86-40-14475

GEOCHEMICAL and GEOLOGICAL REPORT ON THE WOLF III CLAIM FOR SKEENA RESOURCES INC. OMINECA MINING DIVISION BRITISH COLUMBIA

> NTS 94E/11W LATITUDE: 57°319N LONGITUDE 127°19'W 17'

FILMED

Owner/Operator: Skeena Resources Inc.

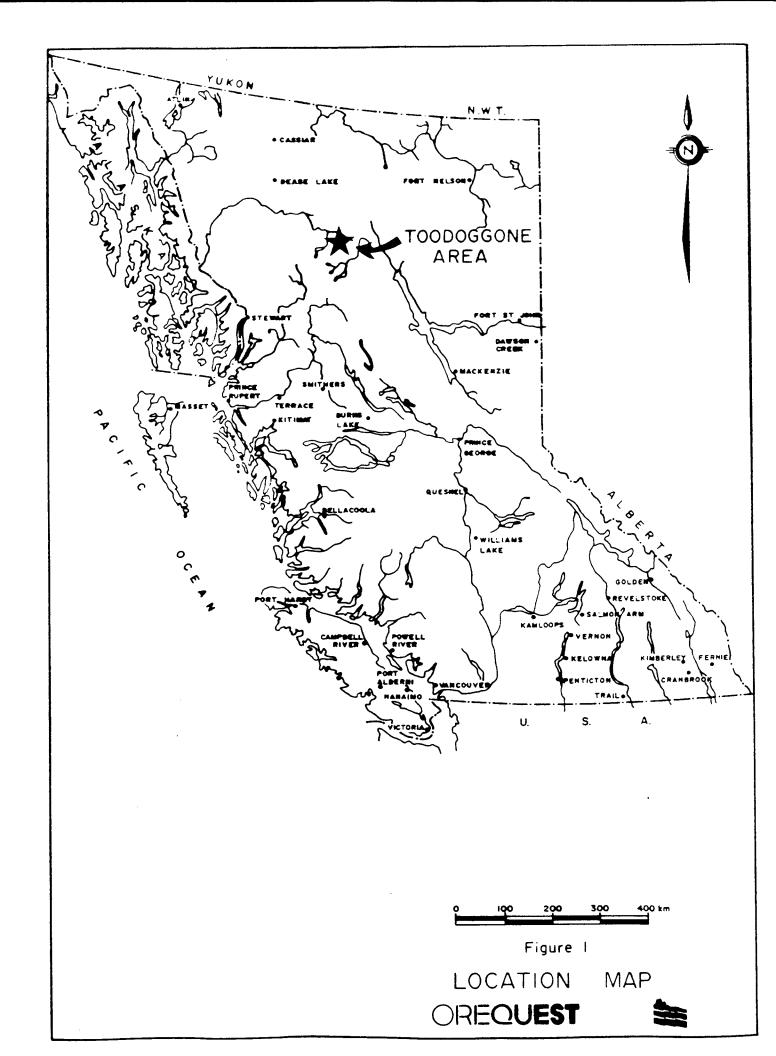
GEOLOGICAL BRANCH ASSESSMENT REPORT

Anthony Floy Robert Helgas October 21, 18

5

OREQUEST CONSULTANTS LTD. 404 - 595 Howe Street, Vancouver, B.C., Canada, V6C 2T5 Telephone: (604) 688-6788

SUMMARY


A Phase I work program has been completed on the Wolf III claim which is 100% owned by Skeena Resources Inc. The work program consisted of soil sampling, prospecting and geological mapping.

The claims, located in the Toodoggone region of north central British Columbia, are underlain by subaerial volcanics of Jurassic age.

The 1985 exploration work was designed to locate epithermal precious metal mineralization similar to deposits that have been delineated on adjoining claims.

Although outcrop is limited on the claims and no significant surface mineralization was located by prospecting, several soil geochemical anomalies should undergo further investigation.

A limited amount of further exploration is warranted. The Phase II program should consist of prospecting and detailed soil sampling. A budget for this program would be \$14,300.

TABLE of CONTENTS

Summary	
Table of Contents	
List of Figures	
Introduction	1
Location and Access	1
Physiography and Vegetation	2
Claim Status	3
History and Previous Work	3
1985 Exploration Field Work	4
Regional Geological Setting and Mineral Deposits	5
Property Geology	7
Geochemistry	7
Conclusions and Recommendations	9
Budget	10
Itemized Cost Statement	
Statement of Qualifications	

Anthony Floyd, Consulting Geologist

Robert Helgason, Project Geologist

Bibliography

LIST of FIGURES

Figure 1	Property Location	Following Summary
Figure 2	Claim Location	Following Page 2
Figure 3	Regional Geology	Following Page 4
Figure 4	Geochemistry - Au/Ag	In Pocket
Figure 5	Geochemistry - Cu/Zn	In Pocket
Figure 6	Geochemistry - As/Ba	In Pocket
Figure 7	Sample Location	In Pocket
Figure 4 Figure 5 Figure 6	Geochemistry - Au/Ag Geochemistry - Cu/Zn Geochemistry - As/Ba	In Pocket In Pocket In Pocket

Appendix A Analytical Techniques and Results

INTRODUCTION

This report details the results of Phase I field work conducted on the Wolf III claim in August, 1985. Work consisted of prospecting, soil sampling and geological mapping.

- 1 -

The Wolf III claim is a 20 unit block owned 100% by Skeena Resources Inc. located in the Toodoggone area of north central British Columbia.

LOCATION and ACCESS

The Wolf III claim is centered at 57°31' north Latitude and 127°18' west Longitude on Moosehorn Lake map sheet 94E/11. Omineca Mining District. The Toodoggone area is approximately 300 kilometers north of Smithers, B.C. The claim block straddles Dedeeya Creek and part of the north slope of Tuff Peak.

Access to the property is by fixed wing aircraft from Smithers to Sturdee Valley airstrip, a distance of 280 kilometers and from Sturdee airstrip north to the property by helicopter, a distance of 30 kilometers. Road access to Sturdee airstrip is planned by Serem Ltd. and should be completed in the near future. Completion of this road will provide access to the Omineca Mining road and then to Prince George.

PHYSIOGRAPHY and VEGETATION

The claim is located in the Omineca Mountains of north central British Columbia near the eastern edge of the Spatsizi Plateau. The area in the vicinity of the Wolf III claim is characterized by broad alluvium filled valleys and rounded mountains. North facing slopes are often steep while south slopes are more gentle.

The south half of the claim block is flat to gently sloping river valley, while the north half is a moderately sloped. Elevations range from 1,420 metres along Dedeeya Creek to 1,618 metres in the north.

The vegetation is typical of this latitude and elevation. The valley bottom is dominated by backbrush and open tundra indispersed with small ponds and swamps. At the break in slope dense stunted balsam fir with minor fir and pine predominante whilst the upper elevations possess sparse vegetation typical of the alpine tundra.

Snowfall is heavy during the winter and lasts into June. Summers are short and temperatures can vary greatly from day to day. Frost can occur any day of the year while snowfall in July and August are not uncommon. Usually the area is snow free until early October.

- 2 •

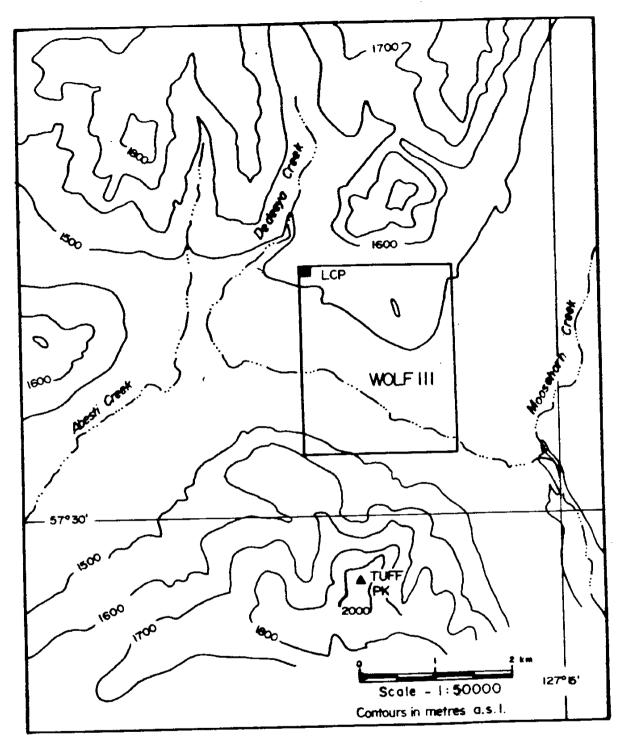


FIGURE 3 WOLF III MINERAL CLAIM

CLAIM STATUS

The claim is located in the Omineca Mining Division, B.C.

Name	# Units	Record Number	Expiry Date
Wolf III	20 units	6396	March 25, 1986*

*Assessment credit will be applied to extend this date

HISTORY and PREVIOUS WORK

The Toodoggone area was investigated for placer gold in the 1920's and 1930's. A public company, Two Brothers Valley Gold Mines Ltd., undertook considerable test work, including drilling in 1934. Most of this work was directed towards extensive gravel deposits principally near the junction of McClair Creek and the Toodoggone River.

Gold-silver mineralization was discovered on the Chappelle (Baker Mine) property by Kennco Explorations (Western) Ltd. in 1969. DuPont of Canada Exploration Ltd. acquired the property in 1974 and began production at a milling rate of 90 tonnes per day in 1980.

Numerous other gold-silver discoveries were made in the 1970's and 1980's, including the Lawyers deposit which was discovered by Kennco in 1973 and optioned by SEREM Ltd. in 1979. Work on this property to date has included considerable trenching, drilling and underground development and a feasibility study is currently underway.

The Toodoggone area has been the scene of intense exploration activity during the past four years with numerous companies exploring over 3,000 mineral claim units. Exploration annd development expenditures to date are estimated to

- J -

be in the order of \$33 million.

To the southwest of the Wolf III claim is Energex Minerals Ltd.'s Alberts Hump property. Exploration consisting of trenching and diamond drilling has outlined several gold bearing zones. To the southeast is Energex's Moosehorn property which was explored by diamond drilling during the summer of 1985. 'North of the Wolf III claim is Newmont of Canada Exploration Ltd.'s Golden Lion prospect which has been trenched and diamond drilled.

- 4 -

There is no record of prior work on the Wolf III claim.

1985 EXPLORATION FIELD WORK

Field work was carried out in August, 1985 under the direction of R. Helgason, Geologist with overall supervision by A. Floyd, Consulting Geologist, OreQuest Consultants Ltd., Vancouver, B.C. Support personel from Hi-Tec Resource Management Ltd. and Ashworth Explorations Ltd. were used for the soil survey and base camp operations.

Field work consisted of prospecting, detailed soil sampling and geological mapping.

A CONTRACTOR OF	PROPERTY DOCATION PROPERTY DOCATION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 TA BO GOLDEN FURLONG	
 5 Purple, lavender, grey, rarely plagioclase porphyritic flows epiclastic beds 3 Quartzose pyroxene biotite ho 2 Volcaniclastics-conglomerate, 1A Crystal ash tuff, lapilli tuf 	gioclase porphyry flows iated carapace and flanking breccia y grey-green,"crowded" fine to medium grained : includes some lapilli tuff, breccia, and minor rnblende plagioclase porphyry flows and tuffs crystal tuff, epiclastic sediments. Equiv. to 6A. f, rare agglomerate and tuffaceous sediments. phyric ash flows; lapilli tuff, and breccia lugs
× Mineral occurrence	FIGURE 3
Mineral prospect Outcrop area	REGIONAL GEOLOGY
Fault (observed, inferred)	REGIONAL GLOLOGI
Contact (defined, assumed)	SKEENA RESOURCES INC.
	OREQUEST

 \bigcirc

*

REGIONAL GEOLOICAL SETTING and MINERAL DEPOSITS

The Toodoggone River area is situated near the eastern margin of the Intermontaine tectonic belt. Oldest rocks in the area are late Paleozoic limestones in the vicinity of Baker Mine where they are in fault contact with late Triassic Takla Group volcanic rocks.

A distinctive lithologic volcanic unit of early Jurassic age, called the Toodoggone volcanics, is a subaerial pyroclastic assemblage of predominantly andesitic composition. These unconformably overlie, or are in fault contact with older rocks, principally Takla Group volcanic rocks and undivided Hazelton Group feldspar porphyry flows and fragmental rocks.

Toodoggone volcanic rocks are contained in a 100 by 25 kilometer northwest-trending belt extending from Thutade Lake in the south to Stikine River in the north.

Several major stratigraphic subdivisions of Toodoggone volcanics have been identified. These and older layered rocks of the Takla and Hazelton Groups are cut by Omineca granitic rocks of Early Jurassic Age, which commonly occur along the eastern margin of the Toodoggone volcanic belt, and by subvolcanic intrusions related to Toodoggone volcanics.

Clastic sedimentary rocks of the Cretaceous-Tertiary Sustut Group overlie older layered rocks near the Stikine River and form the southwestern exposed margin of the Toodoggone volcanic belt.

Regional fault systems trend northwesterly and northerly throughout the

- 5 -

Toodoggone area.

ŧ

A REAL PROPERTY.

Several styles of economic mineralization have been identified of which the most important are epithermal precious and base metal deposits hosted principally by lower and middle units of Toodoggone volcanics and related to Toodoggone volcanic processes. Gold-silver mineralization occurs principally in fissure veins, quartz stockworks, breccia zones and areas of silicification in which ore minerals are fine-grained argentite, electrum, native gold and silver and lesser chalcopyrite, galena and sphalerite. Alteration mineral assemblages are typical of epithermal deposits with intense silicification, clay minerals and locally alunite, grading outward to sericite and clay minerals, chlorite, epidote and pyrite.

· U ·

Examples include Baker Mine, a fissure vein system developed in Takla volcanic rocks, but spatially related to dikes believed to be associated with Toodoggone volcanic rocks. Pre-mining indicated reserves were 90,000 tonnes grading 30 grams/tonne gold and 600 grams/tonne silver. Recovered grades during the three year mine life were about half the indicated grades due to initial mill recovery problems and greater than expected dilution during mining.

The Lawyers deposit has gold-silver mineralization in banded chalcedony-quartz stockwork veins and breccia zones developed in Toodoggone volcanic rocks. Three potential ore zones have been defined to date and recently announced reserves are 1 million tonnes grading 7.27 grams/tonne gold and 254 grams/tonne silver. Numerous other epithermal gold-silver deposits in the area are hosted by lower and milddle units of the Toodoggone volcanic sequence. These include the Sha, Saunders, Graves, Moosehorn, Mets, Metasantan, AL, JD and Golden Lion prospects.

PROPERTY GEOLOGY

Outcrop is limited to the north half of the claim block. In this area feldspar porphyry crystal ash flows are exposed on a ridge. These rocks have undergone shearing with a north west-southeast orientation. Minor calcite veining was observed at several locations, but no significant alteration or quartz veining is present. The southern portion of the claims has no outcrop, but an examination of the talus in this area suggests the bedrock is probably a feldspar, hornblende crystal ash flow.

- 1 -

GEOCHEMISTRY

Research into the mode of discovery of the known deposits in the Toodoggone area revealed that silt, soil and rock geochemistry have proven to be the most useful tools in the search for epithermal precious metal deposits. Gold and silver give diagnostic signatures, but analyses for copper, barium and arsenic are also helpful.

Rock and soil samples collected during the course of the 1985 program were "prepared" by Min-En Labs. at their set up on the Sturdee airstrip, then shipped to their laboratory in North Vancouver for analysis. All rock samples were analyzed for gold and silver by fire assay with an atomic absorption finish while the soils were analyzed by atomic absorption for gold (aqua regia digestion) and by I.C.P. for silver, barium, copper, lead. zinc. molybdenum, arsenic. antimony, vanadium and cadmium.

A total of 967 soil samples were taken from the property. Soil samples

were collected from the B horizon wherever possible using a grubhoe. Average depth of samples was 20 centimeters. The grid was laid out mainly on the north half of the claim block as this is the only part of the claims not covered by alluvial deposits. A smaller area in the southwest corner was also sampled. Grid lines are spaced at 100 metres with sample sites every 25 metres.

• Statistical analysis of the results for gold, silver, barium, arsenic, copper and zinc revealed that the following values were considered anomalous.

Au	Ag	Ba	As	Cu	Zn
41 ppb	2.3 ppm	1183 ppm	36 ppm	50 ppm	200 ppm

An inspection of the data (Figures 4 - 6) reveals that several areas are anomalous in various elements. In the vicinity of Lines 18+00E and 20+00E a large group of samples have above threshold values of barium. The area seems to be generally enriched in barium with a core of higher values. Silver is also anomalous in this part of the grid.

A second anomalous area lies in the northwest portion of the claim. In this location arsenic values are universally anomalous, but with no cohesive pattern.

Gold results do not show any concentration of anomalies. However, three sample locations should be inspected. At 13+00E, 6+00S, where there is abundant outcrop and no alluvium, 185 ppb Au was detected. At 10+00E, 8+25S, 130 ppb Au was detected. Finally, at 3+00E, 2+00S which is located in an alluvium filled vailey, 200 ppb Au was detected. The latter anomaly is supported by two more anomalous and three high background values.

- 0 -

There are no significant silver anomalies, with the exception of three sample locations in the extreme north-east corner of the grid. Anomalous copper values are also present in this area.

Zinc displays no concentration of anomalies.

CONCLUSIONS and RECOMMENDATIONS

A Phase I program of exploration has been completed on the Wolf III claim. The work, consisting of prospecting, soil geochemistry and geological mapping has led to the following conclusions:

- (a) A large portion of the claim is covered with alluvium;
- (b) In the areas where bedrock is exposed there are no obvious epithermal vein systems;
- (c) Although there are no significant multielement geochemical anomalies, several sample locations warrant further investigation.

Therefore, a limited amount of further exploration is warranted. The areas within the vicinity of the anomalous sample sites should be prospected in detail and soil sampled on a close spaced grid. If any vein systems are located, then it would be appropriate to map and sample them in detail.

