$$
\begin{aligned}
& 85-496-14385 \\
& 05 / 86
\end{aligned}
$$

CANE CLAIMS

OSOYOOS MINING DIVISION
 NT $82 \mathrm{E} /$ 特 2

LATITUDE $49^{\circ} 00^{\circ}$ NORTH, LONGITUDE $119^{\circ} 322^{\prime}$ WEST

Prepared

for:

THE ORANOGAN MINING SYNDICATE
GEOLOGICAL BRANCH
ASSESSMTMTREPORT-

CANEX CLAIMS

TABLE OFONTENTS

SUMMARY 1
LOCATION 2
ACCESS 2
CLAIMS 3
HISTORY 4
GEOLOGY 4
GEOCHEMISTRY 5
GEOPHYSICS 5
RECOMMENDATIONS 7
BIBLIOGRAPHY 8
COST STATEMENT 1984 PROGRAM 9
CERTIFICATE OF QUALIFICATIONS 10
APPENDICES 11
I. Geochemical Analyses Results

| FIGURE 1. LOCATION MAP | Scale |
| :--- | :--- | :---: |
| FIGURE 2. CLAIM MAP | $(1: 250000)$ |
| FIGURE 3. GOLD GEOCHEMICL, SURVEY | $(1: 50000)$ |
| FIGURE 4. MAGNETOMETER SURVEY | $(1: 5000)$ |
| | |

1984 ASSESSMENT REPORT
 ON THE
 CANEX CLAIMS

SUMMARY

At the request of the Okanogan Mining Syndicate, the author undertook to visit the Canex Claim group in order to provide a preliminary assessment of the property's potential and make recommendations.

The Canex Group claims (the claims) are located approximately 7 kilometres Southwest of Osoyoos, B.C. adjacent to the International boundary (see Location Map).

A1though time did not permit a comprehensive look at the geology, it appears, at least in the westerly portions, that the claims are underlain by alkaline syenitic rocks of the Kruger phase of the Okanogan Batholith Complex. The available information suggests that the eastern portion of the claims are underlain by rocks of the Kobau Formation of the Anarchist Group.

Reconnaissance geochemical, magnetometer surveys and limited geological mapping were undertaken on the claims in 1984 in order to provide a first assessment of the mineral potential of the claim group. Although not extensive, the surveys contained a number of "areas of interest". These, along with the close proximity to a known mineralized zone at the adjacent Submarine Mine offers sufficient justification for a modest program of geophysical and soil surveying and geological mapping.

LOCATION

The Canex Group claims (the claims) are located approximately 7 kilometres $S W$ of the town of Osoyoos, B.C. (see Location Map) in the Osoyoos Mining Division at Latitude of 49 degrees 00 minutes North, Longitude 119 degrees 32 minutes West. NTS mapsheet is $82 \mathrm{E} / 4$. Altitude ranges from 2200 to 3400 feet ASL.

ACCESS, TOPOGRAPHY,CLIMATE

Good road access to much of the property is available by two wheel drive vehicle over a reasonably good dirt road which leaves Highway \# 3 about 5 km west of 0 sooyoos. This road leads generally southerly to the claim group past Kilpooa Lake. Within the immediate area of the claims, what roads there are very overgrown so $\begin{aligned} & \text { high ground } \\ & \text { clearance truck is required to }\end{aligned}$ travel with confidence.

The claim group is generally very open at the the lower elevations. The only trees of any consequence are found on the higher ridges. Underbrush is typically very scarce in the trees. In the open areas sagebrush predominates and these sections can usually be traversed by four wheel drive vehicle.

In terms of climate, the area is semi-desert, with hot dry summers and moderately cold winters. Water is to be found in summer only as groundwater, except at Kilpoóa Lake, which itself shrinks considerably in this season.

