MINISTRY OF ENERGY, MINES
AND PETROLEUM RESOURCE

O LOGICAL BRANCH
FEB 1 4 1986 S SESSMENT REPORT

SUBJECT
FILE
VANCOUVER, B.C.

11/86

FILMED

ASSESSMENT REPORT

DIAMOND DRILLING

ON THE

CAD CLAIM GROUP

CAD 4937 (11) DIAL 5030 (11) CAD I 4938 (11) CAD 2 4950 (11) CAD 3 4951 (11) CAD 4 4952 (11) CAD 5 4953 (11) CAD 6 4954 (11) BRI 6344 (8) NBR 8 5944 (11)

KAMLOOPS MINING DIVISION

N.T.S. 82M/5W

51°18'N 119°52'W

Owner:

J.D. Graham and Noranda Exploration Company, Limited

Operator:

Noranda Exploration Company, Limited (no personal liability)

Author:

G. Shevchenko

Project Geologist

Date:

February, 1986

TABLE OF CONTENTS

			PAGE
1.0	1.2 Top 1.3 Pre 1.4 Cla 1.5 Eco	TION ation and Access ography and Physiography vious Work im Status nomic Potential mary of Work Done	1 1 1 1 3 3 3
2.0	DISCUSSI	ON OF RESULTS	4
3.0	CONCLUSI	ONS	7
4.0	RECOMMEN	DATIONS	7
		LIST OF DRAWINGS	
Drawi	ing l:	Property Location Map	Page 2
Drawi	ing 2:	Drill Hole Location Map	In Pocket
Drawi	ing 3:	Russ 85-1 Drill Section	Page 5
Drawi	ing 4:	Russ 85-2 Drill Section	Page 6
		APPENDICES	,
Appei	ndix I	Diamond Drill Logs	
Apper	ndix II	Lab Analysis/Assay Sheets and Methods	
Apper	ndix III	Statement of Cost	
Appet	ndix IV	Statement of Qualifications	

1.0 INTRODUCTION

This report encompasses the diamond drilling which was conducted on the CAD Claim Group during the 1985 field season. The two holes, Russ-85-1 and Russ-85-2, which were collared on August 20, 1985 and October 12, 1985 respectively, tested a silver-lead-zinc soil anomaly coincident with an underlying weak I.P. zone.

1.1 Location and Access (Drawing #1)

The property, centered at 51°18'N latitude by 119°52'W longitude, is located 22 kilometers northeast of Barriere, British Columbia, between the North and East Barriere Lakes.

The Cad Group is road accessible from Barriere by the East Barriere Lake and East Barriere Ridge Roads. One way driving time from Barriere is 30-45 minutes along both paved and good condition gravel roads.

1.2 Topography and Physiography

The Cad claim group is situated within the Shuswap Highland subdivision of the Interior Plateau section of the Southern Plateau and Mountain physiographic region.

The claims straddle a 2,500' high NE-SW trending ridge between North and East Barriere Lakes. The ridge, which reaches a maximum elevation of 4,500' ASL in the vicinity of the claims, is characterized by 1,500' high cliffs on the NW, SW and SE flanks and a rolling 1,000' high plateau-like ridge top.

The plateau is partly logged and consists of replanted second growth, and mature stands of spruce, balsam and pine. The forest underbrush is moderately open to thick and the clearcuts are moderately open.

1.3 Previous Work

Soil and silt sampling was completed in 1971 by Ducanex Resources within the present claim boundary on claims called C & G and Den. Extensive work along the ridge to the north was completed by K.E. Northcotte and Assoc., Westmin Resources, Craigmont Mines, Noranda Exploration, Rayrock Mines and Royal Canadian on claims called EBL and REM. This work was conducted from 1969 to the present and has consisted of geology, geochemistry, geophysics and trenching.

Two known showings to the west of the claims are called White Rock (MINFIL #082M 066) and Silver Mineral, (Silver Minnow) (MINFIL #082M 069). These two properties have been known and worked sporadically since the early 1920's.

1.4 Claim Status

The following is a complete list of claims which constitute the Cad Claim Group.

Claim Name	Record No.	Units	Expiry Date	N.T.S.
			·	
Cad	4937	12	Nov. 16, 1987	82M/05W
Cad 1	4938	1	Nov. 16, 1987	82M/05W
Cad 2	4950	1	Nov. 16, 1987	82M/05W
Cad 3	4951	1	Nov. 16, 1987	82M/05W
Cad 4	4952	1	Nov. 16, 1987	82M/05W
Cad 5	4953	1	Nov. 16, 1987	82M/05W
Cad 6	4954	1	Nov. 16, 1987	82M/05W
Dial	5030	15	Nov. 22, 1987	82M/05W
NBR 8	5944	8	Nov. 7, 1987	82M/05W
Bri	6344	6	Aug. 21, 1987	82M/05W
		47		
	,	===		an die

The CAD, DIAL and CAD 1-6 claims are on option from:

J.D. Graham, 9411 Ferndale Road, Richmond, B.C. V6Y 1X4

V6B 3T5

to: Noranda Exploration Company, Limited (No Personal Liability)
P.O. Box 2380,
Vancouver, B.C.

