GEOLOGICAL BRANCH ASSESSMENT REPORT

11/26

REPORT OF WORK

ON THE

GOLDFINGER, GOLDFLAKE, GOLDPAN, LODE 11, LODE 111

MN-2 & MN-3 MINERAL CLAIMS

N.T.S. 82M/3W, 4E 05' 51° Mart Latitude 119° Longitude

KAMLOOPS MINING DIVISION

FILMEL . and the second

Owned & Operated By: Noranda Exploration Company, Limited (no personal liability) Authors : Les Demczuk, Geologist L. Bradish, Division Geophysicist Vancouver, B.C. Date : December, 1985

TABLE OF CONTENTS

		PAGE		
1.0	INTRODUCTION	1		
2.0	LOCATION AND ACCESS			
3.0	TOPOGRAPHY	1		
4.0	CLAIM STATUS	3		
5.0	GEOLOGY	3		
	5.1 Regional Geology5.2 Property Geology	3 5		
6.0	SOIL, SILT AND ROCK GEOCHEMISTRY	5		
	6.1 Geochemistry Introduction6.2 Soil, Silt and Rock Sampling Methods6.3 Laboratory Analytical Methods	5 6 6		
	6.3.1 Preparation 6.3.2 Analysis	6 6		
	6.4 Control6.5 Presentation of Results6.6 Discussion of Geochemical Results	6 7 7		
7.0	GEOPHYSICS SURVEY	10		
	7.l Instrumentation	10		
	7.1.1 Horizontal Loop E.M. Survey 7.1.2 Magnetometer Survey	10 11		
	7.2 Discussion of Geophysical Results	11		
8.0	CONCLUSIONS	11		
9.0	RECOMMENDATIONS	12		
10.0	•0 BIBLIOGRAPHY			

PAGE

APPENDICES

Appendix I		Geochem Laboratory Analysis Sheets
Appendix I	Ι	Rock Sample Report
Appendix I	II	Statement of Costs
Appendix I	v	Statement of Qualifications

FIGURES

Figure l	Location Map 1:50,000		Page 2
Figure 2	Regional Geology 1:253,440		Page 4
·	MAPS		
Map l	Property Geology North Shee	et 1:5,000	In Pocket
Map 2	Property Geology South Shee	et 1:5,000	In Pocket
Map 3	Grids and Silts Location No	orth Sheet 1:5,000	In Pocket
Map 4	Pisima Grid Location South	Sheet 1:5,000	In Pocket
FAR GRID			
Map 5	Soil Geochemistry Cu (ppm)	1:5,000	In Pocket
Map 6	Soil Geochemistry Zn (ppm)	1:5,000	In Pocket
Map 7	Soil Geochemistry Pb (ppm)	1:5,000	In Pocket
Map 8	Soil Geochemistry Ag (ppm)	1:5,000	In Pocket
Map 9	Soil Geochemistry Au (ppb)	1:5,000	In Pocket
Map 10	SE-88 Survey (H.L.E.M.)	1:5,000	In Pocket
Map ll	Magnetometer Survey	1:5,000	In Pocket
PISIMA GRID			
Map 12	Soil Geochemistry Zn (ppm)	1:5,000	In Pocket
Map 13	Soil Geochemistry Pb (ppm)	1:5,000	In Pocket
Map 14	Soil Geochemistry Ag (ppm)	1:5,000	In Pocket
Map 15	SE-88 Survey (H.L.E.M.)	1:2,500	In Pocket
Map 16	Magnetometer Survey	1:2,500	In Pocket

NORTH GRID

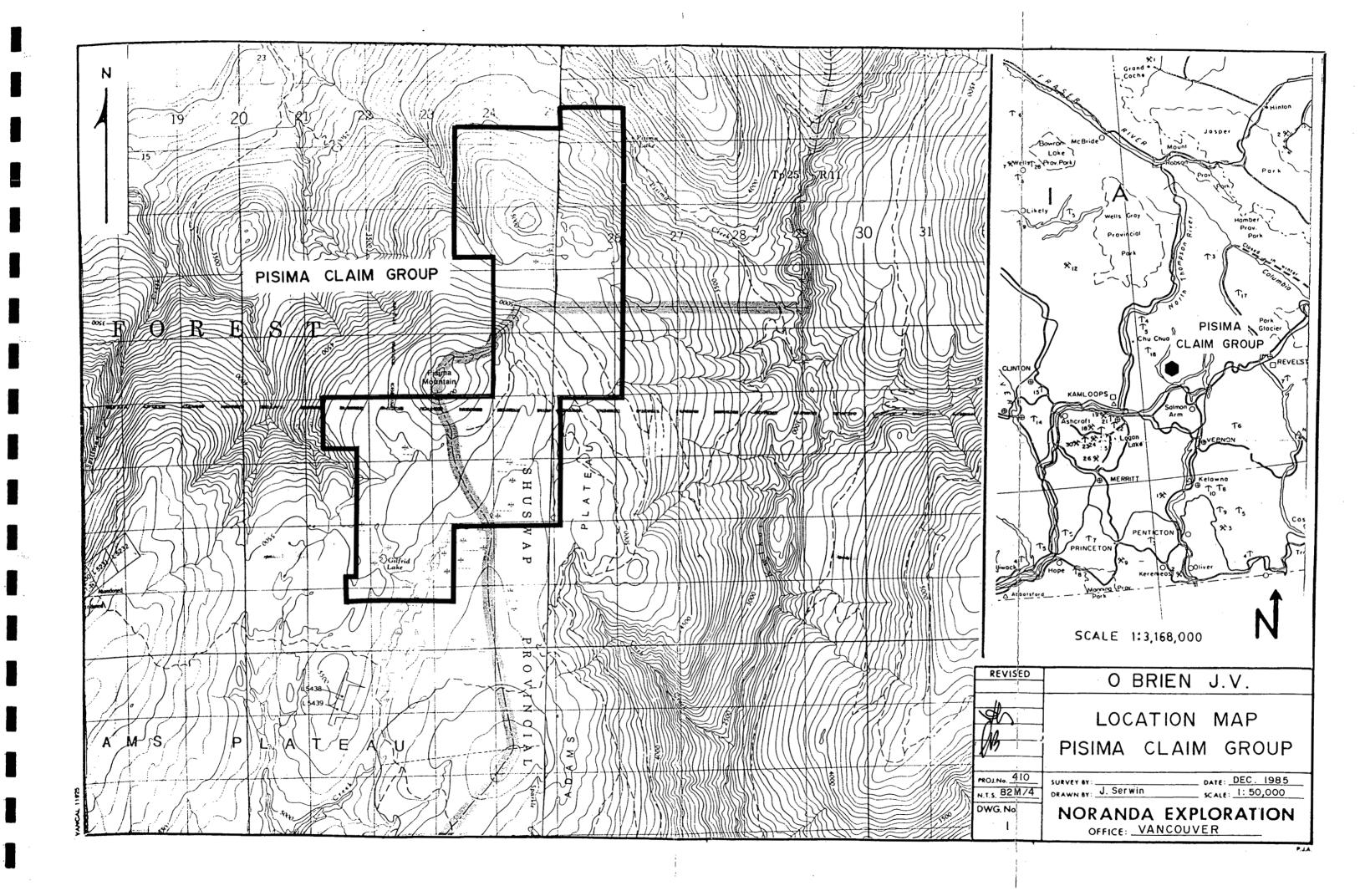
Map 17	Detailed Soil Geochemistry Pb,As,Ag,Mo,Au	Cu,Zn, 1:500	In Pocket
Map 18	Soil Geochemistry Zn (ppm)	1:5,000	In Pocket
Map 19	Soil Geochemistry Cu (ppm)	1:5,000	In Pocket
Map 20	Soil Geochemistry Pb (ppm)	1:5,000	In Pocket
Map 21	Soil Geochemistry Ag (ppm)	1:5,000	In Pocket

•••

1.0 INTRODUCTION

The Goldfinger, Goldflake, Goldpan, Lode II, Lode III, Mn-2 and Mn-3 mineral claims are part of the Pisima Claim Group which is owned and operated by Noranda Exploration Company, Limited.

During the 1985 field season geological mapping, geochemical soil and silt sampling, magnetometer survey and Horizontal Loop E.M. (HLEM) were conducted on the property.


2.0 LOCATION AND ACCESS

The claims which are located on Adams Plateau are centered at Latitude $51^{\circ}06$ 'N and Longitude $119^{\circ}31$ 'W. The plateau is flanked by Adams Lake to the northwest and Shuswap Lake to the south (Figure 1).

The claims are accessible by a paved secondary road that leaves the Trans Canada Highway at Squilax and a good gravel logging road at Scotch Creek. The secondary logging road that directly accesses the property leaves Scotch Creek Road at the 26.5 kilometer mark

3.0 TOPOGRAPHY

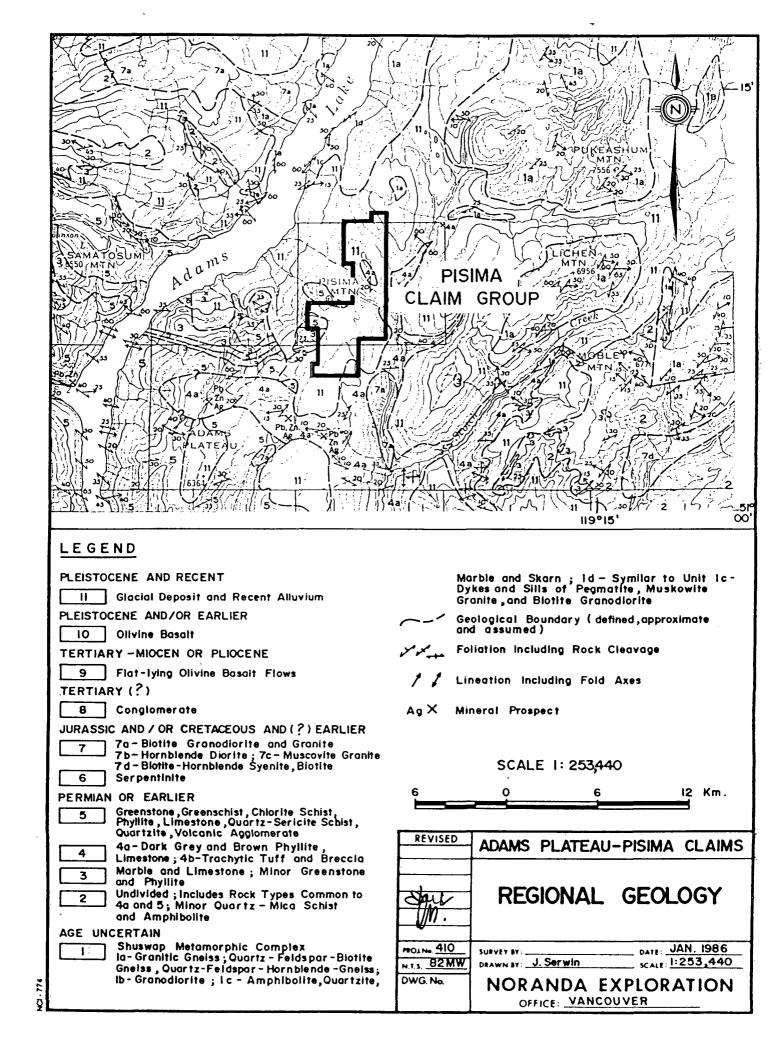
Most of the claim group is situated on level to gently sloping terrain between elevations of 1,500 meters and 1,750 meters. A minor portion of the claim group is situated on very steeply sloping terrain.

4.0 CLAIM STATUS

The Goldfinger, Goldflake, Goldpan, Lode II, Lode III, Mn-2 and MN-3 mineral claims are part of the Pisima Claim Group. The recorded owner and operator is Noranda Exploration Company, Limited (no personal liability), 1050 Davie Street, Vancouver, B.C. and the beneficial owners are Cecil Kane and John Spelay of Salmon Arm, B.C.

CLAIM NAME	RECORD NO.	UNITS	EXPIRY DATE
GOLDFINGER	004853	14	October 17, 1987
GOLDFLAKE	005146	14	November 28, 1987
GOLDPAN	004852	16	October 17, 1987
LODE II	004854	12	October 17, 1987
LODE 111	005147	16	November 28, 1987
MN-2	005955	6	November 7, 1987
MN-3	005956	8	November 7, 1987

5.0 GEOLOGY


5.1 Regional Geology

The Adams Plateau region is dominantly underlain by the Eagle Bay Formation, which is a weakly to moderately metamorphosed package of sedimentary and volcanic rocks that are Late Devonian to Early Mississippian age.

The Eagle Bay Formation is in metamorphic and intrusive contact with Shuswap Metamorphic Complex to the east, and in gradational contact with the Late Devonian Fennell Formation to the west. Both of these major formations have been intruded by granodiorite orthogneiss to biotite quartz monzonite ranging in age from Late Devonian to Cretaceous and locally overlain by olivine basalt flows of Pleistocene to recent age.

The Eagle Bay Formation has a regional northwest/north, northwest strike and is comprised primarily of acid to basic volcanics intercalated with argillaceous sedimentary rocks, quartzites and carbonates.

Structural features of the region include at least two main periods of folding and faulting (Preto et al 1979). The early recognizable folds are generally tight isoclinal mesoscopic structures with recumbent axial planes which are parallel to the schistosity and to the compositional layering of the various rock units. These structures usually have gently to moderate plunges and trend anywhere from northwesterly to northeasterly. A later phase of

folds clearly warps the schistosity and has axes parallel to a pronounced and widespread crenulation lineation. Fold axes have gentle easterly and westerly plunges along Adams Lake and moderate northerly to northwesterly plunges elsewhere. (Figure #2).

There are numerous base-metal occurrences known in the region, many of which clearly are stratabound massive sulphide deposits syngenetic with their host rocks. Polymetallic deposits including precious metal values are abundant in the Birk Creek - North Barriere Lake - Sinmax Creek, Adams Plateau, and Johson Lake (Rea Gold - October, 1983) areas.

5.2 Property Geology

The general geology of the Pisima claim group consists of sedimentary and volcanic formations.

The northwest part of the property is highly metamorphosed and covered by bedded metamorphic rock, mainly sericite-quartz schist with graphite layers. This formation is divided by narrow bands of dacite, quartzite and pure graphite. These bedded metamorphic rocks strike in general northwest and dip $40^{\circ}-60^{\circ}$ to the northeast. The pyrite, pyrrhotite and a little chalcopyrite mineralization occurs in quartzite and dacite.

The middle north of the property consists of the andesitic flows, which gradually change to andesitic tuff. The pyrite, magnetite and pyrrhotite mineralization occurs between the andesite and andesitic tuff contact.

The central part of the property is very well exposed by logging roads, and it is underlain by a thick andesitic flow. To the north it becomes a andesitic tuff and is in contact with a wide band of "dirty" limestone.

There are at least two narrow bands of the limestone to the south which are preceded by a well mineralized, metamorphosed andesitic schist (minor pyrite, pyrrhotite, magnetite and occasionally chalcopyrite).

Unfortunately, most of the property is covered by thick bush, swamps (south) and therefore has little exposure (except the central part).

Limestone causes magnetic lows and thus the resulting limestone contact has been established in part through the interpretation of the geophysical data.

6.0 SOIL, SILT AND ROCK GEOCHEMISTRY

6.1 Geochemistry Introduction

A geochemical survey was conducted on the Pisima, Far and North grids. 568 soils, 19 silts and 10 rock samples were taken.

All samples were analyzed for parts per million (ppm) copper, lead, molybdenum, silver, zinc, arsenic, and parts per billion (ppb) gold at the Noranda Exploration Company, Limited (no personal liability) laboratory situated at 1050 Davie Street, Vancouver, B.C.

6.2 Soil, Silt and Rock Sampling Methods

Soil samples, taken at 25 meter intervals along crosslines, were obtained by digging holes with a shovel to a depth of 15 to 30 cm. Wherever possible, B-horizons were sampled and placed in "Hi Wet Strength Kraft 3 1/2" x 6 1/8" Open End" envelopes. Grid co-ordinates were marked on the envelopes with a permanent ink felt marker.

Silt samples were taken by hand from the fine stream sediment fraction and placed in "Hi Wet Strength Kraft 3 1/2" x 6 7/8" Open End" envelopes. The tag number was placed into the envelope and the sample number was marked on the outside with a permanent ink felt marker. Sample spacing was 100 m and was measured by hip-chain.

Rock grab samples were taken from the most interesting mineralized outcrops and placed in plastic "Open End" envelopes. Sample numbers were marked on the envelopes and tag numbers were placed inside.

6.3 Laboratory Analytical Methods

6.3.1 Preparation

The soil and silt samples were dried at approximately 80° C and then sieved with a -80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is then used for geochemical analysis.

6.3.2 Analysis

Ag, Cu, Pb, Zn and Mo: 0.200 grams of -80 mesh material is digested in concentrated perchloric acid and nitric acid (3:1) at reflux temperature for 5.0 hours. A Varian-Techtron Model AA-5 or AA-475 Atomic Absorption Spectrophotometer is then used to determine the parts per million (ppm) silver, copper, lead, zinc and molybdenum in each sample.

Au: 10.0 grams of -80 mesh material is digested with aqua regia (one part nitric acid and 3 parts hydrochloric acid). The resulting solution is subjected to MIBK (Methylisobutyl Ketone) extraction, which extract is analyzed for parts per billion (ppb) gold using an AA-475 Atomic Absorption Spectrophotometer.

6.4 Control

The Pisima Grid consists of 1.0 km of cut baseline which trends at azimuth 90° , and 4.9 kilometers of flagged crosslines. Crosslines are spaced 200 m apart with stations every 25 m (Map 4).

The Far Grid was constructed on the northeast part of the property. It consists of 1.2 km of cut baseline trending 146° and 4.6 kilometers of flagged crosslines spaced 200 m apart with stations every 25 m (Map 3).

During the 1985 field season the North grid was extended 200 m to the west and now consists of 1.6 km of cut baseline, which trends at azimuth 146° , and 15.4 km of flagged crosslines spaced 200 m apart with stations every 25 m (Map 3). Detailed crosslines were established from station L.94+00E, 227+75N

and L.94+00E, 231+00N at azimuths 88° and 133° for 50 and 25 m respectively. The sample interval was 5 meters and it attempted to define further gold-in-soil values (Map 17).

6.5 Presentation of Results

The rock, soil and silt geochemistry results are presented in Appendix I as well as plotted on Maps 1 to 3, 5 to 9, 12 to 14 and 17 to 21 at a scale of 1:500 and 1:5,000.

6.6 Discussion of Geochemical Results

Pisima Grid

The following table shows the threshold/anomalous values for the various elements that were analyzed:

Element	Threshold(ppm)	Anomalous(ppm)	Very Anomalous(ppm)
Zn	200-400 ppm	401-600 ррш	>600 ррш
РЪ	25- 50 ppm	50-100 ppm	>100 ppm
Cu	100 ppm		<u> </u>
Ag	1.0-2.0 ppm		
=======================================			

The occurrence of copper and gold is found to be insignificant as values range from 14 ppm to 160 ppm Cu with an average of 29 ppm, and 10 ppb Au.

The geochemical soil survey has defined a weak lead/zinc anomaly which primarily occurs in the south portion of the grid. Although the lead anomaly is more extensive, there exists a strong correlation between the two elements.

The highest lead value of 120 ppm occurs on L.70+00E, 207+25N on threshold zones 25 m to 50 m wide, with two separate anomalous values which extend 800 m to the west. A single anomalous lead zone approximately 100 m long and 50 m wide occurs on L.72+00E from 211+00N to 212+25N with a highest value of 110 ppm.

The values of zinc range from 42 ppm to 680 ppm. The highest zinc value of 680 ppm occurs on L.62+00E, 207+25N, and a threshold zone approximately 25 m wide for 600 m to the northeast.

There is only one silver threshold zone on L.68+00E from 208+25N to 209+00N with the highest value being 2.0 ppm.

SUMMARY STATISTICS

	Cu/lA	Zn/lA	Pb/1A	Ag/lA	Au/lE
Number of Analysis	198	198	198	198	198
Lowest Value	10	30	1	• 2	10
Highest Value	160	680	120	2.0	60
Mean (LOG)	24.8	77.9	6.7	.26	10.1
Stand "Dev" (LOG)	.212	.218	•503	.208	.055
Mean (ARITH)	28.6	90.6	12.8	.30	10.3
Stand "Dev" (ARITH)	79.58	66.65	17.92	.248	3.55

Far Grid

The following table shows the values used for discriminating anomalous areas from background.

Element	Threshold	Anomalous	Very Anomalous
Pb (ppm) Zn (ppm)	24 - 31 170 - 200	31 - 38 200 - 240	>38 >240
Cu (ppm)	80 - 110	110 - 140	>140
Ag (ppm)	0.50-0.65	0.65-0.75	>0.75
Au (ppb)	17 - 20	20 - 25	>25

The values of lead, molybdenum, arsenic, silver and gold are generally very low, and mostly below the threshold values.

The zinc values are considered low as they range from 18 ppm to 200 ppm. They occur as isolated threshold zones without any lateral continuity.

The copper values range from 6 ppm to 210 ppm. These are low values and the anomalies are restricted to four stations on L.10400E, 34925N to 35000N.

The following table shows the summary statistics.

