86-32-14438 0118 OWMP. CREAM SILVER MINES LTD. GEOLOGICAL, GEOCHEMICAL, AND GROUND MAGNETOMETER SURVEY ON THE RUBY MOUNTAIN SILVER-TUNGSTEN PROPERTY ATLIN MINING DIVISION, B.C. NTS 104 N/11W FILMED ΒY R.A. GONZALEZ, M.Sc., F.G.A.C., P.ENG. JANUARY, 1986 CLAIM UNITS RECORD NO. ANNIVERSARY DATE n 9 ~ ~

B-2	20	1375	JULY	29
BEFORE	20	2502	JUNE	20
B-5	12	2501	JUNE	20
B-6	9	2494	JUNE	20
B-7	4	2504	AUGUST	7
B-7 FR	1	2505	AUGUST	7
в-8	1	2506	AUGUST	7

4/.5' 23.5' LOCATION: 59° ANY NORTH LATITUDE-133° EX WEST LONGITUDE

OPERATOR: MARK MANAGEMENT LTD.

CONSULTANT: ARCHEAN ENGINEERING LIMITED.

PROJECT GEOLOGIST: R.A. GONZALEZ

GEOLOGICAL BRANCH ASSESSMENT REPORT

ARCH

LTD.

GEOLOGICAL, GEOCHEMICAL, AND GROUND MAGNETOMETER SURVEY ON THE RUBY MOUNTAIN SILVER-TUNGSTEN PROPERTY ATLIN MINING DIVISION, B.C. NTS 104 N/11W

SUMMARY

The Ruby Mountain Silver-Tungsten Property was staked to cover a large area underlain by mineralized skarn zones. The area surrounds a cinder-cone with associated basaltic flows and part of an alaskite stock exposed between Boulder Creek and Ruby Creek approximately 35 km east of the town of Atlin in northwestern British Columbia. A ground magnetometer survey was done in conjunction with geologic mapping to aid in the interpretation of geologic contacts in areas of minimum outcrop.

A soil geochemical programme was initiated to determine if the silver, lead, zinc, tin, and tungsten soil anomaly discovered in the original programme of 1983-84 extended to the north. The results of the 1985 programme extended the 1983-84 soil anomaly northward and now outlines an anomalous area approximately 2500 m (8200 feet) long and up to 600 m (2000 feet) wide. Furthermore, it appears that this anomalous zone is open both northward and eastward where it is masked by an apparently thin layer of volcanic rocks.

Old showing in the area include uranium mineralization in the alaskite, wolframite and cassiterite associated with quartz veins in granitic rocks, disseminated molybdenite with minor chalcopyrite in granitic rocks, and copper-lead-zinc-silver-tungsten mineralization in skarn zones. The silver-tungsten (copper-lead-zinc) mineralization in skarn zones were the main target of this investigation.

This work programme was done at the request of the registered holder, Cream Silver Mines Ltd. Results of the programme outlined areas which could have a potential for hosting silver-tungsten with minor copper-lead-zinc mineralization in skarn zones and it is recommended that additional, systematic exploration should continue.

TABLE OF CONTENTS

- --

SUMMARY	i.
TABLE OF CONTENTS	ii.
FIGURES AND TABLES	iii.
1. INTRODUCTION 1.1 Location and Access 1.2 Claim Information 1.3 Physiography, Vegetation and Climate 1.4 History	1. 1. 3. 5. 5.
<pre>2. GEOLOGY 2.1 Regional Geology 2.2 Property Geology</pre>	8. 8. 8.
3. GEOCHEMISTRY 3.1 Soil and Rock Chip Sampling	13. 13. 13. 13.
 4. MAGNETOMETER SURVEY 4.1 Scintrex Magnetometer System Theory and Field Procedures 4.2 Discussion of Results 	15. 15. 15.
5. CONCLUSIONS	16.
6. REFERENCES	17.
7. STATEMENTS OF PROFESSIONAL QUALIFICATIONS	18.
8. COST STATEMENT	19.
9. APPENDIX A-Soil Sample Results	21.

Page

FIGURES

_

Figure	1:	Location Map 1:2,000,000	2.
Figure	2:	Claim Map 1:100,000	4.
Figure	3:	General Geology Map 1:100,000	11.
Figure	4:	Geology Mappock	
Figure	5:	Soil Geochemistry Map for Cu, Pb, & Zn pock	
Figure	6:	Soil Geochemistry Map for Ag, Sn, & W pock	
Figure	7:	Total Field Magnetometer Surveypock	

TABLES

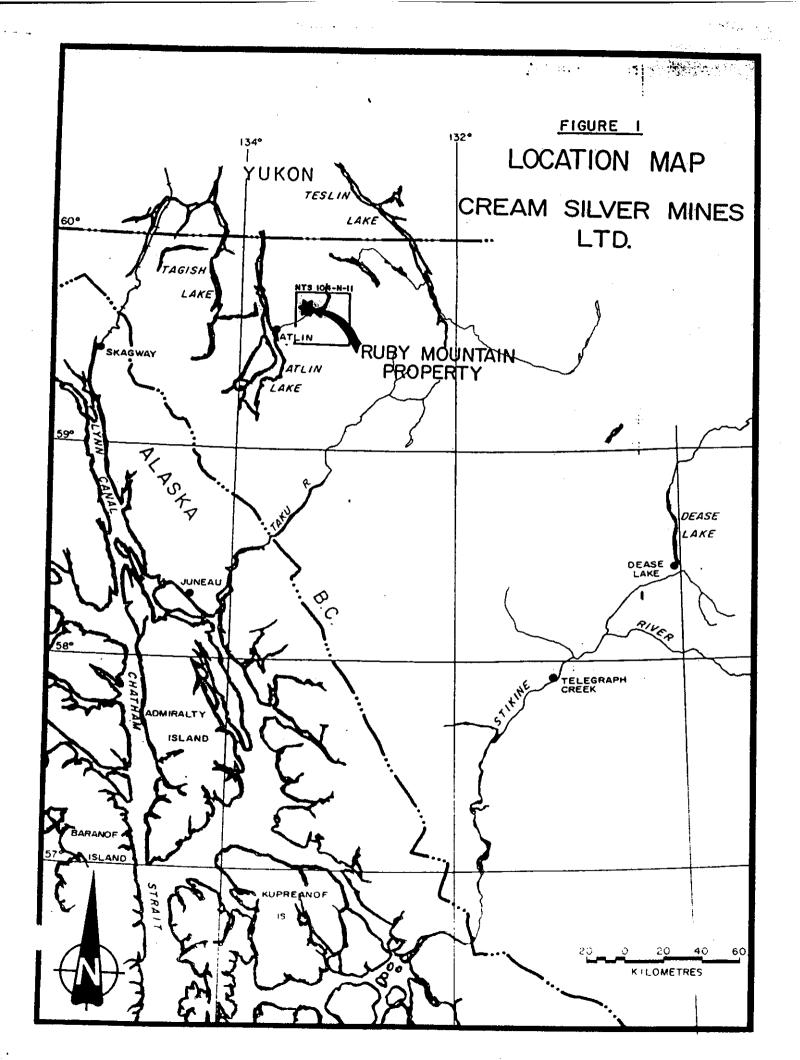
Table	1:	Claim Status	3.
Table	2:	Gold Recovery from Productive Creeks	
		in the Atlin Area, 1898 to 1946	6.

-

iii

Page

, **"**

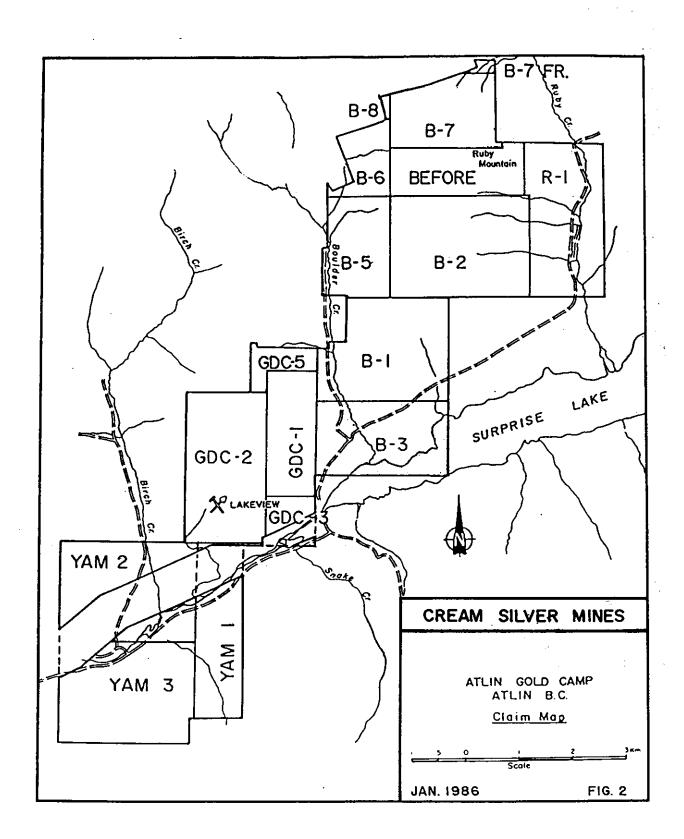

1. INTRODUCTION

This report is based on thirty-three days of field work done between July 27 and August 7 and between September 4 and September 24, 1985. The work programme was undertaken with the objective of carrying out geological mapping and geochemical sampling along grid lines in order to evaluate the mineral potential of the claims and provide a basis for follow-up work if warranted. A total of 205 soil samples and 6 rock chip or grab samples were collected and sent to Chemex Labs. for analysis. Geologist in the field was R.A. Gonzalez assisted by prospector Jerry Broswick (present only during the first work phase) of Whitehorse. Mapping was along the soil sampling lines with a line spacing of 200 m and sample sites at 50 m; a 1:5000 scale geologic map was prepared by enlarging the 1:50000 NTS 104N/11W topographic map. The results of this survey gave sufficiently encouraging results to warrant additional systematic exploration.

1.1 LOCATION and ACCESS

The Ruby Mountain gold property is located on the north side of Surprise Lake approximately 32 kilometres by road northeast of the town of Atlin and covers an area of approximately 40 square kilometres over the valleys of Boulder, Ruby and Pine Creeks (Figure 1).

Atlin is, and has been since the early days of the Klondike Gold Rush of 1897 and 1898, the principal population and supply centre of northwestern British Columbia. It is approximately 150 kilometres south of Whitehorse, the capital and principal Yukon city. Atlin. since 1949, has had a road connecting it with Jakes Corners on the Alaska Highway in the Yukon Territory. This road is open all year except for short periods when some of the hills are iced over. From Jakes Corners another road goes to Carcross, Y.T. The Alaska Highway extends from Dawson Creek, B.C., to Whitehorse, Y.T., and beyond to Alaska and is open all year. Both Carcross and Whitehorse are on the White Pass and Yukon Railway line, which extends from Skagway, U.S.A. to Whitehorse; however, at present the railroad is not in service. Skagway is the terminus for several coastal lines; and, until the closure of the rail line in late 1982, most heavy freight to the area went by boat to Skagway, thence by train to Carcross and thence by truck to Atlin. Now that the White Pass and Yukon Railway is closed all heavy cargo must be transported by truck from Skagway or from the east along the Alaska Highway. For passengers traveling to the area, it is best to fly to Whitehorse and go from there to Atlin by plane, car, or bus. Whitehorse is served by scheduled flights from both Vancouver and Edmonton. Aircraft for charter trips are available at Atlin, Whitehorse, and Lower Post on the Dease River. Helicopters are available in Atlin on a year round basis.


Excellent access to the property is provided by good gravel roads that service placer operations along Boulder and Ruby Creeks. A 4-wheel drive vehicle is required to gain access to the tungsten showing north of Ruby Mountain.

1.2 CLAIM INFORMATION

The property is located in the Atlin Mining Division and consists of thirteen modified grid claims totalling 146units and one 2-post claim and a 2-post fractional claim. The claims are centred at latitude $59^{\circ}40'$ and longitude $133^{\circ}22'$ on NTS map sheet 104N/11W (Figure 2). Claim information is listed in Table 1.

CLAIM	UNITS	RECORD NO.	ANNIVERSARY DATE
B-1	20	1373	July 29
B-2	20	1375	July 29
B-3	15	1391	August 4
BEFORE	20	2502	June 20
в-5	12	2501	June 20
B-6	9	2494	June 20
B-7	4	2504	August 7
B-7 FR	1	2505	August 7
B-8	1	2506	August 7
R-1	18	1374	July 29
GDC 1	10	2176	February 8
GDC 2	18	2177	February 8
GDC 5	6	1975	August 2
	146		

TABLE 1 CLAIM STATUS

;

1.3 PHYSIOGRAPHY, VEGETATION AND CLIMATE

The Atlin area is located just east of the Coast Mountains on the Teslin Plateau. The town of Atlin lies on the east shore of Atlin Lake, the largest natural lake in British Columbia, at an elevation of 670 m (2,200 feet). The topography is moderately rugged on the Ruby Mountain property. Relief is on the order of 900 m (3,000 feet) with slopes of up to 30° rising from Surprise Lake at an elevation of 910 m (2,985 feet) to the peak of Ruby Mountain at 1900 m (6,231 feet). Pleistocene valley glaciation produced the north-south trending Boulder and Ruby Creek valleys. Till cover is thin or non-existent above the valley floor, giving way to felsenmeer and outcrop at higher elevations.

The tree line is at approximately 1220 m (4,000 feet) on north facing slopes and 1525 m (5,000 feet) on south facing slopes. Below 1220 m (4,000 feet), the valleys are forested with lodgepole pine, black spruce, aspen and dwarf birch. Mountain alder and willow grow near streams with stunted buckbrush covering the hills above tree line.

Atlin enjoys a pleasant summer climate with temperatures averaging 20° C and little precipitation. Winter temperatures average -15° C in January with moderate snowfall. Total annual precipitation averages 279.4 millimetres of moisture. "Winter" conditions can be expected from October to April.

