteration zones occuring along this lineation. These features appear to be accurately mapped with the airborne technique. The most definitive of these anomalies is a strong dipole effect located along the border between the O.G.G.4 and O.G.G.6 claims.

7

Based on the comparisons between the magnetic contour trends and the mapped geology, a geophysical interpretation of the major lithologies is presented as Figure 5. The contact between Ymir group sediments and Nelson Intrusions should be considered questionable because of the similarity of the magnetic intensities reflecting these units.

In addition to the general geological environment reflected in the magnetic data, a number of smaller, localized anomalies warrant specific mention. As discussed above, the interpreted northwesterly trending fault is characterized along its' length by extreme magnetic variations which will require ground investigation to be accurately delineated. Localized magnetic dipoles, such as the ones mapped at the centre of the 0.G.G.5 claim and southeast corner of the 0.G.G. claim likely originate from either intrusive plugs or alteration zones associated with them.

The VLF-EM data is presented as profiles on Figures 3 and 4. A number of conductivity type responses are observed as delineated on these maps but for the most part, they coincide with topographic ridges. The nature of the primary VLF-EM signal is such that sharp topographic ridges and valleys often produce false conductivity anomalies therefore the validity of these responses should not be assumed without supportive evidence. Above background energy levels in the VLF-EM signal are observed on portions lines 8,9 and 10 which supports the fault interpretation illustrated.

TERN GEOPHYSICAL AERO DATA LTD.

SUMMARY AND CONCLUSIONS

A 97 kilometre program of airborne magnetometer and VLFelectromagnetometer survey was conducted across the O.G.G. claim group on December 19, 1984. The program was undertaken on behalf of Roy W. Robinson at the request of G. Salazer S. & Associates Ltd. to provide direction for ground investigations of the claims area.

The magnetic data shows good correlation to the geology known from regional mapping by the Geological Survey of Canada. It does however infer the presence of a much larger volcanic unit across the southern portion of the claim block than has been mapped geologically and also detected two or three small Nelson Intrusions near the centre of the claim block. There is also strong evidence to support the interpretation of a northwesterly-southeasterly trending fault zone which crosses the O.G.G.4, O.G.G.6, O.G.G.2, and O.G.G.7 claims. A geological interpretation based on this geophysical information is presented as Figure 5 of this report.

In addition to the large scale geological trends mentioned above, a number of magnetic and electromagnetic responses are observed which indicate localized geological variations. These are the type more typically associated with mineral deposits. Of particular note is the strong dipole anomaly which straddles the border common to the O.G.G.4 and O.G.G.6 claims and is used, in part, to delineate a northwesterly trending fault zone. This area also reflects an increased intensity to the VLF-EM signals indicating increased near surface conductivity and should be considered a high priority target for detailing ground investigations. Three other dipolar anomalies have been highlighted as "Areas of Interest" on Figures 2 and 6. One is located along the northern border of the O.G.G. claim and ties directly with a geologically defined Nelson Intrusion. The second anomaly is located in the southeast corner of the O.G.G. claim and the third near the centre of the O.G.G.5 claim. These later two could be generated by similar granodiorite intrusions.

WESTERN GEOPHYSICAL AERO DATA LTD. .

Most of the VLF-EM anomalies flagged on the geophysical maps can be explained by the local topography. This does not however exclude the possibility of a coincident geological source; these areas should be examined as second priority targets.

RECOMMENDATIONS

The geophysical-geological interpretation (Figure 5), which is based primarily upon the magnetic data, should be confirmed by normal geological mapping procedures. Particular attention should be afforded to the northwesterly trending fault zone and the four areas labelled as "Areas of Interest" on Figure 5. These areas also warrant detailing geochemical, ground magnetometer and VLF-electromagnetometer surveys to confirm and precisely locate the anomalous responses.

Based on the initial geological, magnetic and electromagnetic results, a program of geochemical sampling, trenching and/or more sophisticated geophysics (Induced Polarization, Time Domain Electromagnetic) may be warranted.

