86-6-14417

SUB-RECORDER RECEIVED	
+EB 7 <mark>. 1985</mark>	
M.R. #	
VANUUUVER, D.U.	

FILMED

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

ON THE

MAY AND JENNIE PROPERTY

Nelson Mining Division, British Columbia

Claims:

May and Jennie C.G. Lot 3943 PET-3 3649 (2) PET-4 Tip Top Fr. 568 (2) 3640 (2) Golden Giant 1420 (1) PET-5 3651 (2) Gold Bell 1421 (1) AGE Fr. 3653 (2) Gold Note 2682 (8) ALE Fr. 3654 (2) Red Top No. 1 852 (11) APE Fr. 3655 (2) / PET-1 3647 (2) NEL Fr. 3836 (8) PET-2 3648 (2)

Latitude: 49°26 JN. Longitude: 117°22.5'W. N.T.S. 82F/6W

PLAYER RESOURCES INC.

Owners: Europa Petroleum Ltd. Suite 508-630 4th Ave. S.W. Calgary, Alta. T2P OJ9 Mr. L. Leighton Box 594 Nelson, B.C. V1L 5P3

Player Resources Inc.MSuite 501-808 Nelson Street2Vancouver, B.C.V6Z 2H2R

Mr. P. Chung 2020 No. 4 Road Richmond, B.C.

Operator:

Consultant:

P.O. Box 12137 Nelson Square Suite 501-808 Nelson Street Vancouver, B.C. V6Z 2H2 (604) 684-75270 LOGICAL BRANCH MINOREX CONSULTING LID. 2391 Bossert Avenue Kamloops, B.C. V2B4V6 (604) 376-828

January 16, 1985

J.D. Blanchflower, F.G.A.C. Consulting Geologist

TABLE OF CONTENTS

Page No.

-

INTRODUCTION	1
SUMMARY	1
PROPERTY AND OWNERSHIP	6
LOCATION AND ACCESS	6
PHYSIOGRAPHY	9
HISTORY	9
REGIONAL GEOLOGY	0
1984 EXPLORATION PROGRAMME	2
Survey Control Grid	3
Geological Surveys	4
a) Surface Geological Survey 1	4
b) Underground Geological and Sampling Survey 1	4
Geochemical Surveys	5
a) Soil Geochemical Sampling 1	5
b) Rock Geochemical Sampling	6
c) Underground Chip Sampling	6
d) Check Analysis Programme 1	7
Geophysical Surveys	7
a) VLF (EM-16) Electromagnetic Survey 1	7
b) Magnetometer Survey	8
RESULTS OF THE 1984 EXPLORATION PROGRAMME	9
Geological Results	9
a) Lithology 19	9
b) Structure	0
c) Alteration	1
d) Mineralization	2

Geochem	nical R	esults	3	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	23
a)	Soil	Geocl	nemic	al	Sar	npli	ng	•	•	•	•	•	•	•	•	•	•	•	23
b)	Rock	Geocl	nemic	al	Sar	npli	ng	•	•	•	•	•	•	•	•	•	•	•	28
c)	Unde	rgrou	nd Ch	ip	Sar	npli	ng	•	•	•	•	•	•	•	•	•	•	•	28
d)	Chec	k Anal	lysis	Pr	ogi	amn	ıe.	•	•	•	•	•	•	•	•	•	•	•	31
Geophys	sical R	esults	5	•	•		• •	•	•	•	•	•	•	•	•	•	•	•	31
a)) VLF	(EM-1)	5) El	ect	ror	nagr	eti	LC	Sur	:ve	ey	•	•	•	•	•	•	•	31
b)) Magn	etome	ter S	urv	/ey	•	• •	•	•	•	•	•	•	•	•	•	•	•	33
CONCLUSIONS		•••	• •. •	•	•	••	•	• •	•	•	•	•	•	•	•	•	•	•	33
RECOMMENDATI	IONS .	••		•	•	••	• •	•	•	•	•	•	•	•	•	•	•	•	34
STATEMENT OF	COSTS	• •	•••	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	35
STATEMENT OF	F QUALI	FICAT	IONS	•	•	• •	•	••	•	٠	•	•	•		•	•	•	•	40
BIBLIOGRAPHY	ζ	• •			•	•••	•		•	•	•	•	•	•	•	•	•	•	43

TABLES

I.	Mineral Claim Data	7
II.	Comparison of Kamloops Research & Assay	
	Laboratory's versus General Testing Laboratories'	
	Geochemical Results	29

APPENDICES

APPENDIX	I.	Kamloops	Research	and	Assay	Laboratory	Ltd.
		Geod	chemical I	ab 1	Report	- Soils	

APPENDIX II. Kamloops Research and Assay Laboratory Ltd. Geochemical Lab Report - Rocks

- APPENDIX III. General Testing Laboratories Certificate of Assay
- APPENDIX IV. Analytical Procedures for Soil Geochemical Analyses
- APPENDIX V. Geostatistical Data for Soil Geochemical Results

APPENDIX VI.	Sample	Descriptions	and	Assay	Summaries

APPENDIX VII. Geophysical Instrument Specification

LIST OF ILLUSTRATIONS

Figure No.		Page No.
1	Location Map, $1" = 64$ miles	2
2	Claim Map, 1:50,000	5
3	Regional Geology Map, 1:50,000	11
4	Geological Survey, 1:2,000	In Pocket
5	Geology and Survey Plan of the May and Jennie No. 1 Adit, 1:100	27
6	Geology and Assay Plan of the May and Jennie No. 2 Adit, 1:250	In Pocket
7	Soil Geochemical Survey - Gold (p.p.b.), 1:2,000	In Pocket
8	Soil Geochemical Survey - Silver (p.p.m.), 1:2,000	In Pocket
9	Soil Geochemical Survey - Copper (p.p.m.), l:2,000	In Pocket
10	Soil Geochemical Survey - Lead (p.p.m.), 1:2,000	In Pocket
11	Soil Geochemical Survey - Zinc (p.p.m.), l:2,000	In Pocket
12	VLF-EM Survey - % Dip Angle, Annapolis, Maryland, 1:2,000	In Pocket
13	VLF-EM Survey - Fraser Plot, Annapolis, Maryland, 1:2,000	In Pocket
14	Proton Magnetometer Survey, 1:2,000	In Pocket
15	Compilation Plan, 1:2,000	In Pocket

INTRODUCTION

Player Resources Inc. of Suite 501 - 808 Nelson Street, Vancouver, B.C. operates fifteen contiguous mineral claims in the Nelson Mining Division, British Columbia. This report, prepared at the request of the directors of Player Resources Inc., describes the establishment of a control grid and the subsequent geological, geochemical and geophysical surveying of the May and Jennie property.

The purpose of the 1984 exploration programme was to conduct a preliminary evaluation of the property's economic potential, as recommended in the report by J.D. Blanchflower, F.G.A.C. (1983). This assessment work was undertaken between January 9th, 1984 and January 15th, 1985. The preparation of the report was carried out between January 2nd and 15th, 1985.

SUMMARY

The May and Jennie property is comprised of one Crown Grant, four Reverted Crown Grants and ten located claims situated in the Nelson Mining Division of southeastern British Columbia. The claims are located on the steep southwesterly slopes of the Fortynine Creek valley, approximately 8.5 kilometres southwest of the city of Nelson. Their geographic coordinates are 49°26.5'N. latitude by 117°22.5'W. longitude (N.T.S. 82F/6W).

Seasonal vehicular access is possible via an all-weather paved and gravel road from Nelson to Fortynine Creek; thence west and southeast on the gravel Fortynine Creek logging road to the property. It is approximately 16 kilometres by road from Nelson to the property.

The subject claims are operated by Player Resources Inc. subject to the terms of option to purchase agreements with Europa Petroleum Ltd., Mr. L. Leighton and Mr. P. Chung.

Active exploration and development was carried out on this property between 1900 and 1905 by United Gold Fields of B.C. and the Reliance Gold Mining Company of Nelson. During that period these

operators developed approximately 610 metres of underground workings. In addition, a 50-ton mill, tramway, road, cyaniding plant and camp were constructed. Despite optimistic reports the known mineralization was never mined. Various operators since that time tried to rehabilitate the workings but as yet none have been successful.

The property is underlain by northwesterly striking and easterly dipping volcanic flows, breccias and fine-grained pyroclastic units of the Lower Jurassic Rossland Formation. A major northwesterly striking en echelon fault system displaces the volcanics in the vicinity of the workings. This fault zone controlled the emplacement of the known quartz-pyrite vein mineralization and later lamprophyre dykes.

The known May and Jennie vein is exposed over a strike length of 58 metres within northwesterly and southeasterly drifts of the No. 2 adit, the only underground working currently accessible to the vein. This same structure is reportedly exposed in the now sloughed-in No. 1 adit and also on surface, an updip extension of 64 metres. The vein varies in width from 15 cm. to 0.66 metres and is open both along strike and downdip. Chip sampling across the vein at intervals along its exposed strike length returned values of 0.028 oz./ton gold across 0.41 metres to 1.18 oz./ton gold across 0.66 metres.

The 1984 exploration programme included: the establishment of a control grid (18.425 line-km.); surface geological mapping at a scale of 1:2,000; underground mapping and sampling of the No. 2 adit (9 samples for Au, Ag, Cu, Pb, Zn); soil and rock geochemical sampling (709 soils and 2 rock samples for Au, Ag, Cu, Pb, Zn); and geophysical surveying (18.425 line-km. of VLF-EM and magnetometer surveying). The cost of this work, including report preparation but before recording fees, was \$59,492.93. After deducting those costs incurred prior to January 17, 1984, the sum of \$40,488.00 has been applied for assessment credit, including \$22,800. to the May and Jennie claim group and \$17,688. to the company's Portable Assessment Credit (PAC) account.

The results of the exploration programme are very encouraging. Geophysical and soil geochemical surveying show that the May

- 3 -

and Jennie vein continues both southeast and northwest of where it is exposed in the No. 2 adit. It appears now that the vein structure may have a strike length of over 700 metres. In addition, there are a number of coincident geophysical and geochemical anomalies elsewhere within the property with good exploration potential.

Further exploration is definitely warranted to test this property's economic potential. Such exploration work would involve trenching, mapping and sampling with possible diamond drilling to follow pending upon the results of the trenching.

- 4 -

PROPERTY AND OWNERSHIP

The property is comprised of one Crown Grant, four Reverted Crown Grants and ten located claims, all situated in the Nelson Mining Division of southeastern British Columbia. Five of the claims have been legally surveyed and all fifteen claims are contiguous. The configuration of the claims and their relationship to adjoining and pre-existing claims is shown in Figure 2 accompanying this report. Figure 2 is a reproduction in part of the B.C. Ministry of Mines' claim map 82F/6W.

The May and Jennie Crown Grant (Lot 3943), Tip Top Fr. Reverted Crown Grant (Lot 4656) and Red Top No. 1 located claim were acquired by Player Resources Inc. from Europa Petroleum Ltd. of Calgary, Alberta (Letter of Intent dated February 7, 1983). Player Resources Inc. acquired the Gold Note (Lot 616), Golden Giant (Lot 4655) and Gold Bell (Lot 4657) Reverted Crown Grants from Mr. Lorne Leighton of Nelson, B.C. (Letter of Intent dated March 6, 1983).

Mr. Paul Chung of Richmond, B.C. staked the PET-1 to 5, AGE Fraction, ALE Fraction and APE Fraction claims in February, 1984. The company explored these claims in August, 1984 and intends to purchase them on January 22, 1985. The NEL Fraction claim was staked by Mr. Paul Chung as agent for Player Resources Inc. See table I for a summary of the mineral claim data.

LOCATION AND ACCESS

The property is situated 8.5 kilometres southwest of the city of Nelson in southeastern British Columbia. The claims straddle Fortynine Creek approximately 7 kilometres southeast of its confluence with the West Arm of Kootenay Lake. Their geographic coordinates are 49°26.5'N. latitude by 117°22.5'W. longitude (N.T.S. 82F/6W).

Seasonal access is possible via the paved and gravel road from Granite, a settlement on Highway 3A five kilometres west of Nelson, to Blewett; thence west and southeast on the gravel Fortynine Creek road to the property. The claims are situated approximately 16 kilometres by road from Nelson, B.C. A network of old mining roads and trails provides facile access to most of the central claims.

- 6 -

1

Т

.

TABLE I

<u>Mineral Claim Data</u>

<u>Claim Name</u>	Lot No.	Record No.	Area in <u>hectares</u>	Record Date	Expiry Date		Registered Owner
Crown Grant							
MAY AND JENNIE	3943					*	Shackleton Petroleum Corporation, Inc.
<u>Reverted</u> Crown Grants							
GOLD NOTE	616	2682	11.66	Aug. 20, 1982	Aug. 20, 1983		Lorne Leighton
GOLDEN GIANT	4655	1420	16.37	Jan. 16, 1980	Jan. 16, 1984		Lorne Leighton
/TIP TOP FR.	4656	568	35.43 acres	Feb. 13, 1978	Feb. 13, 1990	*	Great Explorations and Mines Ltd.
∕GOLD BELL	4657	1421	19.12	Jan. 16, 1980	Jan. 16, 1984		Lorne Leighton
Located Claims							
Claim Name	Type	Record No.	Unit(s)	Record Date	Expiry Date		Registered Owner
∕Red Top No. 1		852	1	Nov. 16, 1978	Nov. 16, 1990	*	Great Explorations and Mines Ltd.
∕PET-1	M.G.S.	3647	1	Feb. 24, 1984	Feb. 24, 1985		Paul Chung
/ PET-2	M.G.S.	3648	1	Feb. 20, 1984	Feb. 20, 1985		Paul Chung
/ PET-3	M.G.S.	3649	1	Feb. 20, 1984	Feb. 20, 1985		Paul Chung
· PET-4	M.G.S.	3650	1	Feb. 20, 1984	Feb. 20, 1985		Paul Chung
✓ PET-5	M.G.S.	3651	1	Feb. 20, 1984	Feb. 20, 1985		Paul Chung

L

00 I

<u>Claim Name</u>	Type	Record No.	<u>Unit(s)</u>	Record Date	Expiry Date	Registered Owner
AGE Fr.	M.G.S. Fr.	3653	l Fr.	Feb. 20, 1984	Feb. 20, 1985	Paul Chung
ALE Fr. /	M.G.S. Fr.	3654	1 Fr.	Feb. 20, 1984	Feb. 20, 1985	Paul Chung
APE Fr. /	M.G.S. Fr.	3655	1 Fr.	Feb. 20, 1984	Feb. 20, 1985	Paul Chung
NEL Fr. /	M.G.S. Fr.	3836	1 Fr.	Aug. 24, 1984	Aug. 24, 1985	Player Resources Inc.

- * Great Explorations and Mines Ltd. changed its name to Shackleton Petroleum Corporation, Inc. which subsequently changed its name to Europa Petroleum Ltd. of Calgary, Alta. There was no sale of assets with each name change.
- ** As of January 15, 1985 there is no Bill of Sale recorded with the Gold Commissioner of the Nelson Mining Division transferring any title or interest in most of the above referenced claims to Player Resources Inc. of Vancouver, B.C.

PHYSIOGRAPHY

The claims are situated regionally within the Selkirk Mountains, north of the Bonnington Range. Elevations within the property range from 3,700 to 5,300 feet A.M.S.L.

The climate is moderate with temperatures ranging between -20 °C. and +30 °C. Precipitation usually totals 600 mm. annually and snowfalls range between 100 to 250 cm. The exploration season is relatively long from April to November.

The area is well forested with a mature growth of fir, pine, spruce, aspen and alder. Active logging has been carried out southwest of Fortynine Creek and there are plans pending to log in the vicinity of the property.

A paucity of outcrop, extensive overburden and moderate undergrowth inhibit surface geological surveying.

Water Rights

This property is situated within the Blewett Watershed. During all phases of exploration and possible development attention must be given to maintaining water quality within Fortynine Creek and avoid disturbing the surface run-off in the vicinity of the claims.

The Blewett Watershed Committee, chaired by Mr. Wilbur Anderson, was advised of the 1984 exploration work.

HISTORY

Exploration work on the May and Jennie, Red Top, Tip Top, Gold Bell and Golden Giant claims dates back to 1900. At that time United Gold Fields of B.C. undertook 430 metres of underground development; in addition to laying 365 metres of pipeline, and providing road and trail access to the workings. By 1904 the owners were planning the erection of a 50-ton mill and cyaniding plant. Underground work on the property consisted of approximately 610 metres of drifting and raises between the No. 1 and No. 2 adits.

The No. 1 adit had intersected the main May and Jennie vein 24.3 metres from the portal giving a downdip extension of 38 metres between the tunnel and the surface exposure. Approximately 175.3 metres of drifting on this level showed the vein to vary in width from 1.52 to 7.32 metres (B.C.M.M.A.R. 1904, p. H144).

The No. 2 adit intersected the vein 106.7 metres from the portal. Drifting northwestward and southeastward along the structure, 122 and 76.2 metres respectively, disclosed a vein varying from centimetres to approximately 0.66 metre. A 34.15-metre raise was driven between the two levels and a second raise of 29.5 metres joined the No. 1 level with the surface (B.C.M.M.A.R. 1904, p. H144).

Surface trenching on the adjoining Red Top claim discovered two veins with reported widths of 2.74 and 6.1 metres (B.C.M.M.A.R. 1904, p. H144).

In 1904, the Reliance Gold Mining Company of Nelson acquired operation of the property. However, despite optimistic reports the property was never mined (B.C.M.M.A.R. 1905, p. G138).

In 1974, Highland Star Mines Ltd. mapped, surveyed and sampled the known mineralization in the No. 2 adit but their work did not extend beyond the old workings.

REGIONAL GEOLOGY

This region is underlain by a conformable sequence of late Paleozoic to Lower Jurassic sedimentary and volcanic rocks intruded by a variety of stocks and apophyses related to the Lower to Upper Cretaceous-age Nelson batholith. Lamprophyre dykes probably related to Nelson Plutonism intrude all rock types.

Argillite, slate, argillaceous quartzite with minor limestone comprise the Ymir Group of Permian to possibly early Lower Jurassic age. These rocks are the oldest strata in the vicinity

- 11 -

and can be correlated stratigraphically with the Slocan Group, recognized in the New Denver and Sandon area.

Volcanic and minor intercalated sedimentary rocks of the Lower Jurassic Rossland Formation conformably overlie the Ymir Group. This formation is comprised of andesite, latite, basalt flows and breccias, agglomeratic tuffs and minor shales formerly mapped as units of the Elise and Beaver Mountain Formations. The Rossland Formation has very complex internal and external structure and a heterogenity of volcanic units indicative of an island-arc (eugeosynclinal) environment.

Both the Ymir Group and Rossland Formation have undergone complex deformation prior to the emplacement of the Nelson Plutonic rocks. The Nelson batholith and its satellites consist dominantly of porphyritic granite but compositions do vary locally to nonporphyritic granite, granodiorite, quartz diorite and diorite. In the vicinity of the property Little (1960) has identified stocks and apophyses of non-porphyritic granitic, syenitic and pseudodioritic composition.

Dykes of various compositions occur throughout the area, apparently related to the Nelson batholith. Lamprophyre dykes are quite common in tectonically active areas, particularly those mining camps such as Ymir, Silver King and locally in the Fortynine Creek area.

Most government geologists who have mapped the region state that the structural setting is extremely complex and not fully understood. Older strata have undergone faulting, folding and uplift during the intrusion and subsequent exposure of the Nelson batholith. This region has also been subjected to major tectonism during Upper Cretaceous and Tertiary time further complicating any structural interpretation.

1984 EXPLORATION PROGRAMME

The exploration work included the establishment of a grid to provide control for subsequent geological mapping, soil geochemical sampling, and magnetometer and VLF-EM (EM-16) geophysical surveying. The field work was carried out between January 9th to February 4th and August 18th to 27th, 1984. Report preparation followed the receipt of all analytical results.

Surface geological mapping was undertaken by Mr. P. Chung and the writer, two graduate geologists employed by Minorex Consulting Ltd. Soil geochemical sampling was carried out by experienced personnel employed by Minorex Consulting Ltd. Messrs. R. Shearing and P. Chung, both experienced geophysical operators, conducted the geophysical surveying. The writer mapped and surveyed the underground workings, managed the programme during all phases of the exploration work and prepared this report documenting all results. The Statements of Qualifications for the above mentioned personnel accompany this report.