1.4 HISTORY

Before 1898 very little was known of the Atlin country beyond the fact that it contained fur, big game, and a number of large lakes, the largest of which was called "Atlin," meaning "Big Water," by the Tlinkit-Tagish Indians. According to the most authenticated sources, B.C. Dept. of Mines, Annual Reports for 1900, 1904, 1932, and 1936, gold was first discovered on Pine Creek about July, 1897, by a man named Miller while driving cattle into Dawson and the Klondike The information, together with a rough map, was passed Gold Fields. on to Miller's brother, Fritz, in Juneau, who together with Kenny McLaren, a Canadian prospector named Hans Gunderson, and another, were on their way to the Klondike. These men decided to investigate and with the aid of the map were able to located the creek with little difficulty and staked the first claims about July 8, 1898. Public information concerning the new strike reached Alaskan ports on August 5th, and Victoria, B.C. on August 13th, 1898, and resulted in a rush to The first workings were on Pine Creek and by the end of the area. 1898, more than 3,000 people were camped in the Atlin area. Only eight creeks, Spruce, Pine, Birch, Boulder, Ruby, Otter, Wright and McKee, have been important producers in the Atlin camp, although gold has been produced along 21 other creeks including Dominion, Eldorado, Feather, Fox, Rose, Slate, Snake, and O'Donnel River.

Uninterrupted placer mining in the Atlin camp has produced an estimated one million ounces of gold since 1898. Spruce Creek, the richest stream in the camp, has yielded more than 40 per cent of this gold. The pay streak along Spruce Creek is over 5 kilometres long, approximately 2 m thick, and up to 60 m wide. Near the southern end of the pay streak, the gravels are reported to have averaged about 80 gm of gold to the cubic metre along a 600 m section of the creek. Table II shows the gold production from the main creeks for the period up to 1946, the last year for which individual creek recoveries were obtained.

TABLE 2 (from Holland, 1950 and Black, 1953)

GOLD RECOVERY FROM PRODUCTIVE CREEKS, ATLIN AREA, 1898-1946.

STREAM NAME

OUNCES OF GOLD PRODUCED

Spruce Creek	262,603
Pine Creek	138,144
Boulder Creek	67,811
Ruby Creek	55,272
McKee Creek	46,953
Otter Creek	20,113
Wright Creek	14,729
Birch Creek	12,898
All Others (21 creeks)	15,624
TOTAL PRODUCTION	634,147

Note: B.C. Dept. of Mines records show that for this same period 705,229 ounces of gold was sold from the Atlin area suggesting that not all gold production was reported.

Since the late 70's interest and activity in the placer deposits has increase with the increase in the price of gold. Today the area is swarming with activity, and for five months a year the area is alive with small- and medium-sized operations re-working or re-examining the area.

Gold-bearing quartz veins were first discovered in the Atlin area in 1899, and by 1905 most of the known showings had been discovered. Although the original showings have been repeatedly worked and reexamined there is no record of regional exploration for lode mineralization since 1905. In 1981, Yukon Revenue Mines Ltd. acquired and re-examined the old Lakeview property. Work done by Yukon Revenue showed low-grade gold values over an extensive but delicate stockwork of carbonatized and silicified andesite adjacent to a serpentinite intrusive. The discovery by Yukon Revenue Mines Ltd., in 1981, focused interest in the area. This renewed interest, along with the similarity of geology in the vicinity of major placer gold producing streams, prompted Cream Silver Mines Ltd. to stake the "B" and "R" Claims; when Yukon Revenue allowed their Lakeview Property to lapse, Cream Silver immediately acquired the ground by staking. When Cominco allowed its claims surrounding Ruby Mountain to lapse in 1985, Cream Silver acquired the ground by staking.

Exploration for other minerals has increased along with the interest in gold. The ground around Ruby Mountain has been held at various times by Adanac Mines, Johns-Manville Canada Inc., Yukon Revenue, and Cominco. Adanac drilled the granitic rocks to the north as part of the definition drill for their large but low-grade molybdenum deposit. Although no assessment work was ever filed, Yukon Revenue drill several short holes in skarn material approximately one km north of Ruby Mountain. Apparently the drilling was done on a slump block with negative results. Cominco held the ground for several years; their work included underground sampling at the Black Diamond Mine. Cominco geologically mapping and geochemically sampled the present property.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

Geologic mapping of this area was undertaken in 1951-55 by J.D. Aitken of the Geological Survey of Canada (GSC) and compiled as Map 1082A (Figure 3). In 1966-68, J.W.H. Monger, also of the GSC, selectively mapped the Atlin area and published his findings in GSC Paper 74-47.

The Atlin region is located in a eugeosynclinal area composed of three distinct northwest striking tectonic belts; the St. Elias and Insular Belt, Coast and Cascades Belt, and Intermontane Belt. The rocks of the area belong to the Atlin Terrane, which represents an independent tectonic entity of the oceanic sequence of the Intermontane Belt in the Canadian Cordillera. The Atlin Terrane consists of upper Paleozoic age radiolarian cherts, pelites, carbonates, volcanics, and ultramafics. These rocks are intruded by Mesozoic granite, alaskite and quartz monzonite. The youngest rocks of the Atlin Terrane are composed of Tertiary and Quaternary volcanics. Till deposited by receding Pleistocene glaciers extensively covers the valleys.

The Atlin Terrane is bounded on the northeast by a northwest striking vertical fault and on the southwest by a northwest striking reverse fault. Structurally, the terrane is characterized by compressional deformation which is similar in style and trend to the southwest bounding faults (Monger, 1975). Minor fold axes generally strike northwest or trend southwest.

2.2 PROPERTY GEOLOGY

Geologic mapping indicates that the property is underlain by metasediments of the Cache Creek Group, mostly argillite and chert, intruded by Late Paleozoic talc-bearing ultramafics and a Cretaceous aged composite batholith (the Surprise Lake Batholith). Coarsegrained porphyritic granite is exposed along the northern boundaries of the claims and a small Alaskite stock, which is considered to be a phase of the Surprise Lake Batholith, is exposed south and east of Ruby In topographically lower areas the metasediments and Mountain. intrusives are capped by unconsolidated auriferous gravels and minor glacial till. Soil cover is minimal and consists of glacial till and loess. In the northeastern and eastern half of the area, these units are capped by olivine basalt flows, scoria, and explosive or collapse scoria ejected from the large cinder-cone that forms Ruby Mountain. Scoria is extensive and at least three explosive events and resulting crater collapses have occurred.

Outcrop exposure accounts for 5 per cent of the surface area on the entire property. Felsenmeer is present in areas of no outcrop and is assumed to be close to outcrop. Till covers the valleys below 1370 m

(4,500 feet) elevation.

Metasediments and Volcanics:

The Cache Creek Group metasediments and volcanics comprise the oldest rocks exposed in the area. This Group consists of an interbedded sequence of grey to rusty weathering chert and siltstones, dark grey carbonaceous argillites, grey cherty argillite, well bedded impure carbonate, and an unknown thickness of basic volcanic rocks. Monger (1975) classifies the limestone, argillite, and chert as forming part of the Kedahda Formation and the andesite as part of the Nakina Cherty units are typically dark grey to black in colour Formation. and locally is interlayered with argillite containing beds of graphite. The basic volcanics (probably andesite) is typically drab grey-green in colour, siliceous, sometimes weakly carbonatized and contains 1% primary pyrite. The carbonate sequence is massive and ash grey in colour. This unit has been metamorphosed to a skarn at the southern contact with the Surprise Lake Batholith. This skarn (which varies in width from 15 to 50 m) is comprised of well banded to massive diopside-tremolite-garnet rock and amphibolite. The banded skarn is marked by cherty laminations and often contains lenses of coarsely crystalline grey marble 2 to 10 m wide. South of the southern contact with the batholith, the carbonate content of the sequence decreases and the chert and argillite content increases.

The Cache Creek Group is intruded by Pennsylvanian and Permian talcbearing ultramafics and a complex Cretaceous batholith.

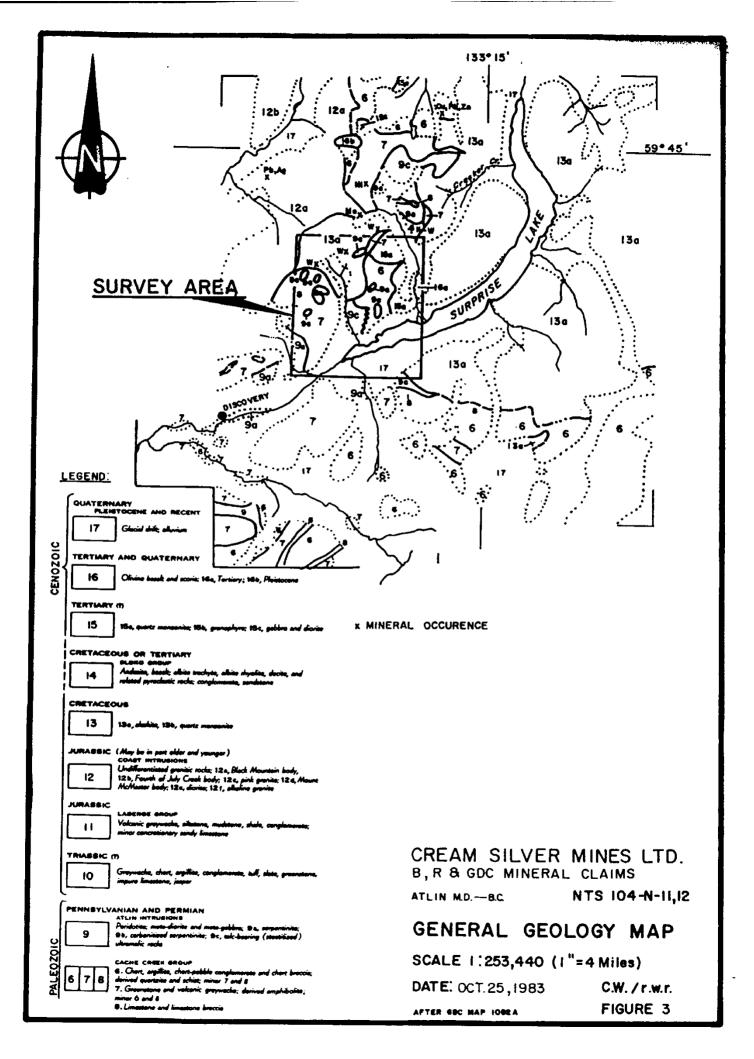
Intrusive Rocks:

Pennsylvanian and Permian ultramafics represent part of the Atlin Intrusions and consist of peridotite and serpentinite. These ultramafic rocks are present as sills, dykes, and stocks that range in size from lenses a few tens of metres long to stocks several km in diameter. In a general way the large stock-like masses occur near the axis of synclines, whereas the small, lenticular, highly serpentinized bodies, are found on the limbs.

The ultramafics weather to a distinctive rusty-orange brown colour. Lack of vegetation cover and its topographically recessive nature makes outcrops of these rocks conspicuous. On a fresh surface, ultramafics are generally dark green, dull waxy green, or black in colour. Alteration of the ultramafic is extensive, and most of the rocks have been subject to varying intensities of serpentinization (20 to 100%) or carbonatization.

Much of the area surrounding Ruby Mountain is underlain by Cretaceous intrusives representing part of the Surprise Lake Batholith. At least two phases of this complex batholith are present and comprise an alaskite phase and a coarse-grained porphyry phase. The alaskite is predominantly light coloured and varies in texture from coarsegrained to fine-grained. The fine-grained variety is most common and consists of phenocrysts of smoky quartz and minor orthoclase in a fine-grained quartz-feldspar matrix. The coarse-grained variety contains similar minerals but is more equigranular. Transitions between the two extreme varieties occur and often over short distances. Both varieties of the alaskite are distinguished by the absence of mafic minerals.

The coarse-grained porphyry phase differs from the alaskite by an increase in mafic minerals. The predominant mafic mineral is biotite and constitutes approximately 5 to 10 per cent of the total volume. Quartz veins are common and occasionally contain pyrrhotite, arsenopyrite, and tourmaline.


Extrusives:

Locally, especially in the eastern portion of the claims, older rocks are capped by Tertiary olivine basalt flows and scoria ejected from a large cinder cone that forms Ruby Mountain. Flows exposed along Ruby Creek, southeast of the B Claims, have been age dated 100,000 years B.P. (Proudlock and Proudlock, 1976). In several areas the flow rocks are covered by scoria indicating the Ruby Mountain has been active well into Recent time. The landform along the northern side of Ruby Mountain indicates that the cone was much steeper and it has suffered a number of periods of landslide movement.

Recent Sediments:

In topographically lower areas the Cache Creek and the intrusive rocks are capped by unconsolidated auriferous gravels and minor glacial till. The stratigraphic sequence exposed on the claims is as follows:

Recent	Glacial till and fluvial gravel
Pleistocene and Recent	Olivine basalt flows and scoria
Pleistocene (Late ?)	Glacial fluvial sediments
Cretaceous	Alaskite and skarn rocks
Pennsylvanian and Permian	Cache Creek Group: metasediments, including chert, argillite, impure siliceous carbonates, and amphibo- lite and time equivalent metavol- canics.

The area south and west of Ruby Mountain (on the R-1 Claim Block) is partly underlain by a Cretaceous alaskite body that represents a portion of the Surprise Lake Batholith. This rock unit is light coloured and varies in texture from coarse-grained to the more common fine-grained variety. Uranium mineralization are reported to be associated with this intrusion.

Because of the limited outcrop exposures it is difficult to obtain specific structural information, however, it appears that the metasediments and notably the limestone beds have northeasterly strikes and dip steeply to the northwest. There is no evidence of isoclinal folding in the area and it is assumed that the exposed rock sequence is a normal one. Faulting is not uncommon and several shears have been recorded although their extent is limited by poor exposures. The old Black Diamond Tungsten Mine appears to lie along a fault striking approximately 015° and dipping to the southeast. This fault marks the contact between the Surprise Lake Batholith and serpentinized and talcose ultramafic rocks of the Atlin Intrusions.