	Cu/lA	Zn/lA	Pb/1A	Ag/lA	Au/1E
Number of Analysis	200	200	200	200	200
Lowest Value Highest Value	6 210	18 200	1 64	•2	10 60
Mean (LOG)	24.7	87.1	9.6	•24	10.1
Stand Dev. (LOG)	.272	.178	.233	.148	•055
Mean (ARITH)	30.8	94.3	11.0	•26	10.3
Stand Dev. (ARITH)	26.11	37.15	6.49 ==========	•123	3.54

To summarize, the soil geochemical results are not encouraging as values are low.

North Grid

During the 1984 field season soil sampling had been done on Lines 94+00E, 96+00E, 98+00E and 100+00E.

In 1985 the soil sampling programme was concentrated on the most interesting geophysical anomalies on Lines 102+00E from station 2330N to 23700N, 104+00E from station 23000N to 24100N and 106+00E from station 23000N to 23400N. Line 92+00E was established and soil sampled from station 227+00N to 243+00N in an attempt to close off any geochemical/geophysical anomalies.

The following table shows the values used for discriminating anomalous areas from background. The values were obtained by taking into account a statistical analysis along with the geochemical properties of the individual elements.

Element	Threshold (ppm)	Anomalous (ppm)	Very Anomalous (ppm)
Zn	150-190	190-225	> 225
РЪ	30- 60	60-120	> 120
Cu	55- 70	70- 85	> 85
Ag	0.5-0.65	0.65-0.80	> 0.8

The occurrence of arsenic, molybdenum and gold are found to be insignificant, and warrant no further discussion.

Copper does show sporadic threshold and anomalous values in the west and northwest part of the grid, but are unrelated to other soil anomalies.

Three silver anomalous values (0.8 ppm) exist and have a weak correlation with lead.

The geochemical soil survey has defined coincident lead/zinc anomalies which primarily occur in the southwestern portion of the grid. Although the zinc anomalies are more extensive, there exists a strong correlation between the two elements.

Threshold and anomalous zones trend northwest/southeast and are 25-50 m wide and may have a lateral extent of up to 600 m. Some are open to the west.

The values of lead range from 1 ppm to 620 ppm with an average of 12 ppm, zinc from 20 ppm, to 210 ppm with an average of 87 ppm. The three best coincident anomalies are as follows:

Line	Station	Pb (ppm)	Zn (ppm)
94+00E	227+75N	620	200
94+00E	231+00N	570	180
94+30E	227+45N	230	200

Rocks

There were 10 grab rock samples taken from the best mineralized outcrops on the Pisima claims group which are described with assay values in the Rock Sample Report (Appendix II). Locations are plotted on the Geology Maps (Map 1, Map 2).

All rock samples were mineralized with up to 30% pyrite, pyrrhotite and magnetite. Some included traces of sphalerite, chalcopyrite and galena.

They were analyzed for parts per million (ppm) copper, zinc, lead, silver, arsenic, molybdenum and parts per billion (ppb) gold.

The resulting analyses showed uneconomic base metal values with little or no precious metal content.

7.0 GEOPHYSICAL SURVEY

7.1 Instrumentation

7.1.1 Horizontal Loop EM Survey

The SE-88 unit differs from the normal HLEM systems such as the MaxMin ll above in that it measures without regard to phase, the ratio of signal amplitude between two frequencies which are transmitted and received simultaneously. A low frequency of 112 Hz is used as a reference frequency. The signal difference is integrated or averaged over a period of time in order to improve the signal to noise ratio.

The survey parameters employed on the follow-up programme are as follows:

Coil separation	: 100 meters
Frequencies	: 3037, 1012, 337 Hz
Reference frequency	: 112 Hz
Integration period	: 16 or 8 seconds
Reading interval	: 25 meters
Measurement	<pre>: ratio of amplitude between reference and signal frequencies (%).</pre>

7.1.2 MP-3 Magnetometer Survey

Magnetometers manufactured by Gem Systems of Toronto, Ontario were employed for these surveys. The MP-3 Total Field Magnetometer System consists of one or more field units and a base station. Diurnal and day to day variations are automatically corrected at the end of the survey by the built in microprocessor giving the data a usable accuracy of 1 gamma.

7.2 Discussion of Geophysical Results

Far Grid

The SE-88 survey defined five zones of conductivity. The high conductivity (5 to 16 Siemens) features are indicated on the E.M. map as solid lines with the width as indicated. Three additional zones of weak conductivity and probably bedrock in origin are indicated by a dashed line (Map 10). The definition and location of these weaker conductors is poor due to the low conductivity and low resistivity host.

A weak magnetic anomaly is associated with the short conductor at L.1000E/3527.5N and also the southernmost conductor on Lines 10400E, 10200E and 1000E (Map 11). The magnetic association with moderately high conductivity make these targets attractive.

The magnetic survey is contoured at 100 nT intervals on a datum of 57,000 nT. The contouring has employed smoothed data (3 to 9 point Hanning filters) thus some of the magnetic highs and lows may be suppressed to a small degree. Overall the magnetic amplitude is small with localized short wavelength dipoles impressed upon the background representing localized increases in susceptibility.

Pisima Grid

The SE-88 survey defined few zones of interest and are as shown on the SE-88 map (Map 15). All responses can be attributed to being caused by contacts between units of different resistivities. One anomaly stands out at L.6800E/20975N - 20850N which is interpreted to be sourced by a horizontal veneer of low resistivity material some 125 meters wide.

The magnetic data is contoured at a 50 nT interval and is riding on a 57,000 nT datum. Narrow zones of anomalous magnetic susceptibility are evident particularly south of the baseline and a small anomaly is centered at L.6800E/20650N and possibly represents an elongated plug source/structure. A small zone is also noted at L.6600E/20350N (Map 16).

8.0 CONCLUSIONS

The E.M. survey, as mentioned above had identified five zones of conductivity on the Far Grid, most of them caused by graphitic units as on the North Grid. Some are associated with magnetic anomalies at L.1000E/35275N, and on the south portion of the grid on lines 10400E and 10000E.

On the Pisima Grid there appears to be a few E.M. conductors, which are

associated with magnetic anomalies on L.6200E/21050N, 6600E/20675N, and 6800E/20975N.

Narrow - approximately 800 m long - lead/zinc anomalies occur in the south portion of the Pisima Grid.

The soil geochemistry results for molybdenum, arsenic and gold are insignificant on all three grids.

Coincident lead/zinc anomalies occur in the southwestern portion of the North Grid. These are narrow, trend northwest/southeast and are open to the northwest. Lateral extensions may range up to 600 meters.

The rock geochemistry results do not represent economic values.

9.0 RECOMMENDATIONS

- 1. No further work is recommended on Pisima Grid and Far Grid because of low geochem values and no correlation with geophysical anomalies.
- 2. Extend the North Grid to the west in an attempt to close off the soil anomalies.
- 3. Trenching on the North Grid to cover the coincident geochem/geophysic anomaly on Line 94+00E from Station 227+00N to 228+50N, 230+50N to 231+50N and Line 96+00E from Station 227+00N to 228+50N.

10.0 BIBLIOGRAPHY

Preto, V.A. (1981): Barriere Lakes - Adams Plateau Area (82M/4,5W; 92P/1E). B.C. Ministry of Energy, Mines & Petroleum Resources, Geological Fieldwork, Fieldwork 1980, Paper 1981-1 pp 15-23.

Preto, V.A., MacLaren, G.P., and Schiarizza, P.A., (1980)

Barriere Lakes - Adams Plateau Area (82M/73E; 82M/4,5W; 92P/1E,8E), B.C. Ministry of Energy, Mines & Petroleum Resources, Geological Fieldwork, 1979, Paper 1980-1, pp 28-36 APPENDIX I

GEOCHEM LABORATORY ANALYSIS SHEETS

NORANDA VANCOUVER LABORATORY

•

PROPE	+ ERTY/LOCATION	********* J:ADAMS Pi (*****	*****		CODE :8508-081
		:110		Sheet:			Date rec'd:Auu.20
- Mater Remar	nal Ne	:Soil		Geol.:	6.5.		Date compl:Sep.20
		-		Values	in pp	M, exc	ept where noted.
		ב בעם באם ודוי אינה ונגי עוד בעם בעם ב		****			
Т. Т. No.	SAMPLE No.	Сu	Zn	РЬ	Au	PPB Au	
191 <u>-</u> 1•			۲۱ میں	ر ۲۹ 		ыны. 	
	92E-348.00N			10	0.2	1 O	
121	348.25			8	0.2	10	
122 123	348.50 348.75		100 130	8 2	0.2 0.2	10	
124	348.70		130 54	4			
125	349.25	22	72	É	0.2	10	
126	349.50		64	6	0.2	10	
127	349.75	20	140	6	0.2	1 O	
128	350.00	68	100	8	Ō.4	10	
129	350.25		60	6	0.Z	10	
130	350.50		56	8	0.2	10	
131	350.75		60	B	0.2	10	
132	351.00		110	8	0.2	10	
133 134	351.25 351.50		170 170	8 16	0.2 0.6	10 10	
	92E-351.75N		120	8	0.6	10	
136	94E-348.0N		160	6	0.2		
137	348.25		88	6	0.2		
138	348.50	28	84	10	0.4	10	
139	348.75	44	80	6	0.6	10	
140	349.00		98	4	0.2	1 Ō	
141	349.25		110	£	0.2	10	
114回	349.50		96	1		10	
143	349.75		110		0.2		
144	350.00 350.25		100 96		0.4 0.4		
146	350.50			8			
147	350.75		120	10	0.4	10	
148	351.00		64	6	0.4	10	
149	351.25		86	1 O	O.4	$1\mathrm{O}$	
æ	351,50	12	100	64	\bigcirc . \cong	10	
3	351.75		72	ίŌ	0.2	10	
4	352.00		1 1 O	E.	0.E	j Ö	
5	352.25		160	ē	0. E	10	
6 7	352.50		58	4	0.2	1 O 1 C	
Eş -	352.75 353.00		150 90	8 8	0.2 0.2	10 10	
.9	353.25		46	4	0.2 0.2	10 (0	
10	353.50		44	4	0.2	10	
1.1	353.75		84	12	o. ≘	1 O	
	354.00		68	8	0.8	10	
	354.25		88	6	0.2	ΙŌ	
14	354.50		110	1 O	0.2	10	
15	354.75		110	.≧4	\circ .2	ţŌ	
16	94E-355. ON		130	8	0.2	10	
17	96E-348. ON		110	6	0.4 0.3	Ō t	
「18」) 19	348.25		130	10 (5	0.2 0.4	10	
,	96E-348.501	N 26	150	1.B	Ö.4	10	

T.T. No.	SAMPLE No.	նս	Zm	РЬ	Ag	рр <u>в</u> Ац	8508-081 Pg. 2 of 7
20	966 - 348.75 N	 20	64	8	0. B	10	
E1	349.00	28		6	ο.Ξ	10	
22	349.25	18	7a	1 Q	0.2	$1 \odot$	
23	349.50	26	58	8	0.2	1 ()	
24	349.75	三4	56	12	0.2	10	
25	350.00	30	42	12	Ó.4	1 O	
26	350.25	40	64	10	o. z	1 Ō	
27	350.50	36		8	0.4	1 O	
ĊΘ	350.75	36	64	10	0.2	10	
29	351.00	56		10	Ö.4	10	
30	351.25	28		12	Ŏ.4	10	
31	351.50			16	0.2	10	
38	351.75			16	0.8	10	
33	352.00			8	0.2	10	
34	352.25	20		4	0.2	10	
	352.50	20		18	0.2	10	
35							
36	352.75		80 70	8	0.2	10	
37	353.00			-B	0.2	1 Ö t Ö	
38	353.25	44		12	0.2		
39	353.50			8	0.2		
4 <u>0</u>	353.75	16		8	0.E	10	
41	, 354.00			8	0.4	10	
48	354.25	20	110	14	0.8	10	
43	354.50	16	94	14	○ . ≘	1 0	
44	354.75	38	94	10	0.2	10	
45	96E-355.ON	38	150	E	0.2	10	
46	98E-348.ON	52	110	22	0.2	10	
47	348.25	50	110	18	0.2	1 O	
48	348.50	48	72	$1 \ge$	Ō.4	1 O	
49	348.75	24	78	16	Ō.4	1 O	
ទី០	349.00	26	54	12	Õ. 4	10	
51	349.25	58	70	12	Ŏ . 4	10	
5e	349.50	4E	96	18	\circ . \ge	і О	
53	349.75	28	70	14	0.E	1 Ō	
54	350.00	32	110	12	0.E	10	
55	350.25	34	110	1 O	ο.Ξ	10	
56	350.50	20	18	8	ō.2	10	
57	350.75	36	54	10	0.E	1 0	
58	351.00	80	38	S t	0.4	1 O	
59	351.25	54	20	6	0.2	1 O	
60	351.50	20	58	18	0. E	1 O	
61	351.75	85	66	18	0.2	10	
6k	352.00	170	90	iŌ	0.4	1 O	
63	352.25	18	68		0.2	10	
ê.4	352,50	15	68	e	0. B	£ Č	
65	352.75	26	130	8	0.2	1 Ö	
66	353.00	i6	130	8	0.2	1 O 3 O	
67		15		8		1.Ö	
	353.25		120		0.2		
6.8 c.0	353.50	48	140	8	0.2	10 10	
69	353.75	12	72	8	0.8	10	
. 70	354,00	Ŕ	68	8	0.2	10	
71	354.25	22	1 ÖÖ	1 Ö	ο.ε	1 ()	
28	354.50	1 O	64	12	0. Z	ΕŌ	
73	. 354.75	14	58	12	0.E	1 Ö	
74	98E-355.ON	8	6ε	10	0.2	ΤŌ	
75	100E-349.0N	130	46	10	0. 4	1 O	
26	100E-349.25N	18	60	8	0.2	10	

T.T. Ngi	SAMPLE No.	Cu	Zn	РЪ	Ag	An Bri	8508-081 Pg. 3 of 7	
77	100 E- 349. 50N	 22	82	12	0. 4	1 Q		
78			82	16		10		
79			96 96			10		
ട	350.25	30	68	16	0.4	10		
51	350.50	20 20	120	30				
88	350.75	50				10		
83 83	351.00		130	24	0.2 6 8	10		
65 84		26	32	10	0.8	10		
85	351.25	26	150	18	() . 4	10		
	351.50	38	120	16	0.2	1 O		
86	351.75	34	100	18	0.2	10		
87		12	66	i O	0,2	10		
88	352.25	30	180	6	0.2	1 O		
89	352.50	38		4	o.≘	1O		
90		18	84	8	0.2	1 O		
Эı			80	E	o.≥	1 ()		
98	354.00	20	130	6	ο.Ξ	10		
93		16	78	8	0.2	10		
94	354.50	24	92	2	0.2	10		
95	354.75	74	110	20	0.2	1 O		
96	355.00	30	140	8	0.2	1 O		
97		22	120	12	0.2	1 O		
98		10	92	10	Ο.Ξ	10		
99		12	64	8	0.2	10		
LOO (CHECK NL-5	26	70	68	1.2	10		
lŌi	100E-356.ON		120	16	0.2	1 O		
102	10200E-349N	22	66	8	0.2	1 O		
03	349.25	22	Ē4	E	0.2	1 O		
Q4	349.50	110	64	8	Q.4	1 Ö		
05	349.75	38	48	8	O.4	10		
0E	350.00	34	62	10	0. 4	10		
.07	350.25	56	86	12	0. 4	$1 \oplus$		
08	350.50	86	120	30	0.2	1 O		
09	350.75	38	180	30	0.2	1 O		
10	351.00	64	110	20	0.2	10		
1.2	351.25	36	82	10	0.2	10		
18	351.50	32	150	14	0.2	10		
13	351.75	20	160	14	0.4	1 0		
14	352.00	24	180	33	0.6	10		
15	352.25	38	130	12	0.2	10		
16	352.50	14	80	6	Ō. 4	10		
i 7	358.75	12	70	14	Ő. 4	10		
18	353.00	84	130	2	0.8	10		
19	353.25	32	84	82	0.4	10		
20	353.50	20	170	14	0.2	ĩŌ		
≈ 1	353.75	14	70	8	0.2	10		
22	354.00	14	68	8	ο.ε	10		
23	354,25	16	100	iŌ	0.4	10		
24	354.50	18	100	د . 8	0.2	10 10		
25	354.75	16	94	8	0.2	10		
26	355.00	10	80	6	0.2	10		
87	355.25	10 定4	150	с Е	0.2			
28	355.50	16				10		
со 29			160	4	0.2	10		
30 30	355.75 102005-256N	22	98 100	10	0.8 0 5	10		
	10200E-356N	26	100	12	0.2	10		
31 32	104E-349.0N	76	50 60	1 O	0.2	10		
36 33	349.25 1046.349.50M	210	82 50	14	0.2	1 Q		
	1046-349.50N	32	58	14	0.2	10		

.

T.T. No.	SAMPLE No.	Cu	Zri	РЪ	Ag	Ал Вад	8508-081 Pg. 4 of 7	
134	1046-349.75~	130	 38	12	0.2	10		
135	350.00	120	100	16	0.4	10		
136	350.25	84	82	18	0.4	10		
137	350.50	42	96	28	0.2	10		
i 38	350.75	50	76	18	0.2	10	· · · · · · · · · · · · · · · · · · ·	
1,39	351.00	32	90	12	0.2	1 Ō		
140	351.25	24	44	12	0.2	10		
141	351.50	34	110	14	0.4	1 Ō		
142	351.75	4Q	86	12	0.2	10		
143	352.00	28	58	14	0.2	1 O		
144	352.25	30	66	23	0.2	10		
145	352.50	42	78	14	0.2	10		
_ 146	352.75	58	120	£	0.2	10		
147	353.00	18	80	16	0.2	1 Ō		
14H	353.25	14	110	8	0.2	10		
149	353.50	16	60	10	0.2	1 Ō		
23	353.75	16	62	12	Ō.4	10		
3	354.00	50	120	18	Ō.4	10		
- 4	354.25	12	80	10	Ō. 4	10		
_ 5	354.50	14	100	6	0.2	10		
6	354.75	14	150	8	0.2	10		
7	355.00	12	84	8	0.4	10		
	355.25	12	120	8	0.2	10		
Э	355.50	6	58	6	0.2	1 O		
10	355.75	18	100	e	0.4	10		
1)	104E-356.ON	18	100	£	0.2	10		

NORANDA VANCOUVER LABORATORY *****

.