Survey Control Grid

The control grid was established using drag survey chains and compasses. All lines were well blazed and picketed using axes, and flagged with two colours of flagging. Sample stations were picketed and labelled using tear-proof tyvek labels.

From a point near the No. 1 adit a 150° - 330° base line was cut, blazed and flagged. The 10,000 N. by 10,000 E. station was established at this point to allow two-coordinate orientation and facilitate easy expansion of the grid during later exploration. The base line was blazed, cut, picketed, flagged and labelled for 600 metres northward and 400 metres southward. See Figures 4 to 14 for the orientation and coordinates of the control grid.

The grid lines were blazed, picketed, flagged and labelled for a distance of 400 metres east and west (060° - 240°) of the baseline at intervals of 50 metres. Thus, stations were established from 9600 N. to 10600 N. on the baseline and from 9600 E. to 10400 E. on the grid lines. Sample stations were marked every 25 metres along the grid lines. A total of 18.425 kilometres of control grid was established from January 14th and 25th, 1984, including: a 1.0kilometre base line and 17.425 kilometres of grid and tie lines.

Geological Surveys

a) Surface Geological Survey

The surface mapping was carried out at a scale of 1:2,000 by Messrs. J.D. Blanchflower and P. Chung. This work was undertaken between August 20th and 25th, 1984. Due to the paucity of outcrop most bedrock exposures were found along the access road although all grid lines were walked in search of outcrop.

Figures 4 and 14 accompanying this report document the results of this survey.

b) Underground Geological Survey and Sampling

Since the last reported underground work in 1974 (i.e. Gerun, 1974) several sections in the No. 2 adit have partially caved or sloughed-in; thus, damming the mine water and flooding some of the further drifts and crosscuts. These caved sections had to be mucked out and the mine waters drained before any underground surveying could be completed. Due to Worker's Compensation Board regulations only Mr. R. Shearing and the writer were permitted to work underground without a holder of a Shift Boss ticket in attendance. Snow was cleared from the portal of the No. 2 adit on January 14th, 1984 and the caved sections were mucked out and the waters drained by January 20th. Mapping, surveying and sampling of the No. 2 and No. 1 adits were completed by January 25th.

The accessible portions of the No. 2 adit were surveyed, geologically mapped and nine channel, chip or grab samples were cut from various sites along the May and Jennie fault/vein structure. Also, a 70-kilogram bulk sample was collected from the massive pyrite vein immediately northwest of the No. 2 ore chute and raise. All samples were bagged, labelled and delivered to Kamloops Research and Assay Laboratory in Kamloops, B.C. for analysis.

The No. 1 adit was found to be completely caved-in just southwest of the projected May and Jennie vein structure. Therefore, the geologists could only survey the workings and map the underground geology, but no samples were collected.

See Figures 5 and 6 for the results of this survey work. Appendix II documents the assay results of the sampling and Appendix VI is a compendium of sample descriptions and assay summaries.

Geochemical Survey

a) Soil Geochemical Sampling

Soil geochemical samples of the "B" soil horizon were collected using a grub hoe or mattock. Survey notes of the sample character (i.e. active, dry, or swamp), texture (i.e. silt, sand, organic, clay, or gravel), origin (i.e. residual, colluvial, alluvial, or glacial), horizon, depth, colour and location were made at each sample station. From these notes, the soil samples consisted dominantly of a mixture of silt, clay and sand from the residual and colluvial overburden cover. The "B" soil horizon was usually sampled 10 to 20 cm. beneath the surface to minimize organic content.

The soil samples were collected by Mr. N. Swift, an experienced sampler employed by Minorex Consulting Ltd. A total of 709 soil samples were collected over a 8 man-day period by the sampler. All soil samples were placed in kraft paper envelopes, field dried, and delivered to Kamloops Research & Assay Laboratory Ltd. in Kamloops, B.C. for analysis.

The soil samples were dried at 60°C., sieved to ~80 mesh and analysed by atomic absorption spectrophotometric methods under the supervision of professional assayers. All samples were analysed for gold (p.p.b.), silver (p.p.m.), copper (p.p.m.), lead (p.p.m.) and zinc (p.p.m.).

At the writer's request Kamloops Research & Assay Laboratory carried out a geostatistical analysis of the soil geochemical results using a TRS-80 microcomputer and a conventional statistical software programme. Frequency percent, cumulative frequency percent, and mean and standard deviation data were plotted graphically to determine background, threshold and anomalous values for each element.

The Geochemical Lab Report accompanies this report in Appendix I. Appendix IV documents the analytical procedures and Appendix V presents the geostatistical data. All analytical and geostatistical results are shown on Figures 7 to 11.

b) Rock Geochemical Sampling

Surface rock geochemical samples were collected by Mr. P. Chung during the surface geological survey. These two samples were placed in marked plastic bags and submitted for analysis to Kamloops Research & Assay Laboratory Ltd. in Kamloops, B.C. All rock geochemical samples were analysed for total gold (p.p.b.), silver (p.p.m.), copper (p.p.m.), lead (p.p.m.) and zinc (p.p.m.).

All analytical results accompany this report in Appendix II. Analytical procedures for these samples appear in Appendix IV. All surface sample locations and analytical results have been plotted on Figure 4. Sample descriptions and assay summaries have been appended in Appendix VI of this report.

c) Underground Chip Sampling

As previously mentioned, nine channel, chip or grab samples were collected during the geological survey of the No. 2 adit. All samples were placed in marked plastic bags and submitted for assay and analysis to Kamloops Research & Assay Laboratory Ltd. in Kamloops, B.C. These samples were assayed for their gold (oz./ton) and silver (oz./ton) values, and analysed for copper (p.p.m.), lead (p.p.m.) and zinc (p.p.m.).

All assay and analytical results accompany this report in Appendix II. Analytical procedures for these samples appear in Appendix IV and all sample locations and analytical results have been plotted on Figure 6. Sample descriptions and assay summaries have been appended in Appendix VI of this report.

d) Check Analysis Programme

Following the receipt of all geochemical results from Kamloops Research & Assay Laboratory Ltd., the sample pulps of 31 soil geochemical samples were sent to General Testing Laboratories of Vancouver, B.C. for check analyses. This programme was undertaken to ensure the precision of the soil geochemical analyses. Check samples were selected randomly from relatively low, mid and high results.

The Certificate of Assay from General Testing Laboratory forms Appendix III of this report. Table II shows a comparison of results between Kamloops Research & Assay and General Testing Laboratories.

Geophysical Surveys

a) VLF (EM-16) Electromagnetic Survey

Prior to the exploration programme it was known that the precious metal-bearing sulphide mineralization and/or the controlling fault structure respond well to VLF-EM surveying. Thus, this geophysical method was chosen to delineate any further mineralization and/or fault zone along strike in shallow-covered areas of the control grid.

This survey was conducted using a Geonics EM-16 VLF Electromagnetometer. This instrument acts as a receiver only. It utilizes the primary electromagnetic fields generated by V.L.F. (very low frequency) marine communication stations. These stations operate at a frequency between 15 to 25 KHz, and have a vertical antennacurrent resulting in a horizontal primary field. Thus, this VLF-EM measures the dip-angle of the secondary field induced in a conductor.

For maximum coupling, a transmitter station located in the same direction as the geological strike should be selected since the direction of the horizontal electromagnetic field is perpendicular to the direction of the transmitting station. The Annapolis, Maryland (21.4 KHz) transmitting station was chosen since it is approximately on strike with the regionally mapped geology (Little, 1960). The Seattle, Washington (24.8 KHz) transmitting station, a secondary perpendicular transmitter, could not be received during the survey.

Readings were taken at 25-metre intervals over 18.425 kilometres of the grid and the data was filtered in the field by the operator as described by D.C. Fraser, Geophysics Vol. 34, No. 6 (December, 1969). The advantage of this method is that it removes the dc and attentuates long spatial wave lengths to increase resolution of local anomalies and phase shifts the dip-angle data by 90 degrees so that crossovers and inflections will be transformed into peaks to yield contourable quantities.

Figures 12 and 13, accompanying this report, show the VLF-EM percent dip-angle and Fraser filtered data for the Annapolis, Maryland transmitting station, respectively.

b) Magnetometer Survey

It was discovered during the underground geological survey of the No. 2 adit that the gold-bearing sulphide-rich vein mineralization has a high magnetic susceptibility (i.e. pyrrhotite and/or secondary magnetite). Thus, a magnetometer survey was conducted in conjunction with the VLF-EM surveying to better delineate any such mineralization. The magnetometer survey was conducted using a Barringer GM-122 proton magnetometer. This instrument measures the vertical component of the earth's magnetic field to an accuracy of 1 gamma. Corrections for diurnal variation were made by "looping" - tying into previously established base stations at intervals not exceeding one and one-half hours. Readings were taken at 25-metre intervals over 18.425 kilometres of the grid.

The results of this survey have been plotted as Figure 14 accompanying this report.

RESULTS OF THE 1984 EXPLORATION PROGRAMME

The results of the 1984 exploration work are very encouraging and further definitive exploration is certainly warranted.

Geological Results

a) Lithology

The property is underlain dominantly by andesitic flows and flow breccias of the Lower Jurassic Rossland Formation. Within the No. 1 and 2 addits mapping has identified a finely-laminated pyroclastic unit which appears to be intercalated with the andesitic flows and breccias. However, due to the paucity of outcrop, this unit's genetic and spatial relationships to the other Rossland Formation volcanic rocks can not be fully tested. All these country rocks have been intruded locally by biotite-rich lamprophyre dykes, dominantly fault controlled and probably related to the Nelson batholith-age plutonism.

The Rossland Formation volcanic flows are dark green to grey-green in colour, aphanitic, and in outcrop they have a well developed schistocity which strikes 140° to 150° and dips steeply southward. Although there is quite limited exposure these rocks appear to be more biotite- than hornblende-rich, versus the breccia flows with distinct hornblende phenocrysts. The breccia flows are similar to the andesitic flows in colour and apparent composition, but can be distinguished by 1 to 50 cm. subrounded clasts with an aphanitic, hornblende-rich groundmass. The clasts are difficult to distinguish in fresh outcrop, but on weathered surfaces they appear to be of an augite porphyry composition. Like the prementioned flows this volcanic unit has a well developed schistocity with similar attitudes.

The finely-laminated pyroclastic unit is only exposed underground, perhaps because it is quite soft and surface outcrops would erode easily. In the workings, it appears light to dark brown in colour, fissile, and schist-like in appearance with mafic and leucocratic segregations. In hand specimen it appears granular with fine-grained lithic fragments (i.e. meta-tuff). However, the only place this unit has been observed is adjacent to the major northwesterly trending May and Jennie fault structure and this rock could be a highly sheared and mylonitized andesitic breccia flow.

Several lamprophyre dykes have intruded the fine-grained, intensively sheared unit of the Rossland Formation. In the No. 2 adit these dykes infill, and in some cases, cut the main quartzpyrite vein. Their emplacement appears to have been structurally controlled by the same en echelon fracture zones which control the veining and mineralization. These fractures also subparallel the contacts of the fine-grained volcanoclastic host rock displacing this unit and the other volcanic flows and breccias in the immediate vicinity.

According to Little (1960), the Rossland Formation is intruded to the east by "pseudodiorite" and other plutonic rocks of the Lower to Upper Cretaceous Nelson batholith. These rocks may underlie the property along its eastern boundaries but no outcrops were found during the surface geological survey.

b) Structure

Within local outcrops bedding features are very indistinct, often masked by the pronounced schistocity and local fracturing. However, regional bedding measurements of the volcanic flows show the stratigraphy strikes $140^{\circ} - 160^{\circ}$ and dips -35° eastward. Measurements by Little (1960) on the southwest side of Fortynine Creek show similar strikes but the units dip -60° westward suggesting that an axis of faulting and, possibly, folding parallels the Fortynine Creek valley.

Within the No. 2 adit a major normal fault strikes 150° to 160° and dips steeply eastward and westward. There are numerous other minor shear zones juxtaposed to this larger structure and, at least, one orthogonal fracture set which dips 30° to 50° southeasterly, displacing the main quartz-pyrite vein.

Schistocity measurements from surface outcrops closely reflect the major faulting observed underground. Given the similar attitudes in regional bedding, and local schistocity and faulting, it appears that the main May and Jennie fault structure which hosts the known vein mineralization parallels, or at least subparallels, the trend of the stratigraphy and is thus both oriented parallel to the inferred Fortynine Creek antiform and in part lithologically controlled.

Results of the geophysical surveying, which will be discussed in detail later, support the trend of the main fault structure northwestward and southeastward across the property. However, VLF-EM survey results also indicate several westerly trending transcurrent faults that intersect and displace the major fractures. The intersections of the major normal and transcurrent fractures would be good depositional sites for gold-bearing sulphide-rich vein mineralization.

c) Alteration

All volcanic units of the Rossland Formation have undergone regional metamorphism of lower to possibly mid greenschist facies. Besides the alteration products commonly associated with saussuritization (i.e. altered plagioclase), the mafic minerals, such as augite and hornblende, have been replaced by epidote, chlorite, calcite and albite, with minor secondary magnetite. The lamprophyre dykes appear quite fresh, only minor chloritization, suggesting postmetamorphic emplacement.

d) Mineralization

All past exploration has concentrated on the main May and Jennie vein. This vein is only exposed now in the No. 2 adit. It strikes 150° to 160° and dips -80° eastward. Vein widths vary from 10 or 15 cm. to 0.66 metre with a quartz and pyrite-rich envelope extending beyond into the footwall section. In the accessible portions of the No. 2 adit the vein structure has an exposed strike length of 58 metres, of which more than 35 metres has a vein width exceeding 0.3 metre. Two crosscuts off the southeastern drift have intersected a similar subparallel vein structure with an indicated strike length of 30 metres and widths from 15 to 30 cm.

Both vein structures and a subparallel lamprophyre dyke infill the May and Jennie en echelon fault zone with similar attitudes. It would appear that the fault structure has been reactivated during several periods of deformation: firstly, providing the conduit for ascending hydrothermal fluids and site for the quartzsulphide vein; secondly, splitting the original vein structure into at least two lateral sections and controlling the emplacement of the lamprophyre dyke(s); and lastly, young normal and/or strikeslip movement displacing both vein structures and the intrusions.

Several smaller vein structures are exposed in the main tunnel with attitudes similar to the main vein. Consideration should be given to all such structures since they may swell along strike, or up and downdip.

The mineralogy of the main vein appears to be relatively simple. In areas with narrower vein widths quartz and minor calcite with abundant fine to medium-grained pyrite infill the vein structure. Where the structure swells massive pyrite and possibly pyrrhotite occur with little or only minor quartz gangue. No visible gold was seen during the geological survey suggesting that the gold values occur as either auriferous pyrite and/or microscopic native gold intimately associated with the pyrite. No other sulphide minerals were evident within the pyritic lenses although geochemical results suggest very minor copper, lead and zinc mineralization. One sample, 84-1-1, returned values of 392 p.p.m. lead and 5.1 p.p.m. silver indicating minor argentiferous galena may be present locally within the quartz-pyrite vein.

Geochemical Results

a) Soil Geochemical Sampling

Figures 7 to 11 accompanying this report are plots of the gold, silver, copper, lead and zinc values obtained from soil samples collected over the control grid as determined by Kamloops Research & Assay Laboratory Ltd. of Kamloops, B.C. As previously mentioned these results have been subjected to standard statistical calculation to determine mean, threshold and anomalous metal contents of the soils. All results have been contoured at intervals noted on each individual plan. In addition, percent cumulative frequency versus metal value graphs, mean and anomalous values have been plotted for each element. Appendix V in this report contains the complete geostatistical data.

A summary of the geostatistical results for 709 soil geochemical samples are:

Element	Mean	Threshold	Anomalous
	x		\overline{x} + 3S.D.
Gold (p.p.b.)	28.03	162.5	336.27
Silver (p.p.m.)	0.16	0.62	0.85
Copper (p.p.m.)	77.25	203.75	267.0
Lead (p.p.m.)	15.95	36.07	59.97
Zinc (p.p.m.)	88.18	129.88	150.73
Lead (p.p.m.) Zinc (p.p.m.)	15.95 88.18	36.07 129.88	59.9 150.7

- 23 -

From the above results all possibly (threshold to definitely anomalous values) and definitely anomalous sample sites were identified and a compilation plan was plotted (see Figure 15).

The soil geochemical results indicate the following:

(1) Gold

It is obvious from the analytical results and geostatistical data that this property covers a very high background gold-in-soils area. Within similar geological and topographical settings elsewhere in the region even the mean gold values (28.03 p.p.b. Au) encountered during this survey might be considered anomalous. Nevertheless, the geostatistical data do delineate a number of very definite and highly anomalous gold-in-soil geochemical trends within the claims.

Aside from single anomalous sample sites, the values of which may be attributed to alluvial transport (e.g. downslope placer concentrations) or contamination from mine dumps (e.g. No. 2 mine dump at 10050 N. by 9875 E.), there are two or possibly three interesting gold geochemical trends which are highly anomalous.

The most interesting and encouraging trend from an exploration standpoint strikes north-northwestward from 9850 N. by 10000 E. to 10500 N. by 10550 E. Within this trend there are possibly to highly anomalous soil values ranging from 215 to 1,260 p.p.b. gold. This trend or zone overlies the projected gold-bearing vein structure mapped in the No. 2 adit, and coincides well with the trend of a number of old sloughed-in trenches, a high magnetic anomaly and the southern portion of an anomalous VLF-EM conductor. There is little doubt that this zone is reflecting the May and Jennie vein for 200 metres south and at least 500 metres north of the No. 2 adit.

The second gold geochemical trend strikes northwesterly from 9850 N. by 10250 E. to 10600 N. by 10100 E. At its northern end it appears to intersect the northernmost projections of the May and Jennie vein structure. Within this trend there are anomalous gold values ranging from 250 to 480 p.p.b. It is very interesting

- 24 -

to note that this trend also coincides well with a high and continuous VLF-EM conductor and several silver soil geochemical anomalies.

Aside from the above two gold-in-soil trends there are two anomalies at 9800 N. by 9750 E. and 10450 N. by 9725 E. The former anomaly, although within a mapped drainage, does have coincident geophysical (i.e. VLF-EM conductor) and geochemical (silver and lead-in-soils) support. The latter anomaly lies within or near a local drainage and has no other survey support.

(2) Silver

There are three interesting silver geochemical anomalies or anomalous trends which should be considered high priority targets.

The silver anomaly at 10050 N. by 10000 E. directly overlies the projected May and Jennie vein. It is coincident with other gold and copper soil geochemical and geophysical (magnetic and VLF-EM) anomalies.

One of the most interesting silver soil geochemical trends strikes from 9900 N. by 10400 E. to 10450 N. by 10200 E. This trend parallels a northwesterly striking VLF-EM conductor on its eastern side and the second gold-in-soils trend discussed previously. Since silver is a more soluble and thus more mobile element than gold, it is difficult to explain the upslope relationship of the former over the latter along this trend. However, it is significant that both gold, silver and, to a lesser extent, zinc soil anomalies occur in close proximity to the VLF-EM conductor. Further work such as trenching should be undertaken along this trend.

The third significant silver anomaly occurs in the extreme northeastern corner of the grid area at coordinates 10550 N. by 10375 E. It is coincident with a very high magnetic anomaly and adjacent to a zinc soil geochemical anomaly.

Other silver geochemical anomalies occur either within mapped drainages, and those may be exotic to their sites, or near mine dumps.

- 25 -

(3) Copper

There are two or three notable copper anomalies which should be tested, at: 10000 N. by 10000 E., 10050 N. by 10375 E. and 10500 N. by 9925 E. The first one at 100000 N. by 10000 E. overlies the May and Jennie vein and thus is a first priority target. At 10050 N. by 10375 E. there are no other supporting survey results but this anomaly does occur along the trend of several highly anomalous silver-in-soil values. Lastly, the copper anomaly at 10500 N. by 9925 E. does occur near a drainage but it is also situated near lead and zinc soil anomalies and it is coincident with a VLF-EM conductor. Other copper anomalies can be attributed to downslope dispersion in drainages or contamination by mine dumps.