Respectfully submitted,

E.Trent Pezzot, B.Sc., Geophysicist

Glen E. White, B.Sc., P.Eng. Consulting Geophysicist

9

STERN GEOPHYSICAL AERO DATA LTD. 🕳

INSTRUMENT SPECIFICATIONS

BARRINGER AIRBORNE MAGNETOMETER

7

Π

:	
MODEL:	Nimbin M-123
TYPE:	Proton Precession
RANGE:	20,000 to 100,000 gammas
ACCURACY:	+ 1 gamma at 24 V d.c.
SENSITIVITY:	l gamma throughout range
CYCLE RATES:	
Continuous	0.6, 0.8, 1.2 and 1.9 seconds
Automatic	2 seconds to 99 minutes in 1 second steps
Manual	Pushbutton single cycling at 1.9 seconds
External	Actuated by a 2.5 to 12 volt pulse longer than 1 millisecond.
OUTPUTS:	
Analogue	0 to 99 gammas or 0 to 990 gammas - automatic stepping
Visual	5 digit numeric display directly in gammas
EXTERNAL OUTPUTS:	
Analogue	2 channels, 0 to 99 gammas or 0 to 990 gammas at 1 m.a. or 1 volt full scale deflection.
Digital	BCD 1, 2, 4, 8 code, TTL compatible.
SIZE:	Instrument set in console 30 cm X 10 cm X 25 cm
WEIGHT:	3.5 Kg
POWER REQUIREMENTS:	12 to 30 volts dc, 60 to 200 milliamps maximum.
DETECTOR:	Noise cancelling torroidal coil installed in airfoil.

WESTERN GEOPHYSICAL AERO DATA LTD.

INSTRUMENT SPECIFICATIONS

11

SABRE AIRBORNE VLF SYSTEM

Source of Primary Field: - VLF radio stations in the frequency range of 14 KH_z to 30 KH_z. Type of Measurement:-Horizontal field strength Number of Channels: _Two; Seattle, Washington at 24.8 KHz -Annapolis, Maryland at 21.4 KH, Type of Sensor: -Two ferrite antennae arrays, one for each channel, mounted in magnetometer bird. Output: -0 - 100 mV displayed on two analogue meters (one for each channel) -recorder output posts mounted on rear of instrument panel Power Supply: -Eight alkaline 'AA' cells in main instrument case (life 100 hours) -Two 9-volt alkaline transistor batteries in bird (life 300 hours) Instrument Console: -Dimensions - 30 cm x 10 cm x 25 cm -Weight - 3.5 Kg.

STERN GEOPHYSICAL AERO DATA LTD.

Instrument Specifications

FLIGHT PATH RECOVERY SYSTEM

i) T.V. Camera:

Model:	RCA TC2055 Vidicon
Power Supply:	12 volt DC
Lens:	variable, selected on basis of expected terrain clearance
Mounting:	Gimbal and shock mounted in housing, mounted on helicopter skid

ii) <u>Video Recorder</u>:

Model:	Sony SLO - 340
Power Supply:	12 volt DC / 120 volt AC $(60H_{\eta})$
Tape:	Betamax ½" video cassette - optional length
Dimensions:	30 cm x 13 cm x 35 cm
Weight:	8.8 Kg
Audio Input:	Microphone in - 60 db low impedance microphone
Video Input:	1.0 volt P-P, 75 unbalanced, sync negative from camera

iii) Altimeter:

Model: Power Supply:	KING KRA-10A Radar Altimeter 27.5 volts DC
Output:	0-25 volt (1 volt / 1000 feet) DC signal
Mounting:	to analogue meter, 0-10 v (4mv/ft) analogue signal to microprocessor fixed to T.V. camera housing, attached to helicopter skid

WESTERN GEOPHYSICAL AERO DATA LTD.

Instrument Specifications

DATA RECORDING SYSTEM

i) Chart Recorder

Type: Esterline Angus Miniservo III Bench AC Ammeter - Voltmeter Power Recorder Model: MS 413B Specification: S-22719, 3-pen servo recorder Amplifiers: Three independent isolated DC amplifiers (1 per channel) providing range of acceptable input signals Chart: 10 cm calibrated width Z-fold chart Chart Drive: Multispeed stepper motor chart drive, Type D850, with speeds of 2,5,10,15,30 and 60 cm/hr. and cm/min. Controls: Separate front mounted slide switches for power on-off, chart drive on-off, chart speed cm/hr.- cm/min. Six position chart speed selector, Individual front zero controls for each channel. Power Requirements: 115/230 volts AC at 50/60H (Approximately 30 W. Writing System: Disposable fibre tipped ink cartridge (variable colors) Dimensions: 38.6 cm x 16.5 cm x 43.2 cm Weight: 9.3 kg.