111 92.00E-355.00N 26 130

	÷	****	*****	*****	*******	***	
PROP	PERTY/LOCATION	N:KILLICK	OPTION			CODE :8503-029	
	rial	:425 :SATES :		Sheet:: Geol.:(1 of 6 3.5.	Date rec'd:AUG.30 Date compl:DCT.23	
		-	1	Values	in PPM,	except where noted.	
===== T.T.	SAMPLE		*****			668 The former and the former of the former	====
No.	No.	Cu	Zri	рP	Âŋ	Alt	
98.9	2.00E-352.00N	i 12	60	12	0.2	10	
	2.00E-352.25N		190	18	0.2	tŌ	
100 C	HECK NL-5	28	66	72	1.2		
101 9	2.00E-352.50N	48	94	14	0.2	10	
102	352.75	5 28	150	16	0.2	1.0	
103	353.00) 22	200	22	0.2	10	
104	353.25	5 26	86	10	0.2	10	
105	353.50	34	· 90	14	0.2	10	
106	353.75	; 32	130	-16	0.2	; O	
107	354.00	28	200	14	0.2	Ú1	
108	354.25	; 24	54	10	0.2	1 Ŏ	
109	354.50	9 22	52	8	0.2	1 Ô	
110	354.75	; 30	62	12	0.2	60	
111 9	2.00E-355.00N	26	130	16	0.2	10	

16 0.2

: O

1.0

NORANDA VANCOUVER LABORATORY

PR	* OPERTY/LOCATION	!********* 1:Adam's P	***** latea	* * * * * * * .1	*****	• **** * C	ODE	:8508-009	
Pri Ma	oject No. terial	: 110		Sheet:	1 of 8		Date	rec'd:Aug. compl:Aug.	
								nere moted.	
	SAMPLE					-21 103 103 103 203 103 103		PPB PPB	1 II
No.	No.							Au	
119	62.00E-207.00N	1 22	160	32	ο.Ξ			10	
		E4						10	
121	207.50	32						1 O	
122		30						10	
		20						10	
		52						10	
		24						10	
		18						10	
		16						10	
		18						1 Ō	
		54		24				10	
		28						3 O	
		26			0.2			10	
		54		10				10	
133		36		42	0.E			1 O	
		23		120				Óť	
		56			0.2			1 Q	
	211.25							10	
	211.50							10	
138	211.75							60	
139								$1 \bar{\odot}$	
140	212.25							10	
141	212.50							10	
		18						3 Q	
	213.00							1 O	
144	213.25	130		в	0.6			1 O	
145	213.50	110	72	1	0.2			1 Ō	
146	213.75	12	42	Ë	o . ε			10	
147	62.00E-214.00N	24	50	2	0.2			1 Ō	
	64.00E-206.00N		100	20	Ŏ, ⊇			1 O	
149	64.00E-206.25N	32	94	22	0.2			1 O	
2	64.00E-206.50N	38	100	20	\circ . \ge			1 O	
Э	206.75	44	130	26	0.2			1 ()	
4	207.00	54	7 Q	1 O	0.6			1 Ō	
5	207.25	52	80	22	Ō.4			ЪÖ	
Ē	207.50	22	160	20	0.2			ΕŌ	
7	207.75	42	280	28	0.6			1 Q	
8	208.25	14	70	4	0.2			1 Ū	
Э	208.50	18	98	8	0.2			10	
10	208.75	12	62	10	0.2			1 O	
11	209.00	26	140	30	о . 2			10	
12	209.25	14	56	E	Ö. 4			1 Ō	
13	209.50	14	60	20	0.2			10	
14	209.75	28	150	6	0.2			10	
15	210.00	16	68	12	0.2			1.0	
16	210.25	14	78	e	0.4			10	
17	210.50	14	76	12	0.2	,		10	
18	64.00E-210.75N	24	130	8	0.2			10	
									1

. ,

	SAMPLE No.	Сч	Zn	ԲԵ	Aa	(As)	(Mo)	Ал БЪВ	8508-009 Pg.2 of 8
	64.00E-211.00N							10	
20	211.25							1 Ō 1 Ō	
	211.50							10 10	
	211.75 212.00							1 Ŭ 1 Ŏ	
	212.00							10 10	
	212.20			1				10	
	212.30							10	
	212.70							10	
	213.00							10	
	213.23							10	
	213.75							10	
	64.00E-214.00N							10	
	66.00E-206.00N							10	
33	206.25		130		0.2			10	
	206.50			12				10	
	206.75		66					10	
	207.00				0.2			10	
	207.25		140		0.2			10	
	207.50		170		0.2			10	
	207.75		130		0.2			10	
	208.00		210		0.2			10	
	208.25		100		ο.Ξ			10	
42	208.50	90	140	14				10	
43	208.75		130	10	ο.ε			10	
44	209.00	18	94	28	0.4			10	
45	209.25	32	96	4	0.4			10	
46	209.50	26	66	£	0.2			1 O	
47	209.75	32	82	4 2	0.2			10	
48	210.00	18	62	2	0.2			10	
49	210.25	22	68	1	0.2			1 Ō	
50	210.50	24	64	1	0.2			1 O	
51	210.75	18		2				1 Ŏ	
52	211.00	≘4	80	2	0.2			1 Ō	
53	211.25	50	48	2	Ō. 4			10	
54	211.50	160	200	8	0.8			10	
	66.00E-212.00N	24 000	74	2	0.2			10	
	68.00E-206.00N	22	140	32	0.2			10	
57	206.25	20	96 5 0	24	0.4			10	
58	206.50	14	53	14	0.4 0.7		•	10	
59 60	206.75	28	180	70 10	0.2 0.2			10 10	
60 61	207.00 207.25	18 18	76 82	18 8	0.2			10	
62	207.20	16	62 54	4	0.2			10	
63	207.30	18 24	90	12	0.6			10	
64	208.00	18	80	26	0.8 0.4			10	
65	208.25	48	180	38	2.0			10	
66	208.50	28	260	32	1.4			10	
67	208.75	38	250	60	1.6			10	
68	209.00	22	76	16	0.4			10	
69	209.25	32	76	14	0.4			10	
70	209.50	42	170	20	0.4			10	
71	209.75	28	70	4	0. E			10	
72	210.00	38	80	4	0.2			10	
73	210.25	22	76	é	0.2			10	·
74	210.50	16	68	Ξ	0.2			10	
	68.00E-210.75N	18	60	4	0.2			10	

Т.Т. No.		Сц	Zn	Ръ	Ag	(As)	(M _C .)	ача Ваа	8508-009 Pg.3 of 8
 76.	68.00E-211.00N	 20	 76	 ε	o. 2			10	
77		16						10	
78		28		1				10	
	68.00E-211.75N		76					1 0	
	70.00E-203.00N		52					1.0	
81	203.25		44	14	Ō.4			1 O	
82	203.50	49	44	4	1.O			1 O	
83		16	56	4	0.8			1 O	
84	204.00	36	38	1 O	1.6			1 O	
85	204.25	22	76	12	0.2			1 O	
86	204.50	24	78	12	0.2			1 O	
87	204.75	18	68	12	0.2			1 O	
88	205.00	18	86	24	<u>0</u> .4			1 O	
89	205.25		64		Ŏ.4			10	
90			60		O. 4			10	
Э1	205.75			36	0.8			1 O	
92		14		34	0.6			10	
93	206.25			26	0.4			10	
94	206.75		62	28	0.2			10	
95	207.00		78		Ŏ . 4			10	
96	207.25		130		0.2			10	
97	207.50		140	20	0.4			10	
98	207.75	22	72	20	0.8 0.6			10	
	70.00E-208.00N	22	70	18	0.6			10	
	CHECK NL-5		68 70	74	1.6				
	70.00E-208.25N		70 70		0.6 0.0			10 10	
102	208.50		70 70		0.2			10	
103	208.75		70 66	18 8	0.4 0.2			10	
104 105	209.00	34 28	64	8	0.2			10	
105	209.25 209.50		60 60					10	
105	209.75	26	74		0.2			10	
108	210.00	20	64	2	0.4			10	
108	210.25	26	70	6	0.2			10	
110	210.50	38	62	1	0.2			10	
111	210.75	44	64	4	0.2			10	
112	211.00	22	54	1	0.2			10	
113	211.25	32	74	1	0.2			10	
114	211.50	42	190	4	0.E			10	
115	211.75	30	56	З	0.2			10	
116	212.00	16	52	ε	0.2			10	
117	212.25	22	68	4	0.2			10	
118	212.50	70	66	4	0. E			10	
119	212.75	16	58	1	0.2			10	
120	213.00	16	56	i	ο.Ξ			1 O	
121	213.25	16	4 <u>2</u>	4	0.2			1 Q	
122	213.50	16	42	2	0.2			1 🔿	
123	213.75	58	58	4	<u>0.4</u>			1 O	
124	70.00E-214.00N	54	64	4	0.8			1 O	
	72.00E-203.00N	22	68	4	0.2			1.0	
126	203.25	16	44	6	0.2			1 O	
127	203.50	28	58	8	0.4			1.0	
128	203.75	18	60	4	0.2			<u>1 O</u>	
129	204.00	16	56	10	0.2			3.0	
130	204.25	14	46	8	0.2			±Ō	
131	204.50	14	38	4	<u>0.4</u>			10	
132	72.00E-204.75N	14	38	4	<u>0.4</u>			10	

T.T. N⊐.		Cu	Zn	РЬ	Ag	(As)	(M)	ррв Ри	8508-009 Pg.4 of 8
133	72.00E-205.00N		54		0,2			10	
134	205.25	16	44	2	0.2			1 Ö	
135	205.50	16	48	6	Ō.4			10	
136	205.75	22	56	Ê	ο.ε			1 O	
137	206.00		130	2				1 Ō	
138	206.25		4O	4	0.2			1 O	
139	206.50		56	8	0.2			1.0	
140	206.75		54	3				1 O	
	207.00		32	4	0.2			10	
	207.25		46	6	0.2			1 ()	
143	207.50		32	2				1 O	
144	207.75		30					1 O	
145	208.00			4				10	
146	208.25			4				1 O	
147	208.50		58	2				10	
148	208.75		54	2				10	
	72.00E-209.00N			14				10	
	72.00E-209.25N		170					1 O	
З	209.50		56	4	0.2			10	
4	209.75		70					1 Ö	
5	210.00		130		Ŏ.4			10	
E	210.25			14	0.2			10	
7	210.50	18	76	- Б-	0.2			10	
8	210.75	22	250	36	0.2			10	
9	211.00	22 26	160 230	32	0.2 0.2			10 10	
10 11	211.25 211.50	26 14	200	32 30	0.2			10	
12	211.30	12	170		0.2			10	
13	212.00	14	350		0.2			10	
14	212.25		70	4	0.2			10	
15	212.50	70	94		0.2			10	
16	212.75	42		12	0.2			10	
17	213.00	36			0.2			10	
18	213.25	22	38	4	0.2			10	
19	213.50	24	44	e	0.2			10	
20	213.75	42	60	1	0.2			10	
	72.00E-214.00N	42	42	1	0.2			1.0	
	92.00E-227.00N	20	76	10	0.2			3 0	
23	227.25	24	84	16	0.2			10	
24	227.50	36	170	40	0.2			jÖ	
25	227.75	36	180	4 <u></u>	0.2			10	
26	228.00	22	90	6	ο.Ξ			1 O	
27	228.25	32	78	8	0.2			10	
28	228.50	32	80	10	0.2			1 O	
29	228.75	44	150	14	0.2			10	
ΞO	229.00	12	9 0	4	0.2			1 O	
31	229.25	40	180	32	0.2			10	
32	229.50	24	92	12	0.2			1 O	
33	229.75	32	150	6	0.2			10	
34	230.00	30	160	8	0.2			10	
35	230.25	18	100	2	0.2			10	
36	230.50	12	70	6	o.e			1 O	
37	230.75	26	72	6	ο.Ξ			$1\odot$	
38	231.00	12	82	6	0.2			1 O	
39	231.25	10	48	4	0.2			10	
4Ō	231.50	10	76	1	0.2			10	
41 '	92.00E-231.75N	22	200	10	0.2			10	

.

	SAMPLE No.	Cu	Zri	Ръ	Ag	(As)	(M)		8508-009 Pg.5 of 8
 42	92.00E-232.00N	 30	 68	 10	o. 2			10	
43	232.25	34	Э£	12	0.2			1 Ö	
44		20	200	B	0.2			10	
	232.75	28	94	14	0.2			10	
4E	233.00	18	£4					10	
47		18	86	12	0.2			10	
48			92	10	0.2			10	
49		42	90	8	0.2			10	
50		12	64	4	0.2			10	
51		£	42	4	0.2			1 O	
52								1 O	
53	234,75	40						1 Q	
54	235.00	44		18	0.2			10	
55	235.25	42 20	<u>1</u> 40		0.2			10	
56	235,50	30	100	12	0.E			10	
57	 235.75 236.00 236.25 236.50 	<u></u> এচ 1 চ	84	8	0.2			10	
58	236.00	18	170	12	0.2			10	
59	235.23 076 50	16	130	4	0.2			10 10	
60	200.00	10	1	· T	0.2				
61	236.75 237.00	34	120	8	0.2			10	
62 63	237.00	96	130	ವರ್ಷ ಕನ	0.2			10	
БЗ 54	237.20 0000 EA		84 90	14 8	0.2 0.2			10 10	
54 65	237.25 237.50 237.75	38 48	160	18	0.2			10	
66	238.00	40 60	150	22	0.0			10	
67	238.25	120	180	56	0.2			10	
68	000 50		4 77 6	·~· ···				10	
69	238.50 238.75 239.00 239.25 239.50 239.75	30	150	<u>с</u> о д	0.2			10	
70	239.00	6	36	1	0.2			10	
71	239 25	18	80	2	0.2			10	
72	239,50	14	54	1	0.2			10	
73	239.75	14	68	ż	0.2			10	
74	240.00	12	66	Ξ	0.2			10	
75	240.25	16	74	1	0.2			10	
76	240.50	18	62	4	0.2			10	
77	240.75	36	190	4	0.2			10	
78	241.00	14	58	1	0.2			10	
79	241.25	88	86	£	0.2			10	
80	241.50	22	90	æ	0.2			10	
81	241.75	34	68	14	0.2			10	
82	242.00	14	36	E	Ö.4			10	
83	242.25	в	36	2	0.2			1 O	
84	242.50	56	130	1 E	0.E			10	
85	242.75	28	96	4	0, 2			10	
86	92.00E-243.00N	20	74	2	0.2			10	
87	102.00E-233.00N	20	88	4	0.2			10	
98	233.25	16	76	2	0.2			30	
89	233.50	30	130	1	0.2			1 Ō	
90 [.]	233.75	10	74	1	0.2			10	
91	234.00	33	68	8	0.2			1 Ö	
92	234.25	50	150	32	0.2			10	
93	234.50	20	68	3	0.2			1 O	
94	234.75	18	66	2	0.2			10	
95	235.25	24	140	38	0.2			10	
96	235.50	12	48	2	0.2			10	
97	235.75	18	80 	£	0.2			1 Ō	
.98	102.00E-236.25N	24	52	14	0.2			10	

	SAMPLE No.	Cu					(Mo)		8508-009 Pg.6 of 8
	02.00E-236.50N		48	16	0.2			10	
	HECK NL-5								
	02.00E-236.75N							10	
	02.00E-237.00N		94					10	
	04.00E-230.00N		62					10	
04	230.25		130					10	
	230.50		68	•				10	
06	230.75		76					10	
07	231.00		76					10	
08		88						10	
	231.50							10	
			84					10	
	232.00							10	
	232.25							1 Ō	
	232.50		48					10	
			76					10	
		16		4				10	
			42					10	
		16		2				10	
	233.75	18						10	
			70					10	
	234.50			4				10	
			46					10	
	235.50		60					10	
		10		1				10	
		16						10	
	236.25			4				10	
			62					10	
27	236.75			4				10	
28	237.00			1				10	
	237.25							10	
30 	237.75							10	
31	238.00	22		2				10	
32	238.25	24		-	0.2	t		10	
33	238.50	16	94	б	0.2			10	
34	238.75	14	52	4	0.2			1 Ō	
35	239.00	16	58	4	0.2			10	
36	239.25	34	80	12	0.2			10	
37	239.50	24	100	8	0.2			10	
38	239.75	26	70	8	0.2			10	
39	240.00	Ξ4	84	2	0.2			10	
4Ō	240.25	14	66	2	0.2			10	
41	240.50	12	66	4	0.2			10	
42	240.75	10	58	2	0.2			10	
	04.00E-24 ∮. 00N	18	68	1	0.2			10	
	6.00E-230.00N	46	170	34	0.2			10	
45	230.25	22	90	10	0.2			10	
46	230.50	20	62	8	0.2			10	
47	230.75	20	60	6	0.2			10	
48	231.00	52	56	1	0.6			1 O	
	6.00E-231.25N	26	130	20	0.2			10	
	6.00E-231.50N	8	50	4	0.2	1	1	10	
З	231.75	22	7£	1 Ō	0.2	1	1	1 O	
4	232.50	42	88	12	0.2	1	1	10	
5	232.75	12	64	4	0.2	1	1	10	
e	233.00	10	54	4	0.2	1	1	10	
	6.00E-233.25N	12	44	8	0.2	1	1	10	

,

T. T. No.	SAMPLE No.	Cu	Zrı	Рь	Αg	(A5)	(Mo)	РРВ Ач	8508-009 Pg.7 of 8
Э	5.00E-233.50N 233.75 5.00E-234.00N	16 30 16	60 58 40	10	0.2 0.2 0.2	1 1 1	1 1 1	10 10 10	

• •

т.т.	SAMPLE					8508-051
No.	No.	Cu	Zrı	Ръ	Ag	Pg.17 of 17
155	83476	44	160	28-	0.4	
156	83477	56	160	24	0.2	
157	83478	52	150	36	0.2	
158	83479	60	160	26	0.2	
159	83480	58	160	22	0.2	
160	83481	70	160	22	0. E	
161	83482	52	140	32	0.2	
162	83483	42	150	30	0. <i>2</i>	
163	83484	82	170	62	0. 4	
164	83485	52	150	120	0.6	
165	83486	36	160	26	0.2	
166	83487	44	120	16	0.2	
167	83488	46	140	22	0.2	
168	83489	4Ō	140	18	0.2	
169	83490	42	150	20	0.2	
170	83491	44	150	26	0.2	
1.7.1	83492	48	140	30	0.2	
172	83493	52	160	34	0.2	
173	83494	40 40	62	16	0.2	

.

NORANDA VANCOUVER LABORATORY

PROPE	ERTY/LOCATION:	CODE :8508-011										
Project No. : Material : Remarks :		125 Rock		Sheet: Geol.: Values i		except	Date rec'd:Aug. 1 Date compl:Aug. 22 pt where noted.					
T. T. No.	SAMPLE No.	Cu	Zrı	Pb	Ag	As	.====== Mo	===== РРВ Ац	NTS	GC I		
156	57430	16	150	10	0.2	8	2	50	82M/3&4	2455		
157	31	68	230	2	0.4	2	2	10				
158	32	88	120	2	0.2	3	2	10				
159	33	38	160	60	<u>о.</u> 8	2	2	10				
159 160	34	30	60	90	0.2	2	2	10				

23/06/85 G.S. W.H. DP DB.

. . . .

.

CERTIFICATE OF ANALYSIS

TO : NORANDA EXPLORATION CO. LTD. 1050 DAVIE STREET VANCOUVER B.C. PROJECT: 425 F3 8508-051 KILLICK OPT. (GS) TYPE OF ANALYSIS: GEOCHEMICAL

2225 S. SPRINGER AVENUE BURNABY, B.C. V5B 3N1 TEL : (604) 299 - 6910

CERTIFICATE#: 85275 INVOICE#: 5476 DATE ENTERED: AUGUST 26.1985 FILE NAME: NOR85275 PAGE # : 1

PRE FIX	SAMPLE NAME	PPM Mo	PPM Cu	======= PPM Ag	PPM Zn	====== РРМ РЪ	PPB Au		
A A	75826	1	116	0.2	66	10	10	6	
A	75827		40	0.2	56	20	10	2	
A	75828	1	18	0.2	820	620	1 Ō	2	
_ A	75829	1	96	0.2	246	45	1 Ō	4	
A	75830	1	62	0.2	132	28	10	4	·····

CERTIFIED BY : /_

26/09 GS DB WM DP

_____ +Hənsbi

APPENDIX II

t.

.

ROCK SAMPLE REPORT

NORANDA EXPLORATION COMPANY, LIMITED

N.T.S. _____82M/3W, 4E

DATE

July, 1985

PROPERTY _____

PISIMA

SAMPLE REPORT

AMPLE NO.		TYPE	WIDTH		ASSAYS								
AMPLE NO.	LOCATION & DESCRIPTION		WIDTH	Cu	Zn	РЪ	Ag	As	Мо	Au	ВҮ		
						ppm				(ppb)			
57430	Sericite-Quartz Schist - Silvery white, very well												
	fractured with porphyryclastic fabric evident									1			
	schistosity with pyrite, pyrrhotite, magnetite												
	mineralization	Grab		16	150	10	0.2	8	2	50	L.D.		
57431	Andesitic Tuff - Very fine grained and foliated									+			
	rich in silicon. Very well mineralized with							1					
<u></u>	pyrite, pyrrhotite, some very fine grained		-					1	-				
	sphalerite.	Grab		68	220	2	0.4	2	2	10	L.D.		
				1			1		+				
57432	Andesite - Light green, porphyritic texture,				T								
	fine grained, massive with quartz fragments.												
	Pyrite, magnetite mineralization	Grab		88	120	2	0.2	2	2	10	L.D.		
57433	Andesitic Tuff - Light green to grey. Schistosity	,											
	very well developed, very fine grained pyrite,												
	magnetite mineralization	Grab		38	160	60	0.8	2	2	10	L.D.		
57434	Andesite - Dark green, flow banding, medium to		+										
	fine grained, pyrite, pyrrhotite mineralization	Grab		30	60	90	0.2	2	2	10	L.D.		
		<u> </u>											
	ļ	L	<u> </u>	L		<u> </u>	<u> </u>	ļ	L	<u> </u>			

NORANDA EXPLORATION COMPANY, LIMITED

N.T.S. <u>82M/3W, 4E</u>

PROPERTY _____

PISIMA

DATE <u>August</u>, 1985

SAMPLE REPORT

AMPLE NO.	LOCATION & DESCRIPTION	TYPE	WIDTH			SAMPLED					
			WIDTh	Cu	Zn	РЪ	Ag	As	Mo	Au	ВΥ
				(ppm)	(ppb)	
75826	Andesite - Greenish-Grey, very massive fine	1	T								
	grained, quartz veins, pyrite, chalcopyrite,					1					
	magnetite mineralization	Grab		116	66	10	0.2	6	1	10	L.D.
75827	Quartzite - White to light grey mosaic type,										
	very massive with pyrite, magnetite mineralization	n Grab		40	56	20	0.2	2	3	10	L.D.
75828	Dacite - Medium grey, porphyritic, massive, fine										
	grained, pyrite, magnetite, sphalerite, galena										
	mineralization	Grab		18	820	620	0.2	2	1	10	L.D.
75829	Andesite - Greenish, very massive, fine grained,										
	pyrite, pyrrhotite, sphalerite mineralization	Grab		96	246	46	0.2	4	1	10	L.D.
75830	Andesitic Tuff - Light green, fine to very fine										
	grained with well developed schistosity, pyrite,	1									
	pyrrhotite, magnetite mineralization	Grab		62	132	28	0.2	4	1	10	L.D.
				-	•	_				-	-
		1				l					

APPENDIX III

STATEMENT OF COSTS

•

NORANDA EXPLORATION COMPANY, LIMITED

STATEMENT OF COST

PRC	January, 1986			
TYP	<u>PE OF REPORT</u> Ge	eology, Geochemistry,Geophysics and	Linecutti	ng.
a)	Wages:			
	No. of Days	76		
	Rate per Day	\$ 114.27		
	Dates From:	July - August 1985		
	Total Wages	\$ 114.21 X 80		\$ 8,680.00
ь)	Food and Accor	modation:		
	No. of Days	76		
	Rate per Day	\$ 25.00		
	Dates From:	July - August 1985		
	Total Cost	\$25.00 X 76		\$ 1,900.00
c)	Transportation	1:		
	No. of Days	28		
	Rate per Day	\$ 60.00		
	Dates From:	July - August 1985		
	Total Cost	\$ 60.00 X 28		\$ 1,680.00
d)	Other:			
	Field	Supplies		\$ 500.00
e)	Analysis			
	(See attached	schedule)		\$ 5,736.50
f)	Cost of prepar	cation of Report:		
	Author			\$ 500.00
	Drafting			\$ 500.00
	Typing			\$
	Total Cost			\$19,996.50

- g) Unit cost for Geology
 No. of units 25
 Unit costs \$ 128.00
 Total Cost 25 X \$ 128.00
 \$ 3,200.00
- h) Unit cost of Geochemistry
 No. of units 597 Samples
 Unit costs \$ 14.57
 Total Costs 597 X \$ 14.57
- i) Unit cost of Geophysics No. of units 10 Unit costs \$ 560.00 Total Costs 10 X \$ 560.00
- j) Unit Cost for Linecutting
 No. of units 14.0 km.
 Unit costs \$ 178.57
 Total Costs 14.0 X \$ 178.57
 \$ 2,499.98

Grand Total

\$<u>19,996.50</u>

\$ 8,696.52

\$ 5,600.00

NORANDA EXPLORATION COMPANY, LIMITED (WESTERN DIVISION)

DETAILS OF ANALYSES COSTS

PROJECT: PISIAMA CLAIMS GROUP

ELEM	ENT NO. OF	DETERMINA	ATIONS	COST PER	DETERMINATION	TOTAL
Soil and Silt	Geochemistry					
Cu Pb Zn Mo As Ag		587 587 587 587 587 587 587		1.6 0.6 0.6 1.5 0.6	0 0 0 0 0	939.20 352.20 352.20 352.20 880.50 352.20
Au Sample Prepara Total Cost	ation	587 \$ 0.50 X	587	3.50		2,054.50 293.50 \$ 5,576.50
Rock Geochemis	stry					
Cu Pb Zn Mo As Ag Au		10 10 10 10 10 10 10		1.2 1.2 1.2 1.2 1.2 1.2 4.50	5 5 5 5	12.50 12.50 12.50 12.50 32.50 12.50 45.00
Sample Prepara	tion	\$2.00 X	10			20.00
Total Cost						160.00

Grand Total

.