BUDGET

Geologist - 7 days @ \$250/day	S 1,750
Assistant - 7 days @ \$150/day	1,050
Analysis - 200 samples @ \$15/sample	3,000
Mobilization and Demobilization	2,000
Helicopter Support	1,000
Fixed Wing Support	850
Meals, Accommodation - 14 days @ \$60/day	840
Materials, Expediting, Telephone and Miscellaneous	500
Report Preparation and Supervision	2,000
	\$12,990
Contingency @ 10%	<u>1,310</u>
	<u>\$14,300</u>

ITEMIZED COST STATEMENT

Wolf III Claim Group - July 29-August 10, 1985

Field Exploration Expenses: Hi-Tec/Ashworth/OreQuest

Project Geologist, R. Helgason - 6.5 days @ \$280/day	\$ 1,820.00
Party Chief - 9.5 days @ \$200/day	1,900.00
Technical Crew – 17 days @ \$190/day	3,230.00
Mobilization and Demobilization	2,500.00
Materials	762.90
Expediting - Smithers	275.00
Fixed Wing Support	1,820.00
Meals and Accommodation - 33 days @ \$50/day	1,650.00
Camp Costs – 33 days @ \$25/day	825.00
Helicopter	2,356.98
Assays	9,660.12
Supervision - Hi-Tec	1,700.00
SUB-TOTAL	\$28,500.00
Report Writing, Maps, Compilation	
and Supervision (OreQuest)	<u>\$ 2,920.00</u>
	<u>\$31,420.00</u>

QUALIFICATIONS

I, Anthony Floyd, of 3400 West 2nd Avenue, Vancouver, British Columbia hereby certify that:

- I am a 1971 graduate of Nottingham University, England, with a BSc. Honours degree in geology.
- I am a 1972 graduate of Leicester University, England, with a M.Sc degree in Mineral Exploration and Mining Geology.
- I have practised my profession for the past twelve years in Canada, United States and Europe. For the past twelve years I have been a resident in British Columbia.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. The information contained in this report is based on my personal examination of the property and on various government publications and company reports listed in the Bibliography.
- 6. I have not received, nor do I expect to receive, any interest direct or indirect in the properties or securities of Skeena Resources Inc.
- 7. Skeena Resources Inc. is hereby authorized to use this report in, or in conjunction with any Prospectus or Statement of Material Facts

SOCIA Anthony Floyd Consulting Geologis (NTHOMY FLOYE DATED at Vancouver, British Columbia, this 21st day of October

CERTIFICATE of QUALIFICATIONS

I, Robert Helgason, of #4-1306 Bidwell Street, Vancouver, British Columbia hereby certify:

- I am a graduate of the University of British Columbia (1980) and hold a BSc. degree in geology.
- I am presently employed as a project geologist with OreQuest Consultants Ltd. of 404-595 Howe Street, Vancouver, British Columbia.
- I have been employed in my profession by various mining companies for the past five years.
- The information contained in this report was obtained from an onsite property examination and supervision of the field work program conducted by OreQuest Consultants Ltd. in 1985.
- Neither OreQuest Consultants Ltd. nor myself have direct or indirect interest in the property described nor in the securities of Skeena Resources Inc..
- 6. This report may be used by Skeena Resources Inc. for all corporate purposes and including any public financing.

Allert Helgason.

Robert Helgason Project Geologist

DATED at Vancouver, British Columbia, this 21st day of October, 1985.

BIBLIOGRAPHY

CARTER, N.C.

1985: Geological Report on the Wolf III Mineral Claim for Skeena Resources Inc.

DIAKOW, L.J.

1984: Geology between Toodoggone and Chukachida Rivers (94E), BCMEMPR Geological Fieldwork 1983, Paper 1984-1, p. 139-145

DIAKOW, L.J., PANTALEYEV, A. and SCHROETER, T.G. Geology of the Toodoggone River Area, NTS 94E, BCMEMPR Preliminary Map 61.

GABRIELSE, H., DODDS, C.J. and MANSY, J.L. 1976: Geology of the Toodoggone River (94E) Map Area, GSC Open File 306

PANTELEYEV, A.

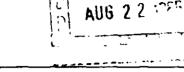
- 1983: Geology between Toodoggone and Sturdee Rivers, BCMEMPR Geological Fieldwork, 1982, Paper 1983-1, p. 142-148
- 1984: Stratigraphic Position of Toodoggone Volcanics, BCMEMPR Geological Fieldwork, 1983, Paper 1984–1, p. 136–183

SCHROETER, T.G.

- 1981: Toodoggone River, BCMEMPR Geological Fieldwork, 1980, Paper 1981-1, p. 124-131
- 1982: Toodoggone River, BCMEMPR Geological Fieldwork, 1981, Paper 1982-1, p. 122-133
- 1983: Toodoggone River Area, BCMEMPR Geological Fieldwork, 1982, Paper 1983-1, p. 125-133
- 1984: Toodoggone River Area, BCMEMPR Geological Fieldwork, 1983, Paper 1984-1, p. 134-135
- 1985: Toodoggone River Area, BCMEMPR Geological Fieldwork, 1984, Paper 1984-1, p. 291-297

APPENDIX A

.


-

t

MIN-EN Laboratories Ltd.

...

705 WEST 15th STREET, NORTH VANCOUVER, B.C., CANADA V7M 1T2 TELEPHONE (604) 980-5814

TOPELLE

ANALYTICAL REPORT

File No. 51–16 Samples submitted by: Tony	Floyd	Date samples receive	
Company: Oreq	uest Consultant	S	· · · · · · · · · · · · · · · · · · ·
Report on:	90	9 soils	Geochem samples
•	···· · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	Assay samples
Copies sent to:			
l Oreques	t Consultants,V	ancouver,BC	
2 Hi-Tec	Resources, Vanc	ouver,B.C.	
3			
Samples: Sieved to mesh	-80	Ground to mesh	
Prepared samples stored	🗙 discarded []	
rejects stored	📋 🛛 discarded 🕷]	
Methods of analysis: 10) element ICP. A	u-aqua regia.AA	
		· · · · · · · · · · · · · · · · · · ·	
Remarks:		• • • • • • • • • • • • • • • • • • •	
····· ·····	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· ·· ·· ·· ·····		·. ··· · · · · · · · · · · · · · · · ·
	SPECIALISTS IN MIN	ERAL ENVIRONMENT	

			ST CONSULTA	ANTS	700 1000		EN LABS 1		с <u>п</u> ти	(1)			27) PA6	
	ECT NO				705 WEST			ANCOUVER, B.					NO: 51-	
			FLOYD/NALC					(604) 988-452		TYPE SOIL			AUGUST	21, 198
	UES 1	N PPH		AS	BA	CD	CU	NO	P8	SB	V		AU-PPB	
	5 001		۰ b	1	57	.8	47	6	28		68.5	134	15	
	5 002		. 6	1	63	•1	19	5	14	4	84.4	16	50	
	5 003		.7	3	70	.4	15	6	14	3	77.0	77	5	
	5 004	40M	.8	1	55	.6	15	6	19	4	82.2	68	5	
SKB	5 005			27	480	1.6	23	5	22	4	59.8	93	10	
SK85	5 006		.4	6	61	1.0	15	6	19	4	72.9	64	5	
SK85	5 007		.6	1	90	.1	10	5	12	4	70.2	62	10	
SKBS	5 ù08		1.1	1	74	.1	15	6	13	3	73.6	75	10	
SK85	5 009		.5	3	112	.4	8	4	10	3	56.5	58	5	
SK85	5 010		1.1	1	96	.1	15	10	16	7 t	28.4	89	5	
	5 011		1.0	1	96	.3	17	6	18	5	87.7	74	10	*
	5 012		3.4	1	99	.1	17	9	16		29.6	89	10	
	5 013		.4	25	247	1.1	16	5	18		52.3	85	5	
	5 014		.4	29	271	1.3	22	6	19	4	49.2	132	- 5	
	5 015		.9	1	95	.1	14	9	23	•	18.6	82	5	
	016			16	114	i -1	13	·'			63.1	54	5	*
			1.0	10	77	.1	13	8 7	17		91.1	80	10	
	5 017						13					66	10	
	018	***	1.0	1	76	-1		6	14		74.0			
	5 019	40H	.8	1	166	.1	16	8	20		00.9	95	5	
		4011		9	150	.8	12		16		85.0	64	30	
		40 1 1	.6	2	104	-4	14	7	24		83.9	74	5	
	ō 02 2		.5	1	79	.4	12	5	13		70.3	92	5	
		40H	.1	5	109	.1	12	8	18		.09.9	78	5	
SK85	5 024		.7	12	100	.2	12	7	15	5	87.2	79	10	
SK85	025		.9	1	83	.1	12	9	15	7 1	49.1	84	5	
35	026	40H	.8	7	114	.1	17	10	20	B 1	27.6	104	10	
Lr.85	5 027		.5	18	115	.4	20	7	24	5	75.7	95	5	
SK85	028	40H	.5	11	136	.1	20	6	19	5	84.8	98	5	
SK.85	i 029		.3	17	82	.2	13	6	17	2	66.6	64	10	
S# 85	1130	20 M	.7	44	307	.8	35	8	44	7	71.1	139	5	
SK85			.7	16	91	.7	14	5	20		53.9	63	10	
	032		.4	21	198	.3	26	6	20	5	67.5	112	15	
	033		.9	1	87	.1	16	6	16		70.1	83	5	
Sk85			.8	10	77	.9	13	6	16	5	53.8	67	5	
	035		.8	1	78	.1	8	5	12		62.1	61	10	
	036		.9	1	64	.4		·····3-···-	13		74.8	63	5	
	037		1.0	7	85 97	.i	9	5	15		60.3	67 60	5 16	
S¥.85			1.3	17	93 77	.5	13	1	19	5	75.7	89	10	
	039		1.0	1	73	.3	12	6	14	4	73.3	64	5	
	040				91)	.5	10	5			65.7		10	
SK85			.9	1	71	.3	7	5	16	3	67.2	51	5	
	042		.7	5	82	.8	9	5	13	4	64.0	58	200	
	043		• Ó	13	295	1.1	16	7	21		13.7	88	5	
	044	40H	2.9	8ú	2138	1.6	40	8	42	8	91.4	141	25	
	045		1.0	1	80	.1	13	88	18	6	99.(76	15	
SK.85	046		.1	3	105	.3	9	6	14	5	66.1	61	5	
sk85	047		.8	4	84	.4	16	6	19	5	63.2	71	5	
SK 85	048		.8	1	72	.4	ÍÚ	5	14	4	65.4	51	10	
	049		.8	1	65	.2	10	5	12	4	69.9	50	10	
	050		1.2	1	67	. 1	11	1	21	5	74.0	64	5	
	051		1.1	1	86	.3	11	6	14	3	79.4	83	10	
		40H	1.0		108	.1	11	6	20	4	85.4	109	5	
	053		.6	7	264	1.3		4		3	44.5	89	10	
			.8	7 7			10	7	11					
	054	4.0M			119	1.1	11	¶	12	3	24.7	71	5	
		40N	1.1		547	1.7	17	<u>6</u>	24	4	47.4	85	5	
SK58			1.3	3	312	- 3	16	7	15	7 1	22.4	95	5	
SK85		N/S			. .						.			
SK85	0 58 059		1.0	1	84	.1	12	1	23	6	94.5	70	10	
			. Я	1	75	.2	11	6	17	5	84.Ú	60	5	

VALUES 1 85 001 5K85 002 5K85 003 5K85 004 5K85 006 5K85 006 5K85 007 5K85 008		FLOYD/MALCOL/) A6 .6 .6	AS	 RA	10011100		()A) YHH - 45 74						1.04
85 001 5K85 002 5K85 003 5K85 004 5K85 005 5K85 006 5K85 007 5K85 008		.6			CD	CU	604) 988-4524 HD	PB	SB	L GEDCHEM		AUGUST 21	1-1-1
5K85 002 SK85 003 SK85 004 SK85 005 SK85 006 SK85 007 SK85 008	49N			57	.8	47	6	28	3	68.5	134	15	
SK85 003 SK85 004 SK85 005 SK85 006 SK85 007 SK85 008	49N	•	1	63	.1	19	5	14	4	84.4	76	50	
SK85 004 SK85 005 SK85 006 SK85 007 SK85 008	40N	.7	1	70	.4	15	6	14	3	77.0	77	5	
SK85 005 SK85 006 SK85 007 SK85 008		.8	1	55	.6	15	6	19	4	82.2	68	5	
SK85 006 SK85 007 SK85 008		.6	27	480	1.6	23	5	22	4	59.8	93	10	
SK85 008		.4	6	61	1.0	15	6	19	4	72.9	64	5	
SK85 008		. 6	1	90	.1	10	5	12	4	70.2	62	10	
		1.1	1	74	.1	15	ó	13	3	73.6	75	10	
SK85 009		.5	3	112	.4	8	4	10	3	56.5	58	5	
SK85 010		1.1	1	96		15	10	16	7	128.4	89	5	. .
SK85 011		1.0	1	96	.3	17	5	18	5	87.7	74	10	
SKB5 012		3.4	1	99	.1	17	9	16	7	129.6	89	10	
SK85 013		.4	25	247	1.1	16	5	18	5	52.3	85	5	
SK85 014		.4	29	271	1.3	22	6	19	4	49.2	132	5	
SK85 015		.9	1	95	.1	14	9	23		118.6	82	5	
SK85 016		.4	16	114	.1	13	6	19	5	63.1	54	5	
SK85 017		1.0	1	77	.1	13	7	17	5	91.1	80	10	
SK85 018		1.0	1	76	-1	13	6	14	4	74.0	66	10	
SK85 019		.8	1	166	.1	16	8	20	5	100.9	95	5	
SK85 020			9	150		12		16		85.0		30	
SK85 021	40M	.6	2	104	.4	14	7	24	4	83.9	74	5	
Sk85 022	A.7.M	.5	í	79	.4	12	5	13	4	70.3	63	5	
SK85 023	407	.1 .7	5 12	109 100	.1 .2	12 12	8 7	18 15	5 5	109.9 87.2	78 79	5 10	
SK85 024 Sk85 025		.9	12	83	.1	12	9	15	7	149.1	84	5	
85 026	4.0M	<u>:</u> 7	<u>1</u>	114		17	10	20	6	127.6	104	10	
JK85 027	400	.5	18	115	.4	20	7	24	5	75.7	95	5	
5K85 028	40M	.5	11	136	.1	20	6	19	5	84.8	9B	5	
5K.85 029		.3	17	82	.2	13	6	17	3	66-6	64	10	
61 85 930	208	.7	44	307	.8	35	B	44	7	71.1	139	5	
SK85 (131		.7	16	91	.7	14	5	20	4	53.9	63	10	
SKB5 032		.4	21	198	.3	26	6	20	5	67.5	112	15	
5885 ú33		.9	1	87	.1	16	6	16	4	70.1	83	_ 5	
SK85 034		.8	10	77	.9	13	6	16	5	53.8	67	5	
SK85 035		.8	1	78	.1	8	5	12	3	62.1	61	10	
SK85 036		.9	1	64	.4	q	7	13	4	74.8	63	5	
SK85 037		1.0	7	85	.1	9	5	15	4	60.3	67	5	
5K85 038		1.3	17	93	.5	13	1	19	5	15.7	89	10	
SK85 039		1.0	1	73	.3	12	6	14	4	73.3	64	5	
K85 040			1	90	.5	10		13	4	65.7		10	
SK85 041		.9	1	71	.3	7	5	16	3	67.2	51	5	
5K85 042		.7	5	82	.8	9	5	13	4	64.0	58	200	
SKB5 043		. ó	13	295	1-1	16	1	21	6	73.7	88	5	
	40N	2.9	8ŭ	2138	1.6	40	8	42	8	91.4	141	25	
K85 045		1.0	1	80		13	8	18		99.0		15	
SK85 046		.1	3	105	.3	9	6	14	5	66.1	61	5	
SK85 047		.8	4	84	.4	16	6 5	19	5	63.2	71	5	
SK85 048		.B	1	72	-4	10	5	14	4	65.4	51	10	
5K85 049		.8	1	65 (]	.2	10	5	12	4	69.9 74 0	5Ú	10 5	
K85 050		1.2		<u></u>				21		74.0	69	5	
K85 051	40×	1.1	1	86	.3	11	6	14	3	79.4 95.4	83	10	
KB5 052	4VN	1.0	4	108	.1	11	6	20	۹ ۲	85.4	109	5	
5×85 053		.6	ך י	264	1.3	10	4	11	र र	44.5 24.7	89 71	10 5	
5K85 054	40M	.7	7 13	119 547	1.1	11 17	1	12 24	3	47.4	71 85	5	
5k.85 055 5k58 056		1.1	15	312	1.7	16	<u>6</u> 7	15	7	122.4	95	5	
SK85 057	N/S		1	717	• •	10	,	10	,	144.7	73	J	
K85 058	e (n	1.0	1	84	.1	12	7	23	6	94.5	70	10	
SERS 059		.8	1	25	.1	11	6	17	5	84.0	60	5	