The NBR 8 and BRI claims are 100% owned by Noranda Exploration Company, Limited.

The CAD Claim Group is solely operated by Noranda Exploration Company, Limited.

1.5 Economic Potential

The economic potential of the group has not been assessed due to the limited extent of the drilling. The exploration potential of this ground is considered moderate due to the presence of limited quantities of sphalerite and galena in the drill core.

1.6 Summary of Work Done

Two NQ sized diamond drill holes were drilled for a total length of 184.7 meters.

The actual work was conducted on the Russ Grid which is located on the CAD mineral claim.

2.0 DISCUSSION OF RESULTS

The two diamond drill holes, Russ-85-1 and Russ-85-2, are located in the eastern portion of the Russ Grid close to the eastern boundary of the Cad mineral claim. The holes tested a lead-silver-zinc soil anomaly coincident with an underlying weak I.P. zone.

The following table outlines the specifications for each of the diamond drill holes.

Hole No.	Co-Ordina North	tes East	Bearing	Dip	Length
Russ 85-1	110+90	146+95	270°	-45 ⁰	137.2 m
Russ-85-2	110+95	146+47	270 ⁰	-65 ⁰	47.5 m

DDH Russ-85-1

This diamond drill hole encountered 17.08 meters of overburden prior to hitting bedrock. It cored into a package of quartz dacite volcanics with minor intercalations of quartz arenite and siltstone. At 42.7 meters depth the rocks graded into a sedimentary sequence comprising of intercalated quartz, arenite and siltstone.

Sphalerite and galena mineralization occurs in quartz veinlets hosted by quartz dacite and quartz arenite. The veinlets, which are locally occurring, range up to I centimeter in width and contain from trace to 70% sphalerite and trace galena. The assay results indicate that there is minor silver associated with these veinlets. Minor fuchsite occurs sporadically within the quartz dacites.

The mineralization that was encountered does not fully explain the soil anomaly or the I.P. zone. However, the I.P. anomaly may be reflecting the change from volcanic to sedimentary rocks.

Page 5

Ε

LEGEND

REVISED	ADAMS PLATEAU	
	CAD CLAIM GROUP	
	DRILL SECTION	
	RUSS-85-2	
MOJ.No. 110	SURVEY BY: G.S. DATE: Feb. 1986	
N.T.S. 82M/05	DRAWN BY: J. Serwin SCALE: 1:500	-
DWG, No. 4	NORANDA EXPLORATION OFFICE: VANCOUVER	

DDH Russ-85-2

Since the soil anomaly was not fully explained by the first drill hole, this second hole was collared much closer to the intense soil zone with the intention of testing the bedrock directly beneath it.

The drill encountered 12.5 meters of overburden followed by 13.1 meters of dominantly quartz dacite volcanics. Trace amounts of pyrite and up to 15% fuchsite occurs within this volcanic package. From 25.6 to 28.6 meters depth a transitional zone of intercalated quartz dacite and sedimentary rocks was intersected. The remainder of the hole is a sedimentary package of intercalated siltstone and argillaceous quartzites (arenite).

No economic sulphide mineralization was encountered in the drill hole.

3.0 CONCLUSIONS

The two diamond drill holes intersected volcanoclastic rocks belonging to the Devono-Mississippian Eagle Bay Formation. From previous mapping the rock units appear to dip to the east, however, from the drill core data, the lithologies may just as easily be steeply dipping to the east as flat lying.

The volcanic rocks are comprised of quartz dacite while the sedimentary package is made up of siltstones and quartz arenites.

Minor sphalerite and galena mineralization is found along locally occurring quartz veinlets hosted by the quartz dacite and quartz arenite.

Up to 15% fuchsite occurs in the volcanics and may represent a hydrothermal alteration mineral facies.

The diamond drill holes failed to intersect mineralization that would explain the soil geochem/I.P. anomaly. It is possible, however, that the I.P. anomaly may be reflecting the change from volcanic to sedimentary rocks.

4.0 RECOMMENDATIONS

A pionjar survey is recommended in order to locate the source of the geochemical soil anomaly.