\$ 5,736.50

APPENDIX IV

÷

.

v

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Les Demczuk of the City of Vancouver, Province of British Columbia do hereby certify that:

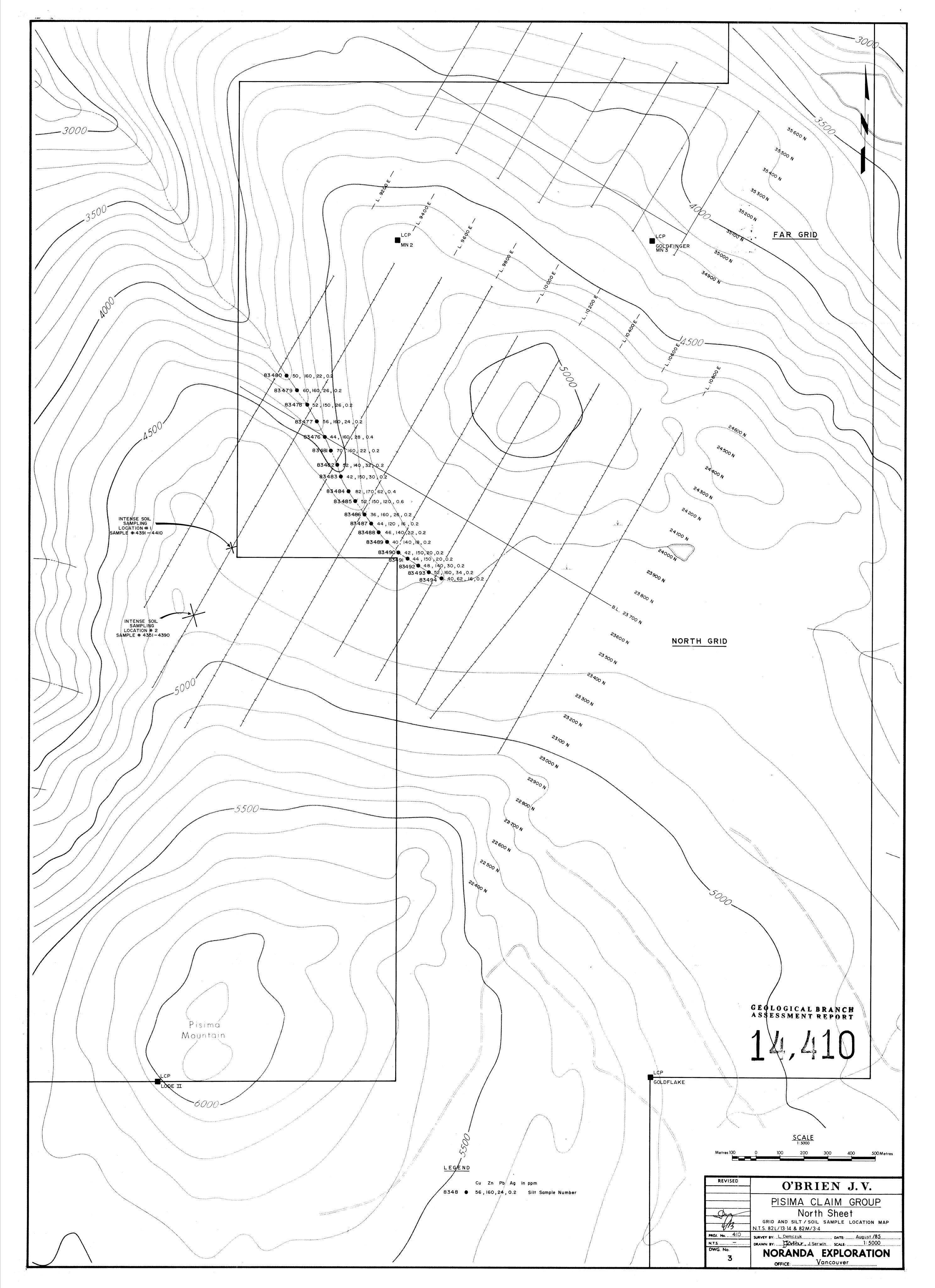
I am a Mining Geologist Engineer residing at 210 - 1860 Nelson Street, Vancouver, B.C.

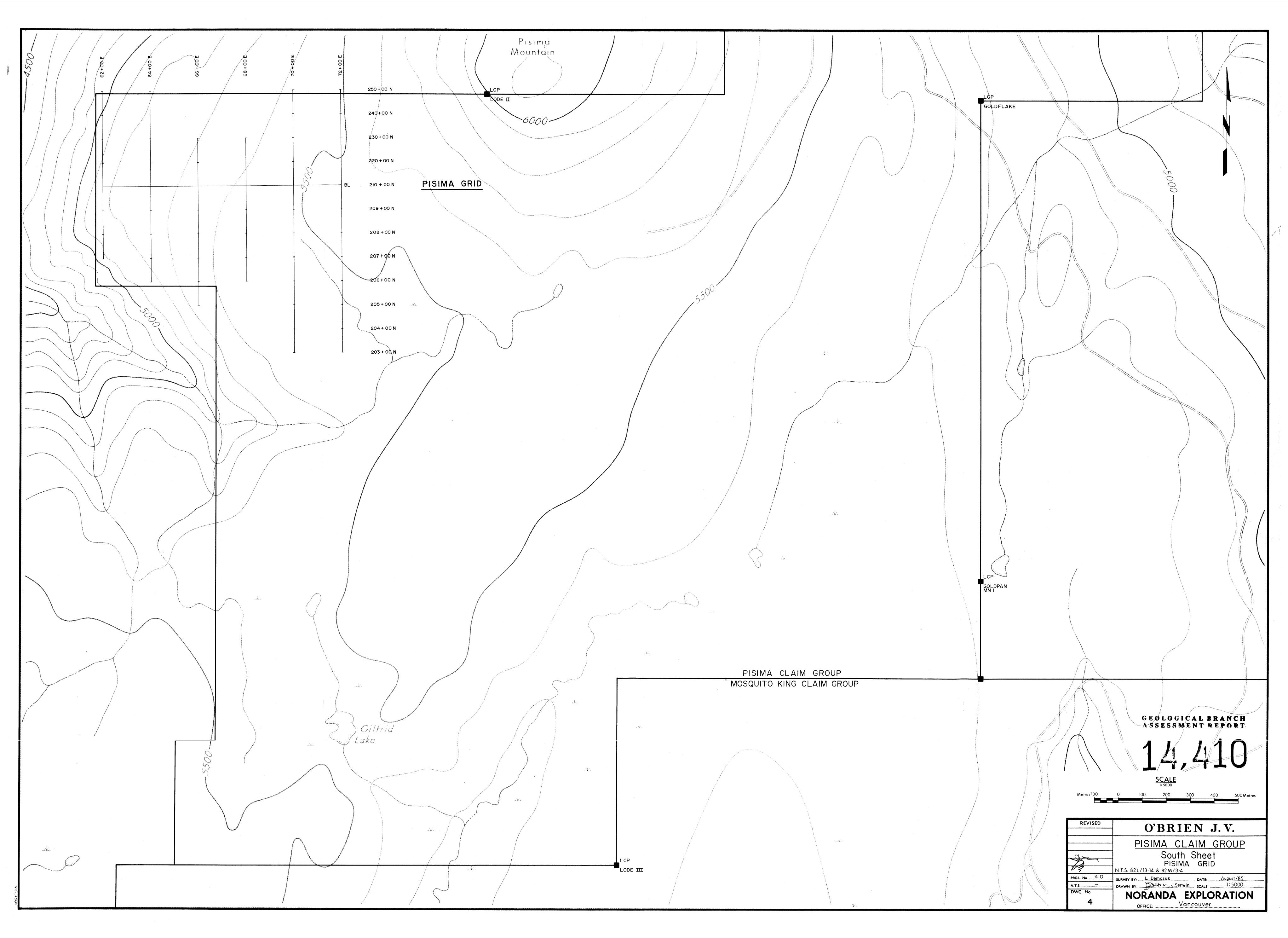
I graduated from University of Mining and Metallurgy Krakow, Poland in 1977 with Master of Science Degree in Geology.

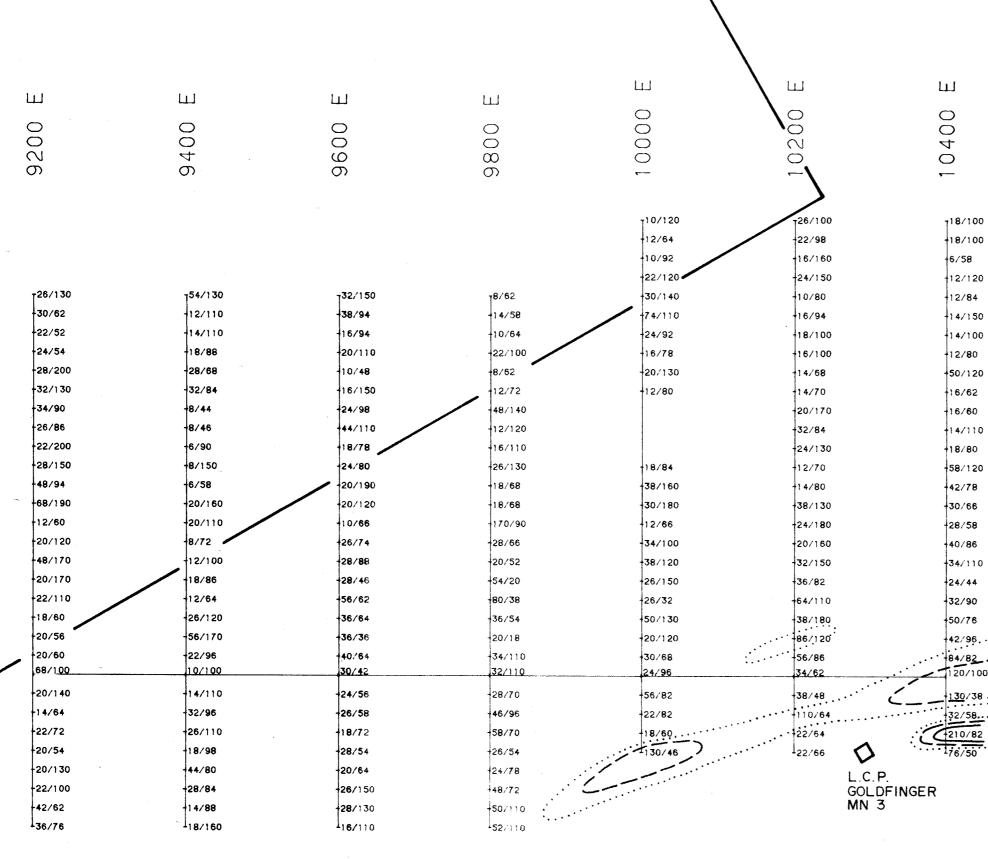
I have worked in mineral and coal exploration since 1977 and have practised my profession since 1977.

I am temporarily employed with Noranda Exploration Company, Limited, and have been since June, 1985.

Les. Demczuk.




I, Lyndon Bradish of Vancouver, Province of British Columbia, do hereby certify that:


- I am a Geophysicist residing at 1826 Trutch Street, Vancouver B.C.
- 2. I am a graduate of the University of British Columbia with a B.Sc. (geophysics).
- 3. I am a member in good standing of the Society of Exploration Geophysicists, Canadian Institute of Mining and the Prospector's and Developer's Association.
- 4. I presently hold the position of Division Geophysicist with Noranda Exploration Company, Limited and have been in their employ since 1973.

Mra Que

L. Bradish Division Geophysicist

O L.C.P. MN 2

LEGEND

...... Threshold 80 - 110 ppm Anomalous 110 - 140 ppm Very Anomalous > 140 ppm

	35600 M 35500 N 35400 N 35300 N	
00 8 2 	35100 N BASELINE 35000 N 34900 N 34800 N	GEODOGICAL BRANCH ASSESSMENT REPORT 14, 410

ADAMS PLATEAU - FAR GRID CONTOURED SOIL GEOCHEMISTRY Cu (ppm) G PROJ. NO. 85041,0 SURVEY BY. GASA N.T.8. SCALE: 1.1.5000 DRAWN BY . EDP/YAN DWG. NO. 22/66 Geochem Values Cu, Zn in ppm NORANDA EXPLORATION 5 OFFICE VANCOUVER

5

Ш Ш Ш ш Ш Ш Ш 10200 0000 0400 9200 9600 0 9800 40 თ ----**~**---T16/0.2/10 12/0.2/10 76/0. 8/0.2/10 10/0.2/10 6/0. 10/0.2/10 4/0.2/10 6/0. 12/0.2/10 6/0.2/10 8/0. T16/0.2/10 2/0.2/10 T6/0.2/10 T10/0.2/10 8/0.2/10 8/0.2/10 8/0. 24/0:2/10 12/0.2/60 10/0.2/10 12/0.2/10 20/0.2/10 8/0.2/10 8/0. 8/0.2/10 10/0.2/10 14/0.2/10 12/0.2/10 2/0.2/10 8/0.2/10 6/0. 10/0.2/10 8/0.2/10 14/0.2/10 10/0.2/10 8/0.2/10 10/0.4/10 10/0 14/0.2/10 8/0.2/10 8/0.4/10 8/0.2/10 6/0.2/10 8/0.2/10 18/0 16/0.2/10 12/0.2/10 8/0.2/10 8/0.2/10 6/0.2/10 8/0.2/10 12/0 14/0.2/10 4/0.2/10 8/0.2/10 8/0.2/10 14/0.2/10 10/0 10/0.2/10 4/0.2/10 12/0.2/10 8/0.2/10 22/0.4/10 8/0. 22/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 2/0.2/10 16/0 16/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 14/0-4/10 46/0. 14/0.2/10 4/0.2/10 18/0.2/10 8/0.2/10 4/0.2/10 6/0.4/10 14/0 18/0.2/10 6/0.2/10 4/0.2/10 8/0.2/10 6/0.2/10 12/0.2/10 22/0 12/0.2/10 26/0.6/10 8/0.2/10 8/0.2/10 10/0.4/10 10/0-2/10 14/0 10/0.2/10. 64/0.2/10. 10/0.4/10 8/0.6/10 16/0.2/10 12/0.2/10 18/0-2/10 14/0-4/10 12/0 16/0.6/10 16/0.2/10 12/0.2/10 16/0.2/10 14/0.2/10 14/0 8/0.2/10 12/0.4/10 6/0.2/10 12/0-4/10 10/0.2/10 12/0 8/0.2/10 6/0.4/10 10/0.4/10 12/0.4/10 10/0.2/10 20/0.2/10 12/0 24/0.2/10 10/0.2/10 8/0.2/10 10/0.4/10 10/0.2/10 30/0.2/10 18/0 8/0.2/10 8/1.2/10 8/0.4/10 8/0.2/10 30/0-8/10 2.8/0 30/0.2/10 •••• 16/0-4/10 12/0.4/10 6/0.2/10 8/0.4/10 10/0.2/10 10/0.2/10 18/0 2/0.4/10 6/0.4/10 12/0.4/10 2/0.2/10 12/0.2/10 10/0.4/10 16/0 6/0.2/10 6/0.2/10 12/0.2/10 14/0.2/10 16/0.2/10 8/0.4/10 12/0 6/0.2/10 1/0.2/10 8/0.2/10 18/0.2/10 12/0.4/10 8/0.4/10 +14/0 6/0.2/10 6/0.2/10 10/0.2/10 12/0.4/10 8/0.2/10 6/0.2/10 14/0 4/0.2/10 4/0.2/10 6/0.2/10 12/0.4/10 10/0.4/10 l_{8/0.2/10} 1_{10/0} 2/0.2/10 6/0.6/10 8/0.2/10 16/0.4/10 L.C.P. 8/0.2/10 10/0.4/10 18/0-4/10 12/0.4/10 GOLDFINGER 8/0.2/10 6/0.2/10 MN 3 10/0.2/10 18/0.2/10 I10/0.2/10 ····¹22/0.2/10 46/0.2/10 16/0.4/10

♦ L.C.P. MN 2

Threshold 24-31 ppm Anomalous 31 – 38 ppm

/10 /10 /10	35600 N	
710 710 710 710	35500 N	
/10 /10 /10 /10	35400 N	
10 /10 10 /10	35300 N	
/10 /10 /10 /10	35200 N	
/10 /10 /10	35100 N	
/10 /10 /10	BASELINE 35000 N	
/10 /10 /10	34900 N	GEOLOGICAL BRANCH ASSESSMENT REPORT
	34800 N	14,410
	х.	

ADAMS PLATEAU - FAR GRID CONTOURED SOIL GEOCHEMISTRY Pb (ppm) PROJ. NO. 850410. Very Anomalous > 38 ppm SURVEY BY GASA. N.T.S. DRAWN BY. EDP./XAN SCALE: 115000. DWG. NO. -8/0.2/10 Geochem. Values Pb , Ag in ppm ; Au in ppb NORANDA EXPLORATION 7 OFFICE VANCOUVER

ЦЦ Ш Ш Ш Ш Ш Ш 10000 0200 10400 9200 9400 9600 9800 -10/120 26/100 18/100 12/64 22/98 18/100 10/92 16/160 6/58 22/120 12/120 24/150 T^{26/130} 754/130 7**32/15**0 7**8/6**2 30/140 10/80 12/84 30/62 12/110 38/94 14/58 74/110 16/94 14/150 22/52 14/110 16/94 10/64 24/92 18/100 14/100 24/54 18/88 20/110 22/100 16/78 16/100 12/80 28/200 28/68 10/48 8/62 20/130 14/68 50/120 . 32/130 -32/84 16/150 12/72 12/80 14/70 16/62 34/90 8/44 24/98 48/140 20/170 16/60 26/86 32/84 8/46 44/110 12/120 14/110 22/200 6/90 18/78 16/110 24/130 18/80 28/150 8/150 24/80 26/130 18/84 12/70 58/120 20/190 48/94 6/58 18/68 14/80 42/78 68/190 20/160 20/120 ••••• 18/68 .38/130 24/180 30/66 12/60 20/110 12/66 10/66 170/90 •••••• 28/58 20/120 48/170 20/170 22/110 22/110 22/110 22/10 22/110 22/110 22/120 260 260 26/120 22/170 22/96 20/120 8/72 20/160 26/74 28/66 34/100 40/86 28/88 20/52 38/120 32/150 34/110 28/46 54/20 26/150 36/82 24/44 56/62 80/38 26/32 64/110 32/90 36/64 38/180. 86/120 36/54 50/130 50/76 36/36 20/18 20/120 42/96 20/60 22/96 40/64 34/110 30/68 56/86 84/82 68/100 10/100 30/42 32/110 24/96 34/62 120/100 20/140 14/110 24/56 28/70 56/82 38/48 130/38 -14/64 32/96 26/58 46/96 22/82 110/64 32/58 22/72 26/110 18/72 58/70 18/60 22/64 210/82 20/54 18/98 28/54 26/54 130/46 \Diamond ¹22/66 176/50 20/130 44/80 20/64 24/78 L.C.P. GOLDFINGER MN 3 22/100 +28/84 26/150 48/72 42/62 114/88 28/130 50/110 136/76 1_{18/160} 16/110 1_{52/110}

C L.C.P. MN 2

LEGEND

Threshold 170 - 200 ppm · · · · · · · · · · · · $(_)$

Very Anomalous > 240 ppm

35600 N	
35500 N	
35400 N	
35300 N	
35200 N	
35100 N	
BASELINE 35000 N	
34900 N	GEOLOGICAL BRANCH ASSESSMENT REPORT
34800 N	14,410
	ADAMS PLATEAU - FAR GRID
m	CONTOURED SOIL GEOCHEMISTRY Zn (ppm)

Anomalous 200–240 ppm

- 26/130 Geochem. Values Cu, Zn in ppm

H-T-8.