COMPANY: 0 PROJECT NO	: SK 85			705 WEST	151# ST		NCOUVER, B				FILE	7) PAGE 1 DF 1 NO: 51-165/P5+6
ATTENTION:							5041988-45		~ ~ ~ ~ ~ ~			AUGUST 21, 1985
ALUES 1	N PPN)	A6	AS	RA	ED	U3	NO	PB	58	V		U-PPB
.35 121		.8	1	249	• •	16	6	14	3	62.5	79	10
SK85 122	40N	.1	1	90	.1	9	8	13	5	88.1	69	5
SK85 123		.0	1	98	•2	8	7	13	3	64.0	67	5
SK85 124		.7	6	57	1.0	8	6	14	4	72.0	58	5
SK85 125		.6	7	269	1.0	8	5	13	3	47.9	64	10
SK85 126		. 6	15	194	.8	7	6	12	3	45.5	66	5
SK85 127		•6	26	45	.8	8	5	14	3	42.4	39	5
SK85 128	408	1.2	1	88	. b	9	7	Ÿ	5	94.0	75	5
SK85 129		.6	1	67	. 2	6	4	10	3	44.5	46	5
SK85 130			9	97	1.9	4		4	1	29.1	26	5
SK85 131	4011	.5	1	62	.4	8	6	6	4	53.8	59	5
SK85 132		.3	14	87	1.0	5	5	14	3	48.7	46	5
SK85 133	40H	.4	2	129	.7	5	4	7	3	59.3	44	5
SEB5 134		.8	1	95	.6	7	7	17	5	73.7	67	5
Sk85 135			12	92	.9	5	5	12	3	50.4	48	3
5885 136		1.1	1	113	.3	5	5	15	3	59.9	60	10
Sk85 137		.6	1	109	.6	7	4	19	2	57.4	46	5
SK85 138		1.3	1	66	.4	7	6	14	3	68.0	54	5
SK85 139		.9	9	112	.3	9	6	17	4	56.4	63	5
SK85 140		1.1		80	.6	6	5	14	3	45.9	39	5
5885-141		.9	24	355	1.3	18	6	15	4-~	43.2	98	2
SK85 142		1.1	1	250	.1	12	9	17	7	100.3	93	5
SK85 143		1.4	22	597	2.3	59	7	26	5	53.0	137	20
sr85 144	40H	1.4	30	872	1.2	49	7	17	5	53.8	92	5
°K85_145		.4	19	260	.8		6	20	4	43.7	67	5
35 146	40 H	.6	1	78	.3	8	8	14	5	95.8	60	5
SK85 147		1.1	15	787	1.2	12	6	15	4	45.6	86	5
5KB5 14B	40 11	.9	16	7 9 7	1.1	11	6	16	4	61.2	71	5
5K85 149		1.0	6	413	.5	9	8	15	5	61.0	70	10
5885 150			13	120	.5	8	7	18	5	23.3	70	5
SK85 151		.6	10	261	.9	9	6	15	5	52.7	71	5
SK85 152		.4	14	159	1.5	9	6	16	4	33.0	72	5
	40N	.4	12	130	.6	9	8	16	5	68.9	79	10
SK85 154		.3	21	104	.5	7	7	19	4	55.9	70	5
Sk85 155	40M		4	117		9		15	5	89.7	68	
SK85 156		.8	6	106	.1	10	7	18	5	63.9	83	5
SK85 157		.7	3	139	.5	6	6	13	4	55.6	62	10
SK85 158		.5	12	72	.3	7	6	15	4	54.0	63	5
SK85 159		.4	18	264	1.0	7	5	16	4	46.8	55	2
SK85 160		.5	7	109	.5	7	6		4	54.2	63	
SK85 161		.6	48	451	.8	24	8	25	5	51.6	150	3
	401	1.1	7	542	1.2	8	6	14	4	54.2	75	5
	408	.1	3	107	.2	7	5	12	4	65.5	58	10
SK85 164		.9	6	89	.3	6	6	18	4	55.4	60	5
SK85 165		.1	6	310	1.0	9	5	14	3	44.1	76	5
SK85 166		1.1	7	90	.1	11	7	20	5	71.6	85	10
SK85 167		.9	4	61	.1	7	7	12	4	67.2	50	5
SK85 168		•6	8	96	.5	8	7	16	4	66.6	76	5
SK85 169		.6	6	73	.8	7	6	16	4	54.1	65	3
SK85 170		.5	15	87	.7	6	4	17	3	47.8	40	5
85 171		.7	7	109	.6	6	5	18	3	53.8	45	5
JK85 172		.9	12	229	.6	11	6	21	4	61.6	83	10
SK85 173		.8	5	137	.4	8	5	18	3	52.6	62	5
	40H	.9	1	86	.2	7	7	13	4	74.0	71	5
Sk85 175	40M	.7	37	287	1.0	23	9	35	6	78.2	174	5
SV.85 176		1.0	1	75	.1	8	6	16	3	65.2	63	5
SK85 177		.5	11	84	.9	8	5	19	3	43.1	47	10
SK85 178		2.9	53	1144	1.5	66	12	41	8	56.7	229	25

		REQUEST : 5¥ 85	CONSUL FANTS	s	705 WEST	ISTR ST.		NCOUVER, B.C				FILE N) PAGE 1 0 D: 51-165/P
AFTENT	10N:	TONY F	LOYD/HALCOLI	N BELL		(604) 980-	-5814 OR 1	604) 988-452	•	TYPE SOIL	GEDCHEN		UGUST 21, 1
VALU	ĒS II	N PPN)	ÂĞ	AS	BA	CQ	CU	NO	PB	58	٧	ZN AU	-PP8
	181		.7	3	132	.9	13	6	21	4	66.5	116	5
of.85		¥/S											
SK.85			.0	12	78	.7	11	7	20	4	50.6	63	5
SK 85			.3	25	64	.6	13	6	17	3	42.4	67	3
SK85			.2	24	114	1.0	11	5	16	2	29.5	50	5
SK85			.5	7	255	.8	16	6	16	3	47.6	76	10
SK85			.5	4	66	.4	11	6	16	4	68.5	69	5
SK85			.4	9	79	.8	9	6	15	3	54.0	66	5
SK85			.5	12	84	1.0	11	6	16	4	53.1	72	15
SK85			.8	1	83	.1	11	7	17	3	69.9	65	35
SK85			.5		78	.4	10	6	12	2	58.1	68	5
SK85			.3	12	71	1.0	9	6	19	3	48.9	62	5
SK85			.1	20	84	. B	10	5	15	3	42.8	54	10
SK85		tiat	.4	7	115	.3	8	6	18	4	56.1	62	5
		ion	.2	12	58	.?	7	6	13	3	44.7	56	5
SK85			······································		143	:	20	9	10	6	58.9	109	5
SK85					112	.6	10	8	19	5	60.8	89	10
SK85			.3	26		1.2	8	6	24	3	50.0	69	5
S¥ 85			.2	21	81	.7	8	° 5	17	3	42.3	48	5
SK85			.1	12	90		1Ú	5	16	4	60.1	67	5
S¥ 85				5	67			° 7	15		63.4	68	5
S¥85 1			.3	10	79	.9	10			2	55.6	55	5
SK85			.7	1	52	.5	7	5	16			67	10
SK85			.3	30	157	1.0	18	6	15	3	43.3		5
SK 85 -			.5	9	106	1.1	13	5	18	4	59.5	91	
58.85				12			7	4	15		40.3	42	5
35 2			.4	23	193	1.2	12	6	14	4	53.8	69	5
_×85 (207		.1	10	58	1.1	6	5	13	3	41.5	45	10
SK85 0	29 8		.1	11	37	.7	6	5	9	3	36.6	39	5
sk.85	209		.1	16	71	.8	9	7	19	4	48.0	63	5
S¥85 3	210			8	51	1.2	10	8	15	5	47.9	69	5
SK 85-1	211		.2	10	97	.8	6	6	13	4	49.2	58	10
Sk 85	212		.3	12	189	1.0	10	5	11	3	45.6	55	5
SK 85 🛛	213	408	.5	4	66	.9	5	6	15	4	69.6	56	5
sk 8 5 .	214		.3	13	71	.5	6	6	13	4	48.1	65	5
S¥:85 (215		.4	23	188	. 8	10	7	18	5	61.1	83	5
51.85	216		.5	12	356	1.0	10	7	12	5	63.3	64	3
SK.85 🛛	217		.3	8	113	1.1	7	6	15	4	51.9	52	3
SK85 (218	N/S											
SK85 🛛		408	.7	10	529	1.1	8	4	9	2	36.2	49	5
S¥:85 .:		40H	.6	5	178	.7	5	6	11	5	76.4	73	10
SK 85			1.3	1	845	.7	26	8	16	6	99.6	102	5
S¥ 85			.8	7	465	.2	12	6	17	4	62.9	113	5
Sk85		408	1.1	1	321	.7	11	7	17	5	80.7	122	5
5 X85 2		408	1.1	i	303	.6	12	7	17	5	75.9	118	40
SK85			.8	12	262	.7	12	6	19	4	63.5	91	5
SK85		40M	1.0	1	161	.2		6	13	4	81.7	78	5
5K85 2		4011	.9		210	.2	20	9	27	6	91.7	130	3
SK85 (.9	1	266	.6	12	7	18	4	71.0	98	5
skaj / sk85 /			1.0	1	178	.3	8	6	17	4	70.6	93	10
5K85 /			.9	1 1	90	.2	4	5	14	3	62.0	63	5
B5 85			1.0	1	106	2		<u>7</u>	15	·····	80.9	80	5
							9	8	13	5	85.6	79	5
			1.1	1	141	-1		0		ر ۲			10
SK85 3			.7	7	142	.1	9	0	15	4 5	68.6 74 3	78	5
SK85 1			.7	20	169	.7	19	8	26 22	5	76.3 82.3	102 84	5
SK.85					79			8		5		74	5
S# 85 1			1.1	4	62	.5	11	7	17	5	62.6		
SK85 1			1.4	1	60	.1	15	7	21	5	83.5	107	3
SK85 (1.1	3	71	.2	13	8	25	5	79.0	9Ú	5
SK 85 🖸	239		1.2	1	62	.1	1Ů	9	18	7	112.1	91	5