APPENDIX I DIAMOND DRILL LOGS

Date Collor		Date Co	mpleted	Core Si	ze NO			DIP TEST			PROPE		AD CLA	IM GROUP	PROJE	CT No. 110	N.T.S. No. 82M/5	5
			O-ORDINA			DEPTH	BE A	RING	AN	GLE	4			PED CO-OR	DINATES		Sheet 1	
Lot. 110	+ 90N	Elev.		Dip	-45°	45.7			-56°	-50°	Lat.		16	lev.	Oip		HOLE No.	····
Dep. 146		Length	137.2m	Bearin		137.2			-65°	-59°	Dep.		-	ength	Bearing		RUSS-8	85~1
From		Recovery			Des	cription			Str	ucture	% Sulph.	Est. Grade	SAMPLE	No. Width METRES	Cu Mo	P6 70	χ_ Cr	OZ/TON
0	17.08		OVERBURD boulders		oortion of			rk clay w or assay.					1051		0.01	0.01	<0.01	0.09 G.00
17.08	18.60	85%	medium g	soft raine	siltstone i massive q	with mino uartz are	nite (fir	of grey st layer	17.3 foli at 53	30 m lation to C.A.								
			amounts of	tting of pyr o a ve	quartz vei rite and py ery fine gr and blebs	nd, 2-3mm rrhotite. ained sil	, some wi Gradual iceoús ro	th small change ock with										
18.60	19.40	85%	hroken w	ith_n	o clear con	tacts.	,	·										
19.40	24.33	95%	and lave	nder, ve ca	ED DACITE? aphanitic lcareous an	to medium	grained.		d 22 r	n foliatio								
24.33	24.86	95%	AS ABOVE								1%		1052	в .50	0.01	0.01	<0.01	0.10
24.86	32.0	95%	AS ABOVE															
32.0	35.7	65%	amounts	m gra of em	ined, massi erald green t 32,4 m ha	ve,altere n mica pos	d, sibly fu		. 1									

Date AUGUST 24, 1985 Logged By K. HADEN

Date Collari		Date Co	mpleted 231985	Core Size				DIP TEST	S		PROPE	RTY	CAD	CLAIM GR	TIP	PROJEC	CT No.	N.T.S.No. 82M/5	
Aug2			O-ORDINA			DEPTH		RING CORRECTED		GLE CORRECTED	1	****		YED CO		NATES		Sheet 2	of 5
Lat.		Elev.		Dip -4	.0	45.7	***************************************	COLUCTO	-56°	-50°	Lot.			Elev.		Dip	····	HOLE No.	
Dep.	+-90N	Length	137.2 m	Bearing 270	1	137.2	· · · · · · · · · · · · · · · · · · ·	ļ	-36 -65 ⁰	-59°	Dep.			Length		Bearing		RUSS-8	5-1
146	+ 95£		137.2 m	1 2 /	<u>Vi.</u>		L	l_,	T T	L. 37	%	Est.	Γ			<u>+</u>	~	. z	OZ/TON
From METDE 4	To METRES	Recovery			Descr	iption			Stri	scture	Sulph.		SAMPL	E No. Wid METR	Lu	Mo	Pb 22	Cr	Ag Au
35.7	40.4	90	grained, and rare pyrite s	RENITE hism - Grey massive se black laye cattered th this is min	diment rsS rougho	rk grey, . Some mall amo at this	minor qua unta of e unit. Ne	edium irtz veins suhedral ear the						1121			- An		
40.4	42.7	80		tz veiń wit		es of ga	lena.	0 to 35.7		· :						· · · · · · · · · · · · · · · · · · ·			
42.7	44.1	70	50% Qtz.	RENITE 40.4). The Veining ne 10mm (that	ar lowe	t 10 cm er conta	is brecci ct small	quartz.								 			
44.1	44.6	60	QUARTZ D places.			Up to	5% fuch	site in			0.5		105	ЗВ .5	1	0.01	0.01	<0.01	0.10
44.6	47.8	60	AS ABOVE																
47.8	53.5	70	mildly for the state of the sta	E ack graphit oliated to lated to and folding	massive are ve	ers. Ve e cut wi ery cont	ry fine g th Qtz/ca orted wit	rb. veins h slump											
111 100 - 11			Galena a	ein at 48.5 nd sphaleri ttered thro	te kno	ts of eu	hedral py	rite up t											

Minor arenite.