DWG. NO.

PROJ. NO. 850410

6

DRAWN BY: _ EDP / VAN

SURVEY BY: G.S.

DATE: JAN. 14, 1986 SCALE: 1:5000

NORANDA EXPLORATION OFFICE VANCOUVER

Ш

9400

Ш

9200

12/0.2/10 12/0.2/60 8/0.2/10

10/0.2/10

14/0.2/10

16/0.2/10

14/0.2/10

10/0.2/10

22/0.2/10

16/0.2/10

14/0.2/10

18/0.2/10

12/0.2/10

8/0.6/10

16/0.6/10

8/0.2/10

8/0.2/10

8/0.2/10

8/0.2/10

6/0.2/10

2/0.4/10

6/0.2/10

6/0.2/10

6/0.2/10

4/0.2/10

2/0.2/10

8/0.2/10

8/0.2/10

110/0.2/10

16/0.2/10₇ 8/0.2/10 10/0.2/10 12/0.2/10 72/0.2/10 76/0.2/10 8/0.2/10 10/0.2/10_T 24/0.2/10 10/0.2/10 12/0.2/10 20/0.2/10 10/0.2/10 14/0.2/10 12/0.2/10 2/0.2/10 6/0.2/10 14/0.2/10 10/0.2/10 🖌 8/0.2/10 8/0.2/10 8/0.4/10 8/0.2/10 6/0.2/10 12/0.2/10 8/0.2/10 8/0.2/10 6/0.2/10 4/0.2/10 8/0.2/10 8/0.2/10 4/0.2/10 -12/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 4/0.2/10 18/0.2/10 8/0.2/10 4/0.2/10 6/0.2/10 4/0.2/10 8/0.2/10 6/0.2/10 8/0.2/10 8/0.2/10 10/0.2/10 10/0.4/10 10/0.2/10 18/0.2/10 16/0.2/10 12/0.2/10 64/0.2/10 16/0.2/10 16/0.2/10 12/0.2/10 10/0.4/10 12/0.4/10 6/0.2/10 12/0.4/10 6/0.4/10 10/0.4/10 12/0.4/10 10/0.2/10 10/0-4/10 10/0.2/10 10/0.2/10 24/0.2/10 8/1.2/10 8/0.4/10 8/0.2/10 30/0.8/10 8/0.4/10 10/0.2/10 10/0.2/10 16/0.4/10 6/0.4/10 12/0.4/10 12/0-2/10 12/0.2/10 6/0.2/10 14/0.2/10 16/0.2/10 12/0.2/10 1/0.2/10 8/0.2/10 18/0-2/10 12/0.4/10 6/0.2/10 10/0.2/10 12/0.4/10 8/0.2/10

6/0.2/10

8/0.2/10

18/0.4/10

10/0.2/10

,

6/0.4/10

Ш

9600

Ш

9800

-12/0.4/10

16/0.4/10

-12/0-4/10

-18/0.2/10

122/0.2/10

Ш

0000

•----

10/0.4/10

Ш

0200

·---'

12/0.2/10 76/0. 10/0.2/10 6/0. 4/0.2/10 6/0. 6/0.2/10 8/0. 8/0.2/10 -8/0. 8/0.2/10 8/0 8/0.2/10 6/0 10/0-4/10 10/0 18/0 8/0.2/10 8/0.2/10 12/0 14/0.2/10 10/0 22/0.4/10 8/0. 2/0.2/10 16/0 14/0-4/10 6/0. 6/0.4/10 114/0 12/0.2/10 22/1 26/0.6/10 +14/0 14/0-4/10 12/0 14/0.2/10 14/0 10/0.2/10 12/0 20/0.2/10 +12/0 30/0.2/10 18/0 30/0.2/10 28/0 12/0.4/10 18/0 10/0.4/10 16/0 8/0.4/10 12/0 8/0.4/10 +14/0

ш

10400

S L.C.P. MN 2

4/0.2/10

6/0.6/10

10/0.4/10

6/0.2/10

6/0-2/10

LEGEND

6/0.2/10

1_{8/0.2/10}

Threshold 17 - 20 Anomalous 20-2 Very Anomalous

- 8/0.2/10 Geochem. Values F

	10400		
0	6/0.2/10 6/0.4/10 6/0.2/10 8/0.2/10	35600 N	
)	-8/0.4/10 -8/0.2/10 -6/0.2/10 -10/0.4/10	35500 N	
)	18/0.4/10 12/0.4/10 10/0.2/10	35400 N	
	8/0.2/10 -16/0.2/10 -6/0.2/10 -14/0.2/10 -22/0.2/10	35300 N	
)))	14/0.2/10 12/0.2/10 14/0.4/10 12/0.2/10	35200 N	
	12/0.2/10 18/0.2/10 28/0.2/10	35100 N	
)	18/0.4/10 16/0.4/10 12/0.2/10 14/0.2/10 14/0.2/10	BASELINE 35000 N	GEOLOGICAL BRANCH ASSESSMENT REPORT
L.C.P. GOLDFIN	1 _{10/0.2/10}	34900 N	
MN 3		34800 N	14,410

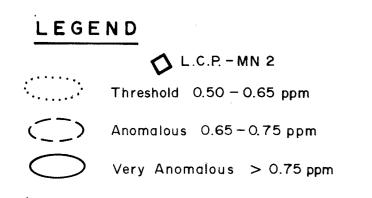
		ADAMS PLATEAU - FAR GRID
20 ppb	Jang.	CONTOURED SOIL GEOCHEMISTRY Au (ppb)
25 ppb	JB	•••
> 25 ppb	PROJ. NO. 850410	SURVEY BY & GASA
	N.T.8.	DRAWN BY: EDP./XAN
Pb, Ag in ppm; Au in ppb	dwg. nd. 9	NORANDA EXPLORATION
		OFFICE: VANCOUVER

Ш Ш Ш ш Ш Ш Ш 10200 0000 10400 9200 9600 9400 9800 ----12/0.2/10 T16/0.2/10 T6/0.2/10 8/0.2/10 10/0.2/10 6/0.4/10 10/0.2/10 4/0.2/10 6/0.2/10 12/0.2/10 6/0.2/10 8/0.2/10 T16/0.2/10 12/0.2/10 T6/0.2/10 10/0.2/10 8/0.2/10 8/0.2/10 8/0.4/10 12/0.2/60 24/0.2/10 10/0.2/10 12/0.2/10 20/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 10/0.2/10 12/0.2/10 14/0.2/10 2/0.2/10 8/0.2/10 6/0.2/10 10/0.2/10 6/0.2/10 14/0.2/10 10/0.2/10 8/0.2/10 10/0.4/10 10/0.4/10 14/0.2/10 8/0.2/10 8/0.4/10 8/0.2/10 8/0.2/10 6/0.2/10 18/0.4/10 16/0.2/10 12/0.2/10 8/0.2/10 8/0.2/10 6/0.2/10 8/0.2/10 12/0.4/10 14/0.2/10 4/0.2/10 8/0.2/10 8/0.2/10 14/0.2/10 10/0.2/10 10/0.2/10 4/0.2/10 12/0.2/10 8/0.2/10 22/0.4/10 8/0.2/10 22/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 2/0.2/10 16/0.2/10 16/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 8/0.2/10 14/0.4/10 6/0.2/10 14/0.2/10 4/0.2/10 18/0.2/10 8/0.2/10 4/0.2/10 6/0.4/10 14/0.2/10 18/0.2/10 6/0.2/10 4/0.2/10 8/0.2/10 6/0.2/10 12/0.2/10 22/0.2/10 12/0.2/10 8/0.2/10 8/0.2/10 10/0.4/10 10/0.2/10 . 26/0.6/10 14/0.2/10 8/0.6/10 10/0.2/10 16/0.2/10 12/0.2/10 18/0.2/10 14/0.4/10 12/0.2/10 16/0.6/10. 64/0.2/10 16/0.2/10 12/0.2/10 16/0.2/10 14/0.2/10 14/0.4/10 8/0.2/10 10/0.4/10 12/0.4/10 6/0.2/10 12/0.4/10 10/0.2/10 12/0.2/10 8/0.2/10 6/0.4/10 10/0.4/10 12/0.4/10 10/0.2/10 20/0.2/10 12/0.2/10 Ś. 10/0.4/10 24/0.2/10····. 30/0.8/10 16/0.4/10 8/0.2/10 100 10/172/10 10/0.4/10 10/0.2/10 10/0.2/10 30/0.2/10 18/0.2/10 8/0.2/10 8/0.4/10 8/0.2/10 30/0.2/10 28/0.2/10 6/0.2/10 10/0.2/10 10/0.2/10 12/0.4/10 18/0.4/10 2/0.4/10 6/0.4/10 12/0.4/10 2/0.2/10 12/0.2/10 10/0.4/10 16/0.4/10 6/0.2/10 6/0.2/10 12/0.2/10 16/0.2/10 14/0.2/10 8/0.4/10 12/0.2/10 1/0.2/10 6/0.2/10 8/0.2/10 18/0.2/10 12/0.4/10 8/0.4/10 14/0.2/10 6/0.2/10 6/0.2/10 10/0.2/10 12/0.4/10 8/0.2/10 6/0.2/10 14/0.2/10 1_{8/0-2/10} 4/0.2/10 4/0.2/10 6/0.2/10 12/0.4/10 10/0.4/10 110/0.2/10

8/0.2/10

18/0.4/10

10/0.2/10


16/0.4/10

16/0.4/10

12/0.4/10

18/0.2/10

122/0.2/10

6/0.6/10

10/0 4/10

6/0.2/10

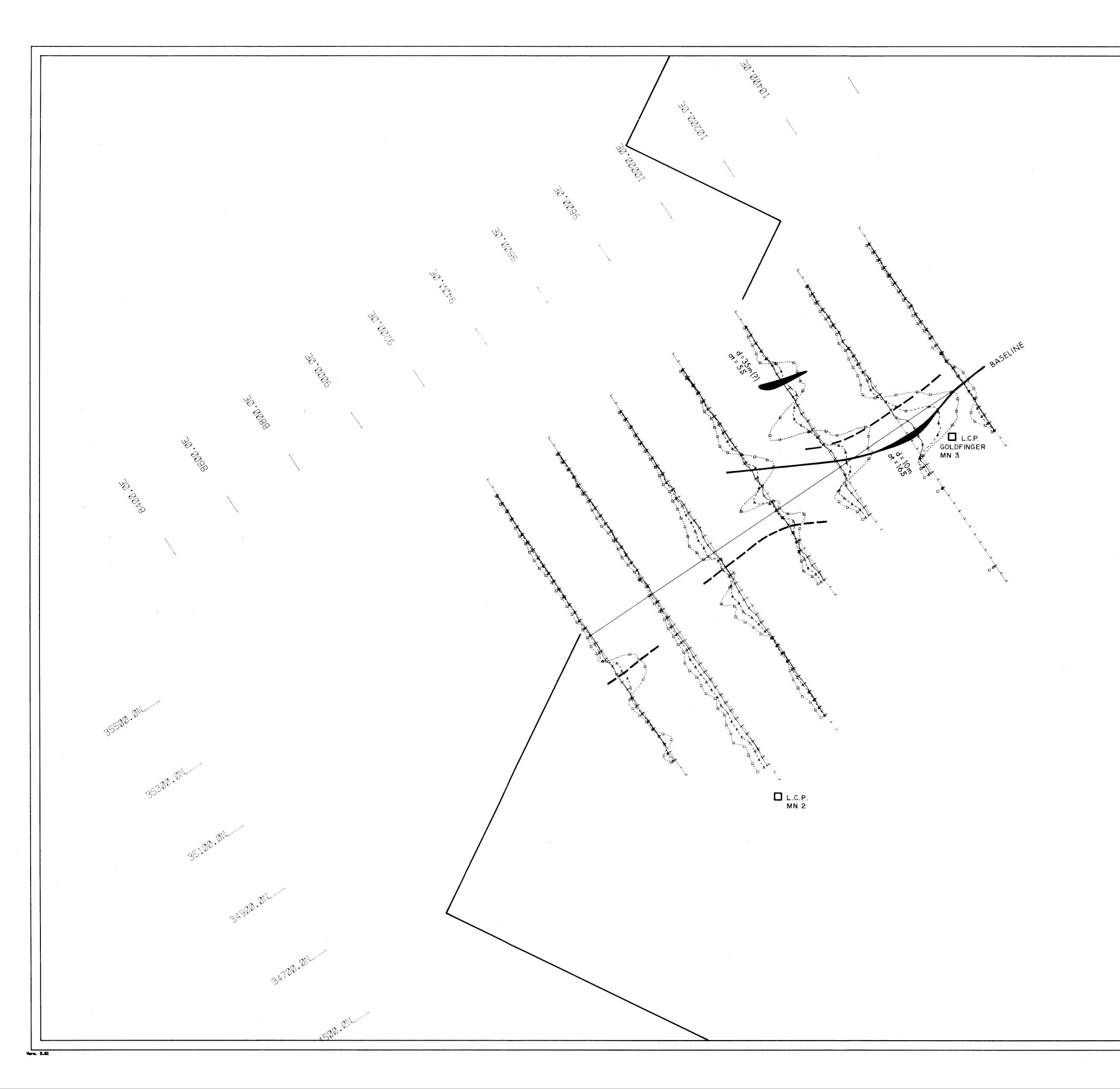
L_{6/0.2/10}

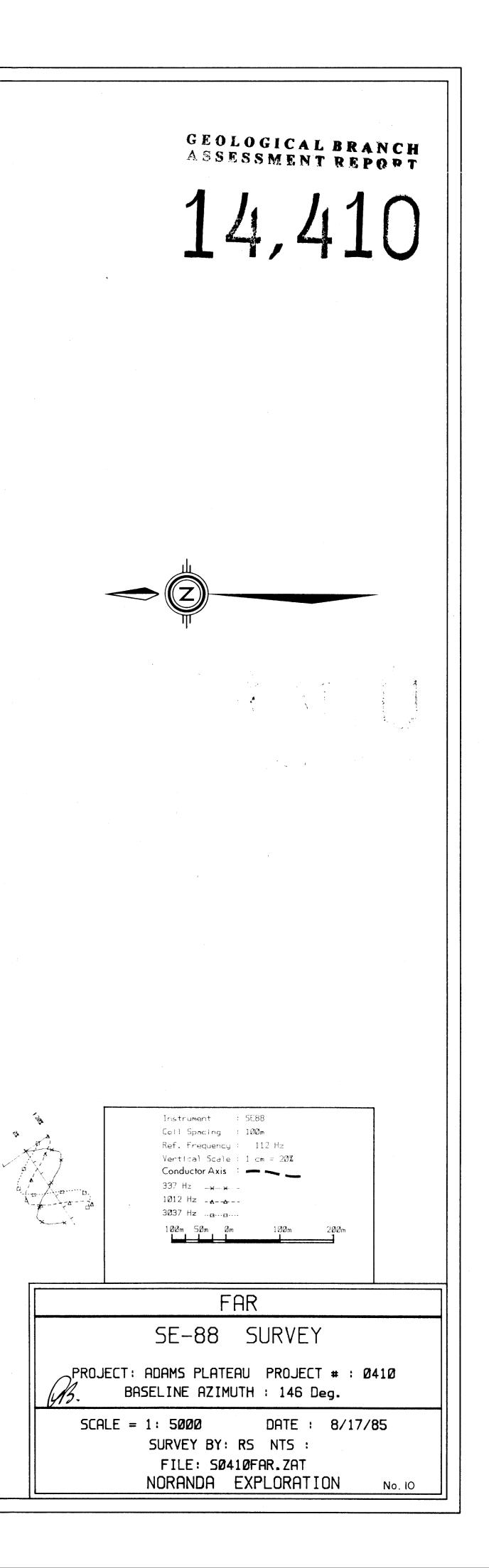
2/0.2/10

8/0.2/10

8/0.2/10

110/0.2/10


4/0.2/10 Geochem.Values Pb, Ag in ppm; Au in ppb


35600 N 35500 N 35400 N 35300 N 35200 N 35100 N BASELINE 35000 N 34900 N

L.C.P. GOLDFINGER MN 3

GEOLOGICAL BRANCH ASSESSMENT REPORT 14,410

	ADAMS PLATEAU - FAR GRID
A.	CONTOURED SOIL GEOCHEMISTRY Ag (ppm)
PROJ. NO. 850410	SURVEY BY: QASA DATE:JANA.1.4.1.985.
DWG. NO. 8	DRAWN BY: EDP/YAN

CEOLOGICAL BRANCH ASSESSMENT REPART 14,410
Instrument : UNIMAG
Datum : 57000.0 nT Contour Interval : 100 Conductor Axis : 100m 50m 0m 100m 200m FAR
MAGNETOMETER SURVEY PROJECT: ADAMS PLATEAU PROJECT # : Ø41Ø BASELINE AZIMUTH : 146 Deg. SCALE = 1: 5000 DATE : 8/23/85 SURVEY BY: RS NTS : FILE: MØ41ØFAR.ZAT NORANDA EXPLORATION No.11

Ш	Ш	Ш	LLJ	ЦĴ	ЦЦ		
6200	6400	6600	6800	2000	7200		
T ^{24/2/50}	T54/6/130	U		T ^{54/4/64}	T ^{42/1/42}	21400 N	L.C.P.
12/2/42 110/1/72 130/8/56 32/4/72 18/4/48 24/8/58	+20/1/60 +16/1/46 +14/1/52 +24/1/70 +42/1/76 +14/1/38			-58/4/58 -16/2/42 -16/4/42 -16/1/58 -16/1/58 -70/4/66	42/1/60 -24/2/44 -22/4/38 -36/6/58 -42/12/66 -70/6/94	21300 N	LODE
42/6/74 120/6/68 -22/4/58 -22/4/64	-44/1/84 -10/1/38 -10/1/40 -44/1/76	160/8/200	-20/2/76 -28/1/130	-22/4/68 -16/2/52 -30/2/56 -42/4/190	36/4/70 	21200 N	
20/4/50 56/10/100 22/120/170 36/42/200	14/1/42 18/2/100 -24/8/130 -14/12/76	-50/2/48 -24/2/80 -18/2/54 -24/1/64	-16/1/70 -20/2/76 -18/4/60 -16/2/68	-32/1/74 -22/1/54 -44/4/64 -38/1/62	26/32/230 22/22/160 22/36/250 18/6/76	21100 N	
-54/10/98 26/18/110 -28/14/110 -54/24/230	14/6/78 16/12/68 28/6/150 14/20/60	-22/1/68 18/2/62 -32/4/82 -26/6/66 -32/4/96	-22/6/76 	26/6/70 20/2/64 -26/10/74 -16/4/60 -28/8/64	-22/14/160 	BASELINE 21000 N	
18/18/76 16/16/74 18/12/62 -24/8/80	14/2/56 26/30/140 12/10/62 18/8/98	-18/28/94 -42/10/130 -90/14/140	-22/16/76 -38/60/250 -28/32/260	-34/8/66 -20/18/70 -28/6/70	-22/14/54 -24/2/54 -22/2/58	20900 N	
52/12/84 -20/8/68 -30/16/84 	14/4/70 	24/12/100 32/12/210 	48/38/180 -18/26/80 -24/12/90 -16/4/54	-22/20/70 -22/18/70 -22/20/72 24/20/140	-22/4/50 -12/4/38 -16/2/30 -12/2/32 -20/6/46	20800 N	
24/74/680	52/22/80 54/10/70 44/26/130 38/20/100	-114/20/140. -26/16/130 -16/8/66 -26/12/100	18/8/82 		20/6/46 -14/4/32 -18/2/54 -44/2/56	20700 N	
	32/22/94 -54/20/100	20/14/130 14/12/66	20/24/96 	-24/26/80 -14/34/54 -14/36/50 -16/24/60	20/4/40 44/2/130 22/2/56 16/6/48	20600 N	
				16/26/64 18/24/86 18/12/68 24/12/78	-16/2/44 -16/4/54 -14/4/38 -14/4/38	20500 N	
				-22/12/76 -36/10/38	14/8/46 16/10/56	20400 N	

-16/4/56 -48/4/44 -30/14/44 -40/6/52		0300 N	GEOLOGICAL BRANCH ASSESSMENT REPORT
			14,410
LEGEND			ADAMS PLATEAU - PISIMA GRID
Threshold	25 – 50 ppm ; 50 – 100 ppm	STA	CONTOURED SOIL GEOCHEMISTRY Pb (ppm)
	malous >100 ppm	PROJ. NO. 850410	BURVEY BY: Q.S
- 22/4/68 Geochem.	Values Cu , Zn , Pb in ppm	DWG. NO. 13	NORANDA EXPLORATION