ITHUT IDT. INT. (LOD. PECLON FELL Low Area-Sat 0.0. (604) 986-724 IPTE SBUE backet # Part and factors 5 141 1 6 6.0. 10 P Sa V Na	Onfant: 1 Foject Ni		UEST CONSUL	ANTS	195 #ES1	1518 31		DUVER, B.C.	, V7M 1T	2	aroo	FILE NO:	PAGE 1 OF
Number Part <			NY FLOYD HA										
3 241 .0 1 2 .0 1 7 13 4 44.1 140 845 242 1.1 6 85 7 13 5 20 4 55.0 99 845 244 .4 7 103 .6 12 6 15 3 .62.3 99 845 245 .3 .6 240 .5 .12 6 15 .3 .62.3 99 .93 .85.3 .99 .93 .99 .93 .93 .93 .93 .93 .99 .93 .		IN P											5
ABD A										4			3
ABD 5.3 103 12 6 19 4 55.0 99 ABD 5246 10 5 12 6 15 12.1 6 68.7 92 SES 526 10 7 14 5 7.7 13 SES 526 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>5</td>										3			5
No. 2 1 10 5 12 6 15 1 47.3 87 SKES 24 1.1 1 77 1 10 8 21 6 67.5 8 7 SKES 247 .7 16 342 .7 26 7 10 8 6 6 10 7 14 6 78.8 78 78 78 78 78 78 79 6 14 6 78.8 78 79 6 14 5 75.9 84 88 75 75 75 75 75 75 75 76 77 7 76 77 71								6		4	55.0	99	10
SKE 24 1.1 1 1 1 0 9 21 6 68 717 5 67.8 137 SKE 244 040 .5 4 96 .1 10 7 14 5 67.8 869 SKE 244 040 .5 4 96 .1 10 7 14 5 67.5 69 SKE 221 .5 15 95 .3 10 7 14 5 67.5 69 SKE 221 .5 17 63 1.1 9 7 22 4 44.8 68 SKE 252 .6 14 93 .2 10 7 16 67.6 77.1 9 7 24 67.1.8 75 SKE 253 .6 14 80 .3 87 75 4 61.3 76 77 SKE 264 601 .6 90 .7 9 .7 15 4 61.3							12	6	15	3	42.3	87	5
Same Jap								8	21	6	88.7	92	5
x85 246 400 .6 1 78 2 10 8 14 6 78.8 80 x85 244 400 .5 4 98 .1 10 7 14 5 67.5 89 x85 253 .5 15 75 .3 10 9 12 67.5 99 94 x85 252 .5 1 87 9 10 7 16 4 40.7.8 75 x85 253 .6 14 97 .2 10 7 16 4 67.8 75 x85 254 .6 13 102 .1 10 8 12 78.1 80 x85 255 .7 6 77 7 71 74 6 71.8 71.8 6 71.8 71.8 64 75.5 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.7 71.7 71.4 71.7 <							26	7	17	5	67.8	139	5
Sigs 249 400 5 4 99 1 10 7 14 5 67.9 84 Sigs 250 5 15 95 3 10 9 17 22.4 44.4.8 56 Sigs 252 .5 17 63 1.1 9 7 22 4 44.8 66 Sigs 252 .5 17 63 1.1 9 7 22 4 44.8 66 67 76 77 16 4 69.1 76 76 77 16 77 16 77 16 77 16 77 16 77 78.1 87 75 86 77 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>.2</td> <td>10</td> <td>8</td> <td>14</td> <td>6</td> <td>78.8</td> <td>80</td> <td>10</td>						.2	10	8	14	6	78.8	80	10
SKB 250 .5 15 95 .3 10 8 19 5 96.3 14 SKB 251 .5 9 241 .7 9 6 14 3 34.2 55 SKB 252 .5 17 6.3 1.1 9 7 22 4 44.8 66 SKB 253 .6 11 87 .9 10 7 16 4 60.1 75 SKB 255 .9 1 102 .1 10 8 12 5 76.1 75 SKB 255 .9 .5 14 80 .1 7 24 6 71.8 9 9 13 4 61.3 107 75 56.1 107 107 10 9 7 24 6 11.8 107 11.8 9 13.1 105 107 13 14 9 7 10 10 11.8 105 107 11 10 11 107 11 10 11.3 105 11.				5 4	98	.1	10	7	14	-			5
SKB5 231	SK85 250			5 15	95	.3	10	8	19				5
SASS 222	SK85 251			5 9	241			_					5
SKB J.20 L <thl< th=""> L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>	SK85 252			5 17						•			10
ASS (37) 10 11 10 11 10 12 5 78-1 87 SK65 (25) -4 15 107 1.2 10 7 22 5 40.0 73 SK65 (25) -7 6 77 1.1 7 7 24 6 71.6 95 SK55 (25) -5 14 80 .3 B 7 15 4 61.3 85 SK55 (26) -6 60 7 7 7 1.6 115 4 113 105 SK55 (26) -6 10 105 -4 8 7 18 5 54.1 76 SK5 (26) -6 10 105 -4 8 7 15 6.4.0 100 7 7 5 5.2 72.4 74 1 55.7 103 5.5 74 10 7 7 5 6.4.0 100 7 77 5 6.5 7 1.6 5 5.7 103 5.7 105	SK85 253		•					•				-	5 15
NBS 23 10 12 10 7 22 5 40.0 73 SK85 256 .6 15 107 1.2 10 7 22 5 40.0 73 SK85 258 404 .6 1 74 .1 7 74 6 14 6 115. 4 59.1 64 SK85 260 .6 8 90 .7 9 7 15 4 61.3 105 SK85 262 .6 10 105 .4 8 7 18 5 56.1 70 SK85 263 .8 14 801 .4 9 7 20 5 72.4 74 1 SK85 263 .8 14 801 .4 9 7 20 5 72.4 74 1 SK85 263 .9 31 185 .7 17 8 21 .5 7 14 46.9 71 75 54.3 </td <td>SK85 254</td> <td></td> <td>_</td> <td>5</td>	SK85 254											_	5
Sind Job	SK85 255												
Sind D T 1 T 8 14 6 115.6 109 SKB 259 .5 14 80 .3 B 7 15 4 61.13 63 SKB 200 .6 B 90 .7 9 7 15 4 61.13 63 SKB 220 .6 10 105 .4 B 7 18 5 56.1 70 SKB 223 .8 14 801 .4 9 7 20 5 72.4 74 1 SKB 225 .8 14 801 .7 17 B 21 5 55.7 100 .5 18 105 .5 9 7 14 5 64.7 7 7 .6 .5 .7 .7 8 8 18 5 56.7 100 .5 .7 10 3 7 7 57 57 14 44.7 <td< td=""><td>SK85 256</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td></td<>	SK85 256												5
Sind 10 FD								-		-			25
SASJ 207 1.3 1.3 1.5 1.6 0.7 7 1.5 4 61.3 83 SKES 201 .7 7 140 .2 11 8 14 5 7.1 7 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td>				-									5
Subsort Control Contro Control Control								-		4			10
Size Le 10 105 .4 8 7 18 5 54.1 70 SK85 263 .8 14 801 .4 9 7 20 5 72.4 75 74 75 74 75 74 75 74 75 75 75 74 74 77 75								8		5	91.3	105	10
SKBS 2a3 .8 14 801 .4 9 7 20 5 72.4 74								7	18	5	56.1	70	5
SK85 204 1.0 8 236 1.0 10 7 17 5 63.2 92 SK85 265 .8 16 322 .3 13 7 15 5 60.6 100 35 266 .9 31 185 .7 17 8 21 5 54.3 74 A85 267 .5 18 105 .5 9 7 16 5 54.3 74 SK85 264 40H .5 1 75 .3 8 8 10 5 60.7 77 SK85 269 .4 8 92 .5 7 6 22 4 49.7 7 68 71 7 5 86 71 3 44.1 40.9 71 .5 86.4 60.7 7 75 11 3 44.1 60 77 5 76.5 77.4 7 8 16 56 76.7 16 86.7 76.7 16 9					801	.4	9	7	20	5	72.4		185
Sk85 265 .B 16 382 .3 7 15 5 60.6 100 35 266 .9 31 185 .7 17 8 21 5 55.7 103					236	1.0	10	7	17	5			10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.85 265			8 16	382	.3	13	7					
A.B. 207 A.B. 207 <t< td=""><td>35 266</td><td></td><td>•</td><td>9 31</td><td>185</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>5</td></t<>	35 266		•	9 31	185			-					5
SKB 268 400	_K85 267									-			5 10
Solution 1 <th1< th=""> 1 <th1< th=""> <th1< t<="" td=""><td>SK85 248</td><td>4</td><td></td><td></td><td></td><td></td><td>-</td><td>8</td><td></td><td>-</td><td></td><td></td><td>5</td></th1<></th1<></th1<>	SK85 248	4					-	8		-			5
365 270 132 132 132 132 133 44.1 60 SY85 271 .3 7 176 1.0 7 5 11 3 44.1 60 SY85 271 .3 7 176 1.0 7 5 11 3 44.1 60 SK85 273 40H .4 1 157 .4 7 8 16 5 98.8 71 SK85 273 1.0 23 1220 1.1 24 4 8 2 29.9 41 SK85 275 1.0 23 1220 1.1 24 4 8 2 29.9 41 SK85 276 .7 401 1.0 1 10 7 10 5 80.3 97 SK85 279 .7 2 231 .6 7 5 16 3 59.7 64 SK85 280 40H .9 15 486 .8 17<	SK85 269						-	6 0		•			5
3 A B 1 21 1 1 3 1 1													5
3.61 2.12 101 2.1 11				•									5
36.0 1/3				•									3
AUD A								6		4			5
Siles 2:6 .9 18 982 1.8 15 4 14 3 40.0 72 Siles 2:7 40H 1.0 1 460 .1 10 7 10 5 80.3 97 Siles 2:7 .7 5 205 .6 10 6 14 4 603 81 Siles 2:79 .7 2 2:31 .6 7 5 16 3 59.7 64 Siles 2:80 4:0M .9 15 486 .8 17 6 21 4 52.4 190 Siles 2:81 .7 1 2:88 .4 7 4 13 2 52.1 6.3 Siles 2:82 .9 1 2:24 .1 9 6 17 3 68.3 83 Siles 2:83 1.1 1 1:35 5 9								4		2		41	10
Sixes 27 40H 1.0 1 460 .1 10 7 10 5 B0.3 97 Sixes 278 .7 5 205 .6 10 6 14 4 60.3 B1 Sixes 279 .7 2 231 .6 7 5 16 3 59.7 64 Sixes 289 40H .9 15 486 .6 17 6 21 4 52.4 100 Sixes 281 .7 1 288 .4 7 4 13 2 52.1 63 Sixes 282 .9 1 224 .1 9 6 9 3 69.0 106 Sixes 283 1.1 1 156 .4 8 6 17 3 68.3 83 Sixes 284 40H .9 1 203 .5 5 9 3 65.2 52 52 52 52 52 52								4	14	3	40.0	??	10
SK85 278 .7 5 205 .6 10 6 14 4 60.3 B1 SK85 279 .7 2 231 .6 7 5 16 3 59.7 64 SK85 280 40H .9 15 486 .8 17 6 21 4 52.4 100 SK85 281 .7 1 288 .4 7 4 13 2 52.1 63 SK85 281 .7 1 288 .4 7 4 13 2 52.1 63 SK85 282 .9 1 224 .1 9 6 9 3 69.0 106 SK85 283 1.1 1 156 .4 8 6 17 3 68.3 83 83 55 52 9 3 66.5 52 52 52 52 53 53 54 71 124 54 55 52 55 52							10	7	10	5	80.3	47	15
Sk85 279 .7 2 231 .6 7 5 16 3 59.7 64 Sk85 280 40H .9 15 486 .8 17 6 21 4 52.4 100 Sk85 280 40H .9 15 486 .8 17 6 21 4 52.4 100 Sk85 281 .7 1 288 .4 7 4 13 2 52.1 63 Sk85 281 1.1 1 156 .4 8 6 17 3 68.3 83 Sk85 283 1.1 1 156 .4 8 6 17 3 68.3 83 Sk85 284 40H .9 1 203 .3 8 6 17 3 68.3 83 Sk85 285 .9 1 89 .3 5 5 9 3 66.5 52 Sk85 287 1.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td>14</td><td>4</td><td></td><td></td><td>5</td></t<>								6	14	4			5
Sk85 280 404 .9 15 486 .8 17 6 21 4 52.4 100 Sk85 281 .7 1 288 .4 7 4 13 2 52.1 63 Sk85 282 .9 1 224 .1 9 6 9 3 69.0 106 Sk85 283 1.1 1 156 .4 8 6 17 3 68.3 83 Sk85 283 1.1 1 156 .4 8 6 17 3 68.3 83 Sk85 284 4041 .9 1 203 .3 8 6 17 3 69.1 76 Sk85 285 .9 1 21 17 5 13 4 48.9 98 Sk85 287 1.1 1 344 .3 12 6 14 77.1 124 Sk85 289 1.2 1 91 .1				7 2	231								5
585 201 17 1 224 1 9 6 9 3 69.0 106 5865 282 .9 1 224 .1 9 6 9 3 69.0 106 5865 283 1.1 1 156 .4 8 6 17 3 68.3 83 5865 284 404 .9 1 203 .3 8 6 17 3 69.1 76 5865 285 .9 1 89 .3 5 5 9 3 66.5 52 5865 286 1.8 6 699 1.2 17 5 13 4 48.9 98 5865 287 1.1 1 344 .3 12 6 14 4 77.1 124 5865 288 1.1 16 93 .8 12 7 11 5 68.5 105 5885 289 1.2 1 91 .			N	9 15									5
3K63 1.1 1 156 .4 0 6 17 3 68.3 83 5K85 283 1.1 1 156 .4 0 6 17 3 68.3 83 5K85 283 1.1 1 156 .4 0 6 17 3 69.1 76 5K85 284 404 .9 1 203 .3 8 6 17 3 69.1 76 5K85 285 .9 1 203 .3 8 5 9 3 66.5 52 5K85 285 .9 1 344 .3 12 6 14 4 77.1 124 5k85 288 1.1 16 93 .8 12 7 11 5 68.5 105 5k85 289 1.2 1 91 .1 12 8 10' 5 85.6 98 5k85 290 .8 1 74 .2													10
SK63 263 111 1 100								-					5 Tá
SK65 264 1.7 1 89 .3 5 5 9 3 66.5 52 SK85 286 1.8 6 699 1.2 17 5 13 4 48.9 98 SK85 287 1.1 1 344 .3 12 6 14 4 77.1 124 Sk85 288 1.1 16 93 .8 12 7 11 5 68.5 105 Sk85 289 1.2 1 91 .1 12 8 10 5 85.6 98 Sk85 289 1.2 1 91 .1 12 8 10 5 85.6 98 Sk85 290 .8 1 74 .2 8 6 12 4 77.9 68 .85 291 1.5 1 94 .1 11 10 13 7 133.5 110 /85 292 1.3 8 117 .6								-					30 5
SK63 2.0 1.0 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td></th1<>													5
5x63 166 1.0 1.0 0 0.0 1.1 1 1.1 1 1.1 1 344 .3 12 6 14 4 77.1 124 5k85 288 1.1 16 93 .8 12 7 11 5 68.5 105 5k85 289 1.2 1 91 .1 12 8 10 5 85.6 98 5k85 290 .8 1 74 .2 8 6 12 4 77.9 68 5k85 291 1.5 1 94 .1 11 10 13 7 133.5 110 785 292 1.3 8 117 .6 13 8 11 5 83.4 107 5k85 293 1.1 1 91 .2 12 6 10 4 78.1 84 5k85 294 1.2 1 113 .5 12 6 11 4 70.2 92 5k85 296 1.6 1 106 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td></td<>													5
5X65 127 111 1 11 16 93 .8 12 7 11 5 68.5 105 5K85 289 1.2 1 91 .1 12 8 10 5 85.6 98 5K85 289 1.2 1 91 .1 12 8 10 5 85.6 98 5K85 289 1.2 1 91 .1 12 8 10 5 85.6 98 5K85 290 .8 1 74 .2 8 6 12 4 77.9 68 185 291 1.5 1 94 .1 11 10 13 7 133.5 110 785 292 1.3 8 117 .6 13 8 11 5 83.4 107 5K85 293 1.1 1 91 .2 12 6 10 4 78.1 84 5K85 294 1.2 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td></t<>													10
SK85 289 1.1 10 70 10 12 8 10 5 85.6 98 SK85 289 1.2 1 91 .1 12 8 10 5 85.6 98 SK85 290 .8 1 74 .2 8 6 12 4 77.9 68 .85 291 1.5 1 94 .1 11 10 13 7 133.5 110 /85 292 1.3 8 117 .6 13 8 11 5 83.4 107 SK85 293 1.1 1 91 .2 12 6 10 4 78.1 84 SK85 294 1.2 1 113 .5 12 6 11 4 70.2 92 SK85 295 1.6 1 106 .1 11 9 7 6 136.1 88 SK85 296 1.3 4 70.7 90				-									5
Sk85 280 .8 1 74 .2 8 6 12 4 77.9 68 .85 290 .8 1 74 .2 8 6 12 4 77.9 68 .85 291 1.5 1 94 .1 11 10 13 7 133.5 110 /85 292 1.3 8 117 .6 13 8 11 5 83.4 107 Sk85 293 1.1 1 91 .2 12 6 10 4 78.1 84 Sk85 294 1.2 1 113 .5 12 6 10 4 78.1 84 Sk85 295 1.6 1 106 .1 11 9 7 6 136.1 88 Sk85 296 1.3 47 184 .7 18 6 14 3 77.9 85 Sk85 297 1.3 4 104 .2 <								•					5
SK05 273 1.5 1 94 .1 11 10 13 7 133.5 110 785 292 1.3 8 117 .6 13 8 11 5 83.4 107 5K85 293 1.1 1 91 .2 12 6 10 4 78.1 84 5K85 293 1.1 1 91 .2 12 6 10 4 78.1 84 5K85 294 1.2 1 113 .5 12 6 11 4 70.2 92 5K85 295 1.6 1 106 .1 11 9 7 6 136.1 88 5K85 296 1.3 47 184 .7 18 6 14 3 77.9 85 5K85 297 1.3 4 104 .2 13 7 13 4 70.7 90 5K85 298 1.1 1 92 .3				-									3
/85 292 1.3 8 117 .6 13 8 11 5 83.4 107 SK85 293 1.1 1 91 .2 12 6 10 4 78.1 84 SK85 294 1.2 1 113 .5 12 6 11 4 70.2 92 Sk85 295 1.6 1 106 .1 11 9 7 6 136.1 88 SK85 296 1.3 47 184 .7 18 6 14 3 77.9 85 SK85 297 1.3 4 104 .2 13 7 13 4 70.7 90 SK85 298 1.1 1 92 .3 10 7 9 4 85.7 76 SK85 298 1.1 1 92 .3 10 7 9 4 85.7 76													5
SK85 293 1.1 1 91 .2 12 6 10 4 78.1 84 SK85 294 1.2 1 113 .5 12 6 10 4 78.1 84 SK85 294 1.2 1 113 .5 12 6 11 4 70.2 92 Sk85 295 1.6 1 106 .1 11 9 7 6 136.1 88 SK85 296 1.3 47 184 .7 18 6 14 3 77.9 85 SK85 297 1.3 4 104 .2 13 7 13 4 70.7 90 SK85 298 1.1 1 92 .3 10 7 9 4 85.7 76 SK85 298 1.1 1 92 .3 10 7 9 4 85.7 76										5			5
SK85 294 1.2 1 113 .5 12 6 11 4 70.2 92 SK85 295 1.6 1 106 .1 11 9 7 6 136.1 88 SK85 296 1.3 47 184 .7 18 6 14 3 77.9 85 SK85 297 1.3 4 104 .2 13 7 13 4 70.7 90 SK85 298 1.1 1 92 .3 10 7 9 4 85.7 76							12	6					5
Sk85 295 1.6 1 106 .1 11 9 7 6 136.1 88 SK85 296 1.3 47 184 .7 18 6 14 3 77.9 85 SK85 297 1.3 4 104 .2 13 7 13 4 70.7 90 SK85 298 1.1 1 92 .3 10 7 9 4 85.7 76						.5	12						5
Sk85 297 1.3 4 104 .2 13 7 13 4 70.7 90 Sk85 298 1.1 1 92 .3 10 7 9 4 85.7 76	Sk85 29	5											3
Sk85 298 1.1 1 92 .3 10 7 9 4 85.7 76													10
										4			5
										4 L			5 10
SKR5 299 40M 1.7 1 75 .1 15 9 5 6 131.7 94	SK85 299	40	H L	.7	1 75	۱.	15	9	5	0	121.7	74	10

			CONSUL FANTS	ĉ	- 2	•	N LABS 10			17		(ACT:6E027)	PAGE 1 OF 51-165/P11+1
		1: 58 85			105 #654			NEDUVER, B.C			сслечен	+ DATE:AU	
			010/NALCOLI					604)988-4524	PB	SB	V	ZN AU-	
		N PPN)	AG	AS	B4	<u>CD</u>	<u> </u>				35.2	41	5
	301		.1	10	115	1.1	9	5	12	2	22.7	-1	J
SK85		¥/S		-			4.0			~	74 0	E 1	10
SK85			.1	5	101	1.1	12	4	14	2	34.0	51	10
SK85	304		.3	1	42	1.1	9	5	16	3	47.4	61	15
SK85	305		.4	1	72	.3	10	<u> </u>	23	5	75.9		
SK85	306		.4	1	59	.1	5	4	14	2	47.9	38	5
SK85	307		.5	Ó	55	.4	10	6	17	2	49.9	60	10
SK85	308		.6	ì	45	.3	9	6	17	3	55.6	52	5
SK85	309		1.7	33	83ú	.7	20	5	10	i	30.3	52	5
SK85			.7	38	965	1.4	22	5	13	2	49.8	104	5
SK85		40N	2.1	40	590	1.5	4	5	15	5	34.5	101	10
SK85			1.2	43	878	2.2	29	5	15	2	61.8	125	5
SK85			.2	1	67	.9	6	4	14	2	49.0	44	5
SK85			.1	1	58	.9	6	5	19	2	45.5	54	5
SF 85			.6	29	458	1.3	17	6	17	2	45.2	118	10
54 65 SK 85		N/S										1:	
54.83 SK85		610	.8	14	203	1.3	10	5	15	2	42.3	52	5
							8	5 7	19	4	56.4	74	5
SK85			.5	9	146	1.0	-	•					5
SK85			.7	4	67	.8	11	7	20 22	7	62.7	75	5
Sk85			.8	4		.6	13	7			64.8	81	
Sk:85			1.0	8	83	.6	11	7	20	2	65.1	77	5
SK85			.8	7	100	.9	14	7	19	4	62.4	79	5
SK 85			.5	16	109	.6	12	1	19	4	50.8	78	10
SK85 -	324		.8	6	114	.6	20	7	22	4	54.0	92	5
SK 85	325	N/S											
85	326		.?	13	215	1.3	14	6	16	3	48.0	72	5
of.85	327		.9	12	116	.9	15	7	18	4	69.2	62	5
SK85	328		.7	12	90	1.3	15	8	20	5	62.5	80	5
51/85			.7	5	71	.5	11	7	18	4	66.9	69	5
S¥.85			.7	15	98	1.1	12	6	23	4	48.4	71	5
Sk85			.4	9	105	1.4	13	7	31	4	53.9	75	5
SK85			.3	65	204	1.2	34	10	26	4	50.9	173	20
SK.85			.4	43	176	1.2	28	9	31	4	50.0	136	15
SK85		•	.7	1	77	.4	8	6	12	3	74.7	65	5
Sk85			.6	1	86	.3	1	5	17	3	64.3	56	10
Sk85			.7		241	1.0	<u>'</u>	6	15	4	62.2	67	5
				-		.8	6	5	17	3	50.1	53	20
SK85			-4	2	260			3	19		46.3	42	5
SK85			.1	1	88	.7	5			2		42 45	5
SK85			.3	1	68	.8	6	5	12	3	52.3		45
S¥.85				1	63	.1			14	5	75.2	58	
S k 85			.7	2	96	.7	11	9	16	6	89.1	71	15
sk85 -			.5	9	202	-6	14	7	18	4	63.9	81	1Ú
sk85		N/S										.	
SK 85 :	344		.9	1	190	.5	14	5	15	3	54.2	81	10
SK 85			.5	1	41	.6	8		12	4	66.7	52	5
SK85			.3	8	71	.8	12	5	20	4	56.0	62	60
SK85			.5	1	60	. 6	8	6	14	4	58.2	62	15
SK.85			.9	l	204	.3	15	6	13	4	69.5	95	5
SK85			.7	4	163	.6	14	6	15	4	72.3	122	5
SK85		4.0M	.8	17	612	1.4	18	5	19	3	53.5	95	10
	351			13	564	1.2		5	17	2	45.6	100	5
					787		28	3	9	1	22.6	69	5
.785			1.0	15		1.4		د ا			22.8	121	10
SK.85			1.7	20	906	2.2	53	9 7	34 29	2	33.0	192	5
SK85		4VN	2.3	42	907	1.9	49	7	28	4			
SK85				26	514	1.8	31	5		3	46.1	133	10
SK.85			. 6	14	239	1.6	20	6	18	4	60.2	130	5
S¥.85			.5	1	75	.6	7	5	10	3	64.4	72	5
SK85	358		.5	14	216	1.3	15	5	21	3	53.1	110	10
		****	1 1	77	.14	t à	**	▲	⇒▲	٦	51.7	171	5

		OREQUE: D: Sk (ST CONSULTAN		705 WEST		N LABS ICF NORTH VAN		B.C. V7N I	12			7) PAGE 1 1 51-165/P	
			FLOYD/HALCO	LM BELL		(604) 980-	5814 OR (4	04)988-4	524 +	TYPE SOIL			AUGUST 21,	198
'AL I	JES	IN PPH) AG	AS	84	CD	CU	NO	PB	SB	<u> </u>	ZN A		
.85	361	401	3.3	32	430	2.6	37	11	64	9	49.2	166	15	
SK85	362		ه.	Ŷ	149	.8	54	7	19	5	70.3	83	5	
SK85			1.1	7	155	.9	18	6	19	4	62.1	82	5	
SK85	• - ·	40 M	1.2	1	305	.4	26	7	23	5	86.4	126	5	
SK85		ACH	1.0		220		<u>16</u> 59	<u>5</u> 3	15	3	59.3 13.0		<u>5</u> 5	
SK85 SK85			.5	11 8	575 560	2.1 1.0	25	2	18 2	1	12.6	16	5	
SK85			.1	3	340	1.2	1	1	5		9.9	 9 +	10	
5K85			.2	13	141	.9	5	6	19	4	51.5	69	5	
SK85			.9	8	618	1.3	26	2	5	1	19.9	32	5	
SK85			.2	5	81	.2	9	6	16	4	66.1	80	5	
SK85			.4	7	58	.9	10	6	17	4	37.5	47	5	
SK85			1.1	7	415	.9	28	4	7	1	30.2	53	5	
SK85	374	40H	1.0	25	556	1.7	48	5	10	1	22.7	83	3	
SK 85			1.0	36	676	1.0	45	8	32	5	52.4	145	5	
SK B5	376		,5	7	295	.9	10	5	16	3	50.8	80	5	
SK85		400	2.2	56	1163	2.2	48	11	47	7	59.1	165	15	
SK85			.7	23	274	1.1	26	7	26	4	52.6	89	5 5	
SK85			.5	19	182	1.1 .8	18 25	6 8	22 22	4 5	56.0 52.5	96 111	10	
SK85				28	159		15	8	19	5	61.8	100	5	
SK85			.5 .5	10 46	114 353	.9	29	8	23	4	45.8	138	5	
SK85 SK85			.4	23	2 5 9	.8	20	6	21	4	53.1	94	5	
SK.85			.5	7	231	1.0	17	6	23	4	57.8	90	5	
5K85			.5	8	298	.5	13	5	13	3	52.5	89	5	
.85		N/9												
5185			.3	6	441	1.8	8	2	5	1	13.5	13	3	
SK85			.7	1	303	.2	19	10	19	8 1	26.3	100	5	
S¥.85			.4	10	471	.7	15	7	14	4	50.3	71	5	
SK85	390	40N	1.0	1	480	.2	13	9	19	9 1	45.7	98	5	
SK85	391		.4	5	410	1.3	8	4	16	1	33.4	49	5	
SK85		40 H	.4	9	550	1.4	7	2	7	1	23.2	31	10	
SK 85			.6	8	509	2.3	11	2	9	1	25.8	70	15	
5×85			1.6	20	626	1.3	40	3	9	1	28.4	18	5	
SK85			2.1	21	577	1.3	43	4		2	40.2	23 56	5	
SK85			1.3	15	835	1.4	18	5	11	2	37.0 37.5	54	3	
SK85		4011	2.8	20	1105 91	2.6	38 10	6 6	15 17	2 2	59.0	7 8	10	
SK85 SK85			۰۵ م	6 1	62	.3	7	6 6	16	4	71.7	58	5	
SK85				12	297	1.2	10	5	14	2	42.1	72	5	
SK85			.7		171	.8	27	5	18	2	47.9	109	5	
SK85			.6	2	177	.5	14	6	14	2	53.2	101	5	
SK85			.5	1	69	.4	11	6	11	2	58.9	75	10	
SK85			.4	1	65	1.0	13	7	18	4	57.2	73	5	
SK85			.3	5	57	.5	10	6	12	4	56.5	61	5	
SK85			.6	9	135	.5	12	6	14	2	46.0	63	5	
SK85			.4	1	91	.7	9	5	15	2	56.9	69	5	
SK85			.9	1	196	.6	12	7	12	2	51.0	94	10	
SK85			.9	29	523	1.3	37	6	19	3	50.3	89	5	
SK85				25	191	1.3	9		21	5	68.7	76	5	
X85			.5	17	84	.7	14	6	15	4	20.3	46 44	5 5	
SK85			.7	1	57	.5	11	b	13	5 4	21.3 18.6	53	10	
SK85			- l - 1	8 13	95 101	.6 1.0	10 8	6 6	12 13	3	23.9	58	5	
SK85 SK85		4.0M	.1	15 1Ú	373	1.3	11	5	13	2	34.4	59	5	
SK85				9	151	1.1	11	6	19	3	35.0	68	5	
5K85			.1	5	127	. 6	8	5	15	2	34.0	49	5	
SK85		40 1	.6	5	121	1.Ŭ	12	7	18	6	94.9	75	5	
			•=	- -	75	4	10				46.4	68	1ú	