3.0 GEOCHEMISTRY

3.1 SOIL AND ROCK CHIP SAMPLING

3.1.1 SAMPLING AND SAMPLE TREATMENT

A total of 205 soil samples were collected from a grid that was established to cover the area believed to have the best economic Sample collection was part of the general geologic potential. mapping programme. Soil samples were collected at 25 m intervals along cross lines 200 m apart. The purpose of this sampling programme was to see if there is any significant geochemical signiture across areas covered by slide material or overburden. The programme was designed to collect samples, whenever possible, from the B soil horizon; however, generally the soil development was poor and the desired horizon was seldom available. The only sampling medium available was either loess or the C soil horizon. Samples were collected using either a shovel or a prospector's pick and placed into Kraft wet-strength paper envelopes. After air drying for several days the samples were boxed and shipped to Chemex Labs. Ltd. in North Vancouver, B.C.

At Chemex Labs. Ltd. the samples were analyzed for 30 elements using the I.C.P. technique. In addition, gold was analyzed by standard atomic absorption after pre-concentration by Fire Assay extraction.

Results for the soil samples were tabulated for each element and are summarized in Appendix A. The results for copper, lead, and zinc are presented on Figure 4 and for tin, tungsten, and silver on Figure 5.

The rock chip sampling programme was designed to test the economic potential of some of the skarn outcrops. Typically the samples consisted of several golfball-sized representative specimens. Sample locations are identified be their grid location.

3.1.2 DISCUSSION OF RESULTS

Figures 4 and 5 show the contoured geochemical results for copper, lead, zinc, and tin, tungsten, silver, respectively. The results of the 1985 programme extend northward anomalous soil outlined in a previous survey. The most recent programme outlines an anomalous area approximately 2500 m (8200 feet) long and up to 600 m (2000 feet) wide. Present indications suggest that this anomalous zone is open both northward and eastward where it is masked by an apparently thin layer of volcanic rocks. Some of the high soil sample values include 3750 ppm Cu, 2460 ppm Pb, 4750 ppm Zn, 200 ppm Ag, 1000 ppm Sn, and 1100 ppm W. Statistical treatment of soil samples collected since 1983 suggest that the anomalous threshold for the background population is: 1500 ppm Cu, 200 ppm Pb, 500 ppm Zn, 1.0 ppm Ag, and 20 ppm for Sn and tungsten.

Although anomalous samples overlap geologic contacts, it appears that most high values are confined to the metasediments. The one exception is tungsten which outlines significant areas underlain by both metasediments and granitic rocks.

Rock chip sampling of some of the mineralized rocks returned metal values in excess of 1.0% lead and zinc, 4.5 oz/t silver, 0.6% copper, 0.18% tungsten, and 0.1% tin.

4.0 MAGNETOMETER SURVEY

4.1 SCINTREX MAGNETOMETER SYSTEM THEORY AND FIELD PROCEDURES

The magnetic method of applied geophysics consists of measuring accurately the resultant magnetic field of the earth's magnetism acting on rock formations having different magnetic properties and configurations. The resultant field is the vector sum of induced and remanent magnetism. Thus, there are three factors, excluding geometrical factors, which determine the magnetic field at any particular locality. These are the strength of the earth's magnetic field, the magnetic susceptibility of rocks, and their remanent magnetism.

A Model SP Portable Proton Magnetometers manufactured by Scintrex of Concord, Ontario was utilized on this programme. The SP magnetometer is designed for precise mapping of very small or large amplitude anomalies and is ideal for detail follow-up of aeromagnetic reconnaissance surveys. Total Field measurements can be read with a resolution of about 1 gamma throughout the instruments measuring range.

The technique employed for the ground survey was designed to aid geologic mapping by helping to follow rock units in overburden covered areas. Readings were taken along the same chained and flagged lines used for the geochemical survey. All readings were recorded at 25 metre intervals along the grid lines. A centrally located base station was established and loop traverses were designed to re-occupy the base station at hourly intervals. Field measurements were recorded on paper so that a permanent record was maintained. All values recorded on grid lines were corrected for diurnal and day to day variations and are presented on Figure 7.

4.2 DISCUSSION OF RESULTS

The results of the ground magnetometer survey were very satisfactory in extending geologic contacts in areas of slide or overburden cover. The overall magnetic trend appears to correlate with our present understanding of the underlying geology.

5.0 CONCLUSIONS

The 1985 field work was undertaken primarily to study the economic potential of the tin, tungsten, silver mineralization surrounding Mountain. Geochemical sampling has outlined an Ruby area approximately 2500 m (8200 feet) long and up to 600 m (2000 feet) wide which contains some highly anomalous soil sample values ranging up to 3750 ppm Cu, 2460 ppm Pb, 4750 ppm Zn, 200 ppm Åg, 1000 ppm Sn, and 1100 ppm W. The geochemical programme suggests that this anomalous zone is open both northward and eastward where it is masked by a thin layer of volcanic rocks. Rock chip sampling of some of the mineralized rocks within the anomalous area returned metal values in excess of 1.0% lead and zinc, 4.5 oz/t silver, 0.6% copper, 0.18% tungsten, and 0.1% tin.

The ground magnetometer survey was useful as a field aid to geologic mapping. A compilation of all work suggest that the anomalous geochemical samples overlap geologic contacts; however, with the exception of tungsten, all highly anomalous values are confined to the metasedimentary unit.

The results of the geologic and geochemical programme and a concomitant I.P survey have narrowed the broad anomalous zone into specific target areas. The results of the 1985 exploration work have outlined targets which warrant a modest diamond drilling programme.

Respectfully submitted, Somile

R.A. Gonzalez, MSc., F.G.A.C., P.Eng.

6.0 REFERENCES

Aitken, J.D., 1960, Geology, Atlin, Cassiar District, British Columbia: Geological Survey of Canada, Map 1082A, Scale 1:253,440.

Gonzalez, R.A. and Wong, C., 1984, Assessment Report for Geological, Geochemical, and Trenching on the Ruby Mountain Property, Atlin Mining Division, B.C.: Assessment Report Dated December 1984.

Gupta, U. Das, 1978, Geological and Geochemical Assessment Report Dambouleo Claim Group, Atlin M.D.: Assessment Report Dated November, 1978.

Holland, S.S., 1950, Placer Gold Production of British Columbia: B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 28, 89 p.

Monger, J.W.H., 1975, Upper Paleozoic Rocks of the Atlin Terrane, Northwestern British Columbia and South-Central Yukon: Geological Survey of Canada, Paper 74-47, 63 p. and maps.

Proudlock, P.J., and Proudlock, W.M., 1976, Stratigraphy of the Placers in the Atlin Placer Mining Camp: B.C. Ministry of Mines and Petroleum Resources, 69 p.

Troup, A.G., 1983, Report on the Ruby Mountain Property, Atlin Mining Division-British Columbia NTS 104N/11: Engineer's Report dated May, 1983.

Troup, A.G. and Wong, C., 1983, Geochemical, Geological and Geophysical Report on the Shuksan Property: Assessment Report dated October 1983.

9.0 STATEMENT OF PROFESSIONAL QUALIFICATIONS

R.A. GONZALEZ, M.Sc., F.G.A.C., P.Eng.

ACADEMIC

1965	B.Sc. in Geology	The University of New Mexico, U.S.A.
1968	M.Sc. in Geology	The University of New Mexico, U.S.A.

PROFESSIONAL

1983	Archean Engineering Limited	Overseas Manager
1983	Registered Fellow in the Geologi	ical Association of Canada
1980-1983	Placer Development y Cia. Ltd. (Chile)	Ass't Exploration Manager
1977-1980	Consultant attached to the Geological Survey of Malaysia	Ass't Project Manager on a C.I.D.A. supported mineral exploration survey over Peninsular Malaysia
1977	Registered Professional Engineer	r in the Province of Manitoba
1975-1977	Province of Manitoba	Resident Geologist for the Manitoba Dept. of Mines.
1971-1975	Giant Mascot Mines Limited	Senior Geologist
1970-1971	New Jersey Zinc (Canada) Ltd.	Exploration Geologist
1968-1970	Anaconda American Brass Ltd.	Research Geologist
1965-1966	Mex-Tex Mining Co.(U.S.A)	Geologist

8.0 COSTS STATEMENT

CREAM SILVER MINES LTD RUBY MOUNTAIN PROPERTY GEOLOGICAL MAPPING, GEOCHEMICAL, AND GEOPHYSICAL SURVEY COSTS 25 JULY TO 24 SEPTEMBER 1985

GENERAL COSTS

FOOD & ACCOMMODATION: 2 persons, 47.5 man days @ \$19.92/m-day SUPPLIES: FIXED WING CP Air, 24 July, 4 Sept: VCR-WTH return RENTALS:	\$ 946.39 391.18 1,299.05
Ford Rent-A-Car, 4WD Ranger PU 5-8 Aug; 3 days @ \$99.08/day \$ 297.24 Whitehorse Motors, Sedan, 26 July 1 day 57.02 J. Broswick 1 Ton FTBD Truck 27 July-4 Aug; 7 days @ 106.93 748.50 Tilden 4WD Chev. PU 4 to 24 Sept @ \$85.50/day 1,748.50 Ezekiel Field Equipment, 48 man days @ \$6/day 288.00	
FUEL: MAINTENANCE SHIPPING/POSTAGE TELEPHONE (Field): PROJECT PREPARATION CONSULTANT FEES: Archean Engineering Ltd. REPORT PREPARATION:	634.33 80.40 438.88 21.00 652.67 3,047.50 1,920.19
TOTAL GENERAL COSTS	<u>\$ 12,533.03</u>
GEOLOGICAL MAPPING COSTS	

SALARIES AND WAGES:	
2 Pers, 24.5 man days @ \$ 222.96/day	\$ 5,458.33
GENERAL COSTS APPORTIONED	
24.5/47.5 X \$12,533.03	6,464.40
TOTAL GROLOGICAL MAPPING COSTS	<u>\$ 11,922.73</u>

Ţ

GEOCHEMICAL SURVEY COSTS

SALARIES & WAGES		
2 persons, 18 man days @ 207.96/day		3,743.33
ASSAYS & ANALYSES		·
Soils: 13 for Sn & 30 Elem ICP @ \$11.20	\$ 145.60	
l for Au & 30 Elem ICP	14.75	
151 for Sn @ \$4.70	709.70	
3 for Sn @ \$6.00	18.00	
154 for 30 Elem ICP @ \$13	2,002.00	
38 for Sn & 24 Elem ICP @ \$17.70	672.60	
Pulps: 9 for Au @ \$6.25	56.25	
Rocks: 5 for Sn & 24 Elem ICP @ \$19.50	97.50	
l for Sn	6.50	
		3,722.90
GENERAL COSTS APPORTIONED		
18/47.5 X \$12,533.03		4,749.36
TOTAL GEOCHEMICAL SURVEY COSTS		<u>\$12,215.59</u>

GEOPHYSICAL SURVEY COSTS:

SALARIES & WAGES 1 person for 5 man days @ \$246.66/day	1,233.33
RENIALS: Kangeld's Proton Mag., 5 days @ \$27/day	135.00
GENERAL COSTS APPORTIONED 5/47.5 X \$12,533.03	1,319.27
TOTAL GEOPHYSICAL SURVEY COSTS:	<u>\$ 2,687.60</u>