CLAIMS

The Canex Claims (the Claims) are registered (in trust) to Paul W. LaFontaine of Vancouver, B.C. The Okanogan Mining Syndicate are indicated to be the owners. The Claim Group is comprised of the following claims and fractions:

CLAIM NAME	RECORD NO.	RECORD	DATE
CANEX	2033 (5)	May	22, 1984
CANEX 1	2189 (2)	February	18, 1985
CANEX 2	2190 (2)	February	18, 1985
CANEX 3	2191 (2)	February	18, 1985
CANEX 4	2192 (2)	February	18, 1985
CANEX 5	2193 (2)	February	18, 1985
CANEX6	2194 (2)	February	18, 1985
CANEX 7	2195 (2)	February	18, 1985
CANEX8	2196 (2)	February	18, 1985
QUILT	2148 (12)	December	17, 1984

The validity of all of the claims listed above and their locations as shown in the accompanying maps, cannot be stated with absolute certainty at the time of writing this report.

HISTORY

The immediate area of the claims has a lhistory of limited mining activity dating from the late-1800's to more recent years. A number of trenches, pits, and adits are known to exist near the propertyon both sides of the border. Also, the Dividend-Lakeview Mining Camp a few miles east, existed in the early part of this century with gold the major revenue-producing metal. Only a few hundred metres south, in the U.S., the Submarine (or Lone Pine) Mine explored an extensive quartz vein from an adit and drifts reportedy totalling some 1400 feet. It is thought that some gold-bearing ore was shipped from the operation some gears ago. Some trenching and pits are also reported on the Canadian side on the White Knight Claims, possibly exploring the same vein system encountered at the Submarine.

GEOLOGY

The CANEX claims are located near the Eastern contact of the Kruger pluton, an alkilic border phase of the Similkameen pluton, with quartzites and greenstones of the Kobau Group. The Kruger pluton is contiguous with an assemblage of malignite, pyroxenite, and syenitic gneiss which comprise the margin of the Similkameen (Reinhart \& Fox, 1972). It is thought that the Columbian Orogeny, occurring in the Triassic, has imparted the existing structural pattern and possibly controlled the
emplacement of the mineral occurrences in the area (Ruck, 1983).

GEOCHEMISTRY

A limited number of soil and silt samples were taken during the staking of the property. These were submitted for ICP geochemical analyses for 30 elements at ACME Analytical Laboratories in Vancouver. The tabulated results and a description of the analysis method are included in the Appendices. The gold assay values are plotted on Figure 3. Geochemical Survey Map.

On the basis of the existing results, there appears to be two, or possibly three areas of interest. These are at Sample Locations CXS-1, CXS-2, and LIE+1200 where gold values of greater than 22 ppb and as high as 43 ppb are observed against a regional background of $2-4 \mathrm{ppb}$. These locations should be re-sampled and small grids established to confirm the values and ascertain the extent of the anomalous areas.

It is also recommended that a soil sampling grid be established along the border immediately to the north of the Submarine Mine. Lines should run East-West and be spaced 100 meters apart with sample locations every 50 meters.

GEOPHYSICAL SURVEY

Magnetometer surveys were conducted in two areas with an Scintrex $M P-2$ proton precession instrument. The data was
corrected for diurnal variations where necessary. This instrument is specified as being capable of a resolution of 1 gamma.

Grids were established in two areas. The southern grid has lines spaced 200 meters apart and stations at 100 meter intervals on the lines. A second smaller grid in the northeast corner of the CANEX claim has East-west lines 50 meters apart with 20 meter sample locations.

On the southern grid, Line 0 shows evidence of considerable magnetic activity in the area to the north of the Submarine Mine. The range of magnetic field variation exceeds 4000 gammas on this line. A more detailed grid in this area is recommended with sample spacing of 25 meters.

On the northern grid area, Lines $4 W, 4+25 W$ and $5 W$ should be re-surveged to confirm the values shown. There appears to be a small magnetic anomaly in this area.

RECOMMENDATIONS

```
The following program is recommended to further evaluate the potential of the Canex Claim Group:-
```


RECOMMENDED 1985 PROGRAM

1. Geological mapping	\$ 2,000
2. Soil,silt sampling/establish grid	\$ 3,000
3. Magnetometer/ VLF EM survey	\$ 4,000
4. Geochemical analyses	\$ 4,000
5. Engineering supervision	\$ 1,000
6. Food \& lodging	\$ 2,000
7. Equipment \& supplies	\$ 1,500
8. Transportation \& rentals	\$ 1,500
9. Reports \& drafting	\$ 1,500
10. Contingency	\$ 2,000
TOTAL PHASE I	\$ 22,500
1. Geological mapping/trenching/drilling	\$10,000
2. Detailed Geochemical Sampling	\$ 4,000
3. Detailed Magnetometer/ VLF EM survey	\$ 4,000
4. Geochemical analyses	\$ 5,000
5. Engineering supervision	\$ 3,000
6. Food \& lodging	\$ 3,000
7. Equipment \& supplies	\$ 3,000
8. Transportation \& rentals	\$ 2,000
9. Reports \& drafting	\$ 3,000
10. Contingency	\$ 3,000
TOTAL PHASE II	\$ 40,000