ப 6200 Ш

6400

Ш

6600

Ш

7000

Ш

7200

124/2/50	T ^{54/6/130}			754/4/64	142/1/42	21
12/2/42	20/1/60			58/4/58	42/1/60	
110/1/72	16/1/46			16/2/42	24/2/44	
130/8/56	14/1/52			16/4/42	22/4/38	
32/4/72	-24/1/70			16/1/56	36/6/58	21
18/4/48	42/1/76			16/1/58	42/12/66	
24/8/58	14/1/38			70/4/66	70/6/94	
42/6/74	44/1/84			-22/4/68	36/4/70	
120/6/68	10/1/38	T24/2/74		16/2/52	14/110/350	21
22/4/58	10/1/40	•	120/2/76	30/2/56	12/68/170	
22/4/64	44/1/76	160/8/200	28/1/130	42/4/190	14/30/200	
20/4/50	14/1/42	50/2/48	16/1/70	32/1/74	26/32/230	
56/10/100	18/2/100	24/2/80	20/2/76	22/1/54	22/22/160	21
22/120/170	24/8/130	18/2/54	18/4/60	44/4/64	22/36/250	
36/42/200	14/12/76	24/1/64	16/2/68	38/1/62	18/6/76	
54/10/98	14/6/78	22/1/68	22/6/76	26/6/70	22/14/160	
26/18/110	16/12/68	18/2/62	38/4/80	20/2/64	36/8/130	BA
28/14/110	28/6/150	32/4/82	28/4/70	26/10/74	22/4/70	21
54/24/230	14/20/60	26/6/66	42/20/170	16/4/60	36/4/56	
18/18/76	14/2/56	32/4/96	-32/14/76	28/8/64	28/4/170	
16/16/74	26/30/140	18/28/94	22/16/76	34/8/66	22/14/54	20
18/12/62	12/10/62	42/10/130		20/18/70	24/2/54	
24/8/80	18/8/98	90/14/140	28/32/260	28/6/70	22/2/58	
52/12/84	14/4/70	24/12/100	48/38/180	22/20/70	22/4/50	
20/8/68			18/26/80	22/18/70	12/4/38	20
30/16/84	42, 28, 280	40/16/130	24/12/90	22/20/72	16/2/30	
32/24/110.	22/20/160	22/32/170	16/4/54	24/20/140	12/2/32	
23/74/680.	52/22/80	14/20/1 40	18/8/82	32/120/130	20/6/46	
122/32/160	54/10/70	26/16/130	18/18/76	26/14/78	14/4/32	20
	44./26/130	16/8/66	28/70/180	24/28/62	18/2/54	
	38/20/100	26/12/100	14/14/62		44/2/56	
	32/22/94	20/14/130	20/24/96	24/26/80	20/4/40	
	154/20/100	14/12/66	22/32/140	14/34/54	44/2/130	20
	······································			14/36/50	22/2/56	
				16/24/60	16/6/48	
				16/26/64	16/2/44	
				18/24/86	16/4/54	20
				18/12/68	14/4/38	20
				-24/12/78	14/4/38	

Ш

6800

LEGEND

22/12/76

36/10/38

16/4/56

48/4/44

30/14/44

40/6/52

14/8/46

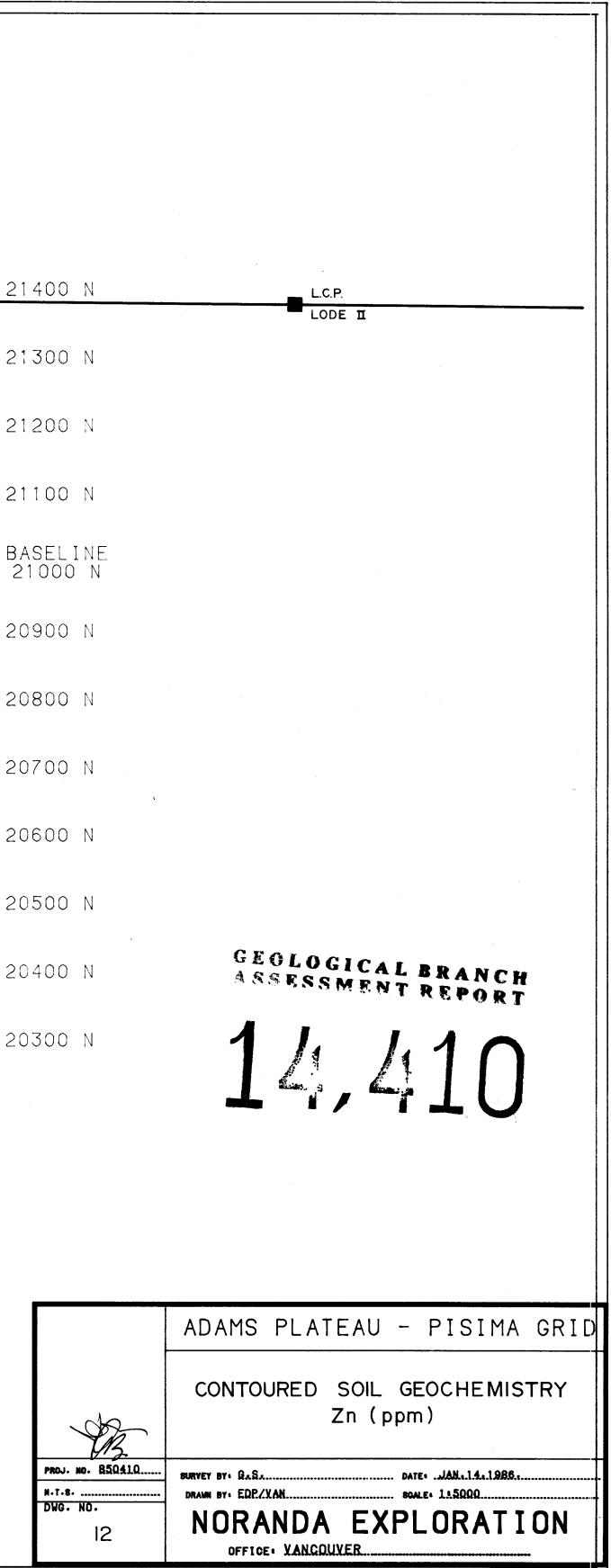
16/10/56

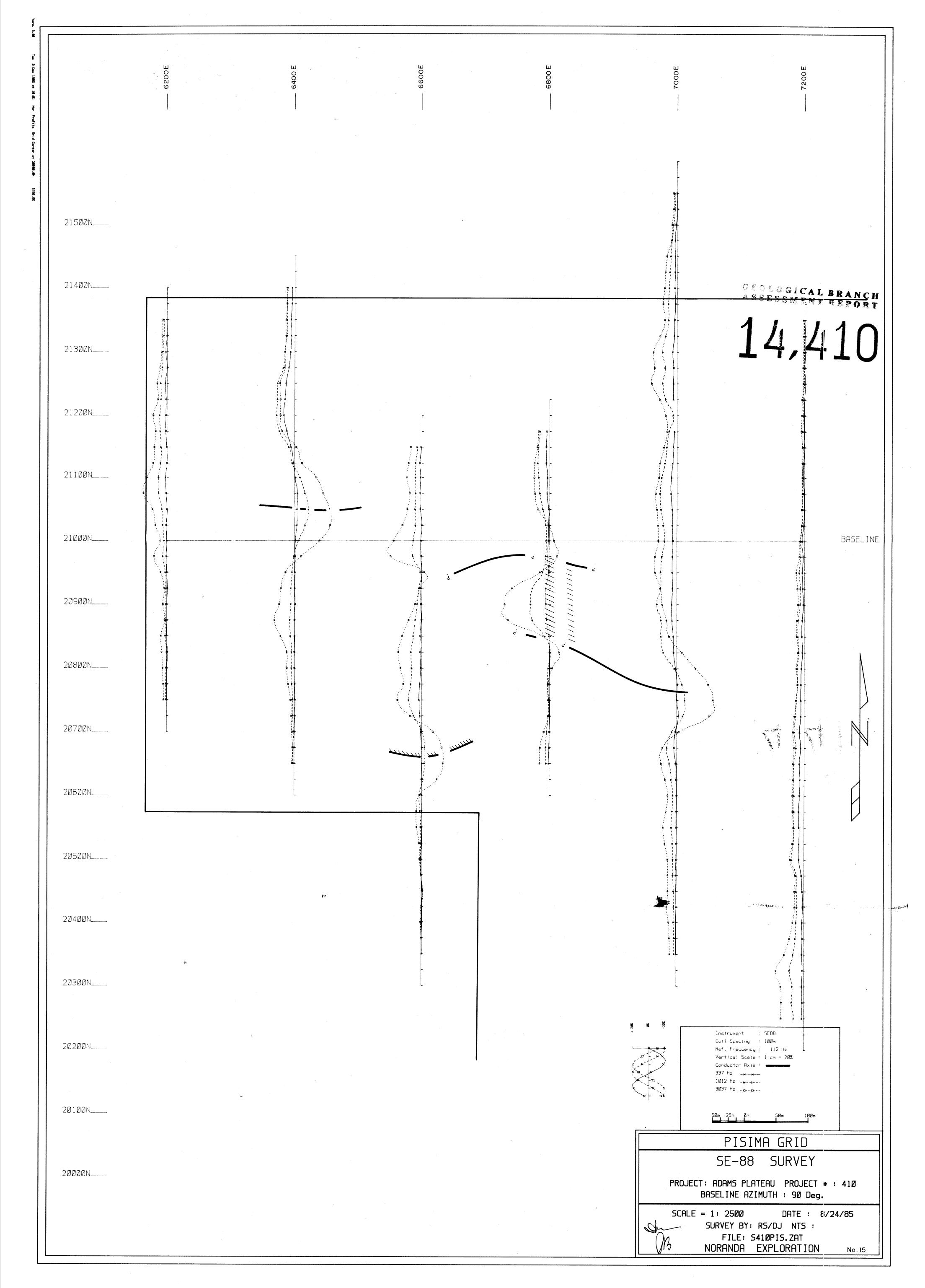
18/4/60

28/8/58

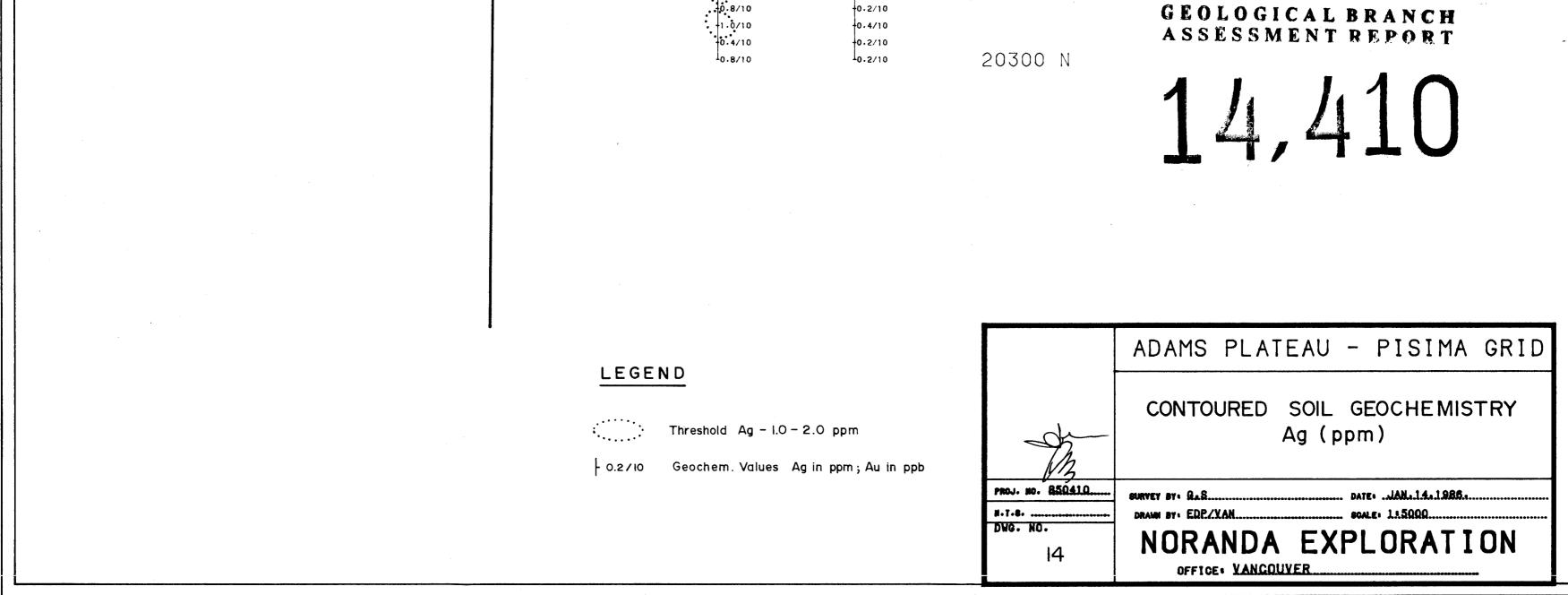
16/6/44

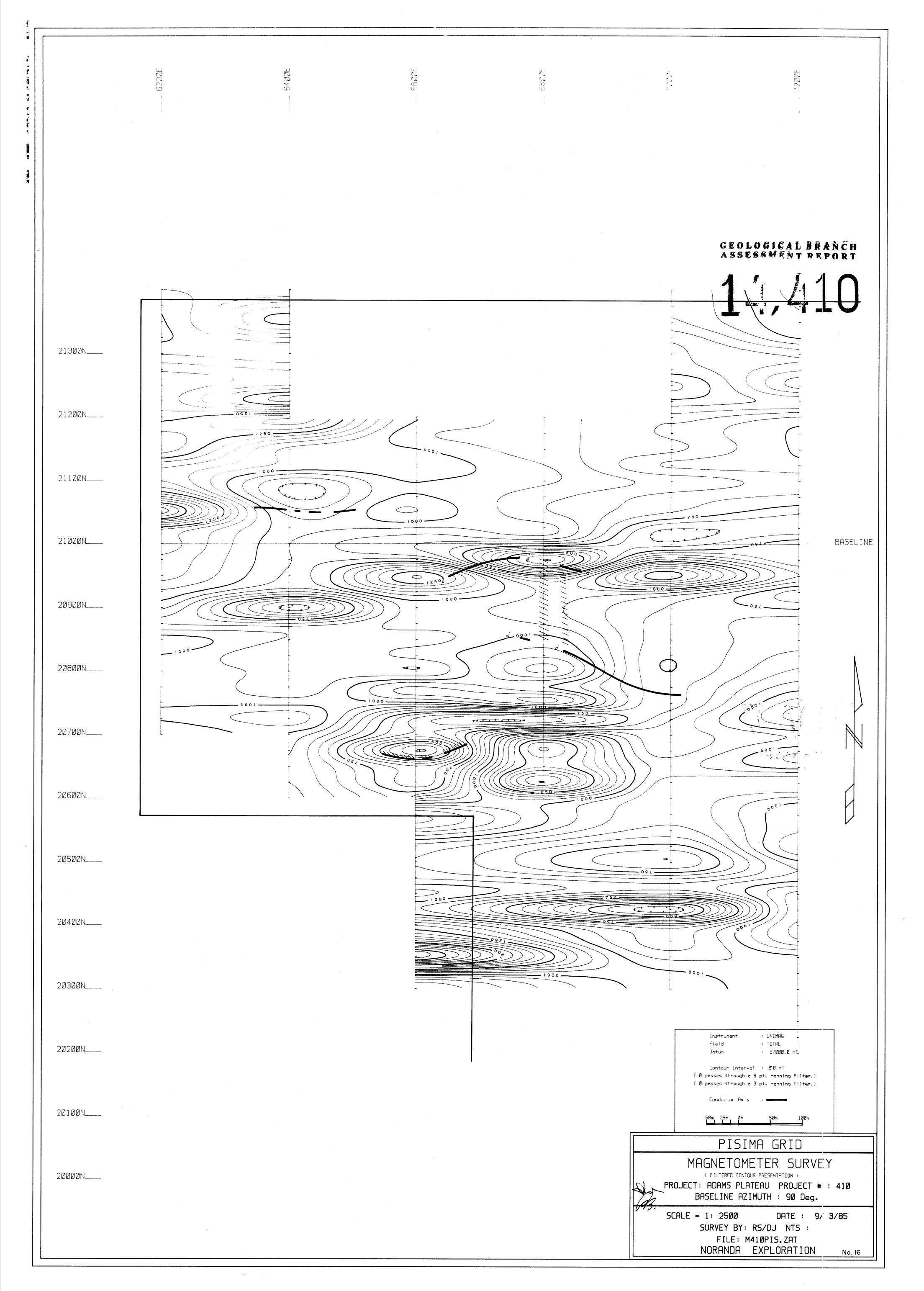
122/4/68

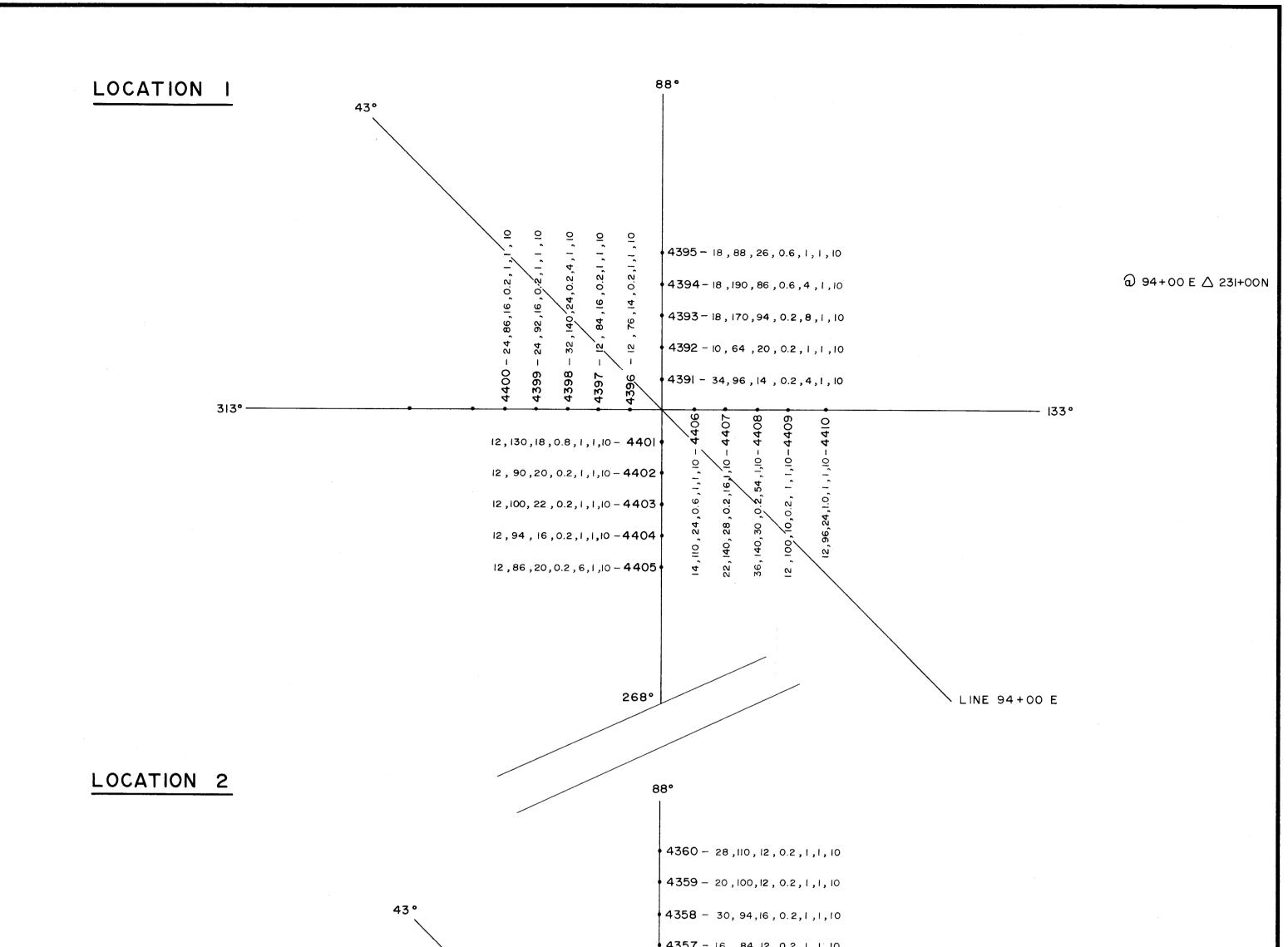

.....