Dote AUGUST 24, 1985 Logged By K. HADEN

ote Collor	ed 20, 1985	Date Co	ompleted 23, 1985	Core Size	NQ			DIP TEST			PROPE	RTY C	AD CLA	IM_GROUP	PROJE	CT No110	N. T. S. No. 821	1/5 .
			O-ORDINA			DEPTH	RECORDED	CORRECTED	RECORDED	GLE CORRECTED	1			ED CO-OR	DINATES		Sheet	
.at. 110) +. 90N	Elev.		Dip	-45°	45.7			-56°	-50°	Lat.		٤	lev.	Dip		HOLE NO).
)en	+ 95E	Length	137.2m	Bearing	270	137.2			-65°	-59°	Dep.		L	ength	Bearing)	RUSS-8	35 - 1 .
From IETRES	To METRES	Recovery				Description			Str	ucture	% Sulph.	Est. Grade	SAMPLE	No. Width	Cu Mc	Pb Zn	Z Cr	OZ/TO
3.5	54.2	90	BRECCIA fuchsite	added h	nere.	Dolom	ite, quar	tz and	& Be	Qtz. vei dding ^{tO} C-A.	l n					·		
54.2	63.3	90	30 cm, cu	in sili	artz v	As about tent. Light ein up to 2 th traces of the contract of	cm some w	red for to	Foli	m Beddir ation to C.A.	ng/							
i			particula	rily_f	olded	(Folk hinge	?) at 60	.										
53.3	75.6	90		iltston rumbly	and br	As secent and a secent and a secent a s		ps. Uppe	67 m Foli bedd to C	ation/ ing 62°								
75.6	76.2	70	SILTSTONE			Dark	peds as s	een above										
76.2	78.5	60	QUARTZ AR	ENITE		As se	en above											
78.5	79.6	95	SILTSTONE		•	As se	en above.											
79.6	85.3	95	QUARTZ AR			As se	en above,	lighter										

Date AUGUST 24, 1985 Logged By K. HADEN

Date Collare	ed 0 1995	Date Co	mpleted Core Size		(DIP TEST	S		PROPE	RTY	CAD CLA	M GROUP	PROJEC	T No. 110	N.T.S. No. 82M/5	
Aug Z			O-ORDINATES	DEPTH	BEA	CORRECTED	RECORDED	CORRECTED				D CO OR	DINATES		Sheet 4	of 5
Lot.	+ 90N.	Flev	Dip -45°	45.7	RECORDED	CONTESTED	-56°	-50°	Lot.		Eli		Dip		HOLE No.	
Dep	+ 95E	. II annth		137.2			-65°.	-59°	Оер.		Lei	ngth	Bearing		RUSS-85	5-1
From	To	Recovery		cription				cture	% Sulph.	Est. Grade	SAMPLE N	Width	Cu Mo	Pb Zn	7 Cr	OZ/TON Ag
85.3	85.45		SILTSTONE .	⊥ As se	en above											
85.45	85.95	85	SILTSTONE have minor sphalerite.	Sever	al quartz	veins			1 sph		1054B	0.5	0.01	0.01	< 0.01	0.22
85.95	89.2	80	SILTSTONE/ARENITE	☐ Mixed	in small	beds.										
89.2	89.6	80	ALTERED SEDIMENTS dolomite enrichment.	Area	of strong	fuchsite		:								
89.6	93.6	85	QUARTZ ARENITE grained, grey-buff.	As se	en above,	fine		,								
93.6	93.75	75	OUARTZ VEIN throughout.	Greyi	sh micas	sparsely										
93.75	94.25	75	QUARTZ VEIN AS ABOVE								1055B		0.01	0.01	< 0.01	0.10
94.25	94.75	75	QUARTZ VEIN AS ABOVE													

Date Collar Aug. 20	ed 1985	Dote Co	mpleted Core Size			DIP TEST			PROPE	RTY	. (CAD. (CLAIM GROUP	PROJE	CT No. 110	N.T.S. No. 82M/5	5
			O-ORDINATES	DEPTH	BE A	RING	RECORDED	GLE	ļ			ED CO OR			Sheet 5	
Lat. 110	+ 90N	Elev.	Dip -45°	45.7		torteno	-56°	-50°	Lot.			lev.	Dip		HOLE No.	
Den	+ 95E,	Length		137.2	<u>.</u>		-65°	-59°	Dep.			ength	Bearing)	RUSS-85	5-1
From METRES		Recovery	00	scription			Stro	cture	% Sulph.	Est. Grade	SAMPLE	No. Width METRES	Cu %	Pb Zn	% Cr	OZ/TO
94.75	95.25	95	SILTSTONE gradational contact with		contorted ow at 96.						1056	в 0.5	0.01	0.01	< 0.01	0.10
95.25	96.7	95	SILTSTONE	As ab	ove						1057	В 1.4	0.01	0.01	< 0.01	0.10
96.7	113.8	95	QUARTZ ARENITE mineralogical changes wi stone (finely bedded).		greenish		58° c	ng/foliat	ion							
113.8	115.2	100	QUARTZ ARENITE in layers and fractures		fuchsite	alteratio		: :								
115.2	115.5	100	QUARTZ VEIN													
115.5	118.25	100	QUARTZ ARENITE some discontinuous pyrit silty material, a few lay	ic layers		ed with		<u> </u>								
118.25	118.75	100	QUARTZ ARENITE	As abo	ove						1058	в 0.5	0.01	0.01	< 0.01	0.12
118.75	137.2	95	QUARTZ ARENITE	As abo	ove		127.5 beddi 65 t	m ng/foliati o C.A.	on							