Depending on the results of the above program, a follow-up Phase II program should be implemented in conjunction with a qualified geologist to evaluate any anomalous areas.

BIBLIOGRAPHY

CAIRNES, C. E. 1940. G.S.C. Map 538A. Kettle River West Half.

CAMPBELL C. D. 1939. Kruger Alkaline Syenites of Southern B. C.; Am. J. Sc., vo1. 237, pp 522-549.

DALY, R. A. 1912. Geology of the North American Cordillera at the Forty-Ninth Parallel; G. S. C. Memoir 38 Parts l,2,3.

LITTLE, H. W. 1958. G.S.C. Map 15-1961 Kettle River (West Half). OKULITCH, A. V. 1964. Geology of Mount Kobau. PhD. Thesis (UBC).

PEATFIELD, G. R. 1978. Geologic History and Metallogeny of the Boundary District, Southern British Columbia and Northern Washington.

RINEHART, C.D. \& FOX, K.F. 1972. Geology and Mineral Deposits of the Loomis Quadrangle, Okanogan County, Washington. Washington State Dept. of Natural Resources, Bulletin 64.

RUCK, P. 1983. Geological and Geochemical Report on the White Knight Claims.; Mineral Assessment Report 11295

DETAILED COST STATEMENT

1984 FIELD PROGRAM

```
A. Wages and Fees
    1. R.T. McKnight, P. Eng. (1 days
    @ $300/day) Ju1y 2, 1985 $ 300.00
    2. Raymond W.B. Stewart (5 days @
    $150),May 19,20;Ju1y 2,28,29, 1984 $750.00
    3. Roderick S. Stewart (2 days @
        $150/day);July 28,29,1984 $ 300.00
B. Food, Accomodation ( 8 man-days) $1,040.77
C. Transportation
        4-wheel drive, 3 trips Vancouver-
        Osoyoos; 3 trips Osoyoos to
        property (pro-rated) $ 288.75
D. Analyses
    52 samples ( $12.77/samp1e) $ 648.55
E. Equipment
    Magnetometer Mtce. & Repair $ 507.20
F. Report
        Drafting maps,typing,prints,photo
        copying,materials
        $ 499.79
.
    TOTAL
$4,335.06
    ========
```


CERTIFICATE OF QUALIFICATIONS

I, Robert T. McKnight, P.Eng., residing in North Vancouver, B.C. do certify that:-

1. I am a registered Professional Engineer in the Province of British Columbia.
2. I have a degree of Bachelor of Applied Science in Geological Engineering from the University of British Columbia. I am a member of the Canadian Institute of Mining and Metallurgy.
3. I have practiced as a geologist, geophysicist and mining financial analyst in B.C., Alberta, and other Provinces of Canada since 1972.
4. I am the author of the Report entitled "ASSESSMENT REPORT ON THE CANEX CLAIMS". The report is based on a trip to the property by myself and on fieldwork supervised by myself.
5. I have no financial interest in the ownership of the property, nor do I expect to receive such interest.

Vancouver, B.C.
 April 30,1985

- SATPLE TYPE: SOILS AKD ROCKS AUII ANMLYSIS BY FA+AA FROM 10 GRAM SAMPLE.