÷

•

(

٦L		0: SK 85	NSULTANI		705 WEST	15TH 51		COUVER, B.				FILE NO	7) PAGE 1 OF 1 51-165/P15+
-		: ION; FLOY					5814 DR 16			TYPE SOIL	GEOCHEM		AUGUST 21, 19
		IN PPH)	AG		BA	CD	<u>CU</u>	NO	PB 7	<u>SB</u> 1	20.8	ZN A 34	<u>U-PP8</u> 5
		4011	2.0	12	752	1.7 1.1	21 25	4 7	21	4	64.5	106	1Ŭ
SK85			1.0	1 15	581 408	1.1	10	5	16	2	21.0	81	5
SK85 SK85			.6 .3	3	91	.5	5	5	11	2	45.2	39	5
SK85			.2	ló	100	.)	5	4	15	2	44.1	48	5
5K85			.2	4	115	1.1	5	6	13	3	75.0	58	5
SK85			.2	19	91	1.2	4	5	13	2	44.8	57	5
SK85			.7	3	101	.2	8	7	19	3	63.0	67	1Ŭ
SK 85			.7	i	170	.3	5	8	13	5	98.9	77	5
SK85	430		.4	13	175	.9	4	6	11	3	66.5	69	10
SK85	431		.5	10	61	1.0	7	4	15	3	38.5	65	5
SX85	432	N/S											
S#:85	433		.6	10	364	.7	13	6	15	2	52.0	74	10
SK85	434		1.1	8	1134	1.4	13	4	12	2	38.3	45	5
SK85	~ +	404		<u>1</u>	71		22	7	12	5	34.8	60	5
SK85			.6	1	146	.4	9	7	14	5	80.0	65	5
SK85			.6	10	146	.9	8	6	15	3	41.4	60 49	5 5
SK85			.5	24	88	.6	15	6	16	1	25.8	48 75	10
SK85			1.7	28	933	.7	35	7	17	2 3	63.4 43.5	75 40	5
SK85				9	95		5	5	<u>15</u> 9	3	43.5 50.3		5
SK85			1.4	1	168	.5	13 13	7 8	17	5 6	88.9	78 79	10
SK85			1.2	1	247		21	8	26	° 5	73.2	86	5
SK85			1.2 1.3	1 18	538 484	1.3 1.7	27	6	18	3	49.0	71	5
SK85 SK85				16	291	1.0	12	7	19	4	60.7	86	5
	446			8	350	1.5	11	<u>/</u>	15	3	51.0	96	5
J£85			.6	1	195	.5	8	6	10	5	57.4	63	5
SK.85			.5	8	386	1.3	9	4	13	3	37.4	84	5
SK85			.6	9	409	1.2	12	5	15	2	37.9	66	10
SK85			.6	11	196	.9	14	6	21	3	48.1	74	5
Sk.85	+		.6	1	189	1.0	13	6	18	4	60.5	84	5
SK85	452		.8	1	339	1.5	12	6	19	4	60.8	97	10
SK85	453	40M	.6	1	288	.9	7	6	18	4	61.1	61	5
SK 85	454		.8	1	531	1.1	15	6	17	4	59.9	86	5
SI:85	455		.9	2	651	1.0	12	4	9	2	34.5	67	5
51.85			.7	i	459	.9	12	4	15	4	43.B	84	5
SK 85			.8	3	452	.6	11	5	17	4	49.2	112	10
S#.85			1.1	i	854	1.2	21	4	14	3	40.0	61 (5	5
SK.85			1.2	Ó	978	.9	36	6	14	4	62.8	65 50	5
SK85	• •		1.1	12	1039	1.0	28	4	12	·4	34.4	<u>50</u>	25
SK85			.5	1	85	.7	7	5	16	4	57.6 55.6	50 67	130 10
SK85			.4	3	134	.4	6	5 5	16 19	• 6	55.6 75.4	57	5
S¥.85		5VN	.8	3	147 20	1.4	5 5	5 4	16	3	7J.4 34.9	37	5
SK85			.3 .5	1 10	70 72	1.1 .7	а 5	5	18	3	41.9	51	10
SK85			<u>-</u> 5		141	1.0		 7	21	8	38.0	53	5
SK85			.5	4	102	.5	12	8	25	6	66.2	85	5
5885 S885			.7	3	77	 1.0	8	7	24	7	6 4. 7	76	1Ŭ
SK85			.4	14	91	.9	7	5	22	. 4	36.5	46	5
SK85			.6	17	76	.,	8	7	23	5	50.1	71	5
	471			10	112		9	5	21	4	42.2	59	5
⊼85			.4	6	117	.8	7	5	18	4	47.4	54	5
SK85			.7	3	94	.2	9	7	21	5	58.2	73	20
5K85			.8	1	88	.4	7	6	18	5	60.4	- 74	25
SK85			.6	ó	91	.9	8	6	22	4	51.4	72	5
SK85			.5	23	192	1.0	14	7	35	5	54.8	89	5
SK85			.5	8	114	1.0	7	6	19	5	50.4	61	5
SK85			.8	1	231	.5	8	6	19	4	57.3	60	10
CF 05			4	tà	\mathcal{D}	Q	· 7	7	7 7	5	47.7	51	5

UNFANT: OREQUEST	CUNSUL FANTS				IL I HAS IC			••			7) PAGE 1 UF
ROJEET NO: SK 85			JUS NEST	15fH 51					CERCUEN		: 51-165/P17+
LIENTION: MINT FLO						604)988-4		TYPE SOIL		TH A	AUGUST 21, 19
ALUES IN PPM)	A6	AS	<u>R</u> H	ĹÐ	CU	MO	P8	58	V		10
.85 481	.6	6	69	.7	6	6	11	3	44.5	53 47	5
sk85 482	.5	8	63	.6	5	5	12	4	49.8	47 64	5
SK85 483	.7	4	87	1.0	6	5	10	3	49.4	49	10
sk es 484	.4	5	104	.9	6	5	12	•	52.5		5
sk 85 485	.9	1	66		6	<u>b</u>			80.5 65.8	50 85	<u>5</u>
SK85 486	. 8	1	112	.1	12	6	15	4	48.4	69	10
SK85 487	.9	1	408	.4	7	5	13	2	137.8	87 81	5
SK 85 488 40N	1.4	1	87	.1	9	10	19	8 5	107.0	92	5
sk e 5 489	1.5	1	125	.1	9	8	4 8	12	193.5	103	10
SK85 490	2.3		85		9	12		4	61.4	66	5
SKB5 491	1.0	1	367	1.1	9	6	12	2	39.5	128	5
5K85 492 20N	3.2	8	1841	10.0	38	14	1	4	37.3	120	5
SK85 493 N/S	_				~~		,	2	14 7	29	10
SK85 494 40H	1.7	13	881	2.5	52	4	6	2	16.7	48	5
SK85 495	-6	<u> </u>	84					3	65.1	102	10
SK85 496	1.0	1	100	.6	14	6	21	4	71.4	69	5
SK85 497	1.1	1	88	.5	9	6	17	4	56.8	54	5
SK85 498	.9	1	134	.1	15	7	16	5	89.1 64.0	58	5
sk85 499	1.1	5	127	.5	17	6	18		49.0	49	10
SK85 500	.5	3	117		10	5	<u>21</u> 18	3	54.8	65	10
SK85 501	.7	5	356	.4	226	5		5	59.3	57	5
SK.85 502	.8	3	81	1.0	12	6	15		58.3	56	10
SK85 503	.8	8	99	1.1	11	6	17 10	4 3	55.5	60	5
SK85 504	.7	3	76	.3	8 9	6	15	4	67.7	71	5
°¥85 505		7	98	1.3		<u></u> 5	15	2	39.7	45	5
	.7	2	69	.6	6 7	5	15	3	63.0	59	10
SK85 507	.9	1	85 40	.2 .7	, 5	3	12	2	51.8	42	10
SK85 508	.5	1	62 72		8	4	14	5	64.7	51	5
SK85 509	.7	9 9	72 78	.5 1.2	7	5	20	5	58.3	64	5
SK85 510			70	1.0	<u>-</u> 8	5	12	<u>-</u>	50.4	46	5
SK85 511	.6	1			4	J	13	3	52.4	42	5
S# 85 512	.5 .7	1	66 68	.6 .7	6		13	3	47.6	41	10
Sk85 513		1	87	.,	9	6	15	3	50.1	64	5
SK85 514	.6	1	410	.8	10	5	16	3	57.0	72	5
SK85_515	.8		761	.7	10	5	8	2	42.9	46	5
Sk85 516	.6	2	907	1.2	9	3	11	1	29.1	35	5
SK85 517 404	.8		209	.4	8	5	13	3	56.8	63	5
SK85 518	.8	6 2	113	.6	6	Ă	15	3	49.5	47	5
SK85 519	.6 .7	∡ 1	81	 1.1	9	6	15	4	61.0	62	10
5885 520	<u>-</u> / .8	·	113		5		13	3	45.3	49	5
51 85 521	.a 1.v	9	550	.8	11	6	18	4	77.2	75	5
SX.85 522	.9	1	666	.5	7	6	15	5	91.2	55	5
SK85 523 40H	3.2	15	808 900	.0 1.6	33	5	18	j j	28.7	87	5
Sk85 524 40H	3.2	12	86	.3	9	6	18	4	61.0	73	5
Sk85 525	1.5	1	820	····· .5	13	5	10	2	57.0	88	5
SK85 526		1	820	.5	13	6	16	5	86.7	62	5
5885 527 40H	-6	د 9	84	.7 .9	6 6	6	47	4	62.2	56	10
SK85 528	.6		129	.1	6	6	15	5	74.2	71	5
SK85 529 40M	.1	6 7	B4	1.2	6	8 7	16	5	72.2	62	5
\$185 530						'''6	19		53.8	65	5
(85 531	.6	14	219	.9	8		20	5	77.3	72	5
SK85 532 40H	.7	8	227	1.0	10	6 7	17		94.7	19	5
SK85 533 40H	1.2	3	307	.5	9		14	6 3	50.9	74	10
SK85 534 40H	1.0	6	777 7/5	3.4	9	6	14	2	48.5	68	5
SK85 535		3	305	1.0	8				48.9	59	5
SK85 536	.7	6	232	.4	6	5	61	3	48. y 55. 2	57	5
SK85 537	1.0	4	379	ه.	8	5	14			40	5
SK85 538	2.2	10	1279	.9	3ú	3	8	1	22.3	40	J

.

PRUJECT NU	DREQUEST CONSUL I: SY 85 TONY FLOYD/MAI			istk st		REPORT COUVER, B.C 04)988-4524			FILE NO	27) PAGE 1 0 11 51-165/P19 AUGUST 21, 1
VALUES 1				CD	CU	HO	PB	SB V		W-PPB
.5 541				.9	7	4	17	3 43.3	57	10
.5 542 ∋€85 542			17	.6	, 6	4	17	3 58.7	47	5
SK85 543	1.1		100	.1	7	5	14	7 70.0	52	5
SK85 544	1.1		100	.7	8	5	15	3 60.4	62	5
Sk85 545	1.3			.1	11	6	19	4 76.3	84	10
SK85 546	i.;				9	5	16	5 70.1	54	5
SK85 547	1.5		411	.1	15	7	25	6 109.5	90	10
SK85 548			500	2.9	24	5	13	2 24.7	54	5
SK85 549	1.6		6 7	.8	14	6	24	3 60.0	90	10
SK85 550	.(.7	17	7	25	4 58.9	79	5
5K85 551					******	'				
S¥85 552	1.2	2 1	107	.7	29	6	16	4 60.6	84	5
Sk85 553			66	.3	10	5	22	3 57.3	64	5
SK85 554	1.1		72	.5	14	7	24	4 68.4	91	10
SK85 555	1.3		68	.7	12	6	20	3 64.6	75	5
SK85 556	1.0		81	.4	10	6	24	5 69.4	69	10
SK85 557	1.2		77	.7	10	6	22	4 73.2	78	5
SK85 558	1.0		65	.9	9	5	18	3 48.7	51	5
SK85 559	1.0) 4	100	.5	15	6	19	5 55.1	71	5
SK85 560	1.1		116	.7	16	8	30	6 73.6	95	5
SK85 561	.9	7	115	.9	10	7	27	5 76.6	60	5
SK85 562	1.0	> 4	106	.9	12	7	21	5 74.5	64	10
SE85 563	.5	5 6	99	.8	9	5	17	5 67.8	53	10
S#85_564	.7	9 8	153	1.2	12	6	16	4 61.7	53	5
SK85 565	40 M . 7	6	143	.6	9	6	22	5 72.4	45	10
15 566	. (6	113	.7	10	4	17	3 32.8	44	10
-85 567	. 6	, 7	99	1.2	10	5	15	4 35.8	37	5
SK85 568	.7	1 13	118	1.0	10	6	20	5 57.0	93	5
SK85 569	. 6	i 1	125	1.2	5	5	15	6 49.8	49	5
SK85 570	.5	5 3	73	1.2	5	4	18	5 25.8	33	10
SK85 571	.8	3 4	72	.9	6	4	26	7 38.2	36	5
SK85 572	. 6	n 10	71	1.0	10	4	18	6 51.6	55	5
SK85 573 4			75	1.1	4	5	19	7 90.8	46	5
SK85 574	.7	14	135	1.0	8	6	21	4 48.8	59	3
SK85 575			92	.8			15	4 44.0	34	5
SK85 576	.9		98	.6	7	6	20	5 57.4	70	5
SK85 577	. 6		112	1.2	7	5	19	4 53.1	52	5
SK85 578	.7		90	1.5	1	6	17	5 58.8	60	5
SK85 579	.8		106	1.3	9	6	21	5 54.1	61	5
SK85 580			111		6	5	17	4 51.2	49	
SK85 581	.5		104	.8	6	4	14	3 41.4	42	5
SK85 582	.8		108	.6	8	5	17	5 49.8	45	10
SK85 583	.5		113	.6	7	4	19	3 41.1	45	5
SK85 584	1.2		193	.4	16	8	19	5 69.B	72	5
SK58 585	1.6		540				18	5 71.6	73	5
SK85 586	2.0		181	.1	11	7	12	4 84.7	103	10
SE85 587	.8 IAN 1-3		175	.6 1 à	7	5	18 22	5 59.3	46	5
SK85 588 4			216	1.0	6	7	22 20	5 68.4	76 45	5
SK85 589	.6 1041 .8		287	1.1	6	5 5	20	3 46.3	65 51	5
SK85 590 4 95 591			163	.7	7 8	5	-72	4 63.5	51	5
45 592 4	1.1 ION .9		196 177	.2		5	16	4 72.9	77	5
SK85 593	., nvi .7				6 4	6 5	22 19	6 74-6 4 53-1	66 50	10 5
Sk85 594	.7		160 132	.6 .6	4 5	כ 5	19	4 53.1 4 55.5	50 38	5
SK85 595	.в .9		85	.7	5	4	10	4 60.0	44	5
SK85 596	1.4		161	.3	<u>-</u> 9		20	6 91.2	86	<u>5</u>
SK85 597	.9		129	.5	6	5	18	5 69.3	47	1Ú
SK85 598 4			212	.9	12	4	17	3 41.4	41	5
	•••	1	£11	••	14	1	11		41	5