END OF HOLE

Date_AUGUST 24, 1985 Logged By K. HADEN

DDH RUSS-85-2

Date Collar	ed 12. 198	Dote Co	mpleted 12 198	Core Siz	ze NO	Ì		DIP TEST			PROPE		CLAI	M GROUP	PROJE	CT No.	N.T.S. No. 82M/	5W
			O-ORDINA			DEPTH	RECORDED	RING CORRECTED	RECORDED	GLE CORRECTED		5	URVE	YED CO-OF	DINATES	<u> </u>		01 5
Lot. 110	+ 95N	Elev.		Dip	-65	47.5 m			-69°	-64°	Lat.			Elev.	Dip		HOLE No	
	+ 47E ,	Length	47.5m	Bearing	270°			<u> </u>	L ₇	<u></u>	Dep.	*		ength	Bearing		RUSS-	85-2
From	To	Recovery			1	Description			Str	scture	% Sulph.	Est. Grade	SAMPLE	No. Width	Cu		AYS	1
METRES	METRES.	. 7									 			METRES	Mc	PbZn	Ag	Au (ppb
0	12.5	4	_CASING								-		•					
12.5	13.1	88	SILTSTON infilled		barren q	uartz.		ey phylite	Highl defor	med S ₁			83358	0.9	7 ppm 2	11 ppm 31	1	< 5 ppb
13.1	14.1	90		c with eratio	on. Quar	Pale litic foliat rtz occurs i		chlorite/	S ₁ pa	rallel A.			83359	1.0	ppm 1	5 ppm 58	1	4 5 ppb
14.1	15.1	90	QUARTZ D			As ab	ove		1 -5 -	rallel A.	Î							
15.1	15.2	90	FAULT GO	UGE														
15.2	15.6	89	QUARTZ D	ACITE		As ab	ove		S ₁ 40	.A								
15.6	17.3	88	QUARTZ D		rite.	As ab	ove with	trace	S1 56	Α.								
17,3	18.1	88	OUARTZ D dissemin		oyrite.	As ab	ove with	up to 1%			1 % Py		83360	0.8	ppm 2	9 ppm 78	0.2 ppm	< 5 ppb

Date Collari	ed 12. 198	Date Co	mpleted	Core S		NÓ			DIP TEST			PROPE	RTY CA	D CLAI	M GROUP	PROJE	CT No. 110	N.T.S. No. 82M/	5W
			O-ORDINA			,	DEPTH		RING CORRECTED		GLE CORRECTED	┨.		SURVE	YED CO-OI	RDINATES	;	Sheet 2	of 5
Lot.		Elev.		Dip		65	47.5 m			-69°	-64°	Lot.		Ī	Elev.	Dip		HOLE No.	
Lot. 110 Dep. 146	+ 93N + 47E	Length	47.5m	Bearin		70°	47.5 11			0 5		Dep.		1	ength	Bearing	,	RUSS-	85-2
J		Recovery		<u> </u>			cription			61.	ucture	%	Est.	SAMPLE	No. Width		ASS	AYS	
From METRES		necovery 7					-			317		Sulph.	Grade	JAMPLE	METRES	Cu	Pb	Ag	Au(ppb
18.1	20.4	88		of fu	chsit		hsite inc	reases do	minor wn hole.		= 59° C.A.								
20.4	21.3	100	QUARTZ I fuchsite	DACITI e and	1 2 p	yrite.	As a	boveup	to 15%		= 55° C.A.	1% Py		833	61 0.9	19 ppm 2	6 ppm 140	0.3 ppm	< 5 ppb
21.3	24.6	98	QUARTZ I locally	occu	rring		e		up to 1%	S ₁	= 55° C.A.								
24.6	25.6	98	QUARTZ I fuchsite			along	Mino fracture	-	ition with					833	62 1.0	8 ppm	23 ppm 48	0.5 ppm	< 5 ppb
25.6	26.4	98	ARGILLA alterat		DOLO	STONE	llas	minor ep	dote										
26.4	26.6	98	QUARTZ quartzi grained	te, g	rey .t		Meta grey, fi	morphose ne to me	l to a lium										
26.6	27.8	98	QUARTZ fucbsit		E			bove but	without		= 55° C.A.								
27.8	28.1	90	FAULT G	OUGE															