APPENDIX A

SOIL SAMPLE RESULTS

•

		-,	Analytica	al Chemi	İsts	•Geoche	emists	•Regi	istered A	Assayers		Canada	one:(604)	ver, B.C. V7J 2C1 984-0221)43-52597										
· · · · · · · · · · · ·					בדייקב	TCATE	<u>ης</u> Δι	NATYS																
TO : CREA	M SILVI	т ж и:	মাচ্চ ক	l		······				CERT	đ.	• A	25170	19-002	2-0									
										INVO	ICE	⊧: 1	85149	19										
	- 675 OUVER.			INGS	ST.					DATE P.O.			5-AUG Tlin	-85										
V6B										ATLI		• •												
															<u> </u>	TTN:	R. G	ONZAL	.EZ &	ART	TROUP			· · · -·
Sample	no ppm	• •		••	Pt ppm	Bi ppm	••	••	••	••		Mn ppm	• •	Kg 7	· //-	Al X	Be ppm		Cu ppm			Sr ppm	Na Z	ΚZ
description	(ICP)	(ICP)	(ICP)	(102)	(ICP)	(ICP)	(ICP)	(ICP)	(<u>IC</u> P)	([CP)	(1 <u>C</u> F)	(ICP)	(<u>ICP)</u>	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	AAS	(ICP)	(ICP)	(ICP)	(ICP)
L06+50N 2+00W	9	<10	275	720	70	4	1.5	46	178	645	4.75	2640	295	2.78	78	5.84	7.5	0.73	205	1.8	0.390	105	0.90	1.55
L06+50N 2+50W L08+00N 0+50E	10 <1	1100 ⊲10	1330 685	805 1080	725 580	520 11	8.0 7.5	8 43	104 78	350 425	18.80 6.48	810 2710	260 87	1.93 2.05	63 93	3.52 7.28	54.5 26.0	0.69 0.87	1500 585	>200.0 5.4	0.279 0.410	62 119	0.60 0.66	1.09 1.56
L08+00N 1+002	1	<10	4750	2620	415	<2 	27.0	31	96	460	8.25	1710	170	2,86	131	8.62	12.0	2.12	540	3.2	0.992	415	1.35	1.26
L08+00N 1+50E	$\frac{2}{2}$	225	650	990 950	345	35	10.5	37	250	495	5.70	3110	300	3.96	104	4.84	25.5	0.93	730	10.4	0.382	74	0.37	1.79
L08+00N 3+50E	V (1 3	15 <10	197 840	950 905	220 580	ง 5	<0.5 7.0	5 25	32 48	370 540	4.64 5.13	475 2030	STe.	0.94 1.71	40 94	8.60 6.08	5.0 20.5	0.58 1.20	250 320	2.2 5.0	0.321 0.417	91 141	2.25 0.63	2.80 1.80
L08+00N 0+50W	ā	<10	3050	1070	2460	27	25.5	42	188	385	6.83	2200		2.48	88	6.50	33.0	1.86	835	19.6	0.508	200	1.31	1.54
L08+00N 1+00W	1	<10 (10	1350	970 505	1700	10	6.5	71	300	315	8.21	2110	260	4.40	150	6.90	12.0	3.06	605	11.2	0.641	300	1.23	1.32
108+00N 1+50W 108+00N 2+00W	5 10	<16 <10	365 255	505 505	106 56	ය ය	4.0 1.0	20 25	101 205	425 800	2.78 3.89	1000 1240	105 405	1.55 4.29	51 90	3.39 4.58	9.0 5.5	0.60 1.26	215 133	2.2 1.2	0.281 0.298	85 105	0.37 0.75	0.96 1.34
L08+00N 2+50W	a	<10	225	745	38	<2	<0.5	50	685	310	5.46	1200	765	10.60	96	4.66	5.0	2.20	135	0.8	0.463	87	1.09	0.95
L08+00N 4+00W L08+00N 4+50W		<10 <10	131 101	425 725	138 104	4	<0.5 <0.5	3	24	315 315	3.05 3.16	270 225	54	0.68 0.55	24	6.99 7.63	3.5	0.47	164	0.8	0.194 0.179	72 58	2.18 2.64	2.64 3.26
L08+00N 5+00W			300	72J 850	86	3	(0.5	3 5	18 38	315 395	3.1 8 4.50	415		1.22	20 37	7.93	4.0 4.5	0.40 0.76	130 193	0.6 0.4	0.322	111	2.37	2.70
L08+00N 5+50W	$\langle 1$	<10	140	1230	48	<2	<0.5	12	85	385	4.66	515	140	2.52	62	7.09	3.5	1.28	77	<0.2	0.469	176	2.15	2.06
L10+00N 0+00 L10+00N 0+50W	<1 5	(10	101 840	2990 1690	20 375	<2	<0.5	24	93 215	460 545	6.82 6.39	890 1510	215 285	4.60 4.23	126	6.93 6.95	0.5	4.30	99 415	<0.2	1.200	695 280	2.31	1.19 1.29
L10+00N 0+00W	4	<10 20	04V 545	1070	375 205	<2 <2	4.0 4.0	* 34 34	213	545	5.90		375 g	4.23 5,19	121 121	6.06	11.0 6.0	2.19 2.34	915 340	3.0 2.8	0.743 0.698	280 171	1.49 1.27	1.34
L10+00N 1+50W	4	<10	220	1140	52	3	<0.5	11	119	450	4.52	635	<u>چَ</u> . 150	2.07	82	7.86	4.5	1.09	134	1.6	0.506	123	2.20	2.34
L10+00N 2+00W L10+00N 2+50W	$\frac{1}{1}$	(10 50	177 166	955 935	64 07	7 13	<0.5 <0.5	10 Q	71 144	390 405	3.94 5.42	585 800	110 210	1.53 3.21	61 104	7.41 7.72	4.0 4.0	0.90 1.81	135 144	2.0 2.2	0.369	106 142	2.17 2.23	2.55 2.21
L10+00N 3+00W	$\langle 1 \rangle$	120	164	590	84 102	13 24	<0.5	13 14	112	405	5.18	500 715	190	2.75	82	7.85	3.0	1.81	144	2.2	0.624 0.500	142	2.23	2.66
L10+00N 3+50W	Ω	65	114	1090	70	10	<0.5	10	97	380	4.33	700	200	2.38	104	6.19	3.5	1.71	88	0.8	0.492	124	2.14	1.82
L10+00N 4+00W L10+00N 4+50W	<1 <1	45 15	230 310	1030 1030	84 130	13 21	<0.5 <0.5	20 23	210 188	385 430	5.26 5.86	790 910	210195	3.54 3.50	104 117	6.73 7.91	3.0 3.5	1.39 1.48	141 186	1.8 1.6	0.479 0.503	120 131	1.92 1.97	1.54 1.77
L10+00N 5+00W	<1 <1	25 25	310 295	490	34	61 6	<0.5	23 31	430	445	5.33	1080	580	7.45	96	6.02	3.J 2.5	2.32	84	0.4	0.462	131	2.14	1.54
110+00N 5+50W	$\langle 1 \rangle$	<10	103	900	8	3	(0.5	48	790	335	5.10	895	680	10.70	95	5.31	1.0	2.30	75	<0.2	0.523	178	1.67	0.91
L10+00N 6+00W : L12+00N 0+50E	्। दा	<10 <10	171 325	545 2200	12 98	ः <2	<0.5 <0.5	59 18	820 163	300 5 50	4.74 5.77	1350 805	645 215	11.80 2.94	81 105	4.82 7.92	3.0 4.5	2.53 1.51	139 175	0.6 1.6	0.387 0.759	107 215	1.41 1.99	0.86 1.61
L12+00N BL0+00		35	345	1720	40	8	2.5	18	182	475	4.64	1330	170	1.52	44	8.19	5.0	0.56	175	0.4	0.321	95	1.70	2.07
L12+00N 0+50W	$\langle 1 \rangle$	40	97	1050	36	<2	<0.5	11	64	460	3.83	550	135	1.70	60	6.81	2.5	0.78	52	0.4	0.501	102	2.20	2.67
L12+00N 1+50W L12+00N 2+00W	(1 (1	_20 ⊰10	100 80	705 920	32 33	्य २२	<0.5 <0.5	5 6	19 27	605 475	2.96 3.12	495 530	74 91	0.62 0.79	45 54	6.88 6.31	$3.0 \\ 1.5$	0.77 0.62	60 42	0.4 0.4	0.320 0.381	129 103	2.27 2.03	2.69 2.44
L12+00N 2+50W	(1	- 10 90	ov 71	405	33 26	Ke KB	<0.5	6 6	30	480	2.79	385 385	63	0.98	38	7.55	5.2	0.62	44 63	<0.2	0.381	103	2.45	3.26
L12+00N 3+00W	a.	<10	73	920	30	<3	<0.5	4	15	740	3.03	3 70	75	0.66	61	7.36	2.0	0.89	51	0.4	0.368	181	2.42	2.70
L12+00N 3+50W L12+00N 4+00W	्र (1	<10 20	77 105	1240 615	24 22	$\stackrel{(2)}{<}2$	<0.5 <0.5	4 5	15 23	710 625	3.3) 2.83	390 395	77 76	0.70 0.89	59 53	7.18 7.08	$\begin{array}{c} 1.5 \\ 2.5 \end{array}$	0.89 0.91	51 69	0.4 <0.2	0.369 0.331	173 168	$2.21 \\ 2.31$	$2.63 \\ 2.55$
L12+00N 4+50W		<10	60	1150	16	< <u>.</u>	0.5	2	43 10	655	2.53	275 275	64	0.43	55	5.58	1.0	0.63	32	<0.2	0.334	129	1.98	2.28
L12+00N 5+00W	3	:10	350	1470	63	3	<0.5	S	20	400	4.93	575	64	0.90	4 6	8.14	3.0 Y	0.36	152	1.2	0.322	67	1.34	1.80

f.

Chemex Labs Ltd.

(

0

0

	C			С	he	me	ex	Lal	bs	Lto	ł.			rooksba Vancou											
			ą	Analytica	al Chemi	ists	·Geoch	hemists	•Reg	gistered ,	Assayers		Telepho	one:(604)	984-022	1									
	AND REPORTED OF ST								100	- 27 1			Telex:	0	43-5259	7									
					CE	ERTIF	ICATE	OF A	NALYS	IS						-									
					1.1					200															
	TO : CREA	AM SILV	ER MI	INES L	. T I!						CERT	I. ♥ IJCE		851491 851491		1-6									
	1500	0 = 675	WEST	HAST	INGS	Sf.					DATS			5-AUG-											
		COUVER.	в.С.								P.O.		: A	TLIN											
	VGB	INC									AILI	33				4	AITN:	R. G	ONZA	LEZ &	ART	TROUP	ł		
	1210120	AM 20 100	40.0523	-	ages were													Carrier and the							
	Sample description	Ko ppm (ICP)	W ppa (ICP)	Zn ppm (ICP)	P ppm (ICP)	Pb ppm (ICP)	Bi ppm (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Ni ppm (ICP)	Ba ppm (ICP)	Fe Z (ICP)		1. C.	Hg X (ICP)	V ppa (ICP)	Al X (ICP)	Be ppm (ICP)	Ca % (ICP)	Cu ppm (ICP)	Ag ppm AAS	Ii X (ICP)	Sr ppm (ICP)	Na X (ICP)	K Z (ICP)
	20 													-											A ST SHEEP OF
	L02+00N 0+50E	0	<10	135	1750	60	<2	<0.5	22	120	405	5.01	720	370	2.87	103	6.07	0.5	1.89	76	0.8	0.460	127	1.63	0.89
	L02+00N 1+00E L02+00N 1+50E	(1 (1	<10 <10	182 815	870 1670	48 370	<2 8	<0.5 8.0	26 32	148 148	525 535	5.37 7.53		385 375	3.91 3.46	116 162		1.0	2.44	98 174	1.2	0.505	173 179	2.08	1.32
	L02+00N 2+00E		15	166	1470	44	<2	<0.5	24	205	515	5.45		260	4.25	120		2.5	2.05	101	0.8	0.763	225	1.95	1.49
	L02+00N 2+50E	d	<10	210	3710	46	(2	<0.5	32	116	455	5.62		155	2.42	130	7.30	3.0	1.46	144	1.8	0.803	168	1.62	0.92
	L02+00N 3+00E	(1	<10	111	2700	12	<2	<0.5	22	118	445	5.54		200	3.69	104	6.52	1.0	2.43	50	0.8	0.873	395	1.72	0.78
	L02+00N 3+50E	a	(10	80	4600	4	(2	(0.5	13	26	410	4.00		63	0.98	106	7.59	1.0	1.57	93	0.6	0.688	315	1.22	0.49
	L04+00N 0+50E	0	10	119	2710	64	(2	<0.5	16	67	375	4.98		150	2.52	138		4.0	2.16	96	1.0	0.750	225	1.93	1.14
	L04+00N 1+00E	<1	<10	240	1630	114	(2	<0.5	32	83	525	5.55	1110	170	2.65	143	8.57	5.5	1.76	250	1.6	0.651	194	1.89	1.44
	L04+00N 1+50E	<1	<10	117	2780	16	<2	<0.5	26	90	575	6.10	865	195	3.20	121	8.03	1.0	2.92	56	0.6	1.030	515	2.05	1.16
1.1.1	L04+00N 2+00E	<1	<10	86	2410	14	<2	<0.5	17	67	620	5.42	795	175	2.56	106	7.44	0.5	2.39	48	0.4	0.851	390	1.94	1.09
	L04+00N 2+50E	<1	<10	98	2890	10	<2	<0.5	16	69	485	4.86		155	2.49	107	6.55	0.5	2.51	49	0.4	0.823	425	1.78	0.86
	L04+00N 0+00	<1	<10	145	1290	74	4	<0.5	18	71	510	4.68		150	2.37	134	7.35	5.0	2.06	240	2.0	0.604	220	2.02	1.31
	L04+00N 0+50W	<1	35	255	1070	76	8	<0.5	31	255	600	5.73		350	4.26	144	7.88	7.0	2.15	320	2.0	0.372	220	1.94	1.58
	L04+00N 1+00W	<1	30	445	1020	126	(2	1.0	36	380	490	5.32		475	4.76	107	6.48	10.5	1.96	245	2.4	0.489	161	1.78	1.49
	L04+00N 1+50W L04+00N 2+00W	-11	<10	77	1930	14	(2	<0.5	9	57	415	2.88		140	1.51	81	4.77	1.0	2.44	70	0.8	0.465	161	1.44	0.78
	고양 가슴 알려지? 아버지 않았다.	<1	(10	98	1680	28	3	(0.5	12	94	745	3.40	820	165	2.04	88	5.84	1.0	1.35	61	0.8	0.495	182	1.69	1.41
	L04+00N 2+50W L04+00N 3+00W	<1 <1	<10 <10	67 123	875 850	14	<2	<0.5 <0.5	16 28	154 220	695 470	3.16 5.85	805 970	210 270	2.82 4.88	81 170	6.42 7.37	1.0	1.50	55 265	<0.2 0.6	0.410 0.676	210 190	1.96 2.19	1.72
	L04+00N 3+50W	a	(10	180	965	16 24	<2 <2	<0.5	29	305	505	5.06	825	400	4.94	127	6.52	1.5	1.65	138	1.0	0.490	133	1.99	1.45
	L04+00N 4+00W	<1	10	138	3350	36	(2	<0.5	36	370	400	3.63	1030	395	4.85	75	4.37	0.5	1.40	93	1.3	0.265	109	1.17	0.68
	L04+00N 4+50W	<1	30	245	565	64	4	<0.5	8	48	645	3.09		110	1.49	80	6.53	1.5	1.01	113	1.8	0.353	133	2.20	2.14
	L04+00N 5+00W	<1	<10	81	2910	86	<2	<0.5	3	14	405	3.16		45	0.43	42	6.01	2.0	0.61	54	1.6	0.250	125	1.89	1.89
11	L04+00N 5+50W	<1	20	. 56	1410	28	<2	<0.5	2	7	315	1.44	695	26	0.20	24	7.06	4.0	0.31	25	0.6	0.174	60	2.51	2.97
	L04+00N 6+00W	<1	<10	63	695	52	<2	<0.5	3	12	545	2.48	360	56	0.57	50	6.36	1.5	0.71	41	0.6	0.300	134	2.18	2.36
	L06+00N 4+00W	<1	<10	90	625	22	<2	<0.5	26	405	520	3.37	785	340	5.30	70	5.88	1.5	1.38	28	0.6	0.322	176	1.97	1.60
	L06+00N 4+50W	(1	35	92	510	110	39	<0.5	3	29	490	3,55	310	135	1.23	53	5.90	2.0	0.82	135	3.2	0.300	152	1.87	2.52
	L06+00N 5+00₩	<1	010	84	750	150	<2	<0.5	4	17	600	3.10		59	0.71	56	7.73	2.5	0.96	103	2.0	0.314	181	2.41	2.67
	L06+00N 5+50W	*1	<10	69	615	94	(3	<0.5	ę	21	745	3.51	385	73	0.81	56	7.67	2.0	1.02	98	1.4	0.363	182	2.38	2.64
	L06+00N 6+00W	13	<10	94	580	76	2	<0.5	3	17	630	4.22	310	58	0.63	49	8.38	3.5	0.78	180	1.0	0.316	163	2.52	2.97
	LOG+00N 6+50W		<10	66	640	70	<2	<0.5	4	22	770	3.07	380	69	0.85	64	7.52	1.5	1.07	93	0.8	0.352	200	2.34	2.43
	L06+00N 7+00W	<1	<10	72	520	72	<2	<0.5	3	21	565	2.76	345	61	0.73	48	6.60	2.0	0.97	69	0.8	0.295	160	2.31 2.34	2.30
	LOG+OON 7+50W LOG+50N 0+508	~ <1 	<10	50 2560	570	32	2	(0.5	د 20	17	500 570	2.31	300	56 170	0.65	46 114	6.40 6.73	1.5	0.94	30 3750	0.4 27.4	0.273	164 121	2.34	2.22
	LUG+SON 0+SUE LUG+SON 1+00E	75	135 515	2560 970	1540 1040	3400 550	55 60	27.0 10.5	40 95	186 410	570 410	8.99 7.39	4000 1970	420	5.64	101	5.03	35.0 39.5	1.20	3750 1050	16.2	0.338	68	0.46	1.48
	LOG+SON 1+50E	1	60	350	2430	124	<2	(0.5	50	174	370	6.88	1320	245	4.09	130	6.90	7.5	3.05	395	1.8	1.010	465	1.84	1.06
	L06+50N 2+00E	4	205	560	2620	315	<2	2.5	40	155	360	7.75	1080	240	4.44	142	8.14	8.5	4.17	460	7.8	1.160	635	2.14	1.21
	L06+50N 0+00	đ	(10	445	3230	350	(2	2.0	26	97	465	7.50		180	3.51	134	7.96	3.5	3.36	192	1.8	1.220	665	2.12	1.83
		1									-44														
	L06+50N 0+50W	1	<10	315	760	44	<2	3.0	42	555	260	4.44	1250	440	8.61	99	5.92	2.0	4.61	143	0.8	0.396	210	1.01	0.68