	PROJE	CT N); 58 8		•	105 NEST	151H ST.		NCOUVER, B.				FILE NO	7) PAGE : : 51-165/1	P21+22
				FLOYD/NAL		66	(604)980 CD	-5814 OR (Cu	604) 988-452 NO	4 ∎ ₽8	TYPE SOIL SB	V		AUGUST 21 U-PPB	1903
(601	AOH	2.1		<u>84</u> 283	2.5	61	5	21	2	41.9	156	10	
	SK85			1.1		268	3.1	36	, 2	2	1	2.9	24	5	
	SK85			1.4	1	222	1.1	37	4	19	2	43.7	111	10	
	SK85		40 1	1.8		466	2.0	52	3	14	1	15.0	94	15	
	SK85			1.3		205		20		<u>18</u> 21	5	<u>53.9</u> 80.7	<u>115</u> 133	10	
	SK85		4011	1.3		248 569	1.1	38 45	7 5	23	2	37.4	106	5	
	SK85 SK85			.9		77	.1	10	5	21	4	58.4	88	5	
	SK.85			.9		340	.8	20	4	23	3	44.9	82	5	
	SK 85			.6	10	69	.4	8	6	25	4	67.0		5	
	SK85			.1		187	.7	9	6	23	4	67.6	81	10 5	
	SX.85			.8		220 55	.9 .7	11 8	6	16 22	۹ 5	65.8 65.1	74 87	10	
	5K85 SK85			.5 .9		53	.2	8	8 7	21	5	80.7	76	5	
	SK85			.8		220	1.0	10	6	23	5	67.5	76	5	
	SK85			.7		94	.9	6	6	27	5	73.4	63	5	
	SK 85			.7	_	62	1.3	7	6	25	4	55.5	76	5	
	SX:85			.6		75	-6	7	5	21 18	5 3	74.2 47.7	54 52	10 5	
	SK85 SK85			.3		52 325	.5 .8	5 7	+ 1	15	3	47.7	55	5	
	SK85			.9				8	·;	29	5	81.0	68	10	
	SK85			1.0	11	81	.2	10	8	25	6	97.3	7 8	5	
	SK 85	623		.7	4	88	.4	1	6	22	5	76.3	57	5	
	SK85			.7	_	138	.8	8	6	21	4	68.6	76	5 40	
	°* 85		··	1.0		601 749	.9	<u>12</u> 12	7 5	23	52	84.1	75 85	5	
ţ	d⊃ SK85	626 527		.8 .5		232	.3	6	4	11	3	50.7	52	10	
	SK85			.9		1169	1.5	10	3	9	2	39.6	64	5	
	SK85			1.7	5	1549	.5	31	3	9	1	26.0	38	5	
	SK 85	630		2.6		2732	.9	22	4	12	2	29.6	42	5	
	SK85			.9		1273	.8	13	4	16	2 2	33.1 40.2	58 43	5 5	
	SF85			.2 2.2		85 1811	.6 .7	6 47	4 5	20 16	2	33.9	80	15	
	Sk85 Sk85		408	.9		1186	1.1	31	4	9	200	32.5	76	40	
	S¥:85			.7			1.8	28	5	15	5	41.0	83	5	
	SK85			1.1			1.1	39	3	11	2	22.4	80	5	
	SK85			2.8		7 29	2.0	27	4	109	6	39.1	76	15	
	SK85			1.4		1311	1.5	35	4	16	2 3	21.1 42.3	8 9 82	10 5	
	SK85 SK85			.7 .6		742 587	.9 .6	17 14	4 5	17 18	2	42.J 49.()	81 79	5	
	SK85		408	1.1			1.2	21	8	28	5	72.7	164	15	
	5K85			.4		309	.6	9	5	22	3	53.7	69	10	
	SK85			.8		990	.9	27	7	20	3	47.6	101	5	
	SK85		401	.5			.1	6	6	24	5	92.1 60.1	55 51	5 5	
	Sk85		4.0M		5 <u>- 5</u>			<u>. 6</u> 38	5	20	······	70.6	103	20	
	SK85 SK85		901	1.0			1.7	27	6	28	3	59.0	134	5	
	SK85			2.0		1170	.2	18	4	40	2	22.1	37	15	
	SK.85			.8		1052	1.3	19	4	15	2	43.4	91	15	
	SF.85			1.2			1.2	42	5	14	2	40.2		10	
		651					.8	8	5	20	2	44.0 18.1	58 39	5 10	
	- SK85 - SK85			1.9		1883 117	.3 .4	37 5	3	9 19	1 5	59.0	60	5	
	5885 S885			.5		565	.7	8	5	19	2	41.6	79	2	
	SK 85			. 6			.5	6	5	20	3	41.4	75	5	
	SK85	656		.7	3		.3	14	5	19	3	51.0	98	5	
	5K85		40H	1.9		2044	1.4	23	7	22	4 र	39.5	124	20 5	
	S¥.85	658		.6	n 10 	580	1.3	18	5	18	<u>3</u> र	46.7 50 1	105 94	5 5	

PRUJECT NÚ				1518 51.		ANCOUVER. I			FILE N	27) PAGE 1 D: 51-165/F	P23+24
VALUES I	IUNY FLOYD/HAL N PPN (12041980- CD	5814 UK (CU	604)988-45 ND	P8	TYPE SOIL GEOCHEN SB V		AUGUST 21,	1183
.85 661	а rrn / но 	· · · · - · · · · · · ·	э	<u>د بالا</u> . ک	7		20	4 69.4	<u> </u>	5 5	
SK85 662			I 93	1.Ú	7	7	22	3 66.3	57	10	
SKB5 663	1.2	2	1 799	.2	11	5	17	3 59.5	86	5	
SK85 664	.,	7 :	5 107	.5	11	7	24	ó 85.4	8ú	5	
SK85 665		3	1 524	.1	8	5	15	3 66.8	92	3	
SK85 666	ه.		2 107	.2	10	6	21	4 77.3	58	5	
SK85 667	. t		1 218	.8	13	5	24	3 52.8	106	5	
SK85 668	.3		1 86	.1	7	4	21	3 45.3	50	1Ú	
SK85 669	•	-	ů 77 3 119	1.0 1.0	9 13	۵ (28 25	3 50.2 3 47.5	57 78	5 5	
SK85 670 SK85 671			5 <u>117</u> 6 93			····· <u>°</u> ····	<u> </u>	5 75.3	61	<u>-</u> 5	
SK85 672	۰. د		7 79	.1	8	6	26	4 60.6	69	10	
SK85 672	1.1		1 67	.2	8	6	23	5 82.4	66	5	
Sk85 674	1.3		1 74	.4	9	9	33	8 136.9	84	10	
SK85 675	1.2		4 B6	.3	12	8	31	6 107.8	78	10	
5K85 676	1.0)	3 77	. 1	9	8	32	6 101.9	99	5	
SK85 677	1.5	5	1 81	.1	12	9	31	6 104.3	98	5	
SK.85 678	1.3	3 7	7 104	.1	13	10	32	7 112.4	105	10	
SK85 679	1.0		4 77	.1	11	10	32	8 113.7	98	5	
6K85 680	1.2		7 107		11	8	26	7 94.3	88	5	
SK85 681	.7			1.1	15	8	29	5 70.5	82	3	
SK85 682	.7			. 4	12	8	31	6 79.7	85	10	
6K85 683	.7		1 109	.4	12	6	19	5 79.3	55	5	
SK85 684	.5		8 77	- 6	10	5	20	4 53.6	46	5	
ik.85 685	1.0		7 100		10	8	29	<u> </u>	71	10	
<85 686 ≤K85 687 4	.9 10 H 13. 2		1 77 1 185	.5	10	7 10	28 23	6 96 . 9	70	5 25	
3K85 488	i.7			.1 .8	18 35	8	23 37	9 176.7 5 9 0.7	120 192	23 15	
5K85 689	2.3			3.5	33 78	5	16	2 43.1	172	10	
5K85 690	2.2			3.8	50	7	29	4 57.3	222	10	
K85 691	.6			.4	10	5	17	3 55.2	68	<u></u> 5	
SK85 692	1.1			.7	23	6	27	3 53.0	110	10	
1.85 693 4	0H 1.8	29	797	.1	46	3	8	1 31.0	71	10	
61.85 694	.9		7 89	.2	14	6	21	3 52.0	91	5	
1.85 695	2.4	1	71	.1	11	11	- 22	B 129.1	86	10	
1.85 696	.9	1	88	.1	24	8	23	6 82.4	99	1Ú	
5K85 697	ه .			<i>.</i> B	10	6	18	5 68.9	84	10	
K85 698	. 4		88	• 2	8	6	17	4 52.8	56	5	
5K85 699	1.1			2.2	27	5	16	2 32.0	170	5	
4.85 700	1.1					6	19	5 71.1	120	5 5	
K85 701	1.1			.4	21	6	20	4 48.5	218		
1.85 702	1.0			.2	18	6	17	5 59.7	181	10	
K85 703	.5			.1	9	7	14	5 61.7	70	10	
K85 704 -	.7			.1	9	7	18 19	5 6 8.8 4 56.2	104 54	5 10	
1485 705 1485 706	.4			<u>1</u>	<u>6</u> 8	• 7	<u>18</u>	<u> </u>	54 72	10	
K85 707	1.4			.1	12	13	30	11 177.3	89	15	
ikas 707 ikas 708 4			82	.1	9	13	30 19	7 117.3	67 62	5	
K85 708 4	.8		62 64	.1	, 7	8	9	6 95.3	69	5	
K85 710	.4			.1	9	5	17	2 39.3	101	5	
85 711	.4				?	5	17	4 50.9	49	5	
K85 712	.4			.2	7	7	24	6 77.6	۵5	10	
K85 713	1.7	19		1.1	27	, 1	17	4 129.9	102	10	
×85 714	1.1	5		.2	14	5	15	4 55.0	92	15	
K85 715	W/S										
K85 716	.5			.2	8	5	15	3 52.8	52	10	
k 85 717	.2			. 4	1	6	15	3 44.B	63	5	
5K85 718	.7		-	. 1	8	8	19	6 115.4	105	5	
VOE 710	<	ר ר י ר	700	` ۲	15	7	19	5 59 9	118	5	

l

			OREQUEST CONSU 0: St 85	LTANIS	205 WEST	t isth st.	EN LABS ICP . NURTH VAN	COUVER. B.C.				FILE NO	27) PAGE 1 OF 1 13 51-165/P25+26
-			: TONY FLOYD / N			16941780 CD	-5814 OR (6 CU		+ T PB	SB	6EOCHEM		AUGUST 21, 198
(721		AG	45 BA 5 239	.4	ĽU ċ	3	9	2	30.9	62	5
(S		722		, 4	3 82	.1	1		1ò	3	46.5	52	3
		723		.4 1	454	.4	12	5	15	3	37.6	81	5
S	K85	724		.5 I	0 175	.4	9	4	17	3	39.7	70	10
		725			1 134	<u>-</u> !	5		16		33.6	43	5
		726			8 163	.1	8		19	3	41.3	60 101	5
		727 728		.61 .3	0 883 7 1236	1.2	16 21	6 3	15 10	3 - 2	51.1 20.9	106 56	5 5
		729	1.		1 1932	.5	19	2	4	1	15.6	27	10
				.9	3 1610	.4	18	2	4	1	19.0	27	5
		731		.4	9 2172	1.1	12	4	7	2	25.1	122	5
S	K85	732	1.	1	8 1096	.2	13	5	14	3	40.2	85	5
		733		.7	5 506	.7	4		11	2	33.3	72	5
	K85			5	4 87 5 00	.1	3		13	2	34.3	41	5
		735		5	5 99			3	12	2	27.9	32	10
	K85	736	N/S 1.	\$	2 650	.3	11	5	13	3	37.5	83	5
		738			2 550	.7	17		18	4	38.9	117	5
	×85		1.		5 730	.6	12		16	4	39.0	98	10
		740			7 394	.1	Ь	5	16	3	45.5	67	5
SI	r85	741		8	3 250	.2	5	4	15	3	42.8	57	5
S	85	742			8 259	.5	5	5	14	3	41.6	63	10
		743			9 240	.5	6		15	4	44.7	59	5
	×85				7 150	.5	6		13	4	50.8	69	5
	85				3 193	4			16		45.6	50	10
	5 (85)	746			5 640 4 150	.6 .2	8		15 13		55.5 44.7	76 44	5 5
	K85			ч 6	4 99	.2	5		15	4	50.4	56	5
	<85			_	1 106	.1	6	-	17	3	48.6	60	5
		750		6	1 74	-1	4		13	4	51.2	44	5
	(85		•	3	1 176	.9	7	4	11	2	41.6	54	5
SF	(85	752	4011 .	7	1 160	.1	5	5	11	3	73.9	52	5
	(85				5 172	. 6	6		14	3	56.5	59	10
	(85				0 760	.9	10	5	9	2	45.1	79	5
	85				5 624	.8	10		11		49.8	66	5
		756			8 933	1.2	54 9		17 17	2 2	70.7 60.9	123 81	5 10
	(85 (85			-	1 287 1 1560	.2 .2	, ,		10	2	41.4	43	5
	(85)			-	1 1560 1 103	.2	8		15	3	50.6	49	5
	(85				9 92	.6	9		16	3	53.7	68	10
	(85				1 123	.4	7		10	2	38.4	41	5
	(85			3 1		. 6	8		17	2	44.5	49	5
	(85			9 3		1.0	24		24	6	106.2	157	5
	85				8 94	.3	9		14	4	66.2	77	5
	85				6 53		7		15		60.9	51	10
	85				1 177 1 103	.5	10 7		14 12	3 2	61.4 39.6	76 40	5 5
	85 (85			_	1 103 6 95	•6 •7	10		47	4	49.6	40 75	5
	85				e 13 9 97	1.0	7		11	2	47.0	49	10
	85				2 88	.5	, 9		16	3	55.9	74	5
	15			4 1		.4	8		15		30.2	67	5
	65				1 79	.1	9		15	3	62.5	73	5
SK	85	773	1.		3 167	.1	17		23	5	86.2	86	85
	85		•			.4	8		17	4	60.3	68	5
	85	~ ~ ~ ~					8		20		63.3	65	5
	85 °					•6 •9	14 8		25 17	4 3	75.8 37.3	99 52	10 5
	85 : 85 :		•		s 51 4 967	1.1	11		12	2	30.3	57 60	5
	92 ·			a '		1.3	12		13	3	40.7	86	5
				•		• • •	**		••	v	77.1	~~~	-

í

.

		REGUEST (; S# 85	CONSUL FANT		FOS WEST		n labs tei North Vai	P REPORT ICOUVER, B.I	C. V7M	172			27) PAGE 1 (]: 51-165/P2]
			YU/NALCOL	N BELL		16141980-	5814 OR (4	504) 988-452	4 4	TYPE SOIL	GEOCHEN	+ DATE:	AUGUST 21, 1
		N FPM)	AG	AS		CD	CU	MO	PB	S8	V		AU-PPB
	781		.5	1	6l		9	8	19	6	88.2	74	5
5885			.3	14	206	1.7	12	5	15	4	48.5	110	5
SK85			.5	13	216	1.7	13	ò	17	4	52.8	144	10
SK85		408	1.8	11	317	4.5	120	8	37	4	47.0	190	15
SK 85		N/S											
SK 85			1.3	1	64	.1	10	7	12	2	102.4	63	5
SK.85			1.9	1	67	.1	12	8	28	4	78.9	105	5
SK85			1.0	1	62	.1	13	7	18	4	80.4	97	5
SK.85		N/S											
Sk.85			.8	ŧ	292	.4	12	4	18	2	50.0	102	5
SK 85	791		1.4	}	317	1.3	24)	20	4	61.2	162	10
SK85	792		.8	1	185	.4	11	6	13	3	65.2	106	5
5885	/93		1.1	5	302	1.3	27	1	30	4	60.7	111	5
SK85			.8	6	109	.6	12	6	24	4	56.5	69	5
SK85	795		1.0	1	82	.3	15	8	23	4	78.6	139	10
SK.85	796		1.6	1	109	.5	17	8	45	6	93.8	78	20
SK85			.6	6	191	1.8	7	7	16	6	73.7	63	5
SK85			.1	20	325	1.2	17	6	20	3	48.6	136	5
S# 85	799		.9	5	106	.4	10	6	20	3	54.0	63	10
SK85	80ú		.6	2	531	.5	10	6	15	3	58.1	72	5
Sk.85	801		1.2	25	576	1.3	11	5	14	2	36.5	201	5
5K85	802		. 6	29	642	1.1	11	6	13	3	50.6	147	10
SK85	803	4011	. 4	6	231	1.2	10	6	20	6	93.1	17	10
S#85	804		.4	1	338	.8	8	4	16	2	48.8	74	5
st:85	805		.3	2	100	.1	7	5	14	4	26.3	62	5
85			.7	1	70	.5	9	6	15	3	65.6	53	5
5K85			.6	1	87	.7	10	6	20	5	65.2	63	10
SK.85			.6	1	70	.1	9	6	21	4	63.4	68	35
SK85			.5	2	63	.1	8	6	19	3	54.5	54	5
SK.85			.3	1	67	.7	6	6	14	3	53.7	42	5
Sk.85			.8	11	77	.3	7	4	18	4	40.5	55	5
Sk 85			.6	3	70	.6	7	5	19	5	49.6	43	5
S#85			.7	3	7 9	.2	7	6	15	6	62.3	58	5
SK85			. 6	11	86	1.0	7	6	24	6	53.5	75	10
SK85			.4	4	67	.9	12	5	18	5	61.1	57	5
SK85			.3	3	54	1.0	4	4	12	4	50.2 ·	34	5
SK85			.5	2	180	.5	11	5	15	4	58.9	62	5
SK85		OM	.4	1	60	.5	7	6	12	5	87.0	42	10
SK85			.1	1	55	.8	6	4	14	3	46.3	32	5
SK85			.3	1	73	.6	6	5	13	4	52.9	38	5
5K85			.2	1	58	.7	7	4	13	4	51.6	49	5
SK85			.1	1	65	.6	6	4	14	4	40.4	34	3
SK85			.3	2	234	1.0	7	3	13	3	22.7	42	5
SK85			.3	1	141	.9	5	4	15	4	26.1	44	10
SK85		OH	.5	1	315	.4	8	4	15	5	57.0	50	5
SK.85			.4	1	273	.7	7	5	16	5	27.8	62	5
SK85			.4	3	377	.9	10	4	17	4	51.3	94	5
51.85			.3	4	115	.5	7	5	14	5	66.4	53	5
SK85			.5	6	484	1.0	8	3	17	3	42.9	55	10
5#85			.7	1	498	1.1	9	4	14	3	42.6	58	5
85			.9	4	568	1.2	10	4	12	š	47.5	61	5
J¥85		N/S	••	,	550			,	••	7		~ 1	J
SK85			.2	1	266	1.2	7	3	15	2	37.4	43	5
54.85 SK85				2	200 320	.,	8	3 4	15	2 3	47.6	•3 52	2
3883 SK85 (.s .6		520 329		8 10	• 5			47.0 81.5	52 65	5
				1						<u>6</u>			
SK85 SK85			.3	1	349 953	1.1	8	3	11	4	45.Ŭ	50	10 5
S¥.85			.3 .3	1 2	853 525	.7 1.7	12 23	3	10 17	2 2	32.1 39.4	39	5 5
SK85												75	