DATE RECEIVED: NON 261984 DATE REFORT MAILED:
1bu $28 / 84$
ASSAYER. A. SR
RAY STEWART FILE \# 84-3458

SAKP-EI	no	Cu	Pt	In	Ag	Mi	Co	Mn	Fe	As	\cup	Au	Th	Sr	cd	56	Bi	v	Ca_{3}		Ld	Cr	\%	Ba	Ii	${ }^{8}$					
	ppa	ppn	ppa	ppa	ppa	ppa	ppa	ppa	1	ppa	ppa	pps	ppı	ppa	ppa	ppa	ppa	ppa	4	\%	ppa	ppt	2	ppl	2	ppo	\%	2	\%	pps	ppb
4WAE 0000	1	78	1	31	. 3	32	7	308	1.09	3	5	ND	2	564	1	2	2	17	8.84	. 10	3	28	. 86	103	. 03	8	. 79	. 03	. 19	2	21
4MAE+100	3	113	6	42	. 2	50	8	348	1.55	2	5	ND	2	247	1	2	2	25	4.09	. 11	5	41	. 77	118	. 06	9	1.14	. 04	. 31	2	1
4MAE+200	2	72	6	60	. 1	50	10	350	2.39	3	5	ND	2	163	1	2	2	39	1.49	. 14	8	54	. 86	80	. 08	10	1.37	. 04	. 36	2	5
144E 300	2	102	5	82	. 1	57	8	265	2.16	4	5	N0	2	137	1	2	2	37	. 95	. 10	5	54	. 89	71	. 09	7	1.47	. 04	. 35	2	1
4WEE 400	2	75	6	72	. 1	61	13	534	2.81	5	5	KD	2	118	1	2	2	49	. 78	. 18	6	73	1.14	117	. 10	10	1.93	. 04	. 49	2	2
444E+500	1	48	7	49	. 1	35	9	128	2.27	1	5	ND	2	131	1	2		37	1.10	. 11	10	38	. 68	87	. 09	6	1.17	. 03	. 26	2	3
4W4E 650	1	73	8	39	. 1	29	7	251	1.86		5	N0	2	124	1		2	28	. 91	. 09	8	30	. 63	59	. 08	11	1.15	. 04	. 27	2	2
	1	85	5	39	. 2	31	5	163	1.72	2	5	\%	2	131	1	2	2	25	1.09	. 11	8	30	. 65	62	. 06	9	1.16	. 04	. 25	2	2
WHE 9 P00	1	56	7	41	. 1	30	7	349	1.89	3	5	ND	2	138	1	2	2	29	1.03	. 13	8	32	. 67	71	. 07	11	1.15	. 04	. 27	2	7
4WE +1000	1	64	4	43	. 1	32	7	309	1.91	3	5	ND	2	133	1	2	2	30	1.03	. 12	8	34	. 69	70	. 07	11	1.18	. 04	. 27	2	1
15+000	,	62	10	63	. 1	20	10	599	3.51	6	5	ND	5	95	1	2	2	88	1.16	. 27	22	24	. 78	40	. 09	7	1.11	. 04	. 23	2	9
1E+100	2	58	9	51	. 1	19	8	603	2.78	7	5	10	3	104		2	2	69	1.47	. 21	16	23	. 59	43	. 08	7	. 95	. 03	. 21	2	4
1E+200	2	45	9	51	.1	17	6	306	3.22	6	5	10	1	99		2	2	78	1.12	. 20	12	24	. 55	36	. 07	7	. 84	. 03	. 19	2	3
1E+300	2	86	14	90	. 2	20	7	660	2.19	4	5	N0	2	198	1	2	2	48	2.70	. 18	12	23	. 63	64	. 07	11	1.06	. 04	. 24	2	4
$1 E+400$	2	57	9	95	. 2	16	6	446	1.88	3	5	ND	2	288	1	2	2	44	7.52	. 16	12	21	. 54	58	. 07	7	. 94	. 04	. 22	2	1
1E+500	2	52	9	77	. 2	17	8	531	3.06	7	5	ND	4	129	1			7	2.36	. 23	18	27	. 61	50	. 09	9	1.05	. 04	. 24	2	2
1E +650	2	65	8	67	. 1	28	9	494	2.98	5	5	ND	2	158	,	2	2	67	2.52	. 18	12	34	. 73	64	. 08	-	1.19	. 04	. 28	2	2