Anomalous 401 - 600 ppm

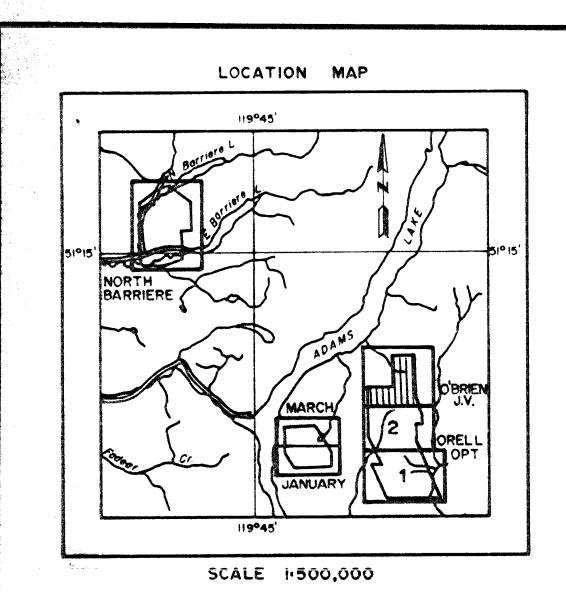
Threshold 200-400 ppm

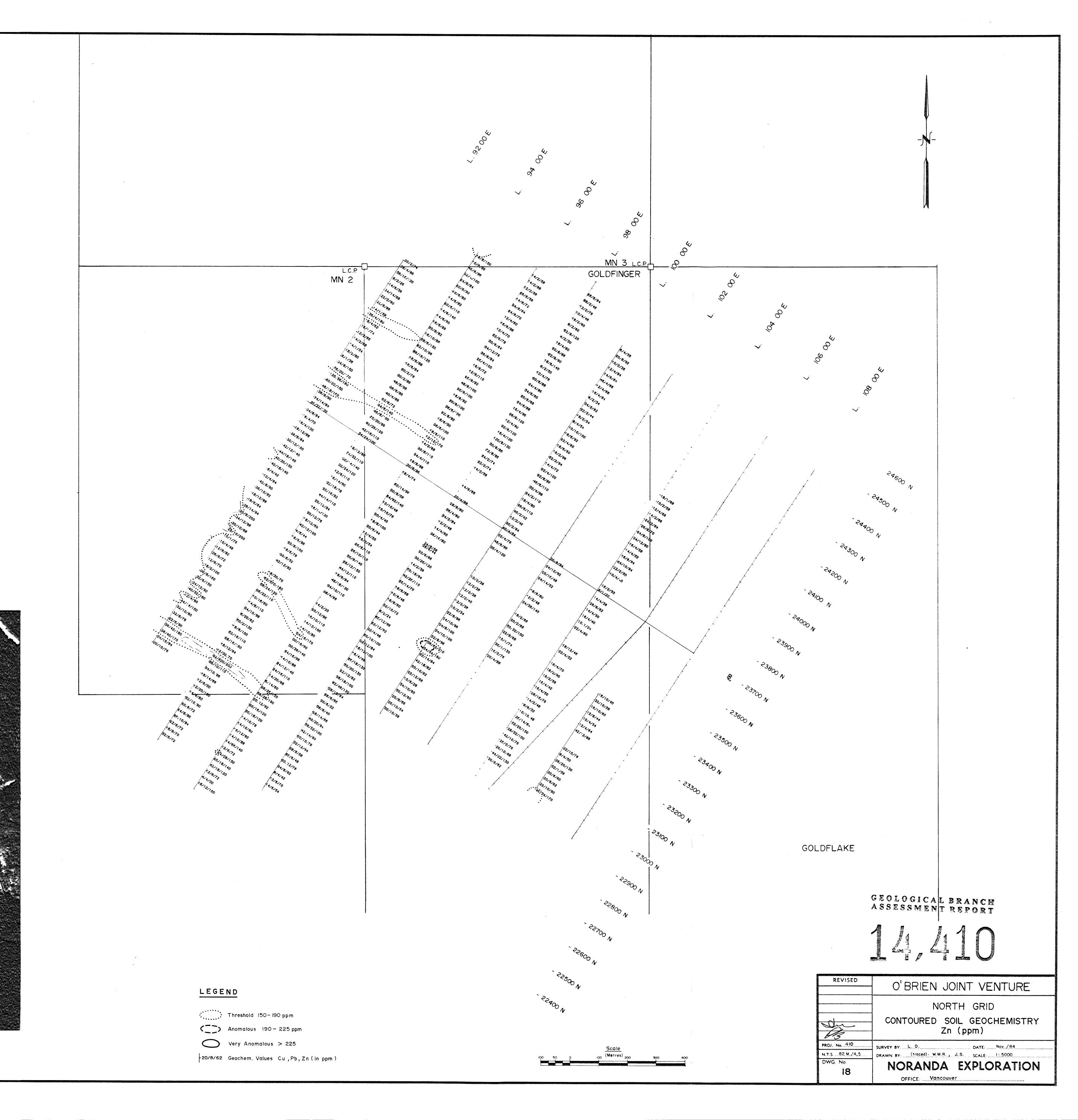

Very Anomalous >600 ppm

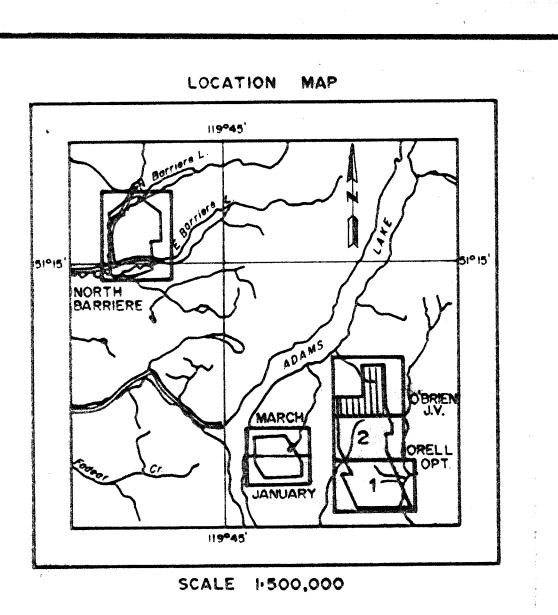

- 22/4/68 Geochem. Values Cu, Zn, Pb in ppm

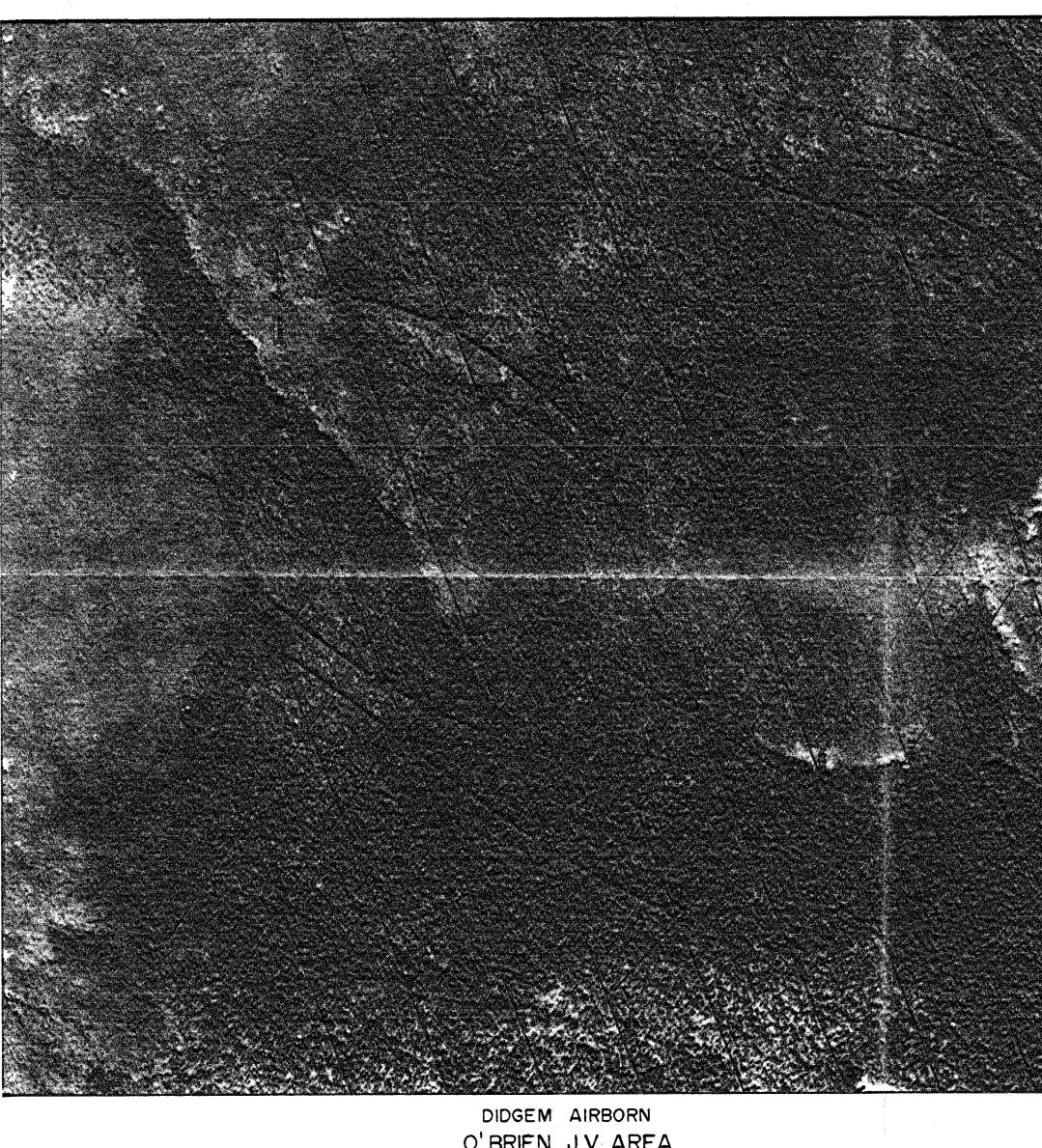


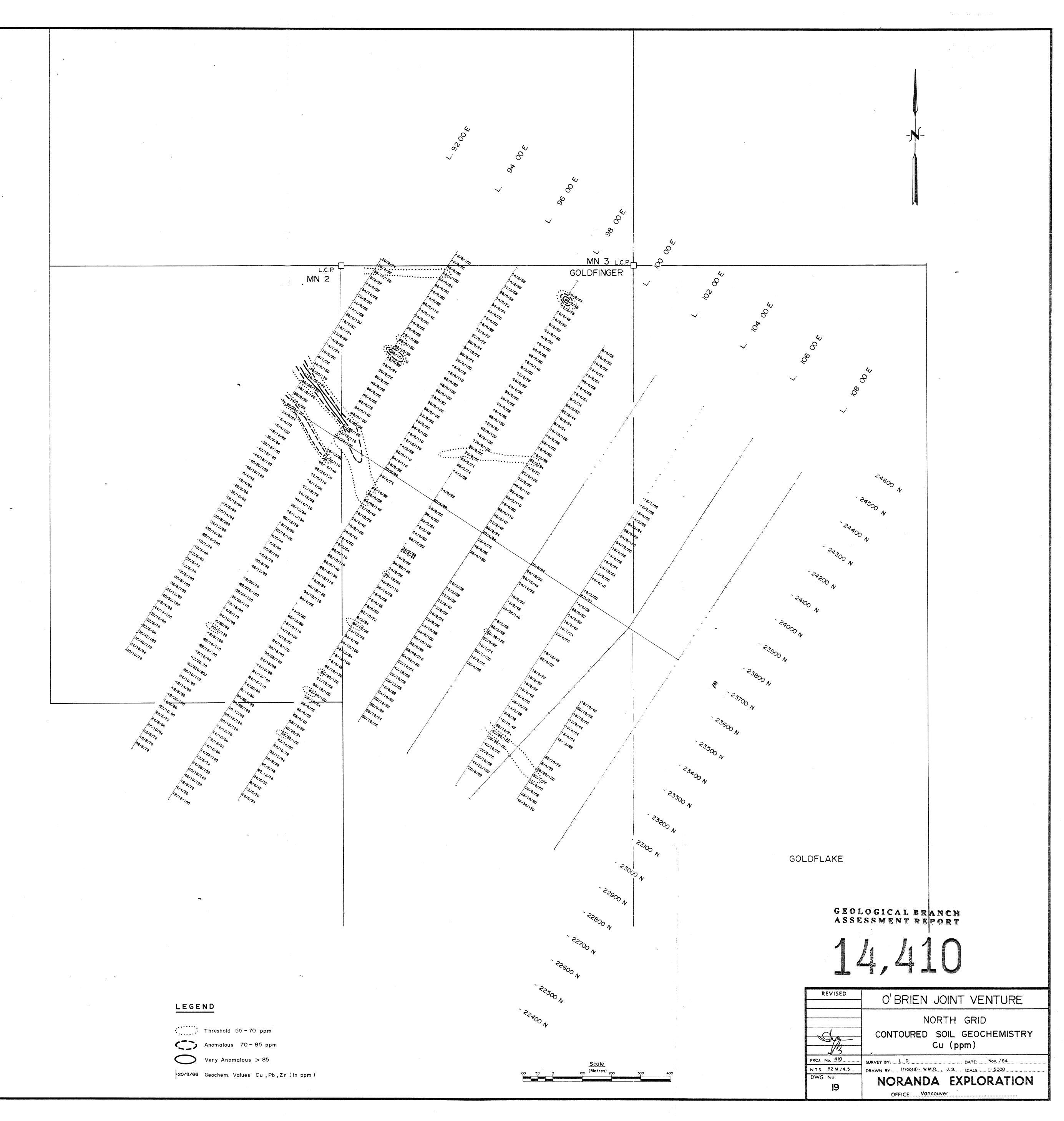
Ш Ш Ш Ш ш Ш 6200 6400 6600 6800 7000 7200 21400 N T0.2/10 0.2/10 01/8-0T T0.2/10 L.C.P. 0.2/10 0.2/10 0.4/10 0.2/10 LODE II 0.2/10 0.2/10 0.2/10 0.2/10 0.6/10 0.2/10 0.2/10 0.2/10 21300 N 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 21200 N 0.4/10 0.2/10 0.2/10 0.2/10 T0.2/10 0.2/60 0.2/10 10.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.8/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.4/10 21100 N 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.4/10 0.2/10 0.4/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.4/10 0.2/10 0.2/10 0.2/10 0.2/10 BASELINE 0.2/10 0.2/10 0.2/10 0.4/10 0.4/10 0.2/10 21000 N 0.4/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.8/10 0.2/10 0.2/10 0.4/10 0.2/10 0.2/10 0.4/10 0.4/10 0.4/10 0.4/10 0.2/10 0.2/10 0.4:10 20900 N 0.4/10 0.2/10 0.4/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 .6/10 0.4/10 0.2/10 0.2/10 0.2/10 .4/10 0-4/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 2.0/10 0.6/10 0.2/10 20800 N 0.2/10 0.2/10 0.4/10 0.6/10 0.2/10 0.2/10 0.2/10 0.6/10 0.6/10 0.8/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.4/10 0.2/10 0.2/10 0.4/10 0.2/10 0.2/10 0.2/10 0.2/10 20700 N 10.2/10 0.6/10 0.2/10 0.2/10 0.4/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.2/10 0.4/10 0.2/10 0.2/10 0.2/10 0.4/10 0.2/10 0.4/10 20600 N 10.2/10 10.2/10 10.2/10 0.6/10 0.2/10 0.8/10 0.2/10 0.4/10 0.4/10 0.4/10 0.2/10 20500 N 0.4/10 0.2/10 0.4/10 0.2/10 0.2/10 0.4/10 0.2/10 0.2/10 20400 N 0.2/10 0.2/10