(4) Lead

There are a number of single-site lead anomalies but all of them are situated in the western portions of the grid, mostly near drainages or mine dumps. There are only two anomalies which have coincident geophysical and geochemical support, at 10500 N. by 9900 E. and 9800 N. by 9700 E. Both these sites have been discussed above as low priority targets.

(5) Zinc

Other than the single-site zinc anomalies in drainages or near mine dumps, there are three anomalies worthy of further anomalies are situated at 9750 N. investigation. These by 10000 E., 9950 N. by 10325 E. and 10550 N. by 10350 E. The first anomaly is situated immediately east of the projected May and Jennie vein, within 25 metres of a magnetic anomaly and VLF-EM conductor. The 9950 N. by 10325 E. anomaly is located over a VLF-EM conductor within the trend of anomalous gold and silver soil values from 9850 N. by 10350 E. to 10600 N. by 10100 E. The 10550 N. by 10350 area of coincident high E. anomaly occurs in an magnetics and anomalous silver soil values.

b) Rock Geochemical Sampling

At geological station No. 1 (sample No. 14527) a rock geochemical sample was collected from a poorly exposed outcrop of pyritic andesite flow breccia very near the surface projection of the May and Jennie vein. The analytical results showed a 200 p.p.b. gold value, indicative of wallrock very close to the buried vein. Based on this result and the results of the other surveying, the May and Jennie vein should be located immediately west of this outcrop (see Figure 4 and Appendix VI).

The other rock geochemical sample was collected at geological station No. 4, between the No. 1 and 2 adits. Analytical results indicate elevated values in copper and zinc but no significant gold or silver values.

c) Underground Chip Sampling

The results of the chip sampling programme show that there are significant gold values present in the May and Jennie vein structure, especially 6 to 27 metres southeast of the access tunnel (see Figure 6). Although silver and base-metal values are quite low, gold values range up to 1.18 oz./ton across a true width of 0.66 metre or 1.42 oz./ton across a true width of 0.42 metre.

It is interesting to note that there are proportionately high lead values with higher silver values suggesting the presence of argentiferous galena within sections of the gold-bearing quartz - pyrite vein. Also, even though the gold values appear erratically distributed, generally the higher values occur in more massive sulphide sections, suggesting that there might be two stages of mineralization, the first stage involving quartz-pyrite veining and the second, after refracturing, of more massive auriferous pyrite fracture filling. It should also be noted that the gold value (i.e. 0.125 oz./ton) in the grab sample collected at the extreme northwestern end of the No. 2 adit demonstrates clearly a continuity of mineralization northwestward, perhaps as shoots within the plane of the vein.

- 28 -

TABLE II

Comparison of Kamloops Research & Assay Laboratory's versus

General Testing Laboratories' Geochemical Results

		6	GOLD (p.p.b.) SILVER (p.p.m.)				C	COPPER	(p.p.m.)	L	EAD (p	.p.m.)	ZINC (p.p.m.)			
<u>N.</u>	<u> </u>	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF
L96	102	L5	10	-100	0.2	0.6	-200	78	74	5	8	17	-113	99	101	-2
L97	101.75	30	10	67	0.0	0.6		65	62	5	13	20	-54	110	108	2
L97	103.5	65	10	85	0.1	0.6	-500	28	26	7	10	15	-50	88	84	5
L98	97	125	NES	N.	1.4	1.3	7	108	84	22	118	137	-16	83	66	20
L98	97.5	330	790	-139	0.6	0.8	-33	61	55	10	24	34	-42	67	63	6
L98	97.75	5	20	-300	0.1	0.7	-600	76	72	5	10	18	-80	75	78	-4
L98	99.75	100	500	-400	0.0	0.9		183	186	-2	12	24	-100	66	69	-5
L98.5	96	35	140	-300	1.9	2.6	-37	1410	>1000		15	22	-47	79	84	-6
L98.5	99	15	190	-1167	0.0	0.7		125	114	9	13	20	-67	88	89	-1
L98.5	102.75	480	80	83	0.0	0.8		80	73	9	14	21	-50	98	106	-8
L99	96.75	125	50	60	0.2	0.6	-200	61	55	10	12	22	-83	117	123	-5 N 9
L99	98.5	L5	20		0.0	0.6		. 168	156	7	12	20	-67	134	133	1 '
L99	101.5	15	200	-1233	0.2	2.1	-950	106	111	-5	12	17	-42	76	83	-5
L99.5	99	150	220	-47	0.0	0.8		146	146	0	18	30	-67	109	114	-5
L100	103	55	20	64	0.0	0.6		62	53	15	12	20	-67	115	134	-17
L100.5	98.75	1440	2800	-94	0.8	2.5	-213	230	264	-15	13	27	-108	67	69	-3
L101	98.25	45	20	56	0.0	0.6		102	113	-11	13	22	-83	94	110	-17
L101.5	100	1260	60	95	0.0	0.8		124	132	-6	5	15	-200	65	65	0
L101.5	100.25	90	20	78	0.4	0.7	-75	87	98	-13	9	22	-144	105	112	-7
L102	98.25	L5	10	-100	0.2	0.7	-250	100	87	13	18	24	-33	108	115	-6
L103	101.25	70	160	-129	0.0	0.5		168	182	-8	13	20	-54	58	69	-19
L103	103.75	10	120	-1100	0.1	0.8	-700	156	178	-14	20	31	-55	92	110	-20
L103	102	30	30	0	0.0	0.6		123	74	40	11	18	-64	58	90	-55

TABLE II

Comparison of Kamloops Research & Assay Laboratory's versus

General Testing Laboratories' Geochemical Results

		G	OLD (p	.p.b.)	SILVER (p.p.m.)				OPPER	(p.p.m.)	L	EAD (p	.p.m.)	ZINC (p.p.m.)		
<u>N.</u>	<u> </u>	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF	KRAL	GTL	% DIFF
L103.5	101.25	275	220	20	0.1	1.0	-900	185	206	-11	8	19	-138	81	88	-10
L104	97.75	5	20	-300	0.1	0.8	-700	. 127	132	-4	25	28	-12	106	105	1
L104	100	230	50	78	0.1	0.6	-500	119	116	3	12	19	-58	93	86	8
L104	100.5	25	20	20	0.0	0.5		155	169	-9	26	33	-27	110	110	0
L104.5	97.25	955	10	99	0.0	0.6		133	154	-16	10	24	-140	90	108	-20
L105	100.5	630	NES		0.3	0.6	-100	96	94	2	16	26	-63	131	120	8
L106	101	385	40	90	0.0	0.5		127	167	-31	11	26	-136	99	115	-16
L106	103.5	95	90	5	0.1	0.6	-500	38	42	-11	11	22	-100	70	71	-1

- 30 -

The bulk sample that was collected during the 1984 underground sampling was shipped to Kamloops Research and Assay Laboratory where it is now being stored pending a metallurgical study.

d) Check Analysis Programme

The results of the check analysis programme have been documented in Table II of this report. On inspection it would appear that the copper and zinc values reported by both Kamloops Research and Assay Laboratory Ltd. (K.R.A.L.) and General Testing Laboratories (G.T.L.) are relatively close with little difference. However, the gold, silver and lead values show high differences between K.R.A.L. and G.T.L. Given only two sets of results, no judgement can be made on the accuracy of one versus the other. However, it would appear that the results reported by K.R.A.L. are generally lower and perhaps more conservative.

Geophysical Results

a) VLF (EM-16) Electromagnetic Survey

The results of this survey delineated a number of moderate to strong northwesterly and westerly trending conductors (see Figures 12, 13 and 15). There are four northwesterly conductors which warrant further exploration, in order of exploration priority they are: 9650 N. by 9975 E. to 10550 N. by 9800 E. (highest priority), 9600 N. by 10350 E. to 10600 N. by 10125 E., 10350 N. by 10400 E. to 10600 N. by 10200 E., and 9600 N. by 9800 E. to 10100 N. by 9750 E. (lowest priority).

The highest priority conductor coincides well with the surface projection of the May and Jennie vein near the No. 1 adit. Southeast of the No. 1 adit this conductor subparallels the inferred strike of the vein but northwest of grid coordinates 10050 N. by 9990 E. the conductor diverges westerly. One explanation for this divergence might be that the VLF-EM results are reflecting late stage faulting which subparallels the May and Jennie vein in the vicinity of the underground workings, but cuts across stratigraphy and away from the vein structure in a northwesterly direction. If this is true then more continuous and perhaps wider vein sections might be expected north-northwest of the workings.

The conductor from 9600 N. by 10550 E. to 10600 N. by 10125 E. bisects the parallel trends of several gold soil anomalies on the west and silver soil anomalies on the east. This conductor appears to reflect a buried fault structure which has been offset by younger westerly trending transcurrent faulting. It has a similar strike to the conductor overlying the May and Jennie vein but it does not have the same positive magnetic features to indicate a second sulphide-bearing vein structure. Nevertheless, further exploration, such as trenching, is advised to test for its source.

The third northwesterly trending conductor crosses the extreme northeastern corner of the control grid. There is a very high magnetic anomaly on its northeastern side and there are several local silver soil anomalies along its strike length. It should be noted that portions of this conductor may be outside the property boundary.

The lowest priority conductor trends northwesterly along the Fortynine Creek road. During the survey operators suspected that a buried cable might be causing the VLF-EM response but no such conductor was discovered later in the field season. Even though this anomaly is highly suspect it does parallel the other conductors and thus may be reflecting yet another structure feature.

Besides the strong and very continuous northwesterly conductors there are a number of shorter westerly trending conductors which seem to reflect late state strike-slip fault structures. Some of them have coincident geochemical support but at this stage of exploration their potential for reflecting sulphide mineralization cannot be fully assessed.

- 32 -
b) Magnetometer Survey

The results of this survey are probably the most positive and encouraging of the 1984 programme. A distinct magnetic anomaly was delineated from grid coordinates 9775 N. by 9975 E. to 10475 N. by 10050 E. This anomaly overlies the surface projection of the May and Jennie vein near the No. 1 adit. Furthermore, it seems to reflect the buried vein over a strike length of 700 metres. Along its trend there are a number of coincident gold, silver, copper and zinc soil geochemical anomalies, and old sloughed-in trenches which support its exploration potential.

In the extreme northeastern corner of the grid area there is a very high magnetic anomaly with coincident silver and zinc geochemical values. As previously mentioned though, this anomaly may be outside the claim group.

CONCLUSIONS

The results of the 1984 exploration programme are very encouraging. Geological mapping has established that the property is dominantly underlain by volcanic flows, flow breccia and possibly pyroclastics of the Lower Jurassic Rossland Formation. Lamprophyre dykes which are probably related to the Nelson batholith intrude the country rocks along fault structures.

Underground mapping and sampling have shown that the May and Jennie vein is structurally controlled and displaced by reactivated faulting along a major northwesterly trending fault zone. Gold values within the more pyritic sections of the vein ranged up to 1.42 oz./ton gold across a true width of 0.42 metre or 1.18 oz./ton gold over 0.66 metre.

Besides the very positive results from the underground workings geophysical and soil geochemical results show that the May and Jennie vein continues both southeastward and northwestward. From the survey results it appears that the vein structure may have a strike length of over 700 metres from grid coordinates 9775 N. by 9975 E. to at least 10475 N. by 10050 E. Only 58 metres of this indicated length has been tested by underground development.

This property has both exploration and economic potential. Further exploration is definitely warranted to test not only the strike and dip extensions of the May and Jennie vein but also to investigate the sources of a number of coincident geophysical and geochemical anomalies elsewhere within the claim group.

RECOMMENDATIONS

Based on the results the following programme is recommended for further exploration of this property.

- 1) A road should be constructed along the indicated strike length of the May and Jennie structure. This road would serve two purposes: firstly, to expose the vein structure and secondly, to provide access for possible later drilling. Then perpendicular trenches should be excavated initially at 100-metre intervals along vein length to define the vein widths. All bedrock exposures would be properly surveyed, mapped and sampled during trenching.
- 2) The other coincident geochemical and geophysical anomalies should be trenched with the use of a crawler backhoe.
- Pending the results of the above work, drilling might be warranted to further test this property.

Submitted by,

MINOREX CONSULTING LTD.

J.D. Blanchflower, F.G.A.C. Consulting Geologist

January 16, 1985 Kamloops, B.C.

STATEMENT OF COSTS

Re: Establishment of a 18.425-kilometre control grid over the property.

Surface geological survey (1:2000) and collection of 2 rock geochemical samples plus analyses for gold, silver, copper, lead and zinc.

Underground survey, mapping and sampling of the No. 2 adit plus assays and analyses of 9 samples for gold, silver, copper, lead and zinc.

Underground survey and mapping of the No. 1 adit.

Collection of 709 "B" horizon soil geochemical samples which were analysed for gold, silver, copper, lead and zinc at Kamloops Research & Assay Laboratory Ltd. in Kamloops, B.C.

Check analyses of 16 soil geochemical samples at General Testing Laboratories in Vancouver, B.C.

Conducted 18.425 kilometres of VLF-EM (EM-16) and 18.425 kilometres of magnetometer surveying over the established grid.

Collation, plotting, drafting, interpretation and documentation of all resultant data from the 1984 exploration programme.

(1) Exploration Costs for the Period from January 9th to February 4, 1984.

Work program: Establishment of control grid.

Geophysical surveying (VLF-EM and magnetometer).
Mucking out sloughed-in sections of the No. 2 adit.
Underground surveying, mapping and sampling of
 No. 1 and 2 adits.

Personnel

J.1	D. Blanchflower - 15 days @ \$300./day \$	\$ 4,500.00	
R.	Shearing - 25 days @ \$200./day	5,000.00	
L.	Hodgson - 5 days @ \$210./day	1,050.00	
Μ.	Kilby - 13 days @ \$187./day	2,431.00	
Ρ.	Chung - 13 days @ \$170./day	2,210.00	
Ρ.	McLean - 17 days @ \$170./day	2,890.00	
G.	Powell, R. Brouwer, J. Grigg		
	51 man days @ \$150./man day	7,650.00	
	ç	25,731.00	\$25,731.00

Accommodation (Jan. 9 to 31)		
132 man days @ \$16.86/man day		2,225.52
De - J		
Food		
132 man days @ \$24.52/man day		3,236.64
Vehicle Expense (including mobilization	n and demobiliz	ation)
'83 Ford 4x4 P/U (Minorex)		
12 days @ \$35./day	\$ 420.00	
1,486 km. @ \$.35/km.	520.10	
'81 Chev 4x4 P/U (Spirex)		
15 days @ \$35./day	525.00	
1,891 km. @ \$.35/km.	661.85	
'79 GMC 4x4 Van (P. McLean)		
17 days @ \$35./day	595.00	
2,490 km. @ \$.35/km.	871.50	
Car (R. Brouwer) - used for mob & demob		
2 days @ \$25./day	50.00	
1,400 km. @ \$.20/km.	280.00	2 2 2 2 7 5
	Ş3,923.45	3,923.45
Snow Plowing		
Subcontracted by Roy Clutch Drilling Lto	d.	900.00
Snowmobile Rental (including fuel, oil	, belts, etc.)	
177 Eler 250 22 deve 6 \$40 /dev	¢ 990 00	
1 Elan 250 - 22 days $@$ \$40./day	3 880.00	
80 Everest 404 - 22 days e 300./day	\$2,200.00	2,200,00
	, _ ,	-,
Geophysical Equipment Rental		
WE = EM 16 = 12 days @ \$23 / day	\$276.00	
CM-122 Proton Magnetometer -	<i>Q270.00</i>	
12 days @ \$25./day	300.00	
	\$576.00	576.00
<u>Field Equipment Rental</u>		

Axes, machetes, shovels, mine lights, compasses, clinometers, altimeters, hip chains, nylon chains, snowshoes, etc. 300.00 Expendable Field Supplies

Flagging 145 rolls @ \$1.50/roll	\$217.50	
Tyvek labels 875 tyveks @ \$.12/tag	105.00	
Batteries for VLF-EM and Mag	35.40	
Spray paint (for grid & underground	sampling) 25.62	
Sample bags 10 bags @ \$.45/bag	4.50	
Drafting paper	10.00	
	\$398.02	398.02

Drafting (P.J. Mason, Kamloops, B.C.)

Base topographic map	10	hours	
Geophysical plans	25	hours	
Sample plan	3.5	hours	
	38.5	hours @ \$15./hr.	577.50

Office Supplies (Norman Wade Co. Ltd.)

Printing (base map, geophysical maps and	
sampling plan - dilars and paper prints)	
Plan reductions (sampling Plan)	
Photocopying	225.04

Subtotal (Jan. 9 to Feb. 4, 1984) \$40,293.17

(2) Exploration Costs for the Period from August 18th to 27th, 1984.
 Work Program: Surface geological mapping and rock geochemical sampling.
 Soil geochemical survey.

Personnel

J.D. Blanchflower - 4 days @ \$300./day	\$1,200.00	
P. Chung - 9.5 days @ \$228./day	2,166.00	
N. Swift - 9 days @ \$150./day	1,350.00	
- · · · · · · · · · · · · · · · · · · ·	\$4,716.00	\$4,716.00

Accommodation

22 man days @ \$24.86/man day 546.92

Food

22.5 man days @ \$14.34/man day 322.65

1,129 km. @ \$.35/km. 395.15 '79 Chevrolet 4x4 P/U (P. Chung) 11 days @ \$35./day 385.00 2,195 km. @ \$.35/km. 768.25 \$1,688.40 1,688.40 Expendable Field Supplies \$ 7.50 Flagging - 5 rolls @ \$1.50/roll Hip chain thread - 4 rolls @ \$4.32 17.28 Soil sample bags - 725 bags @ \$.17/bag 123.25 Plastic sample bags - 10 bags 4.50 @ \$.45/bag Hay wire - 1 roll @ \$4.00/roll 4.00 Field note books - 2 books @ \$6.25/book 12.50 Felt pens, pencils, sharpeners 10.00 Office supplies, drafting paper, coding sheets 17.03 \$196.06 196.06 Subtotal (Aug. 18 to 27, 1984) \$7,470.03 (3) Assaying and Analyses (billed directly to Player Resources Inc.) a) Kamloops Research & Assay Laboratory 9 rx. geochem (Cu, Pb, Zn) \$ 39.60 plus prep Jan. 27 9 assays (Au, Ag) Feb. 3 121.50 709 soil and 2 rx geochem (Au, Ag, Cu, Pb, Zn) 6,832.21 plus prep Sept. 21

> 29 pulps for Au and 31 pulps for Ag, Cu, Pb, Zn Nov. 27 245.25 \$7,238.56 \$7,238.56

(4) Project Supervision, Consulting and Report Preparation

J.D. Blanchflower - consulting geologist

Aug.	27 to Dec. 31, 1984 - project supervision	2 days
Jan.	2 to 15, 1985 - data interpretation and	<u>8 days</u>
	report preparation	10 days
	10 days @ \$300./day	

- 38 -

Vehicle Expense (including mobilization and demobilization)

\$ 140.00

'83 Ford 4x4 P/U (Minorex) 4 days @ \$35./day

b) General Testing Laboratory

3,000.00

Office Expenses

	1-2-				
a)	Data plottin collation (P 38 hours @ \$	g, drafting, report . Mason) 18./hr.	\$	684.00	
b)	Typing (J & 20 hours @ \$	L Enterprises) 18./hr.		360.00	
c)	Reproduction (Universal R reproduction copying, off	and Printing eproductions) Dilar s, printing, photo- ice supplies	\$1	<u>447.17</u> ,491.17	1,491.17
		Total Cost of Proje January 9, 1984 to	ect fr Janua	om ry 16, 1985	\$59,492.93
	Less:	Cost of Exploration between January 9 a applicable for asse	n Work and 16 essmen	undertaken , 1984 (not t credit)	19,004.93
		Cost of Exploration	ı betw	een	

Cost of Exploration between January 17, 1984 and January 16, 1985 to be applied for Assessment Credit <u>\$40,488.00</u>

An Assessment Credit of \$40,488.00 was applied to the May and Jennie Claim Group on January 16, 1985 as follows:

Record No.	Units	Record Month	Years Applied	
568	1	Feb. (2)	4	\$ 800.
1420	1	Jan. (1)	10	2,000.
1421	1	Jan. (1)	10	2,000.
2682	1	Aug. (8)	10	1,900.
852	1	Nov. (11)	4	800.
3647	1	Feb. (2)	10	1,700.
3648	1	Feb. (2)	10	1,700.
3649	1	Feb. (2)	10	1,700.
3650	1	Feb. (2)	10	1,700.
3651	1	Feb. (2)	10	1,700.
3653	1	Feb. (2)	10	1,700.
3654	1	Feb. (2)	10	1,700.
3655	1	Feb. (2)	10	1,700.
3836	1	Aug. (8)	10	1,700.
	Record No. 568 1420 1421 2682 852 3647 3648 3649 3650 3651 3653 3654 3655 3836	Record No.Units5681142011421126821852136471364813650136511365313655138361	Record No.UnitsRecord Month5681Feb. (2)14201Jan. (1)14211Jan. (1)26821Aug. (8)8521Nov. (11)36471Feb. (2)36481Feb. (2)36501Feb. (2)36511Feb. (2)36531Feb. (2)36541Feb. (2)36551Feb. (2)38361Aug. (8)	Record No.UnitsRecord MonthYears Applied5681Feb. (2)414201Jan. (1)1014211Jan. (1)1026821Aug. (8)108521Nov. (11)436471Feb. (2)1036481Feb. (2)1036491Feb. (2)1036501Feb. (2)1036511Feb. (2)1036531Feb. (2)1036541Feb. (2)1036551Feb. (2)1038361Aug. (8)10

Assessment Credit applied to Claim Group \$22,800.