ii) Digital Video Recording System

Type:	L.M. Microcontrols Ltd. Microprocessor Control Data Acquisition System
Model:	DADG - 68
Power Requirements:	10 - 14 volts DC, Maximum 2 amps.
Input Signal:	3,0 - 100 mvolt DC signals
	1,0 - 25 volt DC signals
Microprocessor:	Motorola MC-6800
	Motorola MC-6845
Character Generator:	Motorola MCM-6670
Analogue/Digital	
	Intersil 7109
Multiplexer:	Intersil IH 6208
Digital Clock:	National MM 5318 chip
	9 volt internal rechargeable nickle- cadmium battery
Fiducial Generator:	internally variable time set controls relay contact and audio output
Dimensions:	$30 \text{ cm} \times 30 \text{ cm} 3 13 \text{ cm}$
Weight:	3 kg.

STERN GEOPHYSICAL AERO DATA LTD. -

DATA RECORDING SYSTEM (CON'T)

iii) Digital Magnetic Tape

Type: Hewlett Packard cartridge tape unit Model: 9875A Power Requirements: 24 volt d.c. Data Format: HP's Standard Interchange Format (SIF) Tape Cartridge: HP 98200A 225K byte cartridge compatible with HP Series 9800 desktop computers. Tape Drive: Dual tape drives providing up to 8 hours continual recording time. Controller: Internal micro-computer provides 23 built in commands.

: External computer generated commands.

COST BREAKDOWN

PERSONNEL	SERVICE	DATES	CHARGEABLE DAYS	RATE	SUBTOTAL
E.T.Pezzot	Pre-Survey Preparation	Nov.19- Dec.14/84	2	300	\$600.00
E.T.Pezzot	Mobilization	Dec.17- Dec.18/84	2	450	900.00
E.T.Pezzot	Survey/De-Mob	Dec.19/84	l	450	450.00
			Subtotal	• • • • •	\$1,950.00
Geophysicis	t Supervision				
Flight Path	Recovery				150.00
Flight Path	Digitizing				150.00
Data Analys	is				200.00
Computer Pr	ocessing - Magn	etic Map &	Contouring		400.00
	- VLF-	EM #1			175.00
	- VLF-	EM #2			175.00
	- VLF-	ЕМ #2	Subtotal	••••	175.00 \$1,250.00
Support Cha		EM #2	Subtotal	••••	·····
<u>Support Cha</u> Instrument	rges	EM #2	Subtotal		·····
<u></u>	<u>rges</u> Lease	EM #2	Subtotal		\$1,250.00
Instrument	<u>rges</u> Lease	EM #2	Subtotal		\$1,250.00
Instrument Helicopter Vehicle	<u>rges</u> Lease	ЕМ #2	Subtotal		\$1,250.00 500.00 1,100.00
Instrument Helicopter Vehicle Meals & Acc	rges Lease & Fuel	EM #2	Subtotal		\$1,250.00 500.00 1,100.00 360.00
Instrument Helicopter Vehicle Meals & Acc	rges Lease & Fuel commodations	EM #2	Subtotal		\$1,250.00 500.00 1,100.00 360.00 120.00
Instrument Helicopter Vehicle Meals & Acc Photomosaic	rges Lease & Fuel commodations	ЕМ #2	Subtotal		\$1,250.00 500.00 1,100.00 360.00 120.00 200.00
Instrument Helicopter Vehicle Meals & Acc Photomosaic Materials Drafting	rges Lease & Fuel commodations		Subtotal		\$1,250.00 500.00 1,100.00 360.00 120.00 200.00 30.00
Instrument Helicopter Vehicle Meals & Acc Photomosaic Materials Drafting	rges Lease & Fuel commodations /Photographics ion & Report Co		Subtotal		\$1,250.00 500.00 1,100.00 360.00 120.00 200.00 30.00 150.00

Total\$6,500.00

15 -

STATEMENT OF QUALIFICATIONS

16

NAME :

PEZZOT, E. Trent

PROFESSION: Geophysicist - Geologist

EDUCATION: University of British Columbia-B.Sc.- Honors Geophysics and Geology

ASSOCIATIONS: Society of Exploration Geophysicist

EXPERIENCE:

PROFESSIONAL

Three years undergraduate work in geology - Geological Survey of Canada, consultants.

Three years Petroleum Geophysicist, Senior Grade, Amoco Canada Petroleum Co. Ltd.

Two Years consulting geophysicist, Consulting geologist - B.C., Alberta, Saskatchewan, N.W.T., Yukon, western U.S.A.