Certified by

. . . .

	1500	Ho pps (ICP) (ICP) (I (I (I (I (I (I (I (I (I (I (I (I)(I)(I)(I)(I)(I)(I)(I)(I)(I)(I)(I)(I)(ER MJ WEST B.C. W ppm (ICP) 15 <10 <10 <10 <10 <10 15 <10	HAST	TD. TD.	ERTIE ST. Pb ppm (ICP) 130 32 38 44 88 68	ICATE		Co ppm (ICP) 30	NJ ppm (ICP) 143 127	CERT INVO DATS P.O. ATLI	ICE	Telex: : A8 : I8 : 18 : NC Mn ppm (ICP) 785	351496 351496 3-AUG- 3NE	43-5259 9-001	7 L – A A 1 V ppm (ICP)	582,672	R. GO Be ppm (ICP)	19 - KUP	Cu ppm (IC?)	ART TI Ag ppm AAS	Ti I (ICP)	Sr ppm (ICP)	Na X (ICP)
	1500 VANC VGB Sample description L2+00N 0+00W L2+00N 0+00W L2+00N 1+00W L2+00N 1+00W L2+00N 1+50W L2+00N 2+00W L2+00N 3+00W L2+00N 3+50W L2+00N 4+50W	- 675 DUVER, 1N2 Ho ppm (ICP) (I (I (I (I (I (I (I (I (I (I (I (I (I	WEST B.C. W ppm (ICP) 15 <10 <10 <10 <10 <10 15 <10	2n ppm (ICP) 335 103 121 95 235 171 116	P ppm (ICP) 1190 795 1030 1150 1720 1750	ST. Pb ppm (ICP) 130 32 38 44 88 68	Bi ppm (ICP) <2 <2 <2 <2 <2	Cd ppm (ICP) (0.5 (0.5 (0.5	Cc ppm (ICP) 30 19	NJ ppm (ICP) 143 127	INVO DATS P.O. ATLI B3 ppm (ICP) 560	ICE # H Fe X (ICP) 4.99	<pre>% : 18 : 18 : NC % ppm (ICP) 785</pre>	351496 3-AUG- INE Cr ppm (ICP)	85 85 Kg Z (ICP)	ې ۷ ppm (ICP)	Al Z	Be ppm	Ca X	Cu ppm (IC?)	Ag ppm	Ti I (ICP)	(ICP)	(ICP)
	1500 VANC VGB Sample description L2+00N 0+00W L2+00N 0+00W L2+00N 1+00W L2+00N 1+00W L2+00N 1+50W L2+00N 2+00W L2+00N 3+00W L2+00N 3+50W L2+00N 4+50W	- 675 DUVER, 1N2 Ho ppm (ICP) (I (I (I (I (I (I (I (I (I (I (I (I (I	WEST B.C. W ppm (ICP) 15 <10 <10 <10 <10 <10 15 <10	2n ppm (ICP) 335 103 121 95 235 171 116	P ppm (ICP) 1190 795 1030 1150 1720 1750	Pb ppm (ICP) 130 32 38 44 88 68	(ICP) (2 (2 (2 (2	(ICP) (0.5 (0.5 (0.5	(ICP) 30 19	(ICP) 143 127	INVO DATS P.O. ATLI B3 ppm (ICP) 560	ICE # H Fe X (ICP) 4.99	<pre>% : 18 : 18 : NC % ppm (ICP) 785</pre>	351496 3-AUG- INE Cr ppm (ICP)	85 85 Kg Z (ICP)	ې ۷ ppm (ICP)	Al Z	Be ppm	Ca X	Cu ppm (IC?)	Ag ppm	Ti I (ICP)	(ICP)	(ICP)
	VANC VGB Sample description L2+00N 0+00W L2+00N 0+50W L2+00N 1+50W L2+00N 1+50W L2+00N 2+50W L2+00N 2+50W L2+00N 3+50W L2+00N 3+50W L2+00N 4+50W	NUVER, 1N2 No ppm (ICP)	B.C. W ppm (ICP) 15 (10 (10 (10 (10 (10 (10 (10) (10) (10)	2n ppm (ICP) 335 103 121 95 235 171 116	P ppm (ICP) 1190 795 1030 1150 1720 1750	Pb ppm (ICP) 130 32 38 44 88 68	(ICP) (2 (2 (2 (2	(ICP) (0.5 (0.5 (0.5	(ICP) 30 19	(ICP) 143 127	0ATS P.O. ATLI B3 ppm (ICP) 560	8 Fe X (ICP) 4.99	: 18 : NC Kn ppm (ICP) 785	3-AUG- INE Crppm (IC?)	-85 Kg Z (ICP)	V ppm (ICP)	Al Z	Be ppm	Ca X	Cu ppm (IC?)	Ag ppm	Ti I (ICP)	(ICP)	(ICP)
	VGB 53mple description L2+00N 0+00W L2+00N 0+50W L2+00N 1+50W L2+00N 1+50W L2+00N 2+50W L2+00N 2+50W L2+00N 3+50W L2+00N 3+50W L2+00N 4+50W	1N2 No ppm (ICP) (ICP) (I (I) (I) (I) (I) (I) (I) (I) (I) (I)	W ppm (ICP) 15 <10 <10 <10 <10 <10 <10 <10 <10 15 <10	2n ppm (ICP) 335 103 121 95 235 171 116	(ICP) 1190 795 1030 1150 1720 1750	(ICP) 130 32 38 44 88 68	(ICP) (2 (2 (2 (2	(ICP) (0.5 (0.5 (0.5	(ICP) 30 19	(ICP) 143 127	ATLI Bappm (ICP) 560	Fe X (ICP) 4.99	Mr. spm (ICP) 785	Cr ppm (ICP)	(ICP)	V ppm (ICP)	Al Z	Be ppm	Ca X	Cu ppm (IC?)	Ag ppm	Ti I (ICP)	(ICP)	(ICP)
	53mple description L2+00N 0+00W L2+00N 0+50W L2+00N 1+00W L2+00N 1+50W L2+00N 2+00W L2+00N 2+50W L2+00N 3+50W L2+00N 3+50W L2+00N 4+50W	Ho pps (ICP) (I (I (I (I (I (I (I (I (I (I (I (I (I	(ICP) 15 (10 (10 (10 (10 (10 15 (10	(ICP) 335 103 121 95 235 171 116	(ICP) 1190 795 1030 1150 1720 1750	(ICP) 130 32 38 44 88 68	(ICP) (2 (2 (2 (2	(ICP) (0.5 (0.5 (0.5	(ICP) 30 19	(ICP) 143 127	Вз ррш (ICP) 560	Ee X (ICP) 4.99	(ICP) 785	(102)	(ICP)	V ppm (ICP)	Al Z	Be ppm	Ca X	Cu ppm (IC?)	Ag ppm	Ti I (ICP)	(ICP)	(ICP)
	description L2+00N 0+00W L2+00N 0+50W L2+00N 1+00W L2+00N 1+50W L2+00N 2+50W L2+00N 2+50W L2+00N 3+50W L2+00N 3+50W L2+00N 4+50W	(ICP) (ICP	(ICP) 15 (10 (10 (10 (10 (10 15 (10	(ICP) 335 103 121 95 235 171 116	(ICP) 1190 795 1030 1150 1720 1750	(ICP) 130 32 38 44 88 68	(ICP) (2 (2 (2 (2	(ICP) (0.5 (0.5 (0.5	(ICP) 30 19	(ICP) 143 127	(ICP) 560	(ICP) 4.99	(ICP) 785	(102)	(ICP)	(ICP)				(102)		(ICP)	(ICP)	(ICP)
	L2+00N 0+00W L2+00N 0+50W L2+00N 1+00W L2+00N 1+50W L2+00N 2+00W L2+00N 2+50W L2+00N 3+50W L2+00N 3+50W L2+00N 4+50W		15 <10 <10 <10 <10 <10 <10 15 <10	335 103 121 95 235 171 116	1190 795 1030 1150 1720 1750	130 32 38 44 88 68	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.5 <0.5 <0.5	30 19	143 127	560	4.99	785		Salara Ni				,1017			1.120	100	
	L2+00N 0+50W L2+00N 1+00W L2+00N 1+50W L2+00N 2+00W L2+00N 2+50W L2+00N 3+50W L2+00N 3+50W L2+00N 4+50W		<10 (10 (10 (10 (10 (10 (15 (10	103 121 95 235 171 116	795 1030 1150 1720 1750	32 38 44 88 68	<2 <2 <2	<0.5 <0.5	19	127				390				0.5			1 1	A 510		
	L2+00N 1+00W L2+00N 1+50W L2+00N 2+00W L2+00N 2+50W L2+00N 3+00W L2+00N 3+50W L2+00N 4+00W L2+00N 4+50W	a 1 a a a a	<10 <10 <10 <10 15 <10	121 95 235 171 116	1030 1150 1720 1750	38 44 88 68	<2 <2	<0.5				4.01	765	270	3.01	124 127	7.38	2.5	2.34 2.10	171 61	1.6	0.519	173 235	2.07
	L2+00N 2+00W L2+00N 2+50W L2+00N 3+00W L2+00N 3+50W L2+00N 4+00W L2+00N 4+50W	1 0 0 0	<10 <10 15 <10	235 171 116	1720 1750	88 68		(0.5		255	655	5,17	830	285	3.99	119	7.04	2.0	1.77	94	0.6	0.733	195	1.97
	L2+00N 2+50W L2+00N 3+00W L2+00N 3+50W L2+00N 4+00W L2+00N 4+50W	0 0 0	<10 15 <10	171 116	1750	68	<2		12	124	670	3,62	595	185	2.19	88	5.94	1.5	1.40	50	<0.2	0.480	179	1.89
	L2+00N 3+00W L2+00N 3+50W L2+00N 4+00W L2+00N 4+50W	0 0 0	15 <10	116				<0.5	23	146	710	5.55	920	185	2.58	125	7.97	3.0	1.22	144	<0.2	0.692	165	1.89
	L2+00N 3+50W L2+00N 4+00W L2+00N 4+50W	а а	<10		11.00	64	<2 (2	<0.5 <0.5	20 19	142 205	640 635	5,22	885 800	195	2.64	120 105	7.08	2.5 3.5	1.41	92 66	<0.2 0.4	0.751 0.601	172 195	1.83 2.01
	L2+00N 4+00W L2+00N 4+50W	(1		1.59	880	38	(2	<0.5	19	146	655	3,73	755	240 225	3.37 2.84	98	6.17	3.0	1.79	74	0.4	0.517	195	1.80
		14	<10	81	1510	18	0	<0.5	16	166	735	3.91	885	255	2.93	98	6.19	1.5	1.37	51	0.4	0.521	164	1.80
	12+00N 5+00W	<1	<10	135	1180	33	<2	<0.5	24	205	620	5.51	395	245	3.93	157	7.79	2.0	1.91	205	<0.2	0.625	184	2.13
		<1	<10	127	1990	64	<2	<0.5	18	153	710	4.27	330	290	3.08	105	7.59	1.5	1.58	120	0.4	0.510	168	2.01
	L2+00N 5+50W	(1	<10	118	785	92	6	(0.5	6	46	625	3.02	445	120	1.23	66	6.88	2.0	0.91	102	0.4	0.343	135	2.07
	L2+00N 6+00W L2+00N 6+50W	<1	<10 <10	136 69	2720 1060	78 54	<2 <2	4.5 <0.5	7 3	17 12	510 700	2.40 2.35	1860 380	54 61	0.54	44 53	6.28 7.39	2.5	0.74	46 37	0.8	0.290	150 161	1.97 2.40
	L2+00N 7+00W	(1	(10	65	645	60	12	<0.5	1	10	550	2.12	340	63	0.37	48	7.43	2.5	0.67	58	0.4	0.276	139	2.49
	L2+00N 7+50W	<1	<10	62	320	94	<2	<0.5	3	17	710	2.71	325	69	0.62	62	8.09	2.0	0.90	38	0.4	0.338	186	2.40
£.	L6+00W 0+00S	<1	<10	95	745	78	<2	<0.5		40	670	2.70	445	105	1.11	62	8.05	2.5	0.96	68	0.6	0.352	172	2.39
Ì.	L6+00W 0+50S	(1	<10	105	790	56	<2	<0.5	12	115	780	3.26	675	190	2.24	80	6.92	2.5	1.35	54	0.4	0.463	176	2.12
	L6+00W 1+00S L6+00W 1+50S		<10 <10	68 260	1190 795	26 192	(2)	<0.5 1.5	7 7	68 46	800 1140	3.04 3.20	620 585	170 135	1.51 1.34	85 78	7.13	3.0 3.5	1.42	36 50	0.8	0.440	240 178	2.26
	L6+00W 2+00S	3	(10	197	1240	245	2	1.0	5	35	1020	3.84	475	100	1.03	72	6.85	2.0	0.96	52	4.8	0.342	178	1.92
	L6+00W 2+50S	(1	<10	109	3670	118	(2)	1.0	8	42	1050	3.72	800	135	1.21	93	6.56	2.0	1.09	46	<0.2	0.498	137	1.87
	L6+00W 3+00S	<1	<10	97	1260	124	<2	<0.5	6	36	1070	3.39	660	125	1.25	94	6.54	1.5	1.37	41	0.6	0.476	205	2.01
	L6+00W 3+50S	(1	<10	106	920	132	<2	<0.5	9	51	990	3.55	705	135	1.62	95	6.93	1.5	1.55	50	0.4	0.459	230	2.06
	L6+00W 4+005 L6+00W 4+505		<10 <10	72 295	1690 1560	66 144	<2	<0.5 <0.5	4	37 115	850 950	3.42 4.93	395 1530	135 185	1.02 2.39	101 128	5.10 7.74	1.0 2.5	0.90	36 106	<0.2	0.435	129 169	1.48
	L6+00W 5+00S	<1	<10	164	1250	46	3	(0.5	19 20	132	675	5.11	1020	205	3.04	145	8.20	1.0	2.19	86	1.0	0.679	195	2.07
	L8+00W 0+00S	(1	<10	107	935	80	3	:0.5	4	25	640	2.72	490	82	0.65	62	7.69	2.5	0.71	81	0.4	0.361	137	2.25
	L8+00W 0+50S	<1	-010	132	1520	140	<2	1.5	9	37	650	3.41	1330	100	0.90	69	7.60	3.5	0.77	94	0.6	0.412	130	2.16
	L8+00W 1+005	<1	<10	137	325	88	<2	<0.5	4	28	615	2.52	365	82	0.73	50	8.35	3.5	0.77	61	0.6	0.305	140	2.61
	L8+00W 1+50S L8+00W 2+00S		<10 <10	395 95	880 595	180	10	4.5 <0.5	4	32 50	595 1000	2.32 2.87	290 470	82 135	0.70	46	8.08	3.5	0.76	149	4.4	0.282 0.391	170 225	2.13
	L8+00W 2+50S	<1 (1	<10	101	535	64 60	(2	(0.5	8 7	56	820	2.85	450	150	1.36	85 75	5.93	2.0 3.5	1.15	35 33	0.4	0.364	162	2.09
	L8+00W 3+005	ā.	<10	102	1000	14	12	(0.5	8	58	655	3.06	630	140	1.33	77	6.52	3.0	1.04	34	0.4	0.383	142	1.98
	L8+00W 3+505	d	10	129	1160	60	0	0.5	7	56	720	3.07	710	140	1.38	84	6.63	2.0	1.03	35	<0.2	0.441	152	1.98
	L8+00¥ 4+00S	$\langle 1$	<10	198	643	56	<2	1.0	3	36	585	2.20	365	105	1.00	60	7.48	2.5	0.96	21	1.2	0.379	153	2.11
	L8+00W 4+50S L8+00W 5+00S		<10 <10	90 96	785 1290	22 40	<2 (2	<0.5 <0.5	11 9	100 62	515 600	3.27 3.63	520 720	185 170	2.14	96 101	6.28	1.5	1.42	37 38	0.4 <0.2	0.419 0.532	144 136	1.95