Value of Work to be credited to Player Resources Inc.'s Portable Assessment Credit (PAC) Account

17,688.

Total Assessment Credit \$4

\$40,488.

STATEMENT OF QUALIFICATIONS

I, J. DOUGLAS BLANCHFLOWER, of the City of Kamloops, Province of British Columbia, DO HEREBY CERTIFY THAT:

- I am a Consulting Geologist with business office at 2391 Bossert Avenue, Kamloops, British Columbia, V2B 4V6; and President of Minorex Consulting Ltd.
- 2) I am a graduate in geology with a Bachelor of Science, Honours Geology degree from the University of British Columbia in 1971.
- 3) I am a Fellow of the Geological Association of Canada.
- 4) I have practised my profession as a geologist for the past thirteen years.

Pre-Graduate experience in Geology - Geochemistry - Geophysics in British Columbia, Yukon and Northwest Territories (1966 to 1970).

Three years as Geologist with the B.C. Ministry of Energy, Mines and Petroleum Resources (1970 to 1972).

Seven years as Exploration Geologist with Canadian Superior Exploration Limited (1972 to 1980).

Three years as Exploration Geologist with Sulpetro Minerals Limited (1980 to 1982).

Two years as Consulting Geologist with Minorex Consulting Ltd.

Active exploration and development experience in Western North America.

5) I supervised the geological, geochemical and geophysical surveys carried out on the May and Jennie property between January 9th and August 27th, 1984 and wrote this report documenting all the results.

J. D. Blanchflower, F.G.A.C.

Dated at Kamloops, British Columbia, this 16th day of January, 1985.

STATEMENT OF QUALIFICATIONS

I, PAUL P.L. CHUNG, of the City of Richmond, Province of British Columbia, DO HEREBY CERTIFY THAT:

- I am a Consulting Geologist with business office at 705 543 Granville Street, Vancouver, British Columbia, V6C 1X8; and President of Boa Services Ltd.
- I am a graduate in geology with a Bachelor of Science (Major: Geology) degree from the University of British Columbia, in 1981.
- 3) I have practised my profession as a geologist for the past three years.

Pre-graduate experience in Geology - Geochemistry in British Columbia and Yukon (1979 - 1980).

Two years as Exploration Geologist with Sulpetro Minerals Limited (1981 - 1982).

- 4) I was the geophysical operator for the magnetometer survey of the May and Jennie property between January 20th and 27th, 1984.
- 5) I mapped the surface geology and supervised the soil geochemical survey of the May and Jennie property between August 18th and 27th, 1984.

1 Chung

Paul P.L. Chung, B.Sc.

Dated at Vancouver, British Columbia, this 15th day of January, 1985.

- STATEMENT OF QUALIFICATIONS -

I, RALPH SHEARING, of 3433 West 12th Avenue, Vancouver, B.C., V6R 2N2, DO HEREBY CERTIFY THAT:

- I am President of Spirex Geoservices Ltd., a geological consulting and services company with business office at 501-808 Nelson Street, Vancouver, B.C. V6Z 2H2.
- 2) I am a graduate of the University of British Columbia with a degree of B.Sc., Geology, 1981.
- 3) I have been active in mineral exploration since 1979 as follows:
 - a) 1979 summer employee with St. Joseph Explorations Limited.
 Pb, Zn, Au, Ag and U exploration in the Yukon and British Columbia.
 - b) 1980 summer employee with Sulpetro Minerals Limited.
 Pb, Zn, Au, and Ag exploration in the Yukon and northern British Columbia.
 - c) 1981 1982 permanent employee with Sulpetro Minerals Limited. Pb, Zn, Au and Ag exploration in the Yukon and northern British Columbia. Geological and geophysical exploration for Au, Ag, Cu, Pb and Zn in northwestern Quebec and northern Ontario. Geophysical exploration provided significant experience in conducting the following geophysical surveys, as well as in the application of the resultant data; VLF-Electromagnetic; Horizontal Loop Electromagnetic; Proton Magnetometer; Induced Polorization and Gravity.
 - d) 1983 present independent consulting geologist with Spirex Geoservices Ltd. Geological and geophysical exploration for Au, Ag, Pb and Zn in central British Columbia.
 - e) That I conducted VLF-EM geophysical surveys on the May and Jennie claim group between January 9th and February 4th 1984.

latel Stearing.

Ralph Shearing, B.Sc. (Geologist)

Dated this 1 day of <u>Feb</u>, 19<u>85</u> at Vancouver, B.C.

- 42 -

BIBLIOGRAPHY

Blanchflower, J.D., 1983	Report on the May and Jennie (L. 3943)
	Crown Grant; Gold Note (L. 616), Golden
	Giant (L. 4655), Tip Top Fr. (L. 4656)
	and Gold Bell (L. 4657) Reverted Crown
	Grants; and Red Top No. 1 Mineral
	Claim, Nelson Mining Division, British
	Columbia, private company report to
	Player Petroleum Inc.
Gerun, A.M., 1974	Various maps and plans of the May
	and Jennie Property by Highland Star
	Mines Ltd.
Kelly, A.H., 1903	Report on the May and Jennie Property;
	private company report for the Reliance
	Gold Mining Co.
Little, H.W., 1960	Nelson Map-Area, West Half, British
	Columbia; Geol. Surv. Can. Memoir
	308, p. 156, 157, 172.
B.C. Minister of Mines	1900, p. 845
Annual Reports	1901, p. 1033
	1904, p. H144
	1905, p. G26, G138
	1907, p. H148, H248
	1919, p. K172
	1940, p. A66

APPENDIX I

Kamloops Research & Assay Laboratory Ltd.

Geochemical Lab Report - Soils

KONLOOPS RESEARCH à

8. C. CERTIFIED ASSAYERS

ASSAY LABORATORY LTD

.

912 LAVAL CRESCENT

PHONE 372-2784 - TELEX 048-8320

GEOCHEMICAL LAB REPORT

PLAYER RESOURCES INC / AUSTIN RESOURCES OATE SEPTEMBER 20 1984 501-008 NELSON ST ANALYST VANCOUVER B C FILE NO. 6 1178 W6Z 2H2

PROJECT 84-1 MAY & JENNIE

KRAL NO.	IDENTIFICATION	AU	CU	- 76	ZN	ΑΑΘΕ 173 ΑΘ
1	96. 25E L96N	5. 0	57. 0	46. 0	144. 0	ə. 1
2	36. SØE	1.0	43. 0	13.0	178.0	0. i
3	96. 75E	. 1.0	59, 9	21. O	89. Ø	a. a
4	97. 00E	1.0	67. 0	16. 0	125.0	a. 1
5	97. 25E	1.0	33. 0	9. 0	106. 0	0. i
ő	97. 30E	1.0	56. 0	9, 9	102.0	0.1
- <u>7</u>	97. 75E	1.0	57.0	8. 0	<u>90, 0</u>	0.1
6	. 38. 00E	1.0	90. O	18.0	79.0	0 . 2
Э	98. 23E	<u>i</u> . 0	79. 0	12.0	131.0	0.0
10	98. 50E	i a	81. O	10.0	77. 0	0.1
ii	96. 7 5E	1.0	78.0	ii. 0	108.0	0. O
12	99. 00E	1.0	120.0	ii.0	97. Ø	ə. Ə
13	39. 25E	1.0	142.0	10.0	100. 0	0. i
14	99. 50E	1.9	92. Ø	<u>9.</u> 0	63. Ø	Q. 1
15	99. 75E 💫 🕗	1.0	88. 0	8.0	88. Ø	0.1
16	100. 00E	1.0	102.0	11.0	78. 0	0.1
17	100. 25E	i. 0	ii6.0	3 , 9	74.0	ଗ୍ର
18	100. 30E	1.0	93. Ø	11. O	77.0	0. 0
13	100.75E	3. 0	96. O	11. O	36. O	0. O
20	101. 00E	i. 0	62, 0	10.0	97. 0	0.i
21	101. 25E	1.0	52. 0	<u>9.</u> 0	33. 8	a . a
22	101. 30E	i. 0	89. 0	10.0	100.0	0.1
23	101.75E	1.0	40.0	9.0	85. 9	ə. ə
24	102. 0 0E	1. Ə	78. 0	3.0	<u>99. </u> 9	0.2
25	102. 23E	1. 0	56. 0	9. 0	181. 9	0. i
26	102. 38E	i. 0	75.0	6.0	70.0	0. 0
27	102.73E	i. 0	50.0	10.0	92. Ø	0.2
28	103. 00E	1.0	41.0	9. 8	101.0	0.2
29	103, 23E	1.0	32. 0	14.0	103.0	0. O
30	103. 30E	1.0	69. 0	11. O	114.0	0.1

	GEOCHEMICA	iL LAB	REPORT			
	FILE NO 6 1178					PRGE 2 / 3
KRAL NO.	IDENTIFICATION	AU	CU	FB	ZN	AG
يتد	ids. 73E	10	30. U	7. U 10. 0	(ଅ.ଅ ୧୦.୦	10. Z
32	104. 002 Lyon	I.U	23. U	12.0	00.0	9.2
33	36. 25E 1.36. JN	1.8	22. 9	الا يُحت	126. 0	త.ప
34	36. 30E	1.0	71.0	12.0	99.0	9. I
33	96. 75E	1.0	43.0	13.0	198. 9	<u>ଥ</u> ୍ୟ
36	97. 00E	i. 0	85. 0	13.0	136.0	J. 1
37	97. 23E	1.0	66. Ø	12.0	115.0	0, 2
38	97. JOE	1.0	27. 0	11.0	60. 0	Q. 4
39	97. 7 3 E	1.0	52. Ə	12. 0	86 , 9	0.2
40	98. 00 E	i. 0	43. 0	14.0	97. 0	9.3
41	98. 25E	10	47. 0	13.0	74. 0	0.1
42	98. 50E	1.0	53. 0	15.0	<u>99.</u> 0	0.1
43	38. 75E	1.0	96. Ø	12.8	87. 0	ର ଚ
44	39. 00E	1.0	60, 0	14.0	76. 0	0. i
45	99. 25E	1. J	98. U	10.0	75.0	ର ତ
46	33. 50E	1.0	85. 0	10.0	83. 0	ə. Ə
47	39. 75E	1.0	57. 0	13.0	72.0	0. i
48	100. 00E	1. I	139. 0	20. 0	65. O	ə. ə
49	100. 25E	1.0	79. 0	13. 0	85. 0	0.1
50	100. 50E	1.0	131.0	16.0	81. O	0. 0
51	100.75E	1.0	69. 0	12.0	102. 0	0.1
52	181. 90E	10.0	73. 0	12.0	107. 0	0. 0
53	101. 25E	10	72. 0	12.0	125. 0	ର ଚ
54	101. 30E	1.0	47. 0	13. O	73. 0	0. i
55	101.75E	1.0	<i>9</i> 8. 0	11. O	102.0	ର, ତ
56	102. 00E	30.0	77.0	13.0	90 . 0	0.1
57	102.25E	1. O	63. 0	10.0	SØ. 9	0. 0
56	102. S0E	1.0	44. 0	19.0	81. 0	0.1
39	102.75E	1.0	16. 0	13.0	84. 8	0.1
60	103. 00E	1.0	49. 0	11. O	100. 0	0, 2
61	103. 2 5E	1.0	45. 0	9.0	73. 0	ə. Ə
62	103. 50E	1. 0	46. 0	10.0	86. 0	0, 2
63	103.75E	1.0	39. 0	10.0	75.0	0,4
64	104.00E L96.3N	1.0	46, 9	12. 0	67. 0	ə. 2
63	96. 23E L97N	1.0	SƏ. 9	12. 8	107.0	0.i
66	96. 75E	1.0	66. 0	13.0	89. 0	ə. 1
67	97. 00E	1.0	42. 0	12. 0	184.8	9,6
66	97. 25E	1.0	34. 0	13.0	96. O	Ø. 2
69	97. SOE	1.0	33. 0	15.0	113.0	9.3
70	97.75E	1.0	39. 0	14.0	85. 0	0.1

î.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

	GEOCHEMI	CAL LAB	REPORT			0005 D	
KRAL NO.	IDENTIFICATION	AU	ເບ	FB	ZN	AG	د /
71	98. 00E	1. 0	52. 0	13. 0	89. Ø	0. i	
72	38. 25E	1.0	63. 0	14. 0	111. O	ə. ə	
73	98. 30E	1.9	147. 0	15.0	118. J	0. 0	
74	98. 75E	1.0	81. Ø	13.0	61. O	9, 9	
73	33. 00E	1.0	91. Q	13.0	92. Ø	9, 9	
76	99. 25E	1.0	74. 0	13.0	90. O	ə. ə	
77	39. 30E	1.0	75.0	11. O	91. 8	ə. ə	
76	33. 73E	1. Ə	109. 0	12.0	76. 0	0. 0	
73	100.00E	1.0	100. 0	ii. 0	96. O	ə. ə	
ିତ	100.25E	1.0	83. 0	11.0	96. Q	ə. ə	
81	100.50E	60. 0	128. 0	9. 0	97.0	0. 0	
02	100.755	5.0	77.0	12.0	1.0	0.2	
20	101.002	60. O	60.0 70.0	10.0	87. 0	ə. ə	
04 07	101.200	0.0 50.0	ମଧି ଥି ସେହି ସ	12.0	98. Ø	9. 9 0. 0	
00 02	101.000	వలి. లి నారం ర	තර. ඒ උප ර	12.0	33.0	ଅ. ଅ	
00 37	101.705	ఎల్.లో కంప	60. 8 54 0	13.0	110.0	ୟ ଅ ୦୦	
20	102.005	0.0 1.0	47.0	10.0	113.0	9.9 0.1	
23	102.202	1.0 5.0	43.0	10.0	24.0 75.0	0.1	
30	102.755	5.0	42.0 05.0	2.0	13.0	9.9 0.0	
	102.102	ປ.ອ 15 ຄ	20.0 75.0	12.0	27.0 100.0	8. Z G 1	
92	103.000	10.0	30.0 21.0	12.0	200.0	0.1 3 3	
97	103.200	45 G	22.0	10.0	22.0	0.0 3 (
94	183. 75E	1.0	20.0 36.0	10.0	00.10 Gat 21	0.1	
95	104 00F (97N	1 3	70.0 70.0	12.0	79.0	0.3	
36	36 AAE 197 5N	1.0	45.9	11.0	72.0 72.0	0.0 G 1	
97	96. 25E	1.0	31.0	22 0	31.0	25	
36	36. 30E	1.0	15.0	เลล	46.0	a o	
9 9	96. 75E	1.0	76. 0	10.0	113.0	ล ล	
199	97. 00E	1.0	35. 0	12.0	51.0	0.6	
101	97. 2 3E	1.0	38, 0	19, 0	100.0	a 2	
192	97. SØE	5. 0	25. 0	13.0	36. 0	2.5	
103	97. 75E	1.0	32. 0	15.0	87. 0	0.1	
104	98. 9 9E	1.0	65. 0	Э. Ә	75. 0	0, 0	
105	98. 25E	1.0	68. 0	12.0	79.0	0.0	
196	98. 50E	1. 0	123.0	11.0	102.0	อ.อ	
107	98. 73E	1. 0	117. 0	15.0	72.0	0. 0	
106	99. OOE	1.0	91. Ə	14.0	101. 0	0.1	
109	99. 25E	1.0	49. 0	12. 0	67.0	0. 0	
110	39. SBE	1.9	. 41 0	11 A	71 a	ฉฉ	

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

.

	AFACHEMIC	« nooni 6L 1.66	REPORT	OKI LIV.		
	FUE NO 6 1178					FAGE 4 / 3
KRAL NO.	IDENTIFICATION	AU	CU	26	ZN	AG
					ه هه که که به به به به بن بن	
111	99. 75E	1.0	62. 0	12. 0	77. 0	0.1
112	100. 00E	1.0	69. Ø	13. 0	152. 0	ə. 1
113	100. 25E	159. 9	123. 0	12.0	99. O	ə. 1
114	100. SOE	1.0	143. 0	12. 0	103. 0	0.1
115	100.75E	1. Ə	92. O	<u>11</u> . 9	102. 0	ə. ə
116	191. 995	1.0	<u>3</u> 9. 0	12. 0	83. 0	0. O
117	101. 25E	10. 0	113. 0	11 J	78. 0	9. 9
118	- 101. 50E	15. 0	88. Ø	11.0	65. 0	0.1
119	101.75E	10.0	51. O	9. 0	<u> 89.</u> 9	ର. ତ
129	102. 00E	1.0	60. 0	8. 0	78. 0	ə. ə
121	102. 23E	10.0	50. 0	10. 0	95. O	ə. ə
122	102. 50E	- 79, 9	81. O	9. 0	58. 0	0. i
123	102.75E	1. O	55. 0	11. J	102.0	છ. વ
124	103. 00E	1.0	33. 0	11. O	103. 0	ə. 1
125	103. 25E	1.0	39. O	10. 0	88. O	9, 2
126	103. 50E	1. O	29. O	12. 0	107. 0	0. i
127	103.75E	i ə	38. 0	10.0	91.0	9, 2
128	104.00E L97.5N	i. 0	36. 0	10. 0	70. 0	ə. 1
123	95. 73E L 98N	1.0	56. 0	14.0	58. 0	ə. ə
130	96. 00E	1.0	55. 0	<u> 9. 0</u>	70.0	ə. ə
131	96. 25E	5. 0	38. 0	Э. Ә	96. 0	0.3
152	36. SOE	1.0	56. 9	11. I	103. 0	. ପ. ପ
• • • • • • • • •	96. 75E	40. 0	76. 0	18. 0	55. 0	0.2
134	97. OOE	125. 0	106.0	118. O	83. Ø	14
135	97. 23E	10.0	37.0	16. 0	<u> ୨</u> ୫. ୫	0. l
136	97. 30E	330. 0	61. O	24. 0	67. 0	0.6
137	97. 73E	5.0	76. 0	10. 0	75. 8	0.1
133	38. 0 0E	1.0	75.0	10.0	92. Ø	8.1
139	38. 25E	5.0	102. 0	14. O	73.0	0.1
140	38. SØE	35. 0	97. 0	11. O	77.0	0. Ø
141	38. 75E	20. 0	110. O	10.0	63. Ø	. 0. 0
142	99. QQE	ii5.0	122. 0	9.0	67. 0	ର ଗ
. 143	39. 25E	120. 0	72. 0	10.0	62. 0	0.1
144	99. 50E	155.0	74. 0	10. 0	70. 0	ə. ə
145	99. 75E	100. 0	183. 0	12.0	66. 0	ର ଚ
146	100. 00E	15. 0	127.0	10. 0	96. O	0.1
147	100. 25E	1.0	142.0	10.0	73. 0	0.1
148	100. 30E	1. 0	150.0	9. 0	34.0	ð. 4
149	100.75E	1.0	118. 0	11. 0	38. 0	<u>ଟ</u> ଗ
150	101. 00E	75. 0	121. 0	12.0	73. 0	0. i

.