1E+700	2	71	9	73	.2	22	9	729	2.82	7	5	ND	3	280	,		2	62	3.70	. 19	15	29	. 68	83	. 08	8	1.25	. 04	. 26	2	$?$
[E+800	2	67	12	13	. 1	25	9	771	2.92	5	5	ND	J	142		2	2	64	1.46	. 18	14	33	. 72	75	. 08	6	1.29	. 03	. 27	2	3
1E+1100	2	48	8	88	.1	19	8	577	2.55	6	5	VI	3	122	1	2	2	58	1.50	. 18	15	23	. 61	58	. 08	6	1.07	. 03	. 23	2	2
1E+1200	2	59	11	76	. 1	20	9	646	3.47	1	5	ND	3	125	1	2	2	B6	1.47	. 20	16	28	. 62	59	. 08		1.13	. 03	. 24	2	35
2E+100	1	68	9	62	.1	21	8	405	2.58	7	5	N1	2	260	1	2	2	54	2.61	. 17	15	28	. 92	87	. 08	8	1.30	. 03	. 26	2	,
X $2+200$	2	47	10	79	.2	22	8	976	2.10	4	5	N0	2	311	,	2	2	46	2.61	. 17	10	38	. 72	80	. 05	13	1.04	. 04	. 20	2	1
2¢ +300	2	59	8	77	. 1	22	8	681	2.13	8	5	ND	2	152	1	2	2	48	1.22	. 17	13	25	. 53	129	. 88	11	1.47	. 03	. 29	2	7
CAMEX-2E	2	527	8	89	.3	22	12	1042	4.25	6	5	MD	5	87	1	2	2	111	. 98	. 36	31	30	. 81	132	. 13	4	2.18	. 03	. 30	2	7
Cx5-1	1	209	10	110	. 1	10	11	1248	4.13	6	5	ND	1	121	1	2	2	109	1.46	. 26	38	13	. 94	78	. 15	1	2.36	. 06	. 52	2	43
C15-2	2	86	11	67	. 3	26	10	735	3.80	10	5	$N \mathrm{~N}$	4	100	1	2	2	98	. 90	. 25	23	33	. 69	101	. 11	5	1.67	. 03	. 32	2	40
C15-3	1	78	8	73	. 2	24	9	669	3.69	7	5	N0	3	90	1	2	2	70	. 84	. 20	19	29	. 71	112	. 11	6	1.73	. 03	. 32	2	${ }^{6}$
CIS-4	1	114	86	216	. 3	6	4	1058	. 90	5	5	N0	2	167	2	2	2	22	1.91	. 12	4	7	. 28	104	. 03	18	. 43	. 01	. 17	2	4
EXS-5	2	101	14	91	.2	20	11	983	3.81	8	5	N0	4	64	1	2	2	100	1.03	. 26	23	25	. 64	86	. 10	2	1.36	. 04	. 28	2	2
C15-6	2	214	13	107	. 3	20	12	1385	4.61	4	5	N0	5	86	,	2	2	123	1.05	. 35	31	27	. 87	83	. 12		1.69	. 03	. 29	2	6
CXS-7	2	53	11	68	.1	29	10	732	2.85	6	5	n	3	50	1	2	2	55	. 56	. 15	15	35	. 65	128	. 10	2	1.64	. 02	. 23	2	2
C15-8	2	81	11	90	. 2	22	8	975	2.78	J	5	NO	3	62	1	2	2	54	. 75	. 18	16	25	. 55	176	. 09	6	1.81	. 02	. 25	2	2
C1S-9	,	78	8	116	. 2	15	9	1143	4.14	6	5	N0	4	95	1	2	2	107	1.13	. 31	23	19	. 54	122	. 09		1.37	. 03	. 22	2	2
CIS-10	2	53	10	55	. 2	25	9	679	2.50	9	5	no	2	58	1	2	2	17	. 75	. 14	14	31	. 57	111	. 08	6	1.35	. 02	. 22	2	3
C15-11 STD C/AU 0.5	18	42 56	$7{ }^{7}$	43 120	.2 6.6	12 63	24	${ }_{1085}^{374}$	1.61 3.94	4	${ }_{18}^{5}$	MD 7	2 32	133 48	15	2 15	19	32 59	2.10 .44	. 11	10 37	15 54	. 82	80 17	. 06	36	1.20 1.72	. 02	.17 .12	2 12	51