S			Analytic	al Chem	ists	•Geoch	emists	•Re	gistered A	Assayers		Canada Telepho Telex:	one:(604)	V7J 2C 984-022 43-5259	ε I										
-					ERTIE	ICATE	0E A1	VALYS	IS						-										
	- 675 OUVER,	WES	T HAST		ST.					CERT INVO DATE P.O. ATLI	33I *	* : I : 1	85149 85149 5-AUG TLIN	19		TIN:	R.G	ONZAL	.EZ. &	ART	TROUP	15			_
Sample escription	Noppa (ICP)	W ppm (ICP)		P ppm (ICP)	Pb ppm (ICP)	Bi ppm (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Ni ppm (ICP)	Ba ppm (ICP)	Fe % (ICP)	Mn ppm (ICP)	Cr ppm (ICP)	Hg X (ICP)	V ppm (ICP)	Al X (ICP)	Be ppm (ICP)	Ca X (ICP)	Cuppm (ICP)	Ag ppm AAS	Ti X (ICP)	Sr ppm (ICP)	Na X (ICP)	K Z (ICP)	-
6+00N 5+50W 6+00N 6+00W	a a	<10 <10		1520 1940	AND THE REPORT OF THE PARTY OF	(2 (2	<0.5 <0.5	12 16	A COLUMN TWO IS NOT THE	530 370	5.04	675 720	115 145	1.61 2.33	80 87	7.67	2.5 3.0	1.26	129 103	0.4	0.668	230 325	2.03 2.16	1.98	
6+00N 6+50W 6+00N 7+00W		30	215	1250	24	3	<0.5 <0.5	10 7	43 35	390 570	4.90	645 540	91 81	1.40	56 62	8.77	4.0	0.66	135 121	0.4	0.549	121 170	2.28	2.88	1.164.98
6+00N 7+50W 8+00N 0+60E	<1 18	(10	148 425	1960 375	36 188	<2 57	<0.5 0.5	8 21	36 245	605 315	5.50 9.18	590 1290	88 355	1.10 3.90	85 - 49	9.59 8.41	3.0 9.0	0.88	167 710	0.6	CONTRACTOR OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIP	200 49	2.19	2.40 3.60	
8+00N 1+00E 8+00N 1+75E	28 14	95 140	325	865 535	92	32 43	3.0 <0.5	47 20	And the second se	445 410	8.56	2760 1770	445 245	5.13 3.00	105 52	7.65	16.5 8.0	0.89	1010 525	1.8 1.6	0.272	26 72	0.93	3.37 3.52	
8+00N 2+80E 8+00N 1+50W		<10	73	990 890	26	(2 (2 8	<0.5 <0.5	44	615 32	520 545	5.29	2760 575	555 66	7.30	92 51	5.17 6.97 7.76	3.0	1.12	112	0.6	0.297	74 200	0.81	1.12 2.74	
8+00N 2+00W 8+00N 2+50W 8+00N 3+00W	D D	<10 <10 <10	74	1520 1560 885		3	<0.5 <0.5 <0.5	3	25 14 18	575 560 595	4.52 3.36 3.37	520 445 395	68 55 66	0.86 0.57 0.74	71 58 65	6.64 7.28	3.5 2.0 2.5	0.92 0.85 1.00	275 71 85	0.6 <0.2 0.4	0.433 0.353 0.396	190 198 210	2.13 2.19 2.29	2.30 2.38 2.50	
8+00N 3+50W 8+00N 4+00W	a	<10 <10	COLORAD POLICY	880 815	40	(2 (2	<0.5 <0.5	6 5	27 18	660 675	3.68	495 430	74 78	1.02	74 71	7.51	2.0 2.5	1.24	148 77	<0.2 0.4	0.415	255 193	2.21	2.34	
8+00N 4+50W 8+00N 5+00W	(1 (1	<10 20	101	1100 1000	36	5 6	<0.5 <0.5	5 8	18 21	560 395	3.48 3.15	485 930	61 43	0.54 0.48	57 30	5.84 6.76	2.0 3.5	0.95	132 144	0.4	0.318	143 71	1.79 2.11	2.08 3.14	
8+00N 5+50W 8+00N 6+00W 8+00N 6+50W	1 1 3	(10 25 20	107	1420 1320 1490	36	5 (2 5	<0.5 <0.5 <0.5	7 11 6	27 51 27	425 470 630	4.00 4.66 4.23	475 700 500	65 105 75	0.71 1.51 0.71	50 66 72	7.23 7.88 8.15	3.0 4.0 3.5	0.58 1.03 0.75	149 115 87	0.4 <0.2 <0.2	0.359 0.503 0.520	86 125 135	2.02 2.35 2.11	2.79 3.01 2.76	Jadieloj
8+00N 7+00W 8+00N 7+50W	7 1	50 <10	132 100	1040 1160	44 30	10 <2	<0.5 <0.5	8 8	36 30	600 710	4.02 3.89	535 570	89 86	0.98	68 82	7.53 7.73	3.0 2.5	0.84	94 92	<0.2 <0.2	0.487 0.482	137 182	2.13 2.12	2.82 2.52	
0+00N BL0+00 0+00N 0+50W 0+00N 1+00W	() () () () () () () () () () () () () (20 25 40	64	940 790 1010		9 16 8	<0.5 <0.5 <0.5	5 10	14-16-FE-29-29-20-18	515 560 610	3.70 3.36 3.81	490 350 540	73 67 98	0.72 0.72 1.24	54 53 66	6.93 7.10 6.67	2.0 2.0 2.0	0.83 1.04 1.18	295 280 193		0.311 0.298 0.375	138 167 180	2.19 2.27 2.14	2.88 2.97 2.64	
0+00N 1+50W 0+00N 2+00W	2 (1	35 30	66	910 995	32	7 7 5	<0.5 <0.5	7	39	650 575	4.37	560 485	82 99	0.88	67 65	7.61	2.5	1.21	610 183	0.4		199 140	2.23	2.94 2.79	
0+00N 2+50W 0+00N 3+00W 0+00N 3+50W	<1 16 2	15 110 55	39	1090 285 830	62	5 12 9	<0.5 <0.5 <0.5	3 2 6	19 7 20	620 415 485	4.15 5.28 4.60	430 320 425	74 33 67	0.66 0.57 0.63	70 24 50	6.74 7.87 7.24	1.0 2.0 3.0	0.86 0.46 0.73	205 295 405	0.4 0.6 1.0	0.354 0.167 0.289	167 89 119	2.05 1.93 2.13	2.40 3.25 2.98	
0+00N 4+50W			102	955 1360	52	a contract of the	<0.5 <0.5	10 17	45	605 620	4.27 5.62	530 720	105 175	1.31 2.53	70 108	7.88 8.01	3.0	1.04	200 130	0.6	0.470 0.745	167 172	2.13	2.85 2.32	
0+00N 7+00W	2 8	35 140		850 755	40 38	4 28	<0.5 <0.5	10 6	40 27	795 610	3.79 4.97	580 435	100 74	1.17 0.86	78 56	8.45 7.52	2.0	1.13	143 465	0.4	0.454 0.305	215 172	2.26	3.02 2.95	

Certified by

31

)