.

.

KAM DOES RESEARCH & ASSAY LABORATORY LTD.

٠

.

KAMLOOPS	RESEARCH &	85587	LABORATORY	LTD.
(BEOCHEMICAL	LAB	REPORT	

Kral no.	FILE NO G 1178 IDENTIFICATION	âU	CU	FB	ZN	PAGE 5/3 AG
 151	101. 23E	30. O	78. 0	ii. 0	74. 0	0. 0
152	101. SOE	1.0	73. 0	10.0	84. 0	0.2
153	101. 75E	1.9	74. 0	12. 0	102. 0	0 . 0
154	102. 00E	1.0	72. 0	12.0	85. 0	ର ଚ
155	102. 25E	1. 0	64. 8	12.0	73. 0	o. o
156	102. 30E	65. 0	56. 0	12. 0	63. 0	0.1
157	102. 75E	<u> 80. 0</u>	53.0	13.0	116.0	0, 2
158	103. 00E	1.0	24. 0	12. 0	74. 0	0.1
159	103. 25 E	1.0	40. 0	14.0	118.0	0, 0
160	103. SOE	20. 0	51. O	11. Ə	105. 0	ə. 2
161	103. 75E	1.0	78. 0	15.0	97. 0	0.5
162	104. 00E	190.0	<u>90, 0</u>	11. O	73.0	0.3
163	96. 00E L 96. 3N	35. 0	1410. 0	15. 0	79. 0	1. 9
164	96. 25E	1. Ə	112.0	11. J	72, 8	ə. 3
165	96. 75E	1.0	38. 0	15.0	127.0	9, 2
166	97. 00E	10	26. 0	14.0	73.0	0.5
167	97. 25E	1. O	40. 0	12.0	86, 9	8.1
168	97.5E A	1.0	110.0	11. J	87. 9	ର 4
169	97. SE B	1.0	127. 0	16. 0	86. Ø	9, 5
170	97. 75E	1.9	58, 0	13.0	124. 0	0.3
171	98. 90E	- 10	65. 0	16. 8	132.0	ə. 1
172	98. 25E	1. O	102.0	13. 0	90. O	0. O
173	98. SOE	1. 0	116.0	13. 0	71.0	0, 2
174	98. 75E	1.0	111. I	14.0	96. Ø	ର, ତ
175	39. 00E	15.0	125.0	- 13.0	88. O	ର, ତ
176	99. 20E	39. 9	128.0	11. O	63. 9	a. a
177	99. SØE	1.0	157.0	11. O	100. 0	0. O
178	99. 75E	70. 0	63. 0	12. 0	73.0	0.0
179	100. 00E	215. 0	81. 0	12.0	115.0	0.0
160	100. 23E	1.0	80. O	11. Q	89. 0	ର ଚ
181	100. 30E	1.0	176.0	11. O	66. 0	0. O
132	100. 73E	1.0	79.0	14.0	94. 0	0. 0
163	101. 00E	1. I	66. 0	9.0	31. O	9 , 9
184	181. 25E	1.0	55.0	11.0	111.0	ରୀ ତ
165	101. 30E	1.0	66, 9	Э. Э	8 9 , 9	0.0
166	101. 75E	1. 9	43. 0	12.0	93, 0	ର, ତ
187	102. 00E	1.0	65. 0	10. 0	91. 0	0.0
166	102.25E	150. 0	68. 0	12. 0	89. 0	ə. 2
189	102. S0E	10.0	36. 0	14.0	101. O	ର, ର
130	102.75E	460. 0	80. 0	14. 0	96. Ø	9, 9

KAMLOOPS	RESEARCH &	85584	LABORATORY	LTD.
i	GEOCHEMICAL	LAB	REFORT	

 \bigcirc

 \bigcirc

	GEOCHEMIC FILE NO G 1178	AL LAG	REFORT			FRGE	673
RAL NO.	IDENTIFICATION	AU	CU	FB 1	ZN	86	
191	 103. 00E	5. 0	46. 0	11. 0	SS. 0	ə. ə	
192	103. 25E	1.0	33. 0	10. 0	74. 0	· 0. 0	
193	103. 50E	1.0	42. 0	10. 0	94. Ø	0, 2	
194	103. 75E	1.0	34. 0	10. 0	101. 0	ə. ə	
195	104.00E L98.5N	1.0	65. 0	10. 0	104. 0	0.1	
101	95. 75E L99N	1.0	34. 0	10. 0	57. 0	8 , 8	
102	96. 00E	1.0	41.0	20. 0	<u>30.</u> 0	0.1	
103	96. 23E	45. 0	66. 0	10.0	78. 0	0. 0	
104	96. SØE	10. 0	63. 0	12.0	81. O	0.0	
105	96. 73E	125. 0	61. O	12.0	117. 0	0.2	
106	97. 00E	1.3	33. 0	27. 0	85. 0	0.0	
107	97. 25E	1.0	44. 0	12. 0	63. Ø	ə. 2	
108	97. SOE	120. 0	73. 0	13.0	110. 0	ə . Ə	
109	97. 75E	1.0	66. O	12.0	103. 0	0.0	
110	38. 00E	1.0	71. 0	13.0	92. 0	0. 0	
111	96. 25 2	1. 0	120. 0	10. 0	99. O	ə. ə	
112	36. 50E	1.0	168. 0	12.0	134. 0	ə. ə	
113	98. 75E	1.0	66. Ø	12.0	121. 0	9.9	
114	33. OOE	20. 0	30. 0	11. I	93. 0	0. 0	
115	99. 25E	1.0	38. 0	11.0	78. 0	0. 0	
116	99. 50E	1.0	67. 0	11.0	84.0	0.0	
117	33.75E	1.0	33. J	10.0	36.0	0.0 0.0	
113	100. JUE	20.0	43. 8	12.0	୍ୟ ମ	. 0.0	
113	100.255	20.0	94.0 154.0	11.0	31.0	U. U 0 0	
エビビ	100.302	1. 1	100.0	0. U	لا .د <i>ا</i>	U. U 0. 1	
121	100.70E	ତଥିଥି	60.0 00 0	10.0	62. U 67. 0	8.I 0.0	
107	101.002	1.U	02.0 111.0	11.0	07.0 30.0	<u>වැද</u> බර	
10.1	101.235	15.0	114.0	19.0	77.0 75.0	0.1	
124	101.305 -	13.0	100.0	12.0	0.0 77.0	0.2 0.0	
125	(95 99 2	+0.0 15 A	42.0 62.0	14.0	13.0 30 A	0.0 2 3	
120	102.002	10.0	62. 6 69. 9	110.0	22.0 29.0	0.0 2.2	
120	102.202 102 505			2.0		ວ. ອ ລຸລ	
123	102.002	20.0 : 0	20.0 77.0	୦.୦ କ୍ର	୦୦.୦ ୫୮.୦	0.0 A 2	
130	102.102	5.0	57 0	3 A	74 A	ส ว	
131	103. 25E	1.0	43. 0	เล อ		a 2	
132	103. 305	20.0	73.0	11.0	102.0	8.3	
133	103. 75E	1.0	44.0	12.0	66. 9	0.i	
134	104. 00E L 39N	1.0	41.0	10.0	70.0	1.0	
135	36 00F 1 39 5N	1.0	47. 0	35. 0	66. 9	aa	

KAMLOOPS RESEARCH & A	ASSAY LABORATORY	LTD.
-----------------------	------------------	------

	GEOCHEMIC	AL LAB	REFORT			
KRAL NO.	THE NO G 1178	80	cu	2 8	ZN	RG 773
136	96. 30 2	1.0	75. 0	ର. ଡ	89. O	ə. ə
137	. <i>36.</i> 75E	10. 0	34. O	16.0	96. O	ə. ə
1 38	97. 00E	10. 0	111. O	10. O	104. 0	0.0
139	97. 25E - A	1.0	59. O	13.0	94.0	Q. 1
140	97. 25E B	10	57. 0	33.0	68. 9	ə. ə
141	97. 30E	1. 9	196. 9	11. J	67. 0	Ð. Ð
142	97. 75E	5. 0	92. O	12.0	106.0	8. O
143	98. 80E	5.0	104. 0	13.0	112.0	0.2
144	98. 25 E	5. 0	117. O	11. O	56. 0	0. 0
145	98. SØE	5.0	73.0	ii. 0	66. 0	0.1
146	98. 75E	5. 0	62. 0	<u> 9.</u> 0	114. 0	0.0
147	39. 99E	150.0	146. 0	18.0	103. 0	ର ତ
148	99. 23E	10	121. 0	<u>9.</u> 0	84. O	ə. ə
149	33. SØE	i. 9	106. 0	10.0	57. 0	0.1
150	99. 75E	1.0	159.0	8. 0	<u> 96.</u> 0	0. 0
151	100. 00E	1. O	107. 0	3.0	87. 0	0. O
152	100. 25E	10.0	196. 0	6. 0	69. 0	9 . 9
153	100. SOE	1.0	129.0	19. 9	100. 0	8.0
154	100.75E	1.9	92. Ø	15.0	119.0	0. 0
155	101. 00E	19. 0	91. 0	10.0	124. 0	ə. ə
136	101. 25E	1.9	85. 0	10.0	97. 0	0.0
157	101. SOE	10	47. 0	10. 0	70.0	0.0
158	101. 75E	1.0	35. 0	10. 0	78. 9	0. 0
159	102. 00E	1. O	28. 0	10. 0	33. 9	0.1
160	102.25E	1.0	73.0	12.0	128, 9	0.3
161	102.50E	1.8	77.9	11.0	89, 9	0.1
162	182.75E	1 0	56. 9	12.0	97. 0	0.2
167	192 995	1 0	3 0 .0	12 0	111 0	ด้ว
164	103.05E	1 0	51.0	16.0	156.0	a 1
167	103. 202 193. 30E	1 0	71 A	22 A	75 A	อ. <u>-</u> อ. อ
166	103.002	1.0	107.0	17.0	 เลิด	1 2
157	103.005 122 50	1.0 1.0	 	1.1.0		4.0 9.0
101	104.002 L99.00 02 975 1 1000	1.0	73.0	19.0 19.0	20.0 22.0	0.0. A :
100	96. 23E L100M	75 0 1.0	193 G	10.0 30.0	20.0	0.1
100	00.00L 00.755		127.0	70.0 ** q	55.0	0.0
170	20.7JE 97.005	00.0 ເລ	142.0	11.0	00.10 0.5 0	0.0 0.1
110	27.00E 07.055	ມ.ຍ ຊຸດ	(0.0 :70.0	2.0 10.0	24.0 101.0	0 G
112 	27.2JE 27.505	5.0 5.0	120.0	10.0	04 0 101 0	9.7 0.1
112 174	27.00E 97.755	୦. ଏ ଜନ ଜ	124.U 77.0	15 0 10 0	୍ରକ.ଏ 100-0	9. L 9. ł
114 175	27.73E	10.U	(3.10 70-0	10.0 11.0	100.0	0.1
11 J	70. UUC	1.1	イビー ゼ	그그 언	100. U	10. 10 1

	KAMLOOPS RESEARCH	i & ASSA ⁱ	Y LABORAT	ORY LTD.		
		AL LAB	REPORT			
Wheel No.	FILE NO G 1178		•••			PAGE 8/3
NRTE NU.	IDENTIFICHTION	HU	CU	69	Zh	66
176	98. 23E	1.0	145.0	13.0	119 A	 ค.ด
177	98. 50E	10.0	116.0	11.0		ดิด
178	98. 7 5E	40. 0	144. 0	12.0	128.0	a. a
179	33. 00E	15. 0	110.0	9, 0	83. Ø	2. 9
130	99. 23E	60, 0	118.9	10.0	88, 9	ลิต
181	39. SØE	150.0	81. O	10.0	75.0	8.9
182	99. 75E	1. O	30. 0	10.0	57.9	9,9
163	100. 00E	70, 0	264. 0	4.0	76, 0	a. a
184	100. 255	19	100.0	16.0	114.0	0.0
185	100. 30E	85.0	156. 9	9. 0	3 5, 8	ə. ə
136	100.732	i. 0	137.0	13.0	39. Ø	9 , 9
187	101. 00E	59, 9	66, 0	11.0	84. 9	<u>ə</u> , ə
188	101. 25E	79, 9	115.0	13. 0	95. O	ə. ə
189	101. 50E	1.0	76. 0	12.0	112.0	a. ə
190	101.75E	250, 0	100.0	14.0	69. 0	0.0
191	102.00E	15.0	52, 9	11. O	81. O	ର, ତ
192	102. 23E	1.0	64. 0	11. I	89. 0	9.1
193	102. 30E	1.0	93. 0	14.0	111. O	ର୍ଚ
194	102.73E	1.0	ତଥି ପ	12. Ə	119. 0	9, 9
195	103. 00E	55. 0	62, 0	12.0	115. 0	0.0
196	103. 25E	i. 0	70.0	15.0	62. 0	0.1
197	103.30E A	20. 0	124. 0	13.0	83.0	0.1
198	103.30E B	1.0	21.0	22. 0	36. 0	ରା ହ
133	104.00E	1.0	67. 0	13. 0	82. 0	Ð. 4
199	96. 23E L' 100. 5N	1.0	27.0	11. O	65. 0	0.3
idi	36. SQE	10. 0	39. 0	17.0	69, 9	0.1
102	96. 75E	5.0	64. 9	13.0	76. 0	0.2
كلانا	Fr. UVE	1.3	29. 0	15.0	77.0	0.4
104	97.20E	5.0	64. 0	34. 0	102.0	9.3
100	97. SQE	1.0	102.0	10.0	91. Q	9. 9
100	27.70E	1.0	71.0	13.9	114.0	0.2
101 101	70. UUC 00. 0000	1.0	132.0	13.0	/ 106. 0	0.2
100	20.200 00 500	1.10	101.0	16.0	128.0	0.i
107	20. JUE 00. JUE	08.8 • • • • • •	<i>3</i> ರಿ. ಅ ೧೯೧೧ ೧	0.9 17 0	06. H	8.3
1 1 KI	20. (UE) . 20. 205	1440.0 50	230.0	13.0	67. U	0.8
112	27.000 00.000	5.0 4 A	157.0	17.0	66. Ø	8.9
1.1 <i>4</i> 	<i>77. 2</i> 05 00. tor	т. 6	143. U	12.0	83.0	0. 0
ن غالم الم م م و	77.00E 00.755	1.0	60.9 40.0	10.0	72.0	8.8
44C	. 22.10E 100.005	දත්, ම ද ර	40.0	16. 원 44 - 0	107.0	0.0
170	100.00E	7. Q	113. U	II.U	63.0	i. 3

.

and the second second

. . .

	KAMLOOPS RESEARCH	& ASSAY	LABORAT	ORY LTD.		
	GEOCHEMIC	AL LAB	REPORT			·
ternen son	FILE NO U 1178	<u></u>			-	FRGE 9/3
		<u>н</u> 0	00	PB	ZN	HG
116	100. 23E	 40. 0	 63. 0	10.0	89. 0	 อ. อ
117	199. 50E	1.0	104.0	10.0	87. 0	0.1
118	100. 75E	1.0	100.0	12.0	93. Ø	0. O
119	101. 00E	1.0	63. 0	11. J	76. 0.	0.1
120	101. 25E	1.0	ତଥି ଥ	11. I	72.0	0.0
121	101. SOE	5.0	82. 0	11.0	69. 0	9.3
122	101.75E	5.0	98. Ø	12.0	71.0	Q. 4
123	102. 00E	<u>90, 0</u>	66. 0	10.0	56. 9	0.1
124	102. 25E	15.0	45. 0	13.0	67. 0	ə. Ə
125	102. 30E	5.0	28. 0	14.0	75.0	ə. Ə
126	102.73E	5. 0	40.0	14.0	98. 9	ə. ə
127	103. 90E	1.0	23. 0	14.0	95. Ø	8.4
128	103. 25E	50.0	87. 0	14.0	130.0	ə. 5
123	103. 50E	1.0	31.0	14.0	117.0	2.5
130	103. 73E	1.0	20. 0	12. 0	78, 0	1.4
131	104.00E L100.3N	5. 0	79, 9	15.0	72.0	0. G
132	95.75E L101N	1.0	39. 0	14.0	88. Ø	ର, ତ
133	96. 00E	5.0	31.0	12.0	93. Ø	8.6
124	96. 23E	i.0	. 33.0	13.0	64. 0	0.1
133	36. 50E	75.0	72. 0	43, 0	88. 8	0. Q
136	36.73E	1.0	52.0	. 13.0	91.0	0. 0
121	97.00E	70.0	40.0	21.0	93. 0	0.0
611 671	37.232	1. 신	52.0	14.0	117.0	0.2
137	37. JUE	23. 8	19.9	12.8	77.0	8.3
140	38.00E	1.0 (T.0	100.0	13.0	195. 9	0.0
141	20. 202 00. 505	40.0 67 0	192.9	is U or o	94.0	ଅ.ସ
192	20.00E 00.755	60. U • 0	(3.8 07 0	25.0	136.8	ର ଏ
142	20.70E 20.60E	1.0 27.0	01.8	1년, 년 10 - 0	. जन्म जन्म ज	8.1 0.0
145	22.00E 22.05E	20.0 65 0	107 0	10.0	୦୩.ଅ ୦୩.ଅ	9.0 0.0
145	22 795	00.0 100.0	102.0	14.0	00.0 00.0	0.0 3 3
147	22. UVE 29. 795	125.0	<u>ಿಲ್ಲಲ</u> 112-೧	12 Q TT 6	00.0 72.0	0.0 0.2
148	:00 00F	123.0	117.0	20.0	(2.9 37 G	0.0
149	100.002	100.0	101.0 55 0	0.0 10.0	97. U 00. 0	0.3
172	100.202 100 F0F	1 0	ତତ. ଅ ଲୁଡ଼ାର	ао таа	20.00 21:0	0.0
100	100.000 100.752	10	22.0 93.9	7.0 2 0	27. Q	0. द व र
150	100.702 101 005	1.U 1.O	04.0 11 0	7.0 10.0	((, V) 23 ()	9.J 0.0
157	101.052	1.0 25 G	41.0 33.0	10.0 10.0	51.0 7:0	0.0 0.0
147.	101 SAF	20.0 150.0	92.9 72.0	70.0 10.0	रत ० (म. ७	8.8 0.0
107	101.755	100.0 TG G	ుం. ల మాం	୨.ଅ 1ର ର	02.0 70.0	9.2 G (
700	aga. Poe	20.0	03.0	10.0	(U. U	0. I

·

. .

.