Four years geophysicist with Glen E. White Geophysical Consulting & Services Ltd.

STATEMENT OF QUALIFICATIONS

17

NAME: WHITE, Glen E., P. Eng.

PROFESSION: Geophysicist

EDUCATION: B.Sc. Geophysicist - Geology University of British Columbia.

PROFESSIONAL ASSOCIATIONS:

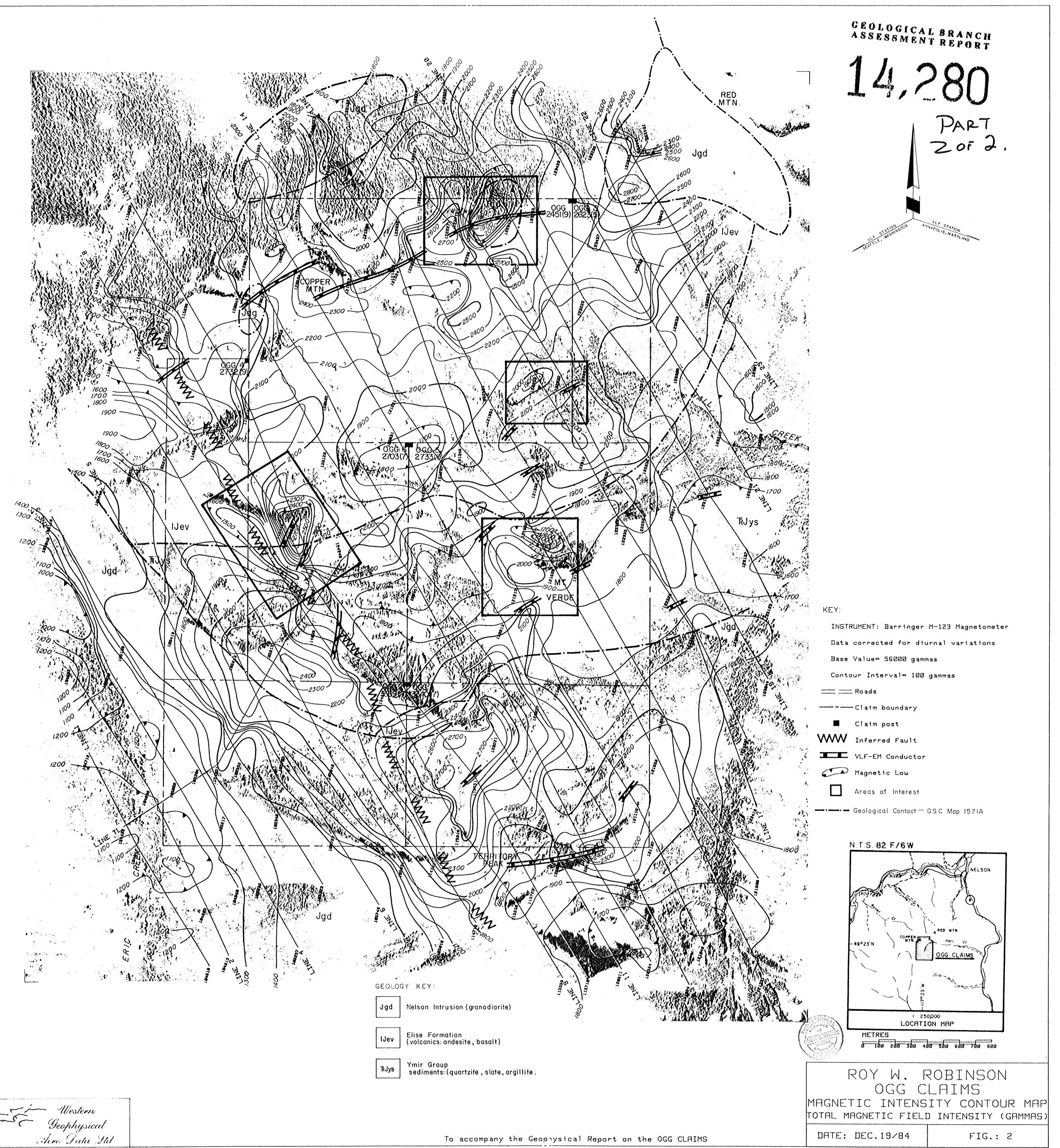
ATIONS: Registered Professional Engineer, Province of British Columbia.