Ó

		i T	C Analytica			•Geoch		bs •Reg	Ltc	3		North Canada	Vancou me:(604)	nk Ave ver, B.C V7J 2C1 984-0221 943-52597									
				[ERTIF	ICATE	0E Å	NALYS	IS	-		-	_		_						a.		(
1500	NM SILV D - 675 Couver. IND	WEST			ST.					CERT INVO DATE P.O. AILI	1CE	1 : 1 : 1	85149 85149 5-AUG 5-AUG			TIN:	R. 6	JONZA	LEZ \$	ART	TROUP		
Sample description	Ha ppm (ICP)	W ppm (ICP)	Zn pp n (ICP)	P pps (ICP)	Pb ppm (ICP)	Bi ppa (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Ni ppm (ICP)	Bappma (ICP)	Fe % (ICP)	Mn ppm (ICP)		Mg X (ICP)	V ppm (ICP)	Al Z (ICP)	Be ppm (ICP)	Ca X (ICP)		Ag ppm AAS	Ti Z (ICP)	Sr ppm (ICP)	N: (]
L12+00N 5+50W	4	<10	150	510	36	5	<0.5	5	27	615	3.47	415	80	0.97	53	7.18	3.0	0.94	255	<0.2	0.307	158	2.
L12+00N 6+00W	<1	20	111	560	42	4	<0.5	8	38	600	4.15	420	100	1.35	53	8.44	3.0	0.93	169	0.6	0.387	141	2.
L12+00N 6+50W	$\langle 1 \rangle$	20	134	1140	60	8	<0.5	8	36	580	4.90	555	115	1.25	68	8.38	2.5	0.90	162	0.6	0.500	139	2.
L12+00N 7+00W L12+00N 7+50W	<1	<10 <10	163 173	745 690	84 36	11	<0.5	8	36	675	4.91	500	110	1.33	65	7.47	2.5	1.16	171	1.2	0.432	172	2.
L14+00N 0+50E		60	.182	1000	76	<2 16	<0.5 <0.5	20	29 220	685 550	4.18 5.16	405 805	87 220	1.04 3.85	59 73	7.64	2.5	1.06	197 86	0.6	0.366	183 124	2
L14+00N 1+00E	12	160	850	1310	600	21	2.5	27	245	460	8.42	2300	330	4.16	114	7.30	15.5	1.03	280	2.4	0.436	93	1.
L14+00N 1+50E	4	50	920	2060	490	4	3.5	20	152	625	7.05	1850	220	3.33	123	8.42	12.0	2.32	187	2.4	0.796	315	1
L14+00N 2+00E	$\langle 1 \rangle$	<10	600	1540	176	7	1.0	24	240	565	5.71	800	270	4.01	109	7.24	6.5	2.03	220	2.2	0.623	255	1.
L14+00N 0+00	<1	79	151	895	38	13	<0.5	15	190	615	4.16	645	225	3.14	64	6.36	3.5	1.15	53	0.4	0.387	151	2.
L14+CON 0+50W	0	55	84	1340	28	- 6	<0.5	4	23	605	3.31	435	-90	0.75	63	7.36	2.5	0.74	66	0.4	0.416	132	2.
L14+00N 1+00W L14+00N 1+50W		<10 <10	67	845	24	3	(0.5	3	13	665	3.23	310	80	0.50	56	5.74	1.5	0.76	48	0.4	0.365	134	2.
L14+00N 2+00W	(1 (1	35	78 112	735 590	16 18	3 5	<0.5 <0.5	5	20 18	815 740	3.33	375 435	90 89	0.78 0.73	58 56	6.21	1.5	1.09	49 69	<0.2 <0.2	0.350	189 157	2.
114+00N 2+50W	a	<10	97	625	16	(2	(0.5	5	25	700	3.29	375	78	0.92	49	6.24	1.5	1.00	57	(0.2	0.333	163	2.
L14+00N 3+00W	<1	<10	67	905	18	<2	<0.5	4	12	710	3.26	430	73	0.57	60	5.98	1.0	0.91	37	<0.2	0.349	163	2.
L14+00N 3+50W	<1	15	116	775	30	3	(0.5	- 7	30	675	3.54	470	84	1.06	54	7.05	2.5	1.06	68	0.4	0.337	169	2.
L14+00N 4+00W	0	<10	128	1430	30	4	<0.5	6	16	435	3.95	640	61	0.66	44	7.81	3.0	0.46	74	0.4	0.324	73	2.
L14+00N 4+5CW	4	25	89	810	18	<2	(0.5	10	46	875	3.77	520	125	1.71	68	7.02	1.5	1.54	43	<0.2	0.422	240	2.
L14+00N 5+00W L14+00N 5+50W		<10 55	196 129	690 1250	30 36	<2 10	<0.5 <0.5	7	31	555 620	3.54 4.36	620	82	1.10	45	7.05	4.5	0.94	115	<0.2	0.317	130	2.
L14+00N 6+00W	ā	<10	167	1130	28	<3	(0.5	9	45 44	640	4.34	640 580	105 100	1.45 1.46	83 75	7.31 7.75	2.5 3.5	1.36	155 120	0.6 <0.2	0.479	250 260	2.
L14+00N 6+50W	d.	30	210	1170	30	34	<0.5	10	46	555	5.86	610	115	1.60	76	8.04	4.5	1.42	240	0.6	0.548	280	2.
L14+00N 7+00W	<1	20	198	1440	36	8	<0.5	10	44	515	5.45	630	105	1.43	74	8.13	4.5	1.19	240	0.8	0.571	225	2.
L14+00N 7+50W	(1	30	120	1030	60	11	<0.5	8	37	475	5.49	480	90	1.19	58	8.02	3.5	0.92	210	0.8	0.447	175	2.
L16+00N 0+00E L16+00N 0+5CE	13	260	172 590	1130	60	58	0.5	11	37	455	5.26	1210	66	0.69	38	7.15	3.5	0.51	132	<0.2	0.264	77	2.
L16+00N 1+002	3	220 295	620	645 1050	370 620	27 23	1.5	48 39	653 300	180 240	8.50 10.70	2450 2490	570 410	8.78 5.62	144	5.78 6.28	9.0 13.0	2.02	230 350	2.0	0.633	58 97	1.
L16+00N 1+50E	$\langle 1$	230	435	370	110	27	<0.5	54	545	235	7.39	2150	545	7.80	122	5.58	11.0	1.86	198	0.4	0.556	74	1.
L16+00N 2+00E	3	375	360	725	30	37	(0.5	38	335	345	6.62	1910	350	5.16	110	6.32	9.0	1.56	220	0.6	0.552	113	1.
L16+00N 0+50W	6	135	56	475	30	36	<0.5	5	37	645	3.79	405	75	0.87	59	6.38	1.5	1.07	83	<0.2	0.328	225	2.
L16+00N 1+00W	20	515	133	655	152	92	<0.5	6	30	530	6.55	470	75	0.76	56	6.24	2.5	0.83	350	0.6	0.341	161	2.
L16+00N 1+50W	- Cl.	20	51	960	33	11	0.5	4	18	590	3.17	395	67	0.58	60	6.02	1.0	0.98	60	<0.2	0.335	205	2.
L16+00N 2+00W L16+00N 2+50W	4	80 10	89 64	805 780	80 16	33 5	<0.5 <0.5	8	34 27	620 670	5.19	505 410	80 70	1.05	65	7.35	3.0	1.09	235	0.5	0.408	198	2.
L16+00N 3+00W	a	<10	66	1340	18	(3 (3	(0.5	3	15	530	3.38	390	62	0.95	64 63	6.45 5.27	1.0	1.24	101 55	<0.2 0.4	0.346	255 182	2.
L16+00N 3+50W	à	<10	62	965	18	(2	(0.5	5	21	690	3.32	460	76	0.83	70	6.00	2.0	1.20	48	0.4	0.378	240	2.
L16+00N 4+00W	<1	10	109	970	32	45	(0.5	6	27	575	3.76	135	77	0.89	71	5.95	1.5	1.00	240	0.6	0.385	198	1.
L16+00N 4+50W	1	.10	250	580	30	(2	(0.5	5	19	565	5,59	45.0	58	0.78	49	8.26	4.5	0.78	335	0.6	0.332	168	2.
L16+00N 5+00W		<10	160	:735	18	12	10.5	11	50	695	4.24	535	115	1.68	67	6.89	2.5	1.31	118	0.6	0.468	225	2.

 \bigcirc

0

2

2

	1		-Д	C	cal Che	emists		Geoch	hemists		•Regis	stered	d. Assaya	ers		North Canada	one:(6	couver V 04) 98	r, B.C 7J 2C1		Nitr	ic- eria	Aqua l fo	-Reg llow	ia d ed b	dige by I	stic CP a	on o: anal;	f O. ysis	5 gi	e of inc.	ysis		
VAN	K MANA 0 - 67 Couver 1N2	75 W£	ST I				-					1	CERI INVO DATE P.O. GEM/	ICE	* :	18	5171 5171 -OCT NE	81	001-0	4	COMPATIN	La. La. be	repo Mg, con S :	rted K, side	for Na, red	Al Sr,	. St Tl, semi	, B. Ti	a. H . W anti	e, (and tat:	Ca. V c:	C 1 -		
Sample description	Sn pp a	1000	Ag ppm	As ppa	Ba ppm	Be ppm	Bi ppm	Ca Z	Cd ppm	Co ppm	Cr ppm	Cu ppa	Fe Z	Ga ppm	K X	La ppm	Ng X	Mn ppm	Ho ppm	Na Z	Ni ppm	P ppm	Pb ppm	Sb ppm	Sr ppm	Ti Z	T1 ppm	U ppma	V ppm	W ppm	Zn pp≋			
16N 3+00E 16N 3+50E 16N 4+00E 16N 4+50E 16N 5+00E 16N 5+50E 16N 6+00E 16N 7+50E 16N 7+50E 16N 8+00E 16N 8+50E 16N 8+50E 16N 9+00E	1 1 1 1 1 1 1 1 1 1 1	0.55 3.42 3.44 2.33 1.65 2.19 1.07 3.01 4.44 3.32 1.35 3.46 0.76	0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	20 10 20 10 10 <10 <10 <10 <10 <10 10 <10	140 260 280 100 140 200 180 200 170 160	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.42 0.61 0.51 0.50 0.16 0.28 0.44 0.66 0.71 0.49 0.34 0.77 0.36	<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>		21 110 109 92 33 78 31 81 70 68 42 34 29	119 104 47 9 32 (1 40 32 34 21 33	1.13 6.10 4.92 5.18 2.04 5.31 2.07 4.82 6.76 5.70 3.96 3.62 2.32	10 10 (10 (10 10 (10 (10 (10) (10)		20 30 20 10 10 10 30 40 20 10 20	1.69	784 907 725 202 1126 353 869 1088 1032 800 644	1 3 (1 1 2 1 1 2 1 (1 1 (1 1)	0.01 0.08 0.08 0.10 0.01 0.02 0.02 0.02 0.04 0.02 0.13 0.02	121 122 93 17 47 36 92 96 63 28 59	2870 1950 2390 2230 1740 1600 1820 2500 2740 1890 1480 2100 1720	22 24 74 10 8 6 20 12 (2 4 8 4 8 4 8	<pre><10 10 10 10 10 <10 10 (10 10 10 10 10 10 (10 <10 <10 <10 <10</pre>	37 48 59 31 46 83 34 91 80 59 26	0.51	(10 (10 (10 (10 (10 (10 (10 (10 (10 (10	<pre>(10 (10 (10 (10 (10 (10 (10 (10 (10 (10</pre>	15 118 104 102 42 143 45 103 121 104 94 79 51	(10 (10 (10 (10 (10 (10 (10 (10 (10 (10) (10)	90 130 260 90 30 100 60 110 100 80 70 60 50	11111111111		- - - - - -
					NJ CA																									1.20			4-1	-arstalla
	(MAL)	7. 204																																
																	and the second se				14												14	
and the set																				- 190		100										in an	100000	
																			Cer	tif	ied	bv.	14	Jai	MB	h	he	~					27	and with