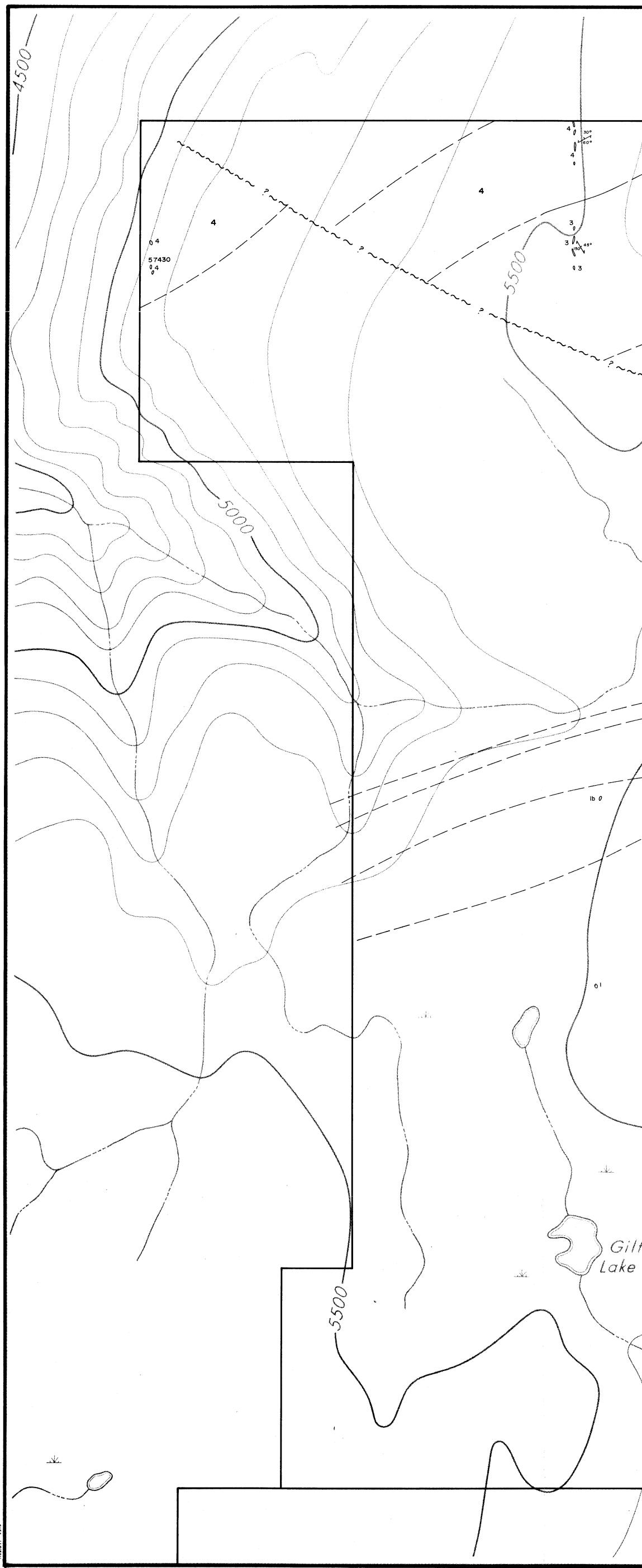


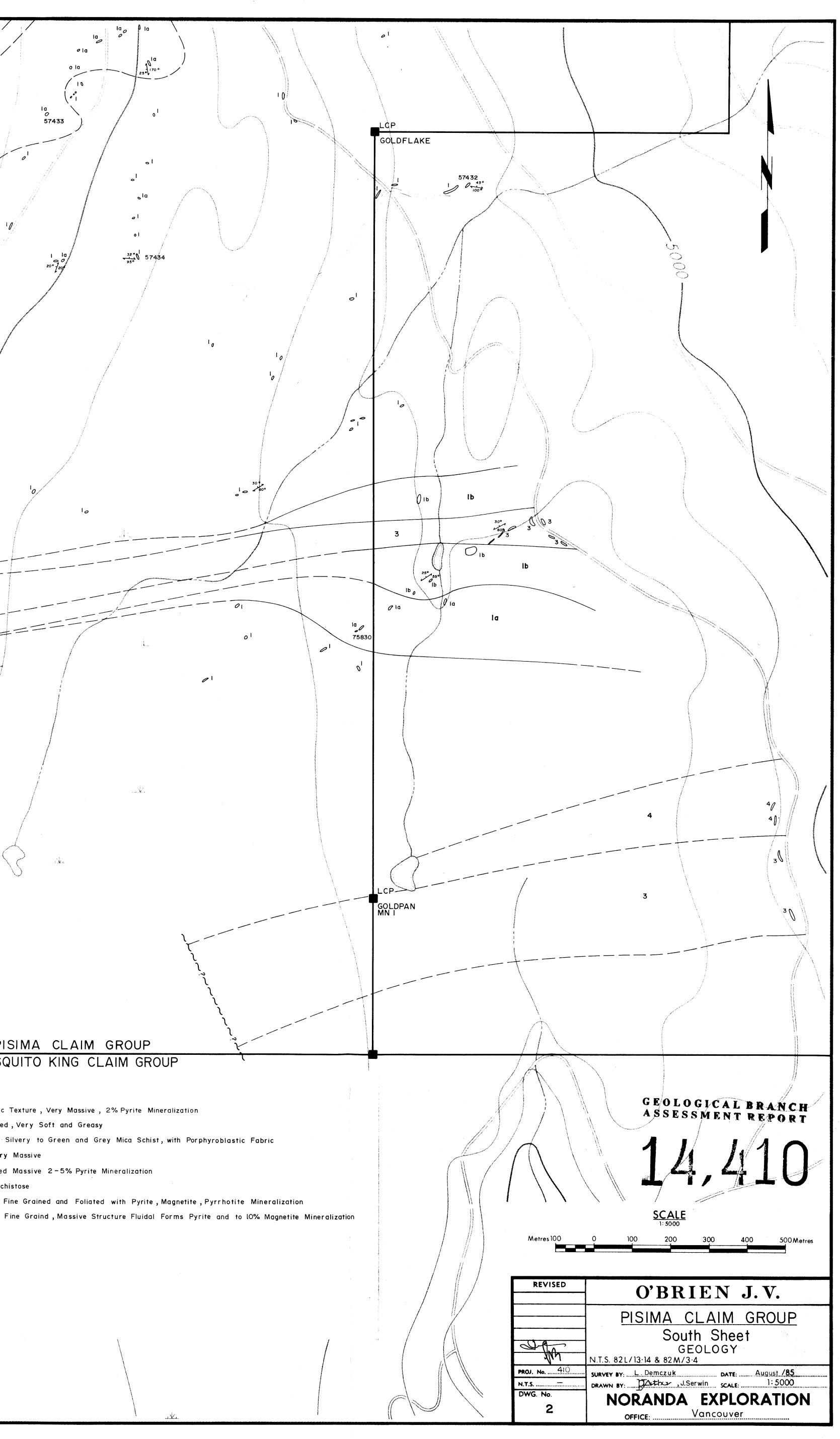


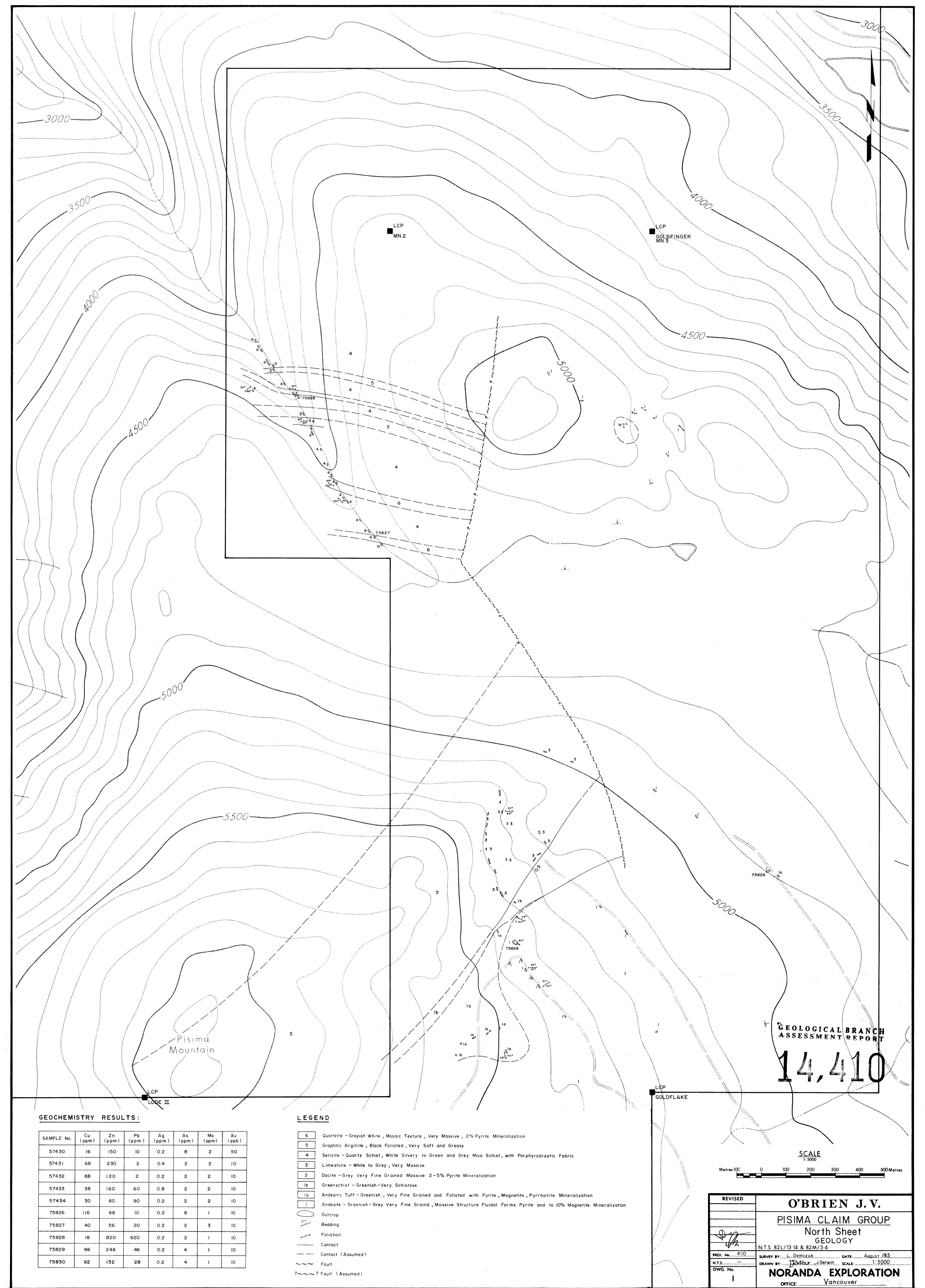

VANCAL 11918


		4357 - 16, 84,12,0.2,1,1,10	
	72, 14, 0.2, 1, 1 140, 28, 0.2, 1, 1 92, 16, 0.2, 1, 1 90, 34, 0.2, 1, 1 156, 36, 0.2, 1, 1 156, 36, 0.2, 1, 1 190, 100, 0.4, 1, 1 190, 100, 0.4, 1, 1	4354 - 16 , 18 , 16 ,0.2 ,1 ,1 ,10	
	, 72, 14, , 140, 28, , 92, 16, , 84, 20, , 81, 26, , 98, 64, , 140, 56	4353 - 16,90,28,0.2,1,1,10	
	4370 - 12, 4369 - 18, 4368 - 12, 4365 - 14, 4365 - 14, 4365 - 20, 4365 - 18, 4362 - 36,	4351 - 26,190,76,04,1,1,10	
3 3°	4 4 4 4 4 4 4 4 18,140,86,0.2,1,1,10 - 4	382 + 1381 + 1381 + 1381 + 1381 + 1381 + 1381 + 1382 + 1382 + 13855 + 1385 + 1385 + 1385 + 1385 + 1385 + 1385 + 1385 + 13	4 4 4 4
	10, 80,40,0.4,1,1,10-4		GEOLOGICAL BRAN GEOLOGICAL BRAN ASSESSMENT REPO
	24,160,100,0.2,1,1,10-43	0.23 , 1 , 0.2 ,	1.2, 2, 0.2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 5, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 2, 1, 5, 5, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	32,150,82,0.2,1,1,10-43 30,200,130,0.2,1,1,10-4	0, 52, 44, 4 2 , 100, 52, 44, 44, 44, 45, 44, 44, 44, 44, 44, 44	96, 130, 200, 230, 230, 190, 80, 190, 80, 1
	14,170,38,0.2,1,1,10-43		
	26,140,52,0.2,1,1,Ю- 4 3	77•	
	24, 110, 42, 0.2, 1, 1, 10 - 4		\ L 94 + 00 E
	14 , 80,22 ,0.2 ,2 ,1 ,10 - 4 3 30, 100, 24 ,0.2 ,2 ,1 ,10 - 4 3		
			ADAMS PLATEAU - NORTH GRID
			SOIL GEOCHEMISTRY
		268°	Cu,Zn,Pb,Ag,As,Mo - ppm,Au-ppb
			PROJ. No. 410 SURVEY BY: K.C. DATE: 28.07. 1985 N.T.S. DRAWN BY: J. Ser win SCALE: 1 : 500 DWG. No. NORANDA EXPLORATION

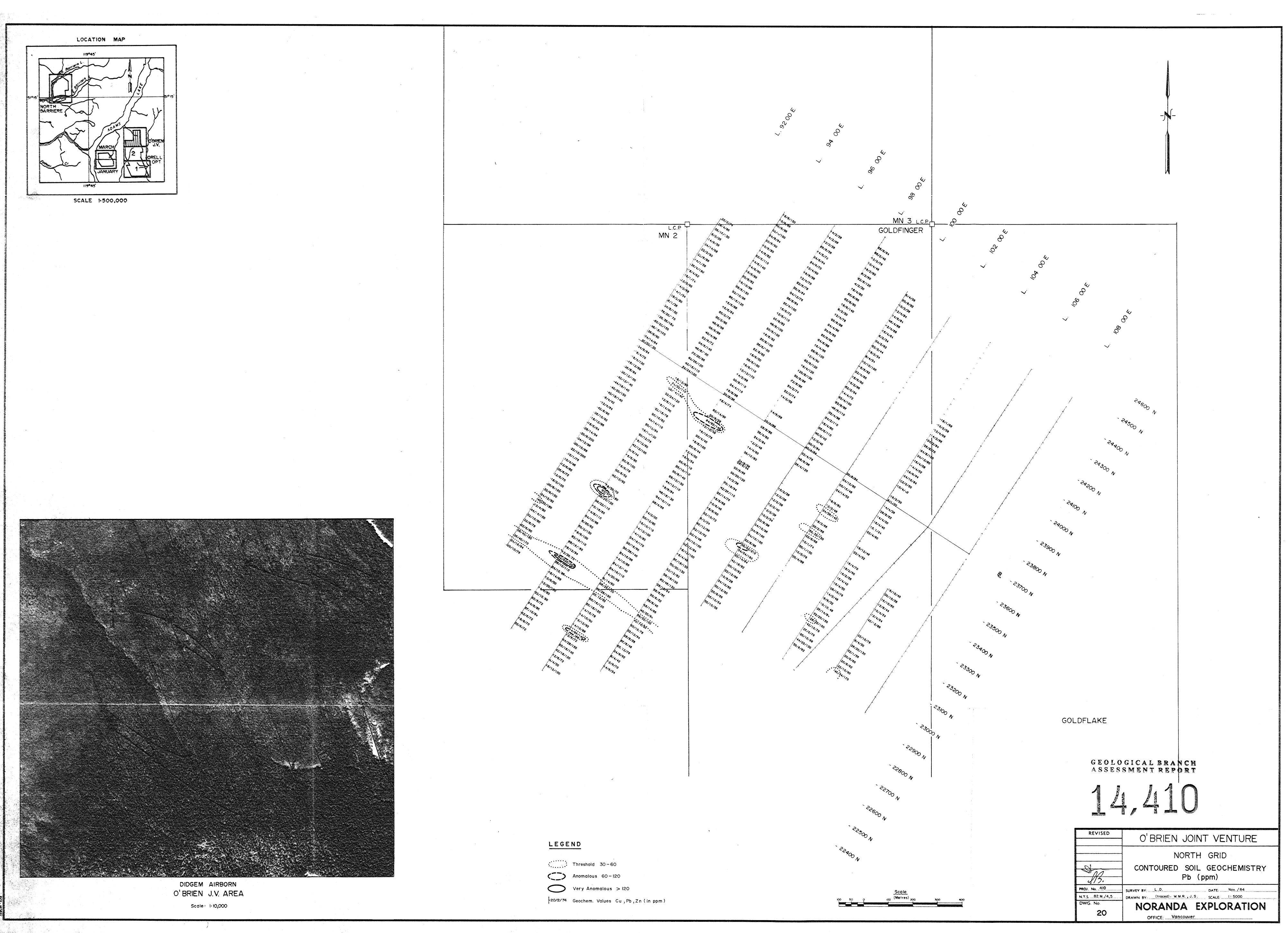

DIDGEM AIRBORN O'BRIEN J.V. AREA Scale: 1:10,000

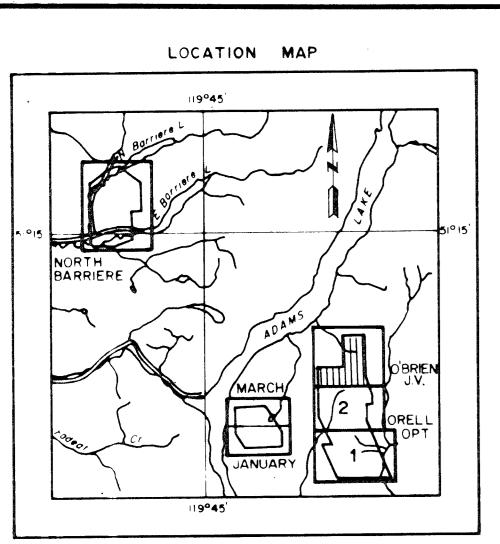



O'BRIEN J.V. AREA Scale: 1:10,000

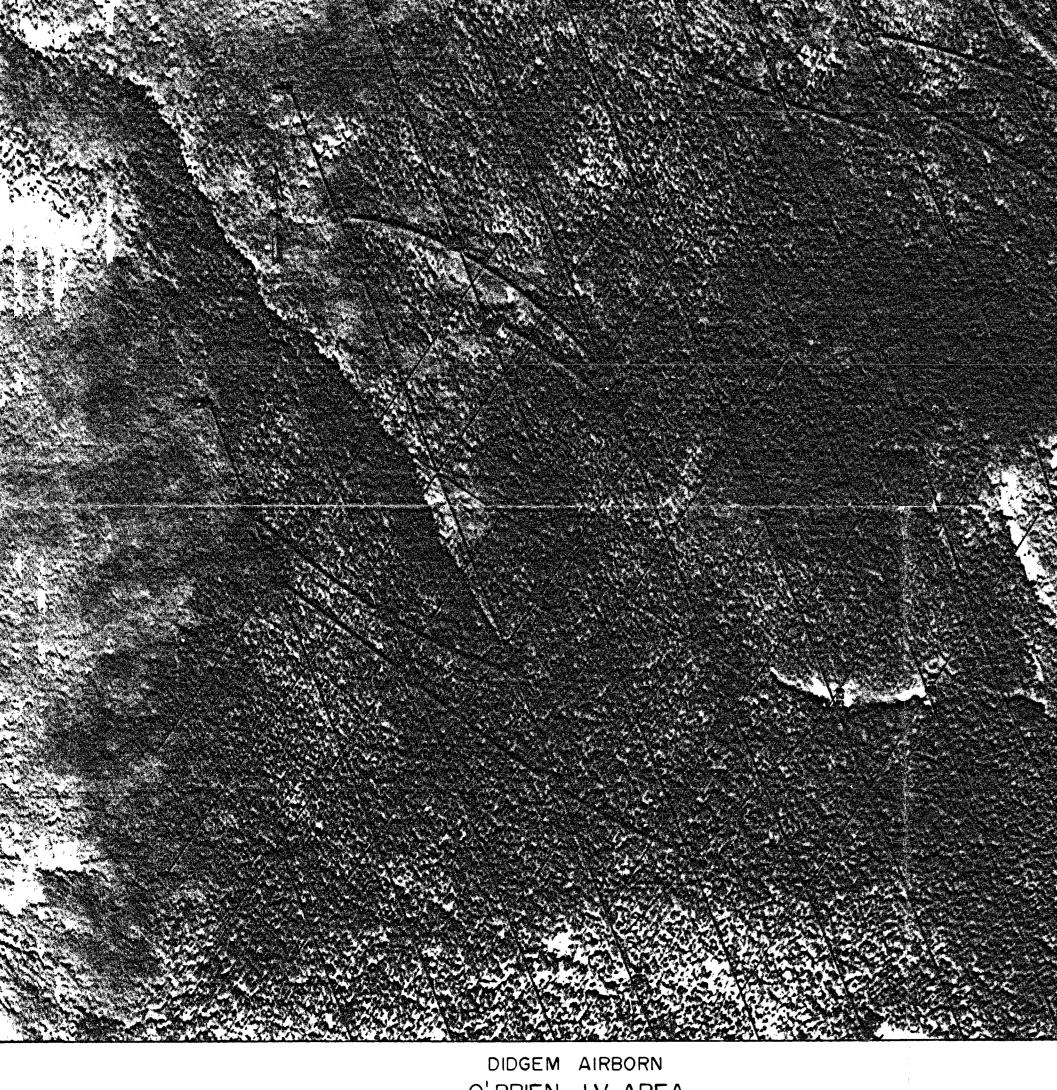


	•••
	>

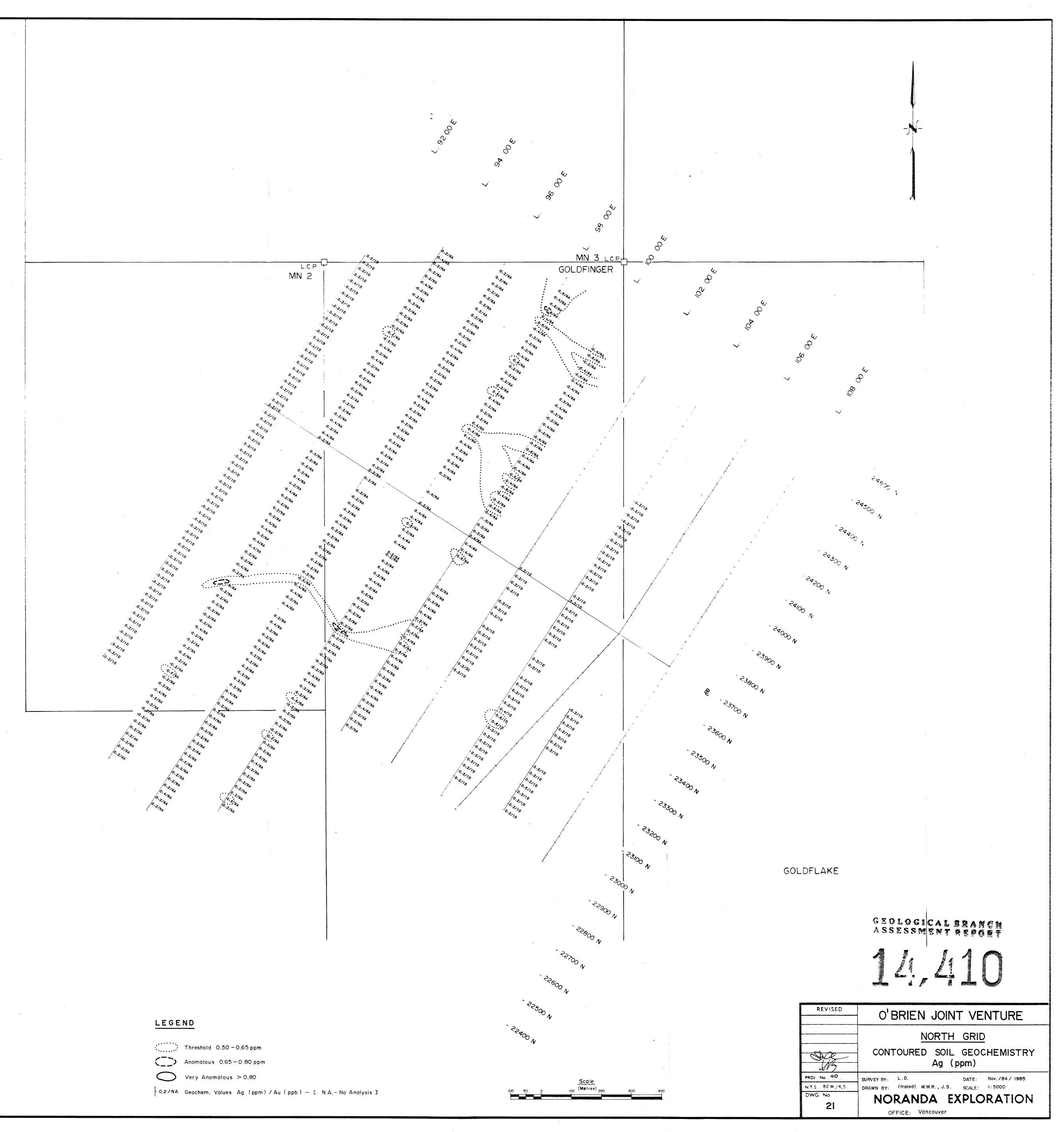



				sima intain				
			LCP LODE II	000			la	
	3 40° 3 50° 3 3		Ib 0 Ia 57431		- b			10
~~~~ /			200 4				6	
		1					o1	
						==+-	01 01 03	
		3			10		03	·
		01		0		ر ۱ ۱		
	01							
		a construction of the second sec	·					
	GEOCHEMISTR	Y RESULTS	<u>:</u>				GEND	PISI
Ifrid	SAMPLE         No.         Cu ( pp)           57430         16           57431         68           57432         88           57433         38           57434         30           75826         116	m) (ppm) (p 5 150 3 230 3 120 3 160 0 60	Pb     Ag       pm     (ppm)       IO     0.2       2     0.4       2     0.2       60     0.8       90     0.2       IO     0.2	As     Mo       (ppm)     (ppm)       8     2       2     2       2     2       2     2       2     2       2     2       2     2       2     2       2     2       2     2       2     2       2     2       2     2       6     1	Au (ppb) 50 10 10 10 10 10		] _	Black Foliated, V chist, White Silve o Grey, Very M Fine Grained M ish-Very Schiste enish, Very Fine
	75827 40 75828 18 75829 96 75830 62	56       8       820       6       246	10     0.2       20     0.2       20     0.2       46     0.2       28     0.2	0     1       2     3       2     1       4     1       4     1	10 10 10 10	?~~	5	
	5							






57430	16	150	ю	0.2	8	2	50
57431	68	230	2	0.4	2	2	10
57432	88	120	2	0.2	2	2	10
57433	38	160	60	0.8	2	2	10
57434	30	60	90	0.2	2	2	10
75826	116	66	10	0.2	6	l	10
75827	40	56	20	0.2	2	3	10
75828	18	820	620	0.2	2	1	10
75829	96	246	46	0.2	4	I	10
75830	62	132	28	0.2	4	I	10






SCALE 1-500,000



O'BRIEN J.V. AREA Scale: 1:10,000