Date Collar		Date Cor	noleted	Core		VO			DIP TEST			PROPE	RTY	D CLAI	M. GROUP	,	PROJE	CT No. 110	N.T.S. No. 82M/	'5W
			ORDINA		-		DEPTH	RECORDED	RING L CORRECTED.	AN	GLE CORRECTED	ļ. —			ED CO		NATES		Sheet 3	
Lot. 110	+ 95N	Elev.		Dip	-(55	47.5 m			-69°	-64°	Lat.		1	lev.		Dip		HOLE NO	
	+ 47E .	Length	47.5m	Bear		70°						Dep.		L	ength		Bearing		RUSS-	85-2
	To	Recovery				000	cription			-		%	Est.	544015	No. Wid	L		ASS	AYS	
From WETDEC	METRES.	recovery					cription			517	ucture	Sulph.	Grade	SAMPLE	METR	۱۲	u v	Pb 70	Ag	Au (pp
28.1	28.6	90		dacit	e inte	rcala			with min		· · · · · · · · · · · · · · · · · · ·									
28.6	34.8	90		ely f			h interca	lations o	ophanitic, of quartzi graphiti		= 64° C.A.									
34.8	35.4	70	SILTSONT pyrite.	re			Asa	bove - up	to 3%			3% Py		833	63 0	.6 PP		18 ppm 26 ppm	0.2 ppm	< 5 ppb
35.4	38.5	100	SILTSTON	NE			As a	bove		S ₁	= 64 ⁰									
38.5	39.0	100	SILTSTO		veinl	ets.	As a	bove - up	o to 3% py	si to	= 70°	3% Py		833	64 0	92 .5 PP		15 ppm 55	0.6 ppm	< 5 ppb
39.0	39.5	100	ARGILLAC siltstor occurrir	ne in	tercal	ation	s - brecc	tz arenit iated wit	e with th epidote	S ₁	= 52°									
39.5	39.7	100	QUARTZ V	VEIN			Barr	en												
39.7	40.7	100	ARGILLA siltstor				Quar s - up to		e with mi	S ₁	= 48 ⁰	1% Py								

DRILL LOG - 81

Date Collare	12 198	Dote Co	mpleted 12 198	Core Size	NÓ			IP TEST			PROPE	RTY CA	D CLA	IM GRO	OUP	PROJE	CT No	N.T.S. No. 82M/	5W
			O-ORDINA			DEPTH	BEA	CORRECTED	RECORDED	GLE	-		SURVE	YED (CÓ-ORE	DINATES	•	Sheet 4	of 5
Lot. :110		Elev.		Dip	-65	47.5 m			-69°	-64°	Lot.			Elev.		Dip		HOLE No.	
Dep. 146	+ 47É .	Length	47.5 m	Bearing	270°			·			Dep.			Length		Bearing		RUSS-	85-2
From	To	Recovery			Des	cription			Str	ucture	% Sulph.	Est. Grade	SAMPL	- 1	Widin	Cu	ASS 1Pb	AYS	Au (ppl
METRES	METRES:	:- ?	FAULT C	OUGE		<u>J. </u>	<u>.</u>		1		 		$\overline{}$	ME	TRES	Ma 44	50		
40.7	40.8	100						-		TO SECULIAR			83	365	0.3	ppm 2		0.5 ppm	< 5 ppb
40.8	41.0	100	QUARTZ	VEIN		Upt	o 2% pyrit	:e 			2 % Py								
41.1	41.2	100	ARGILLA	CEOUS O	UARTZITE	As a	bove.												
41.2	41.4	100	MYLONIT	Ε		Argi	llaceous)uartzite											
41.4	42.7	90	ARGILLA	CEOUS Q	UARTZITE	As a	bove		S ₁	= 48 ⁰									
42.7	43.7	90	ARGILLA	CEOUS QU	UARTZITE	As a	bove						83	366		20 ppm < 1	13 ppm 46	0.3 ppm	< 5 ppm
43.7	45.0	90	ARGILLA	CEOUS QU	UARTZITE	Bloc	ky			· · · · · · · · ·					•	——————————————————————————————————————			
			FAULT GO	OUGE															