OMPANY: OREQUEST (PROJECT NO: SK 85	CONSUL FANTS		/95 WEST		N LHOS ICP NORTH VAN		.C. V7N	172			7) PAGE 1 DF : 51-165/P29+
ATTENTION: TONY FLI	በነው: ዘል፤ ሮብር ዞ	RF11	7.5 57		5814 DR 16			TYPE SOIL	GEOCHEM		AUGUST 21, 19
(VALUES IN PPN)	AG	AS	BĤ	ĹĎ	CU	MO	PB	SB	v		U-PPB
85 841 40H	.7		483	1.0	8	6	15	4	61.5	64	5
SK85 842	.4	1	115	.4	6	5	15	3	55.7	57	5
SK85 843	1.1	t	78	.2	13	8	20	5	93.6	84	5
SK85 844	1.2	1	64	.4	10	5	16	4	73.5	61	5
SK85 845	1.0	ŧ	94	.4	8	5	22	4	/5.2	53	15
SK85 846	1.1	1	67	.1	17	7	25	5	87 .5	86	5
5K85 847	.6	1	87	.2	7	5	20	4	66.7	49	20
SK85 848	.9	1	232	1.2	24	5	14	3	48.7	116	5
SK85 849	.7	1	29 7	1.2	14	5	17	3	50.4	118	5
SK85 850		5	229	1.6	29		20	4	56.1	100	10
SK85 851 40H	1.0	1	272	.1	15	6	14	5	78.4	118	5
SK85 852	- 6	1	63	.5 .8	10	5	20	4	67.7	56	5 5
SK85 853 SK85 854	. 6 . 9	1	262 1197	1.5	10 15	2	19 12	4 2	65.1 38.1	76 35	5
SK85 855	.,	1	80	1.3	15	5	22	4	58.7	33 77	5
SK.85 856	.7	3	136		14	6	19	<u>-</u>	59.1	71	10
SK85 857	.8	1	56	.1	9	6	19	4	69.5	59	5
SK85 858	1.1	1	83	.4	16	7	24	5	79.1	87	5
SK85 859	.7	3	77	.5	8	5	21	4	62.0	58	5
SK85 860	. 6	4	68	.8	8	5	22	4	64.4	58	5
SK85 861	.4	1	74	.6	9	5	18	4	62.5	59	5
SK85 862	.3	1	71	.7	9	4	14	4	45.5	49	10
SK85 863	.4	9	9 7	.5	11	6	25	5	60.5	65	5
SK85 864	.6	9	81	.8	9	4	16	3	41.5	38	5
SK85 865		14	86	1.1	10	5	17	4	61.1	57	5
\$85 866	.3	15	81	.7	6	5	15	5	57.4	53	5
LK85 867	.4	7	70	.6	6	5	20	4	61.9	47	10
SK85 868	.3	12 14	93 94	1.0	7 11	5	16	4 5	50.2	51	5 5
5K85 869 5k85 870	.4 .4	22	82	1.1	10	5	16 21	5	62.8 53.1	აე 69	5
SK85 871	.5	1	72	.6	10	6	21	<u>-</u>	62.4	70	5
SK85 872	.4	1	84	.5	11	4	15	4	52.7	53	5
SK85 873	.9	1	201	.1	21	5	13	3	47.9	86	3
SK85 874	.3	5	105	.9	15	6	20	4	62.0	59	5
SK85 875 40M	1.0	3	95	.1	9	7	20	7	106.5	61	10
SK85 876	.4	1	84	1.1	9	4	16	3	46.9	42	5
SK85 877	.4	2	89	1.0	8	6	17	5	64.1	58	5
SK85 878	.4	5	85	.6	10	6	21	5	66.7	71	5
SK85 879	.1	2	93	.8	8	3	12	3	44.7	43	3
SK85 880	.3	6	64	.8	<u>6</u>	<u>4</u>	16		49.9	75	5
SK85 881	.4	8	107	1.1	8	5	21	6	32.1	97	5
SK85 882 40N	.7	1	108	.6	6	5	15	5	44.3	47	5
5K85 883 SK85 884	.7 .5	20 12	187	1.3	8	6 5	2 4 20	6 4	44.7 63.3	81 52	5 5
SK85 885 40M	.9	12	134 135	.7	5 5	5	18	6 6	03.3 76.6	52 69	5
SK85 886	.5	24	155	1.9	<u>5</u>	<u>6</u>	30	7	60.3	75	5
SK85 887	.5	11	274	.6	6	4	17	4	53.4	49	10
5k85 888	.7	3	115	.3	4	4	14	5	59.4	39	5
SK85 889	.6	12	255	.8	4	4	13	5	51.6	58	5
SK85 890	.9	1	105	.1	4	5	11	5	66.0	46	10
K85 891	• 7	3	145	.6	5	5	21	5	61.4	60	10
K85 892	.7	5	120	.4	6	4	20	4	54.1	47	5
SK.85-893	1.0	1	171	. 2	6	6	19	6	71.9	56	5
SF85 894	1.0	1	99	.1	6	5	18	4	61.2	50	5
5#85 895	1.0	1	143	.4	8	5	13	4	59.3		5
SK85 901	1.4	16	152	.4	19	6	15	6	88.7	65	20
5685 902	.9	22	143	.1	14	5	19	5	58.1	77	5
Sk.85 903	1.0	5	99	.9	11	6	13	5	66.8	102	5
SYRS PAL	9	10	130	15	17	5	14	4	52.6	115	5

PENJECT NO:			705 WE51	1546 ST.,		NCOUVER, B.C				1-165/931+32
	IUNI FLOYDANAL					604) 788-4524		TYPE SOIL GEOCHEN		UST 21, 1985
"ALUES IN			BA	CD	CU	MO	P8	SB V	IN AU-P	
5 906	.7		114	. i	14	5	12	3 51.1	-	10
⇒K85 907	.7		148	.8	14	4	15	3 51.6	80	5
54:85 908	.8		203	1.6	11	4	12	3 44.0	58	5
SK85 909	.8		156	.1	12	6	8	3 63.6		10
SK85 910	1.3		349	1.5	16	5	12	4 43.3	86	5
SK85 911	.8		174	.3	12	5	11	3 56.0		10
SK85 912	.9		135	.!	15	5	11	4 80.6		10
SK85 913	8.		103	.2	14	6	13	4 76.3	77 14	5
SV85 914	1.0		128	.1	14	7	8	5 94.3	76	5
SK85 915	1.0		101		11		8	5 104.9	66	5
SK85 916	.7		107	.1	12	1	1Ú 9	4 68.6		10 10
SK85 917	1.2		109	.1	12	7		5 90.2		10
SK85 918	1.0		151	.8	22	5	16	3 58.6 5 73.4		20 \
SK85 919 SK85 920	.9 1.2		109 84	.1 .1	17 37	7 6	12 12	5 73.4 3 75.1		10 10
SK85 720	1.2		127	<u>:</u> .1		<u>0</u> B	12	7 116.9		15
SK85 922	1.2		127	.1	13	в 7	7	4 80.0		20
SK85 923	1.1		79	.1	13	,	18	6 55.3		10
SK85 924	.8		1ŬÚ		13	7	8	5 90.0	53	5
SK85 925	.0		117	.1	14	,	13	5 91.2	80	5
SKB5 926	······································		125	 .1	18	'	3	5 95.8	74	5
51.85 92	1.3		145	.1	14	,	9	6 113.2		10
5K85 928	1.1		110	.1	11	7	1	6 118.6		10
5K85 929	1.0		121	.1	13	8	11	6 93.5		10
SK85 930	1.0		131	.1	13	7	12	5 85.8		10
15 931			108	.1	12	<u>'</u>	8	5 92.4	68	5
-85 932	1.0		99	.1	13	9	11	9 123.9		10
SK85 933	.5		92	.1	12	7	16	6 83.7	60	5
SK85 934	.9		95	.1	11	8	12	8 112.3		10
St.85 935	.7		69	.1	15	8	8	3 104.1		10
5185 936	.7		92	.1	10	<u>-</u>	10	5 71.7	43	5
SF85 937	1.3		119	.1	14	10	12	13 158.9	72	15
51 85 938	.8	1	65	.1	11	5	5	3 55.5		10
SK85 939	1.0	1	109	.1	13	6	4	3 70.7	74	5
5185 940	.5		104	.1	14	1	10	5 70.3	71	5
51 85 941	.9		63	.1	17	7	14	5 85.5	94	5
SE85-942	.6	1	91	.1	9	6	7	3 74.8	46	5
SK85 943	.4	1	74	.1	16	8	9	6 92.1	108	3
5K85 944	. 6	1	Ì b	.1	11	7	7	4 54.3	40	5
SK85 945	.4	1	62	.1	ģ	5	1	4 48.5	40	5
Sk85 946	.5	1	b7	.2	15	6	12	2 57.5	45	lú
SK85 947	. 6	i	95	.5	12	6	12	7 74.3	55	5
SK85 948	1.2	1	74	.1	20	7	8	2 88.1	84	10
SK85 949	1.2	1	79	.1	29	7	5	2 95.0	90	10
SK85 950	1.2	1	73	.1	23	6	7	1 71.0	80	15
SK.85 960	.9	3	119	. 1	14	7	13	6 84.1	88	5
SK85 961	1.2	1	87	.4	35	6	9	7 71.6	85	10
5K 85 962	.7	1	145	.1	17	5	15	5 74.4		10
SK85 963	.6	1	69	.5	17	6	11	2 63.8	48	5
5K85 964	.5	1	67	.7	18	4	8	1 53.4	42	5
95 965	.7	1	72	1.4	19	5	11	1 40.1		10
.85 966	.7	1	64	.9	19	4	9	1 50.1		10
SK85 967	ه.	1	74	1.1	18	4	12	1 42.4	84	5
SK85 968	.5	1	85	. 3	13	5	6	1 74.0	53	3
5K85 969	1.0	1	43	.1	24	B	13	8 123.7	59	5
58.85 970	.8	1	? B	······································	20	6	4	1 75.1	96	5
SK85 971	.4	1	95	.4	16	5	12	1 65.4	54	5
SK85 972	.5	15	84	.1	15	7	11	1 27.7	48	5
5185 973	.2	11	6/	1.1	22	5	9	1 28.8		10

			: 5K 8	T CONSULT					ICP REPORT				(ACT:6	E027) PAS	E 1 0F
						/05 WES								ILE NO: 51	
H			I PPN	FLUTDAHALI					(604)988-			IL GEOCHE	M = DA	TE: AUGUST	21, 198
			PPN		Ĥ5	BA	CD	£U	HO	P8	SB	٧	ZN	AU-PPB	
	<u>ا</u> کر ۱۹۷۵			.9	1	88	.6	39	6	9	2	64.1	75	10	
	SK85			.5	1	96	.4	18	1	15	4	77.0	52	5	
	SK85			.4	2	71	.3	10	6	10	1	57.2	46	5	
	SK85			.9	1	103	. i	16	8	11	5	102.5	66	5	
-	SK85					114	.1	16		13	5	90.8	86	15	
	SK85			1.2	1	84	.1	2Ú	10	ló	10	147.7	79	15	
	SK85			1.1	1	106	. 1	13	12	18	11	146.3	63	5	
	SK85			.6	1	111	.1	16	7	14	4	91.9	70	5	
	SK85			.7	13	16	.2	16	6	13	2	55.4	44	5	
	51 85					89		12	6	12	2	58.4	44	5	
	5185			1.2	14	94	1.1	29	6	16	3	46.7	48	15	
	SK85			1.0	1	84	.1	13	6	5	2	39.8	53	10	
	5¥85		40 H	1.5	1	81	.1	15	12	lů	14	215.4	77	15	
	5#85			.4	1	86	.2	10	5	14	ò	45.1	36	3	
	85				2	73	.1	13	6	12	4	31.7	39	5	
	5K.85			.7	1	71	- 1	12	5	11	5	49.5	42	5	*******
	¥.85			.4	lú	59	.9	12	5	10	2	35.1	39	10	
	¥85 <			.5	14	9 7	.6	16	7	16	6	63.6	65	5	
	i£85 9	-		•6	15	104	. 3	12	5	8	1	36.9	57	5	
•	K85 9				1	81	.1	9	6	10	6	61.0	42	5	
	185 9			.5	25	98	.6	15	5	19	3	40.3	51	10	
	1.85 9	-		.5	6	215	.2	16	3	11	1	21.7	47	3	
	K85 9			.7	44	157	1.1	24	8	21	2	43.3	143	5	
S	K8580	65 40	H	1.4	1	177	.1	16	11	13	14	169.5	89	15	

.

÷

PHONE 980-5814

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_3 and $HClO_4$ mixture.

After pretreatments the samples are digested with <u>Agaa Regia</u> solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketero

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb). PHONE: (604) 980-5814 or 988-4524

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95 °C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb.

 G_{i}

PHONE 980-5814

X

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK - 26 ELEMENT ICP

Ag,Al,As,B,Bi,Ca,Cd,Co,Cu,Fe,K,Mg,Mn,Mo, Na,Ni,P,Pb,Sb,Sr,Th,U,V,Zn

Samples are processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sedimint samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized by ceramic plated pulverizer.

1.0 gram of the samples are digested for 6 hours with HNO_3 and $HClO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by Computer operated Jarrell Ash 9000ICP. Inductively coupled Plasma Analyser. Reports are formated by routing computer dotline print out. ١

MIN-EN Laboratories Ltd.

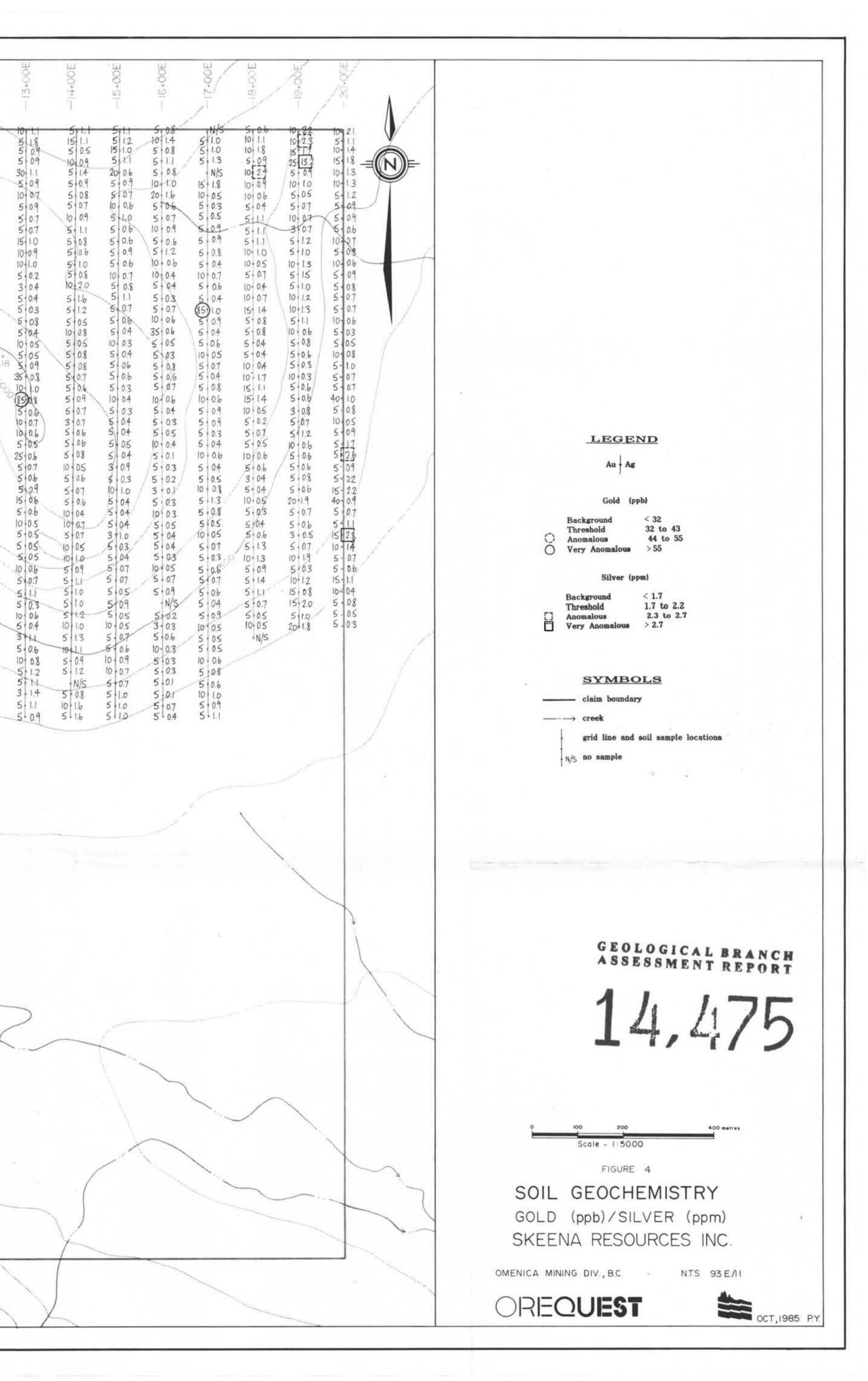
Specialists in Mineral Environments Corner 15th Street and Bewicke 705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA

ANALYTICAL PROCEDURE REPORTS FOR ASSESSMENT WORK.

PROCEDURES FOR, Cu, Mo, Cd, Pb, Mn, Ni, Ag, Zn.