		GEOCHE	MICAL LAB	REPORT				
:	KRAL NO.	FILE NO G 117 IDENTIFICATION	8 AU	CU	28	ZN	PAGE 10 / AG	3
	 156	 102 005	 : a		 זיג מ	 tta a	 ລີ	•
	157	192.000	2.0	31.0 70.0	13.0	110.0 75.0	9.5 G 1	
	158	102.200	5 A	30.0 75 a	0.0 70 A	10.0 39.0	0. 1 G G	
	159	102.00E 102.75E	10.0	చెం.ల చెంద	21.0		0.0	
	120	107 005	: 0	73.0 72.0	47 0	102.0	0.0	
	100	103.00E 193.255	1.0	70.0 24.0	12.0	115 0		
	162	103.200		107.0	11:0	20.0	0.0	
	167	103.000	ତର ତ ୁନ ଜ	- 103. 0	12.0	୦ <u>୯</u> .୦ ଇପାର	9.9 33	
	164	104.00E L101	N 22.0	47 A	14.0	60.0 69.0	9.0 A R	
•	165	95 50F 1101	5N 19	24 A	เลิด	72 A	ล่อ	
	166	95. 75E	50 50	 ລ	17 A	70.0	្រុះ	
	167	96. 00E	110. A	34.0	20. A	101 A	0. 2 0. 2	
	168	36. 25E	59.9	54 A	7.2	87.9	9 R	
	169	36. SAE	1 0	37.0	12.9	97. A	9.2 A 2	
	179	96. 75E	1.9	21.0	3 0	65.0	ดิด	
	171	97. 00E	1. 0	82.9	11.0	198.9	อ.อ ค.ค	
	172	97. 25E	1 8	47 A	3 0	116.0	0.0 A A	
	173	97. SØE	5.9	45. 0	10.0	101.0	a :	
	174	97. 75E	63. 0	89. A	69.9	196.9	ค.ค.	
	175	38. 00E	10.0	118.0	15.0	108. 0	a.a.	
	176	96. 25E	1.0	104.0	16.0	123.0	ลิด	
	177	98. 30E	95. 0	36. 0	15.0	160.0	0.0	
	178	98. 75E	5. 0	34. 0	6. 0	16. 0	a 1	
	179	39. 90E	1.0	63. 0	13.0	38. 0	0.0	
	139	99. 25E	60, 0	72.0	3. 0	81.0	ର, ଗ	
	181	99. SOE	10.0	5i. 0	6. 0	79. 0	8.9	
	182	99. 75E	25. 0	72.0	7.0	97. 0	0. i	
	183	100. 00E	1260. 0	124.0	5. 0	65, 9	ə . ə	
	184	100.25E	9 0 , 9	87. 9	<u>9.</u> 9	105.0	0.4	
	185	100. 50E	60, 0	62, 9	7.9	107.0	0.0	
	186	100.75E	1.0	66, 9	33, 0	78, 9	0.1	
	187	101. 00E	1.0	39. 0	20. 0	59, 0	0.1	
	188	101. 25E	5. 0	71.0	14. 9`	69. 0	0 . 0	
	189	101. 30E	5.0	36, 9	11.0	58, 9	0.0	
	190	101.75E	105. 0	33. 0	14.0	89. 0	ə. S	
	131	102. 00E	1. O	23. 0	18.0	73. 0	a. 2	
	192	102.25E	1.0	110.0	9, 9	67. 8	0.3	
	193	102. 50E	1. 0	30. Q	20. 9	42, 9	9 , 9	
	194	102.75E	1.0	78. 0	13.0	78. 8	1.0	
	195	103. 00E	10. 0	23.0	12.9	63, 8	0.4	

.

•

•

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

			KEP OK 1				
rea: Nn	FILE NO G ILVO	ລາ	<u>en</u>	22	78	- 20 20	./ 2
				, c. 		به هو هو دور ور موجود مرد مرد هو ورو م	
196	103. 23E	1.0	42. 0	15. 0	66, 9	0.1	
197	103. 30E	25.0	132.0	15.0	81. 9	<u>ə</u> , ə	
198	103.73E	89. J	80. 0	14.0	86. 0	ର, ତ	
199	104.00E L101.3N	1.0	41.0	11. O	77. 0	9, 2	
101	95. 50E L 102N	1.0	43. 0	14.0	48. 8	ର, ତ	
102	95. 75E	20. 0	25. 0	31. 0	48. 0	0.1	
103	96. OOE	63. 0	37.0	10.0	66. 0	ə. S	
104	96. 25E	1.0	32. 0	10. 0	72.0	8, 2	
195	96. 30E	1.0	28, 9	12.0	65, 9	0.3	
106	96. 75E	1. O	66, 0	8. 0	97. O	0, 2	
107	97. 00E	1.0	38. 0	11. Ə	46. 0	0, 2	
108	97. 25E	1.0	39. 0	10.0	79. 0	9 , 3	
109	97. SØE	1.0	90. 0	16. 0	73.0	0. 0	
110	97. 75E	i. 0	110.0	12.0	76. 0	0.1	
. 111	38. 00E	20. 0	133.0	11.0	78. 0	0.1	
112	96. 25E	1.0	100. 0	18.0	108, 0	9.2	
113	96. SOE	1.0	34. O	17. 0	<u>111.</u> 0	0.0	
114	96. 75E	50. 0	<u>99.</u> 0	12.0	87. 0	ə. 1	
115	93. 00E	1.0	78. 0	12. 0	195. 9	9, 2	
116	99. 25E	1.0	76.0	11.0	96. Ø	0,1	
117	99. SOE	5. 0	74. 0	14.0	79.0	0.1	
113	99. 75E	1.0	82. 0	11. J	79, 9	0.0	
113	100. 00 2	150.0	8 1 . 9	14.9	87. 0	ର, ତ	
123	100.23E	45, 9	93, 0	11.0	81. 9	0, 0	
121	100. SOE	1.0	54. Ø	9. Q	65.0	0.1	
122	100.75E	1. 0	54. 0	10.0	70, 0	<u>a</u> 2	
123	101. 00E	5.0	63, 9	9.0	68, 0	0.1	
124	101. 23E	10. 0	54. 8	10.0	79, 9	0.1	
125	101. SOE	70.0	63. 0	14.0	76.0	0.2	
126	101.75E	39, 9	68, 0	18.0	100.0	0, 2	
127	102. 00E	ରେ. ତ	40. 0	12.0	69, 0	0, 2	
128	192.25E	65.0	51. O	8.0	ରେ, ପ	<u>0. 1</u>	
123	102. SOE	35. 0	53.0	10.0	72. 0	0, 2	
130	102.73E	1.0	88. 0	13.8	34. 0	2.0	
131	103. 00 E	1. O	33.0	13.0	78, 9	9,6	
132	103. 23E	30. 0	64. 0	29, 9	92. ₍ 0	8.1	
133	103. 30E	35.0	41.0	18.0	76, 9	0, 0	
134	103.75E	1. J	35.0	20. 0	85. 0	0.3	
135	104.00E L102N	29. 9	ରସ, ପ	23.0	68, 9	0, 0	
136	95.75E L102.5N	40.0	29. 0	37.0	50, 0	0.0	

	OEOCHEMI	Cal 188	REPORT	IONI CID.			
	FILE NO G 1173		KEP OK I			sens	10.2.5
KRAL NO.	IDENTIFICATION	80	cu	28	7N	80	د / 21
137	96. <u>89</u> 5	20. 0	76. 0	12.0	86. 9	8.3	
138	96. 25E	15.0	77.0	19.0	79, 9	0. S	
133	36. SOE	1.0	26. 0	11. O	63. 9	0.2	
140	36. 75E	5.0	58. 0	12.0	81. O	0.5	
141	37. 00E	1. J	40.0	12.0	54. 0	0.6	
142	97. 23E	1.0	42. 0	10. 0	<u> ଅ</u> ଞ୍ଚ. ଡ	0.5	
143	97. 30E	5. 0	122. 0	12.0	56.0	0.0	
144	97.73E	1.9	83. 0	13.0	81. 9	0.0	
. 145	98. 88E	10.0	361.0	72. 0	66, 9	0. S	
146	F6. 20E	1. 0	35.0	10. 0	75. 0	0.1	
147	36. 30E	1.0	77. 8	10. 0	76.0	ə. ə	
148	98. 75E	20. 0	71.0	15.0	94. O	<u>a</u> a	
149	33. 00E	20. 0	95. O	11. O	74. 0	ə. ə	•
150	99. 23E	5.0	64. ଡ	14.0	S9, 9	0.2	
131	33. SHE	20. 0	78.0	10.0	63, 0	0.1	
152	99.75E	35.0	Si. 0	11.0	66, 9	0.i	
153	100.00E	40.0	<u> 90. 0</u>	10.0	63, 9	0.2	
104	100.252	1.0	44.0	Э. Ә	62. 0	0.2	
155	100. 30E	1.0	51. Q	, 7.0	64. 0	0.1	
136	100.73E	1.0	38. 0	9. 0	69. 0	0.1	
101	101.002	1.0	55.0	7.0	57. 0	0.1	
158	101.252	5. 0	37. 0	15.0	69. 0	ର, ଅ	
159	101. 50E	39.9	41.0	12.0	78. 0	0. i	
100	101.75E	115.0	53.0	10.0	86. 0	0. C	
161	102. 00E	69, 9	55.0	10.0	<u> 62. 0</u>	0,4	
162	102.25E	5.0	38.0	11.0	ରେ. ତ	8.3	
163	102. SOE	1.0	28. 0	10.0	63, 0	8, 2	
164	102.755	1.0	19.0	ii 0	41.9	0.7	
160	103. 99E	20.0	65.0	16.0	75.9	ର ର	
400	103.206	10. 0	75.0	18.0	69. 0	0.6	
107	105.502	1. 0	63. Ø	33. 0	84. Ø	0. i	
168	103.755	145.0	60. 0	25. 0	107.0	0.1	
103	104.00E L102.5N	1. 0	26. 0	16.0	73. 0	0, 2	
110	95.758 E103N	25. 0	34. 8	10.0	52. 0	0.0	
1/1	36.00E	5. 0	196. 9	9. O	59. J	0. S	
1/2	96. 23E	1.9	31. 0	7.0	59, 9	0.0	
173	96. SØE	1.0	36. 0	10.0	86. 0	0.1	
174	96. 73E	1.0	93. 0	9, 9	38.0	ə. ə	
173	37.88E	5.0	55. 0	10.0	71.8	8.2	
176	97. 23E	20. 0	56, 0	9.0	65. 0	0, 1	

`

.

.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

· · · ·

.

•

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT FILE NO G 1178

PAGE 13 / 3

KRAL NO.	IDENTIFICATION	au	CU	FB	ZN	AG
177	97. SØE	1. 0		9. 0	 60. 0	0. 1
178	97. 75E	159. 9	91.0	10.0	61. 0	0.1
173	98. 99E	10	137. 0	7. 0	66, 9	8.1
160	98. 25E	20. 0	113.0	5.0	41.0	0.0
181	38. 30E	1.0	<u>90, 0</u>	24. 0	97. 0	0.1
182	96. 73E	ରେ ଚ	70. 0	13.0	63, 9	0.0
183	33. 00E	1. 0	114.0	12.0	87. 0	0.0
184	99. 23E	1.0	76. 0	19.0	88, 9	0.0
185	99. SOE	1. 0	68. 0	3.0	6 <u>3</u> . 0	0.0
186	39. 75E	5.0	76. 9	8.0	69. 0	<u>a</u> a
187	100. 00E	5.0	73. 0	6 , 0	63. 0	0, 2
188	100. 23E	5. 0	61. 0	3.0	65. 0	0. 1
189	100. SOE	1.0	86. 9	10. 0	58. 0	0.2
190	100.755	1.0	43. 0	<u>3.</u> 0	71. 0	0.1
191	101. 005	15.0	60, 0	10.0	79. 0	0.1
192	101.258	70.0	168. 0	13.0	58. 0	0. 0
193	101. 305	5.0	83. O	11.0	86. Ø	0.3
134	101.75E	1.0	87. 0	12. 0	93. Ø	0.2
195	102. 00E	30. 0	123. 0	11.9	58. 8	0. G
196	102. 25E	1.0	47. 0	10.0	92. Q	0.1
197	102. SQE	5.0	41.0	10.0	8 <u>3.</u> 0	0.2
198	102.75E	1.9	36. 0	13. 0	79, 0	Ó. 2
199	103.002	1.0	69. 0	19.0	121. 0	0.2
200	103. 25E	1.0	73. 0	21. 0	6 8, ଖ	
201	103. 30E	i. 0	57. 0	23. 0	102. 0	0.3
202	103.75E	10.0	156. 0	20, 0	92. 0	9.1
203	104.00E L103N	1.0	75.0	17.0	118.0	0.5
104	96.00E L 103.5N	1.0	68, 9	15.0	104. 0	0. O
105	96. 23E	1. O	79. 0	11. O	108. 0	0.1
106	96. SØE	1. I	46, 0	14.0	93. O	0. C
107	36. 73E	1.0	20, 0	10.0	79, 9	0.4
103	97. 00E	1.0	43.0	13.0	84. 0	0.2
109	97. 23E	1. O	30. 0	10.0	105.0	0.2
110	97. SØE	1. 0	<u>30.</u> 0	16.0	72, 0	0.1
111	97. 73E	1. 0	59. O	15. 0	103. 0	a. s
112	38. 00E	30, 0	102.0	16. 0	87. 0	0.1
113	98. 25E	5. 0	97, 0	13.0	100. 0	0.1
114	98. 30E	i. 0	77.0	14.0	115.0	8 .9
115	98. 73E	1. O	75.0	14.0	119.0	ସ, ସ
116	39. 00E	i. 0	77. 0	12.0	100.0	<u>ର</u> ତ

.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LA

AB REPORT	16	REPORT	

.

-

•

· .

.

.

Kral no.	FILE NO G 1178 IDENTIFICATION	AU	CU	FB	ZN	/ PAGE 14 / 3 AG
117	99. 25E	1. 0	105.0	13.0	89. 0	ə. 1
113	39. SØE	1. O	198. 9	12.0	84. 0	0.3
113	33. 73E	5.0	104. 0	13.0	88. Ø	0.2
120	100. 00E	45. 0	196. 9	ii. 3	85. O	0.1
121	100. 25E	i O	63, 9	13.0	101. 0	0.2
122	100. 50E	1.0	63. 0	13.0	95. Ø	0. S
123	100.75E	49. 9	3 8. 0	21.0	99. Ø	0.2
124	101. 00E	25. 0	76, 0	19.0	57. 9	0.1
125	101. 25E	275.0	185.0	8. 9	81. 9	ə. 1
126	101. 50E	20. 0	79. 0	11. O	83. 9	0.2
127	101. 75E	25. 8	82, 9	19.0	67. 0	0.i
128	102.00E	279. 0	69. 0	13.0	93. 0	0.2
129	182. 25E	20. 0	36. 0	17. 0	81. 9	0.3
130	102. S0E	1. 9	46. 9	13.0	82. 0	0.5
131	102.75E	45.0	53. 0	18.9	97. 8	0.2
132	103. 00 e	5.0	65.0	26. 0	83. Ø	9.2
133	103. 25E	1.0	35.0	12.0	નને છે	8.3
134	103. 50E	10.0	64. 0	31.0	93, 0	9.2
135	103.73E	39, 9	41.0	24. 9	62. 0	9, 2
136	104.00E L 103.	5N 10.0	56. 9	16.0	36. 9	a. 2
137	95.75E L104N	10.0	. 68.0	13.0	74.0	0. i
138	36. 00E	38.0	82. Ø	14.0	108.0	ə. 1
139	96. 25E	100.0	63.0	11.0	143.0	9.2
140	96. 30E	10.0	112.0	12.0	94. Ø	a.a
141	36.73E	୍ୟ କ	128.0	18.9	67. U	સ.સ
142	37. UVE	13.8	102.0	17.0	97. 0 oo o	0.2 oʻr
145	97.23E	23. U	100.0	24.년	98. 8 76 - 6	સ. ઉ ન ન
144	97. SHE	140.0	107.0	12.0	76.8	0.2
145	97.70E	9. U	127.0	20.0	196.9	0.1 2 4
146	38. UUE 99. 995	10.0 1	714.19 777.0	12.0	122.0	0.1
147	38. 20E	1.0	r3. 8	15.0	129.9	인, 1
148	98. 30E	1.0	124.0	16.0	103.0	0.2
149	38. 70E	1.0	06. U	13.0	82. U	રા છ
150	99. QUE	ତଥି ଥି	89. 8	11.0	92.0	U. 1
151	39. 23E	1.0	45.0	12.0	63. 8 or o	U. U
ije 	33. UME	1. 1	(것, 년	11. U	රට. ඒ	번. 스
133	99.73E	1.0	79.9	10.0	96. 0	શ સ
154	100.00E	230.0	119.0 151 0	12.0	93. Q	0.1
155	100.202	10.0	131. U	10. 0	114.0	U. 1
156	100. 30E	25.0	155. 0	26. 0	110. O	0.0

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL NO.	FILE NG G 1178 IDENTIFICATION	AU	CU	F8	ZN	PRGE 15 / 3 RG
157	100.75E	50. 0	108. 0	13.0	87. 0	0.3
128	101. 99E	5. 0	50, 0	15.0	122.0	a. a
159	101. 25E	48, 8	68, 0	12.0	112.0·	0.i
160	101. SOE	35. 0	66, 9	12.0	73.0	0. 0
161	101, 752	40. 0	106. 0	11.0	64. 0	0, 2
162	102. 00E	35.0	44. 0	12. 0	75.0	0.5
163	102. 25E	30. 0	35. 0	12.0	63. 0	0. G
164	102. 50E	15.0	32. 0	11.0	66, 0	0.6
163	102.75E	20. 0	72. 0	14.0	36. 0	0.1
166	103.00E	20. 0	33. 0	12.0	93. Ø	a. 2
167	103.25E	5. 9	27. 8	13. 0	97. 0	0.5
168	103. 50E	35.0	99. Ø	15.0	84. 9	0.1
163	103.75E	5.0	34.9	19.0	83.0	ə. S
- 170	104.00E L104N	5.0	24. 0	19.0 -	66. 9	9 . 8
1/1	90.238 L 104.5N	5.0	32.0	69. Ø	76. 0	9.1
172	70.00C	<u>೭೦. ೮</u>	123.0	18.0	87. U	0. 0
113 171	70.105 05.005	5.0 10.0	42.0	23.0	144.0	ର. ଜ
175	20.00E 02.097	10.0	173.0	21.0	173.0	0.1
110	70.202 06.202	TR. 9	100.0 77.0	13.0	118.0	0.1
110	20.00C	1.0	≾గ.⊍ ఇం ం	13.0	116.0	0.1
1791	27.02	100.0 50.0	00.00 171.0	10.0	133.0 70 o	. ଏ ଜୁନ
179	97.00E 97.05E	୍ରଥ୍ୟ ଜନ୍ମ ଜ	114.0	12. U 10. 0	(2.0) CO O	8.1 2.2
139	97.205 97.505	200.0 5 0	133.0 हरू क	10.0 •• 0	20. U 00. 0	9.9 9.9
181	97 75E	0.0 05.0	00.0 101.0	11. U 11. U	74.0	번, 건 이 이
182	33 99E	20.0 20.0	129.0 175.0	19.0	(1.8 57 0	ଷ. ପ ସେ ଏ
183	38 25E	: a	77.0	20.0	77 0	원. <u>1</u> 구 4
184	38.595	: a	40 A	10.0	110 Q	0.1 0.0
185	38. 75E	วลิด	67 0	12 0	197.9	0.0 3.3
186	99. 00E	1.0	33 A	13.0	110.0	0.0 2 2
187	99. 23E	20.0	77. 0	10 0	95 A	a :
188	99. 30E ·	5. 0	93, 0	8. 0	95 A	ลล
189	99. 75E ·	28. 8	96. 0	13, 0	126. 0	ก่อ
190	100. 00E	1.0	105.0	12.0	74.0	0.5
131	100.25E	1.0	116.0	13.0	80. 0	0.6
132	100. SOE	5.0	27. 0	7.0	134.0	0. 0
193	100.73E	10.0	106. 0	10.0	127. 0	0.2
134	101. 00E	5.0	56. 0	8. 0	86, 8	<u>ə.</u> Ə
195	101. 23E	20, 0	95. Ø	<u> 9.</u> 0	75.0	0. O
196	101. SOE	105. 0	72. 0	10.0	97. O	0.3