DEILL LOG - 41

Date Collar	ed 12 19.6	Date Co	mpleted 0 12, 1986	Core Size	NO.	1,00		OIP TEST			PROPE	RTY CA	D CLAIM	GROUP	PROJE	CT No. 110	N.T.S. No. 82M/5	W
	F	IELD C	O-ORDINATE	ES		DEPTH	BEA	RING . CORRECTED .	RECORDED	GLE CORRECTED	-		URVEYE	D CO-OR	DINATES		Sheet 5	
Lat. 110		Elev.		Dip	-65	47.5 m			-69°	-64°	Lat.		Ele	٧.	Dip		HOLE No.	
Dep. 146	+ 47E	Length	47.5 m	Bearing	270°	7,12 11					Dep.		Len	gth	Bearing		RUSS-8	15-2
1		1	<u> </u>			cription					%	Est.	SAMPLE NO	Width		ASS	AYS	
From METRES		Recovery			001	Cripiton			511	ucture	Sulph.	Grade	SAMPLEN	METRES	Cu	Pb	Ag	Au(ppb
HE LAES	ME AF		ARGILLACE	EOUS Q	UARTZITE	J												
45.3	45.9	90													<u> </u>			
45.9	46.0	90	FAULT COL	UGE		J												
43.3	40.0	,,,													1			
	·	*	SILTSTONE	E		As a	ibove											
46.0	47.2	90							S1 to	= 48° C.A.								
			FAULT GOL	UGE						-	1							
47.2	47.5	90			•													
			END OF	F HOLE														
						<u> </u>												
											<u> </u>			ļ				
												<u> </u>			<u> </u>			
														1				
											}							
DRILL LOG - B													L	1	<u> </u>	<u> </u>		<u> </u>

DRILL LOG - 81

Dote OCTOBER 15, 1986 Logged By _____G__SHEVCHENKO

APPENDIX II

LAB ANALYSIS/ASSAY SHEETS AND METHODS

Hondard Bogg & Company End; 130 Femberson Ave; North Vancouver; B.C. Canada V7P-2R5 Phone: (644) W3 (6R1 Telex: 04-352667

Geochemical Lab Report

REPORT: 125-3865

PROJECT: 437 8511 - 039 PAGE 1

SAMPLE	ELEKENT	Cu	. Pb	Zri	Нo	Аġ	Au	1155	Gei
NUMBER	UNITS	PPH	PPH	PPH	PPH	PPH	PPR	7,5	00
•									

12 83358	7	41	31	2	0.2	(2	• •	٧.	~4/3	
i2 -83359	14	5	58	1	<0.2	< 5				
£12 83360	14	9	78	2	0.2	. (5				
2 83361	19	6	140	2	0.3	<5				
02 83362	8	23	48	3	0.5	<5				
<u>_n</u> 2 83363	8	18	26	1	0.2	< 5				
2 83364	92	15	55	1	. 0.6	< 5				
2 83365	44	50	43	2	0.5	<5		****************		and the same of th
83366	20	-13	46	⟨1	0.3	(5				* * * * * * * * * * * * * * * * * * * *
83366	20	-13	46	<1	0.3	(5				

ENVIRONMENTAL TESTING GEOCHEMISTRY ANALYTICAL CHEMISTRY ASSAYING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Telex: 048-8393

September 3, 1985

CERTIFICATE OF ANALYSIS

CLIENT: Noranda Exploration Co. Ltd.

1050 Davie Street, Box 2380

VANCOUVER, B. C.

V6B 3T5

SAMPLE IDENTIFICATION: 8 drill core samples received August 26, 1985

(requested by Glen Shebchenko)

CERTIFICATE OF ANALYSIS NUMBER: ETK 85-59

Description	Au (oz/T)	Ag (oz/T)	Cu (%)	Pb (%)	Zn (%)	<u>Mo (%)</u>	<u>Cr (%)</u>
1051 B	0.001	0.09	0.01	0.01	0.01	<0.01	<0.01
1052 B	0.001	0.10	0,01	0.01	0.02	0.01	<0.01
1053 B	0.001	0.10	<0.01	0.01	0.01	0.01	<0.01
1054 B	0.002	0.22	0.01	0.01	0.08	0.01	<0.01
1055 B	0.002	0.10	<0.01	<0.01	0.01	0.01	<0.01
1056 B	0.002	0.10	0.01	<0.01	0.01	0.01	<0.01
1057 B	0.002	0.10	<0.01	0.01	0.01	0.01	<0.01
1058 B	0.003	0.12	<0.01	0.01	<0.01	0.01	<0.01

NOTE: < = less than

ECO-TECH LABORATORIES LTD. Thomas J. Fletcher, B.Sc.