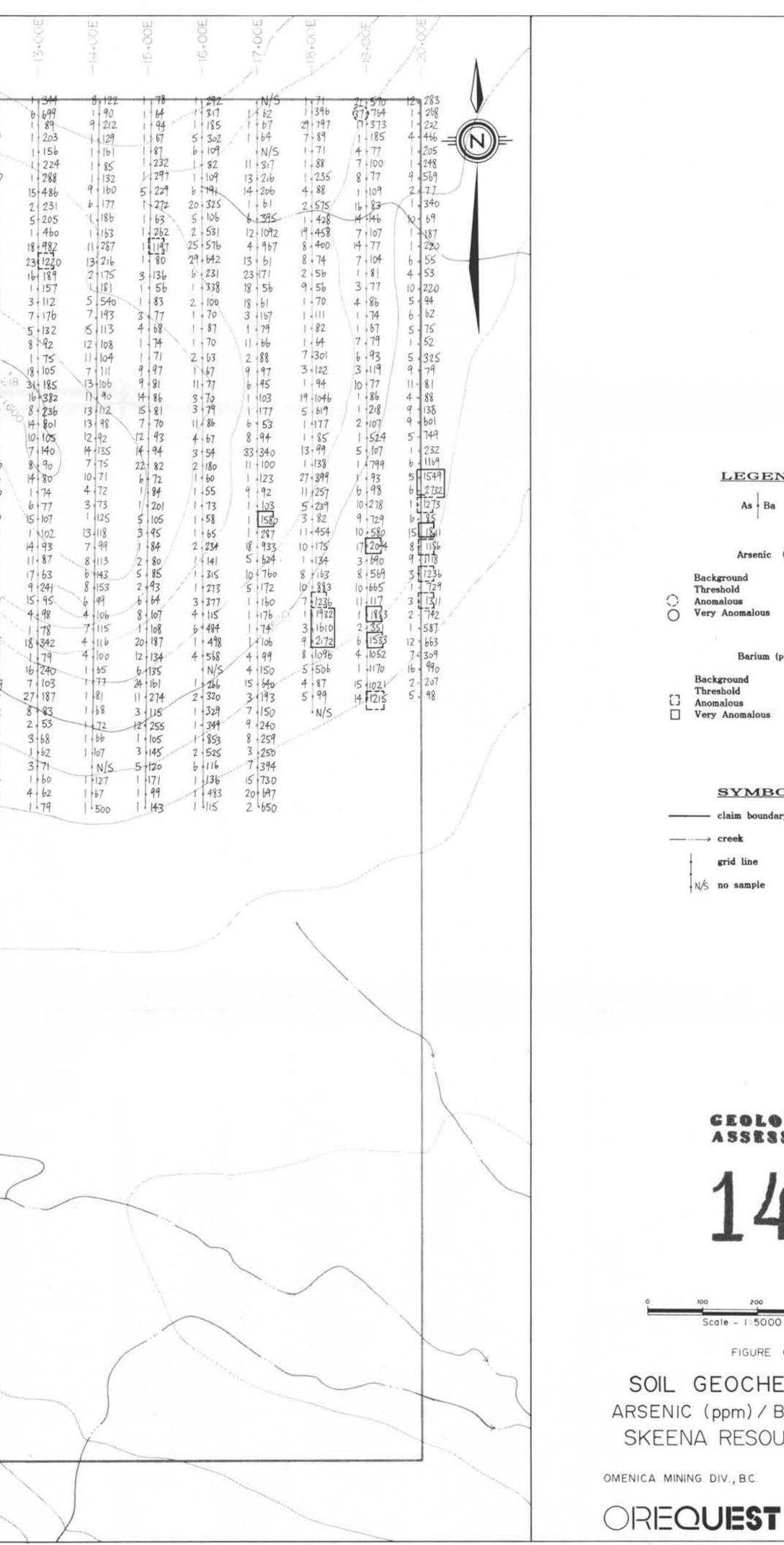
Samples are processed by Min-En Laboratories Ltd. at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized by ceramic plated pulverizer.


1.0 gram of the samples are digested for 6 hours with INO, and HC10, mixture.

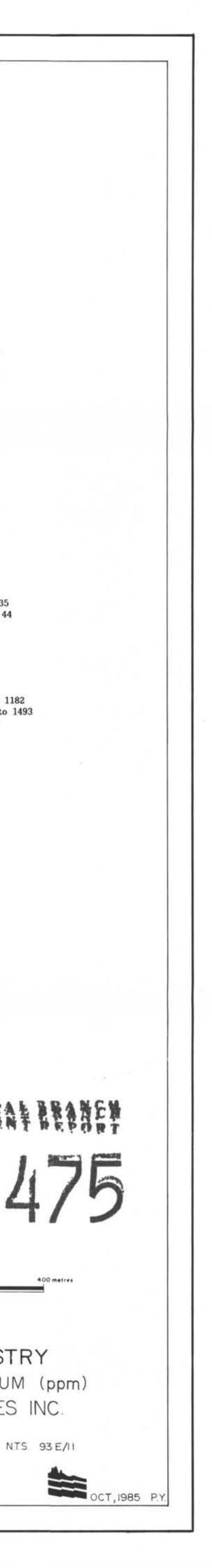
After cooling samples are diluted to standard volume. The solutions are analysed by Atomic Absorption Spectrophotometers.

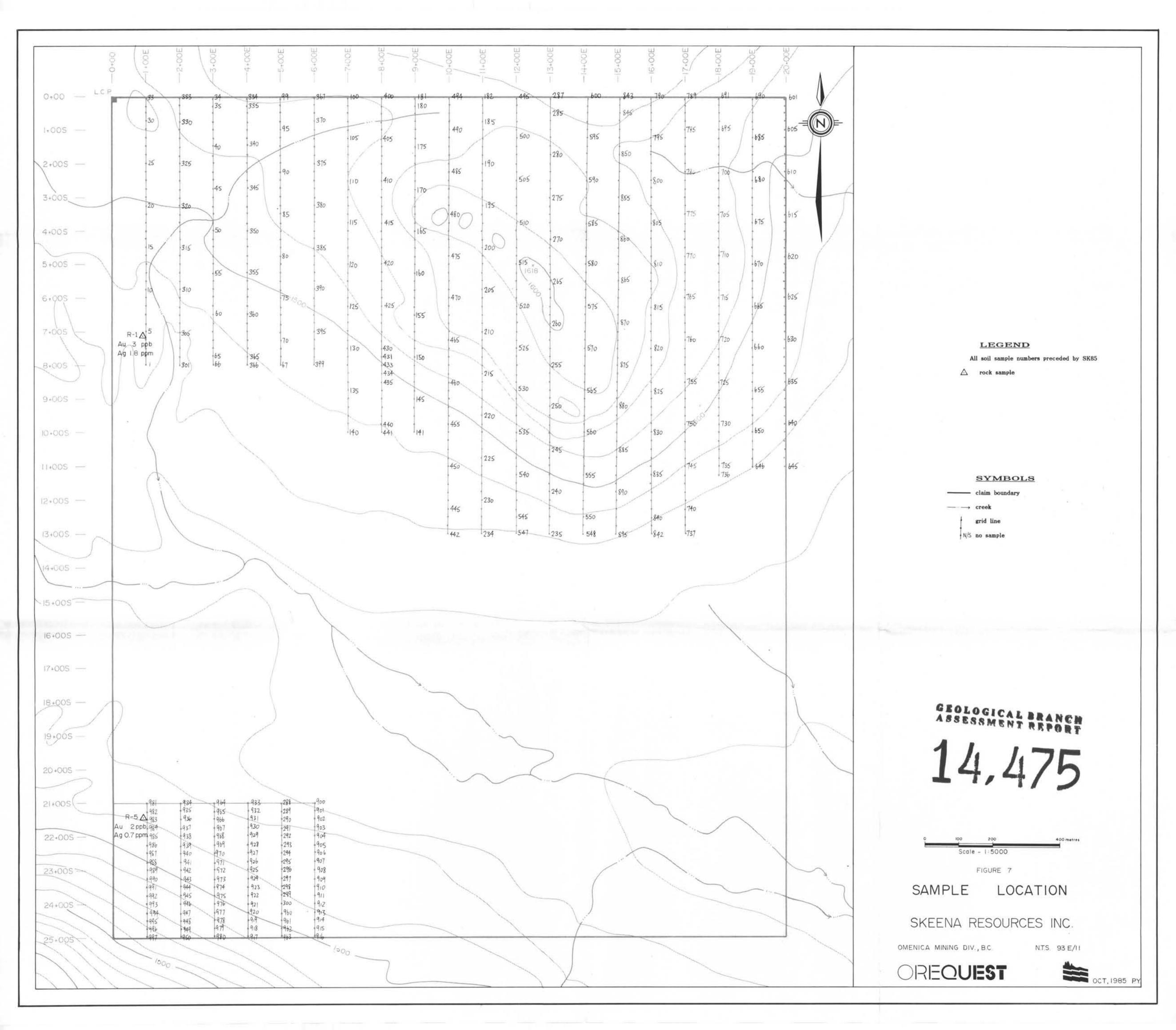
Copper, lead, zinc, silver, cadmium, cobalt, nickel and manganese are analysed using the CH_2H_2 -Air flame combination but the molybdenum determination is carried out by $C_2H_2-N_2O$ gas mixture directly or indirectly (depending on the sensitivity and detection limit required) on these sample solutions.


Background corrections for Pb, Ag, Cd upon request are completed.

(*ij)+()	-2+00E	-3.00E	4+00E		- 6+00E	300E		9+00E	-10+00E	/ //	/-12+00E
	5 09 15 04 10 07 5 07 5 07 5 07 5 05 5 07 5 05 5 07 5 07	3477797585808758561221776544316	50007 10507 10707 10	10.07 5.08 5.11 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.12 5.10 5.10 5.12 5.10	505 10:02 509 500 500 500 500 500 500 500 500 500	500 100 14 10 07 10 14 10 07 10 0 0 10 0 0 10 0 10 0 10 0 10 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	555500000000000000000000000000000000000	17 N 3 1 2 1 1 4 9 8 9 4 7 5 5 6 7 4 6 5 5 5 5 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 5 5 5 5 5 5 6 5 5 6 5 5 6 5 5 5 5 5 5 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 5 5 5 5 5 6 5 5 6 5 5 6 5 5 5 5 5 5 5 5 5 5 6 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5	N/S 0.3 0.2 55 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50555500555555555555555555555555555555
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 0.7 10 0.7 10 0.7 10 0.7 10 0.7 10 0.7 10 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.	5105 1010 509 1010 1010 1010 1010 1010 1	5112 512 512 5513 55	N/S 20-14 5-0.9 5-0.9 5-0.7 5-0.8 5-0.9 5-0.7 5-0.8 5-0.9 5-0.8 5-0.9 5-0.8 5-0.9 5-0.0 5-						

	0+0	Future		23-00E			900-0	3006	E+00E	300-6	-10+00E		/-12+COE
0+00	LC P	21-198 21-198 16-91 44-307	(43) 176 (65) 204 9 - 105 15 - 98	10 77 1 78 1 64 7 85	1 . 77 1 . 86 1 . 241 2 . 260	15:318 8:583 3:193 5:206	8 1560 3 340 13 141 8 618	15, 152 1 + 130 (36) 333 27 + 881	12.297 7.171 2.171	3,132 8,163 23,879 (3)1144	13, 881 - 8 1841 1 367	12 78 25 64 24 114 7 255	
I+CO5		21-198 16-91 (44-307 17-82 11-136 18-115 7-114	5 71 12 90	17 -93 1 -73 1 -90	1 + 88 1 + 58 1 + 53	1 268 1 309 1 588	5 81	1 +242 19 + 122 23 + 151	1 - 69 1 - 65 5 - 57 9 - 135	11+84 1+75 (31)287 1+86	85 125 87	4 66	5 13
2.005 -		1 + 83 12 + 100 5 + 109	13+215 + N/S 6+114 16+109	5 + 82 13 + 295 80 2138 1 + 80	2 9b 9 202 N/S 1 190	1 - 68 1 - 74 4 - 71 2 - 64	25 556 (36) 676 7 295 (56) 1163 23 274	1 · 45 1 · 55 1 · 87 2 · 92	1 - 91 1 - 196 29 - 523 5 - 191	5 + 137 12 - 229 7 + 109	1 408 1 112 1 66 5 104	12+84 1+83 1+78 12+71	8.9
31005	+	1 + 79 2 + 104 9 - 150 1 + 166	7 • 100 8 • 83 4 • 75 4 • 67	3 105 4 84 1 72	1 • 41 8 • 71 1 • 60 1 • 204	1 • 58 1 • 48 1 • 279 28 • 798	23 + 214 19 + 182 28 + 159 10 + 114 45 353	7 - 75 3 - 70 15 - 200 22 - 176	17 - 84 1 + 51 8 - 95 13 +101	15 - 87 6 - 73 8 - 96 4 - 61	4 87 8 63 6 69 7 135	20 84 7 115 12 58 8 143	1
44005		1 + 76 1 + 77 16+114 1 + 95	9 - 146 14 - 203 N/S 29 - 458	1 65 1 + 67 1 + 86 4 + 108	4 + 163 17 + 612 13 + 564 15 + 787	12 + 593 25 + 635 27 + 640 13 + 491	23 - 259 7 - 231 8 - 298	(40)303 T0+114 4 +114 16+148	10 - 373 9 + 151 6 + 127 5 + 121	7 90 6 310 6 89 3 107	10 72 1 231 8 114 23 192	26 112 21 81 12 90 5 67	
5+008 -		29 - 271 25 - 247 1 - 199 1 - 96	1 58 1 67 (43) 878 (40) 590 38) 965 33 830	7 264 7 119 13 547 1 312	20+906 (42) 907 26+514 14-239	13 +491 (52) 1018 8 + 183 1 + 73 (41) 265	N/S 6 441 1 303 10 471	8 194 (41)767 T 249 T 90 T 98	4 75 30 396 12 752 1 581	7 542 48 451 7 109 18 264	6 - 91 1 - 88 3 - 94 6 - 117	10 - 79 1 - 52 30 - 157 9 - 106 12 - 67 23 - 193	1 3 2 6 2
6+005		1 - 96 1 - 96 3 - 112 1 - 74 1 - 90	38 965 33 830 1 45 6 55 1 39	N/S 1 - 84 1 - 75 1 - 64	27+610 25+267	1 88 5 134 13 127 35 425	1 480 5 410 9 550 8 564	6 - 57	15 + 408 3 + 91 16 + 100 4 + 115	18 - 264 12 - 72 3 - 139 6 - 106 4 - 117	10 - 112 15 - 76 14 - 91 3 - 77	10 58	1
zides E		6 -61 27 •480 1 • 55 1 • 70	1 - 39 1 - 72 1 - 42 5 - 101	1 - 59 1 - 69 11 - 515 31 - 962	32 430 9 149 7 155 1 305	14 +395 5 +289 1 +148 21 +837	20 · b2b 21 · 517 15 · 835 20 · 1105	15+194 26-45 1-88 1-67 9-97	19-91 3-101 1-170 13-175	21+104 12+130 14+159 10+261	4 102 21 141 10 72 1 70	16-71 8-51 10-97 12-189	9
8-005		1 63 1 57	0-115	10:466 (41)948	220 575	13 664 23 648	6 91 1 62	1 62 14 87 2 129 1 95	10-61 10-364 8-1134 1-71	13 - 120 6 - 413 16 - 797	3 - 147 3 - 134 1 - 85 12 - 1039	4 66 13 71 23 188 12 356	1 3 9 6
9+00S	Ψ	1	L	\sim				12 - 92 1 + 113 1 - 109 1 - 66	1 +146 10 + 146 24 + 68 28 - 933	15-787 1-78 19-260 30-872 22-597	6 978 1 854 3 452 1 459	8 + 113 N/S 10 529 5 + 178	7 4 8 3
0.00S =								9 - 11Z 8 - 80	9 95	1 250 24 355	2 65 1 53 1 288 1 339	1 845 7 465 1 321 1 303	63.
11+005 —		A				1					1 189 11 196 9 409	12 262 1 161 4 210 1 266	4 1012 6 1
2+005		1	1								8 386 1 195 8 350 6 291	1 • 178 1 • 90 1 • 106 1 • 141	1
13+005 —	à				and the second second						18 484 1 538 1 247	7 42	
14-005 -					>	Z.							
15+00S		 \				1	$\sum_{i=1}^{n}$						
16+005								N.,					
17+005 -													
								/		Ŷ.		~	
18+005 -	11								19 Jan 19			1	
18+005 -	P				1				~	$\overline{\ }$			\sim
2	ł				5							\sim	
19+005 -		1 + 106 [+111	1 - 95 1 - 69	1 67 1 72	1 92 1 99	16-93	N/S 16152					\sim	
19+005 - 20+005 -		+ 3 + 76 + 89 4 + 94 + 84	1 92	1 • 72 1 • 64 1 • 74 1 • 85 1 • 93	1 + 99 1 + 108 1 + 131 1 + 121 1 + 110	1+91 1+74 1+94 8+117 1+91	16+152 22+143 5+99 10+130 1+108					\sim	
19+005 - 20+005 - 21+005 -		1+111 13+76 1+89 14+94 1+81 1+81 1+81 2+73 1+71	1 - 92 1 - 118 1 - 65 1 - 109 1 - 109 1 - 109 1 - 109 1 - 63 1 - 91 1 - 74	1 - 72 1 - 64 1 - 74 1 - 85 1 - 93 1 - 93 1 - 93 1 - 93 1 - 93 1 - 84 1 - 67	- 99 - 108 - 13 - 12 - 110 - 145 - 145 - 125 - 117 - 100	1+91 1+74 1+94 8+117 1+91 1+113 1+105 477-184 4+104	161152 22+143 5+99 10+130 1+108 4+114 2+148 8+203 1+156						
19+005 - 20+005 - 21+005 - 22+005 -		1+111 13+76 1+89 14+94 1+84 1+81 1+81 1+68 2+73	1 92 1 118 1 65 1 109 1 104 1 63 1 91	1 - 72 1 - 64 1 - 74 1 - 85 1 - 93 1 - 78 1 - 93 1 - 93 1 - 93	• 99 • 108 • 13 • 12 • 110 • 145 • 125 • 117	1+91 1+74 1+94 8+117 1+91 1+113 1+10b 47)184	16:152 22:143 5:99 10:130 1:108 4:114 2:148 8:203						


As - Ba Arsenic (ppm) < 26 Background Threshold 26 to 35 Anomalous 36 to 44 > 44 O Very Anomalous Barium (ppm) < 871 Background 871 to 1182 Threshold [] 1182 to 1493 Anomalous Very Anomalous > 1493 SYMBOLS - claim boundary creek grid line N/S no sample


LEGEND

GEOLOGICAL BRANCH ASSESSMENT BEFORT 14,475 Scale - 1:5000 FIGURE 6

SOIL GEOCHEMISTRY ARSENIC (ppm)/BARIUM (ppm) SKEENA RESOURCES INC.

OMENICA MINING DIV., B.C.