Associate member of Society of Exploration Geophysicists.

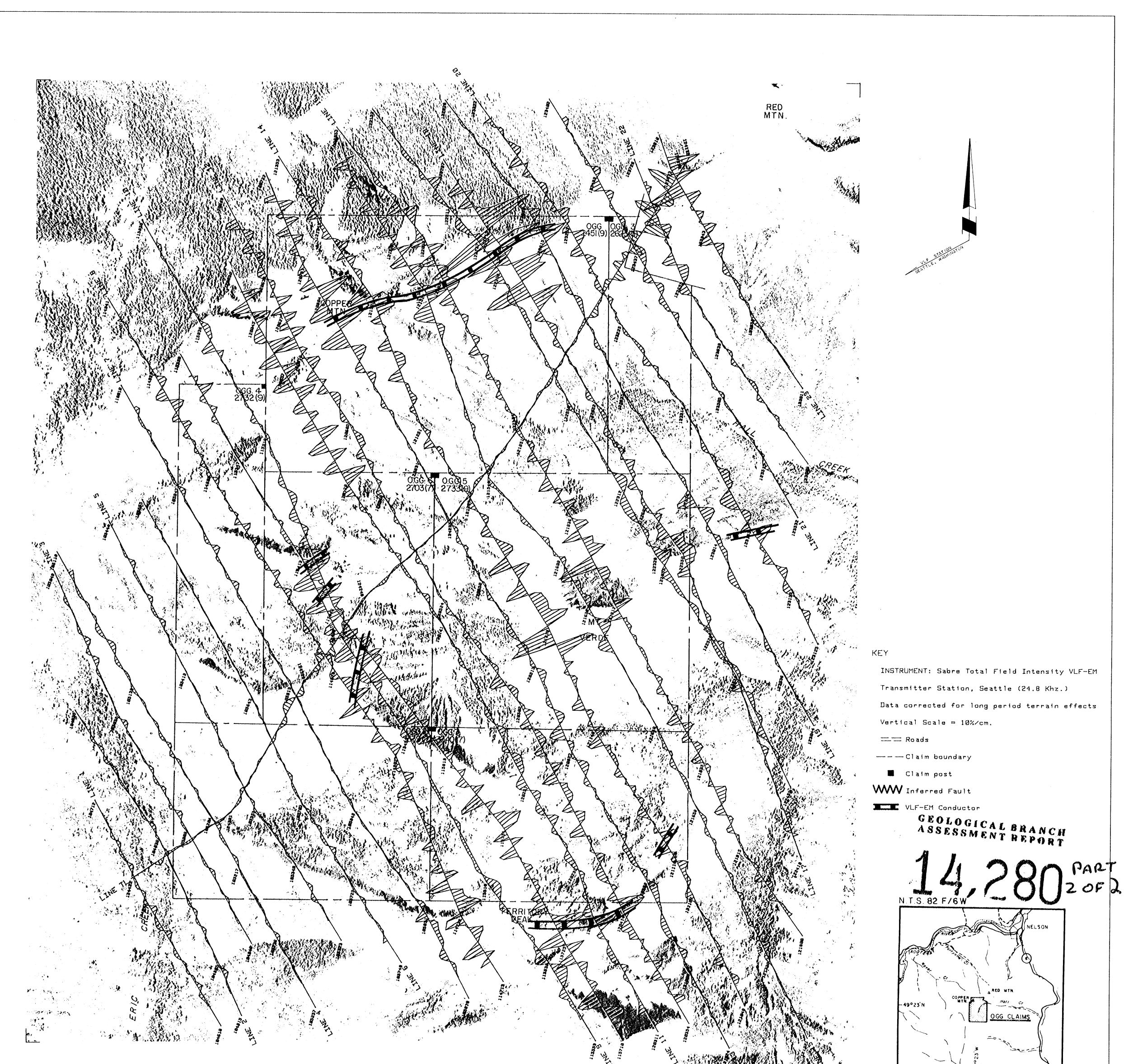
Past President of B.C. Society of Mining Geophysicists.

EXPERIENCE: Pre-Graduate experience in Geology -Geochemistry - Geophysics with Anaconda American Brass.