Chief Assayer

TJF/mil

Cc: Noranda Exploration Site 12-64, R. R. #1 Chase, B. C. VOE JMO

KAMLOOPS - FLIN FLON - BURNABY

2. Geochemical methods

All of the analytical methods used by Bondar-Clegg have proven to be dependable and accurate. However, our continuing method development and response to technological advances have altered a few procedures over the years. Listed below are the most common techniques:

Element	Extraction	Method of Analysis
*Cu, *Pb, *Zn, *Mo, *Ag, *Cd, *Ni, *Co, *Mn, *Fe	Lefort Aqua Regia	Atomic Absorption
*U	HN03	Fluorimetric
*W	Basic Oxidation Fusion	Colourimetric
F	Basic Fusion	Citrate Buffer-Specific Ion
Au, Pt, Pd	Fire Assay	Atomic Absorption (or gravimetric for assay)
*As	HCL:04 - HN03 Arsine	Colourimetric
Hg	Aqua Regia	Closed Cell, Flameless Atomic Absorption
*Sn, *Sb, *Ba, *Rb, *Sr, Y Zr, *Nb, La, Ce, Ti	Mark Control of the C	Energy dispersive XRF
Th, *Se, *Ta, Ga, In		Wavelength dispersive XRF
*Sb (low detection)	HCL - organic extraction	Atomic Absorption
*Bi	HN03	
	H1005	Atomic Absorption
*V, *Be, *Li	HCL04 - HN03 - HF	Atomic Absorption Atomic Absorption
*V, *Be, *Li *Cr		• •
	HCL04 - HN03 - HF	Atomic Absorption
*Cr	HCL04 - HN03 - HF Sodium Peroxide Fusion HBr - Br + Organic	Atomic Absorption Atomic Absorption
*Cr *Te	HCL04 - HN03 - HF Sodium Peroxide Fusion HBr - Br + Organic Extraction Multi-acid HBr - Br +	Atomic Absorption Atomic Absorption Atomic Absorption
*Cr *Te TI	HCL04 - HN03 - HF Sodium Peroxide Fusion HBr - Br + Organic Extraction Multi-acid HBr - Br + Organic extraction	Atomic Absorption Atomic Absorption Atomic Absorption Atomic Absorption

^{*} These elemenst are now available by plasma; please refer to the price list for clarification.

APPENDIX III

STATEMENT OF COSTS

> NORANDA EXPLORATION COMPANY, LIMITED

STATEMENT OF COST

PROJECT Adams Plateau - CAD CLAIM GROUP

FEBRUARY 1986 DATE

TYPE OF REPORT DRILLING

a) Wages:

No. of Days

Rate per Day \$ 121.23

Dates From:

August 19 - October 14, 1985

Total Wages

8 × \$ 121.23

\$ 969.84

b) Food and Accomodation:

No of days

Rate per day \$ 45.00

Dates From: August 19 - October 14, 1985

Total Cost

7 × \$ 45.00

\$ 315.00

c) Transportation:

No of days

7

Rate per day \$ 45.00

Dates From: August 19 - October 14, 1985

Total Cost

7 X \$ 45.00

\$ 315.00

d) Instrument Rental:

Type of Instrument

No of days

Rate per day \$

Dates From:

Total Cost

X \$

Type of Instrument

No of days

Rate per day \$

Dates From:

Total Cost

X \$

f)	Analysis (See attached schedule)	\$ 146.25 + \$ 430.00	\$	576.25
g)	Cost of preparation of Rep	port		
	Author		\$	200.00
	Drafting		\$	100.00
	Typing		\$	100.00
h)	Other: Contractor - OLYM	PIC DIAMOND DRILLING	\$ 19	,253.96

Total Cost \$ 21,830.05

e) Unit costs for Drilling

No of days

No of units 184.70 metres

Unit costs \$ 21,830.05 / 184.70 metres \$ 118.19/m

Total Cost \$ 118.19/m × 184.70 metres \$ 21,830.05

NORANDA EXPLORATION COMPANY, LIMITED (WESTERN DIVISION)

DETAILS OF ANALYSES COSTS

PROJECT: Adams Plateau - CAD CLAIM GROUP

ELEMENT	NO. OF DETERMINATIONS	COST PER DETERMINATION	TOTAL
Bondar Clegg (Geoch	em)		
Cu Mo Pb	9 9 9	2.00 1.00 1.00	18.00 9.00 9.00
Zn Ag Au	9 9 9	1.00 1.00 7.00	9.00 9.00 63.00
Sample Preparation	9 X \$ 3.25		29.25 \$ 146.25
Eco - Tech (Assays)			
Au Ag Cu Pb Zn Mo	8 8 8 8 8	8.00 8.00 5.75 6.25 6.25	64.00 64.00 46.00 50.00 50.00
Cr Sample Preparation	8 8 X \$ 3.25	10.00	80.00 <u>26.00</u> \$ 430.00

APPENDIX IV

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Glenn Shevchenko of the City of Vancouver, Province of British Columbia do hereby certify that:

I am a geologist residing at 1090 Parker Street, White Rock, B.C.

I graduated from Concordia University, Montreal, Quebec in 1982 with a Bachelor of Science Degree in Geology.

I have worked in mineral exploration since 1977 and have practised my profession since 1982.

I am presently employed with Noranda Exploration Company, Limited, and have been since May, 1984.

/Glenn Shevchenko

Glenn Skevekerlas