	KAMLOOPS RESEARCH	& 6556H	LABORAT	FORY LTD.		
		HL LHB	REFURI			0005 40 40
1000 100	TILE NU G LITO	<u></u>	<u></u>	~~		- FHUE 16 / 3
NRML NU.	INCREASE TO LEGAL TOW	HU	ιU	FD	21 1	ניה .
197	101. 75E	1. O	75. 0	9. O	 82. 0	. 3 9. 3
198	102. 00E	20. 0	63. 0	8. 0	87. 9	0.6
199	102. 25E	10.0	25. 0	3, 0	65, 9	6. 4
200	102, 30E	30, 0	81. 0	7.0	30. 0	0.1
201	102.75E	5.0	112.0	7. 9	63, 0	9. 9
202	103. 00E	1.0	28. 0	7. 0	56. 0	0.8
203	103. 25E	1.0	30.0	8.0	77. 0	0.6
204	103. 30E	5. 0	48. 0	10.0	104.0	0.6
205	103. 75E	15. 0	87. 0	13.0	110.0	a. 5
206	104.00E L104.5N	95. 8	135.0	21. 0	80. 0	0, 0
104	95.00E L105N	1. 0	76. 0	26. 0	68. 0	a. a
103	95. 25E	10. 0	143.0	12.0	83, 9	a. 2
196	95. 50E	1.0	39.0	10.0	125.0	2,5
107	95. 73E	1.0	89. 0	17. 0	104. 0	2.0
106	36. 00E	30. 0	301. 0	15.0	85. 0	1.9
109	96. 23E	15.0	132. 0	12.0	111.0	0.2
110	96. SOE	29. 0	197.0	11.0	83. 9	8.9
111	96. 75E	69. 9	58. 0	13.0	112.0	9,9
112	97. 80E	30. 0	136. 0	11.0	83. 0	0.0
113	97. 23E	1. 0	208. 0	13.0	79.0	0.0
114	97. SØE	1.0	69. 0	6. 0	112.0	a . a
115	97. 73E	55.0	128. 0	11. O	75.0	Q. 4
116	38. 00E	50. 0	130.0	13.0	97. 0	0.1
117	98. 2 5 E	10.0	90. 0	13.0	110.0	0.1
118	98. 38E	1.0	73.0	13.0	189. 8	ର ଚ
113	98. 75E	30. 0	96. 0	56.0	103.0	0.1
120	99. 90E	1.0	<u>99.</u> 0	63. 0	100.0	0.2
121	99. 25E	10. 0	231. 0	18.0	78. 0	0.7
122	99. SQE	1.0	180.0	18.0	134. 0	0.2
123	99. 73E	10. 0	76. 0	19.0	128. 0	0.2
124	100. 00E	20. 0	72.0	26. 0	130, 0	a. 4
125	100. 23E	60, 0	69. 0	10.0	59.0	0.1
126	100. 30E	630. 0	96. Ø	16.0	131.0	0.3
127	100.75E	1.0	77. 9	16.0	67. 9	0.1
128	101. 80E	35.0	84. 0	9. 0	63. 0	0, 0
129	101. 238	1.0	119. 0	10.0	67. 8	0.1
130	101. 30E	5.0	ତେ, ତ	13.0	<u>90. 0</u>	0.1
131	101. 75E	1.0	47. 0	8. 0	122. 0	0, 4
132	192.998	25. 0	22. 0	3. 0	68, 9	0.4
133	102. 25E	1. 0	90. O	30. 0	130.0	0.1

.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD. GEOCHEMICAL LAB REPORT

KRAL NO.	FILE NO G 1178 IDENTIFICATION	AU	CU	F8	ZN	PAGE AG	17 7 1	3
134	102. 50E	25. 0	109. 0	9. 0	64. 0	0.1		
135	102.73E	1. I	23. 0	11. I	65. 0	0.2		
136	103. 00 E	13.0	95. O	11.0	74. 9	- a a		
137	103. 25E	i. 0	46. 0	10.0	77.0	8, 2		
138	103. 30E	1.8	32.0	21. O	101. 0	0 , 3		
133	103. 73E	1.8	36. Đ	6. 9	105. O	0. T		
140	104.00E L105N	10.0	92. 0	21. 0	198. 9	9.1		
141	95.25E L105.3N	10.0	119.0	67. 0	73.0	1.3		
142	95. 30E	1.0	26. 0	100. 0	107.0	0.2		
143	35. 73E	1. 3	67. 0	11. I	60, 0	0, 2		
144	36. 00E	1. 0	79.0	8.9	57. 0	0. S		
145	36. 23E	i. 0	22. 0	14.0	<u> 30.</u> 0	0.1		
146	96. SØE	10.0	43.0	11.0	<u>99.</u> 0	0.i		
147	96. 75E	5.0	36.0	12.0	96. O	0,4		
148	37. 00E	1.0	50. 0	16.0	98. I	0.2		
149	37. 25E	1.0	75. 0	26. 0	9 5. 0	0. 0		
139	97. 30E	5. 0	75. 0	14.0	96. Q	0. 1		
151	97. 75E	110.0	69. 0	14. 0	91. O	0.2		
132	98. 00E	15.0	80. 0	15.0	195.0	9, 9		
133	98. 23E	19	48. 0	14.0	94. 0	0.1		
104	38. 38E	10	76.0	28.0	.102.0	9.9		
100	20. Y 3E	10.0	87. U	12.0	136.0	-0.1		
106	99.00E	5.0	75.0	11.0	82. 0	0.1		
100	77.20E	80. U	64.0	18.0	94. 0	0.1		
100	33.00E	. SS. 8	105.0	11. J	30 . 0	9 , 9		
102	27. (UE 100.005	10.0 30.0	72.0	22. 0	- 36 . 9	0.0		
100	100.000	<u>्</u> रथ. ७	55.0	14. 0	196. 9	0.1		
101	100.202	20.0	114.0	13.0	100. 0	0.4		
102	100. JUE	1.0	73.0	6.0	131.0	0.1		
102	199.732	20.0	42.0	9. 0	91. Q	ର ତ		
104	101.002	75.0	80.0	23. 0	103.0	<u> 9</u> , 9		
100	101.235	ડેસ. સ	39.0	11.0	66. 0	0. i		
100	101.302	10.0	26.0	10.0	93. 0	8.2		
101	191.(JE 199.205	1.0	52. ଏ କ	14.0	37.0	0,1		
166	102.00E	45.9	23. 0	13.0	76.9	0.2		
103	182.205	10.0	40.0	19.0	84.0	0.2		
1.12	192.095 100 755	113.0	63. U	6.0	93. Ø	0.1		
1/1	102.752	1.3	48.0	11.0	101. 9	9.3		
1/2	103.00E	5.0	30. 0 50. 0	13.0	198.0	9.2		
ند ت غ	105.20c	1. J	39. O	10. 0	130.0	0.3		

,

	GEOCHEMIC	L'AL LAB	REFURI			
KRAL NO.	FILE NO G 1178 IDENTIFICATION	AU	CU	FB	ZN	PRGE 18 / 3 RG
174	103. SOE	40. 0	89. 0	12.0	136. 0	0.1
175	103. 75E	5, 9	40. 0	11. 0	192, 9	1.8
176	104. 00E	5.0	18. 0	25, 0	98. 0	0.3
177	95.00E L106N	15.0	69. 0	19. 9	55, 0	0.1
173	95. 25E	1.0	66. 0	13.0	<u>39.</u> 0	0.1
179	95. SØE	1.0	72.0	12.0	71.0	9.6
180	95. 73E	1. 3	34. 0	11. 0	102.0	0.2
131	36. 80E	20. 0	36.0	10.0	113.0	0.2
182	96. 23 E	1.9	17.0	10.0	103. 0	0.4
183	96. 30E	1. O	16.0	. 10. 0	63. 0	0. S
184	36. 7 3 E	1.0	73. 0	21.0	94, 0	a. a
185	37. OOE	35. 0	52. 0	12.0	77. 0	ə. ə
186	97. 25E	5.0	66. 0	<u>9.</u> 0	78.0	0.1
187	97. 58E	1. O	62, 0	19, 9,	87, 0	0.0
138	97. 75E	69, 9	106. 0	10. 0	78.0	9, 9
189	38. 80E	1.0	46. 0	10.0	97. O	0.1
190	98. 23E	20. 0	126. 0	13, 8	114.0	<u>ର</u> ଚ
131	98. 30E	69, 9	170.0	12.0	113.0	0.1
192	98.75E	150.0	75.0	14.0	123.0	0. O
193	99. 00 E	1.0	109. 0	17.0	99. O	0 . 0
194	99. 25E	1. 0	<u>,</u> 52. 0	13.0	82, 0	0.1
193	99. 50E	5. 0	56. 0	11.0	84. O	ə. ə
196	99. 75E	59, 9	91. 0	10.0	94. O	0.0
197	100. 00E	10.0	75.0	17.0	. 32.0	9, 9
198	100. 255	5.0	48. 0	21. 0	139.0	0.1
199	100. 502	35.0	50. 0	13.0	97. O	0.0
200	100.75E	15. 0	ରେ. ପ	11. 9	93. Ø	0. O
201	101. 00 e	385. 0	127. 0	11.0	<u>99.</u> 0	a. a
202	101. 25 E	95 , 0	157.0	10.0	83. 0	0.0
203	101. 30E	25.0	35.0	7.0	104. 0	0.2
204	101.75E	1.0	34. 0	13.0	66, 0	0.4
205	102. 00E	1. 0	160.0	iì. 0	113.0	0.0
206	102. 23E	1. Ə	54.0	7.0	82. Ø	0.4
207	102. SOE	1. 0	40.0	S. I	8 8 . 0	0,4
206	102.75E	i. 9	60. 0	6. 0	91. 0	0.2
203	103. 00E	10.0	55, 0	12. 0	136. 0	0. O
210	103. 25E	1.0	41.0	7.0	106. 0	0.5
211	103. SOE	35. 0	38. 0	11.0	79, 9	0.1
212	103.75E	65. 0	- 82, 0	10.0	95. O	0.3

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

IN AU COLUMN 1 INDICATES LESS THAN SPPB

IN AG COLUMN 0.0 INDICATES LESS THAN . 1PPM

AU METHOD -80 MESH FIRE ASSAY ATOMIC ABSORPTION

CU PB ZN AG METHOD -- 80 MESH HOT ACID EXTRACTION ATOMIC ABSORPTION

APPENDIX II

Kamloops Research & Assay Laboratory Ltd.

Geochemical Lab Report - Rocks

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

912 - 1 LAVAL CRESCENT --- KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 --- TELEX: 048-8320 CERTIFICATE OF ASSAY

TO Player Petroleum Ltd.

15-817 Granville St.,

Certificate No. <u>K 6190</u>

Date

February 3, 1984

Vancouver, B.C. V6Z 1K8

I hereby certify that the following are the results of assays made by us upon the herein described ______ samples

Kral No.	Marked	Au	Ag						
· · ·		ozs/ton	ozs/ton						
1	84-1-1	.028	.15						
2	84-1-2	**.46	.20						
3	84-1-3	.054	.03						
4	84-1-4	.128	.03						
5	84-1-5	.32	.06						
6	84-1-6	.07	.03						
7	84-1-7	.38	.06						
8	84-1-8	.109	.03						
9	84-1-9	.125	.06						
	** Sample 84-1-2 has been	screened and percent wei	found to cor ght	tain coa <u>Au</u>	rse gold Combined	Au		-	
	84-1-2 -100 mesh +100 mesh	99.994 .006		.44 257.24		. 46			

NOTE: Rejects retained three weeks. Pulps retained three months unless otherwise arranged.

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT - KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 - TELEX: 048-8320

GEOCHEMICAL LAB REPORT

DATE _____ January 27, 1984

ANALYST____

FILE NO. _____ G 1024

ppm ppm ppm KRAL NO. **IDENTIFICATION** Pb Zn Cu 84- 1- 01 65 392 154 1 2 84- 1- 02 55 230 53 15 3 84- 1- 03 51 35 27 18 4 84- 1- 04 62 9 84- 1- 05 33 5 32 84- 1- 06 86 24 36 6 84- 1- 07 28 19 5 7 8 84- 1- 08 39 22 25 9 84- 1- 09 19 22 17 Cu, Pb, Zn Method: -80 mesh Hot Acid Extraction Atomic Absorption

Player Petroleum Ltd. 15-817 Granville St., Vancouver, B.C. V6Z 1K8

FILE NO. _____

Kamloops *Research & Assay* Laboratory Ltd.

B.C. CERTIFIED ASSAYERS

912 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL LAB REPORT

DATE September 21, 1984

Player Resources Inc. Box 12137 Nelson Square 501 - 808 Nelson Street Vancouver, B.C. V67 2H2

ROCK SAMPLES

FILE NO. ______

ANALYST____

KRAL NO.	IDENTIFICATION	ррб	ppm Cu	PD PD		ppm 7n	ppm An				
			CU		Ħ		<u>(9</u>				
1	14527	200	92	23	ļļ	92	.2				
2	14528	15	90	23		115	.1				
					╂╂						
		·			╢						
	Rock Geochem: Cru	ish enti	re samp	le			•				
	Sut	-sample	in nec	essary							
-()	ru. to	approxi	matelv					, 			
\smile					1[
·	Au Method: -1	0 Mesh			Π		-				
<u> </u>		te Assay	orotion		╢			······			
					$\ $						
- <u>-</u>	Cu, Pb, Zn, Ag Met	hod: -	100 Mes	h	Π						
·····	Hot	Acid E	xtraction	on	╢						
					Π						
	L means "Less thar	{"			╢						
					Π						
					Н						
					Π						
					╢			·····			
]	ļ							·	
					Π						
		<u> </u>	·		\parallel						
$\langle \rangle$											
\sim											
		 			\parallel						
	-										
·	ļ										
	1	I	1	1	1				l I	1	l

APPENDIX III

General Testing Laboratories

.

Certificate of Assay

General Testing Laboratories A Division of SGS Supervision Services Inc.

S G S

PLAYER RESOURCES INC. Box 12137 Nelson Square 501 - 808 Nelson street Vancouver, B.C. 1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, V6A 1W2 PHONE (604) 254-1647 TELEX 04-507514 CABLE: SUPERVISE

CERTIFICATE OF ASSAY

No.: 8411-1657/C DATE: Nov. 27,1984

We hereby certify that the following are the results of assays on: Pulps

TO:

	GOLD	SILVER	COPPER	LEAD	ZINC	xxx	xxx	XXX
MARKED	Au (ppm	Ag (ppm	Cu (ppm)	Pb (ppm)	Zn (ppm)			
Property:								
May & Jennie								
G1178								
L100.5N 98.75E	2.8	2.5	264	27	69			
L101N 98.25E	0.02	0.6	113	22	110			
L101.5N 100E	0.06	0.8	132	15	65			
L101.5N 100.25E	0.02	0.7	98	22	112			
L102N 98.25E	0.01	0.7	87	24	115			
L103N 101.25E	0.16	0.5	182	20	69			
103B 103.75E	0.12	0.8	178	31	110			
L103N 102E	0.03	• 0.6	74	18	90			
L103.5N 101.25E	0.22	1.0	206	19	88			
L104N 97.75E	0.02	0.8	132	28	105			
L104N 100.E	0.05	0.6	116	19	86			
L104N 100.5E	0.02	0.5	169	33	110			
L104.5N 97.25E	0.01	0.6	154	24	108			
L105N 100.5E		0.6	94	26	120			
L106N 101E	0.04	0.5	167	26	115			
L106N 103.5E	0.09	0.6	42	22	71			
· · ·								
NOTE: REJECTS RETAINED ONE MONT	H. PULPS RETA		NTHS. ON REQUES		-1			
AND REJECTS WILL BE STORE	FOR A MAXIMU	M OF ONE YEAR	CATION OF STATE	MENTS	L. Wong	3		
OUR WRITTEN APPROVAL. ANY LIABIL	R REGARDING C	OUR REPORTS IN THERETO IS LIMI	NOT PERMITTED V TED TO THE FEE C	HARGED.		<u></u>	PF	OVINCIAL ASSAYER

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

MEMBER: American Society For Testing Materials

The American Oil Chemists Society

Canadian Testing Association
REFEREE AND OR OFFICIAL CHEMISTS FOR: National Institute of Oilseed Products

OFFICIAL WEIGHMASTERS FOR: Vancouver Board Of Trade

PLAYER RESOURCES INC. Box 12137 Nelson Square 501 - 808 Nelson Street Vancouver, B.C.

General Testing Laboratories

A Division of SGS Supervision Services Inc. 1001 EAST PENDER ST., VANCOUVER, B.C., CANADA, VGA 1W2

PHONE (604) 254-1647 TELEX 04-507514 CABLE SUPERVISE

CERTIFICATE OF ASSAY

No .: 8411-1657/B DATE: Nov. 27,1984

We hereby certify that the following are the results of assays on: Pulp

TO:

Pulps

	GOLD	SILVER	COPPER	LEAD	ZINC	xxx	xxx	XXX
MARKED	Au (ppm)	Ag(ppm) _{Cu (ppm)}	Pb (ppm)	Zn (ppm)			
<u>,</u>			<u> </u>					
Property:			1					
May & Jennie								
G1178								
L96N 102E	0.01	0.6	74	17	101			
L97N 101.75E	0.01	0.6	62	20	108 [·]			
L97N 103.5E	0.01	0.6	26	łŚ	84	<i>x</i>		
L98N 97E		1.3	84	137	66			
L98N 97.50E	0.79	0.8	55	34	63			
L98N 97.75E	0.02	0.7	72	19	78			
N 99.75E	0.50	0.9	186	24	69			
L98.5N 96E	0.14	2.6	>1000	22	84			
L98.5N 99E	0.19	0.7	114	20	89			
L98.5N 102.75E	0.08	8.0	73	21	106			
L99N 96.75E	0.05	0.6	-55	22	123			
L99N 98.5E	0.02	0.6	156	20	133			
L99N 101.5E	0.20	2.1	111	17	83			
L99.5N 99E	0.22	0.8	146	30	114			
L100N 103E	0.02	0.6	53	20	134			
				ST OH I PS				<u>_l</u>
AND REJECTS WILL BE STORE	FOR A MAXIMUN	OF ONE YEAR	ICATION OF STAT	E.MENTS	L. Worg			
ALL REPORTS ARE THE CONFIDENTIA CONCLUSION OR EXTRACTS FROM (OUR WRITTEN APPROVAL, ANY LIABI	AL PHOPERTY OF OR REGARDING OU LITY ATTACHED TO	JA REPORTS IN HERETO IS LIM	NOT PERMITTED	WITHOUT				
L			<u> </u>				-6-6	

Analytical and Consulting Chemists, Bulk Cargo Specialists, Surveyors, Inspectors, Samplers, Weighers

MEMBER: American Society For Testing Materials

The American OI Chemists Society

Chanadian Testing Association

REFEREE AND OR OFFICIAL CHEMISTS FOR: National Institute of Oilseed Products

The American OI Chemists' Society

OFFICIAL WEIGHMASTERS FOR: Vancouver Board Of Trade

APPENDIX IV

Analytical Procedures

for

Soil Geochemical Analyses

KAMLOOPS *RESEARCH & ASSAY* LABORATORY LTD.

B.C. CERTIFIED ASSAYERS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL ANALYSIS

Gold Method

- (a) The samples are dried in our geochemical drying oven and then screened through a stainless steel 80 mesh sieve. The minus 80 fraction is reserved for analysis and the plus 80 mesh fraction is discarded.
- (b) 29.17 grams of sample are weighed, silver added, along with fluxes and the sample is started as a fire assay. After cupellation the bead is dissolved and the samples are then mixed to insure homogeneity and are read, upon settling, on a Varian Techtron AA 5 or 475 atomic absorption spectrophotometer using an air-acetylene flame.
- (c) All additions of liquid reagents are from Oxford Model S-A pipettors.

KAMLOOPS *RESEARCH & ASSAY* LABORATORY LTD.

B.C. CERTIFIED ASSAYERS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

GEOCHEMICAL ANALYSIS

Silver, Copper, Lead and Zinc Method

- (a) The samples are dried in our geochemical drying oven and then screened through a stainless steel 80 mesh sieve. The minus 80 fraction is reserved for analysis and the plus 80 mesh fraction is discarded.
- (b) The samples are then weighed into test tubes, nitric acid is added, and they are placed in a hot water bath for thirty minutes. Hydrochloric acid is then added and the samples are digested for a further 90 minutes in the water bath. The samples are then diluted with deionized water.
- (c) The samples are then mixed to insure homogeneity and are read, upon settling, on a Varian Techtron AA 5 or 475 atomic absorption spectrophotometer. An airacetylene flame is used for the analysis of silver, copper, lead and zinc.
- (d) All additions of reagents are from Oxford Model S-A pipettors.
- (e) Standards and re-assay checks are carried along with each run of 35 samples.

General Testing Laboratories

A Division of SGS Supervision Services Inc.

1001 East Pender Street Vancouver, B.C. V6A 1W2 Telephone: (604) 254-1647 Cable: Supervise Telex: 04-507514

Your ref.:

Our ref .: LW/jaf

November 21st, 1984.

Re: GEOCHEM METHODS OF ANALYSIS FOR Au, Ag, Cu, Pb, Zn.

1. Ag, Cu, Pb, Zn:

l gm sample in 50 ml beaker; Aqua-regia acid digestion to near dryness; final volume 20 ml in HCl acid medium; finish by atomic absorption spectrometry.