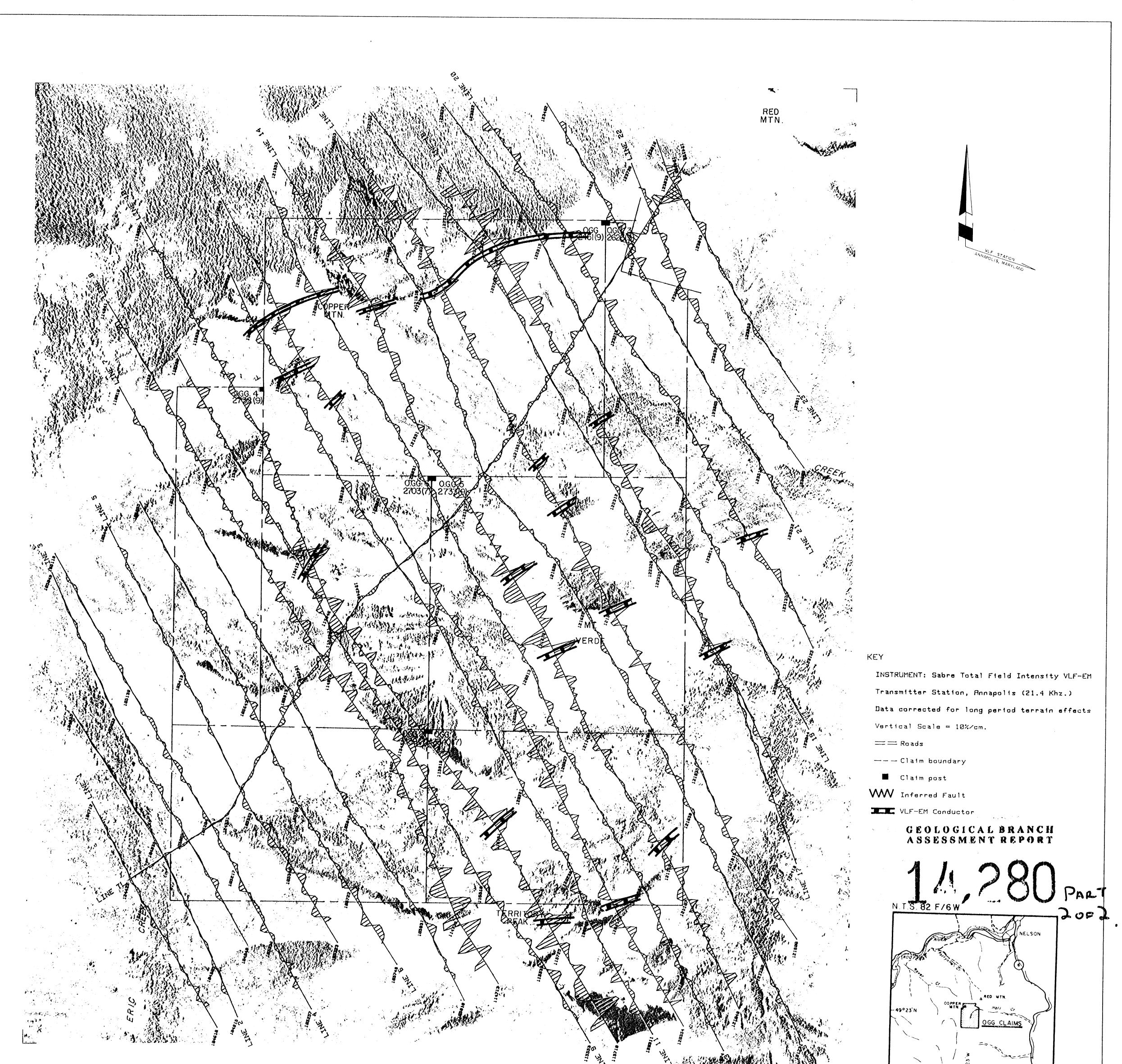
> Two years Mining Geophysicist with Sulmac Exploration Ltd. and Airborne Geophysics with Spartan Air Services Ltd.