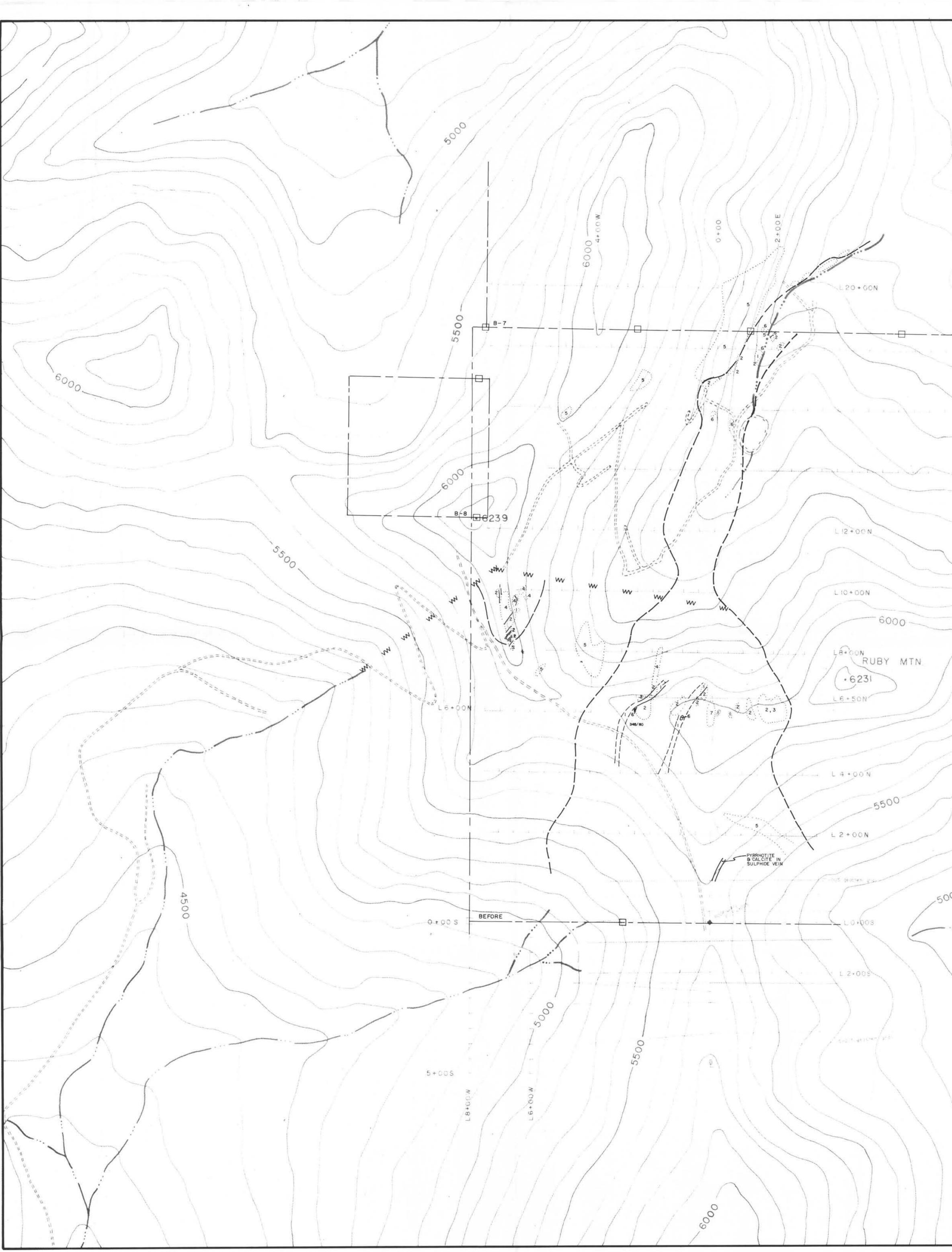
¢1

Ch	emex	Labs	Ltd

ų

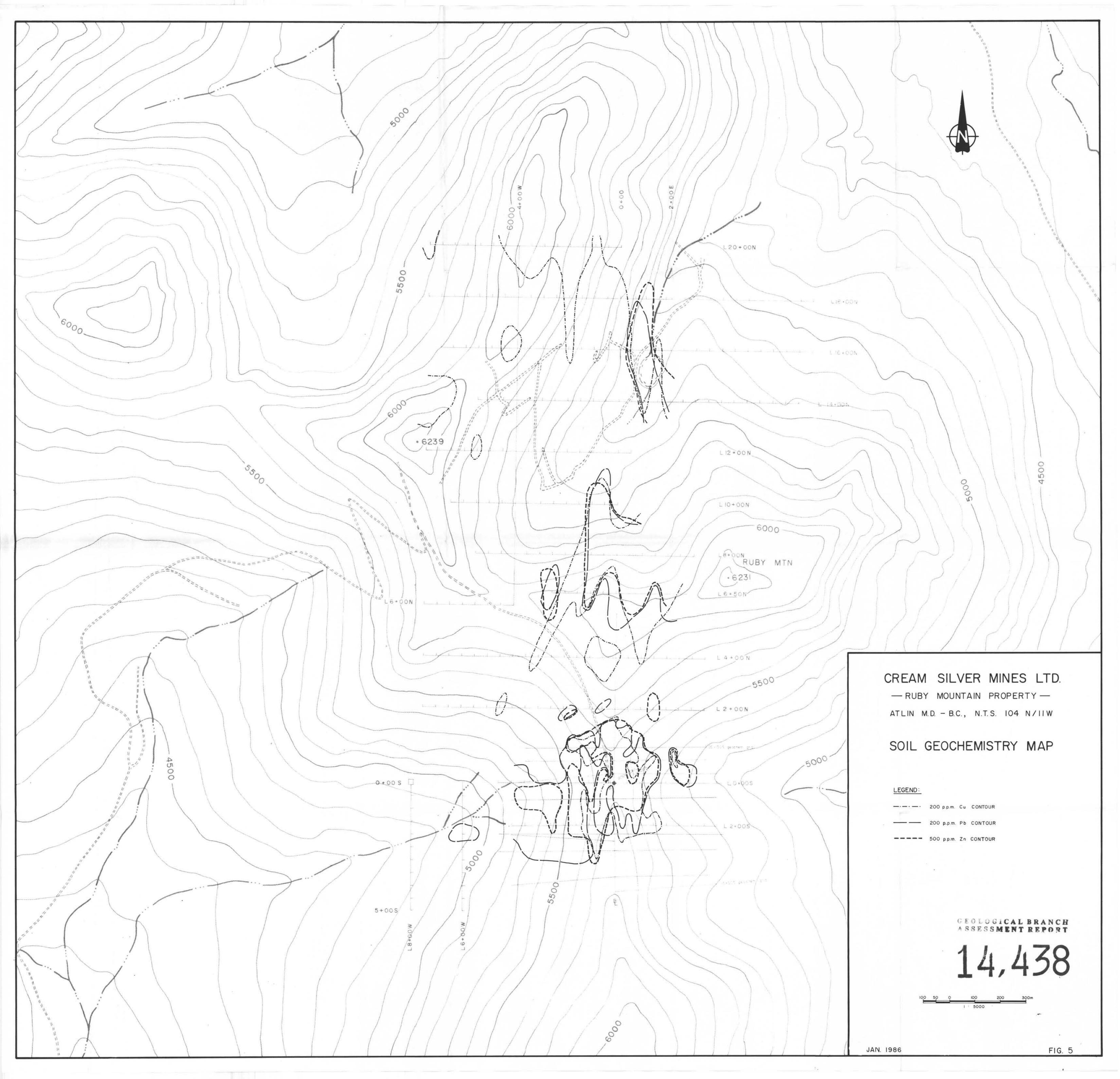
10

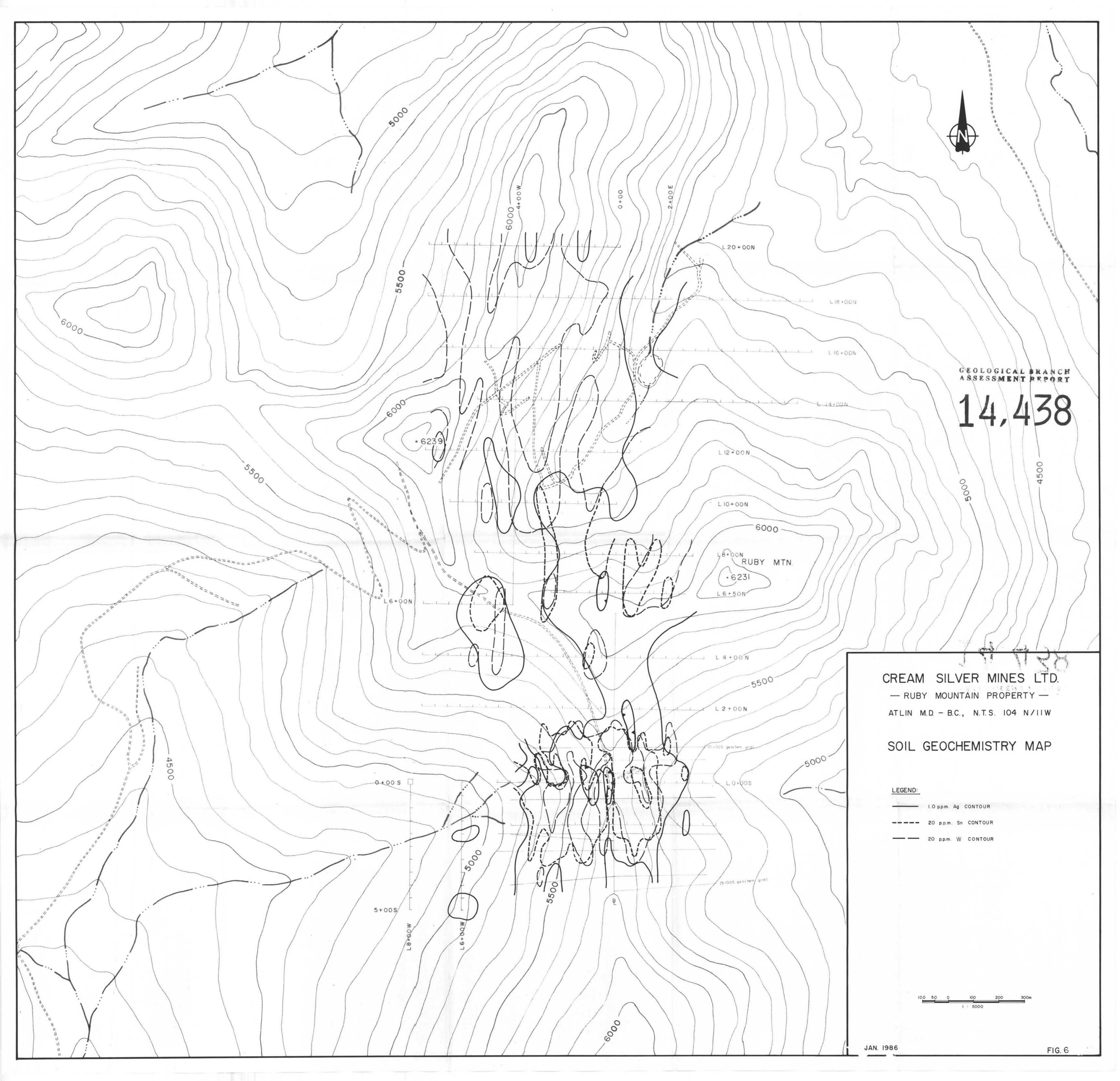
212 Brooksbank Ave.

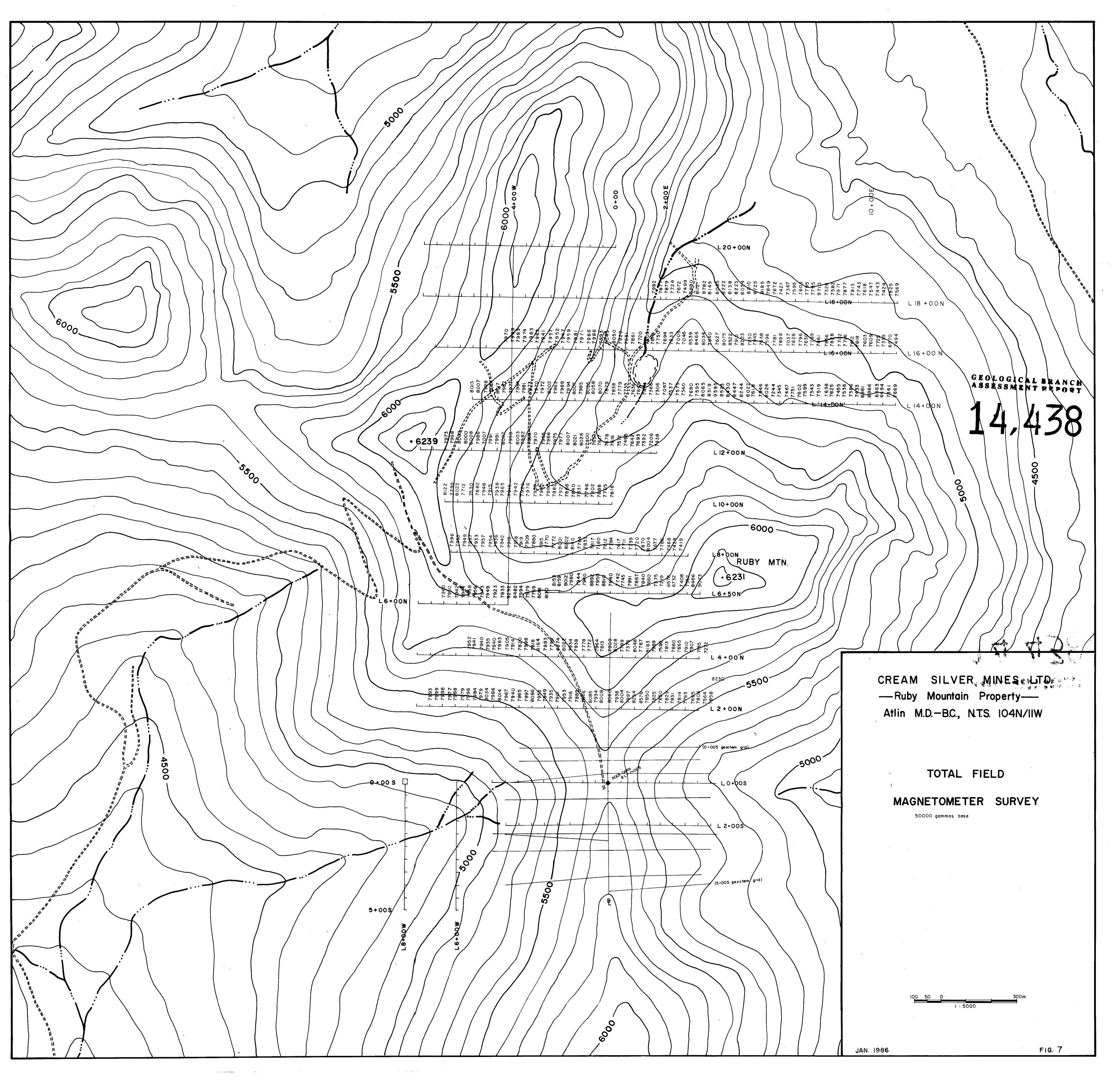

	3				cal Chem	em (d. Assayers		North Canada	one:(604)	ver, B. V7J 2	C. C1 21			†1) Ki	
	1500	1 SILV - 675 UVER, LN2	WEST	E HAS	LTD.	ST.	ICATE	0F 4	NALYS	SIS		2 . 4	t : 1	8-AUG	93		TTN-	R. GI	187.61	F7 -
Sample descripti 34401 34402 34403 34404 34405	on	Ko ppm (ICP) (1 14 (1 (1 (1) (1)	(ICP)	Zn ppm (ICP) >10000 7620 >10000 2130 225	P ppm (ICP) 55 560 110 600 16	Pb ppm (ICP) 6 22 44 168 24	Bi ppm (ICP) 53 1830 370 23 20	Cd ppm (ICP) 205.0 80.0 265.0 21.5 2.5	Co ppm (ICP) 28 9 15 41 2	Ni ppm (ICP) 10 9 8 500 57	Ba ppm (ICP) 20 20 15 190 195	(ICP) 14.70 7.67 14.00	Mn ppm (ICP) >10000 >10000 >10000 >10000 2060		Ng X (ICP) 0.37 1.65 0.69 6.29 1.57	V ppm (ICP) (1 (1 (1 (1 21 2	A1 X (ICP) 0.50 4.68 0.64 4.20 5.52			Cu ; (IC 3 2
34406		4	1800	800	130	>10000	57	32.0	3	6	35	8.04	310	170	0.06	9	en e	<0.5	0.01	61
											in da			and the second se						
				•		2									72					
																		45		

Certified by ... Altak.

.


	Å					
8	Ag ppm	Ti Z	Sr ppm	Na X	кх	
):	AAS	(ICP)	(ICP)	(ICP)	(ICP)	-
,	1.2	0.001	5	0.09	0.02	
ł.	4.0	0.121	11	0.09	0.02	
)	6.8	0.005	6	0.07	0.02	
)	2.6	0.224	64	0.55	3.11	
l.	2.4	0.054	16	1.59	3.40	_
i i	144.0	0.006	4	0.02	0.11	


	Chemex Lab	Canada V7J 2C1 •Registered Assayers Telephone:(604) 984-0221	Semi quantitative multi element ICP analysis	
l	CERTIFICATE OF ANAL KANGELD RESOURCES LTD. 1500 - 675 W. HASTINGS ST. VANCOUVER. B.C. VGB 1N2	Telex: 043-52597	Nitric-Aqua-Regia digestion of 0.5 gm of material followed by ICP analysis. Since this digestion is incomplete for many minerals. values reported for Al, Sb. Ba. Be. Ca. Cr. Ga. La. Mg. K. Na. Sr. Tl. Ti. W and V can only be considered as semi-quantitative. COMMENTS : ATTN: ART TROUP	
Sample descriptio	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		a ⁶ an a ₂ y	Haut Bichler	



ELE-DDY ELE
CREAM SILVER MINES LTD. - RUBY MOUNTAIN PROPERTY ATLIN M.D B.C., N.T.S. 104 N/IIW GEOLOGY LEGEND: QUATERNARY T BASALT AND SCORIA
6 SKARNIFIED DEPOSITS 5 ALASKITE AND RELATED GRANITIC ROCKS PENNSYLVANIAN AND PERMIAN 4 ULTRAMAFIC, COMMONLY SERPENTIZED 2 CHERT AND QUARTZITE 1 LIMESTONE SYMBOLS: OUTCROP GEOLOGIC CONTACT APPROXIMATE, ASSUMED CLAIM POSTS UDD 200 300m 1 : 5000 JAN. 1986 FIG. 4