2. Au: 10 gm sample by fire assay concentration; resultant ore bead dissolve in 5 ml nitric aqua-regia medium; finish by atomic absorption spectrometry.

3. Instrumentation: VARIAN AA 1475 with background correction.

Yours very truly,

GENERAL TESTING LABORATORIES,

a Division of SGS SUPERVISION SERVICE	S INC.
L. Wong, Provincial Assayer	\sum

CC: Mr. D. Blanchflower, Minorex Consulting Ltd.

APPENDIX V

- -

Geostatistical Data

.

۰.

for

Soil Geochemical Results

KAMLOOPS RESEARCH * 8.C. CERTIFIED ASSAYERS

ASSAY LABORATORY

912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

CUMULATIVE FREQUENCY PLOT

PLAYER RESOURCES INC 301-308 NELSON ST VANCOUVER B C V62 2H2 DATE SEPTEMBER 20 1984 ANALYST FILE NO. G 1178

PROJECT 84-1 MAY & JENNIE

CUMULATIVE FREQUENCY PLOT FOR AU USING A LOGARITHMIC CONVERSION

CLA55	FREQUENCY	X FREQUENCY	CUMULATIVE FREQUENC: X
1.00	1.44 379	32, 2	199. 9
1.44	2.97 9	. <u> </u>	47. 8
2. 07	2,98 0	ə. ə	47. 8
2. 38	4.28 0	0. O	47.8
4.28	6. 16 77	10. 3	47. 8
5.16	3.36 0	ə. Ə	37. 9
õ. õõ	12.75 42	5. 9	37. 0
12 75	18 34 29	2 õ	31. ð
18 34	26 36 59	7. 1	28. 2
26. 38	37. 93 - 24	4.3	21. 2
37 95	54 59 - 24	3.4	15.4
54 59	78 53 33	4 3	
78 53 1	12, 36 23	2.2	3.9
112 36 1	62 59 - 29	2.3	4 8
112.00 10 120 30 0	77 74 L	9 S	2
ుసినినిదాలా చి	36.27 4	3. 3 A 6	1 4
- 200.10 D. - 772 07	20.2) - 27.74 - 5	9.9 3 7	
120.27 Tall 2	03.17 E 35.27 (9. – Git	9.0 9.6
- 403.(477 - 8. - 205 9744 - 19:	20.01 L 01.02 1	3 : 5 I	0.0 3.3
	10 00 D	0. I	9. 7
1001.02*** 144	4번,번번	د .ك	U. S

KAMLOOF	5	RESERROR
755ñ1	L	RORATORY
	t. *	10

8. C. CERTIFIED ASSATERS

912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

CUMULATIVE FREQUENCY FLOT

PLAYER RESOURCES INC 301-806 NELSON ST VANCOUVER B C V6Z 2H2 DATE SEPTEMBER 20 1984 ANALYST FILE NO. 6 1178

PROJECT 84-1 MAY & JENNIE

CUMULATIVE FREQUENCY FLOT FOR AG USING A LOGARITHMIC CONVERSION

CLASS	FREQUENCY	2 FREQUENCY	CUMULATIVE FREQUENCY %
ə. Ə1—	ə. 91 - 284	40.1	20ର ସ
0.01	ð. 82 - 8	ə. ə	59. 9
ə. 92- -	ə. əz - ə	° 0. 0	39. 9
ə. ə2	0. 03 - O	0, 0	59. 9
a. 93	0.04 0	ə. ə	39. 9
<u> ଅ</u> . ଅ .	ର ଗତ - ଗ	ə. ə	39.9
<u>ə. 95</u>	a. ac a	8.8	53 3
ð. 86	0.06 O	อ. อ	53 3
9. 98	0.11 183	25. 8	59.9
ə. 11	રો 14 છે	. ล.ด	
0.14	a. 18 a	ี ดิด	27.2 7.2
9.18	a. 24 109	15.4	
a. 24	8.31 .51	7.2	10 D
0.31	8.41 25	7.5	10.0 11.2
a 41	a 57 22	2. U 7. (
a 58	a 63 (5	20. da 7. d	0. 5
8 63	a aa a	4. 4. 1. T	14. 27 5. A
0.00 0.30		1. 2 3 5	4.0
1 12	1 57 7	8. O	1.0
: 57	7.00 .:	번, 4 이	T. 6
	4.00	v. o	સંદ

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD

8. C. CERTIFIED ASSAVERS

912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

CUMULATIVE FREQUENCY FLOT

FLAYER RESOURCES INC 501-608 NELSON ST VANCOUVER 8 C V6Z 2H2 ORTE SEPTEMBER 20 1984 -ANALYST FILE NO. G 1178

PROJECT 84-1 MAY & JENNIE

CUMULATIVE FREQUENCY FLOT FOR CU USING A LOGARITHMIC CONVERSION

CLASS	FR	EQUENCY	% FREQUENCY	CUMULATIVE	FREQUENCY X
15. 00	18.83	5	0.7	100.	9
18.83	23.63	13	1. 8	33.	3
23. 63	<i>29.</i> 63	26	3.7	37.	5
29. 63	37. 21	51	7. 2	93.	8
37. 21	46.71	82	11.6	· 36.	6
46.71	1 53, 62	83	11.7	75.	a .
58. 62	73. 37	123	17.3	63.	3
73. 57	<i>3</i> 2, 33	140	19.7	46.	9
92. <u>3</u> 3	11 3. 88	3 3	13. 1	26.	2 .
113. 88	145.43	61	ð. 6	13.	1
145.43	182, 52	21	3. 0	ч .	5
182. 52	229. 97	5	9, 7	i.	6
229. 07	287.43	3	0. 4	. ગ	õ
287. 49	360.31	1	0.1	Э.	4
360.81	432, 83	<u>:</u>	ə. 1	ā.	3
452, 83	568, 32	ଶ	2. 2	હે.	4
568. 32	713, 26	ð	યે. ચે	a	- :
713, 26	395. 17	9	a. a		- 1
895. 17	1123, 47	9	શે. છે		1
123 47	1410-00	÷	a :	5	-

KAMLOOFS RESEARCH s.

8. C. CERTIFIED ASSAYERS

ASSAY LABORATORY LTD

912 LAVAL CRESCENT PHONE 372-2764 - TELEX 046-8320

CUMULATIVE FREQUENCY FLOT

FLAYER RESOURCES INC 501-608 NELSON 57 VANCOUVER 8 C 762 2H2

DATE SEFTEMBER 20 1984 ANALYST FILE NO. 6 1178

PROJECT 34-1 MRY & JENNIE

CUMULATIVE FREQUENCY FLOT FOR FB USING A LOGARITHMIC CONVERSION

CLASS	FREQUENCY	X FREQUENCY	CUMULATIVE FREQUENCY %
4.00	4.74 1	a :	100 o
4.74	5.61 2	5 5	100. S
5. 6i	6 65 5	0.5	<i>33.</i> 3
5 63	7 27 13	U. (39. 6
7 37	1.07 <u>14</u>	2.0	3 6. 9
7.07	J. 32 04	11.3	36, 3
7. 32	ii 04 216	3 8 . 5	85 0
11. du	13.08 183	25. 8	
13.08	15.49 78	11.0	07.0 55.5
15.49	18.34 50	7 1	20.0
18.34	21.73 32	1 - 4	11.0
21.73	25.73 14	· +. J	10.7
25 23		<u>ح.</u> ك	1 6.2
20.15	30.70 J	1.3	4 2
30.40	30.07 F	1.3	3. A
20.83	42.75 2	0.3	1 7
42.75	50, 63 2	a. 3	4.3
50.63	53.97 <u>1</u>	a t	1. 7
39. 97	71.82 4	0. ± 0. 5	÷
71.02	34 12 1	8.6 2 4	<u>i</u> . R
84 10		20. <u>1</u>	Ð. ∔
22 27	22.03 N	શે. છે	9, 3
22. OJ	TTO, 번번 - 2	a. 3	a 7

KAMLOOPS RESEARCH à ASSAY LABORATORY LTD 6. C. CERTIFIED ASSAVERS

912 LAVAL CRESCENT PHONE 372-2784 - TELEX 048-8320

CUMULATIVE FREQUENCY PLOT

PLAYER RESOURCES INC 301-806 NELSON ST VANCOUVER 8 C V6Z 2H2

DATE SEPTEMBER 20 1984 ANALYST FILE NO. G 1178

PROJECT 84-1 MAY & JENNIE

CUMULATIVE FREQUENCY PLOT FOR ZN USING A LOGARITHMIC CONVERSION

CLASS	68	REQUENCY	% FREQUENCY	CUMULATIVE FREQUENCE %
16.00	18, 93	1	0.1	100. O
18.05	20, 36	9	ə. ə	39 3
20.36	22, 96	9	ə. o	39. 9
22. 36	25, 30	อ	0. D	33. 3
25. 30	29, 22	e	a. a	39 9
29. 22	32. 96	0	ə. ə	39.9
32. 96	37. 18	2	0.3	39. 3
37. 18	41.94	3	ə. 4	39.6
41. 94	47. 31	5	0.7	39. 2
47.31	53. 37	Э	1.3	36. 4
33. 37	60, 20	39	4. 2	97. 2
60.20	67, 99	46	· 6.6	32. 3
67. 90	76, 60	198	15. 2	36. 2
76.60	86. 40	141	13.9	78. 3
36, 40	37, 46	153	21. 9	51. i
37.46	109. 94	109	15.4	23. 2
199. 94	124.02	68	3. 3	13:8
124.02	139.89	23	4.1	5. 4
139. 89	137, 30	5	Ð. 7	1.3
157.80	178.00	4	9, 6	0. S

KAMLOOPS *RESEARCH & ASSAY* LABORATORY LTD.

B.C. CERTIFIED ASSAYERS

912 - 1 LAVAL CRESCENT — KAMLOOPS, B.C. V2C 5P5 PHONE: (604) 372-2784 — TELEX: 048-8320

Mean	s.D.
28.03	96.65
77.25	63.25
15.95	36.45
88.18	20.85
.16	.23
	Mean 28.03 77.25 15.95 88.18 .16

G-1178

Please note that for gold values of less than 5 ppb - 1 was used for calculation purposes. For silver values of less than .1 ppm - .01 was used for calculation purposes.

APPENDIX VI

Sample Descriptions

and

Assay Summaries

Sample Descriptions and Assay Summaries

Sample	Location (relative to	Interval						
	main adit & <u>drift junction</u>)		Au oz./ton	Ag p.p.m.	Cu p.p.m.	Pb p.p.m.	Zn p.p.m.	Description
MJ 83-1	O NW.	0.31 m.	0.036	6.1	48	36	27	Quartz vein with abundant disseminations and lenses of pyrite.
MJ 83-6	17.2 m. NW	0.31 m.	0.039	1.7	61	28	31	Quartz vein with abundant disseminations and lenses of pyrite. Intensively sheared fault zone.
MJ 83-8	6 m.SE	0.47 m.	0.726	15.1	44	152	38	Quartz vein with abundant pyrite.
MJ 83-9	9 m.SE	2.5 cm.	0.014	2.1	9	20	46	Dark grey fault gouge - crushed sulphides.
MJ 83-10	12 m.SE	15 cm.	0.266	2.7	28	30	9	Fault zone infilled with massive pyrite.
MJ 83-11	15 m.SE	0.30 m.	0.902	2.0	112	27	10	Massive pyrite vein displaced by 150°/-80° fault and 060°/-30° fault.
MJ 83-14	24 m.SE	0.42 m.	1.42	2.1	29	28	10	Massive pyrite vein.
MJ 83-14A	A 24 m.SE in crosscut	8 cm.	0.059	2.0	74	35	43	Fault gouge on parallel fault zone infilled with 4 cm. pyrite vein.
MJ 83-15	27 m.SE	0.66 m.	1.18	2.0	19	29	10	Massive pyrite vein.
MJ 83-15A	a 27.5 m. SE	Grab Sample	0.118	2.1	147	28	23	Mixed vein and host rock material from ore chute by raise.

-

Sample Descriptions and Assay Summaries

Sample	Location	Interval			Assay		<u> </u>	<u> </u>	
No.	(relative to main adit & drift junction)		Au oz./T	Ag oz./T	Ag	Cu p.p.m.	Pb	Zn D.D.M.	Description
<u> </u>	diffe junction/		02.71	02.71	<u>p.p.m.</u>	<u>p•p•m•</u>	<u>p.p.m.</u>	<u>p.p.m.</u>	
84-1-1	3.0 m. SE	0.41 m.	.028	.15	5.1	65	392	154	Channel sample of quartz- pyrite vein within silici- fied tuffaceous wall rock.
84-1-2	6.0 m. SE	0.50 m.	.46	.20	6.9	55	230	53	Channel sample of quartz- pyrite vein.
84-1-3	8.5 m. SE	0.51 m.	.054	.03	1.0	51	35	15	Channel sample of quartz- pyrite vein with a central 5 cm. massive pyrite core.
84-1-4	10.0 m. SE	0.52 m.	.128	.03	1.0	62	2,7	18	Chip sample of quartz- pyrite vein with 17 cm. of massive pyrite.
84-1-5	12.0 m. SE	0.26 m.	.32	.06	2.1	32	33	9	Channel sample of massive pyrite vein.
84-1-6	17.0 m. SE	0.17 m.	.07	.03	1.0	86	24	36	Chip sample of quartz- pyrite vein.
84-1-7	23.0 m. SE	0.35 m.	.38	.06	2.1	28	19	5	Channel sample of massive pyrite vein.
84-1-8	3.0 m. NW	0.27 m.	.109	.03	1.0	39	22	25	Chip sample of quartz- pyrite vein and silicified tuff wall rock.
84-1-9	42.0 m. NW	Grab	.125	.06	2.1	19	22	17	Grab sample of silicified fault breccia.

C

Sample Descriptions and Assay Summaries

				Analyses			
Sample No.	Sample	Au	Ag	Cu	Pb	Zn	Description
and Location	Туре	<u>p.p.b.</u>	p.p.m.	<u>p.p.m.</u>	<u>p.p.m.</u>	<u>p.p.m.</u>	
14527	Grab	200	0.2	92	23	92	Green andesitic flow breccia with aphanitic hornblende-rich ground mass. Diss'd. pyrite (~5%).
14528	Grab	L5	0.1	90	23	115	Green-grey, fine-grained andesitic flow with diss'd. pyrite, and quartz, calcite and pyrite vein- lets along 082/-26°S. fractures.

.

APPENDIX VII

Geophysical Instrument Specifications

Instrument Specifications

ELECTROMAGNETOMETER

- A. Instrument
 - a) Type: Geonics VLF-EM
 - b) Make: Ronka EM 16
- B. Specifications
 - a) Measurement: Utilizes primary fields generated by VLF marine communication stations and measures the inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).
 - b) Sensitivity: Inphase + 150% or + 90% Quad-phase - + 40%
 - c) Resolution: + 1%
 - d) Method of reading: Nulling by audio tone. Inphase indication from mechanical inclinometer and quadphase from a graduated dial.
 - e) Operating frequency: 15-25 KHz VLF Radio Band Station selection done by means of plug-in. units.

C. Survey Procedures

- Method a) Select closest VLF transmitting station that is perpendicular to traverse lines.
 - b) Inclinometer measures degree of tilt from vertical position.
 - c) Quadrature dial calibrated in percent-null.
 - d) Dip-angle profile plot: plot dip angle values read at station surveyed.
 - e) Manually filter dip-angle data (Fraser filter).

Instrument Specifications

MAGNETOMETER

A. Instrument

- a) Type: Proton Magnetometer
- b) Make: Barringer GM-122

B. <u>Specifications</u>

a) Measurement
b) Range
c) Accuracy
d) Sensitivity
e) Gradient Tolerance
f) Reading Cycle
i) Vertical magnetic field
20,000 to 99,999 in 12 ranges
20,000 to 99,999 in 12 ranges
i gamma
i) Sensitivity
i) gamma
i) Gradient Tolerance
i) Gradient Tolerance
i) Sensitivity
i)

C. Survey Procedures

- a) Method : One and one half hour loops
- b) Corrections: (1) Base station
 - (2) Corrected Stations along baseline
- c) Station Relationship: Each station read for intensity of vertical magnetic field

.

— LEGEND — LOWER JURASSIC ROSSLAND FORMATION Ι ANBR: Andesitic flow breccia: Green, fine-grained groundmass with ~10% porphyritic subhedral hornblende. The subrounded augite porphyry clasts range in size from 1cm to 50 cm. Schistocity attitudes of 140°-150° with a southwestly dip. ΙΑ ANDS Green, fine-grained andesitic flow. No hornblende is apparent. Minor (45%) biotite phenocrysts. Schistocity attitudes of 140°-150° with a southwesterly dip. --- SYMBOLS -----Quartz has developed usually as fracture filling and/or minor quartz eyes. Calcite is present exclusively as fracture filling or coating Pyrite disseminations in the ground mass and fractures usually < 0.5 % ру Schistosity : horizontal, vertical, inclined ----Joints inclined, vertical Fault with circle on downthrown side, arrow indicating direction of movement 023 Relative timing of joints, Ist, 2nd, 3rd Trench, open, caved unlocated • <u>></u>____ Adit with waste dump, open, caved $\rightarrow \rightarrow$ 🛕 🛆 Surveyed crown grant Shaft post, located, unlocated ____5 Geological station

 14527,200,
 Rock sample; Au. p.p.b.,

 .2,92,23,92
 Ag. p.p.m., Cu. p.p.m.,

 Pb. p.p.m., Zn. p.p.m.

 Outcrop Subcrop نم مربع مربع مربع ا - GEOTECHNICAL SURVEY-SUPERVISED BY: MINOREX CONSULTING LTD. CONDUCTED BY: MINOREX CONSULTING LTD. - SCALE -1.2,000 200 metres GEOLOGICAL BRANCH ASSESSMENT REPORT MINOREX CONSULTING LTD. GEOLOGICAL CONSULTANTS, KAMLOOP, B.C. PLAYER RESOURCES VANCOUVER, BRITISH COLUMBIA GEOLOGICAL SURVEY MAY and JENNIE PROPERTY NELSON MINING DIVISION, BRITISH COLUMBIA 82 F/6W Drawn by: P.J.M. N.T.S. : Technical work by: P. Chung Scale: I:2,000 October, 1984 Date: Figure No.: 4

	ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш	
l 10600 n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 10 600 n
L 10550 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 10550 N
L 10500 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10500 N
L 10450 N		10450 N
l 10400 N	-3 -3 -3 -3 -3 -3 -4 -18 -8 -9 -12 -16 -12 -17 -21 -21 -7 -9 -13 -18 -18 -18 -15 -9 -7 -8 -8 -6 2 7 -8 -7 -7 -8 -7 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -8 -7 -7 -8 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -8 -7 -7 -7 -7 -7 -9 -7 -7 -8 -7 -7 -8 -7 -7 -7 -7 -7 -7 -7 -7	
L 10350 N	-4 -3	10400 N
		10350 N
L 10300 N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10300 N
L 10250 N	7 6 7 2 -1 -2 -3 2 -10 -13 -14 -19 -15 -17 -16 -18 -19 -22 -16 -21 -21 -15 -9 -1 1 5 6 8 8 12 12 -4 -3 -21 -17 -16 -18 -19 -22 -16 -21 -21 -15 -9 -1 1 5 6 8 8 12 12 L	10250 N
L 10200 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10200 N
L 10150 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10150 N
L 10100 N	-2 5 8 8 4 312 -16 -12 -16 -17 -26 -16 -13 -14 -18 -22 -19 -19 -17 -15 -13 -10 0 6 8 7 16	10100 N
L 10050 N	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	10050 N
l 10000 N		10000 N
L 9950 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	4 5 4 4 6 5 2 9 8 5 08 -8 -9 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	9950 N
L 9900 N	$\begin{array}{c} 1 \\ -1 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ -4 \\ $	9900 N
L 9850 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9850 N
L 9800 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9800 N
L 9750 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9750 N
L 9700 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9700 N
L 9650 N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9650 N
l 9600 N	3 - 4 - 7 - 8 - 12 - 9 - 5	9600 N
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	96 96 1000 1015(1000 1015(1000 1015(1000 1015(1000 1015(10))))))))))))))))))))))))))))))))))))	Janel Ala
<u> </u>	To accompany report t	by J.D. Blanchflo

. .

•