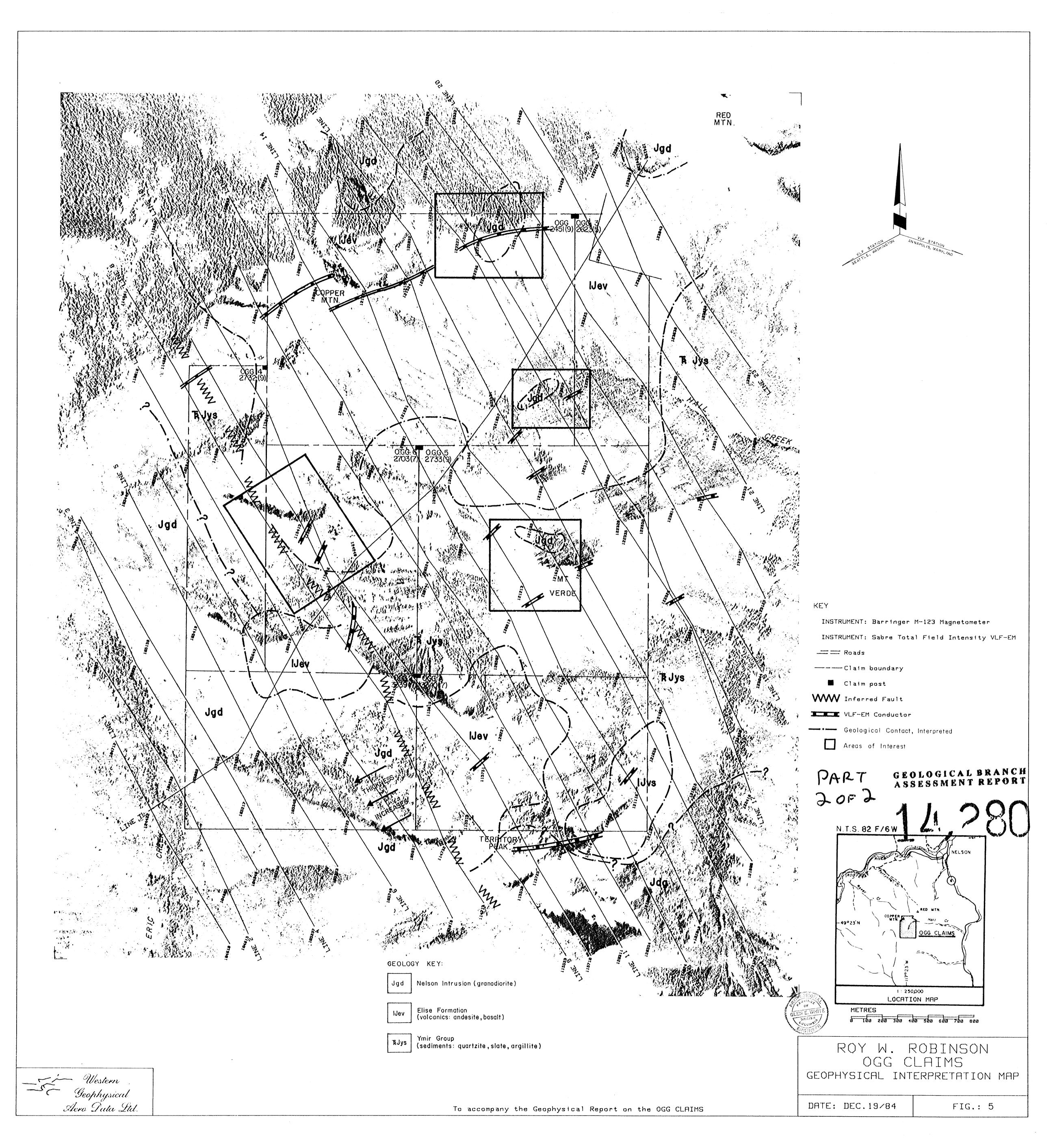

One year Mining Geophysicist and Technical Sales Manager in the Pacific north-west for W.P. McGill and Associates.

Two years Mining Geophysicist and supervisor Airborne and Ground Geophysical Divisions with Geo-X Surveys Ltd.


Two years Chief Geophysicist Tri-Con Exploration Surveys Ltd.

Eleven years Consulting Geophysicist.


Active experience in all Geologic provinces of Canada.


To accompany the Geopysical Report on the OGG CLAIMS

		LOCAT	50,000 ION MAP
- Seophysical		OGG C VLF-EM PROFI	ROBINSON CLAIMS Les (seattle) Tield intensity (%)
Acro Data Lat	To accompany the Geophysical Report on the OGG CLAIMS	DATE: DEC.19/84	FIG.: 3

		METRES	100 MAP	
		ROY W. ROBINSON OGG CLAIMS VLF-EM PROFILES (ANNAPOLIS) TOTAL HORIZONTAL FIELD INTENSITY (%)		
Aero Pata Ltd.	To accompany the Geophysical Report on the OGG CLAIMS	DATE: DEC.19/84	FIG.: 4	