cANEX

RAY STEWART FILE \# 84-3458
FAGE 2

SAMPLEA	Mo	Cu	Pb	ln	Ag	Mi	Co	Mn	Fe	As	U	Au	Th	$5 r$	Cd	Sb	Bi	v	Ca	p	La	Cr	Hg	Ba	i	B	Al	Na	k	\|	Ault
	ppe	ppa	ppe	ppa	ppa	ppa	ppa	ppa	2	ppa	pps	ppı	2	\geq	ppa	ppa	7	ppa	2	ppa	\%	1	1	ppa	Ppb						
C15-12	1	59	11	77	. 1	21	9	146	2.59	3	5	ND	3	65	1	2	2	47	. 59	. 19	18	27	. 62	107	. 07	10	1.35	. 02	. 29	2	3
CIS-13	2	89	12	99	. 7	15	10	1066	2.77	5	5	ND	3	108	1	2	2	56	. 87	. 22	24	18	. 86	110	. 07	5	1.57	. 02	. 34	2	5
C15-11	2	51	8	64	. 2	33	10	601	2.31	8	5	ND	2	75	1	2	2	37	. 69	. 17	10	40	. 64	122	. 05	21	1.18	. 01	. 23	2	22
CXS-15	1	51	10	62	. 2	27	10	848	2.40	5	5	ND	2	65	1	2	2	11	. 60	. 16	12	31	. 62	123	. 07	5	1.39	. 01	. 25	2	3
CIS-16	1	54	6	53	. 2	21	8	488	1.83	6	5	ND	2	142	1	2	,	31	1.99	. 19	11	25	. 55	92	. 04	10	. 94	. 02	. 20	2	3
CxS-17	1	62	10	78	. 2	29	11	729	2.77	4	5	ND	3	45	1	2	2	48	. 53	. 17	15	37	. 63	118	. 08	3	1.51	. 01	. 29	2	1
CI5-18	1	43	11	65	.1	21	8	641	2.08	3	5	ND	2	77	1	2	2	34	. 59	. 11	10	24	. 48	141	. 07	5	1.37	. 01	. 22	2	1
1V1400+30ME ROCX	1	4	8	15	. 1	1	1	142	. 54	3	5	ND	26	4	1	2	3	4	. 14	. 01	10	3	. 02	4	. 01	3	. 11	. 03	. 04	2	1
1E+250 Racx	1	128	7	50	. 1	6	9	529	3.60	3	5	ND	4	149	1.	2	2	113	1.74	. 47	32	6	. 67	43	. 12	6	. 94	. 22	. 23	2	1
2E+200 ROCK	1	33	7	31	. 1	18	3	672	1.91	3	5	mD	2	11	1	2	2	4	. 14	. 03	δ	34	. 61	54	. 01	2	. 70	. 01	. 03	2	1
2E+1197 R0CK	1	140	4	69	. 1	6	11	646	3.73	4	5	ND	4	183	1	2	2	127	1.55	. 48	42	10	. 84	56	. 13	9	1.23	. 19	. 48	2	2
CIR-A ROCX	1	6	9	18	. 1	1	1	210	. 54	3	5	ND	29	14	1	2	3	6	. 43	. 01	16	1	. 04	3	. 01	2	. 11	. 03	. 04	2	1
CIR-1 ROCK	1	38	2	17	. 1	14	4	365	1.36	2	7	MD	2	140	1	2	2	21	2.92	. 03	2	20	. 62	15	. 04	3	. 58	. 01	. 04	2	4
CIR-2A ROCK	1	4	1	1	. 1	2	1	79	. 30	2	5	ND	2	3	1	2	3	2	. 04	. 01	2	2	. 01	2	. 01	2	. 01	. 01	. 01	2	1
CIR-300h ROCX	1	130	5	51	.1	3	6	578	2.36	2	5	MD	6	231	1	2	2	80	1.43	. 17	29	2	. 49	21	. 07	3	1.60	. 66	. 29	2	4
CIR-700\% ROCX	1	15	8	23	. 1	1	2	274	1.53	2	5	ND	31	15	1	2	3	27	. 13	. 03	26	1	. 07	7	. 02	2	. 17	. 04	. 06	2	6
STD C/al 0.5	19	59	41	127	7.1	67	26	1035	3.94	38	20	7	35	50.	16	15	19	56	. 44	. 14	37	56	. 88	179	. 08	38	1.71	. 06	. 12	11	500

